Science.gov

Sample records for survey final redshift

  1. BLAST: THE REDSHIFT SURVEY

    SciTech Connect

    Eales, Stephen; Dye, Simon; Mauskopf, Philip; Moncelsi, Lorenzo; Pascale, Enzo; Raymond, Gwenifer; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas; Devlin, Mark J.; Rex, Marie; Semisch, Christopher; Truch, Matthew D. P.; Hughes, David H.; Netterfield, Calvin B.; Viero, Marco P.; Patanchon, Guillaume; Siana, Brian

    2009-12-20

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) has recently surveyed approx =8.7 deg{sup 2} centered on Great Observatories Origins Deep Survey-South at 250, 350, and 500 mum. In Dye et al., we presented the catalog of sources detected at 5sigma in at least one band in this field and the probable counterparts to these sources in other wavebands. In this paper, we present the results of a redshift survey in which we succeeded in measuring redshifts for 82 of these counterparts. The spectra show that the BLAST counterparts are mostly star-forming galaxies but not extreme ones when compared to those found in the Sloan Digital Sky Survey. Roughly one quarter of the BLAST counterparts contain an active nucleus. We have used the spectroscopic redshifts to carry out a test of the ability of photometric redshift methods to estimate the redshifts of dusty galaxies, showing that the standard methods work well even when a galaxy contains a large amount of dust. We have also investigated the cases where there are two possible counterparts to the BLAST source, finding that in at least half of these there is evidence that the two galaxies are physically associated, either because they are interacting or because they are in the same large-scale structure. Finally, we have made the first direct measurements of the luminosity function in the three BLAST bands. We find strong evolution out to z = 1, in the sense that there is a large increase in the space density of the most luminous galaxies. We have also investigated the evolution of the dust-mass function, finding similar strong evolution in the space density of the galaxies with the largest dust masses, showing that the luminosity evolution seen in many wavebands is associated with an increase in the reservoir of interstellar matter in galaxies.

  2. Redshift Survey Strategies

    NASA Astrophysics Data System (ADS)

    Jones, A. W.; Bland-Hawthorn, J.; Kaiser, N.

    1994-12-01

    In the first half of 1995, the Anglo-Australian Observatory is due to commission a wide field (2.1(deg) ), 400-fiber, double spectrograph system (2dF) at the f/3.3 prime focus of the AAT 3.9m bi-national facility. The instrument should be able to measure ~ 4000 galaxy redshifts (assuming a magnitude limit of b_J ~\\ 20) in a single dark night and is therefore ideally suited to studies of large-scale structure. We have carried out simple 3D numerical simulations to judge the relative merits of sparse surveys and contiguous surveys. We generate a survey volume and fill it randomly with particles according to a selection function which mimics a magnitude-limited survey at b_J = 19.7. Each of the particles is perturbed by a gaussian random field according to the dimensionless power spectrum k(3) P(k) / 2pi (2) determined by Feldman, Kaiser & Peacock (1994) from the IRAS QDOT survey. We introduce some redshift-space distortion as described by Kaiser (1987), a `thermal' component measured from pairwise velocities (Davis & Peebles 1983), and `fingers of god' due to rich clusters at random density enhancements. Our particular concern is to understand how the window function W(2(k)) of the survey geometry compromises the accuracy of statistical measures [e.g., P(k), xi (r), xi (r_sigma ,r_pi )] commonly used in the study of large-scale structure. We also examine the reliability of various tools (e.g. genus) for describing the topological structure within a contiguous region of the survey.

  3. Large Scale Structure Studies: Final Results from a Rich Cluster Redshift Survey

    NASA Astrophysics Data System (ADS)

    Slinglend, K.; Batuski, D.; Haase, S.; Hill, J.

    1995-12-01

    The results from the COBE satellite show the existence of structure on scales on the order of 10% or more of the horizon scale of the universe. Rich clusters of galaxies from the Abell-ACO catalogs show evidence of structure on scales of 100 Mpc and hold the promise of confirming structure on the scale of the COBE result. Unfortunately, until now, redshift information has been unavailable for a large percentage of these clusters, so present knowledge of their three dimensional distribution has quite large uncertainties. Our approach in this effort has been to use the MX multifiber spectrometer on the Steward 2.3m to measure redshifts of at least ten galaxies in each of 88 Abell cluster fields with richness class R>= 1 and mag10 <= 16.8 (estimated z<= 0.12) and zero or one measured redshifts. This work has resulted in a deeper, 95% complete and more reliable sample of 3-D positions of rich clusters. The primary intent of this survey has been to constrain theoretical models for the formation of the structure we see in the universe today through 2-pt. spatial correlation function and other analyses of the large scale structures traced by these clusters. In addition, we have obtained enough redshifts per cluster to greatly improve the quality and size of the sample of reliable cluster velocity dispersions available for use in other studies of cluster properties. This new data has also allowed the construction of an updated and more reliable supercluster candidate catalog. Our efforts have resulted in effectively doubling the volume traced by these clusters. Presented here is the resulting 2-pt. spatial correlation function, as well as density plots and several other figures quantifying the large scale structure from this much deeper and complete sample. Also, with 10 or more redshifts in most of our cluster fields, we have investigated the extent of projection effects within the Abell catalog in an effort to quantify and understand how this may effect the Abell sample.

  4. Photometric Redshifts in the IRAC Shallow Survey

    SciTech Connect

    Brodwin, M; Brown, M; Ashby, M; Bian, C; Brand, K; Dey, A; Eisenhardt, P; Eisenstein, D; Gonzalez, A; Huang, J; Kochanek, C; McKenzie, E; Pahre, M; Smith, H; Soifer, B; Stanford, S; Stern, D; Elston, R

    2006-06-13

    Accurate photometric redshifts are calculated for nearly 200,000 galaxies to a 4.5 micron flux limit of {approx} 13 {micro}Jy in the 8.5 deg{sup 2} Spitzer/IRAC Shallow survey. Using a hybrid photometric redshift algorithm incorporating both neural-net and template-fitting techniques, calibrated with over 15,000 spectroscopic redshifts, a redshift accuracy of {sigma} = 0.06 (1+z) is achieved for 95% of galaxies at 0 < z < 1.5. The accuracy is {sigma} = 0.12 (1 + z) for 95% of AGN at 0 < z < 3. Redshift probability functions, central to several ongoing studies of the galaxy population, are computed for the full sample. We demonstrate that these functions accurately represent the true redshift probability density, allowing the calculation of valid confidence intervals for all objects. These probability functions have already been used to successfully identify a population of Spitzer-selected high redshift (z > 1) galaxy clusters. We present one such spectroscopically confirmed cluster at = 1.24, ISCS J1434.2+3426. Finally, we present a measurement of the 4.5 {micro}m-selected galaxy redshift distribution.

  5. Cosmology with photometric redshift surveys

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Bridle, Sarah

    2005-11-01

    We explore the utility of future photometric redshift imaging surveys for delineating the large-scale structure of the Universe, and assess the resulting constraints on the cosmological model. We perform the following two complementary types of analysis. (i) We quantify the statistical confidence and the accuracy with which such surveys will be able to detect and measure characteristic features in the clustering power spectrum such as the acoustic oscillations and the turnover, in a `model-independent' fashion. We show for example that a 10000-deg2 imaging survey with depth r= 22.5 and photometric redshift accuracy δz/(1 +z) = 0.03 will detect the acoustic oscillations with 99.9 per cent confidence, measuring the associated preferred cosmological scale with 2 per cent precision. Such a survey will also detect the turnover with 95 per cent confidence, determining the corresponding scale with 20 per cent accuracy. (ii) By assuming a Λ cold dark matter (ΛCDM) model power spectrum we calculate the confidence with which a non-zero baryon fraction can be deduced from such future galaxy surveys. We quantify `wiggle detection' by calculating the number of standard deviations by which the baryon fraction is measured, after marginalizing over the shape parameter. This is typically a factor of 4 more significant (in terms of number of standard deviations) than the above `model-independent' result. For both analyses, we quantify the variation of the results with magnitude depth and photometric redshift precision, and discuss the prospects for obtaining the required performance with realistic future surveys. We conclude that the precision with which the clustering pattern may be inferred from future photometric redshift surveys will be competitive with contemporaneous spectroscopic redshift surveys, assuming that systematic effects can be controlled. We find that for equivalent wiggle detection power, a photometric redshift survey requires an area approximately 12[δz/(1 +z

  6. Southern Sky Redshift Survey

    SciTech Connect

    Da Costa, L.N.; Pellegrini, P.S.; Sargent, W.L.W.; Tonry, J.; Davis, M.

    1988-04-01

    The general characteristics of the space distribution of galaxies in the SSRS sample, covering the southern Galactic cap, are examined, and maps of the space distribution are presented. The sample consists of 2028 galaxies in an area of 1.75 sr with declination south of -17.5 deg and galactic latitude below -30 deg. The survey provides useful information on large-scale structure to a depth of 120/h Mpc. The galaxy distribution exhibits prominent filaments, sheets, and voids. Some large-scale structures are highly subclustered; others are much more diffuse. 21 references.

  7. Understanding cosmic acceleration with galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Guzzo, L.

    Our increased efficiency in performing massive redshift surveys of galaxies well beyond the local Universe (i.e. z≫ 0.1) is opening up new possibilities to understanding the observed acceleration of cosmic expansion, the greatest mystery in modern cosmology. Redshift surveys can measure both the expansion history H(z) and the evolution of the growth rate of structure f(z). Coupling these two measurements one can distinguish wether cosmic acceleration is due to a new form of ``dark energy'' in the cosmic budget, or rather requires a modification of General Relativity. These two radically alternative scenarios are degenerate when considering H(z) alone, as yielded, e.g., by the Hubble diagram of Type Ia supernovae. While redshift surveys have the ability to measure H(z) through Baryonic Acoustic Oscillations in the galaxy power spectrum, they can at the same time probe f(z) using the redshift-space distortions introduced in the observed clustering pattern by galaxy peculiar motions. In this short review paper I will mostly concentrate on the latter measurement, whose potential importance in this context has been recently highlighted \\citep{guz08}. Current estimates are consistent with the simplest cosmological-constant scenario, but error bars are still too large to rule out alternative models. Extensive simulations show that with the next-generation deep surveys with N>100,000 redshifts over large (>20 deg2) areas, redshift distortions can be one of the key tools for understanding the physical origin of cosmic acceleration.

  8. Bayesian redshift-space distortions correction from galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Ata, Metin; Angulo, Raul E.; Chuang, Chia-Hsun; Rodríguez-Torres, Sergio; Monteagudo, Carlos Hernández; Prada, Francisco; Yepes, Gustavo

    2016-03-01

    We present a Bayesian reconstruction method which maps a galaxy distribution from redshift- to real-space inferring the distances of the individual galaxies. The method is based on sampling density fields assuming a lognormal prior with a likelihood modelling non-linear stochastic bias. Coherent redshift-space distortions are corrected in a Gibbs-sampling procedure by moving the galaxies from redshift- to real-space according to the peculiar motions derived from the recovered density field using linear theory. The virialized distortions are corrected by sampling candidate real-space positions along the line of sight, which are compatible with the bulk flow corrected redshift-space position adding a random dispersion term in high-density collapsed regions (defined by the eigenvalues of the Hessian). This approach presents an alternative method to estimate the distances to galaxies using the three-dimensional spatial information, and assuming isotropy. Hence the number of applications is very broad. In this work, we show the potential of this method to constrain the growth rate up to k ˜ 0.3 h Mpc-1. Furthermore it could be useful to correct for photometric redshift errors, and to obtain improved baryon acoustic oscillations (BAO) reconstructions.

  9. Constraining inflation with future galaxy redshift surveys

    SciTech Connect

    Huang, Zhiqi; Vernizzi, Filippo; Verde, Licia E-mail: liciaverde@icc.ub.edu

    2012-04-01

    With future galaxy surveys, a huge number of Fourier modes of the distribution of the large scale structures in the Universe will become available. These modes are complementary to those of the CMB and can be used to set constraints on models of the early universe, such as inflation. Using a MCMC analysis, we compare the power of the CMB with that of the combination of CMB and galaxy survey data, to constrain the power spectrum of primordial fluctuations generated during inflation. We base our analysis on the Planck satellite and a spectroscopic redshift survey with configuration parameters close to those of the Euclid mission as examples. We first consider models of slow-roll inflation, and show that the inclusion of large scale structure data improves the constraints by nearly halving the error bars on the scalar spectral index and its running. If we attempt to reconstruct the inflationary single-field potential, a similar conclusion can be reached on the parameters characterizing the potential. We then study models with features in the power spectrum. In particular, we consider ringing features produced by a break in the potential and oscillations such as in axion monodromy. Adding large scale structures improves the constraints on features by more than a factor of two. In axion monodromy we show that there are oscillations with small amplitude and frequency in momentum space that are undetected by CMB alone but can be measured by including galaxy surveys in the analysis.

  10. Hierarchical Bayesian inference of galaxy redshift distributions from photometric surveys

    NASA Astrophysics Data System (ADS)

    Leistedt, Boris; Mortlock, Daniel J.; Peiris, Hiranya V.

    2016-08-01

    Accurately characterizing the redshift distributions of galaxies is essential for analysing deep photometric surveys and testing cosmological models. We present a technique to simultaneously infer redshift distributions and individual redshifts from photometric galaxy catalogues. Our model constructs a piecewise constant representation (effectively a histogram) of the distribution of galaxy types and redshifts, the parameters of which are efficiently inferred from noisy photometric flux measurements. This approach can be seen as a generalization of template-fitting photometric redshift methods and relies on a library of spectral templates to relate the photometric fluxes of individual galaxies to their redshifts. We illustrate this technique on simulated galaxy survey data, and demonstrate that it delivers correct posterior distributions on the underlying type and redshift distributions, as well as on the individual types and redshifts of galaxies. We show that even with uninformative priors, large photometric errors and parameter degeneracies, the redshift and type distributions can be recovered robustly thanks to the hierarchical nature of the model, which is not possible with common photometric redshift estimation techniques. As a result, redshift uncertainties can be fully propagated in cosmological analyses for the first time, fulfilling an essential requirement for the current and future generations of surveys.

  11. The 2dF Galaxy Redshift Survey: spectra and redshifts

    NASA Astrophysics Data System (ADS)

    Colless, Matthew; Dalton, Gavin; Maddox, Steve; Sutherland, Will; Norberg, Peder; Cole, Shaun; Bland-Hawthorn, Joss; Bridges, Terry; Cannon, Russell; Collins, Chris; Couch, Warrick; Cross, Nicholas; Deeley, Kathryn; De Propris, Roberto; Driver, Simon P.; Efstathiou, George; Ellis, Richard S.; Frenk, Carlos S.; Glazebrook, Karl; Jackson, Carole; Lahav, Ofer; Lewis, Ian; Lumsden, Stuart; Madgwick, Darren; Peacock, John A.; Peterson, Bruce A.; Price, Ian; Seaborne, Mark; Taylor, Keith

    2001-12-01

    The 2dF Galaxy Redshift Survey (2dFGRS) is designed to measure redshifts for approximately 250000 galaxies. This paper describes the survey design, the spectroscopic observations, the redshift measurements and the survey data base. The 2dFGRS uses the 2dF multifibre spectrograph on the Anglo-Australian Telescope, which is capable of observing 400 objects simultaneously over a 2° diameter field. The source catalogue for the survey is a revised and extended version of the APM galaxy catalogue, and the targets are galaxies with extinction-corrected magnitudes brighter than bJ=19.45. The main survey regions are two declination strips, one in the southern Galactic hemisphere spanning 80°×15° around the SGP, and the other in the northern Galactic hemisphere spanning 75°×10° along the celestial equator; in addition, there are 99 fields spread over the southern Galactic cap. The survey covers 2000deg2 and has a median depth of z=0.11. Adaptive tiling is used to give a highly uniform sampling rate of 93 per cent over the whole survey region. Redshifts are measured from spectra covering 3600-8000Å at a two-pixel resolution of 9.0Å and a median S/N of 13pixel-1. All redshift identifications are visually checked and assigned a quality parameter Q in the range 1-5 Q>=3 redshifts are 98.4 per cent reliable and have an rms uncertainty of 85kms-1. The overall redshift completeness for Q>=3 redshifts is 91.8 per cent, but this varies with magnitude from 99 per cent for the brightest galaxies to 90 per cent for objects at the survey limit. The 2dFGRS data base is available on the World Wide Web at http://www.mso.anu.edu.au/2dFGRS.

  12. Mapping the Galaxy Color–Redshift Relation: Optimal Photometric Redshift Calibration Strategies for Cosmology Surveys

    NASA Astrophysics Data System (ADS)

    Masters, Daniel; Capak, Peter; Stern, Daniel; Ilbert, Olivier; Salvato, Mara; Schmidt, Samuel; Longo, Giuseppe; Rhodes, Jason; Paltani, Stephane; Mobasher, Bahram; Hoekstra, Henk; Hildebrandt, Hendrik; Coupon, Jean; Steinhardt, Charles; Speagle, Josh; Faisst, Andreas; Kalinich, Adam; Brodwin, Mark; Brescia, Massimo; Cavuoti, Stefano

    2015-11-01

    Calibrating the photometric redshifts of ≳109 galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selected to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where—in galaxy color space—redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color–redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.

  13. MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS

    SciTech Connect

    Masters, Daniel; Steinhardt, Charles; Faisst, Andreas; Capak, Peter; Stern, Daniel; Rhodes, Jason; Ilbert, Olivier; Salvato, Mara; Schmidt, Samuel; Longo, Giuseppe; Paltani, Stephane; Coupon, Jean; Mobasher, Bahram; Hoekstra, Henk; Hildebrandt, Hendrik; Speagle, Josh; Kalinich, Adam; Brodwin, Mark; Brescia, Massimo; Cavuoti, Stefano

    2015-11-01

    Calibrating the photometric redshifts of ≳10{sup 9} galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selected to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where—in galaxy color space—redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color–redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.

  14. SHELS: Complete Redshift Surveys of Two Widely Separated Fields

    NASA Astrophysics Data System (ADS)

    Geller, Margaret J.; Hwang, Ho Seong; Dell'Antonio, Ian P.; Zahid, Harus Jabran; Kurtz, Michael J.; Fabricant, Daniel G.

    2016-05-01

    The Smithsonian Hectospec Lensing Survey (SHELS) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey (DLS). Both fields are more than 94% complete to a Galactic extinction corrected R 0 = 20.2. Here, we describe the redshift survey of the F1 field centered at R.A.2000 = 00h53m25.ˢ3 and decl.2000 = 12°33‧55″ like F2, the F1 field covers ˜4 deg2. The redshift survey of the F1 field includes 9426 new galaxy redshifts measured with Hectospec on the MMT (published here). As a guide to future uses of the combined survey, we compare the mass metallicity relation and the distributions of D n 4000 as a function of stellar mass and redshift for the two fields. The mass-metallicity relations differ by an insignificant 1.6σ. For galaxies in the stellar mass range 1010-1011 M ⊙, the increase in the star-forming fraction with redshift is remarkably similar in the two fields. The seemingly surprising 31%-38% difference in the overall galaxy counts in F1 and F2 is probably consistent with the expected cosmic variance given the subtleties of the relative systematics in the two surveys. We also review the DLS cluster detections in the two fields: poorer photometric data for F1 precluded secure detection of the single massive cluster at z = 0.35 that we find in SHELS. Taken together, the two fields include 16,055 redshifts for galaxies with {R}0≤slant 20.2 and 20,754 redshifts for galaxies with R ≤ 20.6. These dense surveys in two well-separated fields provide a basis for future investigations of galaxy properties and large-scale structure.

  15. SHELS: Complete Redshift Surveys of Two Widely Separated Fields

    NASA Astrophysics Data System (ADS)

    Geller, Margaret J.; Hwang, Ho Seong; Dell’Antonio, Ian P.; Zahid, Harus Jabran; Kurtz, Michael J.; Fabricant, Daniel G.

    2016-05-01

    The Smithsonian Hectospec Lensing Survey (SHELS) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey (DLS). Both fields are more than 94% complete to a Galactic extinction corrected R 0 = 20.2. Here, we describe the redshift survey of the F1 field centered at R.A.2000 = 00h53m25.ˢ3 and decl.2000 = 12°33‧55″ like F2, the F1 field covers ˜4 deg2. The redshift survey of the F1 field includes 9426 new galaxy redshifts measured with Hectospec on the MMT (published here). As a guide to future uses of the combined survey, we compare the mass metallicity relation and the distributions of D n 4000 as a function of stellar mass and redshift for the two fields. The mass–metallicity relations differ by an insignificant 1.6σ. For galaxies in the stellar mass range 1010–1011 M ⊙, the increase in the star-forming fraction with redshift is remarkably similar in the two fields. The seemingly surprising 31%–38% difference in the overall galaxy counts in F1 and F2 is probably consistent with the expected cosmic variance given the subtleties of the relative systematics in the two surveys. We also review the DLS cluster detections in the two fields: poorer photometric data for F1 precluded secure detection of the single massive cluster at z = 0.35 that we find in SHELS. Taken together, the two fields include 16,055 redshifts for galaxies with {R}0≤slant 20.2 and 20,754 redshifts for galaxies with R ≤ 20.6. These dense surveys in two well-separated fields provide a basis for future investigations of galaxy properties and large-scale structure.

  16. THE 2MASS REDSHIFT SURVEY-DESCRIPTION AND DATA RELEASE

    SciTech Connect

    Huchra, John P.; Berlind, Perry; Calkins, Michael; Falco, Emilio; Mink, Jessica D.; Tokarz, Susan; Macri, Lucas M.; Masters, Karen L.; Jarrett, Thomas H.; Crook, Aidan C.; Cutri, Roc; Erdogdu, Pirin; Lahav, Ofer; George, Teddy; Hutcheson, Conrad M.; Mader, Jeff; Martimbeau, Nathalie; Schneider, Stephen; Skrutskie, Michael; Westover, Michael E-mail: karen.masters@port.ac.uk

    2012-04-01

    We present the results of the 2MASS Redshift Survey (2MRS), a ten-year project to map the full three-dimensional distribution of galaxies in the nearby universe. The Two Micron All Sky Survey (2MASS) was completed in 2003 and its final data products, including an extended source catalog (XSC), are available online. The 2MASS XSC contains nearly a million galaxies with K{sub s} {<=} 13.5 mag and is essentially complete and mostly unaffected by interstellar extinction and stellar confusion down to a galactic latitude of |b| = 5 Degree-Sign for bright galaxies. Near-infrared wavelengths are sensitive to the old stellar populations that dominate galaxy masses, making 2MASS an excellent starting point to study the distribution of matter in the nearby universe. We selected a sample of 44,599 2MASS galaxies with K{sub s} {<=} 11.75 mag and |b| {>=} 5 Degree-Sign ({>=}8 Degree-Sign toward the Galactic bulge) as the input catalog for our survey. We obtained spectroscopic observations for 11,000 galaxies and used previously obtained velocities for the remainder of the sample to generate a redshift catalog that is 97.6% complete to well-defined limits and covers 91% of the sky. This provides an unprecedented census of galaxy (baryonic mass) concentrations within 300 Mpc. Earlier versions of our survey have been used in a number of publications that have studied the bulk motion of the Local Group, mapped the density and peculiar velocity fields out to 50 h{sup -1} Mpc, detected galaxy groups, and estimated the values of several cosmological parameters. Additionally, we present morphological types for a nearly complete sub-sample of 20,860 galaxies with K{sub s} {<=} 11.25 mag and |b| {>=} 10 Degree-Sign .

  17. Catastrophic photometric redshift errors: Weak-lensing survey requirements

    DOE PAGESBeta

    Bernstein, Gary; Huterer, Dragan

    2010-01-11

    We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number Nspec of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of Nspec is ~106 we find that using onlymore » the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in Nspec to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the zs – zp distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.« less

  18. The VIMOS Public Extragalactic Redshift Survey. Reconstruction of the redshift-space galaxy density field&

    NASA Astrophysics Data System (ADS)

    Granett, B. R.; Branchini, E.; Guzzo, L.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bolzonella, M.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; De Lucia, G.; de la Torre, S.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Polletta, M.; Pollo, A.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moutard, T.; Moscardini, L.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Zamorani, G.

    2015-11-01

    Aims: Using the VIMOS Public Extragalactic Redshift Survey (VIPERS) we aim to jointly estimate the keyparameters that describe the galaxy density field and its spatial correlations in redshift space. Methods: We use the Bayesian formalism to jointly reconstruct the redshift-space galaxy density field, power spectrum, galaxy bias and galaxy luminosity function given the observations and survey selection function. The high-dimensional posterior distribution is explored using the Wiener filter within a Gibbs sampler. We validate the analysis using simulated catalogues and apply it to VIPERS data taking into consideration the inhomogeneous selection function. Results: We present joint constraints on the anisotropic power spectrum, and the bias and number density of red and blue galaxy classes in luminosity and redshift bins as well as the measurement covariances of these quantities. We find that the inferred galaxy bias and number density parameters are strongly correlated although they are only weakly correlated with the galaxy power spectrum. The power spectrum and redshift-space distortion parameters are in agreement with previous VIPERS results with the value of the growth rate fσ8 = 0.38 with 18% uncertainty at redshift 0.7. Appendices are available in electronic form at http://www.aanda.org

  19. Galaxy clustering with photometric surveys using PDF redshift information

    NASA Astrophysics Data System (ADS)

    Asorey, J.; Carrasco Kind, M.; Sevilla-Noarbe, I.; Brunner, R. J.; Thaler, J.

    2016-06-01

    Photometric surveys produce large-area maps of the galaxy distribution, but with less accurate redshift information than is obtained from spectroscopic methods. Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colours, that are obtained through multiband imaging to produce a probability density function (PDF) for each galaxy in the map. We used simulated data to study the effect of using different photo-z estimators to assign galaxies to redshift bins in order to compare their effects on angular clustering and galaxy bias measurements. We found that if we use the entire PDF, rather than a single-point (mean or mode) estimate, the deviations are less biased, especially when using narrow redshift bins. When the redshift bin widths are Δz = 0.1, the use of the entire PDF reduces the typical measurement bias from 5 per cent, when using single point estimates, to 3 per cent.

  20. Galaxy clustering with photometric surveys using PDF redshift information

    DOE PAGESBeta

    Asorey, J.; Carrasco Kind, M.; Sevilla-Noarbe, I.; Brunner, R. J.; Thaler, J.

    2016-03-28

    Here, photometric surveys produce large-area maps of the galaxy distribution, but with less accurate redshift information than is obtained from spectroscopic methods. Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colors, that are obtained through multi-band imaging to produce a probability density function (PDF) for each galaxy in the map. We used simulated data to study the effect of using different photo-z estimators to assign galaxies to redshift bins in order to compare their effects on angular clustering and galaxy bias measurements. We found that if we use the entire PDF, rather than a single-point (mean or mode) estimate, the deviations are less biased, especially when using narrow redshift bins. When the redshift bin widths aremore » $$\\Delta z=0.1$$, the use of the entire PDF reduces the typical measurement bias from 5%, when using single point estimates, to 3%.« less

  1. EXTENDED PHOTOMETRY FOR THE DEEP2 GALAXY REDSHIFT SURVEY: A TESTBED FOR PHOTOMETRIC REDSHIFT EXPERIMENTS

    SciTech Connect

    Matthews, Daniel J.; Newman, Jeffrey A.; Coil, Alison L.; Cooper, Michael C.; Gwyn, Stephen D. J. E-mail: janewman@pitt.edu E-mail: m.cooper@uci.edu

    2013-02-15

    This paper describes a new catalog that supplements the existing DEEP2 Galaxy Redshift Survey photometric and spectroscopic catalogs with ugriz photometry from two other surveys: the Canada-France-Hawaii Legacy Survey (CFHTLS) and the Sloan Digital Sky Survey (SDSS). Each catalog is cross-matched by position on the sky in order to assign ugriz photometry to objects in the DEEP2 catalogs. We have recalibrated the CFHTLS photometry where it overlaps DEEP2 in order to provide a more uniform data set. We have also used this improved photometry to predict DEEP2 BRI photometry in regions where only poorer measurements were available previously. In addition, we have included improved astrometry tied to SDSS rather than USNO-A2.0 for all DEEP2 objects. In total this catalog contains {approx}27, 000 objects with full ugriz photometry as well as robust spectroscopic redshift measurements, 64% of which have r > 23. By combining the secure and accurate redshifts of the DEEP2 Galaxy Redshift Survey with ugriz photometry, we have created a catalog that can be used as an excellent testbed for future photo-z studies, including tests of algorithms for surveys such as LSST and DES.

  2. THE PRISM MULTI-OBJECT SURVEY (PRIMUS). II. DATA REDUCTION AND REDSHIFT FITTING

    SciTech Connect

    Cool, Richard J.; Moustakas, John; Blanton, Michael R.; Hogg, David W.; Burles, Scott M.; Coil, Alison L.; Aird, James; Mendez, Alexander J.; Eisenstein, Daniel J.; Wong, Kenneth C.; Zhu, Guangtun; Bernstein, Rebecca A.

    2013-04-20

    The PRIsm MUlti-object Survey (PRIMUS) is a spectroscopic galaxy redshift survey to z {approx} 1 completed with a low-dispersion prism and slitmasks allowing for simultaneous observations of {approx}2500 objects over 0.18 deg{sup 2}. The final PRIMUS catalog includes {approx}130,000 robust redshifts over 9.1 deg{sup 2}. In this paper, we summarize the PRIMUS observational strategy and present the data reduction details used to measure redshifts, redshift precision, and survey completeness. The survey motivation, observational techniques, fields, target selection, slitmask design, and observations are presented in Coil et al. Comparisons to existing higher-resolution spectroscopic measurements show a typical precision of {sigma}{sub z}/(1 + z) = 0.005. PRIMUS, both in area and number of redshifts, is the largest faint galaxy redshift survey completed to date and is allowing for precise measurements of the relationship between active galactic nuclei and their hosts, the effects of environment on galaxy evolution, and the build up of galactic systems over the latter half of cosmic history.

  3. The Canada-France Deep Fields Photometric Redshift Survey

    NASA Astrophysics Data System (ADS)

    Brodwin, M.; Lilly, S. J.; McCracken, H. J.; Foucaud, S.; Le Fèvre, O.; Crampton, D.

    2002-12-01

    The Canada-France Deep Fields is a UBVRIZ imaging survey covering 1 deg2 to I ~ 25. A template-fitting photometric redshift algorithm has been developed and rigorously tested, producing redshifts with a dispersion of Δ z/(1+z) ~ 0.08 for galaxies at 0redshift likelihood function for each galaxy. Previous results from the CFDF include measurements of the angular correlation function of galaxies to I ~ 25 (McCracken et al. 2001, A&A, 376, 756) and of colour-selected Lyman Break Galaxies (Foucaud et al. 2002, submitted). The CFDF photometric redshift survey, calibrated with CFRS spectroscopy, was designed to study galaxy evolution since z ~ 1.3. With the full 3-D spatial information, real-space clustering and luminosity density evolution will be quantified over this redshift range. In this talk I will present the first results from the photometric redshift component of the survey.

  4. THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS

    SciTech Connect

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Harker, Justin J.; Lai, Kamson; Dutton, Aaron A.; Finkbeiner, Douglas P.; Gerke, Brian F.; Rosario, David J.; Weiner, Benjamin J.; Willmer, C. N. A.; Yan Renbin; Kassin, Susan A.; Konidaris, N. P. E-mail: djm70@pitt.edu E-mail: mdavis@berkeley.edu E-mail: koo@ucolick.org E-mail: phillips@ucolick.org; and others

    2013-09-15

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z {approx} 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude M{sub B} = -20 at z {approx} 1 via {approx}90 nights of observation on the Keck telescope. The survey covers an area of 2.8 deg{sup 2} divided into four separate fields observed to a limiting apparent magnitude of R{sub AB} = 24.1. Objects with z {approx}< 0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted {approx}2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z {approx} 1.45, where the [O II] 3727 A doublet lies in the infrared. The DEIMOS 1200 line mm{sup -1} grating used for the survey delivers high spectral resolution (R {approx} 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or

  5. The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    NASA Technical Reports Server (NTRS)

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Coil, Alison L; Guhathakurta, Puraga; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Dutton, Aaron A.; Finkbeiner, Douglas P.; Gerke, Brian F.; Rosario, David J.; Weiner, Benjamin J.; Wilmer, C. N. A.; Yan, Renbin; Harker, Justin J.; Kassin, Susan A.; Konidaris, N. P.; Lai, Kamson; Madgwick, Darren S.; Noeske, K. G.; Wirth, Gregory D.; Kirby, Evan N.; Lotz, Jennifer M.

    2013-01-01

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z approx. 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude MB = -20 at z approx. 1 via approx.90 nights of observation on the Keck telescope. The survey covers an area of 2.8 Sq. deg divided into four separate fields observed to a limiting apparent magnitude of R(sub AB) = 24.1. Objects with z approx. < 0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted approx. 2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z approx. 1.45, where the [O ii] 3727 Ang. doublet lies in the infrared. The DEIMOS 1200 line mm(exp -1) grating used for the survey delivers high spectral resolution (R approx. 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other

  6. The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    NASA Astrophysics Data System (ADS)

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Coil, Alison L.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Dutton, Aaron A.; Finkbeiner, Douglas P.; Gerke, Brian F.; Rosario, David J.; Weiner, Benjamin J.; Willmer, C. N. A.; Yan, Renbin; Harker, Justin J.; Kassin, Susan A.; Konidaris, N. P.; Lai, Kamson; Madgwick, Darren S.; Noeske, K. G.; Wirth, Gregory D.; Connolly, A. J.; Kaiser, N.; Kirby, Evan N.; Lemaux, Brian C.; Lin, Lihwai; Lotz, Jennifer M.; Luppino, G. A.; Marinoni, C.; Matthews, Daniel J.; Metevier, Anne; Schiavon, Ricardo P.

    2013-09-01

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z ~ 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude MB = -20 at z ~ 1 via ~90 nights of observation on the Keck telescope. The survey covers an area of 2.8 deg2 divided into four separate fields observed to a limiting apparent magnitude of R AB = 24.1. Objects with z <~ 0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted ~2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z ~ 1.45, where the [O II] 3727 Å doublet lies in the infrared. The DEIMOS 1200 line mm-1 grating used for the survey delivers high spectral resolution (R ~ 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other artifacts that in some cases remain after data reduction. Redshift

  7. Spectrophotometric Redshifts in the Faint Infrared Grism Survey

    NASA Astrophysics Data System (ADS)

    Pharo, John; Malhotra, Sangeeta; Rhoads, James E.

    2016-06-01

    We have combined HST grism spectroscopy and deep broadband imaging to measure spectro-photometric redshifts (SPZs) of faint galaxies. Using a technique pioneered by Ryan et al. 2007, one can combine spectra and photometry to yield an SPZ that is more accurate than pure photometric redshifts, and can probe more deeply than ground-based spectroscopic redshifts. By taking mid-resolution spectra from the HST Faint Infrared Grism Survey (FIGS), SPZs can be found for measurements potentially down to 27th magnitude (the typical brightness of a dwarf galaxy at redshift ˜1.5). A galaxy’s redshift is vital for understanding its place in the growth and evolution of the universe. The measurement of high-accuracy SPZs for FIGS sources will improve the faint-end and high-redshift portions of the luminosity function, and make possible a robust analysis of the FIGS fields for signs of Large Scale Structure (LSS). The improved redshift and distance measurements allowed for the identification of a structure at z=0.83 in one of the FIGS fields.

  8. Spectrophotometric Redshifts in the Faint Infrared Grism Survey

    NASA Astrophysics Data System (ADS)

    Pharo, John; Malhotra, Sangeeta; Rhoads, James E.

    2016-06-01

    We have combined HST grism spectroscopy and deep broadband imaging to measure spectro-photometric redshifts (SPZs) of faint galaxies. Using a technique pioneered by Ryan et al. 2007, one can combine spectra and photometry to yield an SPZ that is more accurate than pure photometric redshifts, and can probe more deeply than ground-based spectroscopic redshifts. By taking mid-resolution spectra from the HST Faint Infrared Grism Survey (FIGS), SPZs can be found for measurements potentially down to 27th magnitude (the typical brightness of a dwarf galaxy at redshift ∼1.5). A galaxy’s redshift is vital for understanding its place in the growth and evolution of the universe. The measurement of high-accuracy SPZs for FIGS sources will improve the faint-end and high-redshift portions of the luminosity function, and make possible a robust analysis of the FIGS fields for signs of Large Scale Structure (LSS). The improved redshift and distance measurements allowed for the identification of a structure at z=0.83 in one of the FIGS fields.

  9. SHELS: TESTING WEAK-LENSING MAPS WITH REDSHIFT SURVEYS

    SciTech Connect

    Geller, Margaret J.; Kurtz, Michael J.; Fabricant, Daniel G.; Dell'Antonio, Ian P.; Ramella, Massimo E-mail: mkurtz@cfa.harvard.ed E-mail: ian@het.brown.ed

    2010-02-01

    Weak-lensing surveys are emerging as an important tool for the construction of 'mass-selected' clusters of galaxies. We evaluate both the efficiency and completeness of a weak-lensing selection by combining a dense, complete redshift survey, the Smithsonian Hectospec Lensing Survey (SHELS), with a weak-lensing map from the Deep Lens Survey (DLS). SHELS includes 11,692 redshifts for galaxies with R <= 20.6 in the 4 deg{sup 2} DLS field; the survey is a solid basis for identifying massive clusters of galaxies with redshift z approx< 0.55. The range of sensitivity of the redshift survey is similar to the range for the DLS convergence map. Only four of the 12 convergence peaks with signal to noise >=3.5 correspond to clusters of galaxies with M approx> 1.7 x 10{sup 14} M{sub sun}. Four of the eight massive clusters in SHELS are detected in the weak-lensing map yielding a completeness of approx50%. We examine the seven known extended cluster X-ray sources in the DLS field: three can be detected in the weak-lensing map, three should not be detected without boosting from superposed large-scale structure, and one is mysteriously undetected even though its optical properties suggest that it should produce a detectable lensing signal. Taken together, these results underscore the need for more extensive comparisons among different methods of massive cluster identification.

  10. SPECTRAL CONFUSION FOR COSMOLOGICAL SURVEYS OF REDSHIFTED C II EMISSION

    SciTech Connect

    Kogut, A.; Dwek, E.; Moseley, S. H.

    2015-06-20

    Far-infrared cooling lines are ubiquitous features in the spectra of star-forming galaxies. Surveys of redshifted fine-structure lines provide a promising new tool to study structure formation and galactic evolution at redshifts including the epoch of reionization as well as the peak of star formation. Unlike neutral hydrogen surveys, where the 21 cm line is the only bright line, surveys of redshifted fine-structure lines suffer from confusion generated by line broadening, spectral overlap of different lines, and the crowding of sources with redshift. We use simulations to investigate the resulting spectral confusion and derive observing parameters to minimize these effects in pencil-beam surveys of redshifted far-IR line emission. We generate simulated spectra of the 17 brightest far-IR lines in galaxies, covering the 150–1300 μm wavelength region corresponding to redshifts 0 < z < 7, and develop a simple iterative algorithm that successfully identifies the 158 μm [C ii] line and other lines. Although the [C ii] line is a principal coolant for the interstellar medium, the assumption that the brightest observed lines in a given line of sight are always [C ii] lines is a poor approximation to the simulated spectra once other lines are included. Blind line identification requires detection of fainter companion lines from the same host galaxies, driving survey sensitivity requirements. The observations require moderate spectral resolution 700 < R < 4000 with angular resolution between 20″ and 10′, sufficiently narrow to minimize confusion yet sufficiently large to include a statistically meaningful number of sources.

  11. Catastrophic photometric redshift errors: Weak-lensing survey requirements

    SciTech Connect

    Bernstein, Gary; Huterer, Dragan

    2010-01-11

    We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number Nspec of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of Nspec is ~106 we find that using only the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in Nspec to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the zs – zp distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.

  12. Galaxy redshift surveys with sparse sampling

    SciTech Connect

    Chiang, Chi-Ting; Wullstein, Philipp; Komatsu, Eiichiro; Jee, Inh; Jeong, Donghui; Blanc, Guillermo A.; Ciardullo, Robin; Gronwall, Caryl; Hagen, Alex; Schneider, Donald P.; Drory, Niv; Fabricius, Maximilian; Landriau, Martin; Finkelstein, Steven; Jogee, Shardha; Cooper, Erin Mentuch; Tuttle, Sarah; Gebhardt, Karl; Hill, Gary J.

    2013-12-01

    Survey observations of the three-dimensional locations of galaxies are a powerful approach to measure the distribution of matter in the universe, which can be used to learn about the nature of dark energy, physics of inflation, neutrino masses, etc. A competitive survey, however, requires a large volume (e.g., V{sub survey} ∼ 10Gpc{sup 3}) to be covered, and thus tends to be expensive. A ''sparse sampling'' method offers a more affordable solution to this problem: within a survey footprint covering a given survey volume, V{sub survey}, we observe only a fraction of the volume. The distribution of observed regions should be chosen such that their separation is smaller than the length scale corresponding to the wavenumber of interest. Then one can recover the power spectrum of galaxies with precision expected for a survey covering a volume of V{sub survey} (rather than the volume of the sum of observed regions) with the number density of galaxies given by the total number of observed galaxies divided by V{sub survey} (rather than the number density of galaxies within an observed region). We find that regularly-spaced sampling yields an unbiased power spectrum with no window function effect, and deviations from regularly-spaced sampling, which are unavoidable in realistic surveys, introduce calculable window function effects and increase the uncertainties of the recovered power spectrum. On the other hand, we show that the two-point correlation function (pair counting) is not affected by sparse sampling. While we discuss the sparse sampling method within the context of the forthcoming Hobby-Eberly Telescope Dark Energy Experiment, the method is general and can be applied to other galaxy surveys.

  13. Redshift

    NASA Astrophysics Data System (ADS)

    Huchra, J.; Murdin, P.

    2000-11-01

    The redshift (or blueshift) of an object is the displacement of its spectral features to longer (or shorter) wavelengths due to a combination of the gravitational redshift, Doppler motions and the general expansion of the Universe. More properly, the term RADIAL VELOCITY is used primarily for the Doppler motions, which are usually the result of gravitational interactions, while redshift is reserv...

  14. Probing neutrinos from Planck and forthcoming galaxy redshift surveys

    SciTech Connect

    Takeuchi, Yoshitaka; Kadota, Kenji E-mail: kadota.kenji@f.nagoya-u.jp

    2014-01-01

    We investigate how much the constraints on the neutrino properties can be improved by combining the CMB, the photometric and spectroscopic galaxy redshift surveys which include the CMB lensing, galaxy lensing tomography, galaxy clustering and redshift space distortion observables. We pay a particular attention to the constraint on the neutrino mass in view of the forthcoming redshift surveys such as the Euclid satellite and the LSST survey along with the Planck CMB lensing measurements. Combining the transverse mode information from the angular power spectrum and the longitudinal mode information from the spectroscopic survey with the redshift space distortion measurements can determine the total neutrino mass with the projected error of O(0.02) eV. Our analysis fixes the mass splittings among the neutrino species to be consistent with the neutrino oscillation data, and we accordingly study the sensitivity of our parameter estimations on the minimal neutrino mass. The cosmological measurement of the total neutrino mass can distinguish between the normal and inverted mass hierarchy scenarios if the minimal neutrino mass ∼<0.005 eV with the predicted 1–σ uncertainties taken into account.

  15. On the recovery of the local group motion from galaxy redshift surveys

    SciTech Connect

    Nusser, Adi; Davis, Marc; Branchini, Enzo E-mail: mdavis@berkeley.edu

    2014-06-20

    There is an ∼150 km s{sup –1} discrepancy between the measured motion of the Local Group (LG) of galaxies with respect to the cosmic microwave background and the linear theory prediction based on the gravitational force field of the large-scale structure in full-sky redshift surveys. We perform a variety of tests which show that the LG motion cannot be recovered to better than 150-200 km s{sup –1} in amplitude and within ≈10° in direction. The tests rely on catalogs of mock galaxies identified in the Millennium simulation using semi-analytic galaxy formation models. We compare these results to the K{sub s} = 11.75 Two-Mass Galaxy Redshift Survey, which provides the deepest and most complete all-sky spatial distribution of galaxies with spectroscopic redshifts available thus far. In our analysis, we use a new concise relation for deriving the LG motion and bulk flow from the true distribution of galaxies in redshift space. Our results show that the main source of uncertainty is the small effective depth of surveys like the Two-Mass Redshift Survey (2MRS), which prevents a proper sampling of the large-scale structure beyond ∼100 h {sup –1} Mpc. Deeper redshift surveys are needed to reach the 'convergence scale' of ≈250 h {sup –1} Mpc in a ΛCDM universe. Deeper surveys would also mitigate the impact of the 'Kaiser rocket' which, in a survey like 2MRS, remains a significant source of uncertainty. Thanks to the quiet and moderate density environment of the LG, purely dynamical uncertainties of the linear predictions are subdominant at the level of ∼90 km s{sup –1}. Finally, we show that deviations from linear galaxy biasing and shot noise errors provide a minor contribution to the total error budget.

  16. The Byurakan-IRAS Galaxy (BIG) Sample: The Redshift Survey

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.; Balayan, Smbat K.; Hakopian, Susanna A.

    The Byurakan-IRAS Galaxy (BIG) sample (1513 galaxies) is based on optical identifications of IRAS PSC sources at DEC > +61 and b > 15 (FBS area). A redshift survey for brighter objects (B < 18) is being carried out with 3 telescopes: Byurakan Observatory 2.6m, Special Observatory (Russia) 6m, and Observatoire de Haute-Provence 1.93m. 200 objects have been observed, and redshifts in the range 0.009-0.173 have been measured. For this subsample, 15% of objects are AGNs, and 5% are LIGs and ULIGs. Interesting cases of AGN containing interacting pairs are being studied by means of the 2D spectroscopy.

  17. Surveying the Origin of O VI Gas at Low Redshift

    NASA Astrophysics Data System (ADS)

    Prochaska, Jason X.; Tripp, Todd; Aracil, Bastien; Davé, Romeel; Mulchaey, John; Chen, Hsiao-Wen

    2005-08-01

    A comparison of the baryonic mass density inferred from BBN and the CMB with a census of visible baryonic components at the present epoch indicates a significant fraction of the universe's baryons are hidden in a dark component. Theoretical investigations predict that the majority of 'missing' baryons lie in a hot (T ~ 10^5-7 K), low density medium which can be efficiently detected through O VI absorption. More importantly, recent STIS+FUSE surveys for O VI are consistent with this gas comprising a significant fraction of the missing baryons. Establishing the physical nature of these O VI absorbers directly impacts our understanding of the distribution of baryons in the universe. The principal goal of our program is to determine if this O VI gas arises in galactic halos, the intragroup or intracluster medium, the low density 'cosmic web', or a different region of the universe altogether. We are pursuing an observational program to search for galaxies associated with O VI absorbers at low redshift. To accomplish this project, we require deep UBVRI images in fields surrounding quasars surveyed for O VI absorption. This dataset will provide precise photometric redshifts of z< 0.3 galaxies with L > L^*/10 and measures of color and morphology. Ultimately, we will use the photometric redshifts to efficiently pre-select galaxies for spectroscopy on multi-slit spectrometers. By correlating the galaxy redshifts against the O VI absorption lines and comparing directly with cosmological simulations, we will establish the origin of the O VI gas.

  18. Surveying the Origin of O VI Gas at Low Redshift

    NASA Astrophysics Data System (ADS)

    Prochaska, Jason X.; Tripp, Todd; Aracil, Bastien; Davé, Romeel; Mulchaey, John; Chen, Hsiao-Wen

    2006-02-01

    A comparison of the baryonic mass density inferred from BBN and the CMB with a census of visible baryonic components at the present epoch indicates a significant fraction of the universe's baryons are hidden in a dark component. Theoretical investigations predict that the majority of 'missing' baryons lie in a hot (T ~ 10^5-7 K), low density medium which can be efficiently detected through O VI absorption. More importantly, recent STIS+FUSE surveys for O VI are consistent with this gas comprising a significant fraction of the missing baryons. Establishing the physical nature of these O VI absorbers directly impacts our understanding of the distribution of baryons in the universe. The principal goal of our program is to determine if this O VI gas arises in galactic halos, the intragroup or intracluster medium, the low density 'cosmic web', or a different region of the universe altogether. We are pursuing an observational program to search for galaxies associated with O VI absorbers at low redshift. To accomplish this project, we require deep UBVRI images in fields surrounding quasars surveyed for O VI absorption. This dataset will provide precise photometric redshifts of z< 0.3 galaxies with L > L^*/10 and measures of color and morphology. Ultimately, we will use the photometric redshifts to efficiently pre-select galaxies for spectroscopy on multi-slit spectrometers. By correlating the galaxy redshifts against the O VI absorption lines and comparing directly with cosmological simulations, we will establish the origin of the O VI gas.

  19. Measuring redshift-space distortions using photometric surveys

    NASA Astrophysics Data System (ADS)

    Ross, Ashley J.; Percival, Will J.; Crocce, Martín; Cabré, Anna; Gaztañaga, Enrique

    2011-08-01

    We outline how redshift-space distortions (RSD) can be measured from the angular correlation function, w(θ), of galaxies selected from photometric surveys. The natural degeneracy between RSD and galaxy bias can be minimized by comparing results from bins with top-hat galaxy selection in redshift, and bins based on the radial position of galaxy pair centres. This comparison can also be used to test the accuracy of the photometric redshifts. The presence of RSD will be clearly detectable with the next generation of photometric redshift surveys. We show that the Dark Energy Survey (DES) will be able to measure f(z)σ8(z) to a 1σ accuracy of (17 ×b) per cent, using galaxies drawn from a single narrow redshift slice centred at z= 1. Here b is the linear bias, and f is the logarithmic rate of change of the linear growth rate with respect to the scalefactor. Extending to measurements of w(θ) for a series of bins of width 0.02(1 +z) over 0.5 < z < 1.4 will measure γ to a 1σ accuracy of 0.25, given the model f=Ωm(z)γ, and assuming a linear bias model that evolves such that b= 0.5 +z (and fixing other cosmological parameters). The accuracy of our analytic predictions is confirmed using mock catalogues drawn from simulations conducted by the Marenostrum Institut de Ciències de l'Espai Simulations (MICE) collaboration.

  20. Can a galaxy redshift survey measure dark energy clustering?

    SciTech Connect

    Takada, Masahiro

    2006-08-15

    A wide-field galaxy redshift survey allows one to probe galaxy clustering at largest spatial scales, which carries invaluable information on horizon-scale physics complementarily to the cosmic microwave background (CMB). Assuming the planned survey consisting of z{approx}1 and z{approx}3 surveys with areas of 2000 and 300 deg.{sup 2}, respectively, we study the prospects for probing dark energy clustering from the measured galaxy power spectrum, assuming the dynamical properties of dark energy are specified in terms of the equation of state and the effective sound speed c{sub e} in the context of an adiabatic cold dark dominated matter model. The dark energy clustering adds a power to the galaxy power spectrum amplitude at spatial scales greater than the sound horizon, and the enhancement is sensitive to redshift evolution of the net dark energy density, i.e. the equation of state. We find that the galaxy survey, when combined with CMB expected from the Planck satellite mission, can distinguish dark energy clustering from a smooth dark energy model such as the quintessence model (c{sub e}=1), when c{sub e} < or approx. 0.04 (0.02) in the case of the constant equation of state w{sub 0}=-0.9 (-0.95). An ultimate full-sky survey of z{approx}1 galaxies allows the detection when c{sub e}(less-or-similar sign)0.08 (0.04) for w{sub 0}=0.9 (-0.95). These forecasts show a compatible power with an all-sky CMB and galaxy cross correlation that probes the integrated Sachs-Wolfe effect. We also investigate a degeneracy between the dark energy clustering and the nonrelativistic neutrinos implied from the neutrino oscillation experiments, because the two effects both induce a scale-dependent modification in the galaxy power spectrum shape at largest spatial scales accessible from the galaxy survey. It is shown that a wider redshift coverage can efficiently separate the two effects by utilizing the different redshift dependences, where dark energy clustering is apparent only at

  1. The PC Redshift Survey and Other Adventures in Introductory Astronomy

    NASA Astrophysics Data System (ADS)

    Marschall, L. A.; Stine, P.; Snyder, G. A.; Hayden, M. B.; Luehrmann, M. K.; Good, R. F.; Cooper, P. R.

    1995-05-01

    Project CLEA's latest laboratory exercise in introductory astronomy, "The Large Scale Structure of the Universe" is a simulated red-shift survey, allowing students to investigate the large-scale structure of the universe in a restricted slice of space. Using a simulated telescope with a realistic photon-counting spectrometer, students measure the redshifts of galaxies and construct a wedge diagram showing the 3-d distribution of galaxies. A sample of just over 200 galaxies has been selected from the CfA redshift survey, chosen to outline the major features of the Coma cluster and the Great Wall. Stars down to 12th magnitude from the HST Guide Star Catalog are also included in the telescope field of view, covering a strip 5 degrees wide between 12H and 16H RA at declination +29 degrees. Students can choose from three telescopes of differing aperture to optimize their data-taking efficiency; on-line data recording and spreadsheet access are provided. The exercise can be performed collaboratively at multiple set-ups in a large laboratory, or can be performed by individuals as a long-term project. In addition to the Large Scale Structure exercise, several new and improved versions of the CLEA exercises will be shown. Project CLEA is supported by grants from the National Science Foundation and from Gettysburg College.

  2. Requirements on the Redshift Accuracy for future Supernova andNumber Count Surveys

    SciTech Connect

    Huterer, Dragan; Kim, Alex; Broderick, Tamara

    2004-08-09

    We investigate the required redshift accuracy of type Ia supernova and cluster number-count surveys in order for the redshift uncertainties not to contribute appreciably to the dark energy parameter error budget. For the SNAP supernova experiment, we find that, without the assistance of ground-based measurements, individual supernova redshifts would need to be determined to about 0.002 or better, which is a challenging but feasible requirement for a low-resolution spectrograph. However, we find that accurate redshifts for z < 0.1 supernovae, obtained with ground-based experiments, are sufficient to immunize the results against even relatively large redshift errors at high z. For the future cluster number-count surveys such as the South Pole Telescope, Planck or DUET, we find that the purely statistical error in photometric redshift is less important, and that the irreducible, systematic bias in redshift drives the requirements. The redshift bias will have to be kept below 0.001-0.005 per redshift bin (which is determined by the filter set), depending on the sky coverage and details of the definition of the minimal mass of the survey. Furthermore, we find that X-ray surveys have a more stringent required redshift accuracy than Sunyaev-Zeldovich (SZ) effect surveys since they use a shorter lever arm in redshift; conversely, SZ surveys benefit from their high redshift reach only so long as some redshift information is available for distant (zgtrsim1) clusters.

  3. Surveying the Origin of O VI Gas at Low Redshift

    NASA Astrophysics Data System (ADS)

    Prochaska, Jason X.; Tripp, Todd; Chen, Hsiao-Wen; Mulchaey, John

    2002-08-01

    A comparison of the baryonic mass density inferred from BBN with a census of visible baryonic components (i.e. galaxies, HI gas) at the present epoch indicates a significant fraction of the universe's baryons are hidden in a dark component. Theoretical investigations into these missing bayons suggest the majority lie in a hot (T ~ 10^5-7 K), low density medium which can be efficiently detected through O VI absorption. More importantly, recent STIS+FUSE surveys for O VI are consistent with this gas comprising a significant fraction of the missing baryons. Establishing the physical nature of these O VI absorbers, therefore, may have great impact on our understanding of the distribution of baryons in the universe. The principal goal of this proposal is to determine if this O VI gas arises in galactic halos, the intragroup or intracluster medium, the low density 'cosmic web' which connects collapsed objects, or a different region of the universe altogether. We are currently pursuing a program to search for galaxies associated with O VI absorbers at low redshift (z < 0.5). To accomplish this project, we will obtain deep UBVRI images of the galaxies in four fields surrounding quasars surveyed for O VI absorption. This dataset will provide accurate photometric redshifts of the z< 0.5 galaxies with L > L^*/10 and will reveal their physical characteristics. Ultimately, we will utilize the photometric redshifts to efficiently pre-select galaxies for follow-up spectroscopy on multi- slit spectrographs. By correlating the photometric and spectroscopy galaxy redshifts against the O VI absorption lines and comparing directly with detailed cosmological simulations, we will establish the origin of the O VI gas.

  4. PHOTOMETRIC REDSHIFTS FOR QUASARS IN MULTI-BAND SURVEYS

    SciTech Connect

    Brescia, M.; Mercurio, A.; Cavuoti, S.; Longo, G.; D'Abrusco, R.

    2013-08-01

    The Multi Layer Perceptron with Quasi Newton Algorithm (MLPQNA) is a machine learning method that can be used to cope with regression and classification problems on complex and massive data sets. In this paper, we give a formal description of the method and present the results of its application to the evaluation of photometric redshifts for quasars. The data set used for the experiment was obtained by merging four different surveys (Sloan Digital Sky Survey, GALEX, UKIDSS, and WISE), thus covering a wide range of wavelengths from the UV to the mid-infrared. The method is able (1) to achieve a very high accuracy, (2) to drastically reduce the number of outliers and catastrophic objects, and (3) to discriminate among parameters (or features) on the basis of their significance, so that the number of features used for training and analysis can be optimized in order to reduce both the computational demands and the effects of degeneracy. The best experiment, which makes use of a selected combination of parameters drawn from the four surveys, leads, in terms of {Delta}z{sub norm} (i.e., (z{sub spec} - z{sub phot})/(1 + z{sub spec})), to an average of {Delta}z{sub norm} = 0.004, a standard deviation of {sigma} = 0.069, and a median absolute deviation, MAD = 0.02, over the whole redshift range (i.e., z{sub spec} {<=} 3.6), defined by the four-survey cross-matched spectroscopic sample. The fraction of catastrophic outliers, i.e., of objects with photo-z deviating more than 2{sigma} from the spectroscopic value, is <3%, leading to {sigma} = 0.035 after their removal, over the same redshift range. The method is made available to the community through the DAMEWARE Web application.

  5. Canada-France Redshift Survey - X. The quasar sample

    NASA Astrophysics Data System (ADS)

    Schade, David; Crampton, David; Hammer, F.; Le Fevre, O.; Lilly, S. J.

    1996-01-01

    Six objects with broad emission lines and redshifts from 0.48 to 2.07 were discovered among 736 extragalactic objects in the Canada-France Redshift Survey (CFRS). Although the luminosities of half of the objects are such that they are in the Seyfert regime (M_B<~-23), all would be designated as quasars in traditional surveys. Since the only selection criterion was that 17.5<=I_AB<=22.5, or approximately B<23 (assuming a continuum power-law slope alpha=-0.5), these quasars represent an unbiased, flux-limited sample. Although uncertain, the implied surface density, 200^-120-80 deg^-2, is the highest yet measured, and is in good agreement with extrapolations from other faint surveys and the evolving luminosity function models of Boyle. The distributions of the continuum properties, emission-line strengths, etc. of the quasars do not differ significantly from those of quasars selected by other means, and therefore they would have been detected in most traditional surveys. Three of the quasars may be associated with clusters or large structures of galaxies at z<~1.

  6. ALMA REDSHIFTS OF MILLIMETER-SELECTED GALAXIES FROM THE SPT SURVEY: THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES

    SciTech Connect

    Weiss, A.; De Breuck, C.; Aravena, M.; Biggs, A. D.; Marrone, D. P.; Bothwell, M.; Vieira, J. D.; Bock, J. J.; Aguirre, J. E.; Aird, K. A.; Ashby, M. L. N.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Bethermin, M.; Brodwin, M.; Chapman, S. C.; and others

    2013-04-10

    Using the Atacama Large Millimeter/submillimeter Array, we have conducted a blind redshift survey in the 3 mm atmospheric transmission window for 26 strongly lensed dusty star-forming galaxies (DSFGs) selected with the South Pole Telescope. The sources were selected to have S{sub 1.4{sub mm}} > 20 mJy and a dust-like spectrum and, to remove low-z sources, not have bright radio (S{sub 843{sub MHz}} < 6 mJy) or far-infrared counterparts (S{sub 100{sub {mu}m}} < 1 Jy, S{sub 60{sub {mu}m}} < 200 mJy). We robustly detect 44 line features in our survey, which we identify as redshifted emission lines of {sup 12}CO, {sup 13}CO, C I, H{sub 2}O, and H{sub 2}O{sup +}. We find one or more spectral features in 23 sources yielding a {approx}90% detection rate for this survey; in 12 of these sources we detect multiple lines, while in 11 sources we detect only a single line. For the sources with only one detected line, we break the redshift degeneracy with additional spectroscopic observations if available, or infer the most likely line identification based on photometric data. This yields secure redshifts for {approx}70% of the sample. The three sources with no lines detected are tentatively placed in the redshift desert between 1.7 < z < 2.0. The resulting mean redshift of our sample is z-bar = 3.5. This finding is in contrast to the redshift distribution of radio-identified DSFGs, which have a significantly lower mean redshift of z-bar = 2.3 and for which only 10%-15% of the population is expected to be at z > 3. We discuss the effect of gravitational lensing on the redshift distribution and compare our measured redshift distribution to that of models in the literature.

  7. Peculiar velocity decomposition, redshift space distortion, and velocity reconstruction in redshift surveys: The methodology

    NASA Astrophysics Data System (ADS)

    Zhang, Pengjie; Pan, Jun; Zheng, Yi

    2013-03-01

    Massive spectroscopic surveys will measure the redshift space distortion (RSD) induced by galaxy peculiar velocity to unprecedented accuracy and open a new era of precision RSD cosmology. We develop a new method to improve the RSD modeling and to carry out robust reconstruction of the 3D large scale peculiar velocity through galaxy redshift surveys, in light of RSD. (1) We propose a mathematically unique and physically motivated decomposition of peculiar velocity into three eigencomponents: an irrotational component completely correlated with the underlying density field (vδ), an irrotational component uncorrelated with the density field (vS), and a rotational (curl) component (vB). The three components have different origins, different scale dependences, and different impacts on RSD. (2) This decomposition has the potential to simplify and improve the RSD modeling. (i) vB damps the redshift space clustering. (ii) vS causes both damping and enhancement to the redshift space power spectrum Ps(k,u). Nevertheless, the leading order contribution to the enhancement has a u4 directional dependence, distinctively different from the Kaiser formula. Here, u≡kz/k, k is the amplitude of the wave vector, and kz is the component along the line of sight. (iii) vδ is of the greatest importance for the RSD cosmology. We find that the induced redshift clustering shows a number of important deviations from the usual Kaiser formula. Even in the limit of vS→0 and vB→0, the leading order contribution ∝(1+fW˜(k)u2)2. It differs from the Kaiser formula by a window function W˜(k). Nonlinear evolution generically drives W˜(k)≤1. We hence identify a significant systematical error causing underestimation of the structure growth parameter f by as much as O(10%) even at a relatively large scale k=0.1h/Mpc. (iv) The velocity decomposition reveals the three origins of the “finger-of-God” (FOG) effect and suggests how to simplify and improve the modeling of FOG by treating the

  8. Combining weak-lensing tomography and spectroscopic redshift surveys

    SciTech Connect

    Cai, Yan -Chuan; Bernstein, Gary

    2012-05-11

    Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the same sky area. For sky coverage fsky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin–2 are measured in the lensing survey and all halos with M > Mmin = 1013h–1M have spectra. For the gravitational growth parameter parameter γ (f = Ωγm), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 1013.5 (1014) h–1 M. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 1013 -1014 h–1 M, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is

  9. Combining weak-lensing tomography and spectroscopic redshift surveys

    DOE PAGESBeta

    Cai, Yan -Chuan; Bernstein, Gary

    2012-05-11

    Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the samemore » sky area. For sky coverage fsky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin–2 are measured in the lensing survey and all halos with M > Mmin = 1013h–1M⊙ have spectra. For the gravitational growth parameter parameter γ (f = Ωγm), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 1013.5 (1014) h–1 M⊙. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 1013 -1014 h–1 M⊙, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is uncertain by > 0.5%.« less

  10. Loose Groups of Galaxies in the Las Campanas Redshift Survey

    NASA Astrophysics Data System (ADS)

    Tucker, Douglas L.; Oemler, Augustus, Jr.; Hashimoto, Yasuhiro; Shectman, Stephen A.; Kirshner, Robert P.; Lin, Huan; Landy, Stephen D.; Schechter, Paul L.; Allam, Sahar S.

    2000-10-01

    A ``friends-of-friends'' percolation algorithm has been used to extract a catalog of δn/n=80 density enhancements (groups) from the six slices of the Las Campanas Redshift Survey (LCRS). The full catalog contains 1495 groups and includes 35% of the LCRS galaxy sample. A clean sample of 394 groups has been derived by culling groups from the full sample that either are too close to a slice edge, have a crossing time greater than a Hubble time, have a corrected velocity dispersion of zero, or contain a 55" ``orphan'' (a galaxy with a mock redshift that was excluded from the original LCRS redshift catalog due to its proximity to another galaxy-i.e., within 55"). Median properties derived from the clean sample include a line-of-sight velocity dispersion σlos=164 km s-1, crossing time tcr=0.10 H-10, harmonic radius Rh=0.58 h-1 Mpc, pairwise separation Rp=0.64 h-1 Mpc, virial mass Mvir=1.90×1013 h-1 Msolar, total group R-band luminosity Ltot=1.30×1011 h-2 Lsolar, and R-band mass-to-light ratio M/L=171 h Msolar/Lsolar the median number of observed members in a group is three.

  11. Redshifts for 2410 Galaxies in the Century Survey Region

    NASA Astrophysics Data System (ADS)

    Wegner, Gary; Thorstensen, John R.; Kurtz, Michael J.; Brown, Warren R.; Fabricant, Daniel G.; Geller, Margaret J.; Huchra, John P.; Marzke, Ronald O.; Sakai, Shoko

    2001-12-01

    The Century Survey strip covers 102 deg2 within the limits 8h5<=α<=16h5, 29.0d<=δ<=30.0d, equinox B1950.0. The strip passes through the Corona Borealis supercluster and the outer region of the Coma cluster. Within the Century Survey region, we have measured 2410 redshifts that constitute four overlapping complete redshift surveys: (1) 1728 galaxies with Kron-Cousins Rph<=16.13 covering the entire strip, (2) 507 galaxies with Rph<=16.4 in right ascension range 8h32m<=α<=10 h45m, equinox B1950.0, (3) 1251 galaxies with absorption- and K-corrected RCCDc<=16.2 (where ``c'' indicates ``corrected'') covering the right ascension range 8h5<=α<=13h5, equinox B1950.0, and (4) 1255 galaxies with absorption- and K-corrected VCCDc<=16.7 also covering the right ascension range 8h5<=α<=13h5, equinox B1950.0. All these redshift samples are more than 98% complete to the specified magnitude limit. We derived samples 1 and 2 from scans of the POSS1 red (E) plates calibrated with CCD photometry. We derived samples 3 and 4 from deep V and R CCD images covering the entire region. We include coarse morphological types for all the galaxies in sample 1. The distribution of (V-R)CCD for each type corresponds appropriately with the classification. Work reported here is based partly on observations obtained at the Michigan-Dartmouth-MIT Observatory.

  12. A faint galaxy redshift survey behind massive clusters

    SciTech Connect

    Frye, Brenda

    1999-12-01

    This thesis is concerned with the gravitational lensing effect by massive galaxy clusters. We have explored a new technique for measuring galaxy masses and for detecting high-z galaxies by their optical colors. A redshift survey has been obtained at the Keck for a magnitude limited sample of objects (I<23) behind three clusters, A1689, A2390, and A2218 within a radius of 0.5M pc. For each cluster we see both a clear trend of increasing flux and redshift towards the center. This behavior is the result of image magnifications, such that at fixed redshift one sees further down the luminosity function. The gradient of this magnification is, unlike measurements of image distortion, sensitive to the mass profile, and found to depart strongly from a pure isothermal halo. We have found that V RI color selection can be used effectively as a discriminant for finding high-z galaxies behind clusters and present five 4.1 < z < 5.1 spectra which are of very high quality due to their high mean magnification of {approximately}20, showing strong, visibly-saturated interstellar metal lines in some cases. We have also investigated the radio ring lens PKS 1830-211, locating the source and multiple images and detected molecular absorption at mm wavelengths. Broad molecular absorption of width 1/40kms is found toward the southwest component only, where surprisingly it does not reach the base of the continuum, which implies incomplete coverage of the SW component by molecular gas, despite the small projected size of the source, less than 1/8h pc at the absorption redshift.

  13. Spatial density fluctuations and selection effects in galaxy redshift surveys

    SciTech Connect

    Labini, Francesco Sylos; Tekhanovich, Daniil; Baryshev, Yurij V. E-mail: d.tekhanovich@spbu.ru

    2014-07-01

    One of the main problems of observational cosmology is to determine the range in which a reliable measurement of galaxy correlations is possible. This corresponds to determining the shape of the correlation function, its possible evolution with redshift and the size and amplitude of large scale structures. Different selection effects, inevitably entering in any observation, introduce important constraints in the measurement of correlations. In the context of galaxy redshift surveys selection effects can be caused by observational techniques and strategies and by implicit assumptions used in the data analysis. Generally all these effects are taken into account by using pair-counting algorithms to measure two-point correlations. We review these methods stressing that they are based on the a-priori assumption that galaxy distribution is spatially homogeneous inside a given sample. We show that, when this assumption is not satisfied by the data, results of the correlation analysis are affected by finite size effects. In order to quantify these effects, we introduce a new method based on the computation of the gradient of galaxy counts along tiny cylinders. We show, by using artificial homogeneous and inhomogeneous point distributions, that this method identifies redshift dependent selection effects and disentangles them from the presence of large scale density fluctuations. We then apply this new method to several redshift catalogs and we find evidence that galaxy distribution, in those samples where selection effects are small enough, is characterized by power-law correlations with exponent γ=0.9 up to 20 Mpc/h followed by a change of slope that, in the range 20–100 Mpc/h, corresponds to a power-law exponent γ=0.25. Whether a crossover to spatial uniformity occurs at ∼ 100 Mpc/h or larger scales cannot be clarified by the present data.

  14. The supergalactic plane revisited with the Optical Redshift Survey

    NASA Astrophysics Data System (ADS)

    Lahav, O.; Santiago, B. X.; Webster, A. M.; Strauss, Michael A.; Davis, M.; Dressler, A.; Huchra, J. P.

    2000-02-01

    We re-examine the existence and extent of the planar structure in the local galaxy density field, the so-called supergalactic plane (SGP). This structure is studied here in three dimensions using both the new Optical Redshift Survey (ORS) and the IRAS 1.2-Jy redshift survey. The density contrast in a slab of thickness 20h-1Mpc and diameter 80Mpc aligned with the standard de Vaucouleurs supergalactic coordinates is δsgp~0.5 for both ORS and IRAS. The structure of the SGP is not well described by a homogeneous ellipsoid, although it does appear to be a flattened structure, which we quantify by calculating the moment of inertia tensor of the density field. The directions of the principal axes vary with radius, but the minor axis remains within θz~30 deg of the standard SGP Z-axis, out to a radius of 80h-1Mpc, for both ORS and IRAS. However, the structure changes shape with radius, varying between a flattened pancake and a dumbbell, the latter at a radius of ~50h-1Mpc, where the Great Attractor and Perseus-Pisces superclusters dominate the distribution. This calls to question the connectivity of the `plane' beyond ~40h-1Mpc. The configuration found here can be viewed as part of a web of filaments and sheets, rather than as an isolated pancake-like structure. An optimal minimum variance reconstruction of the density field using Wiener filtering, which corrects for both redshift distortion and shot noise, yields a similar misalignment angle and behaviour of axes. The background-independent statistic of axes proposed here can be best used for testing cosmological models by comparison with N-body simulations.

  15. Tracing the sound horizon scale with photometric redshift surveys

    NASA Astrophysics Data System (ADS)

    Sánchez, E.; Carnero, A.; García-Bellido, J.; Gaztañaga, E.; de Simoni, F.; Crocce, M.; Cabré, A.; Fosalba, P.; Alonso, D.

    2011-02-01

    We propose a new method for the extraction cosmological parameters using the baryon acoustic oscillation (BAO) scale as a standard ruler in deep galaxy surveys with photometric determination of redshifts. The method consists in a simple empirical parametric fit to the angular two-point correlation function ω(θ). It is parametrized as a power law to describe the continuum and as a Gaussian to describe the BAO bump. The location of the Gaussian is used as the basis for the measurement of the sound horizon scale. This method, although simple, actually provides a robust estimation, since the inclusion of the power law and the use of the Gaussian remove the shifts which affect the local maximum. We discuss the effects of projection bias, non-linearities, redshift space distortions and photo-z precision and apply our method to a mock catalogue of the Dark Energy Survey, built upon a large N-body simulation provided by the MICE collaboration. We discuss the main systematic errors associated with our method and show that they are dominated by the photo-z uncertainty.

  16. Simulation of deep one- and two-dimensional redshift surveys

    NASA Technical Reports Server (NTRS)

    Park, Changbom; Gott, J. Richard, III

    1991-01-01

    It is shown that slice or pencil-beam redshift surveys of galaxies can be simulated in a box with nonequal sides. This method saves a lot of computer time and memory while providing essentially the same results as from whole-cube simulations. A 2457.6/h Mpc-long rod (out to a redshift z = 0.58 in two opposite directions) is simulated using the standard biased cold dark matter model as an example to mimic the recent deep pencil-beam surveys by Broadhurst et al. (1990). The structures (spikes) seen in these simulated samples occur when the narrow pencil-beam pierces walls, filaments, and clusters appearing randomly along the line-of-sight. A statistical test for goodness of fit to a periodic lattice has been applied to the observations and the simulations. It is found that the statistical significance level (P = 15.4 percent) is not strong enough to reject the null hypothesis that the observations and the simulations were drawn at random from the same set.

  17. THE SPITZER HIGH-REDSHIFT RADIO GALAXY SURVEY

    SciTech Connect

    De Breuck, Carlos; Galametz, Audrey; Vernet, Joel; Seymour, Nick; Stern, Daniel; Eisenhardt, P. R. M.; Willner, S. P.; Fazio, G. G.; Lacy, Mark; Rettura, Alessandro; Rocca-Volmerange, Brigitte

    2010-12-10

    We present results from a comprehensive imaging survey of 70 radio galaxies at redshifts 1 < z < 5.2 using all three cameras on board the Spitzer Space Telescope. The resulting spectral energy distributions unambiguously show a stellar population in 46 sources and hot dust emission associated with the active nucleus in 59. Using a new rest-frame S{sub 3{sub {mu}m}}/S{sub 1.6{sub {mu}m}} versus S{sub 5{sub {mu}m}}/S{sub 3{sub {mu}m}} criterion, we identify 42 sources where the rest-frame 1.6 {mu}m emission from the stellar population can be measured. For these radio galaxies, the median stellar mass is high, 2 x 10{sup 11} M{sub sun}, and remarkably constant within the range 1 < z < 3. At z>3, there is tentative evidence for a factor of two decrease in stellar mass. This suggests that radio galaxies have assembled the bulk of their stellar mass by z {approx} 3, but confirmation by more detailed decomposition of stellar and active galactic nucleus (AGN) emission is needed. The rest-frame 500 MHz radio luminosities are only marginally correlated with stellar mass but are strongly correlated with the rest-frame 5 {mu}m hot dust luminosity. This suggests that the radio galaxies have a large range of Eddington ratios. We also present new Very Large Array 4.86 and 8.46 GHz imaging of 14 radio galaxies and find that radio core dominance-an indicator of jet orientation-is strongly correlated with hot dust luminosity. While all of our targets were selected as narrow-lined, type 2 AGNs, this result can be understood in the context of orientation-dependent models if there is a continuous distribution of orientations from obscured type 2 to unobscured type 1 AGNs rather than a clear dichotomy. Finally, four radio galaxies have nearby (<6'') companions whose mid-IR colors are suggestive of their being AGNs. This may indicate an association between radio galaxy activity and major mergers.

  18. Clustering of intermediate redshift quasars using the final SDSS III-BOSS sample

    NASA Astrophysics Data System (ADS)

    Eftekharzadeh, Sarah; Myers, Adam D.; White, Martin; Weinberg, David H.; Schneider, Donald P.; Shen, Yue; Font-Ribera, Andreu; Ross, Nicholas P.; Paris, Isabelle; Streblyanska, Alina

    2015-11-01

    We measure the two-point clustering of spectroscopically confirmed quasars from the final sample of the Baryon Oscillation Spectroscopic Survey (BOSS) on comoving scales of 4 ≲ s ≲ 22 h-1 Mpc. The sample covers 6950 deg2 [ ˜ 19 (h- 1Gpc)3] and, over the redshift range 2.2 ≤ z ≤ 2.8, contains 55 826 homogeneously selected quasars, which is twice as many as in any similar work. We deduce bQ = 3.54 ± 0.10; the most precise measurement of quasar bias to date at these redshifts. This corresponds to a host halo mass of ˜2 × 1012 h-1 M⊙ with an implied quasar duty cycle of ˜1 per cent. The real-space projected correlation function is well fitted by a power law of index 2 and correlation length r0 = (8.12 ± 0.22) h- 1 Mpc over scales of 4 ≲ rp ≲ 25 h-1 Mpc. To better study the evolution of quasar clustering at moderate redshift, we extend the redshift range of our study to z ˜ 3.4 and measure the bias and correlation length of three subsamples over 2.2 ≤ z ≤ 3.4. We find no significant evolution of r0 or bias over this range, implying that the host halo mass of quasars decreases somewhat with increasing redshift. We find quasar clustering remains similar over a decade in luminosity, contradicting a scenario in which quasar luminosity is monotonically related to halo mass at z ≈ 2.5. Our results are broadly consistent with previous BOSS measurements, but they yield more precise constraints based upon a larger and more uniform data set.

  19. Spectral Classification and Redshift Measurement for the SDSS-III Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Bolton, Adam S.; Schlegel, David J.; Aubourg, Éric; Bailey, Stephen; Bhardwaj, Vaishali; Brownstein, Joel R.; Burles, Scott; Chen, Yan-Mei; Dawson, Kyle; Eisenstein, Daniel J.; Gunn, James E.; Knapp, G. R.; Loomis, Craig P.; Lupton, Robert H.; Maraston, Claudia; Muna, Demitri; Myers, Adam D.; Olmstead, Matthew D.; Padmanabhan, Nikhil; Pâris, Isabelle; Percival, Will J.; Petitjean, Patrick; Rockosi, Constance M.; Ross, Nicholas P.; Schneider, Donald P.; Shu, Yiping; Strauss, Michael A.; Thomas, Daniel; Tremonti, Christy A.; Wake, David A.; Weaver, Benjamin A.; Wood-Vasey, W. Michael

    2012-11-01

    We describe the automated spectral classification, redshift determination, and parameter measurement pipeline in use for the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III (SDSS-III) as of the survey's ninth data release (DR9), encompassing 831,000 moderate-resolution optical spectra. We give a review of the algorithms employed, and describe the changes to the pipeline that have been implemented for BOSS relative to previous SDSS-I/II versions, including new sets of stellar, galaxy, and quasar redshift templates. For the color-selected "CMASS" sample of massive galaxies at redshift 0.4 <~ z <~ 0.8 targeted by BOSS for the purposes of large-scale cosmological measurements, the pipeline achieves an automated classification success rate of 98.7% and confirms 95.4% of unique CMASS targets as galaxies (with the balance being mostly M stars). Based on visual inspections of a subset of BOSS galaxies, we find that approximately 0.2% of confidently reported CMASS sample classifications and redshifts are incorrect, and about 0.4% of all CMASS spectra are objects unclassified by the current algorithm which are potentially recoverable. The BOSS pipeline confirms that ~51.5% of the quasar targets have quasar spectra, with the balance mainly consisting of stars and low signal-to-noise spectra. Statistical (as opposed to systematic) redshift errors propagated from photon noise are typically a few tens of km s-1 for both galaxies and quasars, with a significant tail to a few hundreds of km s-1 for quasars. We test the accuracy of these statistical redshift error estimates using repeat observations, finding them underestimated by a factor of 1.19-1.34 for galaxies and by a factor of two for quasars. We assess the impact of sky-subtraction quality, signal-to-noise ratio, and other factors on galaxy redshift success. Finally, we document known issues with the BOSS DR9 spectroscopic data set and describe directions of ongoing development.

  20. The DEEP2 Galaxy Redshift Survey: The Voronoi-Delaunay Method Catalog of Galaxy Groups

    SciTech Connect

    Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc; Marinoni, Christian; Yan, Renbin; Coil, Alison L.; Conroy, Charlie; Cooper, Michael C.; Faber, S.M.; Finkbeiner, Douglas P.; Guhathakurta, Puragra; Kaiser, Nick; Koo, David C.; Phillips, Andrew C.; Weiner, Benjamin J.; /Maryland U.

    2012-02-14

    We use the first 25% of the DEEP2 Galaxy Redshift Survey spectroscopic data to identify groups and clusters of galaxies in redshift space. The data set contains 8370 galaxies with confirmed redshifts in the range 0.7 {<=} z {<=} 1.4, over one square degree on the sky. Groups are identified using an algorithm (the Voronoi-Delaunay Method) that has been shown to accurately reproduce the statistics of groups in simulated DEEP2-like samples. We optimize this algorithm for the DEEP2 survey by applying it to realistic mock galaxy catalogs and assessing the results using a stringent set of criteria for measuring group-finding success, which we develop and describe in detail here. We find in particular that the group-finder can successfully identify {approx}78% of real groups and that {approx}79% of the galaxies that are true members of groups can be identified as such. Conversely, we estimate that {approx}55% of the groups we find can be definitively identified with real groups and that {approx}46% of the galaxies we place into groups are interloper field galaxies. Most importantly, we find that it is possible to measure the distribution of groups in redshift and velocity dispersion, n({sigma}, z), to an accuracy limited by cosmic variance, for dispersions greater than 350 km s{sup -1}. We anticipate that such measurements will allow strong constraints to be placed on the equation of state of the dark energy in the future. Finally, we present the first DEEP2 group catalog, which assigns 32% of the galaxies to 899 distinct groups with two or more members, 153 of which have velocity dispersions above 350 km s{sup -1}. We provide locations, redshifts and properties for this high-dispersion subsample. This catalog represents the largest sample to date of spectroscopically detected groups at z {approx} 1.

  1. Dynamical Properties of Clusters Identified in Large Surveys Using the HectoMap Redshift Survey

    NASA Astrophysics Data System (ADS)

    Reiman, David Mark; Rines, Kenneth J.; Geller, Margaret J.; Diaferio, Antonaldo; Hwang, Ho Seong

    2015-01-01

    Large surveys of clusters can yield tight constraints on cosmological parameters if systematic effects are well understood. Here, we use the dense redshift survey HectoMap to measure the dynamical properties of clusters and groups associated with either ROSAT X-ray sources or red-sequence selected clusters from SDSS imaging. HectoMap covers 50 square degrees with a median redshift of z=0.34 and samples dense systems better than other surveys at this depth (e.g., 10x denser than BOSS). We use the entire HectoMap survey to quantify the significance of redshift peaks associated with the entries in cluster catalogs such as redmapper and AMF. We show that some of the optically selected clusters are superpositions of multiple systems. For many of the clusters, we are able to extract estimates of velocity dispersions. By stacking clusters by estimated richness, we show that the dynamics can be probed by more sophisticated methods such as the caustic technique. Our results will provide an independent assessment of systematic effects present in large cluster surveys such as redMapper and help build to stronger cosmological constraints from clusters. In addition, our results can be applied to large cluster surveys to improve our understanding of the evolution of galaxies and intracluster gas within clusters.

  2. A Photometric redshift galaxy catalog from the Red-Sequence Cluster Survey

    SciTech Connect

    Hsieh, Bau-Ching; Yee, H.K.C.; Lin, H.; Gladders, M.D.; /Carnegie Inst. Observ.

    2005-02-01

    The Red-Sequence Cluster Survey (RCS) provides a large and deep photometric catalog of galaxies in the z' and R{sub c} bands for 90 square degrees of sky, and supplemental V and B data have been obtained for 33.6 deg{sup 2}. They compile a photometric redshift catalog from these 4-band data by utilizing the empirical quadratic polynomial photometric redshift fitting technique in combination with CNOC2 and GOODS/HDF-N redshift data. The training set includes 4924 spectral redshifts. The resulting catalog contains more than one million galaxies with photometric redshifts < 1.5 and R{sub c} < 24, giving an rms scatter {delta}({Delta}z) < 0.06 within the redshift range 0.2 < z < 0.5 and {sigma}({Delta}z) < 0.11 for galaxies at 0.0 < z < 1.5. They describe the empirical quadratic polynomial photometric redshift fitting technique which they use to determine the relation between red-shift and photometry. A kd-tree algorithm is used to divide up the sample to improve the accuracy of the catalog. They also present a method for estimating the photometric redshift error for individual galaxies. They show that the redshift distribution of the sample is in excellent agreement with smaller and much deeper photometric and spectroscopic redshift surveys.

  3. THE DEEP3 GALAXY REDSHIFT SURVEY: KECK/DEIMOS SPECTROSCOPY IN THE GOODS-N FIELD

    SciTech Connect

    Cooper, Michael C.; Aird, James A.; Coil, Alison L. E-mail: acoil@ucsd.edu

    2011-03-15

    We present the results of spectroscopic observations in the GOODS-N field completed using DEIMOS on the Keck II telescope as part of the DEEP3 Galaxy Redshift Survey. Observations of 370 unique targets down to a limiting magnitude of R {sub AB} = 24.4 yielded 156 secure redshifts. In addition to redshift information, we provide sky-subtracted one- and two-dimensional spectra of each target. Observations were conducted following the procedures of the Team Keck Redshift Survey (TKRS), thereby producing spectra that augment the TKRS sample while maintaining the uniformity of its spectral database.

  4. High redshift galaxies in the ALHAMBRA survey . I. Selection method and number counts based on redshift PDFs

    NASA Astrophysics Data System (ADS)

    Viironen, K.; Marín-Franch, A.; López-Sanjuan, C.; Varela, J.; Chaves-Montero, J.; Cristóbal-Hornillos, D.; Molino, A.; Fernández-Soto, A.; Vilella-Rojo, G.; Ascaso, B.; Cenarro, A. J.; Cerviño, M.; Cepa, J.; Ederoclite, A.; Márquez, I.; Masegosa, J.; Moles, M.; Oteo, I.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Castander, J. F.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Perea, J.; Prada, F.; Quintana, J. M.

    2015-04-01

    Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so-called dropout technique or Ly-α selection. However, the availability of multifilter data now allows the dropout selections to be replaced by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims: Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing to the study of the brightest, least frequent, high redshift galaxies. Methods: The methodology is based on redshift probability distribution functions (zPDFs). It is shown how a clean galaxy sample can be obtained by selecting the galaxies with high integrated probability of being within a given redshift interval. However, reaching both a complete and clean sample with this method is challenging. Hence, a method to derive statistical properties by summing the zPDFs of all the galaxies in the redshift bin of interest is introduced. Results: Using this methodology we derive the galaxy rest frame UV number counts in five redshift bins centred at z = 2.5,3.0,3.5,4.0, and 4.5, being complete up to the limiting magnitude at mUV(AB) = 24, where mUV refers to the first ALHAMBRA filter redwards of the Ly-α line. With the wide field ALHAMBRA data we especially contribute to the study of the brightest ends of these counts, accurately sampling the surface densities down to mUV(AB) = 21-22. Conclusions: We show that using the zPDFs it is easy to select a very clean sample of high redshift galaxies. We also show that it is better to do statistical analysis of the properties of galaxies using a probabilistic approach, which takes into account both the incompleteness and contamination issues in a

  5. Lensing convergence and the neutrino mass scale in galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Cardona, Wilmar; Durrer, Ruth; Kunz, Martin; Montanari, Francesco

    2016-08-01

    We demonstrate the importance of including the lensing contribution in galaxy clustering analyses with large galaxy redshift surveys. It is well known that radial cross-correlations between different redshift bins of galaxy surveys are dominated by lensing. But we show here that also neglecting lensing in the autocorrelations within one bin severely biases cosmological parameter estimation with redshift surveys. It leads to significant shifts for several cosmological parameters, most notably the scalar spectral index and the neutrino mass scale. Especially the latter parameter is one of the main targets of future galaxy surveys.

  6. The effects of spatial resolution on integral field spectrograph surveys at different redshifts - The CALIFA perspective

    NASA Astrophysics Data System (ADS)

    Mast, D.; Rosales-Ortega, F. F.; Sánchez, S. F.; Vílchez, J. M.; Iglesias-Paramo, J.; Walcher, C. J.; Husemann, B.; Márquez, I.; Marino, R. A.; Kennicutt, R. C.; Monreal-Ibero, A.; Galbany, L.; de Lorenzo-Cáceres, A.; Mendez-Abreu, J.; Kehrig, C.; del Olmo, A.; Relaño, M.; Wisotzki, L.; Mármol-Queraltó, E.; Bekeraitè, S.; Papaderos, P.; Wild, V.; Aguerri, J. A. L.; Falcón-Barroso, J.; Bomans, D. J.; Ziegler, B.; García-Lorenzo, B.; Bland-Hawthorn, J.; López-Sánchez, Á. R.; van de Ven, G.

    2014-01-01

    Context. Over the past decade, 3D optical spectroscopy has become the preferred tool for understanding the properties of galaxies and is now increasingly used to carry out galaxy surveys. Low redshift surveys include SAURON, DiskMass, ATLAS3D, PINGS, and VENGA. At redshifts above 0.7, surveys such as MASSIV, SINS, GLACE, and IMAGES have targeted the most luminous galaxies to study mainly their kinematic properties. The on-going CALIFA survey (z ~ 0.02) is the first of a series of upcoming integral field spectroscopy (IFS) surveys with large samples representative of the entire population of galaxies. Others include SAMI and MaNGA at lower redshift and the upcoming KMOS surveys at higher redshift. Given the importance of spatial scales in IFS surveys, the study of the effects of spatial resolution on the recovered parameters becomes important. Aims: We explore the capability of the CALIFA survey and a hypothetical higher redshift survey to reproduce the properties of a sample of objects observed with better spatial resolution at lower redshift. Methods: Using a sample of PINGS galaxies, we simulated observations at different redshifts. We then studied the behaviour of different parameters as the spatial resolution degrades with increasing redshift. Results: We show that at the CALIFA resolution, we are able to measure and map common observables in a galaxy study: the number and distribution of H ii regions (Hα flux structure), the gas metallicity (using the O3N2 method), the gas ionization properties (through the [N ii]/Hα and [O iii]/Hβ line ratios), and the age of the underlying stellar population (using the D4000 index). This supports the aim of the survey to characterise the observable properties of galaxies in the Local Universe. Our analysis of simulated IFS data cubes at higher redshifts highlights the importance of the projected spatial scale per spaxel as the most important figure of merit in the design of an integral field survey.

  7. Optimizing baryon acoustic oscillation surveys - II. Curvature, redshifts and external data sets

    NASA Astrophysics Data System (ADS)

    Parkinson, David; Kunz, Martin; Liddle, Andrew R.; Bassett, Bruce A.; Nichol, Robert C.; Vardanyan, Mihran

    2010-02-01

    We extend our study of the optimization of large baryon acoustic oscillation (BAO) surveys to return the best constraints on the dark energy, building on Paper I of this series by Parkinson et al. The survey galaxies are assumed to be pre-selected active, star-forming galaxies observed by their line emission with a constant number density across the redshift bin. Star-forming galaxies have a redshift desert in the region 1.6 < z < 2, and so this redshift range was excluded from the analysis. We use the Seo & Eisenstein fitting formula for the accuracies of the BAO measurements, using only the information for the oscillatory part of the power spectrum as distance and expansion rate rulers. We go beyond our earlier analysis by examining the effect of including curvature on the optimal survey configuration and updating the expected `prior' constraints from Planck and the Sloan Digital Sky Survey. We once again find that the optimal survey strategy involves minimizing the exposure time and maximizing the survey area (within the instrumental constraints), and that all time should be spent observing in the low-redshift range (z < 1.6) rather than beyond the redshift desert, z > 2. We find that, when assuming a flat universe, the optimal survey makes measurements in the redshift range 0.1 < z < 0.7, but that including curvature as a nuisance parameter requires us to push the maximum redshift to 1.35, to remove the degeneracy between curvature and evolving dark energy. The inclusion of expected other data sets (such as WiggleZ, the Baryon Oscillation Spectroscopic Survey and a stage III Type Ia supernova survey) removes the necessity of measurements below redshift 0.9, and pushes the maximum redshift up to 1.5. We discuss considerations in determining the best survey strategy in light of uncertainty in the true underlying cosmological model.

  8. THE 2dF REDSHIFT SURVEY. I. PHYSICAL ASSOCIATION AND PERIODICITY IN QUASAR FAMILIES

    SciTech Connect

    Fulton, C. C.; Arp, H. C. E-mail: arp@mpa-garching.mpg.de

    2012-08-01

    We have tested for physical association of candidate companion quasars with putative parent galaxies by virtue of Karlsson periodicity in quasar redshifts. We examined galaxies from the 2dF Galaxy Redshift Survey (2dFGRS) and quasars from the 2dF Quasar Redshift Survey (2QZ) in the two declination strips (at declinations 0 Degree-Sign and -30 Degree-Sign ) covered by the 2QZ, first filtering out galaxies and quasars using the respective survey masks and observation qualities as described, and using only quasars with z {>=} 0.5 to avoid the redshift region of mixed galaxies and quasars. Around each galaxy, quasars are detected as physically associated with a putative parent galaxy if their respective redshifts conform to empirically derived constraints based on an ejection hypothesis. We ran Monte Carlo control trials against the pure physical associations by replacing the actual redshifts of the candidate companion quasars with quasar redshifts drawn randomly from each respective right ascension hour. The constraints are grouping of quasar redshifts and Karlsson periodicity of quasar redshifts.

  9. Completeness - III. Identifying characteristic systematics and evolution in galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Johnston, Russell; Teodoro, Luís.; Hendry, Martin

    2012-03-01

    This paper continues our development of non-parametric tests for analysing the completeness in apparent magnitude of magnitude-redshift surveys. The purpose of this third and final paper in our completeness series is twofold: first, we explore how certain forms of incompleteness for a given flux-limited galaxy redshift survey would manifest themselves in the 'robust'Tc and Tv completeness estimators introduced in our earlier papers; secondly, we provide a comprehensive error propagation for these estimators. This work was initiated by Rauzy and then extended and developed by Johnston, Teodoro & Hendry (Completeness I) and Teodoro, Johnston & Hendry (Completeness II). Here, we seek to consolidate the ideas laid out in these previous papers. In particular, our goal is to provide for the observational community statistical tools that will be more easily applicable to real survey data. By using both real surveys and Monte Carlo mock survey data, we have found distinct, characteristic behaviour of the Tc and Tv estimators which identify incompleteness in the form of e.g. missing objects within a particular magnitude range. Conversely, we have identified signatures of 'over' completeness, in cases where a survey contains a small region in apparent magnitude that may have too many objects relative to the rest of the data set. Identifying regions of incompleteness (in apparent magnitude) in this way provides a powerful means to e.g. improve weighting schemes for estimating luminosity functions, or for more accurately determining the selection function required to employ measures of galaxy clustering as a cosmological probe. We also demonstrate how incompleteness resulting from luminosity evolution can be identified and provide a framework for using our estimators as a robust tool for constraining models of luminosity evolution. Finally, we explore the error propagation for Tc and Tv. This builds on Completeness II by allowing the definition of these estimators, and their

  10. An Open-Source Galaxy Redshift Survey Simulator for next-generation Large Scale Structure Surveys

    NASA Astrophysics Data System (ADS)

    Seijak, Uros

    Galaxy redshift surveys produce three-dimensional maps of the galaxy distribution. On large scales these maps trace the underlying matter fluctuations in a relatively simple manner, so that the properties of the primordial fluctuations along with the overall expansion history and growth of perturbations can be extracted. The BAO standard ruler method to measure the expansion history of the universe using galaxy redshift surveys is thought to be robust to observational artifacts and understood theoretically with high precision. These same surveys can offer a host of additional information, including a measurement of the growth rate of large scale structure through redshift space distortions, the possibility of measuring the sum of neutrino masses, tighter constraints on the expansion history through the Alcock-Paczynski effect, and constraints on the scale-dependence and non-Gaussianity of the primordial fluctuations. Extracting this broadband clustering information hinges on both our ability to minimize and subtract observational systematics to the observed galaxy power spectrum, and our ability to model the broadband behavior of the observed galaxy power spectrum with exquisite precision. Rapid development on both fronts is required to capitalize on WFIRST's data set. We propose to develop an open-source computational toolbox that will propel development in both areas by connecting large scale structure modeling and instrument and survey modeling with the statistical inference process. We will use the proposed simulator to both tailor perturbation theory and fully non-linear models of the broadband clustering of WFIRST galaxies and discover novel observables in the non-linear regime that are robust to observational systematics and able to distinguish between a wide range of spatial and dynamic biasing models for the WFIRST galaxy redshift survey sources. We have demonstrated the utility of this approach in a pilot study of the SDSS-III BOSS galaxies, in which we

  11. The Redshift Distribution of Dusty Star-forming Galaxies from the SPT Survey

    NASA Astrophysics Data System (ADS)

    Strandet, M. L.; Weiss, A.; Vieira, J. D.; de Breuck, C.; Aguirre, J. E.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bradford, C. M.; Carlstrom, J. E.; Chapman, S. C.; Crawford, T. M.; Everett, W.; Fassnacht, C. D.; Furstenau, R. M.; Gonzalez, A. H.; Greve, T. R.; Gullberg, B.; Hezaveh, Y.; Kamenetzky, J. R.; Litke, K.; Ma, J.; Malkan, M.; Marrone, D. P.; Menten, K. M.; Murphy, E. J.; Nadolski, A.; Rotermund, K. M.; Spilker, J. S.; Stark, A. A.; Welikala, N.

    2016-05-01

    We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4 mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3 mm spectral scans between 84 and 114 GHz for 15 galaxies and targeted ALMA 1 mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [C i], [N ii], H2O and NH3. We further present Atacama Pathfinder Experiment [C ii] and CO mid-J observations for seven sources for which only a single line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new millimeter/submillimeter line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redshift surveys of high-z DSFGs. The median of the redshift distribution is z = 3.9 ± 0.4, and the highest-redshift source in our sample is at z = 5.8. We discuss how the selection of our sources affects the redshift distribution, focusing on source brightness, selection wavelength, and strong gravitational lensing. We correct for the effect of gravitational lensing and find the redshift distribution for 1.4 mm selected sources with a median redshift of z = 3.1 ± 0.3. Comparing to redshift distributions selected at shorter wavelengths from the literature, we show that selection wavelength affects the shape of the redshift distribution.

  12. Spectroscopic CCD surveys for quasars at large redshift. 3: The Palomar Transit Grism Survey catalog

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1994-01-01

    This paper reports the initial results of the Palomar Transit Grism Survey (PTGS). The PTGS was designed to produce a sample of z greater than 2.7 quasars that were identified by well-defined selection criteria. The survey consists of six narrow (approximately equal to 8.5 min wide) strips of sky; the total effective area is 61.47 sq deg. Low-resolution slitless spectra, covering the wavelength range from 4400 to 7500 A, were obtained for approximately 600 000 objects. The wavelength- and flux-calibrated spectra were searched for emission lines with an automatic software algorithm. A total to 1655 emission features in the grism data satisfied our signal-to-noise ratio and equivalent width selection criteria; subsequent slit spectroscopy of the candidates confirmed the existence of 1052 lines (928 different objects). Six groups of emission lines were detected in the survey: Lyman alpha + N V, C IV, C III1, Mg II, H Beta + (O III), and H alpha + (S II). More than two-thirds of the candidates are low-redshift (z less than 0.45) emission-line galaxies; ninety objects are high-redshift quasars (z greater than 2.7) detected via their Lyman alpha + N V emission lines. The survey contains three previously unknown quasars brighter than 17th magnitude; all three have redshifts of approximately equal to 1.3. In this paper we present the observational properties of the survey, the algorithms used to select the emission-line candidates, and the catalog of emission-line objects.

  13. Spectroscopic CCD surveys for quasars at large redshift. II - A Pfuei transit survey

    NASA Technical Reports Server (NTRS)

    Schmidt, Maarten; Schneider, Donald P.; Gunn, James E.

    1986-01-01

    A CCD transit survey has been carried out with the 200 in. telescope of a strip of sky 5 arcmin wide and 9 hr long. Direct images and slitless spectra of over 43,000 objects were obtained on two successive nights. An automatic search for emission lines of given minimum equivalent width and signal-to-noise ratio yielded 52 candidate sources. Slit spectra revealed that 24 were emission-line galaxies with z less than 0.4 and eight were quasars with 2 between 1.00 and 2.76. The number of quasars detect agrees with that predicted from luminosity function models for z less than 2.9. The models also indicate that between 30 and 62 quasars with z less than 2.9 should have been found in this survey, but none were detected. This result reconfirms that there is a redshift cutoff near or below redshift three. The apparent conflict of this measurement with the known existence of dozens of quasars with redshifts larger than three is discussed.

  14. Statistical and systematic errors in redshift-space distortion measurements from large surveys

    NASA Astrophysics Data System (ADS)

    Bianchi, D.; Guzzo, L.; Branchini, E.; Majerotto, E.; de la Torre, S.; Marulli, F.; Moscardini, L.; Angulo, R. E.

    2012-12-01

    We investigate the impact of statistical and systematic errors on measurements of linear redshift-space distortions (RSD) in future cosmological surveys by analysing large catalogues of dark matter haloes from the baryonic acoustic oscillation simulations at the Institute for Computational Cosmology. These allow us to estimate the dependence of errors on typical survey properties, as volume, galaxy density and mass (i.e. bias factor) of the adopted tracer. We find that measures of the specific growth rate β = f/b using the Hamilton/Kaiser harmonic expansion of the redshift-space correlation function ξ(rp, π) on scales larger than 3 h-1 Mpc are typically underestimated by up to 10 per cent for galaxy-sized haloes. This is significantly larger than the corresponding statistical errors, which amount to a few per cent, indicating the importance of non-linear improvements to the Kaiser model, to obtain accurate measurements of the growth rate. The systematic error shows a diminishing trend with increasing bias value (i.e. mass) of the haloes considered. We compare the amplitude and trends of statistical errors as a function of survey parameters to predictions obtained with the Fisher information matrix technique. This is what is usually adopted to produce RSD forecasts, based on the Feldman-Kaiser-Peacock prescription for the errors on the power spectrum. We show that this produces parameter errors fairly similar to the standard deviations from the halo catalogues, provided it is applied to strictly linear scales in Fourier space (k<0.2 h Mpc-1). Finally, we combine our measurements to define and calibrate an accurate scaling formula for the relative error on β as a function of the same parameters, which closely matches the simulation results in all explored regimes. This provides a handy and plausibly more realistic alternative to the Fisher matrix approach, to quickly and accurately predict statistical errors on RSD expected from future surveys.

  15. SHELS: A complete galaxy redshift survey with R ≤ 20.6

    SciTech Connect

    Geller, Margaret J.; Hwang, Ho Seong; Fabricant, Daniel G.; Kurtz, Michael J.; Dell'Antonio, Ian P.; Zahid, Harus Jabran E-mail: hhwang@cfa.harvard.edu E-mail: mkurtz@cfa.harvard.edu E-mail: jabran@ifa.hawaii.edu

    2014-08-01

    The SHELS (Smithsonian Hectospec Lensing Survey) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey to a limiting R = 20.6. Here we describe the redshift survey of the F2 field (R.A.{sub 2000} = 09{sup h}19{sup m}32.4 and decl.{sub 2000} = +30°00'00''). The survey includes 16,294 new redshifts measured with the Hectospec on the MMT. The resulting survey of the 4 deg{sup 2} F2 field is 95% complete to R = 20.6, currently the densest survey to this magnitude limit. The median survey redshift is z = 0.3; the survey provides a view of structure in the range 0.1 ≲ z ≲ 0.6. An animation displays the large-scale structure in the survey region. We provide a redshift, spectral index D {sub n}4000, and stellar mass for each galaxy in the survey. We also provide a metallicity for each galaxy in the range 0.2 survey, we examine the behavior of the index D {sub n}4000 as a function of galaxy luminosity, stellar mass, and redshift. The known evolutionary and stellar mass dependent properties of the galaxy population are cleanly evident in the data. We also show that the mass-metallicity relation previously determined from these data is robust to the analysis approach.

  16. Investigating the Local and High Redshift Universe With Deep Survey Data and Ground-Based Spectroscopy

    NASA Astrophysics Data System (ADS)

    Masters, Daniel Charles

    Large multiwavelength surveys are now driving the frontiers of astronomical research. I describe results from my work using data from two large astronomical surveys: the Cosmic Evolution Survey (COSMOS), which has obtained deep photometric and spectroscopic data on two square degrees of the sky using many of the most powerful telescopes in the world, and the WFC3 Infrared Spectroscopic Parallels (WISP) Survey, which uses the highly sensitive slitless spectroscopic capability of the Hubble Space Telescope Wide Field Camera 3 to detect star-forming galaxies over most of the universe's history. First I describe my work on the evolution of the high-redshift quasar luminosity function, an important observational quantity constraining the growth of the supermassive black holes in the early universe. I show that the number density of faint quasars declines rapidly above z ˜ 3. This result is discussed in the context of cosmic reionization and the coevolution of galaxies and their central black holes. Next I present results of a multi-year campaign of near-infrared spectroscopy with FIRE, a world-class near-infrared spectrometer on the Magellan Baade 6.5 meter telescope in Chile, targeting emission-line galaxies at z ˜ 2 discovered with the Hubble Space Telescope. Our results showed that the typical emission-line galaxy at this redshift has low-metallicity, low dust obscuration, high ionization parameter, and little evidence for significant active galactic nucleus (AGN) contribution to the emission lines. We also find evidence that high redshift star-forming galaxies have enhanced nitrogen abundances. This result has interesting implications for the nature of the star formation in such galaxies -- in particular, it could mean that a large fraction of such galaxies harbor substantial populations of Wolf-Rayet stars, which are massive, evolved stars ejecting large amounts of enriched matter into the interstellar medium. Finally, I will discuss the discovery of three

  17. The TexOx-1000 redshift survey of radio sources I: the TOOT00 region

    NASA Astrophysics Data System (ADS)

    Vardoulaki, Eleni; Rawlings, Steve; Hill, Gary J.; Mauch, Tom; Inskip, Katherine J.; Riley, Julia; Brand, Kate; Croft, Steve; Willott, Chris J.

    2010-01-01

    We present optical spectroscopy, near-infrared (mostly K-band) and radio (151-MHz and 1.4-GHz) imaging of the first complete region (TOOT00) of the TexOx-1000 (TOOT) redshift survey of radio sources. The 0.0015-sr (~5 deg2) TOOT00 region is selected from pointed observations of the Cambridge Low-Frequency Survey Telescope at 151 MHz at a flux density limit of ~=100 mJy, approximately five times fainter than the 7C Redshift Survey (7CRS), and contains 47 radio sources. We have obtained 40 spectroscopic redshifts (~85 per cent completeness). Adding redshifts estimated for the seven other cases yields a median redshift zmed ~ 1.25. We find a significant population of objects with Fanaroff-Riley type I (FRI) like radio structures at radio luminosities above both the low-redshift FRI/II break and the break in the radio luminosity function. The redshift distribution and subpopulations of TOOT00 are broadly consistent with extrapolations from the 7CRS/6CE/3CRR data sets underlying the SKADS Simulated Skies Semi-Empirical Extragalactic Data base, S3-SEX.

  18. THE NEXT GENERATION VIRGO CLUSTER SURVEY. XV. THE PHOTOMETRIC REDSHIFT ESTIMATION FOR BACKGROUND SOURCES

    SciTech Connect

    Raichoor, A.; Mei, S.; Huertas-Company, M.; Licitra, R.; Erben, T.; Hildebrandt, H.; Ilbert, O.; Boissier, S.; Boselli, A.; Ball, N. M.; Côté, P.; Ferrarese, L.; Gwyn, S. D. J.; Kavelaars, J. J.; Chen, Y.-T.; Cuillandre, J.-C.; Duc, P. A.; Guhathakurta, P.; and others

    2014-12-20

    The Next Generation Virgo Cluster Survey (NGVS) is an optical imaging survey covering 104 deg{sup 2} centered on the Virgo cluster. Currently, the complete survey area has been observed in the u*giz bands and one third in the r band. We present the photometric redshift estimation for the NGVS background sources. After a dedicated data reduction, we perform accurate photometry, with special attention to precise color measurements through point-spread function homogenization. We then estimate the photometric redshifts with the Le Phare and BPZ codes. We add a new prior that extends to i {sub AB} = 12.5 mag. When using the u* griz bands, our photometric redshifts for 15.5 mag ≤ i ≲ 23 mag or z {sub phot} ≲ 1 galaxies have a bias |Δz| < 0.02, less than 5% outliers, a scatter σ{sub outl.rej.}, and an individual error on z {sub phot} that increases with magnitude (from 0.02 to 0.05 and from 0.03 to 0.10, respectively). When using the u*giz bands over the same magnitude and redshift range, the lack of the r band increases the uncertainties in the 0.3 ≲ z {sub phot} ≲ 0.8 range (–0.05 < Δz < –0.02, σ{sub outl.rej} ∼ 0.06, 10%-15% outliers, and z {sub phot.err.} ∼ 0.15). We also present a joint analysis of the photometric redshift accuracy as a function of redshift and magnitude. We assess the quality of our photometric redshifts by comparison to spectroscopic samples and by verifying that the angular auto- and cross-correlation function w(θ) of the entire NGVS photometric redshift sample across redshift bins is in agreement with the expectations.

  19. A blind green bank telescope millimeter-wave survey for redshifted molecular absorption

    SciTech Connect

    Kanekar, N.; Gupta, A.; Carilli, C. L.; Stocke, J. T.; Willett, K. W.

    2014-02-10

    We present the methodology for 'blind' millimeter-wave surveys for redshifted molecular absorption in the CO/HCO{sup +} rotational lines. The frequency range 30-50 GHz appears optimal for such surveys, providing sensitivity to absorbers at z ≳ 0.85. It is critical that the survey is 'blind', i.e., based on a radio-selected sample, including sources without known redshifts. We also report results from the first large survey of this kind, using the Q-band receiver on the Green Bank Telescope (GBT) to search for molecular absorption toward 36 sources, 3 without known redshifts, over the frequency range 39.6-49.5 GHz. The GBT survey has a total redshift path of Δz ≈ 24, mostly at 0.81 < z < 1.91, and a sensitivity sufficient to detect equivalent H{sub 2} column densities ≳ 3 × 10{sup 21} cm{sup –2} in absorption at 5σ significance (using CO-to-H{sub 2} and HCO{sup +}-to-H{sub 2} conversion factors of the Milky Way). The survey yielded no confirmed detections of molecular absorption, yielding the 2σ upper limit n(z = 1.2) < 0.15 on the redshift number density of molecular gas at column densities N(H{sub 2}) ≳ 3 × 10{sup 21} cm{sup –2}.

  20. The DEEP3 Galaxy Redshift Survey: Keck/DEIMOS Spectroscopy in the GOODS-N Field

    NASA Astrophysics Data System (ADS)

    Cooper, Michael C.; Aird, James A.; Coil, Alison L.; Davis, Marc; Faber, S. M.; Juneau, Stéphanie; Lotz, Jennifer M.; Nandra, Kirpal; Newman, Jeffrey A.; Willmer, Christopher N. A.; Yan, Renbin

    2011-03-01

    We present the results of spectroscopic observations in the GOODS-N field completed using DEIMOS on the Keck II telescope as part of the DEEP3 Galaxy Redshift Survey. Observations of 370 unique targets down to a limiting magnitude of R AB = 24.4 yielded 156 secure redshifts. In addition to redshift information, we provide sky-subtracted one- and two-dimensional spectra of each target. Observations were conducted following the procedures of the Team Keck Redshift Survey (TKRS), thereby producing spectra that augment the TKRS sample while maintaining the uniformity of its spectral database. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  1. Apples to apples A2 - I. Realistic galaxy simulated catalogues and photometric redshift predictions for next-generation surveys

    NASA Astrophysics Data System (ADS)

    Ascaso, B.; Mei, S.; Benítez, N.

    2015-11-01

    We present new mock catalogues for two of the largest Stage IV next-generation surveys in the optical and infrared: Large Synoptic Sky Telescope (LSST) and Euclid, based on an N-body simulation+semi-analytical cone with a posterior modification with PHOTREAL. This technique modifies the original photometry by using an empirical library of spectral templates to make it more realistic. The reliability of the catalogues is confirmed by comparing the obtained colour-magnitude relation, the luminosity and mass function and the angular correlation function with those of real data. Consistent comparisons between the expected photometric redshifts for different surveys are also provided. Very deep near-infrared surveys such as Euclid will provide very good performance (Δz/(1 + z) ˜ 0.025-0.053) down to H ˜ 24 AB mag and up to z ˜ 3 depending on the optical observations available from the ground, whereas extremely deep optical surveys such as LSST will obtain an overall lower photometric redshift resolution (Δz/(1 + z) ˜ 0.045) down to i ˜ 27.5 AB mag, being considerably improved (Δz/(1 + z) ˜ 0.035) if we restrict the sample down to i ˜ 24 AB mag. Those numbers can be substantially upgraded by selecting a subsample of galaxies with the best quality photometric redshifts. We finally discuss the impact that these surveys will have for the community in terms of photometric redshift legacy. This is the first of a series of papers where we set a framework for comparability between mock catalogues and observations with a particular focus on cluster surveys. The Euclid and LSST mocks are made publicly available.

  2. Spectroscopic failures in photometric redshift calibration: cosmological biases and survey requirements

    NASA Astrophysics Data System (ADS)

    Cunha, Carlos E.; Huterer, Dragan; Lin, Huan; Busha, Michael T.; Wechsler, Risa H.

    2014-10-01

    We use N-body-spectrophotometric simulations to investigate the impact of incompleteness and incorrect redshifts in spectroscopic surveys on photometric redshift training and calibration and the resulting effects on cosmological parameter estimation from weak lensing shear-shear correlations. The photometry of the simulations is modelled after the upcoming Dark Energy Survey and the spectroscopy is based on a low/intermediate-resolution spectrograph with wavelength coverage of 5500 < λ < 9500 Å. Spectroscopic follow-up surveys suffer from both incompleteness (inability to obtain spectroscopic redshifts for certain galaxies) and wrong redshifts. Encouragingly, we find that a neural network-based approach can effectively describe the spectroscopic incompleteness in terms of the galaxies' colours, so that the spectroscopic selection can be applied to the photometric sample. Hence, we find that spectroscopic incompleteness yields no appreciable biases to cosmology, although the statistical constraints degrade somewhat because the photometric survey has to be culled to match the spectroscopic selection. Unfortunately, wrong redshifts have a more severe impact: the cosmological biases are intolerable if more than a per cent of the spectroscopic redshifts are incorrect. Moreover, we find that incorrect redshifts can substantially degrade the perceived accuracy of training set based photo-z estimators, though the actual accuracy is virtually unaffected. The main problem is the difficulty of obtaining redshifts, either spectroscopically or photometrically, for objects at z > 1.3. We discuss several approaches for reducing the cosmological biases, in particular finding that photo-z error estimators can reduce biases appreciably when the photo-z errors are correlated with the spectroscopic failures, but not otherwise.

  3. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    SciTech Connect

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Oguri, Masamune; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon

    2011-01-20

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z {approx}> 1.4, indicating that the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z {approx}> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.

  4. Reconstructing Baryon Oscillations : Enhancing the Dark Energy Reach of Future Redshift Surveys

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil

    type. The final aspect of this proposal is to go beyond the existing algorithm to see if improved reconstruction techniques are possible. A number of algorithms exist for reconstructing the initial linear density field. The requirements for BAO reconstruction are significantly easier. We plan on exploring these algorithms within the context of BAO reconstruction to see if any of these provide superior performance. The ability to reconstruct the BAO feature significantly increases the dark energy reach of redshift surveys, doubling eg. the Dark Energy Task Force Figure of Merit. This proposal aims to demonstrate the feasibility of this technique and understand its requirements. These are aspects essential for designing the next generation of BAO experiments, including possible space missions.

  5. Using Gamma Regression for Photometric Redshifts of Survey Galaxies

    NASA Astrophysics Data System (ADS)

    Elliott, J.; de Souza, R. S.; Krone-Martins, A.; Cameron, E.; Ishida, E. E. O.; Hilbe, J.

    Machine learning techniques offer a plethora of opportunities in tackling big data within the astronomical community. We present the set of Generalized Linear Models as a fast alternative for determining photometric redshifts of galaxies, a set of tools not commonly applied within astronomy, despite being widely used in other professions. With this technique, we achieve catastrophic outlier rates of the order of ˜ 1%, that can be achieved in a matter of seconds on large datasets of size ˜ 1,000,000. To make these techniques easily accessible to the astronomical community, we developed a set of libraries and tools that are publicly available.

  6. Redshift-Distance Survey of Early-Type Galaxies. I. The ENEARc Cluster Sample

    NASA Astrophysics Data System (ADS)

    Bernardi, M.; Alonso, M. V.; da Costa, L. N.; Willmer, C. N. A.; Wegner, G.; Pellegrini, P. S.; Rité, C.; Maia, M. A. G.

    2002-06-01

    This paper presents data on the ENEARc subsample of the larger ENEAR survey of nearby early-type galaxies. The ENEARc galaxies belong to clusters and were specifically chosen to be used for the construction of a Dn-σ template. The ENEARc sample includes new measurements of spectroscopic and photometric parameters (redshift, velocity dispersion, line index Mg2, and the angular diameter dn), as well as data from the literature. New spectroscopic data are given for 229 cluster early-type galaxies, and new photometry is presented for 348 objects. Repeat and overlap observations with external data sets are used to construct a final merged catalog consisting of 640 early-type galaxies in 28 clusters. Objective criteria, based on catalogs of groups of galaxies derived from complete redshift surveys of the nearby universe, are used to assign galaxies to clusters. In a companion paper, these data are used to construct the template Dn-σ distance relation for early-type galaxies, which has been used to estimate galaxy distances and derive peculiar velocities for the ENEAR all-sky sample. Based on observations at Complejo Astronomico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan; Cerro Tololo Inter-American Observatory, National Optical Astronomical Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation; the European Southern Observatory (ESO), partially under the ESO-ON agreement; the Fred Lawrence Whipple Observatory; the Observatório do Pico dos Dias, operated by the Laboratório Nacional de Astrofísica and the MDM Observatory at Kitt Peak.

  7. TESTING WEAK-LENSING MAPS WITH REDSHIFT SURVEYS: A SUBARU FIELD

    SciTech Connect

    Kurtz, Michael J.; Geller, Margaret J.; Fabricant, Daniel G.; Utsumi, Yousuke; Miyazaki, Satoshi; Dell'Antonio, Ian P. E-mail: mgeller@cfa.harvard.edu E-mail: yousuke.utsumi@nao.ac.jp E-mail: ian@het.brown.edu

    2012-05-10

    We use a dense redshift survey in the foreground of the Subaru GTO2deg{sup 2} weak-lensing field (centered at {alpha}{sub 2000} = 16{sup h}04{sup m}44{sup s}; {delta}{sub 2000} = 43 Degree-Sign 11'24'') to assess the completeness and comment on the purity of massive halo identification in the weak-lensing map. The redshift survey (published here) includes 4541 galaxies; 4405 are new redshifts measured with the Hectospec on the MMT. Among the weak-lensing peaks with a signal-to-noise greater than 4.25, 2/3 correspond to individual massive systems; this result is essentially identical to the Geller et al. test of the Deep Lens Survey (DLS) field F2. The Subaru map, based on images in substantially better seeing than the DLS, enables detection of less massive halos at fixed redshift as expected. We demonstrate that the procedure adopted by Miyazaki et al. for removing some contaminated peaks from the weak-lensing map improves agreement between the lensing map and the redshift survey in the identification of candidate massive systems.

  8. Tests of redshift-space distortions models in configuration space for the analysis of the BOSS final data release

    NASA Astrophysics Data System (ADS)

    White, Martin; Reid, Beth; Chuang, Chia-Hsun; Tinker, Jeremy L.; McBride, Cameron K.; Prada, Francisco; Samushia, Lado

    2015-02-01

    Observations of redshift-space distortions in spectroscopic galaxy surveys offer an attractive method for observing the build-up of cosmological structure, which depends both on the expansion rate of the Universe and our theory of gravity. In preparation for analysis of redshift-space distortions from the Baryon Oscillation Spectroscopic Survey (BOSS) final data release, we compare a number of analytic and phenomenological models, specified in configuration space, to mock catalogues derived in different ways from several N-body simulations. The galaxies in each mock catalogue have properties similar to those of the higher redshift galaxies measured by BOSS but differ in the details of how small-scale velocities and halo occupancy are determined. We find that all of the analytic models fit the simulations over a limited range of scales while failing at small scales. We discuss which models are most robust and on which scales they return reliable estimates of the rate of growth of structure: we find that models based on some form of resummation can fit our N-body data for BOSS-like galaxies above 30 h-1 Mpc well enough to return unbiased parameter estimates.

  9. The 2dF Galaxy Redshift Survey: Wiener reconstruction of the cosmic web

    NASA Astrophysics Data System (ADS)

    Erdoǧdu, Pirin; Lahav, Ofer; Zaroubi, Saleem; Efstathiou, George; Moody, Steve; Peacock, John A.; Colless, Matthew; Baldry, Ivan K.; Baugh, Carlton M.; Bland-Hawthorn, Joss; Bridges, Terry; Cannon, Russell; Cole, Shaun; Collins, Chris; Couch, Warrick; Dalton, Gavin; De Propris, Roberto; Driver, Simon P.; Ellis, Richard S.; Frenk, Carlos S.; Glazebrook, Karl; Jackson, Carole; Lewis, Ian; Lumsden, Stuart; Maddox, Steve; Madgwick, Darren; Norberg, Peder; Peterson, Bruce A.; Sutherland, Will; Taylor, Keith

    2004-08-01

    We reconstruct the underlying density field of the Two-degree Field Galaxy Redshift Survey (2dFGRS) for the redshift range 0.035 < z < 0.200 using the Wiener filtering method. The Wiener filter suppresses shot noise and accounts for selection and incompleteness effects. The method relies on prior knowledge of the 2dF power spectrum of fluctuations and the combination of matter density and bias parameters, however the results are only slightly affected by changes to these parameters. We present maps of the density field. We use a variable smoothing technique with two different effective resolutions: 5 and 10 h-1 Mpc at the median redshift of the survey. We identify all major superclusters and voids in the survey. In particular, we find two large superclusters and two large local voids. The full set of colour maps can be viewed on the World Wide Web at http://www.ast.cam.ac.uk/~pirin.

  10. The Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey III. Optical Identifications and New Redshifts

    NASA Technical Reports Server (NTRS)

    Pursimo, Tapio; Ojha, Roopesh; Jauncey, David L.; Rickett, Barney J.; Dutka, Michael S.; Koay, Jun Yi; Lovell, James E. J.; Bignall, Hayley E.; Kedziora-Chudczer, Lucyna; Macquart, Jean-Pierre

    2013-01-01

    Intraday variability (IDV) of the radio emission from active galactic nuclei is now known to be predominantly due to interstellar scintillation (ISS). The MASIV (The Microarcsecond Scintillation Induced Variability) survey of 443 at spectrum sources revealed that the IDV is related to the radio flux density and redshift. A study of the physical properties of these sources has been severely handicapped by the absence of reliable redshift measurements for many of these objects. This paper presents 79 new redshifts and a critical evaluation of 233 redshifts obtained from the literature. We classify spectroscopic identifications based on emission line properties, finding that 78% of the sources have broad emission lines and are mainly FSRQs. About 16% are weak lined objects, chiefly BL Lacs, and the remaining 6% are narrow line objects. The gross properties (redshift, spectroscopic class) of the MASIV sample are similar to those of other blazar surveys. However, the extreme compactness implied by ISS favors FSRQs and BL Lacs in the MASIV sample as these are the most compact object classes. We confirm that the level of IDV depends on the 5 GHz flux density for all optical spectral types. We find that BL Lac objects tend to be more variable than broad line quasars. The level of ISS decreases substantially above a redshift of about two. The decrease is found to be generally consistent with ISS expected for beamed emission from a jet that is limited to a fixed maximum brightness temperature in the source rest frame.

  11. Photometric Redshifts for the Dark Energy Survey and VISTA and Implications for Large Scale Structure

    SciTech Connect

    Banerji, Manda; Abdalla, Filipe B.; Lahav, Ofer; Lin, Huan; /Fermilab

    2007-11-01

    We conduct a detailed analysis of the photometric redshift requirements for the proposed Dark Energy Survey (DES) using two sets of mock galaxy simulations and an artificial neural network code-ANNz. In particular, we examine how optical photometry in the DES grizY bands can be complemented with near infra-red photometry from the planned VISTA Hemisphere Survey (VHS) in the JHK{sub s} bands in order to improve the photometric redshift estimate by a factor of two at z > 1. We draw attention to the effects of galaxy formation scenarios such as reddening on the photo-z estimate and using our neural network code, calculate A{sub v} for these reddened galaxies. We also look at the impact of using different training sets when calculating photometric redshifts. In particular, we find that using the ongoing DEEP2 and VVDS-Deep spectroscopic surveys to calibrate photometric redshifts for DES, will prove effective. However we need to be aware of uncertainties in the photometric redshift bias that arise when using different training sets as these will translate into errors in the dark energy equation of state parameter, w. Furthermore, we show that the neural network error estimate on the photometric redshift may be used to remove outliers from our samples before any kind of cosmological analysis, in particular for large-scale structure experiments. By removing all galaxies with a 1{sigma} photo-z scatter greater than 0.1 from our DES+VHS sample, we can constrain the galaxy power spectrum out to a redshift of 2 and reduce the fractional error on this power spectrum by {approx}15-20% compared to using the entire catalogue.

  12. The VIPERS Multi-Lambda Survey. I. UV and near-IR observations, multi-colour catalogues, and photometric redshifts

    NASA Astrophysics Data System (ADS)

    Moutard, T.; Arnouts, S.; Ilbert, O.; Coupon, J.; Hudelot, P.; Vibert, D.; Comte, V.; Conseil, S.; Davidzon, I.; Guzzo, L.; Llebaria, A.; Martin, C.; McCracken, H. J.; Milliard, B.; Morrison, G.; Schiminovich, D.; Treyer, M.; Van Werbaeke, L.

    2016-05-01

    We present observations collected in the CFHTLS-VIPERS region in the ultraviolet with the GALEX satellite (far- and near-ultraviolet channels) and in the near-infrared with the CFHT/WIRCam camera (Ks band) over an area of 22 and 27 deg2, respectively. The depth of the photometry was optimised to measure the physical properties (e.g., star formation rate, stellar masses) of all the galaxies in the VIPERS spectroscopic survey. The large volume explored by VIPERS will enable a unique investigation of the relationship between the galaxy properties and their environment (density field and cosmic web) at high redshift (0.5 ≤ z ≤ 1.2). In this paper, we present the observations, the data reductions, and the build-up of the multi-colour catalogues. The CFHTLS-T0007 (gri-χ2) images are used as reference to detect and measure the Ks-band photometry, while the T0007 u∗-selected sources are used as priors to perform the GALEX photometry based on a dedicated software (EMphot). Our final sample reaches NUVAB ~ 25 (at 5σ) and KAB ~ 22 (at 3σ). The large spectroscopic sample (~51 000 spectroscopic redshifts) allows us to highlight the robustness of our star/galaxy separation and the reliability of our photometric redshifts with a typical accuracy of σz ≤ 0.04 and a fraction of catastrophic failures η ≤ 2% down to i ~ 23. We present various tests on the Ks-band completeness and photometric redshift accuracy by comparing our results with existing overlapping deep photometric catalogues. Finally, we discuss the BzK sample of passive and active galaxies at high redshift and the evolution of galaxy morphology in the (NUV-r) vs. (r-Ks) diagram at low redshift (z ≤ 0.25) based on the high image quality of the CFHTLS. The catalogue is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A102The images, catalogues, and photometric redshifts for 1.5 million sources (down to NUV

  13. Cluster Lensing Profiles Derived from a Redshift Enhancement of Magnified BOSS-survey Galaxies

    NASA Astrophysics Data System (ADS)

    Coupon, Jean; Broadhurst, Tom; Umetsu, Keiichi

    2013-07-01

    We report the first detection of a redshift-depth enhancement of background galaxies magnified by foreground clusters. Using 300,000 BOSS survey galaxies with accurate spectroscopic redshifts, we measure their mean redshift depth behind four large samples of optically selected clusters from the Sloan Digital Sky Survey (SDSS) surveys, totaling 5000-15,000 clusters. A clear trend of increasing mean redshift toward the cluster centers is found, averaged over each of the four cluster samples. In addition, we find similar but noisier behavior for an independent X-ray sample of 158 clusters lying in the foreground of the current BOSS sky area. By adopting the mass-richness relationships appropriate for each survey, we compare our results with theoretical predictions for each of the four SDSS cluster catalogs. The radial form of this redshift enhancement is well fitted by a richness-to-mass weighted composite Navarro-Frenk-White profile with an effective mass ranging between M 200 ~ 1.4-1.8 × 1014 M ⊙ for the optically detected cluster samples, and M 200 ~ 5.0 × 1014 M ⊙ for the X-ray sample. This lensing detection helps to establish the credibility of these SDSS cluster surveys, and provides a normalization for their respective mass-richness relations. In the context of the upcoming bigBOSS, Subaru Prime Focus Spectrograph, and EUCLID-NISP spectroscopic surveys, this method represents an independent means of deriving the masses of cluster samples for examining the cosmological evolution, and provides a relatively clean consistency check of weak-lensing measurements, free from the systematic limitations of shear calibration.

  14. CLUSTER LENSING PROFILES DERIVED FROM A REDSHIFT ENHANCEMENT OF MAGNIFIED BOSS-SURVEY GALAXIES

    SciTech Connect

    Coupon, Jean; Umetsu, Keiichi; Broadhurst, Tom

    2013-07-20

    We report the first detection of a redshift-depth enhancement of background galaxies magnified by foreground clusters. Using 300,000 BOSS survey galaxies with accurate spectroscopic redshifts, we measure their mean redshift depth behind four large samples of optically selected clusters from the Sloan Digital Sky Survey (SDSS) surveys, totaling 5000-15,000 clusters. A clear trend of increasing mean redshift toward the cluster centers is found, averaged over each of the four cluster samples. In addition, we find similar but noisier behavior for an independent X-ray sample of 158 clusters lying in the foreground of the current BOSS sky area. By adopting the mass-richness relationships appropriate for each survey, we compare our results with theoretical predictions for each of the four SDSS cluster catalogs. The radial form of this redshift enhancement is well fitted by a richness-to-mass weighted composite Navarro-Frenk-White profile with an effective mass ranging between M{sub 200} {approx} 1.4-1.8 Multiplication-Sign 10{sup 14} M{sub Sun} for the optically detected cluster samples, and M{sub 200} {approx} 5.0 Multiplication-Sign 10{sup 14} M{sub Sun} for the X-ray sample. This lensing detection helps to establish the credibility of these SDSS cluster surveys, and provides a normalization for their respective mass-richness relations. In the context of the upcoming bigBOSS, Subaru Prime Focus Spectrograph, and EUCLID-NISP spectroscopic surveys, this method represents an independent means of deriving the masses of cluster samples for examining the cosmological evolution, and provides a relatively clean consistency check of weak-lensing measurements, free from the systematic limitations of shear calibration.

  15. Tracing the sound horizon scale with photometric redshift surveys

    NASA Astrophysics Data System (ADS)

    Carnero-Rosell, A.; Sánchez, E.; García-Bellido, J.; Gaztañaga, E.; de Simoni, F.; Crocce, M.; Cabré, A.; Fosalba, P.; Alonso, D.

    2011-11-01

    We propose a novel method for the extraction of the baryonic acoustic oscillation scale in galaxy photometric surveys. The evolution of this scale can be used as a standard ruler in order to constrain cosmological parameters. The method consists in parametrize the angular correlation function ω(θ), with a simple analitical expresion, in order to extract the sound horizon scale. The method has been tested in the MICE simulation, one of the largest N-body simulation to date. We have considered projection effects, non-linearities and observational effects in our analysis, obtaining errors in cosmological parameters in agreement with what is expected in new generation surveys.

  16. Spectroscopic CCD surveys for quasars at large redshift. I - A deep PFUEI survey. [Prime Focus Universal Extragalactic Instrument

    NASA Technical Reports Server (NTRS)

    Schmidt, M.; Schneider, D. P.; Gunn, J. E.

    1986-01-01

    A survey for faint quasars has been conducted using slitless spectroscopy with the PFUEI at the 200 inch (5 m) telescope. The survey covers a total of 0.91 sq deg in 113 fields at galactic latitudes above 30 deg. Calibrated spectra in the range 4500-7200 A were obtained for more than 9000 objects. Emission-line candidates were selected on the basis of two criteria: the equivalent width must exceed 50 A, and the signal-to-noise ratio of the detection of the line versus the sky background should be larger than 7. Among 45 candidates so selected, subsequent slit spectroscopy confirmed 27 emission-line objects. Among these, 17 are emission-line galaxies with redshifts in the range 0.04-0.31, and 10 are quasars with redshifts between 0.91 and 2.66. The well-defined selection criteria for these objects, together with the distribution of rest frame equivalent widths of the emission lines, allow derivation of the area of sky covered as a function of the continuum limiting magnitude. The observed number of quasars in the redshift range 0.7-2.7 agrees well with that predicted by the luminosity function models published by Schmidt and Green in 1983. It is concluded that quasars with an absolute magnitude of M(B) = -25 suffer a redshift cutoff near or below a redshift of 3.

  17. Cosmology with photometric weak lensing surveys: Constraints with redshift tomography of convergence peaks and moments

    NASA Astrophysics Data System (ADS)

    Petri, Andrea; May, Morgan; Haiman, Zoltán

    2016-09-01

    Weak gravitational lensing is becoming a mature technique for constraining cosmological parameters, and future surveys will be able to constrain the dark energy equation of state w . When analyzing galaxy surveys, redshift information has proven to be a valuable addition to angular shear correlations. We forecast parameter constraints on the triplet (Ωm,w ,σ8) for a LSST-like photometric galaxy survey, using tomography of the shear-shear power spectrum, convergence peak counts and higher convergence moments. We find that redshift tomography with the power spectrum reduces the area of the 1 σ confidence interval in (Ωm,w ) space by a factor of 8 with respect to the case of the single highest redshift bin. We also find that adding non-Gaussian information from the peak counts and higher-order moments of the convergence field and its spatial derivatives further reduces the constrained area in (Ωm,w ) by factors of 3 and 4, respectively. When we add cosmic microwave background parameter priors from Planck to our analysis, tomography improves power spectrum constraints by a factor of 3. Adding moments yields an improvement by an additional factor of 2, and adding both moments and peaks improves by almost a factor of 3 over power spectrum tomography alone. We evaluate the effect of uncorrected systematic photometric redshift errors on the parameter constraints. We find that different statistics lead to different bias directions in parameter space, suggesting the possibility of eliminating this bias via self-calibration.

  18. The Herschel Multi-Tiered Extragalactic Survey: SPIRE-mm Photometric Redshifts

    NASA Technical Reports Server (NTRS)

    Roseboom, I. G.; Ivison, R. J.; Greve, T. R.; Amblard, A.; Arumugam, V.; Auld, R.; Aussel, H.; Bethermin, M.; Blain, A.; Block, J.; Boselli, A.; Brisbin, D.; Buat, V.; Burgarella, D.; Castro-Rodriquez, N.; Cava, A.; Chanial, P.; Chapin, E.; Chapman, S.; Clements, D. L.; Conley, A.; Conversi, L.; Dowell, C. D.; Dunlop, J. S.; Dwek, E.

    2012-01-01

    We investigate the potential of submm-mm and submm-mm-radio photometric redshifts using a sample of mm-selected sources as seen at 250, 350 and 500 micron by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm sources with reliable radio identifications in the Great Observatories Origins Deep Survey North and Lockman Hole North fields, 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm color evolution with redshift, finding that the colors of mm sources are adequately described by a modified blackbody with constant optical depth Tau = (Nu/nu(sub 0))(exp Beta), where Beta = +1.8 and nu(sub 0) = c/100 micron. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation, we derive photometric redshift estimates for the 46 SPIRE-detected mm sources. Testing against the 22 sources with known spectroscopic or good quality optical/near-IR photometric redshifts, we find submm/mm photometric redshifts offer a redshift accuracy of (absolute value of Delta sub (z))/(1 + z) = 0.16 (absolute value of Delta sub (z)) = 0.51). Including constraints from the radio-far-IR correlation, the accuracy is improved to (absolute value of Delta sub (z))/(1 + z) = 0.14 (((absolute value of Delta sub (z))) = 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at Z > 3 when compared to approx 8S0 micron selected samples.

  19. Five New High-Redshift Quasar Lenses from the Sloan Digital Sky Survey

    SciTech Connect

    Inada, Naohisa; Oguri, Masamune; Shin, Min-Su; Kayo, Issha; Strauss, Michael A.; Morokuma, Tomoki; Schneider, Donald P.; Becker, Robert H.; Bahcall, Neta A.; York, Donald G.

    2008-09-08

    We report the discovery of five gravitationally lensed quasars from the Sloan Digital Sky Survey (SDSS). All five systems are selected as two-image lensed quasar candidates from a sample of high-redshift (z > 2.2) SDSS quasars. We confirmed their lensing nature with additional imaging and spectroscopic observations. The new systems are SDSS J0819+5356 (source redshift z{sub s} = 2.237, lens redshift z{sub l} = 0.294, and image separation {theta} = 4.04 inch), SDSS J1254+2235 (z{sub s} = 3.626, {theta} = 1.56 inch), SDSS J1258+1657 (z{sub s} = 2.702, {theta} = 1.28 inch), SDSS J1339+1310 (z{sub s} = 2.243, {theta} = 1.69 cin), and SDSS J1400+3134 (z{sub s} = 3.317, {theta} = 1.74 inch). We estimate the lens redshifts of the latter four systems to be z{sub l} = 0.4-0.6 from the colors and magnitudes of the lensing galaxies. We find that the image configurations of all systems are well reproduced by standard mass models. Although these lenses will not be included in our statistical sample of z{sub s} < 2.2 lenses, they expand the number of lensed quasars which can be used for high-redshift galaxy and quasar studies.

  20. Low/High Redshift Classification of Emission Line Galaxies in the HETDEX survey

    NASA Astrophysics Data System (ADS)

    Acquaviva, Viviana; Gawiser, Eric; Leung, Andrew S.; Martin, Mario R.

    2014-05-01

    We discuss different methods to separate high- from low-redshift galaxies based on a combination of spectroscopic and photometric observations. Our baseline scenario is the Hobby-Eberly Telescope Dark Energy eXperiment (HETDEX) survey, which will observe several hundred thousand Lyman Alpha Emitting (LAE) galaxies at 1.9 < z < 3.5, and for which the main source of contamination is [OII]-emitting galaxies at z < 0.5. Additional information useful for the separation comes from empirical knowledge of LAE and [OII] luminosity functions and equivalent width distributions as a function of redshift. We consider three separation techniques: a simple cut in equivalent width, a Bayesian separation method, and machine learning algorithms, including support vector machines. These methods can be easily applied to other surveys and used on simulated data in the framework of survey planning.

  1. CFHTLenS and RCSLenS: Testing Photometric Redshift Distributions Using Angular Cross-Correlations with Spectroscopic Galaxy Surveys

    NASA Astrophysics Data System (ADS)

    Choi, A.; Heymans, C.; Blake, C.; Hildebrandt, H.; Duncan, C. A. J.; Erben, T.; Nakajima, R.; Van Waerbeke, L.; Viola, M.

    2016-09-01

    We determine the accuracy of galaxy redshift distributions as estimated from photometric redshift probability distributions p(z). Our method utilises measurements of the angular cross-correlation between photometric galaxies and an overlapping sample of galaxies with spectroscopic redshifts. We describe the redshift leakage from a galaxy photometric redshift bin j into a spectroscopic redshift bin i using the sum of the p(z) for the galaxies residing in bin j. We can then predict the angular cross-correlation between photometric and spectroscopic galaxies due to intrinsic galaxy clustering when i ≠ j as a function of the measured angular cross-correlation when i = j. We also account for enhanced clustering arising from lensing magnification using a halo model. The comparison of this prediction with the measured signal provides a consistency check on the validity of using the summed p(z) to determine galaxy redshift distributions in cosmological analyses, as advocated by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We present an analysis of the photometric redshifts measured by CFHTLenS, which overlaps the Baryon Oscillation Spectroscopic Survey (BOSS). We also analyse the Red-sequence Cluster Lensing Survey (RCSLenS), which overlaps both BOSS and the WiggleZ Dark Energy Survey. We find that the summed p(z) from both surveys are generally biased with respect to the true underlying distributions. If unaccounted for, this bias would lead to errors in cosmological parameter estimation from CFHTLenS by less than ˜4%. For photometric redshift bins which spatially overlap in 3-D with our spectroscopic sample, we determine redshift bias corrections which can be used in future cosmological analyses that rely on accurate galaxy redshift distributions.

  2. High-Redshift Clusters form NVSS: The TexOx Cluster (TOC) Survey

    SciTech Connect

    Croft, S; Rawlings, S; Hill, G J

    2003-02-11

    The TexOx Cluster (TOC) Survey uses overdensities of radiosources in the NVSS to trace clusters of galaxies. The links between radiosources and rich environments make this a powerful way to find clusters which may potentially be overlooked by other selection techniques. By including constraints from optical surveys, TOC is an extremely efficient way to find clusters at high redshift. One such field, TOC J0233.3+3021, contains at least one galaxy cluster (at z {approx} 1.4) and has been detected using the Sunyaev-Zel'dovich (SZ) effect. Even in targeted deep optical observations, however, distinguishing the cluster galaxies from the background is difficult, especially given the tendency of TOC to select fields containing multiple structures at different redshifts.

  3. Probabilistic Selection of High-redshift Quasars with Subaru/Hyper Suprime-Cam Survey

    NASA Astrophysics Data System (ADS)

    Onoue, Masafusa

    High-redshift quasars are an important probe of the distant Universe. They enable observational studies of the early growth of supermassive blackholes, cosmic reionization, chemical enrichment of host galaxies, and so on. Through pioneering optical and near-infrared wide-area surveys such as the SDSS and the VIKING Survey, about one hundred quasars have been found at z > 6 (e.g., Fan et al. (2006b), Venemans et al. (2013)). However, its current small sample size and the fact that most of them are the most luminous (M 1450 <~ -24) population in this epoch prevents one from constraining statistics on high-redshift quasars, namely quasar luminosity function (QLF), and redshift evolution of IGM neutral fraction. Thus, discovery of large number of z > 6 quasars, especially low-luminous or z > 7 quasars, is highly desired for further understanding of the early universe. We are now starting a new ground-breaking survey of high-redshift (z > 6) quasars using the exquisite imaging data provided by the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) Survey. Thanks to its extremely wide coverage and its high sensitivity thorough five optical bands (1,400 deg2 to the depth of r ~ 26 in HSC-Wide layer), it is one of the most powerful contemporary surveys that makes it possible for us to increase the number of z > 6 quasars by almost an order of magnitude, i.e., 300 at z ~ 6 and 50 at z ~ 7, based on the current estimate of the QLF at z > 6 by Willott et al. (2010b). One of the biggest challenges in z > 6 quasar candidate selection is contamination of Galactic brown dwarfs, which have the same point-like appearance as and similarly red colors to the quasars. To overcome this issue and maximize the selection efficiency, we apply a double-layered approach to the HSC survey products, namely combination of two probabilistic selections: SED-fitting and Bayesian selection. In particular, we have developed a template SED fitting method optimized to high-redshift quasars

  4. THE POPULATION OF HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI IN THE CHANDRA-COSMOS SURVEY

    SciTech Connect

    Civano, F.; Elvis, M.; Hao, H.; Brusa, M.; Comastri, A.; Zamorani, G.; Gilli, R.; Mignoli, M.; Salvato, M.; Capak, P.; Kakazu, Y.; Masters, D.; Fiore, F.; Ikeda, H.; Kartaltepe, J. S.; Miyaji, T.; Puccetti, S.; Shankar, F.; Silverman, J.; Vignali, C.

    2011-11-10

    We present the high-redshift (3 Survey. The sample comprises 81 X-ray-detected sources with available spectroscopic (31) and photometric (50) redshifts plus 20 sources with a formal z{sub phot} < 3 but with a broad photometric redshift probability distribution, such that z{sub phot} + 1{sigma} > 3. Eighty-one sources are selected in the 0.5-2 keV band, fourteen are selected in the 2-10 keV and six in the 0.5-10 keV bands. We sample the high-luminosity (log L{sub (2-10keV)} > 44.15 erg s{sup -1}) space density up to z {approx} 5 and a fainter luminosity range (43.5 erg s{sup -1} < log L{sub (2-10keV)} < 44.15 erg s{sup -1}) than previous studies, up to z = 3.5. We weighted the contribution to the number counts and the space density of the sources with photometric redshift by using their probability of being at z > 3. We find that the space density of high-luminosity AGNs declines exponentially at all the redshifts, confirming the trend observed for optically selected quasars. At lower luminosity, the measured space density is not conclusive, and a larger sample of faint sources is needed. Comparisons with optical luminosity functions and black hole formation models are presented together with prospects for future surveys.

  5. Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing

    NASA Astrophysics Data System (ADS)

    Bonnett, C.; Troxel, M. A.; Hartley, W.; Amara, A.; Leistedt, B.; Becker, M. R.; Bernstein, G. M.; Bridle, S. L.; Bruderer, C.; Busha, M. T.; Carrasco Kind, M.; Childress, M. J.; Castander, F. J.; Chang, C.; Crocce, M.; Davis, T. M.; Eifler, T. F.; Frieman, J.; Gangkofner, C.; Gaztanaga, E.; Glazebrook, K.; Gruen, D.; Kacprzak, T.; King, A.; Kwan, J.; Lahav, O.; Lewis, G.; Lidman, C.; Lin, H.; MacCrann, N.; Miquel, R.; O'Neill, C. R.; Palmese, A.; Peiris, H. V.; Refregier, A.; Rozo, E.; Rykoff, E. S.; Sadeh, I.; Sánchez, C.; Sheldon, E.; Uddin, S.; Wechsler, R. H.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S.; Armstrong, R.; Banerji, M.; Bauer, A. H.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Fausti Neto, A.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gerdes, D. W.; Gruendl, R. A.; Honscheid, K.; Jain, B.; James, D. J.; Jarvis, M.; Kim, A. G.; Kuehn, K.; Kuropatkin, N.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miller, C. J.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Vikram, V.; Walker, A. R.; Dark Energy Survey Collaboration

    2016-08-01

    We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods—annz2, bpz calibrated against BCC-Ufig simulations, skynet, and tpz—are analyzed. For training, calibration, and testing of these methods, we construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evaluated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-z 's. From the galaxies in the DES SV shear catalogue, which have mean redshift 0.72 ±0.01 over the range 0.3 redshift distributions through to their impact on cosmological parameters estimated with cosmic shear, and find that they cause shifts in the value of σ8 of approximately 3%. This shift is within the one sigma statistical errors on σ8 for the DES SV shear catalogue. We further study the potential impact of systematic differences on the critical surface density, Σcrit , finding levels of bias safely less than the statistical power of DES SV data. We recommend a final Gaussian prior for the photo-z bias in the mean of n (z ) of width 0.05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis.

  6. GALAXY ZOO MORPHOLOGY AND PHOTOMETRIC REDSHIFTS IN THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Way, M. J.

    2011-06-10

    It has recently been demonstrated that one can accurately derive galaxy morphology from particular primary and secondary isophotal shape estimates in the Sloan Digital Sky Survey (SDSS) imaging catalog. This was accomplished by applying Machine Learning techniques to the Galaxy Zoo morphology catalog. Using the broad bandpass photometry of the SDSS in combination with precise knowledge of galaxy morphology should help in estimating more accurate photometric redshifts for galaxies. Using the Galaxy Zoo separation for spirals and ellipticals in combination with SDSS photometry we attempt to calculate photometric redshifts. In the best case we find that the root-mean-square error for luminous red galaxies classified as ellipticals is as low as 0.0118. Given these promising results we believe better photometric redshift estimates for all galaxies in the SDSS ({approx}350 million) will be feasible if researchers can also leverage their derived morphologies via Machine Learning. These initial results look to be promising for those interested in estimating weak lensing, baryonic acoustic oscillation, and other fields dependent upon accurate photometric redshifts.

  7. The VIMOS Public Extragalactic Redshift Survey (VIPERS). On the recovery of the count-in-cell probability distribution function

    NASA Astrophysics Data System (ADS)

    Bel, J.; Branchini, E.; Di Porto, C.; Cucciati, O.; Granett, B. R.; Iovino, A.; de la Torre, S.; Marinoni, C.; Guzzo, L.; Moscardini, L.; Cappi, A.; Abbas, U.; Adami, C.; Arnouts, S.; Bolzonella, M.; Bottini, D.; Coupon, J.; Davidzon, I.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Paioro, L.; Polletta, M.; Pollo, A.; Schlagenhaufer, H.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Marchetti, A.; Mellier, Y.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.

    2016-04-01

    We compare three methods to measure the count-in-cell probability density function of galaxies in a spectroscopic redshift survey. From this comparison we found that, when the sampling is low (the average number of object per cell is around unity), it is necessary to use a parametric method to model the galaxy distribution. We used a set of mock catalogues of VIPERS to verify if we were able to reconstruct the cell-count probability distribution once the observational strategy is applied. We find that, in the simulated catalogues, the probability distribution of galaxies is better represented by a Gamma expansion than a skewed log-normal distribution. Finally, we correct the cell-count probability distribution function from the angular selection effect of the VIMOS instrument and study the redshift and absolute magnitude dependency of the underlying galaxy density function in VIPERS from redshift 0.5 to 1.1. We found a very weak evolution of the probability density distribution function and that it is well approximated by a Gamma distribution, independently of the chosen tracers. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programmes 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/

  8. RED-SEQUENCE GALAXIES AT HIGH REDSHIFT BY THE COMBO-17+4 SURVEY

    SciTech Connect

    Nicol, Marie-Helene; Meisenheimer, Klaus; Wolf, Christian; Tapken, Christian E-mail: meise@mpia.de E-mail: ctapken@aip.de

    2011-01-20

    We investigate the evolution of the galaxy population since redshift 2 with a focus on the color bimodality and mass density of the red sequence. We obtain precise and reliable photometric redshifts up to z = 2 by supplementing the optical survey COMBO-17 with observations in four near-infrared bands on 0.2 deg{sup 2} of the COMBO-17 A901-field. Our results are based on an H-band-selected catalog of 10,692 galaxies complete to H = 21fm7. We measure the rest-frame color (U{sub 280}-V) of each galaxy, which across the redshift range of our interest requires no extrapolation and is robust against moderate redshift errors by staying clear of the 4000 A break. We measure the color-magnitude relation of the red sequence as a function of look-back time from the peak in a color-error-weighted histogram, and thus trace the galaxy bimodality out to z {approx_equal} 1.65. The (U{sub 280}-V) of the red sequence is found to evolve almost linearly with look-back time. At high redshift, we find massive galaxies in both the red and the blue population. Red-sequence galaxies with log M{sub *}/M{sub sun}>11 increase in mass density by a factor of {approx}4 from z {approx} 2 to 1 and remain nearly constant at z < 1. However, some galaxies as massive as log M{sub *}/M{sub sun} = 11.5 are already in place at z {approx} 2.

  9. THE TEAM KECK REDSHIFT SURVEY 2: MOSFIRE SPECTROSCOPY OF THE GOODS-NORTH FIELD

    SciTech Connect

    Wirth, Gregory D.; Kassis, Marc; Lyke, Jim; Rizzi, Luca; Campbell, Randy; Goodrich, Robert W.; Trump, Jonathan R.; Barro, Guillermo; Guo, Yicheng; Koo, David C.; Liu, Fengshan; Faber, S. M.

    2015-11-15

    We present the Team Keck Redshift Survey 2 (TKRS2), a near-infrared spectral observing program targeting selected galaxies within the CANDELS subsection of the GOODS-North Field. The TKRS2 program exploits the unique capabilities of the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE), which entered service on the Keck I telescope in 2012 and contributes substantially to the study of galaxy spectral features at redshifts inaccessible to optical spectrographs. The TKRS2 project targets 97 galaxies drawn from samples that include z ≈ 2 emission-line galaxies with features observable in the JHK bands as well as lower-redshift targets with features in the Y band. We present a detailed measurement of MOSFIRE’s sensitivity as a function of wavelength, including the effects of telluric features across the YJHK filters. The largest utility of our survey is in providing rest-frame-optical emission lines for z > 1 galaxies, and we demonstrate that the ratios of strong, optical emission lines of z ≈ 2 galaxies suggest the presence of either higher N/O abundances than are found in z ≈ 0 galaxies or low-metallicity gas ionized by an active galactic nucleus. We have released all TKRS2 data products into the public domain to allow researchers access to representative raw and reduced MOSFIRE spectra.

  10. An analysis of a full sky redshift survey of IRAS galaxies

    NASA Astrophysics Data System (ADS)

    Fisher, Karl Booth

    1992-01-01

    Results are presented from an all-sky redshift survey of 5307 galaxies extracted from the Infrared Astronomical Satellite (IRAS) Point Source Catalog. The analysis presented in this thesis focuses on the spatial distribution and clustering of IRAS galaxies in this survey. We present an in-depth analysis of the possibility of density evolution in the catalogue. We conclude that the 1.2 Jy IRAS survey is consistent with no evolution, if the comoving density of galaxies is characterized as evolving proportional to (1 + z)alpha, we find alpha = 2 +/- 3, where the quoted error includes both random and systematic components. The random errors in alpha, of order 2, arise primarily from counting statistics, and are comparable to those found by previous authors. We discuss a variety of important random and systematic errors which decrease the certainty with which we can measure evolution: limited knowledge of the cosmological model, the unknown intrinsic spectral energy distribution of IRAS galaxies from 16 to 140 mu m, the effect of density fluctuations, a Malmquist-like bias arising from flux errors in the parent IRAS Point Source Catalog, and possible incompleteness of the sample at high redshifts and low Galactic latitudes. We show that the Malmquist bias could result in a significant overestimation of the evolution rate, especially if the catalog has a flux limit near the completion limit of the Point Source Catalog. We examine the two-point correlation function of the sample in both real and redshift space. The redshift space correlation function, xi(s), is shown to be robust and independent of the depth of the sample in which it is computed. We have also computed the Fourier conjugate of the correlation function, the power spectrum of galaxy clustering, P(k), for the 1.2 Jy IRAS survey using a window function which minimizes the aliasing due to the sample boundaries. We compare the IRAS power spectrum qualitatively with a variety of theoretical models, and conclude

  11. A deep redshift survey of IRAS galaxies towards the Bootes void

    NASA Technical Reports Server (NTRS)

    Dey, Arjun; Strauss, Michael A.; Huchra, John

    1990-01-01

    Redshifts were measured for a complete sample of galaxies detected by the IRAS within 11.5 deg of the center of the void in Bootes discovered by Kirshner et al (1981). There are 12 IRAS galaxies within the void as defined by the above authors, seven of which were discovered in this survey. One of these has a companion at the same redshift. The resulting density of IRAS galaxies in the void is measured to be between 1/6 and 1/3 of the average density; the uncertainty is dominated by Poisson statistics. Good agreement is found between the selection function and number density derived from the present sample and those derived from the all-sky sample of Strauss (1989). The optical spectra of the newly found galaxies in the void are typical of IRAS galaxies in the field.

  12. Redshifts for fainter galaxies in the first CfA survey slice. II

    NASA Technical Reports Server (NTRS)

    Wegner, Gary; Thorstensen, John R.; Kurtz, Michael J.; Geller, Margaret J.; Huchra, John P.

    1990-01-01

    Redshifts were measured for 96 galaxies in right ascension alpha between 8h and 17h declination delta between 30 and 31 deg, and with m(Zwicky) in the range 15.6-15.7. These correspond to 94 of the 96 entries in the Zwicky-Nilson merged catalog. The declination range delta between 29 deg and 31 deg is now complete to m(Zwicky) = 15.7. The structures in the first 6-deg-wide slice of the Center for Astrophysics redshift survey slice (delta between 26.5 and 32.5 deg are clearly defined in the 2-deg-wide slightly deeper sample; the fainter galaxies trace the structures defined by the brighter ones.

  13. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Hierarchical scaling and biasing

    NASA Astrophysics Data System (ADS)

    Cappi, A.; Marulli, F.; Bel, J.; Cucciati, O.; Branchini, E.; de la Torre, S.; Moscardini, L.; Bolzonella, M.; Guzzo, L.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Coupon, J.; Davidzon, I.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Granett, B. R.; Ilbert, O.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; McCracken, H. J.; Paioro, L.; Polletta, M.; Pollo, A.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Schimd, C.; Schlagenhaufer, H.; Wolk, M.; Zamorani, G.

    2015-07-01

    Aims: Building on the two-point correlation function analyses of the VIMOS Public Extragalactic Redshift Survey (VIPERS), we investigate the higher-order correlation properties of the same galaxy samples to test the hierarchical scaling hypothesis at z ~ 1 and the dependence on galaxy luminosity, stellar mass, and redshift. With this work we also aim to assess possible deviations from the linearity of galaxy bias independently from a previously performed analysis of our survey. Methods: We have measured the count probability distribution function in spherical cells of varying radii (3 ≤ R ≤ 10 h-1 Mpc), deriving σ8g (the galaxy rms at 8 h-1 Mpc), the volume-averaged two-, three-, and four-point correlation functions and the normalized skewness S3g and kurtosis S4g for different volume-limited subsamples, covering the following ranges: -19.5 ≤ MB(z = 1.1) - 5log (h) ≤ -21.0 in absolute magnitude, 9.0 ≤ log (M∗/M⊙h-2) ≤ 11.0 in stellar mass, and 0.5 ≤ z< 1.1 in redshift. Results: We have performed the first measurement of high-order correlation functions at z ~ 1 in a spectroscopic redshift survey. Our main results are the following. 1) The hierarchical scaling between the volume-averaged two- and three-point and two- and four-point correlation functions holds throughout the whole range of scale and redshift we could test. 2) We do not find a significant dependence of S3g on luminosity (below z = 0.9 the value of S3g decreases with luminosity, but only at 1σ-level). 3) We do not detect a significant dependence of S3g and S4g on scale, except beyond z ~ 0.9, where S3g and S4g have higher values on large scales (R ≥ 10 h-1 Mpc): this increase is mainly due to one of the two CFHTLS Wide Fields observed by VIPERS and can be explained as a consequence of sample variance, consistently with our analysis of mock catalogs. 4) We do not detect a significant evolution of S3g and S4g with redshift (apart from the increase of their values with scale in the

  14. COMPARING DENSE GALAXY CLUSTER REDSHIFT SURVEYS WITH WEAK-LENSING MAPS

    SciTech Connect

    Hwang, Ho Seong; Geller, Margaret J.; Zahid, H. Jabran; Diaferio, Antonaldo; Rines, Kenneth J. E-mail: mgeller@cfa.harvard.edu E-mail: diaferio@ph.unito.it

    2014-12-20

    We use dense redshift surveys of nine galaxy clusters at z ∼ 0.2 to compare the galaxy distribution in each system with the projected matter distribution from weak lensing. By combining 2087 new MMT/Hectospec redshifts and the data in the literature, we construct spectroscopic samples within the region of weak-lensing maps of high (70%-89%) and uniform completeness. With these dense redshift surveys, we construct galaxy number density maps using several galaxy subsamples. The shape of the main cluster concentration in the weak-lensing maps is similar to the global morphology of the number density maps based on cluster members alone, mainly dominated by red members. We cross-correlate the galaxy number density maps with the weak-lensing maps. The cross-correlation signal when we include foreground and background galaxies at 0.5z {sub cl} < z < 2z {sub cl} is 10%-23% larger than for cluster members alone at the cluster virial radius. The excess can be as high as 30% depending on the cluster. Cross-correlating the galaxy number density and weak-lensing maps suggests that superimposed structures close to the cluster in redshift space contribute more significantly to the excess cross-correlation signal than unrelated large-scale structure along the line of sight. Interestingly, the weak-lensing mass profiles are not well constrained for the clusters with the largest cross-correlation signal excesses (>20% for A383, A689, and A750). The fractional excess in the cross-correlation signal including foreground and background structures could be a useful proxy for assessing the reliability of weak-lensing cluster mass estimates.

  15. The Subaru FMOS galaxy redshift survey (FastSound). IV. New constraint on gravity theory from redshift space distortions at z ˜ 1.4

    NASA Astrophysics Data System (ADS)

    Okumura, Teppei; Hikage, Chiaki; Totani, Tomonori; Tonegawa, Motonari; Okada, Hiroyuki; Glazebrook, Karl; Blake, Chris; Ferreira, Pedro G.; More, Surhud; Taruya, Atsushi; Tsujikawa, Shinji; Akiyama, Masayuki; Dalton, Gavin; Goto, Tomotsugu; Ishikawa, Takashi; Iwamuro, Fumihide; Matsubara, Takahiko; Nishimichi, Takahiro; Ohta, Kouji; Shimizu, Ikkoh; Takahashi, Ryuichi; Takato, Naruhisa; Tamura, Naoyuki; Yabe, Kiyoto; Yoshida, Naoki

    2016-06-01

    We measure the redshift-space correlation function from a spectroscopic sample of 2783 emission line galaxies from the FastSound survey. The survey, which uses the Subaru Telescope and covers a redshift range of 1.19 < z < 1.55, is the first cosmological study at such high redshifts. We detect clear anisotropy due to redshift-space distortions (RSD) both in the correlation function as a function of separations parallel and perpendicular to the line of sight and its quadrupole moment. RSD has been extensively used to test general relativity on cosmological scales at z < 1. Adopting a ΛCDM cosmology with the fixed expansion history and no velocity dispersion (σv = 0), and using the RSD measurements on scales above 8 h-1 Mpc, we obtain the first constraint on the growth rate at the redshift, f (z)σ8(z) = 0.482 ± 0.116 at z ˜ 1.4 after marginalizing over the galaxy bias parameter b(z)σ8(z). This corresponds to 4.2 σ detection of RSD. Our constraint is consistent with the prediction of general relativity fσ8 ˜ 0.392 within the 1 σ confidence level. When we allow σv to vary and marginalize over it, the growth rate constraint becomes fσ _8=0.494^{+0.126}_{-0.120}. We also demonstrate that by combining with the low-z constraints on fσ8, high-z galaxy surveys like the FastSound can be useful to distinguish modified gravity models without relying on CMB anisotropy experiments.

  16. The power spectrum of galaxies in the 2dF 100k redshift survey

    NASA Astrophysics Data System (ADS)

    Tegmark, Max; Hamilton, Andrew J. S.; Xu, Yongzhong

    2002-10-01

    We compute the real-space power spectrum and the redshift-space distortions of galaxies in the 2dF 100k galaxy redshift survey using pseudo-Karhunen-Loève eigenmodes and the stochastic bias formalism. Our results agree well with those published by the 2dFGRS team, and have the added advantage of producing easy-to-interpret uncorrelated minimum-variance measurements of the galaxy-galaxy, galaxy-velocity and velocity-velocity power spectra in 27 k-bands, with narrow and well-behaved window functions in the range 0.01 h Mpc-1 < k < 0.8 h Mpc-1. We find no significant detection of baryonic wiggles, although our results are consistent with a standard flat ΩΛ= 0.7`concordance' model and previous tantalizing hints of baryonic oscillations. We measure the galaxy-matter correlation coefficient r > 0.4 and the redshift-distortion parameter β= 0.49 +/- 0.16 for r= 1 (β= 0.47 +/- 0.16 without finger-of-god compression). Since this is an apparent-magnitude limited sample, luminosity-dependent bias may cause a slight red-tilt in the power spectrum. A battery of systematic error tests indicate that the survey is not only impressive in size, but also unusually clean, free of systematic errors at the level to which our tests are sensitive. Our measurements and window functions are available at http://www.hep.upenn.edu/~max/2df.html together with the survey mask, radial selection function and uniform subsample of the survey that we have constructed.

  17. Gravitational redshift of galaxies in clusters from the sloan digital sky survey and the Baryon Oscillation spectroscopic survey.

    PubMed

    Sadeh, Iftach; Feng, Low Lerh; Lahav, Ofer

    2015-02-20

    The gravitational redshift effect allows one to directly probe the gravitational potential in clusters of galaxies. Following up on Wojtak et al. [Nature (London) 477, 567 (2011)], we present a new measurement. We take advantage of new data from the tenth data release of the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. We compare the spectroscopic redshift of the brightest cluster galaxies (BCGs) with that of galaxies at the outskirts of clusters, using a sample with an average cluster mass of 1014M⊙. We find that these galaxies have an average relative redshift of -11  km/s compared with that of BCGs, with a standard deviation of +7 and -5  km/s. Our measurement is consistent with that of Wojtak et al. [Nature (London) 477, 567 (2011)]. However, our derived standard deviation is larger, as we take into account various systematic effects, beyond the size of the data set. The result is in good agreement with the predictions from general relativity.

  18. Gravitational Redshift of Galaxies in Clusters from the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Sadeh, Iftach; Feng, Low Lerh; Lahav, Ofer

    2015-02-01

    The gravitational redshift effect allows one to directly probe the gravitational potential in clusters of galaxies. Following up on Wojtak et al. [Nature (London) 477, 567 (2011)], we present a new measurement. We take advantage of new data from the tenth data release of the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. We compare the spectroscopic redshift of the brightest cluster galaxies (BCGs) with that of galaxies at the outskirts of clusters, using a sample with an average cluster mass of 1014 M⊙ . We find that these galaxies have an average relative redshift of -11 km /s compared with that of BCGs, with a standard deviation of +7 and -5 km /s . Our measurement is consistent with that of Wojtak et al. [Nature (London) 477, 567 (2011)]. However, our derived standard deviation is larger, as we take into account various systematic effects, beyond the size of the data set. The result is in good agreement with the predictions from general relativity.

  19. Gravitational redshift of galaxies in clusters from the sloan digital sky survey and the Baryon Oscillation spectroscopic survey.

    PubMed

    Sadeh, Iftach; Feng, Low Lerh; Lahav, Ofer

    2015-02-20

    The gravitational redshift effect allows one to directly probe the gravitational potential in clusters of galaxies. Following up on Wojtak et al. [Nature (London) 477, 567 (2011)], we present a new measurement. We take advantage of new data from the tenth data release of the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. We compare the spectroscopic redshift of the brightest cluster galaxies (BCGs) with that of galaxies at the outskirts of clusters, using a sample with an average cluster mass of 1014M⊙. We find that these galaxies have an average relative redshift of -11  km/s compared with that of BCGs, with a standard deviation of +7 and -5  km/s. Our measurement is consistent with that of Wojtak et al. [Nature (London) 477, 567 (2011)]. However, our derived standard deviation is larger, as we take into account various systematic effects, beyond the size of the data set. The result is in good agreement with the predictions from general relativity. PMID:25763947

  20. THE AzTEC/SMA INTERFEROMETRIC IMAGING SURVEY OF SUBMILLIMETER-SELECTED HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Younger, Joshua D.; Fazio, Giovanni G.; Huang Jiasheng; Ashby, Matthew L. N.; Gurwell, Mark A.; Petitpas, Glen R.; Wilner, David J.; Yun, Min S.; Wilson, Grant W.; Scott, Kimberly S.; Austermann, Jason; Perera, Thushara; Peck, Alison B.; Hughes, David H.; Aretxaga, Itziar; Kim, Sungeun; Lowenthal, James D.

    2009-10-10

    We present results from a continuing interferometric survey of high-redshift submillimeter galaxies (SMGs) with the Submillimeter Array, including high-resolution (beam size approx2 arcsec) imaging of eight additional AzTEC 1.1 mm selected sources in the COSMOS field, for which we obtain six reliable (peak signal-to-noise ratio (S/N) >5 or peak S/N >4 with multiwavelength counterparts within the beam) and two moderate significance (peak S/N >4) detections. When combined with previous detections, this yields an unbiased sample of millimeter-selected SMGs with complete interferometric follow up. With this sample in hand, we (1) empirically confirm the radio-submillimeter association, (2) examine the submillimeter morphology-including the nature of SMGs with multiple radio counterparts and constraints on the physical scale of the far infrared-of the sample, and (3) find additional evidence for a population of extremely luminous, radio-dim SMGs that peaks at higher redshift than previous, radio-selected samples. In particular, the presence of such a population of high-redshift sources has important consequences for models of galaxy formation-which struggle to account for such objects even under liberal assumptions-and dust production models given the limited time since the big bang.

  1. Clustering of High Redshift (z>2.9) Quasars from the Sloan Digital Sky Survey

    SciTech Connect

    Shen, Yue; Strauss, Michael A.; Oguri, Masamune; Hennawi, Joseph F.; Fan, Xiaohui; Richards, Gordon T.; Hall, Patrick B.; Schneider, Donald P.; Szalay, Alexander S.; Thakar, Anirudda R.; Berk, Daniel E.Vanden; Anderson, Scott F.; Bahcall, Neta A.; /KIPAC, Menlo Park

    2006-11-30

    We study the two-point correlation function of a uniformly selected sample of 4,428 optically selected luminous quasars with redshift 2.9 {le} z {le} 5.4 selected over 4041 deg{sup 2} from the Fifth Data Release of the Sloan Digital Sky Survey. We fit a power-law to the projected correlation function w{sub p}(r{sub p}) to marginalize over redshift space distortions and redshift errors. For a real-space correlation function of the form {zeta}(r) = (r/r{sub 0}){sup -{gamma}}, the fitted parameters in comoving coordinates are r{sub 0} = 15.2 {+-} 2.7 h{sup -1} Mpc and {gamma} = 2.0 {+-} 0.3, over a scale range 4 {le} r{sub p} {le} 150 h{sup -1} Mpc. Thus high-redshift quasars are appreciably more strongly clustered than their z {approx} 1.5 counterparts, which have a comoving clustering length r{sub 0} {approx} 6.5 h{sup -1} Mpc. Dividing our sample into two redshift bins: 2.9 {le} z {le} 3.5 and z {ge} 3.5, and assuming a power-law index {gamma} = 2.0, we find a correlation length of r{sub 0} = 16.9 {+-} 1.7 h{sup -1} Mpc for the former, and r{sub 0} = 24.3 {+-} 2.4 h{sup -1} Mpc for the latter. Strong clustering at high redshift indicates that quasars are found in very massive, and therefore highly biased, halos. Following Martini & Weinberg, we relate the clustering strength and quasar number density to the quasar lifetimes and duty cycle. Using the Sheth & Tormen halo mass function, the quasar lifetime is estimated to lie in the range 4 {approx} 50 Myr for quasars with 2.9 {le} z {le} 3.5; and 30 {approx} 600 Myr for quasars with z {ge} 3.5. The corresponding duty cycles are 0.004 {approx} 0.05 for the lower redshift bin and 0.03 {approx} 0.6 for the higher redshift bin. The minimum mass of halos in which these quasars reside is 2-3 x 10{sup 12} h{sup -1} M{sub {circle_dot}} for quasars with 2.9 {le} z {le} 3.5 and 4-6 x 10{sup 12} h{sup -1} M{sub {circle_dot}} for quasars with z {ge} 3.5; the effective bias factor b{sub eff} increases with redshift, e.g., b

  2. The 2dF Galaxy Redshift Survey: the number and luminosity density of galaxies

    NASA Astrophysics Data System (ADS)

    Cross, Nicholas; Driver, Simon P.; Couch, Warrick; Baugh, Carlton M.; Bland-Hawthorn, Joss; Bridges, Terry; Cannon, Russell; Cole, Shaun; Colless, Matthew; Collins, Chris; Dalton, Gavin; Deeley, Kathryn; De Propris, Roberto; Efstathiou, George; Ellis, Richard S.; Frenk, Carlos S.; Glazebrook, Karl; Jackson, Carole; Lahav, Ofer; Lewis, Ian; Lumsden, Stuart; Maddox, Steve; Madgwick, Darren; Moody, Stephen; Norberg, Peder; Peacock, John A.; Peterson, Bruce A.; Price, Ian; Seaborne, Mark; Sutherland, Will; Tadros, Helen; Taylor, Keith

    2001-07-01

    We present the bivariate brightness distribution (BBD) for the 2dF Galaxy Redshift Survey (2dFGRS) based on a preliminary subsample of 45000 galaxies. The BBD is an extension of the galaxy luminosity function, incorporating surface brightness information. It allows the measurement of the local luminosity density, jB, and of the galaxy luminosity and surface brightness distributions, while accounting for surface brightness selection biases. The recovered 2dFGRS BBD shows a strong luminosity-surface brightness relation MB~(2.4+/-0.51.5)μe], providing a new constraint for galaxy formation models. In terms of the number density, we find that the peak of the galaxy population lies at MB>=-16.0mag. Within the well-defined selection limits (-24final value we derive for the local luminosity density, inclusive of surface brightness corrections, is jB=2.49+/- 0.20×108h100LsolarMpc- 3. Representative Schechter function parameters are M*=-19.75+/-0.05, φ*=2.02+/-0.02×10-2 and α=-1.09+/-0.03. Finally, we note that extending the conventional methodology to incorporate surface brightness selection effects has resulted in an increase in the luminosity density of ~37 per cent. Hence surface brightness selection effects would appear to explain much of the discrepancy between previous estimates of the local luminosity density.

  3. VLP - High-Redshift AGNs and the X-SERVS Survey

    NASA Astrophysics Data System (ADS)

    Brandt, W.

    2016-06-01

    In the first part of this talk, I will review how X-ray observations of high-redshift AGNs at z = 4-7 have played a critical role in understanding their basic demographics as well as their physical processes; e.g., accretion rates, jet emission, X-ray absorption by nuclear material and winds. Since 2000, XMM-Newton and Chandra have provided new X-ray detections for more than 120 such objects, and well-defined samples of z > 4 AGNs now allow reliable basic X-ray population studies. I will point out key remaining areas of uncertainty, highlighting where further XMM-Newton and Chandra observations can advance understanding. I will then describe the X-SERVS project which aims to go ``beyond COSMOS'' via a 12 deg^2 survey of three prime sky regions: W-CDF-S, XMM-LSS, and ELAIS-S1. The X-SERVS survey will allow outstanding studies of the detected AGNs and groups/clusters by powerfully leveraging multiple intensive radio-to-UV surveys: ATLAS/HerMES/SERVS/VIDEO/DES/HSC/PS1MD/VOICE/CSI/PRIMUS. We aim to dramatically advance studies of SMBH growth across the full range of cosmic environments, links between SMBH accretion and star formation, exceptional AGNs at high redshifts, protoclusters, etc. The targeted X-SERVS fields will have extraordinary legacy value as MOONS massive spectroscopy fields, prime ALMA fields, and DES/LSST deep-drilling fields.

  4. Measures of large-scale structure in the CfA redshift survey slices

    NASA Technical Reports Server (NTRS)

    De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.

    1991-01-01

    Variations of the counts-in-cells with cell size are used here to define two statistical measures of large-scale clustering in three 6 deg slices of the CfA redshift survey. A percolation criterion is used to estimate the filling factor which measures the fraction of the total volume in the survey occupied by the large-scale structures. For the full 18 deg slice of the CfA redshift survey, f is about 0.25 + or - 0.05. After removing groups with more than five members from two of the slices, variations of the counts in occupied cells with cell size have a power-law behavior with a slope beta about 2.2 on scales from 1-10/h Mpc. Application of both this statistic and the percolation analysis to simulations suggests that a network of two-dimensional structures is a better description of the geometry of the clustering in the CfA slices than a network of one-dimensional structures. Counts-in-cells are also used to estimate at 0.3 galaxy h-squared/Mpc the average galaxy surface density in sheets like the Great Wall.

  5. A REDSHIFT SURVEY OF HERSCHEL FAR-INFRARED SELECTED STARBURSTS AND IMPLICATIONS FOR OBSCURED STAR FORMATION

    SciTech Connect

    Casey, C. M.; Budynkiewicz, J.; Berta, S.; Lutz, D.; Magnelli, B.; Bethermin, M.; Le Floc'h, E.; Magdis, G.; Burgarella, D.; Chapin, E.; Chapman, S. C.; Clements, D. L.; Conley, A.; Conselice, C. J.; Cooray, A.; Farrah, D.; Hatziminaoglou, E.; Ivison, R. J.; and others

    2012-12-20

    We present Keck spectroscopic observations and redshifts for a sample of 767 Herschel-SPIRE selected galaxies (HSGs) at 250, 350, and 500 {mu}m, taken with the Keck I Low Resolution Imaging Spectrometer and the Keck II DEep Imaging Multi-Object Spectrograph. The redshift distribution of these SPIRE sources from the Herschel Multitiered Extragalactic Survey peaks at z = 0.85, with 731 sources at z < 2 and a tail of sources out to z {approx} 5. We measure more significant disagreement between photometric and spectroscopic redshifts (({Delta}z/(1 + z{sub spec})) = 0.29) than is seen in non-infrared selected samples, likely due to enhanced star formation rates and dust obscuration in infrared-selected galaxies. The infrared data are used to directly measure integrated infrared luminosities and dust temperatures independent of radio or 24 {mu}m flux densities. By probing the dust spectral energy distribution (SED) at its peak, we estimate that the vast majority (72%-83%) of z < 2 Herschel-selected galaxies would drop out of traditional submillimeter surveys at 0.85-1 mm. We find that dust temperature traces infrared luminosity, due in part to the SPIRE wavelength selection biases, and partially from physical effects. As a result, we measure no significant trend in SPIRE color with redshift; if dust temperature were independent of luminosity or redshift, a trend in SPIRE color would be expected. Composite infrared SEDs are constructed as a function of infrared luminosity, showing the increase in dust temperature with luminosity, and subtle change in near-infrared and mid-infrared spectral properties. Moderate evolution in the far-infrared (FIR)/radio correlation is measured for this partially radio-selected sample, with q{sub IR}{proportional_to}(1 + z){sup -0.30{+-}0.02} at z < 2. We estimate the luminosity function and implied star formation rate density contribution of HSGs at z < 1.6 and find overall agreement with work based on 24 {mu}m extrapolations of the LIRG

  6. Constraining galaxy cluster temperatures and redshifts with eROSITA survey data

    NASA Astrophysics Data System (ADS)

    Borm, K.; Reiprich, T. H.; Mohammed, I.; Lovisari, L.

    2014-07-01

    Context. The nature of dark energy is imprinted in the large-scale structure of the Universe and thus in the mass and redshift distribution of galaxy clusters. The upcoming eROSITA instrument will exploit this method of probing dark energy by detecting ~100 000 clusters of galaxies in X-rays. Aims: For a precise cosmological analysis the various galaxy cluster properties need to be measured with high precision and accuracy. To predict these characteristics of eROSITA galaxy clusters and to optimise optical follow-up observations, we estimate the precision and the accuracy with which eROSITA will be able to determine galaxy cluster temperatures and redshifts from X-ray spectra. Additionally, we present the total number of clusters for which these two properties will be available from the eROSITA survey directly. Methods: We simulate the spectra of galaxy clusters for a variety of different cluster masses and redshifts while taking into account the X-ray background as well as the instrumental response. An emission model is then fit to these spectra to recover the cluster temperature and redshift. The number of clusters with precise properties is then based on the convolution of the above fit results with the galaxy cluster mass function and an assumed eROSITA selection function. Results: During its four years of all-sky surveys, eROSITA will determine cluster temperatures with relative uncertainties of ΔT/T ≲ 10% at the 68%-confidence level for clusters up to redshifts of z ~ 0.16 which corresponds to ~1670 new clusters with precise properties. Redshift information itself will become available with a precision of Δz/ (1 + z) ≲ 10% for clusters up to z ~ 0.45. Additionally, we estimate how the number of clusters with precise properties increases with a deepening of the exposure. For the above clusters, the fraction of catastrophic failures in the fit is below 20% and in most cases it is even much smaller. Furthermore, the biases in the best-fit temperatures as

  7. A deep redshift survey of field galaxies. Comments on the reality of the Butcher-Oemler effect

    NASA Technical Reports Server (NTRS)

    Koo, David C.; Kron, Richard G.

    1987-01-01

    A spectroscopic survey of over 400 field galaxies has been completed in three fields for which we have deep UBVI photographic photometry. The galaxies typically range from B=20 to 22 and possess redshifts z from 0.1 to 0.5 that are often quite spiky in distribution. Little, if any, luminosity evolution is observed up to redshifts z approx 0.5. By such redshifts, however, an unexpectedly large fraction of luminous galaxies has very blue intrinsic colors that suggest extensive star formation; in contrast, the reddest galaxies still have colors that match those of present-day ellipticals.

  8. Four Quasars above Redshift 6 Discovered by the Canada-France High-z Quasar Survey

    NASA Astrophysics Data System (ADS)

    Willott, Chris J.; Delorme, Philippe; Omont, Alain; Bergeron, Jacqueline; Delfosse, Xavier; Forveille, Thierry; Albert, Loic; Reylé, Céline; Hill, Gary J.; Gully-Santiago, Michael; Vinten, Phillip; Crampton, David; Hutchings, John B.; Schade, David; Simard, Luc; Sawicki, Marcin; Beelen, Alexandre; Cox, Pierre

    2007-12-01

    The Canada-France High-z Quasar Survey (CFHQS) is an optical survey designed to locate quasars during the epoch of reionization. In this paper we present the discovery of the first four CFHQS quasars at redshifts greater than 6, including the most distant known quasar, CFHQS J2329-0301 at z = 6.43. We describe the observational method used to identify the quasars and present optical, infrared, and millimeter photometry and optical and near-infrared spectroscopy. We investigate the dust properties of these quasars, finding an unusual dust extinction curve for one quasar and a high far-infrared luminosity due to dust emission for another. The mean millimeter continuum flux for CFHQS quasars is substantially lower than that for SDSS quasars at the same redshift, likely due to a correlation with quasar UV luminosity. For two quasars with sufficiently high signal-to-noise ratio optical spectra, we use the spectra to investigate the ionization state of hydrogen at z > 5. For CFHQS J1509-1749 at z = 6.12 we find significant evolution (beyond a simple extrapolation of lower redshift data) in the Gunn-Peterson optical depth at z > 5.4. The line of sight to this quasar has one of the highest known optical depths at z approx 5.8. An analysis of the sizes of the highly ionized near-zones in the spectra of two quasars at z = 6.12 and 6.43 suggest that the intergalactic medium surrounding these quasars was substantially ionized before these quasars turned on. Together, these observations point toward an extended reionization process, but we caution that cosmic variance is still a major limitation in z > 6 quasar observations.

  9. EARLY-TYPE GALAXIES IN THE PEARS SURVEY: PROBING THE STELLAR POPULATIONS AT MODERATE REDSHIFT

    SciTech Connect

    Ferreras, Ignacio; Pasquali, Anna; Malhotra, Sangeeta; Rhoads, James; Cohen, Seth; Windhorst, Rogier; Pirzkal, Nor; Grogin, Norman; Koekemoer, Anton M.; Panagia, Nino; Lisker, Thorsten; Daddi, Emanuele; Hathi, Nimish P.

    2009-11-20

    Using Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) slitless grism spectra from the PEARS program, we study the stellar populations of morphologically selected early-type galaxies in the GOODS North and South fields. The sample-extracted from a visual classification of the (v2.0) HST/ACS images and restricted to redshifts z > 0.4-comprises 228 galaxies (i {sub F775W} < 24 mag, AB) out to z approx< 1.3 over 320 arcmin{sup 2}, with a median redshift z {sub M} = 0.75. This work significantly increases our previous sample from the GRAPES survey in the HUDF (18 galaxies over approx11 arcmin{sup 2}). The grism data allow us to separate the sample into 'red' and 'blue' spectra, with the latter comprising 15% of the total. Three different grids of models parameterizing the star formation history are used to fit the low-resolution spectra. Over the redshift range of the sample-corresponding to a cosmic age between 5 and 10 Gyr-we find a strong correlation between stellar mass and average age, whereas the spread of ages (defined by the root mean square of the distribution) is roughly approx1 Gyr and independent of stellar mass. The best-fit parameters suggest that it is the formation epoch and not the formation timescale that best correlates with mass in early-type galaxies. This result-along with the recently observed lack of evolution of the number density of massive galaxies-motivates the need for a channel of (massive) galaxy formation bypassing any phase in the blue cloud, as suggested by the simulations of Dekel et al.

  10. The Team Keck Redshift Survey 2: MOSFIRE Spectroscopy of the GOODS-North Field

    NASA Astrophysics Data System (ADS)

    Wirth, Gregory D.; Trump, Jonathan R.; Barro, Guillermo; Guo, Yicheng; Koo, David C.; Liu, Fengshan; Kassis, Marc; Lyke, Jim; Rizzi, Luca; Campbell, Randy; Goodrich, Robert W.; Faber, S. M.

    2015-11-01

    We present the Team Keck Redshift Survey 2 (TKRS2), a near-infrared spectral observing program targeting selected galaxies within the CANDELS subsection of the GOODS-North Field. The TKRS2 program exploits the unique capabilities of the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE), which entered service on the Keck I telescope in 2012 and contributes substantially to the study of galaxy spectral features at redshifts inaccessible to optical spectrographs. The TKRS2 project targets 97 galaxies drawn from samples that include z ≈ 2 emission-line galaxies with features observable in the JHK bands as well as lower-redshift targets with features in the Y band. We present a detailed measurement of MOSFIRE’s sensitivity as a function of wavelength, including the effects of telluric features across the YJHK filters. The largest utility of our survey is in providing rest-frame-optical emission lines for z > 1 galaxies, and we demonstrate that the ratios of strong, optical emission lines of z ≈ 2 galaxies suggest the presence of either higher N/O abundances than are found in z ≈ 0 galaxies or low-metallicity gas ionized by an active galactic nucleus. We have released all TKRS2 data products into the public domain to allow researchers access to representative raw and reduced MOSFIRE spectra. Based in part on data obtained at the W. M. Keck Observatory, which operates as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The generous financial support of the W. M. Keck Foundation made the Observatory possible.

  11. The Brightest of Reionizing Galaxies Survey: A Protocluster Candidate at redshift z 8

    NASA Astrophysics Data System (ADS)

    Trenti, Michele; Collective, BoRG

    2012-01-01

    Theoretical and numerical modeling of dark-matter halo assembly predicts that the most luminous galaxies at high redshift are surrounded by overdensities of fainter companions. We test this prediction with HST observations acquired by our Brightest of Reionizing Galaxies (BoRG) survey, finding a correlation between counts of bright and faint candidate galaxies at z 8 which is significant at >99.8% confidence. Furthermore, the best z 8 bright candidate of the survey is associated to the most significant overdensity of faint galaxies (4 additional sources within a region of diameter 70arcsec, where only 0.2 where expected), indicating that we identified a candidate protocluster at confidence >99.99%. We modeled the overdensity by means of cosmological simulations and estimate that the principal dark matter halo has mass Mh (4-7)x1011Msun ( 5sigma density peak) and is surrounded by several Mh 1011Msun halos which could host the fainter dropouts. In this scenario, we predict that all halos will eventually merge into a Mh>2x1014Msun galaxy cluster by z=0. Follow-up observations with ground and space based telescopes are required to secure the z 8 nature of the overdensity, discover new members, and measure their precise redshift.

  12. THE CLUSTERING OF GALAXIES IN THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: LUMINOSITY AND COLOR DEPENDENCE AND REDSHIFT EVOLUTION

    SciTech Connect

    Guo Hong; Zehavi, Idit; Zheng Zheng; Weinberg, David H.; Berlind, Andreas A.; Blanton, Michael; Chen Yanmei; Eisenstein, Daniel J.; McBride, Cameron K.; Ho, Shirley; Ross, Nicholas P.; Kazin, Eyal; Manera, Marc; Maraston, Claudia; Percival, Will J.; Ross, Ashley J.; Samushia, Lado; Nuza, Sebastian E.; Padmanabhan, Nikhil; Parejko, John K.; and others

    2013-04-20

    We measure the luminosity and color dependence and the redshift evolution of galaxy clustering in the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey Ninth Data Release. We focus on the projected two-point correlation function (2PCF) of subsets of its CMASS sample, which includes about 260,000 galaxies over {approx}3300 deg{sup 2} in the redshift range 0.43 < z < 0.7. To minimize the selection effect on galaxy clustering, we construct well-defined luminosity and color subsamples by carefully accounting for the CMASS galaxy selection cuts. The 2PCF of the whole CMASS sample, if approximated by a power-law, has a correlation length of r{sub 0} = 7.93 {+-} 0.06 h {sup -1} Mpc and an index of {gamma} = 1.85 {+-} 0.01. Clear dependences on galaxy luminosity and color are found for the projected 2PCF in all redshift bins, with more luminous and redder galaxies generally exhibiting stronger clustering and steeper 2PCF. The color dependence is also clearly seen for galaxies within the red sequence, consistent with the behavior of SDSS-II main sample galaxies at lower redshifts. At a given luminosity (k + e corrected), no significant evolution of the projected 2PCFs with redshift is detected for red sequence galaxies. We also construct galaxy samples of fixed number density at different redshifts, using redshift-dependent magnitude thresholds. The clustering of these galaxies in the CMASS redshift range is found to be consistent with that predicted by passive evolution. Our measurements of the luminosity and color dependence and redshift evolution of galaxy clustering will allow for detailed modeling of the relation between galaxies and dark matter halos and new constraints on galaxy formation and evolution.

  13. An HST/COS Survey of the Low-redshift Intergalactic Medium. I. Survey, Methodology, and Overall Results

    NASA Astrophysics Data System (ADS)

    Danforth, Charles W.; Keeney, Brian A.; Tilton, Evan M.; Shull, J. Michael; Stocke, John T.; Stevans, Matthew; Pieri, Matthew M.; Savage, Blair D.; France, Kevin; Syphers, David; Smith, Britton D.; Green, James C.; Froning, Cynthia; Penton, Steven V.; Osterman, Steven N.

    2016-02-01

    We use high-quality, medium-resolution Hubble Space Telescope/Cosmic Origins Spectrograph (HST/COS) observations of 82 UV-bright active galactic nuclei (AGNs) at redshifts zAGN < 0.85 to construct the largest survey of the low-redshift intergalactic medium (IGM) to date: 5138 individual extragalactic absorption lines in H i and 25 different metal-ion species grouped into 2611 distinct redshift systems at zabs < 0.75 covering total redshift pathlengths ΔzH i = 21.7 and ΔzO vi = 14.5. Our semi-automated line-finding and measurement technique renders the catalog as objectively defined as possible. The cumulative column density distribution of H i systems can be parametrized d{ N }(\\gt N)/{dz} = {C}14{(N/{10}14{{cm}}-2)}-(β -1), with C14 = 25 ± 1 and β = 1.65 ± 0.02. This distribution is seen to evolve both in amplitude, {C}14\\propto {(1+z)}2.3+/- 0.1, and slope β(z) = 1.75-0.31 z for z ≤ 0.47. We observe metal lines in 418 systems, and find that the fraction of IGM absorbers detected in metals is strongly dependent on {N}{{H}{{I}}}. The distribution of O vi absorbers appears to evolve in the same sense as the Lyα forest. We calculate contributions to Ωb from different components of the low-z IGM and determine the Lyα decrement as a function of redshift. IGM absorbers are analyzed via a two-point correlation function in velocity space. We find substantial clustering of H i absorbers on scales of Δv = 50-300 km s-1 with no significant clustering at Δv ≳ 1000 km s-1. Splitting the sample into strong and weak absorbers, we see that most of the clustering occurs in strong, NH i ≳ 1013.5 cm-2, metal-bearing IGM systems. The full catalog of absorption lines and fully reduced spectra is available via the Mikulski Archive for Space Telescopes (MAST) as a high-level science product at http://archive.stsci.edu/prepds/igm/. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science

  14. Redshift-Distance Survey of Early-Type Galaxies. I. Sample Selection, Properties, and Completeness

    NASA Astrophysics Data System (ADS)

    da Costa, L. N.; Bernardi, M.; Alonso, M. V.; Wegner, G.; Willmer, C. N. A.; Pellegrini, P. S.; Rité, C.; Maia, M. A. G.

    2000-07-01

    This is the first in a series of papers describing the recently completed all-sky redshift-distance survey of Early-type NEARby galaxies (ENEAR) carried out for peculiar velocity analysis. The sample is divided into two parts and consists of 1607 elliptical and lenticular galaxies with cz<=7000 km s-1 and with blue magnitudes brighter than mB=14.5 (ENEARm) and of galaxies in clusters (ENEARc). Galaxy distances based on the Dn-σ and fundamental plane (FP) relations are now available for 1359 and 1107 ENEARm galaxies, respectively, with roughly 80% based on new data gathered by our group. The Dn-σ and FP template distance relations are derived by combining 569 and 431 galaxies in 28 clusters, respectively, of which about 60% are based on our new measurements. To date the ENEAR survey has accumulated 2200 R-band images yielding photometric parameters for 1398 galaxies and 2300 spectra yielding 1745 measurements of central velocity dispersions and spectral line indices for 1210 galaxies. In addition, there are some 1834 spectra of early-type galaxies available in the Southern Sky Redshift Survey (SSRS+SSRS2) database, out of which roughly 800 galaxies yield high-quality measurements of velocity dispersions and spectral line indices, bringing the total number of galaxies with available spectral information to about 2000. Combined with measurements publicly available, a catalog has been assembled comprising ~4500 measurements of central velocity dispersions for about 2800 galaxies, ~3700 measurements of photometric parameters for about 2000 galaxies, and distances for about 1900 galaxies. This extensive database provides information on galaxies with multiple observations from different telescope/instrument configurations and from different authors. These overlapping data are used to derive relations to transform all available measurements into a common system, thereby ensuring the homogeneity of the database. The ENEARm redshift-distance survey extends the earlier work

  15. New Approaches to Photometric Redshift Prediction Via Gaussian Process Regression in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Foster, L. V.; Gazis, P. R.; Srivastava, A. N.

    2009-11-01

    Expanding upon the work of Way & Srivastava we demonstrate how the use of training sets of comparable size continue to make Gaussian process regression (GPR) a competitive approach to that of neural networks and other least-squares fitting methods. This is possible via new large-size matrix inversion techniques developed for Gaussian processes (GPs) that do not require that the kernel matrix be sparse. This development, combined with a neural-network kernel function appears to give superior results for this problem. Our best-fit results for the Sloan Digital Sky Survey (SDSS) Main Galaxy Sample using u, g, r, i, z filters gives an rms error of 0.0201 while our results for the same filters in the luminous red galaxy sample yield 0.0220. We also demonstrate that there appears to be a minimum number of training-set galaxies needed to obtain the optimal fit when using our GPR rank-reduction methods. We find that morphological information included with many photometric surveys appears, for the most part, to make the photometric redshift evaluation slightly worse rather than better. This would indicate that most morphological information simply adds noise from the GP point of view in the data used herein. In addition, we show that cross-match catalog results involving combinations of the Two Micron All Sky Survey, SDSS, and Galaxy Evolution Explorer have to be evaluated in the context of the resulting cross-match magnitude and redshift distribution. Otherwise one may be misled into overly optimistic conclusions.

  16. Spectroscopic Determination of the Low Redshift Type Ia Supernova Rate from the Sloan Digital Sky Survey

    SciTech Connect

    Krughoff, K. S.; Connolly, Andrew J.; Frieman, Joshua; SubbaRao, Mark; Kilper, Gary; Schneider, Donald P.

    2011-04-10

    Supernova rates are directly coupled to high mass stellar birth and evolution. As such, they are one of the few direct measures of the history of cosmic stellar evolution. In this paper we describe an probabilistic technique for identifying supernovae within spectroscopic samples of galaxies. We present a study of 52 type Ia supernovae ranging in age from -14 days to +40 days extracted from a parent sample of \\simeq 50,000 spectra from the SDSS DR5. We find a Supernova Rate (SNR) of 0.472^{+0.048}_{-0.039}(Systematic)^{+0.081}_{-0.071}(Statistical)SNu at a redshift of = 0.1. This value is higher than other values at low redshift at the 1{\\sigma}, but is consistent at the 3{\\sigma} level. The 52 supernova candidates used in this study comprise the third largest sample of supernovae used in a type Ia rate determination to date. In this paper we demonstrate the potential for the described approach for detecting supernovae in future spectroscopic surveys.

  17. Mapping the Galaxy Color-Redshift Relation: Optimal Photo-z Calibration Strategies for Cosmology Surveys

    NASA Astrophysics Data System (ADS)

    Masters, Daniel C.; Capak, Peter L.; Stern, Daniel; Rhodes, Jason; Mobasher, Bahram; Schmidt, Samuel; Steinhardt, Charles L.; Faisst, Andreas; Speagle, Josh S.

    2016-01-01

    A primary objective of the upcoming dark energy surveys LSST, Euclid, and WFIRST is to map the 3D distribution of matter over a significant fraction of the universe via the weak lensing cosmic shear field. Doing so will require accurate distance estimates to billions of faint galaxies, meaning that photo-z's will be essential for the ultimate scientific success of these missions. Because galaxy colors drive photo-z estimates, spectroscopic calibration samples must at least be representative in color. Here we present a technique, based on the self-organizing map (Kohonen 1990), to map the empirical distribution of galaxies in the high-dimensional color space of a given survey. We apply the technique to Euclid-like data for ~131k galaxies from the COSMOS survey, allowing us to determine where - in galaxy color space - spectroscopic coverage exists and where it is systematically missing. We show that the mapping technique lets us develop efficient spectroscopic sampling strategies to measure the color-redshift relation by focusing effort on poorly constrained regions of multicolor space. We discuss the nature of the galaxies in un-sampled regions of galaxy color space, and show that a fiducial survey with Keck (making use of LRIS, DEIMOS, and MOSFIRE) could meet the Euclid calibration requirements in ~40 nights of observing.

  18. Superclusters of galaxies from the 2dF redshift survey. 2. Comparison with simulations

    SciTech Connect

    Einasto, Jaan; Einasto, M.; Saar, E.; Tago, E.; Liivamagi, L.J.; Joeveer, M.J; Suhhonenko, I.; Hutsi, G.; Jaaniste, J.; Heinamaki, P.; Muller, V.; Knebe, A.; Tucker, D.; /Fermilab

    2006-04-01

    We investigate properties of superclusters of galaxies found on the basis of the 2dF Galaxy Redshift Survey, and compare them with properties of superclusters from the Millennium Simulation.We study the dependence of various characteristics of superclusters on their distance from the observer, on their total luminosity, and on their multiplicity. The multiplicity is defined by the number of Density Field (DF) clusters in superclusters. Using the multiplicity we divide superclusters into four richness classes: poor, medium, rich and extremely rich.We show that superclusters are asymmetrical and have multi-branching filamentary structure, with the degree of asymmetry and filamentarity being higher for the more luminous and richer superclusters. The comparison of real superclusters with Millennium superclusters shows that most properties of simulated superclusters agree very well with real data, the main differences being in the luminosity and multiplicity distributions.

  19. VizieR Online Data Catalog: KMOS AGN Survey at High redshift (KASHz) (Harrison+, 2016)

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Stott, J. P.; Swinbank, A. M.; Arumugam, V.; Bauer, F. E.; Bower, R. G.; Bunker, A. J.; Sharples, R. M.

    2016-08-01

    KASHz is designed to ultimately obtain spatially resolved emission-line kinematics of ~(100-200) high-redshift (z~0.6-3.6) AGN. For our target selection we make use of deep X-ray surveys performed in extragalactic fields (COSMOS, see Scoville et al., 2007, Cat. J/ApJS/171/1; CDF-S, see Giacconi et al. 2001ApJ...551..624G and Xue et al., 2011, Cat. J/ApJS/195/10 (CDFS); UDS, SXDS: see Furusawa et al. 2008, Cat. J/ApJS/176/1 (UDS) and SSA22, see Steidel et al. 1998ApJ...492..428S). (1 data file).

  20. New upper limit on the total neutrino mass from the 2 degree field galaxy redshift survey.

    PubMed

    Elgarøy, Ø; Lahav, O; Percival, W J; Peacock, J A; Madgwick, D S; Bridle, S L; Baugh, C M; Baldry, I K; Bland-Hawthorn, J; Bridges, T; Cannon, R; Cole, S; Colless, M; Collins, C; Couch, W; Dalton, G; De Propris, R; Driver, S P; Efstathiou, G P; Ellis, R S; Frenk, C S; Glazebrook, K; Jackson, C; Lewis, I; Lumsden, S; Maddox, S; Norberg, P; Peterson, B A; Sutherland, W; Taylor, K

    2002-08-01

    We constrain f(nu) identical with Omega(nu)/Omega(m), the fractional contribution of neutrinos to the total mass density in the Universe, by comparing the power spectrum of fluctuations derived from the 2 Degree Field Galaxy Redshift Survey with power spectra for models with four components: baryons, cold dark matter, massive neutrinos, and a cosmological constant. Adding constraints from independent cosmological probes we find f(nu)<0.13 (at 95% confidence) for a prior of 0.1

  1. BULK FLOWS FROM GALAXY LUMINOSITIES: APPLICATION TO 2MASS REDSHIFT SURVEY AND FORECAST FOR NEXT-GENERATION DATA SETS

    SciTech Connect

    Nusser, Adi; Branchini, Enzo; Davis, Marc E-mail: branchin@fis.uniroma3.it

    2011-07-10

    We present a simple method for measuring cosmological bulk flows from large redshift surveys, based on the apparent dimming or brightening of galaxies due to their peculiar motion. It is aimed at estimating bulk flows of cosmological volumes containing large numbers of galaxies. Constraints on the bulk flow are obtained by minimizing systematic variations in galaxy luminosities with respect to a reference luminosity function measured from the whole survey. This method offers two advantages over more popular bulk flow estimators: it is independent of error-prone distance indicators and of the poorly known galaxy bias. We apply the method to the Two Micron All Sky Survey redshift survey to measure the local bulk flows of spherical shells centered on the Milky Way (MW). The result is consistent with that obtained by Nusser and Davis using the SFI++ catalogue of Tully-Fisher distance indicators. We also make an assessment of the ability of the method to constrain bulk flows at larger redshifts (z = 0.1-0.5) from next-generation data sets. As a case study we consider the planned EUCLID survey. Using this method we will be able to measure a bulk motion of {approx}200 km s{sup -1} of 10{sup 6} galaxies with photometric redshifts, at the 3{sigma} level for both z {approx} 0.15 and z {approx} 0.5. Thus, the method will allow us to put strong constraints on dark energy models as well as alternative theories for structure formation.

  2. Percolation galaxy groups and clusters in the sdss redshift survey: identification, catalogs, and the multiplicity function

    SciTech Connect

    Berlind, Andreas A.; Frieman, Joshua A.; Weinberg, David H.; Blanton, Michael R.; Warren, Michael S.; Abazajian, Kevork; Scranton, Ryan; Hogg, David W.; Scoccimarro, Roman; Bahcall, Neta A.; Brinkmann, J.; Gott, J.Richard, III; Kleinman, S.J.; Krzesinski, J.; Lee, Brian C.; Miller, Christopher J.; Nitta, Atsuko; Schneider, Donald P.; Tucker, Douglas L.; Zehavi, Idit; /CCPP, New York /Chicago U., Astron. Astrophys. Ctr. /Ohio State U., Dept. Astron. /Los Alamos /Pittsburgh U. /Princeton U. /Subaru Telescope /Apache Point Observ. /Mt. Suhora Observ., Cracow /LBL, Berkeley /Cerro-Tololo InterAmerican Obs. /Penn State U., Astron. Astrophys. /Fermilab /Arizona U., Astron. Dept. - Steward Observ. /Case Western Reserve U.

    2006-01-01

    We identify galaxy groups and clusters in volume-limited samples of the SDSS redshift survey, using a redshift-space friends-of-friends algorithm. We optimize the friends-of-friends linking lengths to recover galaxy systems that occupy the same dark matter halos, using a set of mock catalogs created by populating halos of N-body simulations with galaxies. Extensive tests with these mock catalogs show that no combination of perpendicular and line-of-sight linking lengths is able to yield groups and clusters that simultaneously recover the true halo multiplicity function, projected size distribution, and velocity dispersion. We adopt a linking length combination that yields, for galaxy groups with ten or more members: a group multiplicity function that is unbiased with respect to the true halo multiplicity function; an unbiased median relation between the multiplicities of groups and their associated halos; a spurious group fraction of less than {approx}1%; a halo completeness of more than {approx}97%; the correct projected size distribution as a function of multiplicity; and a velocity dispersion distribution that is {approx}20% too low at all multiplicities. These results hold over a range of mock catalogs that use different input recipes of populating halos with galaxies. We apply our group-finding algorithm to the SDSS data and obtain three group and cluster catalogs for three volume-limited samples that cover 3495.1 square degrees on the sky. We correct for incompleteness caused by fiber collisions and survey edges, and obtain measurements of the group multiplicity function, with errors calculated from realistic mock catalogs. These multiplicity function measurements provide a key constraint on the relation between galaxy populations and dark matter halos.

  3. VizieR Online Data Catalog: Team Keck Redshift Survey 2 (TKRS2) (Wirth+, 2015)

    NASA Astrophysics Data System (ADS)

    Wirth, G. D.; Trump, J. R.; Barro, G.; Guo, Y.; Koo, D. C.; Liu, F.; Kassis, M.; Lyke, J.; Rizzi, L.; Campbell, R.; Goodrich, R. W.; Faber, S. M.

    2016-04-01

    We present the Team Keck Redshift Survey 2 (TKRS2), a spectroscopic survey of 97 distant galaxies exploiting the capabilities of the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE) on the Keck I telescope at the W. M. Keck Observatory. MOSFIRE features a 2048*2048 pixel HAWAII-2RG HgCdTe detector array from Teledyne Imaging Sensors that couples high quantum efficiency with low noise and low dark current. The operating range of 0.97-2.41μm covers the YJHK infrared passbands, with wavelength coverage of 0.97-1.12μm in Y, 1.15-1.35μm in J, 1.47-1.80μm in H, and 1.95-2.40μm in K. The resolving power for the default slit width of 0.7" is R=3380 in Y, 3310 in J, 3660 in H, and 3620 in K, corresponding to full-width-half-maximum (FWHM) spectral resolutions of 3.1Å in Y, 3.7Å in J, 4.4Å in H, and 6.0Å in K. Our survey targets the south-central region of the GOODS-North survey field (Giavalisco et al. 2004, cat. II/261). We employed MOSFIRE to acquire spectra in the GOODS-North field over a series of partial nights spanning the period from 2012 November to 2013 May. We present the results of our survey in Table3 and on the website (http://arcoiris.ucsc.edu/TKRS2/) devoted to the survey. (1 data file).

  4. The bispectrum of galaxies from high-redshift galaxy surveys: Primordial non-Gaussianity and non-linear galaxy bias

    SciTech Connect

    Sefusatti, Emiliano; Komatsu, Eiichiro; /Texas U., Astron. Dept.

    2007-05-01

    The greatest challenge in the interpretation of galaxy clustering data from any surveys is galaxy bias. Using a simple Fisher matrix analysis, we show that the bispectrum provides an excellent determination of linear and non-linear bias parameters of intermediate and high-z galaxies, when all measurable triangle configurations down to mildly non-linear scales, where perturbation theory is still valid, are included. The bispectrum is also a powerful probe of primordial non-Gaussianity. The planned galaxy surveys at z {approx}> 2 should yield constraints on non-Gaussian parameters, f{sub NL}{sup loc.} and f{sub NL}{sup eq.}, that are comparable to, or even better than, those from CMB experiments. We study how these constraints improve with volume, redshift range, as well as the number density of galaxies. Finally we show that a halo occupation distribution may be used to improve these constraints further by lifting degeneracies between gravity, bias, and primordial non-Gaussianity.

  5. The Radio luminosity Function of Radio-Loud Quasars from the 7C Redshift Survey

    NASA Technical Reports Server (NTRS)

    Willott, Chris J.; Rawlings, Steve; Blundell, Katherine M.; Lacy, Mark

    1998-01-01

    We present a complete sample of 24 radio-loud quasars (RLQs) from the new 7C Redshift Survey. Every quasar with a low-frequency (151 MHz) radio flux-density S(sub 151) > 0.5 Jy in two regions of the sky covering 0.013 sr is included; 23 of these have sufficient extended flux to meet the selection criteria, 18 of these have steep radio spectra (hereafter denoted as SSQs). The key advantage of this sample over most samples of RLQs is the lack of an optical magnitude limit. By combining the 7C and 3CRR samples, we have investigated the properties of RLQs as a function of redshift z and radio luminosity L(sub 151). We derive the radio luminosity function (RLF) of RLQs and find that the data are well fitted by a single power-law with slope alpha(sub 1) = 1.9 +/- 0.1 (for H(sub 0) = 50 km/s.Mpc, OMEGA(sub M) = 1, OMEGA(sub DELTA) = 0). We find that there must be a break in the RLQ RLF at log(sub 10)(L(sub 151)/W Hz.sr) approximately < or = 27, in order for the models to be consistent with the 7C and 6C source counts. The z-dependence of the RLF follows a one-tailed gaussian which peaks at z = 1.7 +/- 0.2. We find no evidence for a decline in the co-moving space density of RLQs at higher redshifts. A positive correlation between the radio and optical luminosities of SSQs is observed, confirming a result of Serjeant. We are able to rule out this correlation being due to selection effects or biases in our combined sample. The radio-optical correlation and best-fit model RLF enable us to estimate the distribution of optical magnitudes of quasars in samples selected at low radio frequencies, We con- clude that for samples with S(sub 151) approximately < or = 1 Jy one must use optical data significantly deeper than the POSS-I limit (R approximately equal 20), in order to avoid severe incompleteness.

  6. High-Redshift QSOs in the SWIRE Survey and the z~3 QSO Luminosity Function

    NASA Astrophysics Data System (ADS)

    Siana, Brian; Polletta, Maria del Carmen; Smith, Harding E.; Lonsdale, Carol J.; Gonzalez-Solares, Eduardo; Farrah, Duncan; Babbedge, Tom S. R.; Rowan-Robinson, Michael; Surace, Jason; Shupe, David; Fang, Fan; Franceschini, Alberto; Oliver, Seb

    2008-03-01

    We use a simple optical/infrared (IR) photometric selection of high-redshift QSOs that identifies a Lyman break in the optical photometry and requires a red IR color to distinguish QSOs from common interlopers. The search yields 100 z ~ 3 (U-dropout) QSO candidates with 19 < r' < 22 over 11.7 deg2 in the ELAIS-N1 (EN1) and ELAIS-N2 (EN2) fields of the Spitzer Wide-area Infrared Extragalactic (SWIRE) Legacy Survey. The z ~ 3 selection is reliable, with spectroscopic follow-up of 10 candidates confirming that they are all QSOs at 2.83 < z < 3.44. We find that our z ~ 4 (g'-dropout) sample suffers from both unreliability and incompleteness but present seven previously unidentified QSOs at 3.50 < z < 3.89. Detailed simulations show our z ~ 3 completeness to be ~80%-90% from 3.0 < z < 3.5, significantly better than the ~30%-80% completeness of the SDSS at these redshifts. The resulting luminosity function extends 2 mag fainter than SDSS and has a faint-end slope of β = - 1.42 +/- 0.15, consistent with values measured at lower redshift. Therefore, we see no evidence for evolution of the faint-end slope of the QSO luminosity function. Including the SDSS QSO sample, we have now directly measured the space density of QSOs responsible for ~70% of the QSO UV luminosity density at z ~ 3. We derive a maximum rate of H I photoionization from QSOs at z ~ 3.2, Γ = 4.8 × 10-13 s-1, about half of the total rate inferred through studies of the Lyα forest. Therefore, star-forming galaxies and QSOs must contribute comparably to the photoionization of H I in the intergalactic medium at z ~ 3. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  7. ESTIMATING PHOTOMETRIC REDSHIFTS OF QUASARS VIA THE k-NEAREST NEIGHBOR APPROACH BASED ON LARGE SURVEY DATABASES

    SciTech Connect

    Zhang Yanxia; Ma He; Peng Nanbo; Zhao Yongheng; Wu Xuebing

    2013-08-01

    We apply one of the lazy learning methods, the k-nearest neighbor (kNN) algorithm, to estimate the photometric redshifts of quasars based on various data sets from the Sloan Digital Sky Survey (SDSS), the UKIRT Infrared Deep Sky Survey (UKIDSS), and the Wide-field Infrared Survey Explorer (WISE; the SDSS sample, the SDSS-UKIDSS sample, the SDSS-WISE sample, and the SDSS-UKIDSS-WISE sample). The influence of the k value and different input patterns on the performance of kNN is discussed. kNN performs best when k is different with a special input pattern for a special data set. The best result belongs to the SDSS-UKIDSS-WISE sample. The experimental results generally show that the more information from more bands, the better performance of photometric redshift estimation with kNN. The results also demonstrate that kNN using multiband data can effectively solve the catastrophic failure of photometric redshift estimation, which is met by many machine learning methods. Compared with the performance of various other methods of estimating the photometric redshifts of quasars, kNN based on KD-Tree shows superiority, exhibiting the best accuracy.

  8. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Never mind the gaps: comparing techniques to restore homogeneous sky coverage

    NASA Astrophysics Data System (ADS)

    Cucciati, O.; Granett, B. R.; Branchini, E.; Marulli, F.; Iovino, A.; Moscardini, L.; Bel, J.; Cappi, A.; Peacock, J. A.; de la Torre, S.; Bolzonella, M.; Guzzo, L.; Polletta, M.; Fritz, A.; Adami, C.; Bottini, D.; Coupon, J.; Davidzon, I.; Franzetti, P.; Fumana, M.; Garilli, B.; Krywult, J.; Małek, K.; Paioro, L.; Pollo, A.; Scodeggio, M.; Tasca, L. A. M.; Vergani, D.; Zanichelli, A.; Di Porto, C.; Zamorani, G.

    2014-05-01

    Aims: Non-uniform sampling and gaps in sky coverage are common in galaxy redshift surveys, but these effects can degrade galaxy counts-in-cells measurements and density estimates. We carry out a comparative study of methods that aim to fill the gaps to correct for the systematic effects. Our study is motivated by the analysis of the VIMOS Public Extragalactic Redshift Survey (VIPERS), a flux-limited survey at iAB < 22.5 consisting of single-pass observations with the VLT Visible Multi-Object Spectrograph (VIMOS) with gaps representing 25% of the surveyed area and an averagesampling rate of 35%. However, our findings are generally applicable to other redshift surveys with similar observing strategies. Methods: We applied two algorithms that use photometric redshift information and assign redshifts to galaxies based upon the spectroscopic redshifts of the nearest neighbours. We compared these methods with two Bayesian methods, the Wiener filter and the Poisson-Lognormal filter. Using galaxy mock catalogues we quantified the accuracy and precision of the counts-in-cells measurements on scales of R = 5 h-1 Mpc and 8 h-1 Mpc after applying each of these methods. We further investigated how these methods perform to account for other sources of uncertainty typical of spectroscopic surveys, such as the spectroscopic redshift error and the sparse, inhomogeneous sampling rate. We analysed each of these sources separately, then all together in a mock catalogue that mimicks the full observational strategy of a VIPERS-like survey. Results: In a survey such as VIPERS, the errors in counts-in-cells measurements on R < 10 h-1 Mpc scales are dominated by the sparseness of the sample due to the single-pass observing strategy. All methods under-predict the counts in high-density regions by 20-35%, depending on the cell size, method, and underlying overdensity. This systematic bias is similar to random errors. No method outperforms the others: differences are not large, and methods

  9. Self-calibration of photometric redshift scatter in weak-lensing surveys

    SciTech Connect

    Zhang, Pengjie; Pen, Ue -Li; Bernstein, Gary

    2010-06-11

    Photo-z errors, especially catastrophic errors, are a major uncertainty for precision weak lensing cosmology. We find that the shear-(galaxy number) density and density-density cross correlation measurements between photo-z bins, available from the same lensing surveys, contain valuable information for self-calibration of the scattering probabilities between the true-z and photo-z bins. The self-calibration technique we propose does not rely on cosmological priors nor parameterization of the photo-z probability distribution function, and preserves all of the cosmological information available from shear-shear measurement. We estimate the calibration accuracy through the Fisher matrix formalism. We find that, for advanced lensing surveys such as the planned stage IV surveys, the rate of photo-z outliers can be determined with statistical uncertainties of 0.01-1% for z < 2 galaxies. Among the several sources of calibration error that we identify and investigate, the galaxy distribution bias is likely the most dominant systematic error, whereby photo-z outliers have different redshift distributions and/or bias than non-outliers from the same bin. This bias affects all photo-z calibration techniques based on correlation measurements. As a result, galaxy bias variations of O(0.1) produce biases in photo-z outlier rates similar to the statistical errors of our method, so this galaxy distribution bias may bias the reconstructed scatters at several-σ level, but is unlikely to completely invalidate the self-calibration technique.

  10. Self-calibration of photometric redshift scatter in weak-lensing surveys

    DOE PAGESBeta

    Zhang, Pengjie; Pen, Ue -Li; Bernstein, Gary

    2010-06-11

    Photo-z errors, especially catastrophic errors, are a major uncertainty for precision weak lensing cosmology. We find that the shear-(galaxy number) density and density-density cross correlation measurements between photo-z bins, available from the same lensing surveys, contain valuable information for self-calibration of the scattering probabilities between the true-z and photo-z bins. The self-calibration technique we propose does not rely on cosmological priors nor parameterization of the photo-z probability distribution function, and preserves all of the cosmological information available from shear-shear measurement. We estimate the calibration accuracy through the Fisher matrix formalism. We find that, for advanced lensing surveys such as themore » planned stage IV surveys, the rate of photo-z outliers can be determined with statistical uncertainties of 0.01-1% for z < 2 galaxies. Among the several sources of calibration error that we identify and investigate, the galaxy distribution bias is likely the most dominant systematic error, whereby photo-z outliers have different redshift distributions and/or bias than non-outliers from the same bin. This bias affects all photo-z calibration techniques based on correlation measurements. As a result, galaxy bias variations of O(0.1) produce biases in photo-z outlier rates similar to the statistical errors of our method, so this galaxy distribution bias may bias the reconstructed scatters at several-σ level, but is unlikely to completely invalidate the self-calibration technique.« less

  11. High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. II. The Spring Equatorial Stripe

    SciTech Connect

    Fan, Xiaohui; Strauss, Michael A.; Schneider, Donald P.; Gunn, James E.; Lupton, Robert H.; Anderson, Scott F.; Voges, Wolfgang; Margon, Bruce; Annis, James; Bahcall, Neta A.

    2000-01-01

    This is the second paper in a series aimed at finding high-redshift quasars from five-color (u{sup '} g{sup '} r{sup '} i{sup '} z{sup '}) imaging data taken along the Celestial Equator by the Sloan Digital Sky Survey (SDSS) during its commissioning phase. In this paper, we present 22 high-redshift quasars (z>3.6) discovered from {approx}250 deg2 of data in the spring Equatorial Stripe, plus photometry for two previously known high-redshift quasars in the same region of the sky. Our success rate in identifying high-redshift quasars is 68%. Five of the newly discovered quasars have redshifts higher than 4.6 (z=4.62, 4.69, 4.70, 4.92, and 5.03). All the quasars have i{sup *} <20.2 with absolute magnitude - 28.8

  12. SIX MORE QUASARS AT REDSHIFT 6 DISCOVERED BY THE CANADA-FRANCE HIGH-z QUASAR SURVEY

    SciTech Connect

    Willott, Chris J.; Crampton, David; Hutchings, John B.; Schade, David; Delorme, Philippe; Delfosse, Xavier; Forveille, Thierry; Reyle, Celine; Albert, Loic; Bergeron, Jacqueline; Omont, Alain; McLure, Ross J.

    2009-03-15

    We present imaging and spectroscopic observations for six quasars at z {>=} 5.9 discovered by the Canada-France High-z Quasar Survey (CFHQS). The CFHQS contains subsurveys with a range of flux and area combinations to sample a wide range of quasar luminosities at z {approx} 6. The new quasars have luminosities 10-75 times lower than the most luminous Sloan Digital Sky Survey quasars at this redshift. The least luminous quasar, CFHQS J0216-0455 at z = 6.01, has absolute magnitude M {sub 1450} = -22.21, well below the likely break in the luminosity function. This quasar is not detected in a deep XMM-Newton survey showing that optical selection is still a very efficient tool for finding high-redshift quasars.

  13. GALAXY CLUSTERING IN THE COMPLETED SDSS REDSHIFT SURVEY: THE DEPENDENCE ON COLOR AND LUMINOSITY

    SciTech Connect

    Zehavi, Idit; Zheng Zheng; Weinberg, David H.; Blanton, Michael R.; Bahcall, Neta A.; Gunn, James E.; Lupton, Robert H.; Strauss, Michael A.; Berlind, Andreas A.; Brinkmann, Jon; Frieman, Joshua A.; Nichol, Robert C.; Percival, Will J.; Schneider, Donald P.; Skibba, Ramin A.; Tegmark, Max; York, Donald G.

    2011-07-20

    We measure the luminosity and color dependence of galaxy clustering in the largest-ever galaxy redshift survey, the main galaxy sample of the Sloan Digital Sky Survey Seventh Data Release. We focus on the projected correlation function w{sub p} (r{sub p}) of volume-limited samples, extracted from the parent sample of {approx}700,000 galaxies over 8000 deg{sup 2}, extending up to redshift of 0.25. We interpret our measurements using halo occupation distribution (HOD) modeling assuming a {Lambda}CDM cosmology (inflationary cold dark matter with a cosmological constant). The amplitude of w{sub p} (r{sub p}) grows slowly with luminosity for L < L{sub *} and increases sharply at higher luminosities, with a large-scale bias factor b(> L) x ({sigma}{sub 8}/0.8) = 1.06 + 0.21(L/L{sub *}){sup 1.12}, where L is the sample luminosity threshold. At fixed luminosity, redder galaxies exhibit a higher amplitude and steeper correlation function, a steady trend that runs through the 'blue cloud' and 'green valley' and continues across the 'red sequence'. The cross-correlation of red and blue galaxies is close to the geometric mean of their autocorrelations, dropping slightly below at r{sub p} < 1 h{sup -1} Mpc. The luminosity trends for the red and blue galaxy populations separately are strikingly different. Blue galaxies show a slow but steady increase of clustering strength with luminosity, with nearly constant shape of w{sub p} (r{sub p}). The large-scale clustering of red galaxies shows little luminosity dependence until a sharp increase at L > 4 L{sub *}, but the lowest luminosity red galaxies (0.04-0.25 L{sub *}) show very strong clustering on small scales (r{sub p} < 2 h{sup -1} Mpc). Most of the observed trends can be naturally understood within the {Lambda}CDM+HOD framework. The growth of w{sub p} (r{sub p}) for higher luminosity galaxies reflects an overall shift in the mass scale of their host dark matter halos, in particular an increase in the minimum host halo mass M

  14. The Carnegie-Spitzer-IMACS Redshift Survey of Galaxy Evolution since z = 1.5. I. Description and Methodology

    NASA Astrophysics Data System (ADS)

    Kelson, Daniel D.; Williams, Rik J.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.; Mulchaey, John S.; Villanueva, Edward V.; Crane, Jeffrey D.; Quadri, Ryan F.

    2014-03-01

    We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer Infrared Array Camera 3.6 μm imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z ~ 1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded high-quality redshifts for 43,347 galaxies in our first 5.3 deg2 of the SWIRE XMM-LSS field. We use three different approaches to estimate our redshift errors and find robust agreement. Over the full range of 3.6 μm fluxes of our selection, we find typical redshift uncertainties of σ z /(1 + z) <~ 0.015. In comparisons with previously published spectroscopic redshifts we find scatters of σ z /(1 + z) = 0.011 for galaxies at 0.7 <= z <= 0.9, and σ z /(1 + z) = 0.014 for galaxies at 0.9 <= z <= 1.2. For galaxies brighter and fainter than i = 23 mag, we find σ z /(1 + z) = 0.008 and σ z /(1 + z) = 0.022, respectively. Notably, our low-dispersion spectroscopy and analysis yields comparable redshift uncertainties and success rates for both red and blue galaxies, largely eliminating color-based systematics that can seriously bias observed dependencies of galaxy evolution on environment. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  15. The Carnegie-Spitzer-IMACS redshift survey of galaxy evolution since z = 1.5. I. Description and methodology

    SciTech Connect

    Kelson, Daniel D.; Williams, Rik J.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.; Mulchaey, John S.; Villanueva, Edward V.; Crane, Jeffrey D.; Quadri, Ryan F.

    2014-03-10

    We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer Infrared Array Camera 3.6 μm imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z ∼ 1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded high-quality redshifts for 43,347 galaxies in our first 5.3 deg{sup 2} of the SWIRE XMM-LSS field. We use three different approaches to estimate our redshift errors and find robust agreement. Over the full range of 3.6 μm fluxes of our selection, we find typical redshift uncertainties of σ {sub z}/(1 + z) ≲ 0.015. In comparisons with previously published spectroscopic redshifts we find scatters of σ {sub z}/(1 + z) = 0.011 for galaxies at 0.7 ≤ z ≤ 0.9, and σ {sub z}/(1 + z) = 0.014 for galaxies at 0.9 ≤ z ≤ 1.2. For galaxies brighter and fainter than i = 23 mag, we find σ {sub z}/(1 + z) = 0.008 and σ {sub z}/(1 + z) = 0.022, respectively. Notably, our low-dispersion spectroscopy and analysis yields comparable redshift uncertainties and success rates for both red and blue galaxies, largely eliminating color-based systematics that can seriously bias observed dependencies of galaxy evolution on environment.

  16. SIS Mixer Design for a Broadband Millimeter Spectrometer Suitable for Rapid Line Surveys and Redshift Determinations

    NASA Technical Reports Server (NTRS)

    Rice, F.; Sumner, M.; Zmuidzinas, J.; Hu, R.; LeDuc, H.; Harris, A.; Miller, D.

    2004-01-01

    We present some detail of the waveguide probe and SIS mixer chip designs for a low-noise 180-300 GHz double- sideband receiver with an instantaneous RF bandwidth of 24 GHz. The receiver's single SIS junction is excited by a broadband, fixed-tuned waveguide probe on a silicon substrate. The IF output is coupled to a 6-18 GHz MMIC low- noise preamplifier. Following further amplification, the output is processed by an array of 4 GHz, 128-channel analog autocorrelation spectrometers (WASP 11). The single-sideband receiver noise temperature goal of 70 Kelvin will provide a prototype instrument capable of rapid line surveys and of relatively efficient carbon monoxide (CO) emission line searches of distant, dusty galaxies. The latter application's goal is to determine redshifts by measuring the frequencies of CO line emissions from the star-forming regions dominating the submillimeter brightness of these galaxies. Construction of the receiver has begun; lab testing should begin in the fall. Demonstration of the receiver on the Caltech Submillimeter Observatory (CSO) telescope should begin in spring 2003.

  17. Bright Galaxies at Hubble’s Redshift Detection Frontier: Preliminary Results and Design from the Redshift z ~ 9-10 BoRG Pure-Parallel HST Survey

    NASA Astrophysics Data System (ADS)

    Calvi, V.; Trenti, M.; Stiavelli, M.; Oesch, P.; Bradley, L. D.; Schmidt, K. B.; Coe, D.; Brammer, G.; Bernard, S.; Bouwens, R. J.; Carrasco, D.; Carollo, C. M.; Holwerda, B. W.; MacKenty, J. W.; Mason, C. A.; Shull, J. M.; Treu, T.

    2016-02-01

    We present the first results and design from the redshift z ˜ 9-10 Brightest of the Reionizing Galaxies Hubble Space Telescope survey BoRG[z9-10], aimed at searching for intrinsically luminous unlensed galaxies during the first 700 Myr after the Big Bang. BoRG[z9-10] is the continuation of a multi-year pure-parallel near-IR and optical imaging campaign with the Wide Field Camera 3. The ongoing survey uses five filters, optimized for detecting the most distant objects and offering continuous wavelength coverage from λ = 0.35 μm to λ = 1.7 μm. We analyze the initial ˜130 arcmin2 of area over 28 independent lines of sight (˜25% of the total planned) to search for z\\gt 7 galaxies using a combination of Lyman-break and photometric redshift selections. From an effective comoving volume of (5-25) × 105 Mpc3 for magnitudes brighter than {m}{AB}=26.5{{{--}}}24.0 in the {H}{{160}}-band respectively, we find five galaxy candidates at z\\quad ˜ 8.3-10 detected at high confidence ({{S}}/{{N}}\\gt 8), including a source at z\\quad ˜ 8.4 with {m}{AB}=24.5 ({{S}}/{{N}} ˜ 22), which, if confirmed, would be the brightest galaxy identified at such early times (z\\gt 8). In addition, BoRG[z9-10] data yield four galaxies with 7.3≲ z≲ 8. These new Lyman-break galaxies with m≲ 26.5 are ideal targets for follow-up observations from ground and space-based observatories to help investigate the complex interplay between dark matter growth, galaxy assembly, and reionization.

  18. A PUBLIC VOID CATALOG FROM THE SDSS DR7 GALAXY REDSHIFT SURVEYS BASED ON THE WATERSHED TRANSFORM

    SciTech Connect

    Sutter, P. M.; Wandelt, Benjamin D.; Lavaux, Guilhem; Weinberg, David H.

    2012-12-10

    We produce the most comprehensive public void catalog to date using the Sloan Digital Sky Survey Data Release 7 main sample out to redshift z = 0.2 and the luminous red galaxy sample out to z = 0.44. Using a modified version of the parameter-free void finder ZOBOV, we fully take into account the presence of the survey boundary and masks. Our strategy for finding voids is thus appropriate for any survey configuration. We produce two distinct catalogs: a complete catalog including voids near any masks, which would be appropriate for void galaxy surveys, and a bias-free catalog of voids away from any masks, which is necessary for analyses that require a fair sampling of void shapes and alignments. Our discovered voids have effective radii from 5 to 135 h {sup -1} Mpc. We discuss basic catalog statistics such as number counts and redshift distributions and describe some additional data products derived from our catalog, such as radial density profiles and projected density maps. We find that radial profiles of stacked voids show a qualitatively similar behavior across nearly two decades of void radii and throughout the full redshift range.

  19. Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Brescia, M.; Tortora, C.; Longo, G.; Napolitano, N. R.; Radovich, M.; Barbera, F. La; Capaccioli, M.; de Jong, J. T. A.; Getman, F.; Grado, A.; Paolillo, M.

    2015-09-01

    We have estimated photometric redshifts (zphot) for more than 1.1 million galaxies of the public European Southern Observatory (ESO) Kilo-Degree Survey (KiDS) data release 2. KiDS is an optical wide-field imaging survey carried out with the Very Large Telescope (VLT) Survey Telescope (VST) and the OmegaCAM camera, which aims to tackle open questions in cosmology and galaxy evolution, such as the origin of dark energy and the channel of galaxy mass growth. We present a catalogue of photometric redshifts obtained using the Multi-Layer Perceptron with Quasi-Newton Algorithm (MLPQNA) model, provided within the framework of the DAta Mining and Exploration Web Application REsource (DAMEWARE). These photometric redshifts are based on a spectroscopic knowledge base that was obtained by merging spectroscopic data sets from the Galaxy and Mass Assembly (GAMA) data release 2 and the Sloan Digital Sky Survey III (SDSS-III) data release 9. The overall 1σ uncertainty on Δz = (zspec - zphot)/(1 + zspec) is ˜0.03, with a very small average bias of ˜0.001, a normalized median absolute deviation of ˜0.02 and a fraction of catastrophic outliers (|Δz| > 0.15) of ˜0.4 per cent.

  20. Analytic photometric redshift estimator for Type Ia supernovae from the Large Synoptic Survey Telescope

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Gjergo, E.; Kuhlmann, S.

    2015-08-01

    Accurate and precise photometric redshifts (photo-zs) of Type Ia supernovae (SNe Ia) can enable the use of SNe Ia, measured only with photometry, to probe cosmology. This dramatically increases the science return of supernova surveys planned for the Large Synoptic Survey Telescope (LSST). In this paper we describe a significantly improved version of the simple analytic photo-z estimator proposed by Wang and further developed by Wang, Narayan & Wood-Vasey. We apply it to 55 422 simulated SNe Ia generated using the SNANA package with the LSST filters. We find that the estimated errors on the photo-zs, σ _{z_phot}/(1+z_phot), can be used as filters to produce a set of photo-zs that have high precision, accuracy, and purity. Using SN Ia colours as well as SN Ia peak magnitude in the i band, we obtain a set of photo-zs with 2 per cent accuracy (with σ(zphot - zspec)/(1 + zspec) = 0.02), a bias in zphot (the mean of zphot - zspec) of -9 × 10-5, and an outlier fraction (with |(zphot - zspec)/(1 + zspec)| > 0.1) of 0.23 per cent, with the requirement that σ _{z_phot}/(1+z_phot)<0.01. Using the SN Ia colours only, we obtain a set of photo-zs with similar quality by requiring that σ _{z_phot}/(1+z_phot)<0.007; this leads to a set of photo-zs with 2 per cent accuracy, a bias in zphot of 5.9 × 10-4, and an outlier fraction of 0.32 per cent.

  1. Michigan Early Adolescent Survey: Final Report.

    ERIC Educational Resources Information Center

    Keith, Joanne; And Others

    This document contains the final report from the Michigan Early Adolescent Survey, a study undertaken to: (1) develop a profile of Michigan early adolescents that focused on out-of-school time and included biological, psychological, and sociological information; (2) develop a profile of families which included early adolescents; (3) assess the…

  2. VERY STRONG EMISSION-LINE GALAXIES IN THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY AND IMPLICATIONS FOR HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Atek, H.; Colbert, J.; Shim, H.; Siana, B.; Bridge, C.; Scarlata, C.; Malkan, M.; Ross, N. R.; McCarthy, P.; Dressler, A.; Hathi, N. P.; Teplitz, H.; Henry, A.; Martin, C.; Bunker, A. J.; Fosbury, R. A. E.

    2011-12-20

    The WFC3 Infrared Spectroscopic Parallel Survey uses the Hubble Space Telescope (HST) infrared grism capabilities to obtain slitless spectra of thousands of galaxies over a wide redshift range including the peak of star formation history of the universe. We select a population of very strong emission-line galaxies with rest-frame equivalent widths (EWs) higher than 200 A. A total of 176 objects are found over the redshift range 0.35 < z < 2.3 in the 180 arcmin{sup 2} area that we have analyzed so far. This population consists of young and low-mass starbursts with high specific star formation rates (sSFR). After spectroscopic follow-up of one of these galaxies with Keck/Low Resolution Imaging Spectrometer, we report the detection at z = 0.7 of an extremely metal-poor galaxy with 12 + log(O/H) =7.47 {+-} 0.11. After estimating the active galactic nucleus fraction in the sample, we show that the high-EW galaxies have higher sSFR than normal star-forming galaxies at any redshift. We find that the nebular emission lines can substantially affect the total broadband flux density with a median brightening of 0.3 mag, with some examples of line contamination producing brightening of up to 1 mag. We show that the presence of strong emission lines in low-z galaxies can mimic the color-selection criteria used in the z {approx} 8 dropout surveys. In order to effectively remove low-redshift interlopers, deep optical imaging is needed, at least 1 mag deeper than the bands in which the objects are detected. Without deep optical data, most of the interlopers cannot be ruled out in the wide shallow HST imaging surveys. Finally, we empirically demonstrate that strong nebular lines can lead to an overestimation of the mass and the age of galaxies derived from fitting of their spectral energy distribution (SED). Without removing emission lines, the age and the stellar mass estimates are overestimated by a factor of 2 on average and up to a factor of 10 for the high-EW galaxies

  3. THE DEEP2 GALAXY REDSHIFT SURVEY: THE VORONOI-DELAUNAY METHOD CATALOG OF GALAXY GROUPS

    SciTech Connect

    Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc; Coil, Alison L.; Cooper, Michael C.; Dutton, Aaron A.; Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Noeske, Kai; Rosario, David J.; Weiner, Benjamin J.; Willmer, Christopher N. A.; Yan, Renbin

    2012-05-20

    We present a public catalog of galaxy groups constructed from the spectroscopic sample of galaxies in the fourth data release from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Galaxy Redshift Survey, including the Extended Groth Strip (EGS). The catalog contains 1165 groups with two or more members in the EGS over the redshift range 0 < z < 1.5 and 1295 groups at z > 0.6 in the rest of DEEP2. Twenty-five percent of EGS galaxies and fourteen percent of high-z DEEP2 galaxies are assigned to galaxy groups. The groups were detected using the Voronoi-Delaunay method (VDM) after it has been optimized on mock DEEP2 catalogs following similar methods to those employed in Gerke et al. In the optimization effort, we have taken particular care to ensure that the mock catalogs resemble the data as closely as possible, and we have fine-tuned our methods separately on mocks constructed for the EGS and the rest of DEEP2. We have also probed the effect of the assumed cosmology on our inferred group-finding efficiency by performing our optimization on three different mock catalogs with different background cosmologies, finding large differences in the group-finding success we can achieve for these different mocks. Using the mock catalog whose background cosmology is most consistent with current data, we estimate that the DEEP2 group catalog is 72% complete and 61% pure (74% and 67% for the EGS) and that the group finder correctly classifies 70% of galaxies that truly belong to groups, with an additional 46% of interloper galaxies contaminating the catalog (66% and 43% for the EGS). We also confirm that the VDM catalog reconstructs the abundance of galaxy groups with velocity dispersions above {approx}300 km s{sup -1} to an accuracy better than the sample variance, and this successful reconstruction is not strongly dependent on cosmology. This makes the DEEP2 group catalog a promising probe of the growth of cosmic structure that can potentially be used for cosmological tests.

  4. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Environmental effects shaping the galaxy stellar mass function

    NASA Astrophysics Data System (ADS)

    Davidzon, I.; Cucciati, O.; Bolzonella, M.; De Lucia, G.; Zamorani, G.; Arnouts, S.; Moutard, T.; Ilbert, O.; Garilli, B.; Scodeggio, M.; Guzzo, L.; Abbas, U.; Adami, C.; Bel, J.; Bottini, D.; Branchini, E.; Cappi, A.; Coupon, J.; de la Torre, S.; Di Porto, C.; Fritz, A.; Franzetti, P.; Fumana, M.; Granett, B. R.; Guennou, L.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Mellier, Y.; Moscardini, L.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.

    2016-02-01

    We exploit the first public data release of VIPERS to investigate environmental effects in the evolution of galaxies between z ~ 0.5 and 0.9. The large number of spectroscopic redshifts (more than 50 000) over an area of about 10 deg2 provides a galaxy sample with high statistical power. The accurate redshift measurements (σz = 0.00047(1 + zspec)) allow us to robustly isolate galaxies living in the lowest and highest density environments (δ< 0.7 and δ> 4, respectively) as defined in terms of spatial 3D density contrast δ. We estimate the stellar mass function of galaxies residing in these two environments and constrain the high-mass end (ℳ ≳ 1011 ℳ⊙) with unprecedented precision. We find that the galaxy stellar mass function in the densest regions has a different shape than was measured at low densities, with an enhancement of massive galaxies and a hint of a flatter (less negative) slope at z< 0.8. We normalise each mass function to the comoving volume occupied by the corresponding environment and relate estimates from different redshift bins. We observe an evolution of the stellar mass function of VIPERS galaxies in high densities, while the low-density one is nearly constant. We compare these results to semi-analytical models and find consistent environmental signatures in the simulated stellar mass functions. We discuss how the halo mass function and fraction of central/satellite galaxies depend on the environments considered, making intrinsic and environmental properties of galaxies physically coupled, hence difficult to disentangle. The evolution of our low-density regions is described well by the formalism introduced by Peng et al. (2010, ApJ, 721, 193), and is consistent with the idea that galaxies become progressively passive because of internal physical processes. The same formalism could also describe the evolution of the mass function in the high density regions, but only if a significant contribution from dry mergers is considered. Based on

  5. Using cross correlations to calibrate lensing source redshift distributions: Improving cosmological constraints from upcoming weak lensing surveys

    SciTech Connect

    De Putter, Roland; Doré, Olivier; Das, Sudeep

    2014-01-10

    Cross correlations between the galaxy number density in a lensing source sample and that in an overlapping spectroscopic sample can in principle be used to calibrate the lensing source redshift distribution. In this paper, we study in detail to what extent this cross-correlation method can mitigate the loss of cosmological information in upcoming weak lensing surveys (combined with a cosmic microwave background prior) due to lack of knowledge of the source distribution. We consider a scenario where photometric redshifts are available and find that, unless the photometric redshift distribution p(z {sub ph}|z) is calibrated very accurately a priori (bias and scatter known to ∼0.002 for, e.g., EUCLID), the additional constraint on p(z {sub ph}|z) from the cross-correlation technique to a large extent restores the cosmological information originally lost due to the uncertainty in dn/dz(z). Considering only the gain in photo-z accuracy and not the additional cosmological information, enhancements of the dark energy figure of merit of up to a factor of four (40) can be achieved for a SuMIRe-like (EUCLID-like) combination of lensing and redshift surveys, where SuMIRe stands for Subaru Measurement of Images and Redshifts). However, the success of the method is strongly sensitive to our knowledge of the galaxy bias evolution in the source sample and we find that a percent level bias prior is needed to optimize the gains from the cross-correlation method (i.e., to approach the cosmology constraints attainable if the bias was known exactly).

  6. A Survey of Luminous High-redshift Quasars with SDSS and WISE. I. Target Selection and Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Feige; Wu, Xue-Bing; Fan, Xiaohui; Yang, Jinyi; Yi, Weimin; Bian, Fuyan; McGreer, Ian D.; Yang, Qian; Ai, Yanli; Dong, Xiaoyi; Zuo, Wenwen; Jiang, Linhua; Green, Richard; Wang, Shu; Cai, Zheng; Wang, Ran; Yue, Minghao

    2016-03-01

    High-redshift quasars are important tracers of structure and evolution in the early universe. However, they are very rare and difficult to find when using color selection because of contamination from late-type dwarfs. High-redshift quasar surveys based on only optical colors suffer from incompleteness and low identification efficiency, especially at z≳ 4.5. We have developed a new method to select 4.7≲ z≲ 5.4 quasars with both high efficiency and completeness by combining optical and mid-IR Wide-field Infrared Survey Explorer (WISE) photometric data, and are conducting a luminous z˜ 5 quasar survey in the whole Sloan Digital Sky Survey (SDSS) footprint. We have spectroscopically observed 99 out of 110 candidates with z-band magnitudes brighter than 19.5, and 64 (64.6%) of them are quasars with redshifts of 4.4≲ z≲ 5.5 and absolute magnitudes of -29≲ {M}1450≲ -26.4. In addition, we also observed 14 fainter candidates selected with the same criteria and identified 8 (57.1%) of them as quasars with 4.7\\lt z\\lt 5.4. Among 72 newly identified quasars, 12 of them are at 5.2\\lt z\\lt 5.7, which leads to an increase of ˜36% of the number of known quasars at this redshift range. More importantly, our identifications doubled the number of quasars with {M}1450\\lt -27.5 at z\\gt 4.5, which will set strong constraints on the bright end of the quasar luminosity function. We also expand our method to select quasars at z ≳ 5.7. In this paper we report the discovery of four new luminous z ≳ 5.7 quasars based on SDSS-WISE selection.

  7. The KMOS Redshift One Spectroscopic Survey (KROSS): the Tully-Fisher relation at z ˜ 1

    NASA Astrophysics Data System (ADS)

    Tiley, Alfred L.; Stott, John P.; Swinbank, A. M.; Bureau, Martin; Harrison, Chris M.; Bower, Richard; Johnson, Helen L.; Bunker, Andrew J.; Jarvis, Matt J.; Magdis, Georgios; Sharples, Ray; Smail, Ian; Sobral, David; Best, Philip

    2016-07-01

    We present the stellar mass (M*), and K-corrected K-band absolute magnitude (MK) Tully-Fisher relations (TFRs) for subsamples of the 584 galaxies spatially resolved in H α emission by the KMOS Redshift One Spectroscopic Survey (KROSS). We model the velocity field of each of the KROSS galaxies and extract a rotation velocity, V80 at a radius equal to the major axis of an ellipse containing 80 per cent of the total integrated H α flux. The large sample size of KROSS allowed us to select 210 galaxies with well-measured rotation speeds. We extract from this sample a further 56 galaxies that are rotationally supported, using the stringent criterion V80/σ > 3, where σ is the flux weighted average velocity dispersion. We find the MK and M* TFRs for this subsample to be MK / {mag}= (-7.3 ± 0.9) × [(log (V_{80}/{km s^{-1}})-2.25]- 23.4 ± 0.2, and log (M_{{ast }} / M_{{⊙}})= (4.7 ± 0.4) × [(log (V_{80}/{km s^{-1}}) - 2.25] + 10.0 ± 0.3, respectively. We find an evolution of the M* TFR zero-point of -0.41 ± 0.08 dex over the last ˜8 billion years. However, we measure no evolution in the MK TFR zero-point over the same period. We conclude that rotationally supported galaxies of a given dynamical mass had less stellar mass at z ˜ 1 than the present day, yet emitted the same amounts of K-band light. The ability of KROSS to differentiate, using integral field spectroscopy with KMOS, between those galaxies that are rotationally supported and those that are not explains why our findings are at odds with previous studies without the same capabilities.

  8. The Subaru FMOS galaxy redshift survey (FastSound). I. Overview of the survey targeting Hα emitters at z ˜ 1.4

    NASA Astrophysics Data System (ADS)

    Tonegawa, Motonari; Totani, Tomonori; Okada, Hiroyuki; Akiyama, Masayuki; Dalton, Gavin; Glazebrook, Karl; Iwamuro, Fumihide; Maihara, Toshinori; Ohta, Kouji; Shimizu, Ikkoh; Takato, Naruhisa; Tamura, Naoyuki; Yabe, Kiyoto; Bunker, Andrew J.; Coupon, Jean; Ferreira, Pedro G.; Frenk, Carlos S.; Goto, Tomotsugu; Hikage, Chiaki; Ishikawa, Takashi; Matsubara, Takahiko; More, Surhud; Okumura, Teppei; Percival, Will J.; Spitler, Lee R.; Szapudi, Istvan

    2015-10-01

    FastSound is a galaxy redshift survey that uses the near-infrared Fiber Multi-Object Spectrograph (FMOS) mounted on the Subaru Telescope, targeting Hα emitters at z ˜ 1.18-1.54 down to the sensitivity limit of Hα flux ˜ 2 × 10-16 erg cm-2 s-1. The primary goal of the survey is to detect redshift space distortion (RSD), to test the general theory of relativity by measuring the growth rate of large-scale structure and to constrain modified gravity models for the origin of the accelerated expansion of the universe. The target galaxies were selected based on photometric redshifts and Hα flux estimates calculated by fitting spectral energy distribution (SED) models to the five optical magnitudes of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) Wide catalog. The survey started in 2012 March, and all the observations were completed in 2014 July. In total, we achieved 121 pointings of FMOS (each pointing has a 30' diameter circular footprint) covering 20.6 deg2 by tiling the four fields of the CFHTLS Wide in a hexagonal pattern. Emission lines were detected from ˜ 4000 star-forming galaxies by an automatic line detection algorithm applied to 2D spectral images. This is the first in a series of papers based on FastSound data, and we describe the details of the survey design, target selection, observations, data reduction, and emission line detections.

  9. The Herschel Multi-Tiered Extragalactic Survey: SPIRE-mm Photometric Redshifts

    NASA Technical Reports Server (NTRS)

    Roseboom, I. G.; Ivison, R. J.; Greve, T. R.; Amblard, A.; Arumugam, V.; Auld, R.; Aussel, H.; Bethermin, M.; Blain, A.; Bock, J.; Boselli, A.; Brisbin, D.; Buat, V.; Burgarella, D.; Castro-Rodriguez, N.; Cava, A.; Chanial, P.; Chapin, E.; Chapman, S.; Clements, D. L.; Conley, A.; Conversi, L.; Cooray, A.; Dowell, C. D.; Dwek, E.

    2011-01-01

    We investigate the potential of submm-mm and submm-mm-radio photometric red-shifts using a sample of mm-selected sources as seen at 250, 350 and 500 micrometers by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm-sources with reliable radio identifications in the GOODS-N and Lockman Hole North fields 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm colour evolution with redshift, finding that the colours of mm-sources are adequately described by a modified blackbody with constant optical depth Tau = (nu/nu(0))beta where beta = +1.8 and nu(0) = c/100 micrometers. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation we derive photometric redshift estimates for the 46 SPIRE detected mm-sources. Testing against the 22 sources with known spectroscopic, or good quality optical/near-IR photometric, redshifts we find submm/mm photometric redshifts offer a redshift accuracy of |delta z|/(1+z) = 0.16 (less than |delta z| greater than = 0.51). Including constraints from the radio-far IR correlation the accuracy is improved to |delta z|/(1 + z) = 0.15 (less than |delta z| greater than = 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at z greater than 3 when compared to 850 micrometer selected samples.

  10. Completeness - II. A signal-to-noise ratio approach for completeness estimators applied to galaxy magnitude-redshift surveys

    NASA Astrophysics Data System (ADS)

    Teodoro, Luís; Johnston, Russell; Hendry, Martin

    2010-06-01

    This is the second paper in our completeness series, which addresses some of the issues raised in the previous article by Johnston, Teodoro & Hendry, in which we developed statistical tests for assessing the completeness in apparent magnitude of magnitude-redshift surveys defined by two flux limits. The statistics, Tc and Tv, associated with these tests are non-parametric and defined in terms of the observed cumulative distribution function of sources; they represent powerful tools for identifying the true flux limit and/or characterizing systematic errors in magnitude-redshift data. In this paper, we present a new approach to constructing these estimators that resembles an `adaptive smoothing' procedure - i.e. by seeking to maintain the same amount of the information, as measured by the signal-to-noise ratio (S/N), allocated to each galaxy. For consistency with our previous work, we apply our improved estimators to the Millennium Galaxy Catalogue and the 2dF Galaxy Redshift Survey data, and demonstrate that one needs to use an S/N appropriately tailored for each individual catalogue to optimize the performance of the completeness estimators. Furthermore, unless such an adaptive procedure is employed, the assessment of completeness may result in a spurious outcome if one uses other estimators present in the literature which have not been designed taking into account `shot-noise' due to sampling.

  11. Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification

    NASA Astrophysics Data System (ADS)

    Howell, D. A.; Sullivan, M.; Perrett, K.; Bronder, T. J.; Hook, I. M.; Astier, P.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Fabbro, S.; Fouchez, D.; Guy, J.; Lafoux, H.; Neill, J. D.; Pain, R.; Palanque-Delabrouille, N.; Pritchet, C. J.; Regnault, N.; Rich, J.; Taillet, R.; Knop, R.; McMahon, R. G.; Perlmutter, S.; Walton, N. A.

    2005-12-01

    We present new techniques for improving the efficiency of supernova (SN) classification at high redshift using 64 candidates observed at Gemini North and South during the first year of the Supernova Legacy Survey (SNLS). The SNLS is an ongoing 5 year project with the goal of measuring the equation of state of dark energy by discovering and following over 700 high-redshift SNe Ia using data from the Canada-France-Hawaii Telescope Legacy Survey. We achieve an improvement in the SN Ia spectroscopic confirmation rate: at Gemini 71% of candidates are now confirmed as SNe Ia, compared to 54% using the methods of previous surveys. This is despite the comparatively high redshift of this sample, in which the median SN Ia redshift is z=0.81 (0.155<=z<=1.01). These improvements were realized because we use the unprecedented color coverage and light curve sampling of the SNLS to predict whether a candidate is a SN Ia and to estimate its redshift, before obtaining a spectrum, using a new technique called the ``SN photo-z.'' In addition, we have improved techniques for galaxy subtraction and SN template χ2 fitting, allowing us to identify candidates even when they are only 15% as bright as the host galaxy. The largest impediment to SN identification is found to be host galaxy contamination of the spectrum-when the SN was at least as bright as the underlying host galaxy the target was identified more than 90% of the time. However, even SNe in bright host galaxies can be easily identified in good seeing conditions. When the image quality was better than 0.55", the candidate was identified 88% of the time. Over the 5 year course of the survey, using the selection techniques presented here, we will be able to add ~170 more confirmed SNe Ia than would be possible using previous methods. APC, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France. DSM/DAPNIA, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France.

  12. An Analysis of Rich Cluster Redshift Survey Data for Large Scale Structure Studies

    NASA Astrophysics Data System (ADS)

    Slinglend, K.; Batuski, D.; Haase, S.; Hill, J.

    1994-12-01

    The results from the COBE satellite show the existence of structure on scales on the order of 10% or more of the horizon scale of the universe. Rich clusters of galaxies from Abell's catalog show evidence of structure on scales of 100 Mpc and may hold the promise of confirming structure on the scale of the COBE result. However, many Abell clusters have zero or only one measured redshift, so present knowledge of their three dimensional distribution has quite large uncertainties. The shortage of measured redshifts for these clusters may also mask a problem of projection effects corrupting the membership counts for the clusters. Our approach in this effort has been to use the MX multifiber spectrometer on the Steward 2.3m to measure redshifts of at least ten galaxies in each of 80 Abell cluster fields with richness class R>= 1 and mag10 <= 16.8 (estimated z<= 0.12) and zero or one measured redshifts. This work will result in a deeper, more complete (and reliable) sample of positions of rich clusters. Our primary intent for the sample is for two-point correlation and other studies of the large scale structure traced by these clusters in an effort to constrain theoretical models for structure formation. We are also obtaining enough redshifts per cluster so that a much better sample of reliable cluster velocity dispersions will be available for other studies of cluster properties. To date, we have collected such data for 64 clusters, and for most of them, we have seven or more cluster members with redshifts, allowing for reliable velocity dispersion calculations. Velocity histograms and stripe density plots for several interesting cluster fields are presented, along with summary tables of cluster redshift results. Also, with 10 or more redshifts in most of our cluster fields (30({') } square, just about an `Abell diameter' at z ~ 0.1) we have investigated the extent of projection effects within the Abell catalog in an effort to quantify and understand how this may effect

  13. Obscured quasars at high redshift in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Strauss, Michael

    2016-08-01

    The SDSS has uncovered a substantial number of luminous quasars with weak continuum, strong narrow lines, and strong evidence for obscuration, at redshifts from 0.4 to 4. I will discuss the selection of such objects and their properties in the optical and infrared. Some of these objects show evidence for significant outflows, with substantial wings in their [OIII] profiles.

  14. VizieR Online Data Catalog: SHELS: redshift survey of the F1 DLS field (Geller+, 2016)

    NASA Astrophysics Data System (ADS)

    Geller, M. J.; Hwang, H. S.; Dell'Antonio, I. P.; Zahid, H. J.; Kurtz, M. J.; Fabricant, D. G.

    2016-07-01

    The Smithsonian Hectospec Lensing Survey (SHELS) redshift survey covers two 4deg2 fields originally selected as part of the Deep Lens Survey (DLS; Wittman et al. 2006ApJ...643..128W). We used the 300-fiber Hectospec instrument on the MMT to acquire spectroscopy for galaxy candidates typically brighter than R=20.6. We observed the F1 field (centered at RA=00:53:25.3 and DEC=12:33:55 (J2000)) in queue mode during dark runs in four periods: 2005 October 24-28; 2006 October 17-November 22; 2012 October 10-December 10; 2014 September 26-November 28. The wavelength range covered by Hectospec in the observer's frame is 3700-9100Å with a resolution of ~5Å. See section 2.2 for further explanations. (4 data files).

  15. MEASUREMENTS OF CO REDSHIFTS WITH Z-SPEC FOR LENSED SUBMILLIMETER GALAXIES DISCOVERED IN THE H-ATLAS SURVEY

    SciTech Connect

    Lupu, R. E.; Scott, K. S.; Aguirre, J. E.; Aretxaga, I.; Auld, R.; Dariush, A.; Barton, E.; Cooke, J.; Cooray, A.; Beelen, A.; Bertoldi, F.; Bock, J. J.; Bradford, C. M.; Bonfield, D.; Buttiglione, S.; De Zotti, G.; Cava, A.; Dannerbauer, H.; and others

    2012-10-01

    We present new observations from Z-Spec, a broadband 185-305 GHz spectrometer, of five submillimeter bright lensed sources selected from the Herschel-Astrophysical Terahertz Large Area Survey science demonstration phase catalog. We construct a redshift-finding algorithm using combinations of the signal to noise of all the lines falling in the Z-Spec bandpass to determine redshifts with high confidence, even in cases where the signal to noise in individual lines is low. We measure the dust continuum in all sources and secure CO redshifts for four out of five (z {approx} 1.5-3). In one source, SDP.17, we tentatively identify two independent redshifts and a water line, confirmed at z = 2.308. Our sources have properties characteristic of dusty starburst galaxies, with magnification-corrected star formation rates of 10{sup 2-3} M{sub Sun} yr{sup -1}. Lower limits for the dust masses ({approx} a few 10{sup 8} M{sub Sun }) and spatial extents ({approx}1 kpc equivalent radius) are derived from the continuum spectral energy distributions, corresponding to dust temperatures between 54 and 69 K. In the local thermodynamic equilibrium (LTE) approximation, we derive relatively low CO excitation temperatures ({approx}< 100 K) and optical depths ({tau} {approx}< 1). Performing a non-LTE excitation analysis using RADEX, we find that the CO lines measured by Z-Spec (from J = 4 {yields} 3 to 10 {yields} 9, depending on the galaxy) localize the best solutions to either a high-temperature/low-density region or a low/temperature/high-density region near the LTE solution, with the optical depth varying accordingly. Observations of additional CO lines, CO(1-0) in particular, are needed to constrain the non-LTE models.

  16. Leveraging 3D-HST Grism Redshifts to Quantify Photometric Redshift Performance

    NASA Astrophysics Data System (ADS)

    Bezanson, Rachel; Wake, David A.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Franx, Marijn; Labbé, Ivo; Leja, Joel; Momcheva, Ivelina G.; Nelson, Erica J.; Quadri, Ryan F.; Skelton, Rosalind E.; Weiner, Benjamin J.; Whitaker, Katherine E.

    2016-05-01

    We present a study of photometric redshift accuracy in the 3D-HST photometric catalogs, using 3D-HST grism redshifts to quantify and dissect trends in redshift accuracy for galaxies brighter than JH IR > 24 with an unprecedented and representative high-redshift galaxy sample. We find an average scatter of 0.0197 ± 0.0003(1 + z) in the Skelton et al. photometric redshifts. Photometric redshift accuracy decreases with magnitude and redshift, but does not vary monotonically with color or stellar mass. The 1σ scatter lies between 0.01 and 0.03 (1 + z) for galaxies of all masses and colors below z < 2.5 (for JH IR < 24), with the exception of a population of very red (U - V > 2), dusty star-forming galaxies for which the scatter increases to ˜0.1 (1 + z). We find that photometric redshifts depend significantly on galaxy size; the largest galaxies at fixed magnitude have photo-zs with up to ˜30% more scatter and ˜5 times the outlier rate. Although the overall photometric redshift accuracy for quiescent galaxies is better than that for star-forming galaxies, scatter depends more strongly on magnitude and redshift than on galaxy type. We verify these trends using the redshift distributions of close pairs and extend the analysis to fainter objects, where photometric redshift errors further increase to ˜0.046 (1 + z) at {H}F160W=26. We demonstrate that photometric redshift accuracy is strongly filter dependent and quantify the contribution of multiple filter combinations. We evaluate the widths of redshift probability distribution functions and find that error estimates are underestimated by a factor of ˜1.1-1.6, but that uniformly broadening the distribution does not adequately account for fitting outliers. Finally, we suggest possible applications of these data in planning for current and future surveys and simulate photometric redshift performance in the Large Synoptic Survey Telescope, Dark Energy Survey (DES), and combined DES and Vista Hemisphere surveys.

  17. Using the 2-MASS photometric redshift survey to optimize LIGO follow-up observations

    NASA Astrophysics Data System (ADS)

    Antolini, Elisa; Heyl, Jeremy S.

    2016-10-01

    The initial discovery of Laser Interferometer Gravitational-Wave Observatory (LIGO) on 2015 September 14 was the inspiral merger and ring-down of the black hole binary at a distance of about 500 Mpc or a redshift of about 0.1. The search for electromagnetic counterparts for the inspiral of binary black holes is impeded by coarse initial source localizations and a lack of a compelling model for the counterpart; therefore, rapid electromagnetic follow-up is required to understand the astrophysical context of these sources. Because astrophysical sources of gravitational radiation are likely to reside in galaxies, it would make sense to search first in regions where the LIGO-Virgo probability is large and where the density of galaxies is large as well. Under the assumption that the probability of a gravitational-wave event from a given region of space is proportional to the density of galaxies within the probed volume, one can calculate an improved localization of the position of the source simply by multiplying the LIGO-Virgo skymap by the density of galaxies in the range of redshifts. We propose using the 2-MASS photometric redshift galaxy catalogue for this purpose and demonstrate that using it can dramatically reduce the search region for electromagnetic counterparts.

  18. The Role of Environment in Shaping Galaxy Evolution at High Redshift: Insights from the SpARCS Cluster Survey

    NASA Astrophysics Data System (ADS)

    Wilson, Gillian

    2015-08-01

    Between z = 2 and z = 1, the main progenitors of present-day massive clusters undergo rapid collapse, and cluster members transform from active star-forming to quiescent galaxies. The SpARCS survey is one of the largest surveys designed to detect clusters of galaxies at z> 1, and has discovered hundreds of Spitzer IR-selected clusters.I will present results from GCLASS, a 25-night Gemini/GMOS spectroscopic follow-up survey of ten of the most massive SpARCS clusters at z~1, and explain what we are learning about quenching and stellar mass assembly of galaxies in these, the densest of environments, relative to the field population. I will explain how predictions and observations of the stellar mass growth of Brightest Cluster Galaxies, previously controversially divergent, are now coming into agreement, and discuss the evidence for the relative importance of mergers versus in-situ star formation in driving this stellar mass growth as a function of redshift.I will also present a sample of newly-confirmed clusters at z~2 for which we have HST spectroscopy and imaging, and have been targeting with Keck/MOSFIRE. I will conclude by discussing GOGREEN and DEEPDRILL, two new large surveys approved by Gemini & Spitzer, designed to study the effects of environment at lower stellar mass and at higher redshift, respectively. Collectively, these powerful new surveys are beginning to allow us to place constraints on the location and timescale of quenching and, in concert with both hydro-simulations and semi-analytic models, identify the complex role of environment in shaping galaxy evolution over cosmic time.

  19. OT1_gstacey_3: A PACS Redshift 1-2 Oxygen Survey: Leveraging the ZEUS [CII] Detections

    NASA Astrophysics Data System (ADS)

    Stacey, G.

    2010-07-01

    We propose to use PACS spectroscopy to observe the [OI] 63 um, [OIII] 88 and 52 um, and [OIV] 26 um fine-stucture lines, and PACS/SPIRE photometry to measure the far-IR continuum from 12 IR-bright galaxies in the z = 1 to 2 redshift range. These are galaxies from which we have detected emission in the 158 um [CII] line using our grating spectrometer, ZEUS, on the CSO. We have found that the most luminous starburst-dominated systems in this epoch are characterized by kpc-scale moderate intensity star formation, while the AGN-dominated systems host similarly extended, but much more intense starbursts. The proposed oxygen survey addresses two key questions stimulated by our [CII] results: (1) To what extent are luminous star-forming galaxies at z = 1 to 2 simply scaled-up versions of local starbursts? (2) Why are the starbursts in AGN-dominated systems so much more intense? The oxygen sequence combined with our [CII] detections will have powerful diagnostic capabilities, yielding the strength and hardness of the ambient UV radiation fields, and the density, pressure, and mass of the ionized and neutral atomic components. This data will allow us to characterize the size and age of the starburst, and the importance of the central engine. The ultimate goal is to understand what drives the apparently galaxy-wide starbursts in both star-formation-dominated and AGN-dominated systems, and help identify the connection between starbursts and AGN in the early Universe. This survey is important and unique. We cover the redshift interval from 1 to 2 near the peak of the star formation per unit co-moving volume in the Universe, and it is within this redshift interval that the ZEUS and PACS sensitivities are well matched to enable the detection of the [CII] line together with the oxygen sequence in a wide variety of systems.

  20. A far-infrared spectroscopic survey of intermediate redshift (ultra) luminous infrared galaxies

    SciTech Connect

    Magdis, Georgios E.; Rigopoulou, D.; Hopwood, R.; Clements, D.; Huang, J.-S.; Farrah, D.; Pearson, C.; Alonso-Herrero, Almudena; Bock, J. J.; Cooray, A.; Griffin, M. J.; Oliver, S.; Perez Fournon, I.; Riechers, D.; Swinyard, B. M.; Thatte, N.; Scott, D.; Valtchanov, I.; Vaccari, M.

    2014-11-20

    We present Herschel far-IR photometry and spectroscopy as well as ground-based CO observations of an intermediate redshift (0.21 ≤ z ≤ 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L {sub IR} > 10{sup 11.5} L {sub ☉}). With these measurements, we trace the dust continuum, far-IR atomic line emission, in particular [C II] 157.7 μm, as well as the molecular gas of z ∼ 0.3 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L {sub C} {sub II}/L {sub FIR} ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-z star-forming galaxies. Using our sample to bridge local and high-z [C II] observations, we find that the majority of galaxies at all redshifts and all luminosities follow an L {sub C} {sub II}–L {sub FIR} relation with a slope of unity, from which local ULIRGs and high- z active-galactic-nucleus-dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L {sub C} {sub II}/L {sub FIR} ratio and the far-IR color L {sub 60}/L {sub 100} observed in the local universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower L {sub C} {sub II}/L {sub FIR} at any epoch. Intermediate redshift ULIRGs are also characterized by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high L {sub C} {sub II}/L {sub FIR} ratios, the moderate star formation efficiencies (L {sub IR}/L{sub CO}{sup ′} or L {sub IR}/M{sub H{sub 2}}), and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star-forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the

  1. The VIMOS Public Extragalactic Redshift Survey (VIPERS) . Luminosity and stellar mass dependence of galaxy clustering at 0.5 < z < 1.1

    NASA Astrophysics Data System (ADS)

    Marulli, F.; Bolzonella, M.; Branchini, E.; Davidzon, I.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Iovino, A.; Moscardini, L.; Pollo, A.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; McCracken, H. J.; Paioro, L.; Polletta, M.; Schlagenhaufer, H.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.; Zamorani, G.

    2013-09-01

    Aims: We investigate the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 0.5 < z < 1.1, using the first ~ 55 000 redshifts from the VIMOS Public Extragalactic Redshift Survey (VIPERS). Methods: We measured the redshift-space two-point correlation functions (2PCF), ξ(s) and ξ(rp,π) , and the projected correlation function, wp(rp), in samples covering different ranges of B-band absolute magnitudes and stellar masses. We considered both threshold and binned galaxy samples, with median B-band absolute magnitudes - 21.6 ≲ MB - 5log (h) ≲ - 19.5 and median stellar masses 9.8 ≲ log (M⋆ [h-2 M⊙]) ≲ 10.7. We assessed the real-space clustering in the data from the projected correlation function, which we model as a power law in the range 0.2 < rp [h-1 Mpc ] < 20. Finally, we estimated the galaxy bias as a function of luminosity, stellar mass, and redshift, assuming a flat Λ cold dark matter model to derive the dark matter 2PCF. Results: We provide the best-fit parameters of the power-law model assumed for the real-space 2PCF - the correlation length, r0, and the slope, γ - as well as the linear bias parameter, as a function of the B-band absolute magnitude, stellar mass, and redshift. We confirm and provide the tightest constraints on the dependence of clustering on luminosity at 0.5 < z < 1.1. We prove the complexity of comparing the clustering dependence on stellar mass from samples that are originally flux-limited and discuss the possible origin of the observed discrepancies. Overall, our measurements provide stronger constraints on galaxy formation models, which are now required to match, in addition to local observations, the clustering evolution measured by VIPERS galaxies between z = 0.5 and z = 1.1 for a broad range of luminosities and stellar masses. Based on observations collected at the European Southern Observatory, Paranal, Chile, under programmes 182.A-0886 (LP) at the Very Large Telescope, and also based on

  2. Luminosity and redshift dependence of the covering factor of active galactic nuclei viewed with WISE and Sloan digital sky survey

    SciTech Connect

    Toba, Y.; Matsuhara, H.; Oyabu, S.; Malkan, M. A.; Gandhi, P.; Nakagawa, T.; Isobe, N.; Shirahata, M.; Oi, N.; Takita, S.; Yano, K.; Ohyama, Y.; Yamauchi, C.

    2014-06-10

    In this work, we investigate the dependence of the covering factor (CF) of active galactic nuclei (AGNs) on the mid-infrared (MIR) luminosity and the redshift. We constructed 12 and 22 μm luminosity functions (LFs) at 0.006 ≤z ≤ 0.3 using Wide-field Infrared Survey Explorer (WISE) data. Combining the WISE catalog with Sloan Digital Sky Survey (SDSS) spectroscopic data, we selected 223,982 galaxies at 12 μm and 25,721 galaxies at 22 μm for spectroscopic classification. We then identified 16,355 AGNs at 12 μm and 4683 AGNs at 22 μm by their optical emission lines and cataloged classifications in the SDSS. Following that, we estimated the CF as the fraction of Type 2 AGN in all AGNs whose MIR emissions are dominated by the active nucleus (not their host galaxies) based on their MIR colors. We found that the CF decreased with increasing MIR luminosity, regardless of the choice of Type 2 AGN classification criteria, and the CF did not change significantly with redshift for z ≤ 0.2. Furthermore, we carried out various tests to determine the influence of selection bias and confirmed that similar dependences exist, even when taking these uncertainties into account. The luminosity dependence of the CF can be explained by the receding torus model, but the 'modified' receding torus model gives a slightly better fit, as suggested by Simpson.

  3. Luminosity and Redshift Dependence of the Covering Factor of Active Galactic Nuclei viewed with WISE and Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Toba, Y.; Oyabu, S.; Matsuhara, H.; Malkan, M. A.; Gandhi, P.; Nakagawa, T.; Isobe, N.; Shirahata, M.; Oi, N.; Ohyama, Y.; Takita, S.; Yamauchi, C.; Yano, K.

    2014-06-01

    In this work, we investigate the dependence of the covering factor (CF) of active galactic nuclei (AGNs) on the mid-infrared (MIR) luminosity and the redshift. We constructed 12 and 22 μm luminosity functions (LFs) at 0.006 <=z <= 0.3 using Wide-field Infrared Survey Explorer (WISE) data. Combining the WISE catalog with Sloan Digital Sky Survey (SDSS) spectroscopic data, we selected 223,982 galaxies at 12 μm and 25,721 galaxies at 22 μm for spectroscopic classification. We then identified 16,355 AGNs at 12 μm and 4683 AGNs at 22 μm by their optical emission lines and cataloged classifications in the SDSS. Following that, we estimated the CF as the fraction of Type 2 AGN in all AGNs whose MIR emissions are dominated by the active nucleus (not their host galaxies) based on their MIR colors. We found that the CF decreased with increasing MIR luminosity, regardless of the choice of Type 2 AGN classification criteria, and the CF did not change significantly with redshift for z <= 0.2. Furthermore, we carried out various tests to determine the influence of selection bias and confirmed that similar dependences exist, even when taking these uncertainties into account. The luminosity dependence of the CF can be explained by the receding torus model, but the "modified" receding torus model gives a slightly better fit, as suggested by Simpson.

  4. The VIMOS VLT Deep Survey: Final Public Release of ~ 35 000 Galaxies and Active Galactic Nuclei Covering 13 Billion Years of Evolution

    NASA Astrophysics Data System (ADS)

    Le Fèvre, O.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Bondi, M.; Bongiorno, A.; Bottini, D.; Cappi, A.; Cassata, P.; Charlot, S.; Ciliegi, P.; Contini, T.; Cucciati, O.; de la Torre, S.; Foucaud, S.; Franzetti, P.; Garilli, B.; Gavignaud, I.; Guzzo, L.; Ilbert, O.; Iovino, A.; Le Brun, V.; Lemaux, B.; López-Sanjuan, C.; Maccagni, D.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mazure, A.; Mellier, Y.; Merighi, R.; Merluzzi, P.; Moreau, C.; Paltani, S.; Pellò, R.; Pollo, A.; Pozzetti, L.; Scaramella, R.; Scodeggio, M.; Tasca, L.; Tresse, L.; Vergani, D.; Vettolani, G.; Zamorani, G.; Zanichelli, A.; Zucca, E.

    2014-03-01

    The VIMOS VLT Deep Survey (VVDS) final and public data release offers an excellent opportunity to revisit galaxy evolution with a sample of 35 016 galaxies and active galactic nuclei covering the redshift range 0 < z < 6.7. The VVDS includes three tiered surveys, the wide, deep and ultra-deep surveys, covering up to 8.7 square degrees, and each magnitude-selected with limits iAB = 22.5, 24 and 24.75 respectively. The VVDS redshifts, spectra, and all associated multi-wavelength data are available at http://cesam.lam.fr/vvds. The highlights and scientific legacy of the VVDS are summarised.

  5. THE BOSS EMISSION-LINE LENS SURVEY (BELLS). I. A LARGE SPECTROSCOPICALLY SELECTED SAMPLE OF LENS GALAXIES AT REDSHIFT {approx}0.5

    SciTech Connect

    Brownstein, Joel R.; Bolton, Adam S.; Pandey, Parul; Schlegel, David J.; Eisenstein, Daniel J.; Kochanek, Christopher S.; Connolly, Natalia; Maraston, Claudia; Seitz, Stella; Wake, David A.; Wood-Vasey, W. Michael; Brinkmann, Jon; Schneider, Donald P.; Weaver, Benjamin A.

    2012-01-01

    We present a catalog of 25 definite and 11 probable strong galaxy-galaxy gravitational lens systems with lens redshifts 0.4 {approx}< z {approx}< 0.7, discovered spectroscopically by the presence of higher-redshift emission lines within the Baryon Oscillation Spectroscopic Survey (BOSS) of luminous galaxies, and confirmed with high-resolution Hubble Space Telescope (HST) images of 44 candidates. Our survey extends the methodology of the Sloan Lens Advanced Camera for Surveys survey (SLACS) to higher redshift. We describe the details of the BOSS spectroscopic candidate detections, our HST ACS image processing and analysis methods, and our strong gravitational lens modeling procedure. We report BOSS spectroscopic parameters and ACS photometric parameters for all candidates, and mass-distribution parameters for the best-fit singular isothermal ellipsoid models of definite lenses. Our sample to date was selected using only the first six months of BOSS survey-quality spectroscopic data. The full five-year BOSS database should produce a sample of several hundred strong galaxy-galaxy lenses and in combination with SLACS lenses at lower redshift, strongly constrain the redshift evolution of the structure of elliptical, bulge-dominated galaxies as a function of luminosity, stellar mass, and rest-frame color, thereby providing a powerful test for competing theories of galaxy formation and evolution.

  6. VizieR Online Data Catalog: The 2dF Galaxy Redshift Survey (2dFGRS) (2dFGRS Team, 1998-2003)

    NASA Astrophysics Data System (ADS)

    Colless, M.; Dalton, G.; Maddox, S.; Sutherland, W.; Norberg, P.; Cole, S.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Collins, C.; Couch, W.; Cross, N.; Deeley, K.; de Propris, R.; Driver, S. P.; Efstathiou, G.; Ellis, R. S.; Frenk, C. S.; Glazebrook, K.; Jackson, C.; Lahav, O.; Lewis, I.; Lumsden, S.; Madgwick, D.; Peacock, J. A.; Peterson, B. A.; Price, I.; Seaborne, M.; Taylor, K.

    2007-11-01

    The 2dF Galaxy Redshift Survey (2dFGRS) is a major spectroscopic survey taking full advantage of the unique capabilities of the 2dF facility built by the Anglo-Australian Observatory. The 2dFGRS is integrated with the 2dF QSO survey (2QZ, Cat. VII/241). The 2dFGRS obtained spectra for 245591 objects, mainly galaxies, brighter than a nominal extinction-corrected magnitude limit of bJ=19.45. Reliable (quality>=3) redshifts were obtained for 221414 galaxies. The galaxies cover an area of approximately 1500 square degrees selected from the extended APM Galaxy Survey in three regions: a North Galactic Pole (NGP) strip, a South Galactic Pole (SGP) strip, and random fields scattered around the SGP strip. Redshifts are measured from spectra covering 3600-8000 Angstroms at a two-pixel resolution of 9.0 Angstrom and a median S/N of 13 per pixel. All redshift identifications are visually checked and assigned a quality parameter Q in the range 1-5; Q>=3 redshifts are 98.4% reliable and have an rms uncertainty of 85 km/s. The overall redshift completeness for Q>=3 redshifts is 91.8% but this varies with magnitude from 99% for the brightest galaxies to 90% for objects at the survey limit. The 2dFGRS data base is available on the World Wide Web at http://www.mso.anu.edu.au/2dFGRS/. (6 data files).

  7. A Survey of Star-forming Galaxies in the 1.4<~Z<~ 2.5 Redshift Desert: Overview

    NASA Astrophysics Data System (ADS)

    Steidel, Charles C.; Shapley, Alice E.; Pettini, Max; Adelberger, Kurt L.; Erb, Dawn K.; Reddy, Naveen A.; Hunt, Matthew P.

    2004-04-01

    The redshift interval 1.4<~z<~2.5 has been described by some as the ``redshift desert'' because of historical difficulties in spectroscopically identifying galaxies in that range. In fact, galaxies can be found in large numbers with standard broadband color selection techniques coupled with follow-up spectroscopy with UV and blue-sensitive spectrographs. In this paper we present the first results of a large-scale survey of such objects, carried out with the blue channel of the LRIS spectrograph (LRIS-B) on the Keck I Telescope. We introduce two samples of star-forming galaxies, ``BX'' galaxies at =2.20+/-0.32 and ``BM'' galaxies at =1.70+/-0.34. In seven survey fields we have spectroscopically confirmed 749 of the former and 114 of the latter. Interlopers (defined as objects at z<1) account for less than 10% of the photometric candidates, and the fraction of faint active galactic nuclei is ~3% in the combined BX/BM sample. Deep near-IR photometry of a subset of the BX sample indicates that, compared with a sample of similarly UV-selected galaxies at z~3, the z~2 galaxies are on average significantly redder in (R-Ks), indicating longer star formation histories, increased reddening by dust, or both. Using near-IR Hα spectra of a subset of BX/BM galaxies to define the galaxies' systemic redshifts, we show that the galactic-scale winds that are a feature of star-forming galaxies at z~3 are also common at later epochs and have similar bulk outflow speeds of 200-300 km s-1. We illustrate with examples the information that can be deduced on the stellar populations, metallicities, and kinematics of redshift desert galaxies from easily accessible rest-frame far-UV and rest-frame optical spectra. Far from being hostile to observations, the universe at z~2 is uniquely suited to providing information on the astrophysics of star-forming galaxies and the intergalactic medium, and the relationship between the two. Based, in part, on data obtained at the W. M. Keck

  8. Exploring the SDSS photometric galaxies with clustering redshifts

    NASA Astrophysics Data System (ADS)

    Rahman, Mubdi; Mendez, Alexander J.; Ménard, Brice; Scranton, Ryan; Schmidt, Samuel J.; Morrison, Christopher B.; Budavári, Tamás

    2016-07-01

    We apply clustering-based redshift inference to all extended sources from the Sloan Digital Sky Survey photometric catalogue, down to magnitude r = 22. We map the relationships between colours and redshift, without assumption of the sources' spectral energy distributions (SEDs). We identify and locate star-forming quiescent galaxies, and active galactic nuclei, as well as colour changes due to spectral features, such as the 4000 Å break, redshifting through specific filters. Our mapping is globally in good agreement with colour-redshift tracks computed with SED templates, but reveals informative differences, such as the need for a lower fraction of M-type stars in certain templates. We compare our clustering-redshift estimates to photometric redshifts and find these two independent estimators to be in good agreement at each limiting magnitude considered. Finally, we present the global clustering-redshift distribution of all Sloan extended sources, showing objects up to z ˜ 0.8. While the overall shape agrees with that inferred from photometric redshifts, the clustering-redshift technique results in a smoother distribution, with no indication of structure in redshift space suggested by the photometric-redshift estimates (likely artefacts imprinted by their spectroscopic training set). We also infer a higher fraction of high-redshift objects. The mapping between the four observed colours and redshift can be used to estimate the redshift probability distribution function of individual galaxies. This work is an initial step towards producing a general mapping between redshift and all available observables in the photometric space, including brightness, size, concentration, and ellipticity.

  9. See Change: First Results from the Supernova Cosmology Project High Redshift Cluster Supernova Survey

    NASA Astrophysics Data System (ADS)

    Hayden, Brian; Aldering, Greg Scott; Amanullah, Rahman; Barbary, Kyle H.; Boehringer, Hans; Brodwin, Mark; Cunha, Carlos E.; Deustua, Susana E.; Dixon, Samantha; Eisenhardt, Peter R.; Fagrelius, Parker; Fassbender, Rene; Fruchter, Andrew S.; Gladders, Michael; Gonzalez, Anthony H.; Goobar, Ariel; Hildebrandt, Hendrik; Hilton, Matt; Hoekstra, Henk; Hook, Isobel; Huang, Xiaosheng; Huterer, Dragan; Jee, James; Kim, Alex G.; Kowalski, Marek; Lidman, Chris; Linder, Eric; Luther, Kyle; Meyers, Joshua; Muzzin, Adam; Nordin, Jakob; Pain, Reynald; Perlmutter, Saul; Richard, Johan; Rosati, Piero; Rozo, Eduardo; Rubin, David; Rykoff, Eli S.; Santos, Joana; Saunders, Clare; Sofiatti, Caroline; Spadafora, Anthony L.; Stanford, S. Adam; Stern, Daniel; Suzuki, Nao; Wechsler, Risa H.; Willis, Jon; Wilson, Gillian; Yen, Mike

    2016-01-01

    Using the Hubble Space Telescope, the Supernova Cosmology Project is performing a type Ia supernova search in the highest-redshift, most massive clusters known to date. This large HST program spans Cycles 22-23. It will improve the constraint by a factor of 3 on the Dark Energy equation of state above z ~ 1, allowing an unprecedented probe of Dark Energy time variation. When combined with the improved cluster mass calibration from gravitational lensing provided by the deep WFC3-IR observations of the clusters, the SNe clusters observed also will triple the Dark Energy Task Force Figure of Merit. With Cycle 22 completed, we present preliminary supernova light curves above z=1.1 and discuss the number of supernovae discovered compared to our expectations from different SN rates models. Our HST imaging and extensive ground-based campaign are already producing unique results; we have spectroscopically confirmed several of the highest redshift cluster members to-date, and confirmed one of the most massive clusters at z~1.2 expected over the entire sky.

  10. Type-Ia supernova rates to redshift 2.4 from clash: The cluster lensing and supernova survey with Hubble

    SciTech Connect

    Graur, O.; Rodney, S. A.; Riess, A. G.; Medezinski, E.; Maoz, D.; Jha, S. W.; Holoien, T. W.-S.; McCully, C.; Patel, B.; Postman, M.; Dahlen, T.; Strolger, L.-G.; Coe, D.; Bradley, L.; Koekemoer, A.; Benítez, N.; Molino, A.; Jouvel, S.; Nonino, M.; Balestra, I.; and others

    2014-03-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, ∼13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z > 1.2. We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range 1.8 < z < 2.4. The results are consistent with the rates measured by the HST/GOODS and Subaru Deep Field SN surveys. We model these results together with previous measurements at z < 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of −1.00{sub −0.06(0.10)}{sup +0.06(0.09)} (statistical){sub −0.08}{sup +0.12} (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at >99% significance level.

  11. Type-Ia Supernova Rates to Redshift 2.4 from Clash: The Cluster Lensing and Supernova Survey with Hubble

    NASA Technical Reports Server (NTRS)

    Graur, O.; Rodney, S. A.; Maoz, D.; Riess, A. G.; Jha, S. W.; Postman, M.; Dahlen, T.; Holoien, T. W.-S.; McCully, C.; Patel, B.; Strolger, L.-G.; Benitez, N.; Coe, D.; Jouvel, S.; Medezinski, E.; Molino, A.; Nonino, M.; Bradley, L.; Koehemoer, A.; Balestra, I.; Cenko, S. B.; Clubb, K. I.; Dickinson, M. E.; Filippenko, A. V.; Frederiksen, T. F.; Garnavich, P.; Hjorth, J.; Jones, D. O.; Leibundgut, B.; Matheson, T.; Mobasher, B.; Rosati, P.; Silverman, J. M.; U., V.; Jedruszczuk, K.

    2014-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, approximately 13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z greater than 1.2.We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range z greater than 1.8 and less than 2.4. The results are consistent with the rates measured by the HST/ GOODS and Subaru Deep Field SN surveys.We model these results together with previous measurements at z less than 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of 1.00 (+0.06(0.09))/(-0.06(0.10)) (statistical) (+0.12/-0.08) (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at greater than 99% significance level.

  12. The Discovery of a High-Redshift Quasar without Emission Lines from Sloan Digital Sky Survey Commissioning Data.

    PubMed

    Fan; Strauss; Gunn; Lupton; Carilli; Rupen; Schmidt; Moustakas; Davis; Annis; Bahcall; Brinkmann; Brunner; Csabai; Doi; Fukugita; Heckman; Hennessy; Hindsley; Ivezic; Knapp; Lamb; Munn; Pauls; Pier; Rockosi; Schneider; Szalay; Tucker; York

    1999-12-01

    We report observations of a luminous unresolved object at redshift z=4.62, with a featureless optical spectrum redward of the Lyalpha forest region, discovered from Sloan Digital Sky Survey commissioning data. The redshift is determined by the onset of the Lyalpha forest at lambda approximately 6800 Å and a Lyman limit system at lambda=5120 Å. A strong Lyalpha absorption system with weak metal absorption lines at z=4.58 is also identified in the spectrum. The object has a continuum absolute magnitude of -26.6 at 1450 Å in the rest frame (h0=0.5, q0=0.5) and therefore cannot be an ordinary galaxy. It shows no radio emission (the 3 sigma upper limit of its flux at 6 cm is 60 µJy), indicating a radio-to-optical flux ratio at least as small as that of the radio-weakest BL Lacertae objects known. It is also not linearly polarized to a 3 sigma upper limit of 4% in the observed I band. Therefore, it is either the most distant BL Lac object known to date, with very weak radio emission, or a new type of unbeamed quasar, whose broad emission line region is very weak or absent.

  13. Introduction to the CFHT Legacy Survey final release (CFHTLS T0007)

    NASA Astrophysics Data System (ADS)

    Cuillandre, Jean-Charles J.; Withington, Kanoa; Hudelot, Patrick; Goranova, Yuliana; McCracken, Henry; Magnard, Frédéric; Mellier, Yannick; Regnault, Nicolas; Bétoule, Marc; Aussel, Hervé; Kavelaars, J. J.; Fernique, Pierre; Bonnarel, François; Ochsenbein, Francois; Ilbert, Olivier

    2012-09-01

    The Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) is a high impact scientific program which will see its final official release open to the world in 2012. That release will seal the legacy aspect of the survey which has already produced a large collection of scientific articles with topics ranging from cosmology to the Solar system. The survey core science was focused on dark energy and dark matter: the full realization of the scientific potential of the data set gathered between 2003 and 2009 with the MegaCam wide-field imager mounted at the CFHT prime focus is almost complete with the Supernovae Legacy Survey (SNLS) team preparing its third and last release (SNLS5), and the CFHTLenS team planning the release based around the cosmic shear survey later this year. While the data processing center TERAPIX offered to the CFHTLS scientific community regular releases over the course of the survey in its data acquisition phase (T0001-T0006), the final release took three years to refine in order to produce a pristine data collection photometrically calibrated at better than the percent both internally and externally over the total survey surface of 155 square degrees in all five photometric bands (u*, g’, r’, i’, z’). This final release, called T0007, benefits from the various advances in photometric calibration MegaCam has benefited through the joint effort between SNLS and CFHT to calibrate MegaCam at levels unexplored for an optical wide-field imager. T0007 stacks and catalogs produced by TERAPIX will be made available to the world at CADC while the CDS will offer a full integration of the release in its VO tools from VizieR to Aladin. The photometric redshifts have been produced to be released in phase with the survey. This proceeding is a general introduction to the survey and aims at presenting its final release in broad terms.

  14. VizieR Online Data Catalog: The 2dF Galaxy Redshift Survey 100k Data Release (2dFGRS Team, 2001)

    NASA Astrophysics Data System (ADS)

    Colless, M.; Dalton, G.; Maddox, S.; Sutherland, W.; Norberg, P.; Cole, S.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Collins, C.; Couch, W.; Cross, N.; Deeley, K.; de Propris, R.; Driver, S. P.; Efstathiou, G.; Ellis, R. S.; Frenk, C. S.; Glazebrook, K.; Jackson, C.; Lahav, O.; Lewis, I.; Lumsden, S.; Madgwick, D.; Peacock, J. A.; Peterson, B. A.; Price, I.; Seaborne, M.; Taylor, K.

    2003-06-01

    The 2dF Galaxy Redshift Survey (2dFGRS) is designed to measure redshifts for approximately 250000 galaxies. The 2dFGRS uses the 2dF multifibre spectrograph on the Anglo-Australian Telescope, which is capable of observing 400 objects simultaneously over a 2 degree diameter field. The source catalogue for the survey is a revised and extended version of the APM galaxy catalogue, and the targets are galaxies with extinction-corrected magnitudes brighter than bJ=19.45. The main survey regions are two declination strips, one in the southern Galactic hemisphere spanning 80x15degrees around the South Galactic Pole, and the other in the Northern Galactic hemisphere spanning 75x10degrees along the celestial equator; in addition, there are 99 fields spread over the southern Galactic cap. The survey covers 2000 square degrees and has a median depth of z=0.11. Adaptive tiling is used to give a highly uniform sampling rate of 93% over the whole survey region. The 100k release contains the 102426 objects observed up to 31 January 2001. Redshifts are measured from spectra covering 3600-8000 Angstroms at a two-pixel resolution of 9.0 Angstrom and a median S/N of 13 per pixel. All redshift identifications are visually checked and assigned a quality parameter Q in the range 1-5; Q>=3 redshifts are 98.4% reliable and have an rms uncertainty of 85 km/s. The overall redshift completeness for Q>=3 redshifts is 91.8% but this varies with magnitude from 99% for the brightest galaxies to 90% for objects at the survey limit. The 2dFGRS data base is available on the World Wide Web at http://www.mso.anu.edu.au/2dFGRS. This catalog was extracted from the 2dF Galaxy Redshift Survey 100k release CD-ROMs using the included mSQL database. This catalog comprises the basic spectroscopic information from the best spectrum of each object, that is contained in the extnum=0 rows of the mSQL database. (1 data file).

  15. MAPPING THE GALACTIC HALO WITH BLUE HORIZONTAL BRANCH STARS FROM THE TWO-DEGREE FIELD QUASAR REDSHIFT SURVEY

    SciTech Connect

    De Propris, Roberto; Harrison, Craig D.; Mares, Peter J.

    2010-08-20

    We use 666 blue horizontal branch stars from the 2Qz Redshift Survey to map the Galactic halo in four dimensions (position, distance, and velocity). We find that the halo extends to at least 100 kpc in Galactocentric distance, and obeys a single power-law density profile of index {approx}-2.5 in two different directions separated by about 150{sup 0} on the sky. This suggests that the halo is spherical. Our map shows no large kinematically coherent structures (streams, clouds, or plumes) and appears homogeneous. However, we find that at least 20% of the stars in the halo reside in substructures and that these substructures are dynamically young. The velocity dispersion profile of the halo appears to increase toward large radii while the stellar velocity distribution is non-Gaussian beyond 60 kpc. We argue that the outer halo consists of a multitude of low luminosity overlapping tidal streams from recently accreted objects.

  16. The BOSS Emission-Line Lens Survey (BELLS). I. A Large Spectroscopically Selected Sample of Lens Galaxies at Redshift ~0.5

    NASA Astrophysics Data System (ADS)

    Brownstein, Joel R.; Bolton, Adam S.; Schlegel, David J.; Eisenstein, Daniel J.; Kochanek, Christopher S.; Connolly, Natalia; Maraston, Claudia; Pandey, Parul; Seitz, Stella; Wake, David A.; Wood-Vasey, W. Michael; Brinkmann, Jon; Schneider, Donald P.; Weaver, Benjamin A.

    2012-01-01

    We present a catalog of 25 definite and 11 probable strong galaxy-galaxy gravitational lens systems with lens redshifts 0.4 <~ z <~ 0.7, discovered spectroscopically by the presence of higher-redshift emission lines within the Baryon Oscillation Spectroscopic Survey (BOSS) of luminous galaxies, and confirmed with high-resolution Hubble Space Telescope (HST) images of 44 candidates. Our survey extends the methodology of the Sloan Lens Advanced Camera for Surveys survey (SLACS) to higher redshift. We describe the details of the BOSS spectroscopic candidate detections, our HST ACS image processing and analysis methods, and our strong gravitational lens modeling procedure. We report BOSS spectroscopic parameters and ACS photometric parameters for all candidates, and mass-distribution parameters for the best-fit singular isothermal ellipsoid models of definite lenses. Our sample to date was selected using only the first six months of BOSS survey-quality spectroscopic data. The full five-year BOSS database should produce a sample of several hundred strong galaxy-galaxy lenses and in combination with SLACS lenses at lower redshift, strongly constrain the redshift evolution of the structure of elliptical, bulge-dominated galaxies as a function of luminosity, stellar mass, and rest-frame color, thereby providing a powerful test for competing theories of galaxy formation and evolution. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 12209. Based on spectroscopic data from the Baryon Oscillation Spectroscopic Survey of the Sloan Digital Sky Survey III.

  17. Populating dark matter haloes with galaxies: comparing the 2dFGRS with mock galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohu; Mo, H. J.; Jing, Y. P.; van den Bosch, Frank C.; Chu, YaoQuan

    2004-06-01

    In two recent papers, we developed a powerful technique to link the distribution of galaxies to that of dark matter haloes by considering halo occupation numbers as a function of galaxy luminosity and type. In this paper we use these distribution functions to populate dark matter haloes in high-resolution N-body simulations of the standard ΛCDM cosmology with Ωm= 0.3, ΩΛ= 0.7 and σ8= 0.9. Stacking simulation boxes of 100 h-1 Mpc and 300 h-1 Mpc with 5123 particles each we construct mock galaxy redshift surveys out to a redshift of z= 0.2 with a numerical resolution that guarantees completeness down to 0.01L*. We use these mock surveys to investigate various clustering statistics. The predicted two-dimensional correlation function ξ(rp, π) reveals clear signatures of redshift space distortions. The projected correlation functions for galaxies with different luminosities and types, derived from ξ(rp, π), match the observations well on scales larger than ~3 h-1 Mpc. On smaller scales, however, the model overpredicts the clustering power by about a factor two. Modelling the `finger-of-God' effect on small scales reveals that the standard ΛCDM model predicts pairwise velocity dispersions (PVD) that are ~400 km s-1 too high at projected pair separations of ~1 h-1 Mpc. A strong velocity bias in massive haloes, with bvel≡σgal/σdm~ 0.6 (where σgal and σdm are the velocity dispersions of galaxies and dark matter particles, respectively) can reduce the predicted PVD to the observed level, but does not help to resolve the overprediction of clustering power on small scales. Consistent results can be obtained within the standard ΛCDM model only when the average mass-to-light ratio of clusters is of the order of 1000 (M/L)solar in the B-band. Alternatively, as we show by a simple approximation, a ΛCDM model with σ8~= 0.75 may also reproduce the observational results. We discuss our results in light of the recent WMAP results and the constraints on σ8 obtained

  18. REDSHIFTS, SAMPLE PURITY, AND BCG POSITIONS FOR THE GALAXY CLUSTER CATALOG FROM THE FIRST 720 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY

    SciTech Connect

    Song, J.; Zenteno, A.; Desai, S.; Bazin, G.; Stalder, B.; Ashby, M. L. N.; Bayliss, M.; Bleem, L. E.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Aird, K. A.; Armstrong, R.; Bertin, E.; Brodwin, M.; Cho, H. M.; Clocchiatti, A.; De Haan, T.; and others

    2012-12-10

    We present the results of the ground- and space-based optical and near-infrared (NIR) follow-up of 224 galaxy cluster candidates detected with the Sunyaev-Zel'dovich (SZ) effect in the 720 deg{sup 2} of the South Pole Telescope (SPT) survey completed in the 2008 and 2009 observing seasons. We use the optical/NIR data to establish whether each candidate is associated with an overdensity of galaxies and to estimate the cluster redshift. Most photometric redshifts are derived through a combination of three different cluster redshift estimators using red-sequence galaxies, resulting in an accuracy of {Delta}z/(1 + z) = 0.017, determined through comparison with a subsample of 57 clusters for which we have spectroscopic redshifts. We successfully measure redshifts for 158 systems and present redshift lower limits for the remaining candidates. The redshift distribution of the confirmed clusters extends to z = 1.35 with a median of z{sub med} = 0.57. Approximately 18% of the sample with measured redshifts lies at z > 0.8. We estimate a lower limit to the purity of this SPT SZ-selected sample by assuming that all unconfirmed clusters are noise fluctuations in the SPT data. We show that the cumulative purity at detection significance {xi} > 5({xi} > 4.5) is {>=}95% ({>=}70%). We present the red brightest cluster galaxy (rBCG) positions for the sample and examine the offsets between the SPT candidate position and the rBCG. The radial distribution of offsets is similar to that seen in X-ray-selected cluster samples, providing no evidence that SZ-selected cluster samples include a different fraction of recent mergers from X-ray-selected cluster samples.

  19. A redshift survey of the strong-lensing cluster ABELL 383

    SciTech Connect

    Geller, Margaret J.; Hwang, Ho Seong; Kurtz, Michael J.; Diaferio, Antonaldo; Coe, Dan; Rines, Kenneth J. E-mail: hhwang@cfa.harvard.edu E-mail: diaferio@ph.unito.it E-mail: kenneth.rines@wwu.edu

    2014-03-01

    Abell 383 is a famous rich cluster (z = 0.1887) imaged extensively as a basis for intensive strong- and weak-lensing studies. Nonetheless, there are few spectroscopic observations. We enable dynamical analyses by measuring 2360 new redshifts for galaxies with r {sub Petro} ≤ 20.5 and within 50' of the Brightest Cluster Galaxy (BCG; R.A.{sub 2000} = 42.°014125, decl.{sub 2000} = –03.°529228). We apply the caustic technique to identify 275 cluster members within 7 h {sup –1} Mpc of the hierarchical cluster center. The BCG lies within –11 ± 110 km s{sup –1} and 21 ± 56 h {sup –1} kpc of the hierarchical cluster center; the velocity dispersion profile of the BCG appears to be an extension of the velocity dispersion profile based on cluster members. The distribution of cluster members on the sky corresponds impressively with the weak-lensing contours of Okabe et al. especially when the impact of foreground and background structure is included. The values of R {sub 200} = 1.22 ± 0.01 h {sup –1} Mpc and M {sub 200} = (5.07 ± 0.09) × 10{sup 14} h {sup –1} M {sub ☉} obtained by application of the caustic technique agree well with recent completely independent lensing measures. The caustic estimate extends direct measurement of the cluster mass profile to a radius of ∼5 h {sup –1} Mpc.

  20. Measurements of the Rate of Type Ia Supernovae at Redshift z < ~0.3 from the SDSS-II Supernova Survey

    SciTech Connect

    Dilday, Benjamin; Smith, Mathew; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Castander, Francisco; Cinabro, David; Filippenko, Alexei V.; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter M.; /Notre Dame U. /Stockholm U., OKC /Stockholm U.

    2010-01-01

    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z {approx}< 0.3, of which 270 (52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04{sub -0.95}{sup +1.61}% of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume a SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used to infer a value of the SN rate of r{sub V} = (2.69{sub -0.30-0.01}{sup +0.34+0.21}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} at a mean redshift of {approx} 0.12, based on 79 SNe Ia of which 72 are spectroscopically confirmed. However, the large sample of SNe Ia included in this study allows us to place constraints on the redshift dependence of the SN Ia rate based on the SDSS-II Supernova Survey data alone. Fitting a power-law model of the SN rate evolution, r{sub V} (z) = A{sub p} x ((1+z)/(1+z{sub 0})){sup {nu}}, over the redshift range 0.0 < z < 0.3 with z{sub 0} = 0.21, results in A{sub p} = (3.43{sub -0.15}{sup +0.15}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} and {nu} = 2.04{sub -0.89}{sup +0.90}.

  1. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Measuring non-linear galaxy bias at z ~ 0.8

    NASA Astrophysics Data System (ADS)

    Di Porto, C.; Branchini, E.; Bel, J.; Marulli, F.; Bolzonella, M.; Cucciati, O.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Marinoni, C.; Moscardini, L.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Coupon, J.; Davidzon, I.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; McCracken, H. J.; Paioro, L.; Polletta, M.; Pollo, A.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Marchetti, A.; Martizzi, D.; Mellier, Y.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Viel, M.; Wolk, M.; Zamorani, G.

    2016-10-01

    Aims: We use the first release of the VImos Public Extragalactic Redshift Survey of galaxies (VIPERS) of ~50 000 objects to measure the biasing relation between galaxies and mass in the redshift range z = [ 0.5,1.1 ]. Methods: We estimate the 1-point distribution function [PDF] of VIPERS galaxies from counts in cells and, assuming a model for the mass PDF, we infer their mean bias relation. The reconstruction of the bias relation is performed through a novel method that accounts for Poisson noise, redshift distortions, inhomogeneous sky coverage. and other selection effects. With this procedure we constrain galaxy bias and its deviations from linearity down to scales as small as 4 h-1 Mpc and out to z = 1.1. Results: We detect small (up to 2%) but statistically significant (up to 3σ) deviations from linear bias. The mean biasing function is close to linear in regions above the mean density. The mean slope of the biasing relation is a proxy to the linear bias parameter. This slope increases with luminosity, which is in agreement with results of previous analyses. We detect a strong bias evolution only for z> 0.9, which is in agreement with some, but not all, previous studies. We also detect a significant increase of the bias with the scale, from 4 to 8 h-1 Mpc , now seen for the first time out to z = 1. The amplitude of non-linearity depends on redshift, luminosity, and scale, but no clear trend is detected. Owing to the large cosmic volume probed by VIPERS, we find that the mismatch between the previous estimates of bias at z ~ 1 from zCOSMOS and VVDS-Deep galaxy samples is fully accounted for by cosmic variance. Conclusions: The results of our work confirm the importance of going beyond the over-simplistic linear bias hypothesis showing that non-linearities can be accurately measured through the applications of the appropriate statistical tools to existing datasets like VIPERS. Based on observations collected at the European Southern Observatory, Paranal, Chile

  2. Saskatchewan Older Adult Literacy Survey. Final Report.

    ERIC Educational Resources Information Center

    Regina Univ. (Saskatchewan). Univ. Extension. Seniors Education Centre.

    The Saskatchewan Older Adult Literacy Survey involved 16 literacy programs offered by the regional colleges, public libraries, and technical institutes throughout the province of Saskatchewan, Canada. The 2-month survey acquired information for an overview of the current state of older adults and literacy in Saskatchewan through mailed…

  3. College Experiences Survey: Methodological Summary. Final Report

    ERIC Educational Resources Information Center

    DesRoches, David; Hall, John; Santos, Betsy

    2009-01-01

    In an effort to better understand the factors associated with college persistence and attrition, the Survey Research Center at Princeton University, with funding from the Andrew W. Mellon Foundation, is conducting the College Student Attrition Project. As part of that project, Mathematica Policy Research conducted the College Experiences Survey.…

  4. The DEEP2 Galaxy Redshift Survey: The Evolution of Void Statistics from z ~ 1 to z ~ 0

    NASA Astrophysics Data System (ADS)

    Conroy, Charlie; Coil, Alison L.; White, Martin; Newman, Jeffrey A.; Yan, Renbin; Cooper, Michael C.; Gerke, Brian F.; Davis, Marc; Koo, David C.

    2005-12-01

    We present measurements of the void probability function (VPF) at z~1 using data from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Redshift Survey and its evolution to z~0 using data from the Sloan Digital Sky Survey (SDSS). We measure the VPF as a function of galaxy color and luminosity in both surveys and find that it mimics trends displayed in the two-point correlation function, ξ: namely, that samples of brighter, red galaxies have larger voids (i.e., are more strongly clustered) than fainter, blue galaxies. We also clearly detect evolution in the VPF with cosmic time, with voids being larger in comoving units at z~0. We find that the reduced VPF matches the predictions of a ``negative binomial'' model for galaxies of all colors, luminosities, and redshifts studied. This model lacks a physical motivation but produces a simple analytic prediction for sources of any number density and integrated two-point correlation function, ξ¯. This implies that differences in the VPF across different galaxy populations are consistent with being due entirely to differences in the population number density and ξ¯. We compare the VPF at z~1 to N-body ΛCDM simulations and find good agreement between the DEEP2 data and mock galaxy catalogs. Interestingly, we find that the dark matter particle reduced VPF follows the physically motivated ``thermodynamic'' model, while the dark matter halo reduced VPF more closely follows the negative binomial model. The robust result that all galaxy populations follow the negative binomial model appears to be due primarily to the clustering of dark matter halos. The reduced VPF is insensitive to changes in the parameters of the halo occupation distribution, in the sense that halo models with the same ξ¯ will produce the same VPF. For the wide range of galaxies studied, the VPF therefore does not appear to provide useful constraints on galaxy evolution models that cannot be gleaned from studies of ξ¯ alone.

  5. A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION

    SciTech Connect

    Dahlen, Tomas; Ferguson, Henry C.; Mobasher, Bahram; Faber, Sandra M.; Barro, Guillermo; Guo, Yicheng; Finlator, Kristian; Fontana, Adriano; Gruetzbauch, Ruth; Johnson, Seth; Pforr, Janine; Dickinson, Mark E.; Salvato, Mara; Wuyts, Stijn; Wiklind, Tommy; Acquaviva, Viviana; Huang, Jiasheng; Huang, Kuang-Han; Newman, Jeffrey A.; and others

    2013-10-01

    We present results from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) photometric redshift methods investigation. In this investigation, the results from 11 participants, each using a different combination of photometric redshift code, template spectral energy distributions (SEDs), and priors, are used to examine the properties of photometric redshifts applied to deep fields with broadband multi-wavelength coverage. The photometry used includes U-band through mid-infrared filters and was derived using the TFIT method. Comparing the results, we find that there is no particular code or set of template SEDs that results in significantly better photometric redshifts compared to others. However, we find that codes producing the lowest scatter and outlier fraction utilize a training sample to optimize photometric redshifts by adding zero-point offsets, template adjusting, or adding extra smoothing errors. These results therefore stress the importance of the training procedure. We find a strong dependence of the photometric redshift accuracy on the signal-to-noise ratio of the photometry. On the other hand, we find a weak dependence of the photometric redshift scatter with redshift and galaxy color. We find that most photometric redshift codes quote redshift errors (e.g., 68% confidence intervals) that are too small compared to that expected from the spectroscopic control sample. We find that all codes show a statistically significant bias in the photometric redshifts. However, the bias is in all cases smaller than the scatter; the latter therefore dominates the errors. Finally, we find that combining results from multiple codes significantly decreases the photometric redshift scatter and outlier fraction. We discuss different ways of combining data to produce accurate photometric redshifts and error estimates.

  6. IMPROVED MOCK GALAXY CATALOGS FOR THE DEEP2 GALAXY REDSHIFT SURVEY FROM SUBHALO ABUNDANCE AND ENVIRONMENT MATCHING

    SciTech Connect

    Gerke, Brian F.; Wechsler, Risa H.; Behroozi, Peter S.; Yan, Renbin; Coil, Alison L.

    2013-09-15

    We develop empirical methods for modeling the galaxy population and populating cosmological N-body simulations with mock galaxies according to the observed properties of galaxies in survey data. We use these techniques to produce a new set of mock catalogs for the DEEP2 Galaxy Redshift Survey based on the output of the high-resolution Bolshoi simulation, as well as two other simulations with different cosmological parameters, all of which we release for public use. The mock-catalog creation technique uses subhalo abundance matching to assign galaxy luminosities to simulated dark-matter halos. It then adds color information to the resulting mock galaxies in a manner that depends on the local galaxy density, in order to reproduce the measured color-environment relation in the data. In the course of constructing the catalogs, we test various models for including scatter in the relation between halo mass and galaxy luminosity, within the abundance-matching framework. We find that there is no constant-scatter model that can simultaneously reproduce both the luminosity function and the autocorrelation function of DEEP2. This result has implications for galaxy-formation theory, and it restricts the range of contexts in which the mock catalogs can be usefully applied. Nevertheless, careful comparisons show that our new mock catalogs accurately reproduce a wide range of the other properties of the DEEP2 catalog, suggesting that they can be used to gain a detailed understanding of various selection effects in DEEP2.

  7. HerMES: a search for high-redshift dusty galaxies in the HerMES Large Mode Survey - catalogue, number counts and early results

    NASA Astrophysics Data System (ADS)

    Asboth, V.; Conley, A.; Sayers, J.; Béthermin, M.; Chapman, S. C.; Clements, D. L.; Cooray, A.; Dannerbauer, H.; Farrah, D.; Glenn, J.; Golwala, S. R.; Halpern, M.; Ibar, E.; Ivison, R. J.; Maloney, P. R.; Marques-Chaves, R.; Martinez-Navajas, P. I.; Oliver, S. J.; Pérez-Fournon, I.; Riechers, D. A.; Rowan-Robinson, M.; Scott, Douglas; Siegel, S. R.; Vieira, J. D.; Viero, M.; Wang, L.; Wardlow, J.; Wheeler, J.

    2016-10-01

    Selecting sources with rising flux densities towards longer wavelengths from Herschel/Spectral and Photometric Imaging Receiver (SPIRE) maps is an efficient way to produce a catalogue rich in high-redshift (z > 4) dusty star-forming galaxies. The effectiveness of this approach has already been confirmed by spectroscopic follow-up observations, but the previously available catalogues made this way are limited by small survey areas. Here we apply a map-based search method to 274 deg2 of the Herschel Multi-tiered Extragalactic Survey (HerMES) Large Mode Survey and create a catalogue of 477 objects with SPIRE flux densities S500 > S350 > S250 and a 5σ cut-off S500 > 52 mJy. From this catalogue we determine that the total number of these `red' sources is at least an order of magnitude higher than predicted by galaxy evolution models. These results are in agreement with previous findings in smaller HerMES fields; however, due to our significantly larger sample size we are also able to investigate the shape of the red source counts for the first time. We have obtained spectroscopic redshift measurements for two of our sources using the Atacama Large Millimeter/submillimeter Array. The redshifts z = 5.1 and 3.8 confirm that with our selection method we can indeed find high-redshift dusty star-forming galaxies.

  8. Mass calibration of galaxy clusters at redshift 0.1-1.0 using weak lensing in the Sloan Digital Sky Survey Stripe 82 co-add

    NASA Astrophysics Data System (ADS)

    Wiesner, Matthew P.; Lin, Huan; Soares-Santos, Marcelle

    2015-09-01

    We present galaxy cluster mass-richness relations found in the Sloan Digital Sky Survey Stripe 82 co-add using clusters found using a Voronoi tessellation cluster finder. These relations were found using stacked weak lensing shear observed in a large sample of galaxy clusters. These mass-richness relations are presented for four redshift bins, 0.1 < z ≤ 0.4, 0.4 < z ≤ 0.7, 0.7 < z ≤ 1.0 and 0.1 < z ≤ 1.0. We describe the sample of galaxy clusters and explain how these clusters were found using a Voronoi tessellation cluster finder. We fit a Navarro-Frenk-White profile to the stacked weak lensing shear signal in redshift and richness bins in order to measure virial mass (M200). We describe several effects that can bias weak lensing measurements, including photometric redshift bias, the effect of the central BCG, halo miscentering, photometric redshift uncertainty and foreground galaxy contamination. We present mass-richness relations using richness measure NVT with each of these effects considered separately as well as considered altogether. We also examine redshift evolution of the mass-richness relation. As a result, we present measurements of the mass coefficient (M200|20) and the power-law slope (α) for power-law fits to the mass and richness values in each of the redshift bins. We find values of the mass coefficient of 8.49 ± 0.526, 14.1 ± 1.78, 30.2 ± 8.74 and 9.23 ± 0.525 × 1013 h-1 M⊙ for each of the four redshift bins, respectively. We find values of the power-law slope of 0.905 ± 0.0585, 0.948 ± 0.100, 1.33 ± 0.260 and 0.883 ± 0.0500, respectively.

  9. THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH. V. FINAL CATALOG FROM THE SEVENTH DATA RELEASE

    SciTech Connect

    Inada, Naohisa; Oguri, Masamune; Kayo, Issha; Fukugita, Masataka; Shin, Min-Su; Strauss, Michael A.; Bahcall, Neta A.; Morokuma, Tomoki; Rusu, Cristian E.; Kochanek, Christopher S.; Richards, Gordon T.; Schneider, Donald P.; York, Donald G.; Frieman, Joshua A.; Hall, Patrick B.; White, Richard L.

    2012-05-15

    We present the final statistical sample of lensed quasars from the Sloan Digital Sky Survey (SDSS) Quasar Lens Search (SQLS). The well-defined statistical lens sample consists of 26 lensed quasars brighter than i = 19.1 and in the redshift range of 0.6 < z < 2.2 selected from 50,826 spectroscopically confirmed quasars in the SDSS Data Release 7 (DR7), where we restrict the image separation range to 1'' < {theta} < 20'' and the i-band magnitude differences in two images to be smaller than 1.25 mag. The SDSS DR7 quasar catalog also contains 36 additional lenses identified with various techniques. In addition to these lensed quasars, we have identified 81 pairs of quasars from follow-up spectroscopy, 26 of which are physically associated binary quasars. The statistical lens sample covers a wide range of image separations, redshifts, and magnitudes, and therefore is suitable for systematic studies of cosmological parameters and surveys of the structure and evolution of galaxies and quasars.

  10. Industry survey for horizontal wells. Final report

    SciTech Connect

    Wilson, D.D.; Kaback, D.S.; Denhan, M.E.; Watkins, D.

    1993-07-01

    An international survey of horizontal environmental wells was performed during May and June of 1993. The purpose of the survey was to provide the environmental industry with an inventory of horizontal environmental wells and information pertaining to the extent of the use of horizontal environmental wells, the variety of horizontal environmental well applications, the types of geologic and hydrogeologic conditions within which horizontal environmental wells have been installed, and the companies that perform horizontal environmental well installations. Other information, such as the cost of horizontal environmental well installations and the results of tests performed on the wells, is not complete but is provided as general information with the caveat that the information should not be used to compare drilling companies. The result of the survey is a catalogue of horizontal environmental wells that are categorized by the objective or use of the wells, the vertical depth of the wells, and the drilling company contracted to install the wells.

  11. Cameron Station remedial investigation: Final asbestos survey report. Final report

    SciTech Connect

    1992-02-01

    Woodward-Clyde Federal Services (WCFS) conducted a comprehensive asbestos survey of the facilities at Cameron Station as part of its contract with the US Army Toxic and Hazardous Materials Agency (USATHAMA) to perform a remedial investigation and feasibility study (RI/FS) at the base. The purpose of the survey which was initiated August 23, 1990 in response to the Base Realignment And Closure Environmental Restoration Strategy (BRAC), was to identify friable and non-friable asbestos-containing material (ACM), provide options for abatement of asbestos, provide cost estimates for both abatement and operations and maintenance costs, and identifying actions requiring immediate action in Cameron Station`s 24 buildings. BRAC states that only friable asbestos which presents a threat to health and safety shall be removed; non-friable asbestos or friable asbestos which is encapsulated or in good repair shall be left in place and identified to the buyer per GSA agreement. The investigation followed protocols that met or exceeded the requirements of 40 CFR 763, the EPA regulations promulgated under the Asbestos Hazard Emergency Response Act (AHERA).

  12. Lao National Literacy Survey 2001: Final Report

    ERIC Educational Resources Information Center

    Online Submission, 2004

    2004-01-01

    Background: Adult literacy rates are an important indicator for describing the status of education and development within a country. The Lao national literacy survey was undertaken in 2001 to provide a reliable source of literacy data which in turn will determine if the country will reach Education For All (EFA) goals agreed upon at the World…

  13. The Blanco Cosmology Survey: Data Reduction, Calibration and Photometric Redshift Estimation to Four Distant Galaxy Clusters Discovered by the South Pole Telescope

    NASA Astrophysics Data System (ADS)

    Ngeow, Chow Choong; Mohr, J.; Zenteno, A.; Data Management, DES; BCS; SPT Collaborations

    2009-01-01

    The Blanco Cosmology Survey (BCS) is designed to enable a study of the cosmic acceleration using multiple techniques. To date, BCS has acquired Sloan griz band imaging data from 60 nights (15 nights per year from 2005 to 2008) using the Blanco 4m Telescope located at CTIO. The astronomical imaging data taken from this survey have been processed on high performance computer TeraGrid platforms at NCSA, using the automated Dark Energy Survey (DES) data management (DM) system. The DES DM system includes (1) middlewares for controlling and managing the processing jobs, and serve as an application container encapsulating the scientific codes; and (2) DES archive, which includes filesystem nodes, a relational database and a data access framework, to support the pipeline processing, data storage and scientific analyzes. Photometric solution module (PSM) were run on photometric nights to determine the zeropoints (ZP) and other photometric solutions. We remapped and coadded the images that lie within the pre-defined coadd tiles in the sky. When running the coaddition pipeline, we determined the ZP for each images using the photometric ZP from PSM, the magnitude offsets between overlapping images, and the sky brightness ratio for CCDs within a given exposure. We also applied aperture correction and color-term correction to the coadded catalogs. Satisfactory photometric and astrometric precision were achieved. These enabled initial estimation of photometric redshifts using ANNz codes, trained from 5000 galaxies with spectroscopic redshifts. RMS in the photometric redshifts ranges from 0.05 to 0.1 in sigma_z/(1+z) for redshift extended to z=1. We used the BCS data to optically confirm and estimate redshifts for four of the highest S/N galaxy clusters discovered with the South Pole Telescope using the Sunyaev-Zel'dovich Effect.

  14. Identifications of The Most Luminous, Highest-Redshift Objects Discovered by WISE (Wide-field Infrared Survey Explorer)

    NASA Astrophysics Data System (ADS)

    Benford, Dominic; Stanford, Adam; Jarrett, Tom; Yan, Lin; Eisenhardt, Peter; Lonsdale, Carol; Wright, Ned; Tsai, Chao-Wei; Blain, Andrew; Cutri, Roc

    2010-08-01

    We request 4 nights to obtain KPNO/FLAMINGOS near-IR photometry and spectroscopy follow-up observations of a sample of extremely luminous, z > 1 galaxy candidates selected from WISE, a new NASA mission which is in the process of surveying the whole sky at 3.4,4.6,12 and 22 (micron) in 6 months (Jan-July 2010). The candidates are selected to have mid-IR colors indicating starburst-dominated spectra at redshifts of z=1.2 - 3, but are 100 times more luminous than local ULIRGs with L_FIR > 10^14 L_⊙, called extreme hyperluminous infrared galaxies (eHyLIRGs). In combination with the WISE mid-infrared photometry, the near-IR photometric and spectroscopic observations will allow us to distinguish high-z targets from local red populations, determine the luminosity, and further study the star formation activity from hydrogen recombination lines, extinction toward the star formation regions, and SED modeling on the stellar population of these galaxies.

  15. Radiological Final Status Survey of the Hammond Depot, Hammond, Indiana

    SciTech Connect

    T.J. Vitkus

    2008-04-07

    ORISE conducted extensive scoping, characterization, and final status surveys of land areas and structures at the DNSC’s Hammond Depot located in Hammond, Indiana in multiple phases during 2005, 2006 and 2007.

  16. The Richness Dependence of Galaxy Cluster Correlations: Results From A Redshift Survey Of Rich APM Clusters

    NASA Technical Reports Server (NTRS)

    Croft, R. A. C.; Dalton, G. B.; Efstathiou, G.; Sutherland, W. J.; Maddox, S. J.

    1997-01-01

    We analyze the spatial clustering properties of a new catalog of very rich galaxy clusters selected from the APM Galaxy Survey. These clusters are of comparable richness and space density to Abell Richness Class greater than or equal to 1 clusters, but selected using an objective algorithm from a catalog demonstrably free of artificial inhomogeneities. Evaluation of the two-point correlation function xi(sub cc)(r) for the full sample and for richer subsamples reveals that the correlation amplitude is consistent with that measured for lower richness APM clusters and X-ray selected clusters. We apply a maximum likelihood estimator to find the best fitting slope and amplitude of a power law fit to x(sub cc)(r), and to estimate the correlation length r(sub 0) (the value of r at which xi(sub cc)(r) is equal to unity). For clusters with a mean space density of 1.6 x 10(exp -6) h(exp 3) MpC(exp -3) (equivalent to the space density of Abell Richness greater than or equal to 2 clusters), we find r(sub 0) = 21.3(+11.1/-9.3) h(exp -1) Mpc (95% confidence limits). This is consistent with the weak richness dependence of xi(sub cc)(r) expected in Gaussian models of structure formation. In particular, the amplitude of xi(sub cc)(r) at all richnesses matches that of xi(sub cc)(r) for clusters selected in N-Body simulations of a low density Cold Dark Matter model.

  17. Texas Public School Technology Survey, 1988. Final Report.

    ERIC Educational Resources Information Center

    Denton, Jon; Davis, Trina; Strader, Arlen; Jessup, George

    The Texas Association of School Administrators (TASA) with technical support from the South Central Regional Technology in Education Consortia-Texas (SCR*TEC-TX) conducted a survey of the technology infrastructure in all public schools in Texas. This document provides the final report of the 1998 Texas Public School Technology Survey. Following…

  18. Phenomenology of dark energy: exploring the space of theories with future redshift surveys

    SciTech Connect

    Piazza, Federico; Steigerwald, Heinrich; Marinoni, Christian E-mail: heinrich.Steigerwald@cpt.univ-mrs.fr

    2014-05-01

    We use the effective field theory of dark energy to explore the space of modified gravity models which are capable of driving the present cosmic acceleration. We identify five universal functions of cosmic time that are enough to describe a wide range of theories containing a single scalar degree of freedom in addition to the metric. The first function (the effective equation of state) uniquely controls the expansion history of the universe. The remaining four functions appear in the linear cosmological perturbation equations, but only three of them regulate the growth history of large scale structures. We propose a specific parameterization of such functions in terms of characteristic coefficients that serve as coordinates in the space of modified gravity theories and can be effectively constrained by the next generation of cosmological experiments. We address in full generality the problem of the soundness of the theory against ghost-like and gradient instabilities and show how the space of non-pathological models shrinks when a more negative equation of state parameter is considered. This analysis allows us to locate a large class of stable theories that violate the null energy condition (i.e. super-acceleration models) and to recover, as particular subsets, various models considered so far. Finally, under the assumption that the true underlying cosmological model is the Λ Cold Dark Matter (ΛCDM) scenario, and relying on the figure of merit of EUCLID-like observations, we demonstrate that the theoretical requirement of stability significantly narrows the empirical likelihood, increasing the discriminatory power of data. We also find that the vast majority of these non-pathological theories generating the same expansion history as the ΛCDM model predict a different, lower, growth rate of cosmic structures.

  19. The Star Formation History of BCGs to z = 1.8 from the SpARCS/SWIRE Survey: Evidence for Significant In Situ Star Formation at High Redshift

    NASA Astrophysics Data System (ADS)

    Webb, Tracy M. A.; Muzzin, Adam; Noble, Allison; Bonaventura, Nina; Geach, James; Hezevah, Yashar; Lidman, Chris; Wilson, Gillian; Yee, H. K. C.; Surace, Jason; Shupe, David

    2015-12-01

    We present the results of an MIPS-24 μm study of the brightest cluster galaxies (BCGs) of 535 high-redshift galaxy clusters. The clusters are drawn from the Spitzer Adaptation of the Red-Sequence Cluster Survey, which effectively provides a sample selected on total stellar mass, over 0.2 < z < 1.8 within the Spitzer Wide-Area Infrared Extragalactic (SWIRE) Survey fields. Twenty percent, or 106 clusters, have spectroscopically confirmed redshifts, and the rest have redshifts estimated from the color of their red sequence. A comparison with the public SWIRE images detects 125 individual BCGs at 24 μm ≳ 100 μJy, or 23%. The luminosity-limited detection rate of BCGs in similar richness clusters (Ngal > 12) increases rapidly with redshift. Above z ∼ 1, an average of ∼20% of the sample have 24 μm inferred infrared luminosities of LIR > 1012 L⊙, while the fraction below z ∼ 1 exhibiting such luminosities is <1%. The Spitzer-IRAC colors indicate the bulk of the 24 μm detected population is predominantly powered by star formation, with only 7/125 galaxies lying within the color region inhabited by active galactic nuclei (AGNs). Simple arguments limit the star formation activity to several hundred million years and this may therefore be indicative of the timescale for AGN feedback to halt the star formation. Below redshift z ∼ 1, there is not enough star formation to significantly contribute to the overall stellar mass of the BCG population, and therefore BCG growth is likely dominated by dry mergers. Above z ∼ 1, however, the inferred star formation would double the stellar mass of the BCGs and is comparable to the mass assembly predicted by simulations through dry mergers. We cannot yet constrain the process driving the star formation for the overall sample, though a single object studied in detail is consistent with a gas-rich merger.

  20. A direct probe of cosmological power spectra of the peculiar velocity field and the gravitational lensing magnification from photometric redshift surveys

    SciTech Connect

    Nusser, Adi; Feix, Martin; Branchini, Enzo E-mail: branchin@fis.uniroma3.it

    2013-01-01

    The cosmological peculiar velocity field (deviations from the pure Hubble flow) of matter carries significant information on dark energy, dark matter and the underlying theory of gravity on large scales. Peculiar motions of galaxies introduce systematic deviations between the observed galaxy redshifts z and the corresponding cosmological redshifts z{sub c{sub o{sub s}}}. A novel method for estimating the angular power spectrum of the peculiar velocity field based on observations of galaxy redshifts and apparent magnitudes m (or equivalently fluxes) is presented. This method exploits the fact that a mean relation between z{sub c{sub o{sub s}}} and m of galaxies can be derived from all galaxies in a redshift-magnitude survey. Given a galaxy magnitude, it is shown that the z{sub c{sub o{sub s}}}(m) relation yields its cosmological redshift with a 1σ error of σ{sub z} ∼ 0.3 for a survey like Euclid ( ∼ 10{sup 9} galaxies at z∼<2), and can be used to constrain the angular power spectrum of z−z{sub c{sub o{sub s}}}(m) with a high signal-to-noise ratio. At large angular separations corresponding to l∼<15, we obtain significant constraints on the power spectrum of the peculiar velocity field. At 15∼

  1. A Deep Survey of Low-Redshift Absorbers and Their Connections with Galaxies: Probing the Roles of Dwarfs, Satellites, and Large-Scale Environment

    NASA Astrophysics Data System (ADS)

    Burchett, Joseph

    2014-10-01

    In the not-too-distant past, the study of galaxy evolution neglected the vast interface between the stars in a galaxy and intergalactic space except for the dynamical effects of dark matter. Thanks to QSO absorption line spectroscopy and the Cosmic Origins Spectrograph {COS}, the circumgalactic medium {CGM} has come into sharp focus as a rich ecosystem playing a vital role in the evolution of the host galaxy. However, attributing the gas detected in absorption with host dwarf galaxies detected in optical surveys around the sightline becomes very difficult very quickly with increasing redshift. In addition, both targeted UV spectroscopy and ground-based galaxy surveys are resource intensive, which complicates compiling large, statistically robust samples of very-low-redshift absorber/galaxy pairs. We propose a CGM study of unprecedented statistical power by exploiting the vast number of sightlines in the HST/COS archive located within the Sloan Digital Sky Survey {SDSS} footprint to compile an estimated sample of 586 absorbers at z<0.015. This very-low-redshift criterion enables spectroscopic completeness down to L<0.01 L* galaxies in publicly available optical imaging and spectroscopy.Our survey is uniquely poised to address the following questions: {1} What is the role of dwarf galaxies that would be undetectable at higher redshift in giving rise to the gas detected in QSO spectroscopy? {2} How does galaxy environment and large-scale structure affect the CGM and what are the implications for environmental quenching of star formation? {3} How efficiently do feedback mechanisms expel metal-enriched gas to great distances into the galaxy halo and into the IGM?

  2. Baryon cycling in the low-redshift circumgalactic medium: a comparison of simulations to the COS-Halos survey

    NASA Astrophysics Data System (ADS)

    Ford, Amanda Brady; Werk, Jessica K.; Davé, Romeel; Tumlinson, Jason; Bordoloi, Rongmon; Katz, Neal; Kollmeier, Juna A.; Oppenheimer, Benjamin D.; Peeples, Molly S.; Prochaska, Jason X.; Weinberg, David H.

    2016-06-01

    We analyse the low-redshift (z ≈ 0.2) circumgalactic medium (CGM) by comparing absorption-line data from the COS-Halos survey to absorption around a matched galaxy sample from two cosmological hydrodynamic simulations. The models include different prescriptions for galactic outflows, namely hybrid energy/momentum driven wind (ezw), and constant winds (cw). We compare equivalent widths, covering factors, ion ratios, and kinematics. Both wind models show generally ≲ 1σ agreement with these observations for H I and certain low-ionization metal lines, but poorer agreement with higher ionization metal lines including Si III and O VI that are well observed by COS-Halos. This suggests that both models predict too much cool, metal-enriched gas and not enough hot gas, and / or that metals are not sufficiently mixed. This may reflect our model assumption of ejecting outflows as cool and unmixing gas. Our ezw simulation includes a heuristic prescription to quench massive galaxies by superheating interstellar medium gas. This produces low-ionization absorption broadly consistent with observations, but substantial O VI absorption inconsistent with data, suggesting that gas around quenched galaxies in the real Universe does not cool. At impact parameters of ≲ 50 kpc, recycling winds dominate the absorption of low ions and even H I, while O VI generally arises from metals ejected ≳ 1 Gyr ago. The similarity between the wind models is surprising, since they differ substantially in the amount and phase distribution of halo gas. We show that this similarity owes mainly to our comparison at fixed stellar (not halo) mass, suggesting that CGM properties are more closely tied to galaxy's stellar (versus halo) mass.

  3. THE MULTIWAVELENGTH SURVEY BY YALE-CHILE (MUSYC): DEEP MEDIUM-BAND OPTICAL IMAGING AND HIGH-QUALITY 32-BAND PHOTOMETRIC REDSHIFTS IN THE ECDF-S

    SciTech Connect

    Cardamone, Carolin N.; Van Dokkum, Pieter G.; Urry, C. Megan; Brammer, Gabriel; Taniguchi, Yoshi; Gawiser, Eric; Bond, Nicholas; Taylor, Edward; Damen, Maaike; Treister, Ezequiel; Cobb, Bethany E.; Schawinski, Kevin; Lira, Paulina; Murayama, Takashi; Saito, Tomoki; Sumikawa, Kentaro

    2010-08-15

    We present deep optical 18-medium-band photometry from the Subaru telescope over the {approx}30' x 30' Extended Chandra Deep Field-South, as part of the Multiwavelength Survey by Yale-Chile (MUSYC). This field has a wealth of ground- and space-based ancillary data, and contains the GOODS-South field and the Hubble Ultra Deep Field. We combine the Subaru imaging with existing UBVRIzJHK and Spitzer IRAC images to create a uniform catalog. Detecting sources in the MUSYC 'BVR' image we find {approx}40,000 galaxies with R {sub AB} < 25.3, the median 5{sigma} limit of the 18 medium bands. Photometric redshifts are determined using the EAzY code and compared to {approx}2000 spectroscopic redshifts in this field. The medium-band filters provide very accurate redshifts for the (bright) subset of galaxies with spectroscopic redshifts, particularly at 0.1 < z < 1.2 and at z {approx}> 3.5. For 0.1 < z < 1.2, we find a 1{sigma} scatter in {Delta}z/(1 + z) of 0.007, similar to results obtained with a similar filter set in the COSMOS field. As a demonstration of the data quality, we show that the red sequence and blue cloud can be cleanly identified in rest-frame color-magnitude diagrams at 0.1 < z < 1.2. We find that {approx}20% of the red sequence galaxies show evidence of dust emission at longer rest-frame wavelengths. The reduced images, photometric catalog, and photometric redshifts are provided through the public MUSYC Web site.

  4. THE XMM-NEWTON WIDE FIELD SURVEY IN THE COSMOS FIELD: REDSHIFT EVOLUTION OF AGN BIAS AND SUBDOMINANT ROLE OF MERGERS IN TRIGGERING MODERATE-LUMINOSITY AGNs AT REDSHIFTS UP TO 2.2

    SciTech Connect

    Allevato, V.; Hasinger, G.; Salvato, M.; Finoguenov, A.; Brusa, M.; Bongiorno, A.; Merloni, A.; Cappelluti, N.; Miyaji, T.; Gilli, R.; Zamorani, G.; Comastri, A.; Shankar, F.; James, J. B.; Peacock, J. A.; McCracken, H. J.; Silverman, J.

    2011-08-01

    We present a study of the redshift evolution of the projected correlation function of 593 X-ray selected active galactic nuclei (AGNs) with I{sub AB} < 23 and spectroscopic redshifts z < 4, extracted from the 0.5-2 keV X-ray mosaic of the 2.13 deg{sup 2} XMM- Cosmic Evolution Survey (COSMOS). We introduce a method to estimate the average bias of the AGN sample and the mass of AGN hosting halos, solving the sample variance using the halo model and taking into account the growth of the structure over time. We find evidence of a redshift evolution of the bias factor for the total population of XMM-COSMOS AGNs from b-bar (z-bar =0.92)=2.30{+-}0.11 to b-bar (z-bar =1.94)=4.37{+-}0.27 with an average mass of the hosting dark matter (DM) halos log M{sub 0}(h{sup -1} M{sub sun}) {approx} 13.12 {+-} 0.12 that remains constant at all z < 2. Splitting our sample into broad optical line AGNs (BL), AGNs without broad optical lines (NL), and X-ray unobscured and obscured AGNs, we observe an increase of the bias with redshift in the range z-bar = 0.7-2.25 and z-bar = 0.6-1.5 which corresponds to a constant halo mass of log M{sub 0}(h{sup -1} M{sub sun}) {approx} 13.28 {+-} 0.07 and log M{sub 0}(h{sup -1} M{sub sun}) {approx} 13.00 {+-} 0.06 for BL/X-ray unobscured AGNs and NL/X-ray obscured AGNs, respectively. The theoretical models, which assume a quasar phase triggered by major mergers, cannot reproduce the high bias factors and DM halo masses found for X-ray selected BL AGNs with L{sub BOL} {approx} 2 x 10{sup 45} erg s{sup -1}. Our work extends up to z {approx} 2.2 the z {approx}< 1 statement that, for moderate-luminosity X-ray selected BL AGNs, the contribution from major mergers is outnumbered by other processes, possibly secular ones such as tidal disruptions or disk instabilities.

  5. Mass calibration of galaxy clusters at redshift 0.1–1.0 using weak lensing in the Sloan Digital Sky Survey Stripe 82 co-add

    DOE PAGESBeta

    Wiesner, Matthew P.; Lin, Huan; Soares-Santos, Marcelle

    2015-07-08

    We present galaxy cluster mass–richness relations found in the Sloan Digital Sky Survey Stripe 82 co-add using clusters found using a Voronoi tessellation cluster finder. These relations were found using stacked weak lensing shear observed in a large sample of galaxy clusters. These mass–richness relations are presented for four redshift bins, 0.1 < z ≤ 0.4, 0.4 < z ≤ 0.7, 0.7 < z ≤ 1.0 and 0.1 < z ≤ 1.0. We describe the sample of galaxy clusters and explain how these clusters were found using a Voronoi tessellation cluster finder. We fit a Navarro-Frenk-White profile to the stackedmore » weak lensing shear signal in redshift and richness bins in order to measure virial mass (M200). We describe several effects that can bias weak lensing measurements, including photometric redshift bias, the effect of the central BCG, halo miscentering, photometric redshift uncertainty and foreground galaxy contamination. We present mass–richness relations using richness measure NVT with each of these effects considered separately as well as considered altogether. We also examine redshift evolution of the mass–richness relation. As a result, we present measurements of the mass coefficient (M200|20) and the power-law slope (α) for power-law fits to the mass and richness values in each of the redshift bins. We find values of the mass coefficient of 8.49 ± 0.526, 14.1 ± 1.78, 30.2 ± 8.74 and 9.23 ± 0.525 × 1013 h–1 M⊙ for each of the four redshift bins, respectively. As a result, we find values of the power-law slope of 0.905 ± 0.0585, 0.948 ± 0.100, 1.33 ± 0.260 and 0.883 ± 0.0500, respectively.« less

  6. Mass calibration of galaxy clusters at redshift 0.1–1.0 using weak lensing in the Sloan Digital Sky Survey Stripe 82 co-add

    SciTech Connect

    Wiesner, Matthew P.; Lin, Huan; Soares-Santos, Marcelle

    2015-07-08

    We present galaxy cluster mass–richness relations found in the Sloan Digital Sky Survey Stripe 82 co-add using clusters found using a Voronoi tessellation cluster finder. These relations were found using stacked weak lensing shear observed in a large sample of galaxy clusters. These mass–richness relations are presented for four redshift bins, 0.1 < z ≤ 0.4, 0.4 < z ≤ 0.7, 0.7 < z ≤ 1.0 and 0.1 < z ≤ 1.0. We describe the sample of galaxy clusters and explain how these clusters were found using a Voronoi tessellation cluster finder. We fit a Navarro-Frenk-White profile to the stacked weak lensing shear signal in redshift and richness bins in order to measure virial mass (M200). We describe several effects that can bias weak lensing measurements, including photometric redshift bias, the effect of the central BCG, halo miscentering, photometric redshift uncertainty and foreground galaxy contamination. We present mass–richness relations using richness measure NVT with each of these effects considered separately as well as considered altogether. We also examine redshift evolution of the mass–richness relation. As a result, we present measurements of the mass coefficient (M200|20) and the power-law slope (α) for power-law fits to the mass and richness values in each of the redshift bins. We find values of the mass coefficient of 8.49 ± 0.526, 14.1 ± 1.78, 30.2 ± 8.74 and 9.23 ± 0.525 × 1013 h–1 M for each of the four redshift bins, respectively. As a result, we find values of the power-law slope of 0.905 ± 0.0585, 0.948 ± 0.100, 1.33 ± 0.260 and 0.883 ± 0.0500, respectively.

  7. The DAFT/FADA survey. I.Photometric redshifts along lines of sight to clusters in the z=[0.4,0.9] interval

    SciTech Connect

    Guennou, L.; Adami, C.; Ulmer, M.P.; LeBrun, V.; Durret, F.; Johnston, D.; Ilbert, O.; Clowe, D.; Gavazzi, R.; Murphy, K.; Schrabback, T.; /Leiden Observ. /Fermilab

    2010-08-01

    As a contribution to the understanding of the dark energy concept, the Dark energy American French Team (DAFT, in French FADA) has started a large project to characterize statistically high redshift galaxy clusters, infer cosmological constraints from Weak Lensing Tomography, and understand biases relevant for constraining dark energy and cluster physics in future cluster and cosmological experiments. Aims. The purpose of this paper is to establish the basis of reference for the photo-z determination used in all our subsequent papers, including weak lensing tomography studies. This project is based on a sample of 91 high redshift (z {ge} 0.4), massive ({approx}> 3 x 10{sup 14} M{sub {circle_dot}}) clusters with existing HST imaging, for which we are presently performing complementary multi-wavelength imaging. This allows us in particular to estimate spectral types and determine accurate photometric redshifts for galaxies along the lines of sight to the first ten clusters for which all the required data are available down to a limit of I{sub AB} = 24./24.5 with the LePhare software. The accuracy in redshift is of the order of 0.05 for the range 0.2 {le} z {le} 1.5. We verified that the technique applied to obtain photometric redshifts works well by comparing our results to with previous works. In clusters, photo-z accuracy is degraded for bright absolute magnitudes and for the latest and earliest type galaxies. The photo-z accuracy also only slightly varies as a function of the spectral type for field galaxies. As a consequence, we find evidence for an environmental dependence of the photo-z accuracy, interpreted as the standard used Spectral Energy Distributions being not very well suited to cluster galaxies. Finally, we modeled the LCDCS 0504 mass with the strong arcs detected along this line of sight.

  8. The 3D-HST Survey: Hubble Space Telescope WFC3/G141 Grism Spectra, Redshifts, and Emission Line Measurements for ~ 100,000 Galaxies

    NASA Astrophysics Data System (ADS)

    Momcheva, Ivelina G.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Skelton, Rosalind E.; Whitaker, Katherine E.; Nelson, Erica J.; Fumagalli, Mattia; Maseda, Michael V.; Leja, Joel; Franx, Marijn; Rix, Hans-Walter; Bezanson, Rachel; Da Cunha, Elisabete; Dickey, Claire; Förster Schreiber, Natascha M.; Illingworth, Garth; Kriek, Mariska; Labbé, Ivo; Ulf Lange, Johannes; Lundgren, Britt F.; Magee, Daniel; Marchesini, Danilo; Oesch, Pascal; Pacifici, Camilla; Patel, Shannon G.; Price, Sedona; Tal, Tomer; Wake, David A.; van der Wel, Arjen; Wuyts, Stijn

    2016-08-01

    We present reduced data and data products from the 3D-HST survey, a 248-orbit HST Treasury program. The survey obtained WFC3 G141 grism spectroscopy in four of the five CANDELS fields: AEGIS, COSMOS, GOODS-S, and UDS, along with WFC3 H 140 imaging, parallel ACS G800L spectroscopy, and parallel I 814 imaging. In a previous paper, we presented photometric catalogs in these four fields and in GOODS-N, the fifth CANDELS field. Here we describe and present the WFC3 G141 spectroscopic data, again augmented with data from GO-1600 in GOODS-N (PI: B. Weiner). We developed software to automatically and optimally extract interlaced two-dimensional (2D) and one-dimensional (1D) spectra for all objects in the Skelton et al. (2014) photometric catalogs. The 2D spectra and the multi-band photometry were fit simultaneously to determine redshifts and emission line strengths, taking the morphology of the galaxies explicitly into account. The resulting catalog has redshifts and line strengths (where available) for 22,548 unique objects down to {{JH}}{IR}≤slant 24 (79,609 unique objects down to {{JH}}{IR}≤slant 26). Of these, 5459 galaxies are at z\\gt 1.5 and 9621 are at 0.7\\lt z\\lt 1.5, where Hα falls in the G141 wavelength coverage. The typical redshift error for {{JH}}{IR}≤slant 24 galaxies is {σ }z≈ 0.003× (1+z), i.e., one native WFC3 pixel. The 3σ limit for emission line fluxes of point sources is 2.1× {10}-17 erg s‑1 cm‑2. All 2D and 1D spectra, as well as redshifts, line fluxes, and other derived parameters, are publicly available.18

  9. The 3D-HST Survey: Hubble Space Telescope WFC3/G141 Grism Spectra, Redshifts, and Emission Line Measurements for ~ 100,000 Galaxies

    NASA Astrophysics Data System (ADS)

    Momcheva, Ivelina G.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Skelton, Rosalind E.; Whitaker, Katherine E.; Nelson, Erica J.; Fumagalli, Mattia; Maseda, Michael V.; Leja, Joel; Franx, Marijn; Rix, Hans-Walter; Bezanson, Rachel; Da Cunha, Elisabete; Dickey, Claire; Förster Schreiber, Natascha M.; Illingworth, Garth; Kriek, Mariska; Labbé, Ivo; Ulf Lange, Johannes; Lundgren, Britt F.; Magee, Daniel; Marchesini, Danilo; Oesch, Pascal; Pacifici, Camilla; Patel, Shannon G.; Price, Sedona; Tal, Tomer; Wake, David A.; van der Wel, Arjen; Wuyts, Stijn

    2016-08-01

    We present reduced data and data products from the 3D-HST survey, a 248-orbit HST Treasury program. The survey obtained WFC3 G141 grism spectroscopy in four of the five CANDELS fields: AEGIS, COSMOS, GOODS-S, and UDS, along with WFC3 H 140 imaging, parallel ACS G800L spectroscopy, and parallel I 814 imaging. In a previous paper, we presented photometric catalogs in these four fields and in GOODS-N, the fifth CANDELS field. Here we describe and present the WFC3 G141 spectroscopic data, again augmented with data from GO-1600 in GOODS-N (PI: B. Weiner). We developed software to automatically and optimally extract interlaced two-dimensional (2D) and one-dimensional (1D) spectra for all objects in the Skelton et al. (2014) photometric catalogs. The 2D spectra and the multi-band photometry were fit simultaneously to determine redshifts and emission line strengths, taking the morphology of the galaxies explicitly into account. The resulting catalog has redshifts and line strengths (where available) for 22,548 unique objects down to {{JH}}{IR}≤slant 24 (79,609 unique objects down to {{JH}}{IR}≤slant 26). Of these, 5459 galaxies are at z\\gt 1.5 and 9621 are at 0.7\\lt z\\lt 1.5, where Hα falls in the G141 wavelength coverage. The typical redshift error for {{JH}}{IR}≤slant 24 galaxies is {σ }z≈ 0.003× (1+z), i.e., one native WFC3 pixel. The 3σ limit for emission line fluxes of point sources is 2.1× {10}-17 erg s-1 cm-2. All 2D and 1D spectra, as well as redshifts, line fluxes, and other derived parameters, are publicly available.18

  10. Spectroscopy of clusters in the ESO distant cluster survey (EDisCS). II.. Redshifts, velocity dispersions, and substructure for clusters in the last 15 fields

    NASA Astrophysics Data System (ADS)

    Milvang-Jensen, B.; Noll, S.; Halliday, C.; Poggianti, B. M.; Jablonka, P.; Aragón-Salamanca, A.; Saglia, R. P.; Nowak, N.; von der Linden, A.; De Lucia, G.; Pelló, R.; Moustakas, J.; Poirier, S.; Bamford, S. P.; Clowe, D. I.; Dalcanton, J. J.; Rudnick, G. H.; Simard, L.; White, S. D. M.; Zaritsky, D.

    2008-05-01

    Aims: We present spectroscopic observations of galaxies in 15 survey fields as part of the ESO Distant Cluster Survey (EDisCS). We determine the redshifts and velocity dispersions of the galaxy clusters located in these fields, and we test for possible substructure in the clusters. Methods: We obtained multi-object mask spectroscopy using the FORS2 instrument at the VLT. We reduced the data with particular attention to the sky subtraction. We implemented the method of Kelson for performing sky subtraction prior to any rebinning/interpolation of the data. From the measured galaxy redshifts, we determine cluster velocity dispersions using the biweight estimator and test for possible substructure in the clusters using the Dressler-Shectman test. Results: The method of subtracting the sky prior to any rebinning/interpolation of the data delivers photon-noise-limited results, whereas the traditional method of subtracting the sky after the data have been rebinned/interpolated results in substantially larger noise for spectra from tilted slits. Redshifts for individual galaxies are presented and redshifts and velocity dispersions are presented for 21 galaxy clusters. For the 9 clusters with at least 20 spectroscopically confirmed members, we present the statistical significance of the presence of substructure obtained from the Dressler-Shectman test, and substructure is detected in two of the clusters. Conclusions: Together with data from our previous paper, spectroscopy and spectroscopic velocity dispersions are now available for 26 EDisCS clusters with redshifts in the range 0.40-0.96 and velocity dispersions in the range 166 km s-1-1080 km s-1. Based on observations collected at the European Southern Observatory, Chile, as part of large programme 166.A-0162 (the ESO Distant Cluster Survey). Full Table 4 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/482/419

  11. THE STAR FORMATION HISTORY OF BCGs TO z = 1.8 FROM THE SpARCS/SWIRE SURVEY: EVIDENCE FOR SIGNIFICANT IN SITU STAR FORMATION AT HIGH REDSHIFT

    SciTech Connect

    Webb, Tracy M. A.; Bonaventura, Nina; Muzzin, Adam; Noble, Allison; Yee, H. K. C.; Geach, James; Hezevah, Yashar; Lidman, Chris; Wilson, Gillian; Surace, Jason

    2015-12-01

    We present the results of an MIPS-24 μm study of the brightest cluster galaxies (BCGs) of 535 high-redshift galaxy clusters. The clusters are drawn from the Spitzer Adaptation of the Red-Sequence Cluster Survey, which effectively provides a sample selected on total stellar mass, over 0.2 < z < 1.8 within the Spitzer Wide-Area Infrared Extragalactic (SWIRE) Survey fields. Twenty percent, or 106 clusters, have spectroscopically confirmed redshifts, and the rest have redshifts estimated from the color of their red sequence. A comparison with the public SWIRE images detects 125 individual BCGs at 24 μm ≳ 100 μJy, or 23%. The luminosity-limited detection rate of BCGs in similar richness clusters (N{sub gal} > 12) increases rapidly with redshift. Above z ∼ 1, an average of ∼20% of the sample have 24 μm inferred infrared luminosities of L{sub IR} > 10{sup 12} L{sub ⊙}, while the fraction below z ∼ 1 exhibiting such luminosities is <1%. The Spitzer-IRAC colors indicate the bulk of the 24 μm detected population is predominantly powered by star formation, with only 7/125 galaxies lying within the color region inhabited by active galactic nuclei (AGNs). Simple arguments limit the star formation activity to several hundred million years and this may therefore be indicative of the timescale for AGN feedback to halt the star formation. Below redshift z ∼ 1, there is not enough star formation to significantly contribute to the overall stellar mass of the BCG population, and therefore BCG growth is likely dominated by dry mergers. Above z ∼ 1, however, the inferred star formation would double the stellar mass of the BCGs and is comparable to the mass assembly predicted by simulations through dry mergers. We cannot yet constrain the process driving the star formation for the overall sample, though a single object studied in detail is consistent with a gas-rich merger.

  12. [Wing 1 radiation survey and contamination report]. Final report

    SciTech Connect

    Olsen, K.

    1991-05-13

    We have completed the 5480.11 survey for Wing 1. All area(s)/item(s) requested by the 5480.11 committee have been thoroughly surveyed and documented. Decontamination/disposal of contaminated items has been accomplished. The wing 1 survey was started on 8/13/90 and completed 9/18/90. However, the follow-up surveys were not completed until 2/18/91. We received the final set of smear samples for wing 1 on 1/13/91. A total of 5,495 smears were taken from wing 1 and total of 465 smears were taken during the follow-up surveys. There were a total 122 items found to have fixed contamination and 4 items with smearable contamination in excess of the limits specified in DOE ORDER 5480.11 (AR 3-7). The following area(s)/item(s) were not included in the 5480.11 survey: Hallways, Access panels, Men`s and women`s change rooms, Janitor closets, Wall lockers and item(s) stored in wing 1 hallways and room 1116. If our contract is renewed, we will include those areas in our survey according to your request of April 15, 1991.

  13. A Survey of Luminous High-redshift Quasars with SDSS and WISE. II. the Bright End of the Quasar Luminosity Function at z ≈ 5

    NASA Astrophysics Data System (ADS)

    Yang, Jinyi; Wang, Feige; Wu, Xue-Bing; Fan, Xiaohui; McGreer, Ian D.; Bian, Fuyan; Yi, Weimin; Yang, Qian; Ai, Yanli; Dong, Xiaoyi; Zuo, Wenwen; Green, Richard; Jiang, Linhua; Wang, Shu; Wang, Ran; Yue, Minghao

    2016-09-01

    This is the second paper in a series on a new luminous z ˜ 5 quasar survey using optical and near-infrared colors. Here we present a new determination of the bright end of the quasar luminosity function (QLF) at z ˜ 5. Combining our 45 new quasars with previously known quasars that satisfy our selections, we construct the largest uniform luminous z ˜ 5 quasar sample to date, with 99 quasars in the range of 4.7 ≤ z < 5.4 and -29 < M 1450 ≤ -26.8, within the Sloan Digital Sky Survey (SDSS) footprint. We use a modified 1/V a method including flux limit correction to derive a binned QLF, and we model the parametric QLF using maximum likelihood estimation. With the faint-end slope of the QLF fixed as α = -2.03 from previous deeper samples, the best fit of our QLF gives a flatter bright end slope β = -3.58 ± 0.24 and a fainter break magnitude {M}1450* = -26.98 ± 0.23 than previous studies at similar redshift. Combined with previous work at lower and higher redshifts, our result is consistent with a luminosity evolution and density evolution model. Using the best-fit QLF, the contribution of quasars to the ionizing background at z ˜ 5 is found to be 18%-45% with a clumping factor C of 2-5. Our sample suggests an evolution of radio loud fraction with optical luminosity but no obvious evolution with redshift.

  14. The Vimos VLT Deep Survey. Stellar mass segregation and large-scale galaxy environment in the redshift range 0.2 < z < 1.4

    NASA Astrophysics Data System (ADS)

    Scodeggio, M.; Vergani, D.; Cucciati, O.; Iovino, A.; Franzetti, P.; Garilli, B.; Lamareille, F.; Bolzonella, M.; Pozzetti, L.; Abbas, U.; Marinoni, C.; Contini, T.; Bottini, D.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Scaramella, R.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Cappi, A.; Charlot, S.; Ciliegi, P.; Foucaud, S.; Gavignaud, I.; Guzzo, L.; Ilbert, O.; McCracken, H. J.; Marano, B.; Mazure, A.; Meneux, B.; Merighi, R.; Paltani, S.; Pellò, R.; Pollo, A.; Radovich, M.; Zamorani, G.; Zucca, E.; Bondi, M.; Bongiorno, A.; Brinchmann, J.; de La Torre, S.; de Ravel, L.; Gregorini, L.; Memeo, P.; Perez-Montero, E.; Mellier, Y.; Temporin, S.; Walcher, C. J.

    2009-07-01

    Context: Hierarchical models of galaxy formation predict that the properties of a dark matter halo depend on the large-scale environment surrounding the halo. As a result of this correlation, we expect massive haloes to be present in larger number in overdense regions than in underdense ones. Given that a correlation exists between a galaxy stellar mass and the hosting dark matter halo mass, the segregation in dark matter halo mass should then result in a segregation in the distribution of stellar mass in the galaxy population. Aims: In this work we study the distribution of galaxy stellar mass and rest-frame optical color as a function of the large-scale galaxy distribution using the VLT VIMOS Deep Survey sample, in order to verify the presence of segregation in the properties of the galaxy population. Methods: We use VVDS redshift measurements and multi-band photometric data to derive estimates of the stellar mass, rest-frame optical color, and of the large-scale galaxy density, on a scale of approximately 8 Mpc, for a sample of 5619 galaxies in the redshift range 0.2redshift interval covered by our sample, such that the median value of the mass distribution is larger and the rest-frame optical color is redder in regions of high galaxy density. The amplitude of the mass segregation changes little with redshift, at least in the high stellar mass regime that we can uniformly sample over the 0.2 < z < 1.4 redshift interval. The color segregation, instead, decreases significantly for z > 0.7. However, when we consider only galaxies in narrow bins of stellar mass, in order to exclude the effects of stellar mass segregation on galaxy properties, we no longer observe any significant color segregation. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, program 070.A-9007(A), and on data obtained at the Canada-France-Hawaii Telescope

  15. The KMOS AGN Survey at High redshift (KASHz): the prevalence and drivers of ionized outflows in the host galaxies of X-ray AGN

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Stott, J. P.; Swinbank, A. M.; Arumugam, V.; Bauer, F. E.; Bower, R. G.; Bunker, A. J.; Sharples, R. M.

    2016-02-01

    We present the first results from the KMOS (K-band Multi-Object Spectrograph) AGN (active galactic nuclei) Survey at High redshift (KASHz), a VLT/KMOS integral-field spectroscopic (IFS) survey of z ≳ 0.6 AGN. We present galaxy-integrated spectra of 89 X-ray AGN (L2-10 keV = 1042-1045 erg s-1), for which we observed [O III] (z ≈ 1.1-1.7) or Hα emission (z ≈ 0.6-1.1). The targets have X-ray luminosities representative of the parent AGN population and we explore the emission-line luminosities as a function of X-ray luminosity. For the [O III] targets, ≈50 per cent have ionized gas velocities indicative of gas that is dominated by outflows and/or highly turbulent material (i.e. overall line widths ≳600 km s-1). The most luminous half (i.e. LX > 6 × 1043 erg s-1) have a ≳2 times higher incidence of such velocities. On the basis of our results, we find no evidence that X-ray obscured AGN are more likely to host extreme kinematics than unobscured AGN. Our KASHz sample has a distribution of gas velocities that is consistent with a luminosity-matched sample of z < 0.4 AGN. This implies little evolution in the prevalence of ionized outflows, for a fixed AGN luminosity, despite an order-of-magnitude decrease in average star formation rates over this redshift range. Furthermore, we compare our Hα targets to a redshift-matched sample of star-forming galaxies and despite a similar distribution of Hα luminosities and likely star formation rates, we find extreme ionized gas velocities are up to ≈10 times more prevalent in the AGN-host galaxies. Our results reveal a high prevalence of extreme ionized gas velocities in high-luminosity X-ray AGN and imply that the most powerful ionized outflows in high-redshift galaxies are driven by AGN activity.

  16. A GREEN BANK TELESCOPE SURVEY FOR H I 21 cm ABSORPTION IN THE DISKS AND HALOS OF LOW-REDSHIFT GALAXIES

    SciTech Connect

    Borthakur, Sanchayeeta; Tripp, Todd M.; Yun, Min S.; Meiring, Joseph D.; Bowen, David V.; York, Donald G.; Momjian, Emmanuel

    2011-01-20

    We present an H I 21 cm absorption survey with the Green Bank Telescope (GBT) of galaxy-quasar pairs selected by combining galaxy data from the Sloan Digital Sky Survey (SDSS) and radio sources from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey. Our sample consists of 23 sight lines through 15 low-redshift foreground galaxy-background quasar pairs with impact parameters ranging from 1.7 kpc up to 86.7 kpc. We detected one absorber in the GBT survey from the foreground dwarf galaxy, GQ1042+0747, at an impact parameter of 1.7 kpc and another possible absorber in our follow-up Very Large Array (VLA) imaging of the nearby foreground galaxy UGC 7408. The line widths of both absorbers are narrow (FWHM of 3.6 and 4.8km s{sup -1}). The absorbers have sub-damped Ly{alpha} column densities, and most likely originate in the disk gas of the foreground galaxies. We also detected H I emission from three foreground galaxies including UGC 7408. Although our sample contains both blue and red galaxies, the two H I absorbers as well as the H I emissions are associated with blue galaxies. We discuss the physical conditions in the 21 cm absorbers and some drawbacks of the large GBT beam for this type of survey.

  17. A PARAMETERIZED GALAXY CATALOG SIMULATOR FOR TESTING CLUSTER FINDING, MASS ESTIMATION, AND PHOTOMETRIC REDSHIFT ESTIMATION IN OPTICAL AND NEAR-INFRARED SURVEYS

    SciTech Connect

    Song, Jeeseon; Mohr, Joseph J.; Barkhouse, Wayne A.; Rude, Cody; Warren, Michael S.; Dolag, Klaus

    2012-03-01

    We present a galaxy catalog simulator that converts N-body simulations with halo and subhalo catalogs into mock, multiband photometric catalogs. The simulator assigns galaxy properties to each subhalo in a way that reproduces the observed cluster galaxy halo occupation distribution, the radial and mass-dependent variation in fractions of blue galaxies, the luminosity functions in the cluster and the field, and the color-magnitude relation in clusters. Moreover, the evolution of these parameters is tuned to match existing observational constraints. Parameterizing an ensemble of cluster galaxy properties enables us to create mock catalogs with variations in those properties, which in turn allows us to quantify the sensitivity of cluster finding to current observational uncertainties in these properties. Field galaxies are sampled from existing multiband photometric surveys of similar depth. We present an application of the catalog simulator to characterize the selection function and contamination of a galaxy cluster finder that utilizes the cluster red sequence together with galaxy clustering on the sky. We estimate systematic uncertainties in the selection to be at the {<=}15% level with current observational constraints on cluster galaxy populations and their evolution. We find the contamination in this cluster finder to be {approx}35% to redshift z {approx} 0.6. In addition, we use the mock galaxy catalogs to test the optical mass indicator B{sub gc} and a red-sequence redshift estimator. We measure the intrinsic scatter of the B{sub gc}-mass relation to be approximately log normal with {sigma}{sub log10M}{approx}0.25 and we demonstrate photometric redshift accuracies for massive clusters at the {approx}3% level out to z {approx} 0.7.

  18. COMOVING SPACE DENSITY AND OBSCURED FRACTION OF HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI IN THE SUBARU/XMM-NEWTON DEEP SURVEY

    SciTech Connect

    Hiroi, Kazuo; Ueda, Yoshihiro; Akiyama, Masayuki; Watson, Mike G.

    2012-10-10

    We study the comoving space density of X-ray-selected luminous active galactic nuclei (AGNs) and the obscured AGN fraction at high redshifts (3 < z < 5) in the Subaru/XMM-Newton Deep Survey field. From an X-ray source catalog with high completeness of optical identification thanks to deep optical images, we select a sample of 30 AGNs at z > 3 with intrinsic (de-absorbed and rest-frame 2-10 keV) luminosities of L{sub X} = 10{sup 44-45} erg s{sup -1} detected in the 0.5-2 keV band, consisting of 20 and 10 objects with spectroscopic and photometric redshifts, respectively. Utilizing the 1/V{sub max} method, we confirm that the comoving space density of luminous AGNs decreases with redshift above z > 3. When combined with the Chandra-COSMOS result of Civano et al., the density decline of AGNs with L{sub X} = 10{sup 44-45} erg s{sup -1} is well represented by a power law of (1 + z){sup -6.2{+-}0.9}. We also determine the fraction of X-ray obscured AGNs with N{sub H} > 10{sup 22} cm{sup -2} in the Compton-thin population to be 0.54{sup +0.17}{sub -0.19}, by carefully taking into account observational biases including the effects of photon statistics for each source. This result is consistent with an independent determination of the type-2 AGN fraction based on optical properties, for which the fraction is found to be 0.59 {+-} 0.09. Comparing our result with that obtained in the local universe, we conclude that the obscured fraction of luminous AGNs increases significantly from z = 0 to z > 3 by a factor of 2.5 {+-} 1.1.

  19. Spectral classification of emission-line galaxies from the Sloan Digital Sky Survey. I. An improved classification for high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Lamareille, F.

    2010-01-01

    Aims: We study the spectral classification of emission-line galaxies as starforming galaxies or active galactic nuclei (AGNs). With the high-quality data from the Sloan Digital Sky Survey (SDSS) we define an improved classification to be used for high-redshift galaxies. Methods: We classify emission-line galaxies of the SDSS according to the latest standard recipe using [Oiii]λ5007, [Nii]λ6584, [Sii]λ6717+6731, Hα, and Hβ emission lines. We obtain four classes: starforming galaxies, Seyfert 2, LINERs, and composites. We then examine where these galaxies fall in the blue diagram used at high redshift (i.e. log([Oiii]λ5007/Hβ) vs. log([Oii]λλ3726+3729/Hβ). Results: We define new improved boundaries in the blue diagram for starforming galaxies, Seyfert 2, LINERs, SF/Sy2, and SF-LIN/comp classes. We maximize the success rate to 99.7% for the detection of starforming galaxies to 86% for the Seyfert 2 (including the SF/Sy2 region) and to 91% for the LINERs. We also minimize the contamination to 16% in the region of starforming galaxies. We cannot reliably separate composites from starforming galaxies and LINERs, but we define an SF-LIN/comp region where most of them fall (64%).

  20. The Deep2 Galaxy Redshift Survey: Mean Ages and Metallicities ofRed Field Galaxies at Z ~; 0.9 from Stacked Keck/Deimos Spectra

    SciTech Connect

    Schiavon, Ricardo P.; Faber, S.M.; Konidaris, Nicholas; Graves,Genevieve; Willmer, Christopher N.A.; Weiner, Benjamin J.; Coil, AlisonL.; Cooper, Michael C.; Davis, Marc; Harker, Justin; Koo, David C.; Newman, Jeffrey A.; Yan, Renbin

    2006-10-19

    As part of the DEEP2 galaxy redshift survey, we analyze absorption line strengths in stacked Keck/DEIMOS spectra of red field galaxies with weak to no emission lines, at redshifts 0.7 {approx}< z {approx}< 1. Comparison with models of stellar population synthesis shows that red galaxies at z {approx} 0:9 have mean luminosity-weighted ages of the order of only 1 Gyr and at least solar metallicities. These ages cannot be reconciled with a scenario where all stars evolved passively after forming at very high z. Rather, a significant fraction of stars can be no more than 1 Gyr old, which means that some star formation in the stacked populations continued to at least z {approx} 1:2. Furthermore, a comparison of these distant galaxies with a local SDSS sample, using stellar populations synthesis models, shows that the drop in the equivalent width of H{delta} from z {approx} 0:9 to 0.1 is less than predicted by passively evolving models. This admits of two interpretations: either each individual galaxy experiences continuing low-level star formation, or the red-sequence galaxy population from z {approx} 0:9 to 0.1 is continually being added to by new galaxies with younger stars.

  1. A Determination of the Intergalactic Redshift Dependent UV-Optical-NIR Photon Density Using Deep Galaxy Survey Data and the Gamma-ray Opacity of the Universe

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.; Malkan, Matthew A.; Scully, Sean T.

    2012-01-01

    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of redshift using an approach based on observational data obtained in many different wavelength bands from local to deep galaxy surveys. This allows us to obtain an empirical determination of the IBL and to quantify its observationally based uncertainties. Using our results on the IBL, we then place 68% confidence upper and lower limits on the opacity of the universe to gamma-rays, free of the theoretical assumptions that were needed for past calculations. We compare our results with measurements of the extragalactic background light and upper limits obtained from observations made by the Fermi Gamma-ray Space Telescope.

  2. Upper bound of 0.28 eV on neutrino masses from the largest photometric redshift survey.

    PubMed

    Thomas, Shaun A; Abdalla, Filipe B; Lahav, Ofer

    2010-07-16

    We present a new limit of ∑m(v) ≤ 0.28 (95% CL) on the sum of the neutrino masses assuming a flat ΛCDM cosmology. This relaxes slightly to ∑m(ν) ≤ 0.34 and ∑m(v) ≤ 0.47 when quasinonlinear scales are removed and w≠ -1, respectively. These are derived from a new photometric catalogue of over 700,000 luminous red galaxies (MegaZ DR7) with a volume of 3.3  (Gpc h(-1))(3) and redshift range 0.45 < z < 0.65. The data are combined with WMAP 5-year CMB, baryon acoustic oscillations, supernovae, and a Hubble Space Telescope prior on h. When combined with WMAP these data are as constraining as adding all supernovae and baryon oscillation data available. The upper limit is one of the tightest constraints on the neutrino from cosmology or particle physics. Further, if these bounds hold, they all predict that current-to-next generation neutrino experiments, such as KATRIN, are unlikely to obtain a detection.

  3. A CHANDRA SNAPSHOT SURVEY FOR 3C RADIO GALAXIES WITH REDSHIFTS BETWEEN 0.3 AND 0.5

    SciTech Connect

    Massaro, F.; Harris, D. E.; Paggi, A.; Tremblay, G. R.; Liuzzo, E.; Bonafede, A.

    2013-05-01

    This paper contains an analysis of short Chandra observations of 19 3C sources with redshifts between 0.3 and 0.5 not previously observed in the X-rays. This sample is part of a project to obtain Chandra data for all of the extragalactic sources in the 3C catalog. Nuclear X-ray intensities as well as any X-ray emission associated with radio jet knots, hotspots, or lobes have been measured in three energy bands: soft, medium, and hard. Standard X-ray spectral analysis for the four brightest nuclei has also been performed. X-ray emission was detected for all the nuclei of the radio sources in the current sample with the exception of 3C 435A. There is one compact steep spectrum source while all the others are FR II radio galaxies. X-ray emission from two galaxy clusters (3C 19 and 3C 320), from six hotspots in four radio galaxies (3C 16, 3C 19, 3C 268.2, 3C 313), and extended X-ray emission on kiloparsec scales in 3C 187 and 3C 313, has been detected.

  4. Upper bound of 0.28 eV on neutrino masses from the largest photometric redshift survey.

    PubMed

    Thomas, Shaun A; Abdalla, Filipe B; Lahav, Ofer

    2010-07-16

    We present a new limit of ∑m(v) ≤ 0.28 (95% CL) on the sum of the neutrino masses assuming a flat ΛCDM cosmology. This relaxes slightly to ∑m(ν) ≤ 0.34 and ∑m(v) ≤ 0.47 when quasinonlinear scales are removed and w≠ -1, respectively. These are derived from a new photometric catalogue of over 700,000 luminous red galaxies (MegaZ DR7) with a volume of 3.3  (Gpc h(-1))(3) and redshift range 0.45 < z < 0.65. The data are combined with WMAP 5-year CMB, baryon acoustic oscillations, supernovae, and a Hubble Space Telescope prior on h. When combined with WMAP these data are as constraining as adding all supernovae and baryon oscillation data available. The upper limit is one of the tightest constraints on the neutrino from cosmology or particle physics. Further, if these bounds hold, they all predict that current-to-next generation neutrino experiments, such as KATRIN, are unlikely to obtain a detection. PMID:20867754

  5. The VIMOS Public Extragalactic Redshift Survey (VIPERS). An unprecedented view of galaxies and large-scale structure at 0.5 < z < 1.2

    NASA Astrophysics Data System (ADS)

    Guzzo, L.; Scodeggio, M.; Garilli, B.; Granett, B. R.; Fritz, A.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bolzonella, M.; Bottini, D.; Branchini, E.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; De Lucia, G.; de la Torre, S.; Franzetti, P.; Fumana, M.; Hudelot, P.; Ilbert, O.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Paioro, L.; Peacock, J. A.; Polletta, M.; Pollo, A.; Schlagenhaufer, H.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zamorani, G.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Nichol, R. C.; Percival, W. J.; Phleps, S.; Wolk, M.

    2014-06-01

    We describe the construction and general features of VIPERS, the VIMOS Public Extragalactic Redshift Survey. This ESO Large Programme is using the Very Large Telescope with the aim of building a spectroscopic sample of ~ 100 000 galaxies with iAB< 22.5 and 0.5 survey covers a total area of ~ 24 deg2 within the CFHTLS-Wide W1 and W4 fields. VIPERS is designed to address a broad range of problems in large-scale structure and galaxy evolution, thanks to a unique combination of volume (~ 5 × 107h-3 Mpc3) and sampling rate (~ 40%), comparable to state-of-the-art surveys of the local Universe, together with extensive multi-band optical and near-infrared photometry. Here we present the survey design, the selection of the source catalogue and the development of the spectroscopic observations. We discuss in detail the overall selection function that results from the combination of the different constituents of the project. This includes the masks arising from the parent photometric sample and the spectroscopic instrumental footprint, together with the weights needed to account for the sampling and the success rates of the observations. Using the catalogue of 53 608 galaxy redshifts composing the forthcoming VIPERS Public Data Release 1 (PDR-1), we provide a first assessment of the quality of the spectroscopic data. The stellar contamination is found to be only 3.2%, endorsing the quality of the star-galaxy separation process and fully confirming the original estimates based on the VVDS data, which also indicate a galaxy incompleteness from this process of only 1.4%. Using a set of 1215 repeated observations, we estimate an rms redshift error σz/ (1 + z) = 4.7 × 10-4 and calibrate the internal spectral quality grading. Benefiting from the combination of size and detailed sampling of this dataset, we conclude by presenting a map showing in unprecedented detail the large-scale distribution of galaxies between 5 and 8 billion years ago. Based on observations

  6. Evidence of a fast evolution of the UV luminosity function beyond redshift 6 from a deep HAWK-I survey of the GOODS-S field

    NASA Astrophysics Data System (ADS)

    Castellano, M.; Fontana, A.; Boutsia, K.; Grazian, A.; Pentericci, L.; Bouwens, R.; Dickinson, M.; Giavalisco, M.; Santini, P.; Cristiani, S.; Fiore, F.; Gallozzi, S.; Giallongo, E.; Maiolino, R.; Mannucci, F.; Menci, N.; Moorwood, A.; Nonino, M.; Paris, D.; Renzini, A.; Rosati, P.; Salimbeni, S.; Testa, V.; Vanzella, E.

    2010-02-01

    Aims: We perform a deep search for galaxies in the redshift range 6.5≤ z≤ 7.5, to measure the evolution of the number density of luminous galaxies in this redshift range and derive useful constraints on the evolution of their luminosity function. Methods: We present here the first results of an ESO Large Programme, which exploits the unique combination of area and sensitivity provided in the near-IR by the camera Hawk-I at the VLT. We have obtained two Hawk-I pointings on the GOODS South field for a total of ˜32 observing hours, covering ˜90 arcmin^2. The images reach Y=26.7 mag for the two fields. We used public ACS images in the z band to select z-dropout galaxies with the colour criteria Z-Y≥ 1, Y-J<1.5, and Y-K<2. The other public data in the UBVRIJK bands are used to reject possible low redshift interlopers. The output has been compared with extensive Monte Carlo simulations to quantify the observational effects of our selection criteria, as well as the effects of photometric errors. Results: We detect 7 high-quality candidates in the magnitude range Y=25.5-26.7. This interval samples the critical range for M_* at z>6 (M1500≃ -19.5 to -21.5). After accounting for the expected incompleteness, we rule out a luminosity function constant from z=6 to z=7 at a 99% confidence level, even including the effects of cosmic variance. For galaxies brighter than M1500=-19.0, we derive a luminosity density ρ_UV= 1.5+2.0-0.9 × 1025 erg s-1 Hz^{-1 Mpc-3}, implying a decrease by a factor 3.5 from z=6 to z≃ 6.8. On the basis of our findings, we make predictions for the surface densities expected in future surveys, based on ULTRA-VISTA, HST-WFC3, or JWST-NIRCam, evaluating the best observational strategy to maximise their impact.

  7. THE XMM CLUSTER SURVEY: THE BUILD-UP OF STELLAR MASS IN BRIGHTEST CLUSTER GALAXIES AT HIGH REDSHIFT

    SciTech Connect

    Stott, J. P.; Collins, C. A.; Hilton, M.; Capozzi, D.; Sahlen, M.; Lloyd-Davies, E.; Hosmer, M.; Liddle, A. R.; Mehrtens, N.; Romer, A. K.; Miller, C. J.; Stanford, S. A.; Viana, P. T. P.; Davidson, M.; Hoyle, B.; Kay, S. T.; Nichol, R. C.

    2010-07-20

    We present deep J- and K{sub s} -band photometry of 20 high redshift galaxy clusters between z = 0.8 and1.5, 19 of which are observed with the MOIRCS instrument on the Subaru telescope. By using near-infrared light as a proxy for stellar mass we find the surprising result that the average stellar mass of Brightest Cluster Galaxies (BCGs) has remained constant at {approx}9 x 10{sup 11} M {sub sun} since z {approx} 1.5. We investigate the effect on this result of differing star formation histories generated by three well-known and independent stellar population codes and find it to be robust for reasonable, physically motivated choices of age and metallicity. By performing Monte Carlo simulations we find that the result is unaffected by any correlation between BCG mass and cluster mass in either the observed or model clusters. The large stellar masses imply that the assemblage of these galaxies took place at the same time as the initial burst of star formation. This result leads us to conclude that dry merging has had little effect on the average stellar mass of BCGs over the last 9-10 Gyr in stark contrast to the predictions of semi-analytic models, based on the hierarchical merging of dark matter halos, which predict a more protracted mass build-up over a Hubble time. However, we discuss that there is potential for reconciliation between observation and theory if there is a significant growth of material in the intracluster light over the same period.

  8. The local hole revealed by galaxy counts and redshifts

    NASA Astrophysics Data System (ADS)

    Whitbourn, J. R.; Shanks, T.

    2014-01-01

    The redshifts of ≈250 000 galaxies are used to study the local hole and its associated peculiar velocities. The sample, compiled from the 6dF Galaxy Redshift Survey and Sloan Digital Sky Survey, provides wide sky coverage to a depth of ≈300 h-1 Mpc. We have therefore examined K- and r-limited galaxy redshift distributions and number counts to map the local density field. Comparing observed galaxy n(z) distributions to homogeneous models in three large regions of the high-latitude sky, we find evidence for underdensities ranging from ≈4-40 per cent in these regions to depths of ≈150 h-1 Mpc with the deepest underdensity being over the southern Galactic cap. Using the Galaxy and Mass Assembly survey, we then establish the normalization of galaxy counts at fainter magnitudes and thus confirm that the underdensity over all three fields at K < 12.5 is ≈15 ± 3 per cent. Finally, we further use redshift catalogues to map sky-averaged peculiar velocities over the same areas using the average redshift-magnitude, overline{z}(m), technique of Soneira. After accounting for the direct effect of the large-scale structure on overline{z}(m), we can then search for peculiar velocities. Taking all three regions into consideration, the data reject at the ≈4σ level the idea that we have recovered the cosmic microwave background rest frame in the volume probed. We therefore conclude that there is some consistent evidence from both counts and Hubble diagrams for a `local hole' with an ≈150 h-1 Mpc underdensity that deeper counts and redshifts in the northern Galactic cap suggest may extend to ≈300 h-1 Mpc.

  9. Redshifts for 115 galaxies near the equator

    SciTech Connect

    Shectman, S.A.; Stefanik, R.P.; Latham, D.W.

    1983-04-01

    We report new redshifts for 115 bright galaxies located near the celestial equator. The spectra were observed with a blue-sensitive photon-counting Reticon on the 100-in. DuPont telescope, and the redshifts were derived using the data-analysis system developed for the CfA Redshift Survey. Comparisons with other measured redshifts suggest that these data are similar in quality to the redshifts measured at Mt. Hopkins for the CfA Redshift Survey; the velocity zero point is good to 10 to 15 km s/sup -1/, with a typical error of 35 km s/sup -1/, with a typical error of 35 km s/sup -1/ for the individual measurements.

  10. National Surface Water Survey: National Stream Survey Phase 1 pilot survey. Final report

    SciTech Connect

    Messer, J.J.; Eshleman, K.N.; Stambaugh, S.M.; Kaufmann, P.R.

    1986-12-01

    A pilot survey of streams in the Southern Blue Ridge Province was conducted by the U.S. Environmental Protection Agency during the spring and summer of 1985 as a means of testing a proposed methodology for (1) determining the present extent and location of acidic and low-acid neutralizing capacity (ANC) streams in the United States, and (2) classifying sampled streams that are representative of important classes of streams and, therefore, should be selected for intensive study or long-term monitoring. Potentially important uses of the data in the context of environmental assessment of acidification are presented by way of example.

  11. The VIMOS VLT Deep Survey final data release: a spectroscopic sample of 35 016 galaxies and AGN out to z ~ 6.7 selected with 17.5 ≤ iAB ≤ 24.75

    NASA Astrophysics Data System (ADS)

    Le Fèvre, O.; Cassata, P.; Cucciati, O.; Garilli, B.; Ilbert, O.; Le Brun, V.; Maccagni, D.; Moreau, C.; Scodeggio, M.; Tresse, L.; Zamorani, G.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Bondi, M.; Bongiorno, A.; Bottini, D.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; de la Torre, S.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Guzzo, L.; Iovino, A.; Lemaux, B.; López-Sanjuan, C.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mazure, A.; Mellier, Y.; Merighi, R.; Merluzzi, P.; Paltani, S.; Pellò, R.; Pollo, A.; Pozzetti, L.; Scaramella, R.; Tasca, L.; Vergani, D.; Vettolani, G.; Zanichelli, A.; Zucca, E.

    2013-11-01

    Context. Deep representative surveys of galaxies at different epochs are needed to make progress in understanding galaxy evolution. Aims: We describe the completed VIMOS VLT Deep Survey and the final data release of 35 016 galaxies and type-I AGN with measured spectroscopic redshifts covering all epochs up to redshift z ~ 6.7, in areas from 0.142 to 8.7 square degrees, and volumes from 0.5 × 106 to 2 × 107 h-3 Mpc3. Methods: We selected samples of galaxies based solely on their i-band magnitude reaching iAB = 24.75. Spectra were obtained with VIMOS on the ESO-VLT integrating 0.75 h, 4.5 h, and 18 h for the Wide, Deep, and Ultra-Deep nested surveys, respectively. We demonstrate that any "redshift desert" can be crossed successfully using spectra covering 3650 ≤ λ ≤ 9350 Å. A total of 1263 galaxies were again observed independently within the VVDS and from the VIPERS and MASSIV surveys. They were used to establish the redshift measurements reliability, to assess completeness in the VVDS sample, and to provide a weighting scheme taking the survey selection function into account. We describe the main properties of the VVDS samples, and the VVDS is compared to other spectroscopic surveys in the literature. Results: In total we have obtained spectroscopic redshifts for 34 594 galaxies, 422 type-I AGN, and 12 430 Galactic stars. The survey enabled identifying galaxies up to very high redshifts with 4669 redshifts in 1 ≤ zspec ≤ 2, 561 in 2 ≤ zspec ≤ 3, and 468 with zspec > 3, and specific populations like Lyman-α emitters were identified out to z = 6.62. We show that the VVDS occupies a unique place in the parameter space defined by area, depth, redshift coverage, and number of spectra. Conclusions: The VIMOS VLT Deep Survey provides a comprehensive survey of the distant universe, covering all epochs since z ~ 6, or more than 12 Gyr of cosmic time, with a uniform selection, which is the largest such sample to date. A wealth of science results derived from

  12. Redshift-space distortions.

    PubMed

    Percival, Will J; Samushia, Lado; Ross, Ashley J; Shapiro, Charles; Raccanelli, Alvise

    2011-12-28

    Comparing measurements of redshift-space distortions (RSDs) with geometrical observations of the expansion of the Universe offers tremendous potential for testing general relativity on very large scales. The basic linear theory of RSDs in the distant-observer limit has been known for 25 years and the effect has been conclusively observed in numerous galaxy surveys. The next generation of galaxy survey will observe many millions of galaxies over volumes of many tens of Gpc(3). They will provide RSD measurements of such exquisite precision that we will have to carefully analyse and correct for many systematic deviations from this simple picture in order to fully exploit the statistical precision obtained. We review RSD theory and show how ubiquitous RSDs actually are, and then consider a number of potential systematic effects, shamelessly highlighting recent work in which we have been involved. This review ends by looking ahead to the future surveys that will make the next generation of RSD measurements.

  13. Radio continuum observations of new radio halos and relics from the NVSS and WENSS surveys. Relic orientations, cluster X-ray luminosity, and redshift distributions

    NASA Astrophysics Data System (ADS)

    van Weeren, R. J.; Brüggen, M.; Röttgering, H. J. A.; Hoeft, M.; Nuza, S. E.; Intema, H. T.

    2011-09-01

    Context. Radio halos and relics are diffuse radio sources found in galaxy clusters showing significant substructure at X-ray wavelengths. These sources provide important information about non-thermal processes taking place in the intracluster medium (ICM). Until now only a few dozen relics and halos are known, while models predict that a much larger number of these sources exist. In this paper we present the results of an extensive observing campaign to search for new diffuse radio sources in galaxy clusters. Aims: The aim of the observations is to create a large sample of diffuse radio sources in galaxy clusters that help to understand the formation of radio relics and halos and can be used to probe the physical conditions of the ICM. Methods: We carried out radio continuum observations with the Westerbork Synthese Radio Telescope (WSRT), Giant Metrewave Radio Telescope (GMRT) and Very Large Array (VLA) of clusters with diffuse radio emission visible in NVSS and WENSS survey images. Optical images were taken with the William Herschel and Isaac Newton Telescope (WHT, INT). Results: We discovered 6 new radio relics, including a probable double relic system, and 2 radio halos. In addition, we confirm the presence of diffuse radio emission in four galaxy clusters. By constructing a sample of 35 radio relics we find that relics are mostly found along the major axis of the X-ray emission from the ICM, while their orientation is perpendicular to this axis. We also compared the X-ray luminosity and redshift distributions of clusters with relics to an X-ray selected sample from the NORAS and REFLEX surveys. We find tentative evidence for an increase of the cluster's relic fraction with X-ray luminosity and redshift. The major and minor axis ratio distribution of the ICM for clusters with relics is broader than that of the NORAS-REFLEX sample. Conclusions: The location and orientation of radio relics with respect to the ICM elongation is consistent with the scenario that

  14. Aerial remote sensing surveys, geophysical characterization. Final report

    SciTech Connect

    Labson, V.F.; Pellerin, L.; Anderson, W.L.

    1998-06-01

    The application of helicopter electromagnetic (HEM) and magnetic methods to the requirements of the environmental restoration of the Oak Ridge Reservation (ORR) demand the use of advanced, nontraditional methods of data acquisition, processing and interpretation. The cooperative study by the U.S. Geological Survey (USGS), Oak Ridge National Laboratory (ORNL), and University of California (UCB) has resulted in the planning and supervision of data acquisition, the development of tools for data processing and interpretation, and an intensive application of the methods developed. This final report consists of a series of publications which the USGS collaborated with the ORNL technical staff. These reports represent the full scope of the USGS assistance. Copies of the reports and papers are included in the Appendix. The primary goals of this effort were to quantify the effectiveness of the geophysical methods applied in the survey of the ORR for the identification of buried waste, hydrogeologic pathways by which contamination could migrate through or off the site, and for the more accurate geologic mapping of the ORR. The objectives in buried waste identification are the accurate description of the source of the geophysical anomaly and the determination of the limits of resolution of the geophysical methods to acknowledge what we might have missed. The study of hydrogeologic pathways concentrated on the identification of karst features in the limestone underlying much of the ORR. Work in this study has indicated to the ORNL staff that these karst features can be located from the airborne geophysics. The defining characteristic of this helicopter geophysical study is the collaborative nature of the effort. Each task in which the USGS was involved has included a designated staff member from the Oak Ridge National Laboratory.

  15. The Subaru FMOS galaxy redshift survey (FastSound). II. The emission line catalog and properties of emission line galaxies

    NASA Astrophysics Data System (ADS)

    Okada, Hiroyuki; Totani, Tomonori; Tonegawa, Motonari; Akiyama, Masayuki; Dalton, Gavin; Glazebrook, Karl; Iwamuro, Fumihide; Ohta, Kouji; Takato, Naruhisa; Tamura, Naoyuki; Yabe, Kiyoto; Bunker, Andrew J.; Goto, Tomotsugu; Hikage, Chiaki; Ishikawa, Takashi; Okumura, Teppei; Shimizu, Ikkoh

    2016-06-01

    We present basic properties of ˜3300 emission line galaxies detected by the FastSound survey, which are mostly Hα emitters at z ˜ 1.2-1.5 in the total area of about 20 deg2, with the Hα flux sensitivity limit of ˜1.6 × 10-16 erg cm-2 s-1 at 4.5 σ. This paper presents the catalog of the FastSound emission lines and galaxies, which is open to the public. We also present basic properties of typical FastSound Hα emitters, which have Hα luminosities of 1041.8-1043.3 erg s-1, star formation rates (SFRs) of 20-500 M⊙ yr-1, and stellar masses of 1010.0-1011.3 M⊙. The 3D distribution maps for the four fields of Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) W1-4 are presented, clearly showing large scale clustering of galaxies at the scale of ˜100-600 comoving Mpc. Based on 1105 galaxies with detections of multiple emission lines, we estimate that the contamination of non-Hα lines is about 4% in the single-line emission galaxies, which is mostly [O III]λ5007. This contamination fraction is also confirmed by the stacked spectrum of all the FastSound spectra, in which Hα, [N II]λλ6548,6583, [S II]λλ6717,6731, and [O I]λλ6300,6364 are seen.

  16. The large scale structure of the Universe revealed with high redshift emission-line galaxies: implications for future surveys

    NASA Astrophysics Data System (ADS)

    Antonino Orsi, Alvaro

    2015-08-01

    Nebular emission in galaxies trace their star-formation activity within the last 10 Myr or so. Hence, these objects are typically found in the outskirts of massive clusters, where otherwise environmental effects can effectively stop the star formation process. In this talk I discuss the nature of emission-line galaxies (ELGs) and its implications for their clustering properties. To account for the relevant physical ingredients that produce nebular emission, I combine semi-analytical models of galaxy formation with a radiative transfer code of Ly-alpha photons, and the photoionzation and shock code MAPPINGS-III. As a result, the clustering strength of ELGs is found to correlate weakly with the line luminosities. Also, their 2-d clustering displays a weak finger-of-god effect, and the clustering in linear scales is affected by assembly bias. I review the impact of the nature of this galaxy population for future spectroscopic large surveys targeting ELGs to extract cosmological results. In particular, I present forecasts for the ELG population in J-PAS, an 8000 deg^2 survey with 54 narrow-band filters covering the optical range, expected to start in 2016.

  17. The XXL survey. V. Detection of the Sunyaev-Zel'dovich effect of the redshift 1.9 galaxy cluster XLSSU J021744.1–034536 with CARMA

    SciTech Connect

    Mantz, A. B.; Abdulla, Z.; Carlstrom, J. E.; Leitch, E. M.; Greer, C. H.; Marrone, D. P.; Muchovej, S.; Adami, C.; Birkinshaw, M.; Bremer, M.; Giles, P.; Maughan, B.; Clerc, N.; Horellou, C.; Pacaud, F.; Pierre, M.; Willis, J.

    2014-10-20

    We report the detection of the Sunyaev-Zel'dovich (SZ) effect of galaxy cluster XLSSU J021744.1–034536, using 30 GHz Combined Array for Research in Millimeter-wave Astronomy (CARMA) data. This cluster was discovered via its extended X-ray emission in the XMM- Newton Large Scale Structure survey, the precursor to the XXL survey. It has a photometrically determined redshift z=1.91{sub −0.21}{sup +0.19}, making it among the most distant clusters known, and nominally the most distant for which the SZ effect has been measured. The spherically integrated Comptonization is Y {sub 500} = (3.0 ± 0.4) × 10{sup –12}, a measurement that is relatively insensitive to assumptions regarding the size and redshift of the cluster, as well as the background cosmology. Using a variety of locally calibrated cluster scaling relations extrapolated to z ∼ 2, we estimate a mass M {sub 500} ∼ (1-2) × 10{sup 14} M {sub ☉} from the X-ray flux and SZ signal. The measured properties of this cluster are in good agreement with the extrapolation of an X-ray luminosity-SZ effect scaling relation calibrated from clusters discovered by the South Pole Telescope at higher masses and lower redshifts. The full XXL-CARMA sample will provide a more complete, multi-wavelength census of distant clusters in order to robustly extend the calibration of cluster scaling relations to these high redshifts.

  18. Overdensities of Y-dropout Galaxies from the Brightest-of-Reionizing Galaxies Survey: A Candidate Protocluster at Redshift z ≈ 8

    NASA Astrophysics Data System (ADS)

    Trenti, Michele; Bradley, L. D.; Stiavelli, M.; Shull, J. M.; Oesch, P.; Bouwens, R. J.; Muñoz, J. A.; Romano-Diaz, E.; Treu, T.; Shlosman, I.; Carollo, C. M.

    2012-02-01

    Theoretical and numerical modeling of the assembly of dark-matter halos predicts that the most massive and luminous galaxies at high redshift are surrounded by overdensities of fainter companions. We test this prediction with Hubble Space Telescope observations acquired by our Brightest-of-Reionizing Galaxies (BoRG) survey, which identified four very bright z ~ 8 candidates as Y 098-dropout sources in four of the 23 non-contiguous Wide Field Camera 3 fields observed. We extend here the search for Y 098-dropouts to fainter luminosities (M * galaxies with M AB ~ -20), with detections at >=5σ confidence (compared to the 8σ confidence threshold adopted earlier) identifying 17 new candidates. We demonstrate that there is a correlation between number counts of faint and bright Y 098-dropouts at >=99.84% confidence. Field BoRG58, which contains the best bright z ~ 8 candidate (M AB = -21.3), has the most significant overdensity of faint Y 098-dropouts. Four new sources are located within 70'' (corresponding to 3.1 comoving Mpc at z = 8) from the previously known brighter z ~ 8 candidate. The overdensity of Y 098-dropouts in this field has a physical origin to very high confidence (p > 99.975%), independent of completeness and contamination rate of the Y 098-dropout selection. We modeled the overdensity by means of cosmological simulations and estimate that the principal dark-matter halo has mass Mh ≈ (4-7) × 1011 M ⊙ (~5σ density peak) and is surrounded by several Mh ≈ 1011 M ⊙ halos which could host the fainter dropouts. In this scenario, we predict that all halos will eventually merge into a Mh > 2 × 1014 M ⊙ galaxy cluster by z = 0. Follow-up observations with ground- and space-based telescopes are required to secure the z ~ 8 nature of the overdensity, discover new members, and measure their precise redshift. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in

  19. The MOSDEF Survey: Measurements of Balmer Decrements and the Dust Attenuation Curve at Redshifts z ~ 1.4-2.6

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen A.; Kriek, Mariska; Shapley, Alice E.; Freeman, William R.; Siana, Brian; Coil, Alison L.; Mobasher, Bahram; Price, Sedona H.; Sanders, Ryan L.; Shivaei, Irene

    2015-06-01

    We present results on the dust attenuation curve of z ˜ 2 galaxies using early observations from the MOSFIRE Deep Evolution Field survey. Our sample consists of 224 star-forming galaxies with zspec = 1.36-2.59 and high signal-to-noise ratio measurements of Hα and Hβ obtained with Keck/MOSFIRE. We construct composite spectral energy distributions (SEDs) of galaxies in bins of Balmer decrement to measure the attenuation curve. We find a curve that is similar to the SMC extinction curve at λ ≳ 2500 Å. At shorter wavelengths, the shape is identical to that of the Calzetti et al. relation, but with a lower normalization. Hence, the new attenuation curve results in star formation rates (SFRs) that are ≈ 20% lower, and stellar masses that are {Δ }{log}({M}*{/M}⊙ )≃ 0.16 dex lower, than those obtained with the Calzetti relation. We find that the difference in the total attenuation of the ionized gas and stellar continuum correlates strongly with SFR, such that for dust-corrected SFRs ≳ 20 M⊙ yr-1, assuming a Chabrier initial mass function, the nebular emission lines suffer an increasing degree of obscuration relative to the continuum. A simple model that can account for these trends is one in which the UV through optical stellar continuum is dominated by a population of less-reddened stars, while the nebular line and bolometric luminosities become increasingly dominated by dustier stellar populations for galaxies with large SFRs, as a result of the increased dust enrichment that accompanies such galaxies. Consequently, UV- and SED-based SFRs may underestimate the total SFR at even modest levels of ≈20 M⊙ yr-1. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.

  20. An HST/COS legacy survey of intervening Si III absorption in the extended gaseous halos of low-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Richter, P.; Wakker, B. P.; Fechner, C.; Herenz, P.; Tepper-García, T.; Fox, A. J.

    2016-05-01

    Aims: Doubly ionized silicon (Si iii) is a powerful tracer of diffuse ionized gas inside and outside of galaxies. It can be observed in the local Universe in ultraviolet (UV) absorption against bright extragalactic background sources. We here present an extensive study of intervening Si iii-selected absorbers and study the properties of the warm circumgalactic medium (CGM) around low-redshift (z ≤ 0.1) galaxies. Methods: We analyzed the UV absorption spectra of 303 extragalactic background sources, as obtained with the Cosmic Origins Spectrograph (COS) on-board the Hubble Space Telescope (HST). We developed a geometrical model for the absorption-cross section of the CGM around the local galaxy population and compared the observed Si iii absorption statistics with predictions provided by the model. We also compared redshifts and positions of the absorbers with those of ~64 000 galaxies using archival galaxy-survey data to investigate the relation between intervening Si iii absorbers and the CGM. Results: Along a total redshift path of Δz ≈ 24, we identify 69 intervening Si iii systems that all show associated absorption from other low and high ions (e.g., H i, Si ii, Si iv, C ii, C iv). We derive a bias-corrected number density of dN/dz(Si iii)= 2.5 ± 0.4 for absorbers with column densities log N(Si iii) > 12.2, which is ~3 times the number density of strong Mg ii systems at z = 0. This number density matches the expected cross section of a Si iii absorbing CGM around the local galaxy population with a mean covering fraction of ⟨ fc ⟩ = 0.69. For the majority (~60 percent) of the absorbers, we identify possible host galaxies within 300 km s-1 of the absorbers and derive impact parameters ρ < 200 kpc, demonstrating that the spatial distributions of Si iii absorbers and galaxies are highly correlated. Conclusions: Our study indicates that the majority of Si iii-selected absorbers in our sample trace the CGM of nearby galaxies within their virial radii at a

  1. A Dual-Narrowband Survey for Hα Emitters at Redshift of 2.2: Demonstration of the Technique and Constraints on the Hα Luminosity Function

    NASA Astrophysics Data System (ADS)

    Lee, Janice C.; Ly, Chun; Spitler, Lee; Labbé, Ivo; Salim, Samir; Persson, S. Eric; Ouchi, Masami; Dale, Daniel A.; Monson, Andy; Murphy, David

    2012-07-01

    We present first results from a narrowband imaging program for intermediate-redshift emission-line galaxies using the newly commissioned FourStar infrared camera at the 6.5 m Magellan telescope. To enable prompt identification of Hα emitters, a pair of custom 1% filters, which sample low-airglow atmospheric windows at 1.19 μm and 2.10 μm, is used to detect both Hα and [O II] λ3727 emission from the same redshift volume at z = 2.2. Initial observations are taken over a 130 arcmin2 area in the CANDELS-COSMOS field. The exquisite image quality resulting from the combination of the instrument, telescope, and standard site conditions (~0.55'' FWHM) allows the 1.19 μm and 2.10 μm data to probe 3σ emission-line depths down to 1.0 × 10-17 erg s-1 cm-2 and 1.2 × 10-17 erg s-1 cm-2, respectively, in less than 10 hr of integration time in each narrow band. For Hα at z = 0.8 and z = 2.2, these fluxes correspond to observed star formation rates of ~0.3 and ~4 Msolar yr-1, respectively. We find 122 sources with a 1.19 μm excess and 136 with a 2.10 μm excess, 41 of which show an excess in both bands. The dual-narrowband technique, as implemented here, is estimated to identify gsim80% of z = 2.2 Hα emitters in the narrowband excess population. With the most secure such sample obtained to date, we compute constraints on the faint-end slope of the z = 2.2 Hα luminosity function. Fitting of a pure power law gives α = -1.85 ± 0.31, which is steeper than other recent estimates based on coarser selection techniques, but consistent within the typically large uncertainties that currently characterize such measurements. Combining our LF points with those at higher luminosities from other work, the slope decreases to α = -1.58 ± 0.40. These "narrow-deep" FourStar observations have been obtained as part of the larger New Hα Survey, which will combine the data with "wide-shallow" imaging through a similar narrowband filter pair with NEWFIRM at the KPNO/CTIO 4 m telescopes

  2. THE SLOAN LENS ACS SURVEY. XI. BEYOND HUBBLE RESOLUTION: SIZE, LUMINOSITY, AND STELLAR MASS OF COMPACT LENSED GALAXIES AT INTERMEDIATE REDSHIFT

    SciTech Connect

    Newton, Elisabeth R.; Marshall, Philip J.; Treu, Tommaso; Auger, Matthew W.; Gavazzi, Raphaeel; Bolton, Adam S.; Koopmans, Leon V. E.; Moustakas, Leonidas A.

    2011-06-20

    We exploit the strong lensing effect to explore the properties of intrinsically faint and compact galaxies at intermediate redshift (z{sub s} {approx_equal} 0.4-0.8) at the highest possible resolution at optical wavelengths. Our sample consists of 46 strongly lensed emission line galaxies (ELGs) discovered by the Sloan Lens ACS Survey (SLACS). The galaxies have been imaged at high resolution with the Hubble Space Telescope (HST) in three bands (V{sub HST} , I{sub 814}, and H{sub 160}), allowing us to infer their size, luminosity, and stellar mass using stellar population synthesis models. Lens modeling is performed using a new fast and robust code, KLENS, which we test extensively on real and synthetic non-lensed galaxies, and also on simulated galaxies multiply imaged by SLACS-like galaxy-scale lenses. Our tests show that our measurements of galaxy size, flux, and Sersic index are robust and accurate, even for objects intrinsically smaller than the HST point-spread function. The median magnification is 8.8, with a long tail that extends to magnifications above 40. Modeling the SLACS sources reveals a population of galaxies with colors and Sersic indices (median n {approx} 1) consistent with the galaxies detected with HST in the Galaxy Evolution from Morphology and SEDs (GEMS) and Hubble Ultra Deep Field (HUDF) surveys, but that are (typically) {approx}2 mag fainter and {approx}5 times smaller in apparent size than GEMS and {approx}4 mag brighter than but similar in size to HUDF. The size-stellar-mass and size-luminosity relations for the SLACS sources are offset to smaller sizes with respect to both comparison samples. The closest analog are ultracompact ELGs identified by HST grism surveys. The lowest mass galaxies in our sample are comparable to the brightest Milky Way satellites in stellar mass (10{sup 7} M{sub sun}) and have well-determined half-light radii of 0.''05 ({approx}0.3 kpc).

  3. Hartnell College 1999 Accreditation Employee Survey Final Report.

    ERIC Educational Resources Information Center

    Hartnell Coll., Salinas, CA. Institutional Research and Planning Office.

    This document describes the results of an employee survey conducted as part of an Accreditation Self-Study at Hartnell College (California). Approximately 70% of the college's employees responded to the survey during fall 1999, and the respondents' characteristics appeared to be representative of all Hartnell employees. Employees as a whole…

  4. Missouri Industrial and Educational Graphic Arts Survey. Final Report.

    ERIC Educational Resources Information Center

    Keseman, Charles E.

    The Missouri Industrial and Educational Graphic Arts (MIEGA) survey was done to determine the current status and trends of the graphic arts industry and graphic arts education in Missouri for use as the basis for the later development of secondary school graphic arts state curriculum guides. Data were collected through two status surveys in…

  5. Teaching and Learning International Survey TALIS 2013: Conceptual Framework. Final

    ERIC Educational Resources Information Center

    Rutkowski, David; Rutkowski, Leslie; Bélanger, Julie; Knoll, Steffen; Weatherby, Kristen; Prusinski, Ellen

    2013-01-01

    In 2008, the initial cycle of the OECD's Teaching and Learning International Survey (TALIS 2008) established, for the first time, an international, large-scale survey of the teaching workforce, the conditions of teaching, and the learning environments of schools in participating countries. The second cycle of TALIS (TALIS 2013) aims to continue…

  6. The Subaru FMOS Galaxy Redshift Survey (FastSound). III. The mass-metallicity relation and the fundamental metallicity relation at z ˜ 1.4*

    NASA Astrophysics Data System (ADS)

    Yabe, Kiyoto; Ohta, Kouji; Akiyama, Masayuki; Bunker, Andrew; Dalton, Gavin; Ellis, Richard; Glazebrook, Karl; Goto, Tomotsugu; Imanishi, Masatoshi; Iwamuro, Fumihide; Okada, Hiroyuki; Shimizu, Ikkoh; Takato, Naruhisa; Tamura, Naoyuki; Tonegawa, Motonari; Totani, Tomonori

    2015-12-01

    We present the results from a large near-infrared spectroscopic survey made with Subaru/FMOS (FastSound) consisting of ˜ 4000 galaxies at z ˜ 1.4 with significant Hα detection. We measure the gas-phase metallicity from the [N II]λ6583/Hα emission line ratio of the composite spectra in various stellar mass and star-formation rate bins. The resulting mass-metallicity relation generally agrees with previous studies obtained in a similar redshift range to that of our sample. No clear dependence of the mass-metallicity relation on star-formation rate is found. Our result at z ˜ 1.4 is roughly in agreement with the fundamental metallicity relation at z ˜ 0.1 with a fiber aperture corrected star-formation rate. We detect significant [S II]λλ6716,6731 emission lines from the composite spectra. The electron density estimated from the [S II]λλ6716,6731 line ratio ranges from 10-500 cm-3, which generally agrees with that of local galaxies. On the other hand, the distribution of our sample on [N II]λ6583/Hα vs. [S II]λλ6716,6731/Hα is different to that found locally. We estimate the nitrogen-to-oxygen abundance ratio (N/O) from the N2S2 index, and find that the N/O in galaxies at z ˜ 1.4 is significantly higher than the local values at a fixed metallicity and stellar mass. The metallicity at z ˜ 1.4 recalculated with this N/O enhancement taken into account decreases by 0.1-0.2 dex. The resulting metallicity is lower than the local fundamental metallicity relation.

  7. High redshift radio galaxies

    NASA Technical Reports Server (NTRS)

    Mccarthy, Patrick J.

    1993-01-01

    High redshift galaxies that host powerful radio sources are examined. An overview is presented of the content of radio surveys: 3CR and 3CRR, 4C and 4C/USS, B2/1 Jy, MG, MRC/1Jy, Parkes/PSR, B3, and ESO Key-Project. Narrow-line radio galaxies in the visible and UV, the source of ionization and excitation of the emission lines, emission-line luminosities, morphology of the line-emitting gas, physical properties and energetics, kinematics of the line-emitting gas, and implications from the emission lines are discussed. The morphologies and environments of the host galaxies, the alignment effect, and spectral energy distributions and ages are also examined.

  8. Dusty Quasars at High Redshifts

    NASA Astrophysics Data System (ADS)

    Weedman, Daniel; Sargsyan, Lusine

    2016-09-01

    A population of quasars at z ˜ 2 is determined based on dust luminosities νL ν (7.8 μm) that includes unobscured, partially obscured, and obscured quasars. Quasars are classified by the ratio νL ν (0.25 μm)/νL ν (7.8 μm) = UV/IR, assumed to measure obscuration of UV luminosity by the dust that produces IR luminosity. Quasar counts at rest-frame 7.8 μm are determined for quasars in the Boötes field of the NOAO Deep Wide Field Survey using 24 μm sources with optical redshifts from the AGN and Galaxy Evolution Survey (AGES) or infrared redshifts from the Spitzer Infrared Spectrograph. Spectral energy distributions are extended to far-infrared wavelengths using observations from the Herschel Space Observatory Spectral and Photometric Imaging Receiver (SPIRE), and new SPIRE photometry is presented for 77 high-redshift quasars from the Sloan Digital Sky Survey. It is found that unobscured and obscured quasars have similar space densities at rest-frame 7.8 μm, but the ratio L ν (100 μm)/L ν (7.8 μm) is about three times higher for obscured quasars than for unobscured, so that far-infrared or submillimeter quasar detections are dominated by obscured quasars. We find that only ˜5% of high-redshift submillimeter sources are quasars and that existing 850 μm surveys or 2 mm surveys should already have detected sources at z ˜ 10 if quasar and starburst luminosity functions remain the same from z = 2 until z = 10.

  9. A Catalog of Candidate High-redshift Blazars for GLAST

    SciTech Connect

    Arias, Tersi M.; /SLAC /San Francisco State U.

    2006-09-27

    High-redshift blazars are promising candidates for detection by the Gamma-ray Large Area Space Telescope (GLAST). GLAST, expected to be launched in the Fall of 2007, is a high-energy gamma-ray observatory designed for making observations of celestial gamma-ray sources in the energy band extending from 10 MeV to more than 200 GeV. It is estimated that GLAST will find several thousand blazars. The motivations for measuring the gamma-ray emission from distant blazars include the study of the high-energy emission processes occurring in these sources and an indirect measurement of the extragalactic background light. In anticipation of the launch of GLAST we have compiled a catalog of candidate high-redshift blazars. The criteria for sources chosen for the catalog were: high radio emission, high redshift, and a flat radio spectrum. A preliminary list of 307 radio sources brighter than 70mJy with a redshift z {ge} 2.5 was acquired using data from the NASA Extragalactic Database. Flux measurements of each source were obtained at two or more radio frequencies from surveys and catalogs to calculate their radio spectral indices {alpha}. The sources with a flat-radio spectrum ({alpha} {le} 0.5) were selected for the catalog, and the final catalog includes about 200 sources.

  10. Real-time cosmography with redshift derivatives

    NASA Astrophysics Data System (ADS)

    Martins, C. J. A. P.; Martinelli, M.; Calabrese, E.; Ramos, M. P. L. P.

    2016-08-01

    The drift in the redshift of objects passively following the cosmological expansion has long been recognized as a key model-independent probe of cosmology. Here, we study the cosmological relevance of measurements of time or redshift derivatives of this drift, arguing that the combination of first and second redshift derivatives is a powerful test of the Λ CDM cosmological model. In particular, the latter can be obtained numerically from a set of measurements of the drift at different redshifts. We show that, in the low-redshift limit, a measurement of the derivative of the drift can provide a constraint on the jerk parameter, which is j =1 for flat Λ CDM , while generically j ≠1 for other models. We emphasize that such a measurement is well within the reach of the ELT-HIRES and SKA Phase 2 array surveys.

  11. Electric utility survey of residential ventilation issues. Final report

    SciTech Connect

    Moraski, D.P.; Smit, K.L.; Tidball, R.K.

    1994-06-01

    Many utilities are promoting tightly-sealed homes to improve energy efficiency, and it is important to understand the implications of a well-sealed structure on indoor air quality (IAQ). With Electric Power Research Institute (EPRI) support, Energy International conducted a nationwide survey of electric utilities to determine utility understanding of IAQ and ventilation issues. A total of 35 utilities were contacted for this survey. Utilities known to be active in the ventilation area were specifically targeted. The remaining utilities were chosen to gain a balanced geographical and size representation. A survey form was completed for each utility, providing a consistent platform for the survey. The results of the survey indicate a mixed awareness and interest in ventilation issues. Of the 35 utilities contacted, 10 were concerned with IAQ issues and were taking steps to alleviate potential problems through ventilation. Eight of the utilities believed that IAQ issues may be important in the future but have not yet implemented ventilation requirements or recommendations. The remaining 17 utilities did not express a significant concern with IAQ and did not foresee future problems. The utilities surveyed had only moderate concern with detailed ventilation issues such as infiltration measurements, spot vs. Whole house ventilation, source control vs. dilution, and control strategies. The most important utility concerns appear to be questions about the basic need for IAQ controls, and the cost-benefit analysis of energy efficient homes that require additional ventilation equipment. The utilities contacted that are concerned with IAQ generally have several mechanical ventilation system options to meet recommendations.

  12. The Ohio Schools Pest Management Survey: A Final Report.

    ERIC Educational Resources Information Center

    2001

    In 2001, the Environmental Studies Senior Capstone Seminar class at Denison University helped the state of Ohio work to prevent harmful pesticide use in schools. In cooperation with Ohio State University's Integrated Pest Management (IPM) in Schools Program, Denison conducted a statewide survey of school districts to determine current pest…

  13. Survey of Automated Library Systems; Phase I. Final Report.

    ERIC Educational Resources Information Center

    Buckland, Lawrence F.; And Others

    Described in this report are the results of a survey of 27 libraries which had in operation 40 mechanized systems for acquisition, cataloging and circulation control. The libraries were selected on the basis of advanced performance in the state of the art of library automation. The overall trends show libraries increasing their use of on-line…

  14. National Special Education Curriculum Guide Survey. Final Report.

    ERIC Educational Resources Information Center

    Ash, Paul

    The bibliography lists 176 special education exemplary curriculum guides which were reported effective in the education of handicapped or gifted children as a result of a survey of state education agencies, universities, and special projects from over 40 states. Information provided for each guide includes title, publisher/vendor, copyright or…

  15. Clustering-based redshift estimation: application to VIPERS/CFHTLS

    NASA Astrophysics Data System (ADS)

    Scottez, V.; Mellier, Y.; Granett, B. R.; Moutard, T.; Kilbinger, M.; Scodeggio, M.; Garilli, B.; Bolzonella, M.; de la Torre, S.; Guzzo, L.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Branchini, E.; Cappi, A.; Cucciati, O.; Davidzon, I.; Fritz, A.; Franzetti, P.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Bel, J.; Coupon, J.; De Lucia, G.; Ilbert, O.; McCracken, H. J.; Moscardini, L.

    2016-10-01

    We explore the accuracy of the clustering-based redshift estimation proposed by Ménard et al. when applied to VIMOS Public Extragalactic Redshift Survey (VIPERS) and Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) real data. This method enables us to reconstruct redshift distributions from measurement of the angular clustering of objects using a set of secure spectroscopic redshifts. We use state-of-the-art spectroscopic measurements with iAB < 22.5 from the VIPERS as reference population to infer the redshift distribution of galaxies from the CFHTLS T0007 release. VIPERS provides a nearly representative sample to a flux limit of iAB < 22.5 at a redshift of >0.5 which allows us to test the accuracy of the clustering-based redshift distributions. We show that this method enables us to reproduce the true mean colour-redshift relation when both populations have the same magnitude limit. We also show that this technique allows the inference of redshift distributions for a population fainter than the reference and we give an estimate of the colour-redshift mapping in this case. This last point is of great interest for future large-redshift surveys which require a complete faint spectroscopic sample.

  16. Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Bauer, F. E.

    2014-10-01

    Recent years have seen tremendous progress in finding and charactering star-forming galaxies at high redshifts across the electromagnetic spectrum, giving us a more complete picture of how galaxies evolve, both in terms of their stellar and gas content, as well as the growth of their central supermassive black holes. A wealth of studies now demonstrate that star formation peaked at roughly half the age of the Universe and drops precariously as we look back to very early times, and that their central monsters apparently growth with them. At the highest-redshifts, we are pushing the boundaries via deep surveys at optical, X-ray, radio wavelengths, and more recently using gamma-ray bursts. I will review some of our accomplishments and failures. Telescope have enabled Lyman break galaxies to be robustly identified, but the UV luminosity function and star formation rate density of this population at z = 6 - 8 seems to be much lower than at z = 2 - 4. High escape fractions and a large contribution from faint galaxies below our current detection limits would be required for star-forming galaxies to reionize the Universe. We have also found that these galaxies have blue rest-frame UV colours, which might indicate lower dust extinction at z > 5. There has been some spectroscopic confirmation of these Lyman break galaxies through Lyman-α emission, but the fraction of galaxies where we see this line drops at z > 7, perhaps due to the onset of the Gunn-Peterson effect (where the IGM is opaque to Lyman-α).

  17. An ALMA survey of submillimeter galaxies in the extended Chandra deep field south: The redshift distribution and evolution of submillimeter galaxies

    SciTech Connect

    Simpson, J. M.; Swinbank, A. M.; Smail, Ian; Alexander, D. M.; Danielson, A. L. R.; Thomson, A. P.; Brandt, W. N.; Bertoldi, F.; Karim, A.; De Breuck, C.; Chapman, S. C.; Coppin, K. E. K.; Da Cunha, E.; Hodge, J. A.; Schinnerer, E.; Dannerbauer, H.; Greve, T. R.; Ivison, R. J.; Knudsen, K. K.; Poggianti, B. M.; and others

    2014-06-20

    We present the first photometric redshift distribution for a large sample of 870 μm submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z {sub phot} = 2.3 ± 0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z ∼ 1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to z {sub phot} = 2.5 ± 0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z ≥ 3 is at most 35% ± 5% of the total population. We derive a median stellar mass of M {sub *} = (8 ± 1) × 10{sup 10} M {sub ☉}, although there are systematic uncertainties of up to 5 × for individual sources. Assuming that the star formation activity in SMGs has a timescale of ∼100 Myr, we show that their descendants at z ∼ 0 would have a space density and M{sub H} distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.

  18. Survey of potential geopressured resource areas in California. Final report

    SciTech Connect

    Sanyal, S.K.; Robertson-Tait, A.; Kraemer, M.; Buening, N.

    1993-03-01

    This paper presents the initial results of a survey of the occurrence and characteristics of geopressured fluid resources in California using the publicly- available database involving more than 150,000 oil and gas wells drilled in the State. Of the 975 documented on-shore oil and gas pools studied, about 42% were identified as potentially geopressured. Geothermal gradients in California oil and gas fields lie within the normal range of 1 F to 2 F per 100 feet. Except for the Los Angeles Basin, there was no evidence of higher temperatures or temperature gradients in geopressured pools.

  19. The FourStar Galaxy Evolution Survey (ZFOURGE): Ultraviolet to Far-infrared Catalogs, Medium-bandwidth Photometric Redshifts with Improved Accuracy, Stellar Masses, and Confirmation of Quiescent Galaxies to z ∼ 3.5

    NASA Astrophysics Data System (ADS)

    Straatman, Caroline M. S.; Spitler, Lee R.; Quadri, Ryan F.; Labbé, Ivo; Glazebrook, Karl; Persson, S. Eric; Papovich, Casey; Tran, Kim-Vy H.; Brammer, Gabriel B.; Cowley, Michael; Tomczak, Adam; Nanayakkara, Themiya; Alcorn, Leo; Allen, Rebecca; Broussard, Adam; van Dokkum, Pieter; Forrest, Ben; van Houdt, Josha; Kacprzak, Glenn G.; Kawinwanichakij, Lalitwadee; Kelson, Daniel D.; Lee, Janice; McCarthy, Patrick J.; Mehrtens, Nicola; Monson, Andrew; Murphy, David; Rees, Glen; Tilvi, Vithal; Whitaker, Katherine E.

    2016-10-01

    The FourStar galaxy evolution survey (ZFOURGE) is a 45 night legacy program with the FourStar near-infrared camera on Magellan and one of the most sensitive surveys to date. ZFOURGE covers a total of 400 arcmin2 in cosmic fields CDFS, COSMOS and UDS, overlapping CANDELS. We present photometric catalogs comprising >70,000 galaxies, selected from ultradeep K s -band detection images (25.5–26.5 AB mag, 5σ, total), and >80% complete to K s < 25.3–25.9 AB. We use 5 near-IR medium-bandwidth filters (J 1, J 2, J 3, H s , H l ) as well as broad-band K s at 1.05–2.16 μm to 25–26 AB at a seeing of ∼0.″5. Each field has ancillary imaging in 26–40 filters at 0.3–8 μm. We derive photometric redshifts and stellar population properties. Comparing with spectroscopic redshifts indicates a photometric redshift uncertainty σ z = 0.010, 0.009, and 0.011 in CDFS, COSMOS, and UDS. As spectroscopic samples are often biased toward bright and blue sources, we also inspect the photometric redshift differences between close pairs of galaxies, finding σ z,pairs = 0.01–0.02 at 1 < z < 2.5. We quantify how σ z,pairs depends on redshift, magnitude, spectral energy distribution type, and the inclusion of FourStar medium bands. σ z,pairs is smallest for bright, blue star-forming samples, while red star-forming galaxies have the worst σ z,pairs. Including FourStar medium bands reduces σ z,pairs by 50% at 1.5 < z < 2.5. We calculate star formation rates (SFRs) based on ultraviolet and ultradeep far-IR Spitzer/MIPS and Herschel/PACS data. We derive rest-frame U ‑ V and V ‑ J colors, and illustrate how these correlate with specific SFR and dust emission to z = 3.5. We confirm the existence of quiescent galaxies at z ∼ 3, demonstrating their SFRs are suppressed by > ×15. This paper contains data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas observatory, Chile

  20. Final report. Electro-Seise, Inc., Airborne Survey

    SciTech Connect

    Schulte, Ralph

    2001-06-01

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed a test of an airborne microgravity and electric field sensing technology developed by Electro-Seise, Inc. of Fort Worth, Texas. The test involved the use of a single engine airplane to gather data over the Teapot Dome oil field along a tight grid spacing and along thirty (30) survey lines. The resultant gravity structure maps, based on the field data, were found to overlay the known structure of Teapot Dome. In addition, fault maps, based on the field data, were consistent with the known fault strike at Teapot Dome. Projected hydrocarbon thickness maps corresponded to some of the known production histories at RMOTC. Exceptions to the hydrocarbon thickness maps were also found to be true.

  1. Final Report for the Advanced Camera for Surveys (ACS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    ACS was launched aboard the Space Shuttle Columbia just before dawn on March 1, 2002. At the time of liftoff, the Hubble Space Telescope (HST) was reflecting the early morning sun as it moved across the sky. After successfully docking with HST, several components were replaced. One of the components was the Advanced Camera for Surveys built by Ball Aerospace & Technologies Corp. (BATC) in Boulder, Colorado. Over the life of the HST contract at BATC, hundreds of employees had the pleasure of working on the concept, design, fabrication, assembly, and test of ACS. Those employees thank NASA - Goddard Space Flight Center and the science team at Johns Hopkins University (JHU) for the opportunity to participate in building a great science instrument for HST.

  2. Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Pérez-Fournon, I.; Balcells, M.; Moreno-Insertis, F.; Sánchez, F.

    2010-08-01

    Participants; Group photograph; Preface; Acknowledgements; 1. Galaxy formation and evolution: recent progress R. Ellis; 2. Galaxies at high redshift M. Dickinson; 3. High-redshift galaxies: the far-infrared and sub-millimeter view A. Franceschini; 4. Quasar absorption lines J. Bechtold; 5. Stellar population synthesis models at low and high redshift G. Bruzual A.; 6. Elliptical galaxies K. C. Freeman; 7. Disk galaxies K. C. Freeman; 8. Dark matter in disk galaxies K. C. Freeman.

  3. Bifurcation and chaos in power systems: A survey. Final report

    SciTech Connect

    Varaiya, P.; Wu, F.; Chiang, H.D.

    1992-08-01

    The literature dealing with bifurcation and chaos in electric power systems is surveyed. A brief discussion of relevant mathematical concepts and results is included in order to make the presentation self-contained and readily accessible. The objective is to determine the extent and significance of power system behavior that can be understood by dynamic models exhibiting bifurcation and chaotic motion. Bifurcation denotes a qualitative change in system behavior. The study is divided into three parts dealing with static bifurcations, Hopf bifurcations, and chaos. Static bifurcation occurs when two or more equilibrium points coincide. Hopf bifurcation occurs when a periodic oscillation emerges from a stable equilibrium. These are both examples of local bifurcation - they are determined by the system behavior in a neighborhood of the equilibrium. Chaos emerges from a global bifurcation - a non-local change in the phase portrait of tile system. The following conclusions are reached. Even the simplest models of power systems exhibit both local and global bifurcations. Local bifurcations occur because power flow equations have multiple solutions. In models that only incorporate real power flow, the capacity of transmission systems is so large that local bifurcations although present are unlikely to be practically significant. However, in models where voltage is determined by reactive power flows, local bifurcations can dramatically shrink the stability region. These bifurcations may explain ``voltage collapse``. The simplest models also exhibit chaotic behavior. However, for analytical convenience, chaos has mostly been investigated in systems with unrealistic parameter values.

  4. A new method to search for high-redshift clusters using photometric redshifts

    SciTech Connect

    Castignani, G.; Celotti, A.; Chiaberge, M.; Norman, C.

    2014-09-10

    We describe a new method (Poisson probability method, PPM) to search for high-redshift galaxy clusters and groups by using photometric redshift information and galaxy number counts. The method relies on Poisson statistics and is primarily introduced to search for megaparsec-scale environments around a specific beacon. The PPM is tailored to both the properties of the FR I radio galaxies in the Chiaberge et al. sample, which are selected within the COSMOS survey, and to the specific data set used. We test the efficiency of our method of searching for cluster candidates against simulations. Two different approaches are adopted. (1) We use two z ∼ 1 X-ray detected cluster candidates found in the COSMOS survey and we shift them to higher redshift up to z = 2. We find that the PPM detects the cluster candidates up to z = 1.5, and it correctly estimates both the redshift and size of the two clusters. (2) We simulate spherically symmetric clusters of different size and richness, and we locate them at different redshifts (i.e., z = 1.0, 1.5, and 2.0) in the COSMOS field. We find that the PPM detects the simulated clusters within the considered redshift range with a statistical 1σ redshift accuracy of ∼0.05. The PPM is an efficient alternative method for high-redshift cluster searches that may also be applied to both present and future wide field surveys such as SDSS Stripe 82, LSST, and Euclid. Accurate photometric redshifts and a survey depth similar or better than that of COSMOS (e.g., I < 25) are required.

  5. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: mock galaxy catalogues for the BOSS Final Data Release

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Rodríguez-Torres, Sergio; Chuang, Chia-Hsun; Zhao, Cheng; Prada, Francisco; Gil-Marín, Héctor; Guo, Hong; Yepes, Gustavo; Klypin, Anatoly; Scóccola, Claudia G.; Tinker, Jeremy; McBride, Cameron; Reid, Beth; Sánchez, Ariel G.; Salazar-Albornoz, Salvador; Grieb, Jan Niklas; Vargas-Magana, Mariana; Cuesta, Antonio J.; Neyrinck, Mark; Beutler, Florian; Comparat, Johan; Percival, Will J.; Ross, Ashley

    2016-03-01

    We reproduce the galaxy clustering catalogue from the SDSS-III Baryon Oscillation Spectroscopic Survey Final Data Release (BOSS DR11&DR12) with high fidelity on all relevant scales in order to allow a robust analysis of baryon acoustic oscillations and redshift space distortions. We have generated (6000) 12 288 MultiDark PATCHY BOSS (DR11) DR12 light cones corresponding to an effective volume of ˜192 000 [h-1 Gpc]3 (the largest ever simulated volume), including cosmic evolution in the redshift range from 0.15 to 0.75. The mocks have been calibrated using a reference galaxy catalogue based on the halo abundance matching modelling of the BOSS DR11&DR12 galaxy clustering data and on the data themselves. The production follows three steps. First, we apply the PATCHY code to generate a dark matter field and an object distribution including non-linear stochastic galaxy bias. Secondly, we run the halo/stellar distribution reconstruction HADRON code to assign masses to the various objects. This step uses the mass distribution as a function of local density and non-local indicators (i.e. tidal field tensor eigenvalues and relative halo exclusion separation for massive objects) from the reference simulation applied to the corresponding patchy dark matter and galaxy distribution. Finally, we apply the SUGAR code to build the light cones. The resulting MultiDarkPATCHY mock light cones reproduce the number density, selection function, survey geometry, and in general within 1σ, for arbitrary stellar mass bins, the power spectrum up to k = 0.3 h Mpc-1, the two-point correlation functions down to a few Mpc scales, and the three-point statistics of the BOSS DR11&DR12 galaxy samples.

  6. Constraining Source Redshift Distributions with Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Wittman, D.; Dawson, W. A.

    2012-09-01

    We introduce a new method for constraining the redshift distribution of a set of galaxies, using weak gravitational lensing shear. Instead of using observed shears and redshifts to constrain cosmological parameters, we ask how well the shears around clusters can constrain the redshifts, assuming fixed cosmological parameters. This provides a check on photometric redshifts, independent of source spectral energy distribution properties and therefore free of confounding factors such as misidentification of spectral breaks. We find that ~40 massive (σ v = 1200 km s-1) cluster lenses are sufficient to determine the fraction of sources in each of six coarse redshift bins to ~11%, given weak (20%) priors on the masses of the highest-redshift lenses, tight (5%) priors on the masses of the lowest-redshift lenses, and only modest (20%-50%) priors on calibration and evolution effects. Additional massive lenses drive down uncertainties as N_lens^{-{1\\over 2}}, but the improvement slows as one is forced to use lenses further down the mass function. Future large surveys contain enough clusters to reach 1% precision in the bin fractions if the tight lens-mass priors can be maintained for large samples of lenses. In practice this will be difficult to achieve, but the method may be valuable as a complement to other more precise methods because it is based on different physics and therefore has different systematic errors.

  7. REDSHIFT CATALOG FOR SWIFT LONG GAMMA-RAY BURSTS

    SciTech Connect

    Xiao Limin; Schaefer, Bradley E.

    2011-04-20

    We present a catalog of the redshifts for most long-duration gamma-ray bursts (GRBs) by Swift from 2004 December 20 to 2008 July 23 (258 bursts in total). All available information is collected, including spectroscopic redshifts, photometric redshift limits, and redshifts calculated from various luminosity relations. Error bars for the redshifts derived from the luminosity relations are asymmetric, with tails extended to the high-redshift end, and this effect is evaluated by looking at the 30% of Swift bursts with spectroscopic redshifts. A simulation is performed to eliminate this asymmetric effect, and the resultant redshift distribution is deconvolved. We test and confirm this simulation on the sample of bursts with known spectroscopic redshifts and then apply it to the 70% of Swift bursts that do not have spectroscopic measures. A final intrinsic redshift distribution is then made for almost all Swift bursts, and the efficiency of the spectroscopic detections is evaluated. The efficiency of spectroscopic redshifts varies from near unity at low redshift to 0.5 at z = 1, to near 0.3 at z = 4, and to 0.1 at z = 6. We also find that the fraction of GRBs with z>5 is {approx}10%, and this fraction is compared with simulations from a cosmological model.

  8. Properties of the redshift

    NASA Technical Reports Server (NTRS)

    Tifft, William G.; Cocke, W. J.

    1990-01-01

    Central to any analysis of dynamical systems, or large scale motion, is the interpretation of redshifts of galaxies as classical Doppler velocity shifts. This is a testable assumption and for many years evidence has accumulated that is inconsistent with the assumption. Here, the authors review recent evidence suggesting systematic radial dependence and temporal variation of redshifts.

  9. HIGH-REDSHIFT COOL-CORE GALAXY CLUSTERS DETECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE SOUTH POLE TELESCOPE SURVEY

    SciTech Connect

    Semler, D. R.; Suhada, R.; Bazin, G.; Bocquet, S.; Desai, S.; Aird, K. A.; Ashby, M. L. N.; Bayliss, M.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Brodwin, M.; Cho, H. M.; Clocchiatti, A.; De Haan, T.; Dobbs, M. A.; and others

    2012-12-20

    We report the first investigation of cool-core properties of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect. We use 13 galaxy clusters uniformly selected from 178 deg{sup 2} observed with the South Pole Telescope (SPT) and followed up by the Chandra X-ray Observatory. They form an approximately mass-limited sample (>3 Multiplication-Sign 10{sup 14} M{sub Sun} h {sup -1}{sub 70}) spanning redshifts 0.3 < z < 1.1. Using previously published X-ray-selected cluster samples, we compare two proxies of cool-core strength: surface brightness concentration (c{sub SB}) and cuspiness ({alpha}). We find that c{sub SB} is better constrained. We measure c{sub SB} for the SPT sample and find several new z > 0.5 cool-core clusters, including two strong cool cores. This rules out the hypothesis that there are no z > 0.5 clusters that qualify as strong cool cores at the 5.4{sigma} level. The fraction of strong cool-core clusters in the SPT sample in this redshift regime is between 7% and 56% (95% confidence). Although the SPT selection function is significantly different from the X-ray samples, the high-z c{sub SB} distribution for the SPT sample is statistically consistent with that of X-ray-selected samples at both low and high redshifts. The cool-core strength is inversely correlated with the offset between the brightest cluster galaxy and the X-ray centroid, providing evidence that the dynamical state affects the cool-core strength of the cluster. Larger SZ-selected samples will be crucial in understanding the evolution of cluster cool cores over cosmic time.

  10. Cosmological constraints from Sunyaev-Zeldovich cluster counts: An approach to account for missing redshifts

    SciTech Connect

    Bonaldi, A.; Battye, R. A.; Brown, M. L.

    2014-05-10

    The accumulation of redshifts provides a significant observational bottleneck when using galaxy cluster surveys to constrain cosmological parameters. We propose a simple method to allow the use of samples where there is a fraction of the redshifts that are not known. The simplest assumption is that the missing redshifts are randomly extracted from the catalog, but the method also allows one to take into account known selection effects in the accumulation of redshifts. We quantify the reduction in statistical precision of cosmological parameter constraints as a function of the fraction of missing redshifts for simulated surveys, and also investigate the impact of making an incorrect assumption for the distribution of missing redshifts.

  11. Survey of protected terrestrial vertebrates on the Oak Ridge Reservation. Final report

    SciTech Connect

    Mitchell, J.M.; Vail, E.R.; Webb, J.W.; Evans, J.W.

    1996-07-01

    This document is the final report on surveys of protected terrestrial vertebrates on the Oak Ridge Reservation (ORR) conducted from October 1994 through May 1996. The surveys were undertaken to gain information that could help prevent or minimize the potential impacts of projects on the ORR to species listed by the state or federal government as endangered, threatened, or in need of management; federal species of concern were also included. The results of the survey will assist in the effective management of the natural resources of the ORR. Currently, there are 69 species of federal or state listed terrestrial vertebrates (20 reptiles and amphibians, 20 mammals, and 29 birds) that may occur in Tennessee. Listed animal species that might be present on the ORR were targeted for survey using a prioritization system based on historical and recent sightings, known species distributions, presence of suitable habitat, literature reviews, and personal communications. Survey methods included trapping, seining, monitoring of artificial covers, active searching, and avian surveys. Surveys were conducted during the time of year when each targeted species was most likely to be encountered. The surveys confirmed the presence of 20 threatened and endangered species on the ORR. This report also includes some ancillary information. Records are provided for nonlisted species (44 species of reptiles and amphibians, 155 species of birds, and 28 species of mammals). Categorization of survey sites into 1 or more of 19 habitat types, which are briefly described, is presented. Notes are summarized on the occurrence of threatened and endangered species on the ORR. Finally, this report also lists threatened and endangered species not found that might be located by additional surveys, recommends three survey areas for natural-area status due to wildlife value, and suggests several avenues for future work.

  12. Redshift-space Enhancement of Line-of-sight Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Main-galaxy Sample

    NASA Astrophysics Data System (ADS)

    Tian, H. J.; Neyrinck, Mark C.; Budavári, Tamás; Szalay, Alexander S.

    2011-02-01

    We show that redshift-space distortions of galaxy correlations have a strong effect on correlation functions with distinct, localized features, like the signature of the baryon acoustic oscillations (BAO). Near the line of sight, the features become sharper as a result of redshift-space distortions. We demonstrate this effect by measuring the correlation function in Gaussian simulations and the Millennium simulation. We also analyze the SDSS DR7 main-galaxy sample, splitting the sample into slices 2fdg5 on the sky in various rotations. Measuring two-dimensional correlation functions in each slice, we do see a sharp bump along the line of sight. Using Mexican-hat wavelets, we localize it to (110 ± 10) h -1 Mpc. Averaging only along the line of sight, we estimate its significance at a particular wavelet scale and location at 2.2σ. In a flat angular weighting in the (π, rp ) coordinate system, the noise level is suppressed, pushing the bump's significance to 4σ. We estimate that there is about a 0.2% chance of getting such a signal anywhere in the vicinity of the BAO scale from a power spectrum lacking a BAO feature. However, these estimates of the significances make some use of idealized Gaussian simulations, and thus are likely a bit optimistic.

  13. Redshift-Space Enhancement of Line-of-Sight Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Main-Galaxy Sample

    NASA Astrophysics Data System (ADS)

    Tian, Haijun; Neyrinck, Mark C.; Budavari, Tamas; SZALAY, AlEXANDER

    2015-08-01

    We show that redshift-space distortions of galaxy correlations have a strong effect on correlation functions with distinct, localized features, like the signature of the baryon acoustic oscillations (BAO). Near the line of sight, the features become sharper as a result of redshift-space distortions. We demonstrate this effect by measuring the correlation function in Gaussian simulations and the Millennium simulation. We also analyze the SDSS DR7 main-galaxy sample, splitting the sample into slices 2.5 on the sky in various rotations. Measuring two-dimensional correlation functions in each slice, we do see a sharp bump along the line of sight. Using Mexican-hat wavelets, we localize it to (110 ± 10) Mpc/h. Averaging only along the line of sight, we estimate its significance at a particular wavelet scale and location at 2.2σ. In a flat angular weighting in the (π,rp) coordinate system, the noise level is suppressed, pushing the bump’s significance to 4σ . We estimate that there is about a 0.2% chance of getting such a signal anywhere in the vicinity of the BAO scale from a power spectrum lacking a BAO feature. However, these estimates of the significances make some use of idealized Gaussian simulations, and thus are likely a bit optimistic.

  14. Galaxy bispectrum, primordial non-Gaussianity and redshift space distortions

    NASA Astrophysics Data System (ADS)

    Tellarini, Matteo; Ross, Ashley J.; Tasinato, Gianmassimo; Wands, David

    2016-06-01

    Measurements of the non-Gaussianity of the primordial density field have the power to considerably improve our understanding of the physics of inflation. Indeed, if we can increase the precision of current measurements by an order of magnitude, a null-detection would rule out many classes of scenarios for generating primordial fluctuations. Large-scale galaxy redshift surveys represent experiments that hold the promise to realise this goal. Thus, we model the galaxy bispectrum and forecast the accuracy with which it will probe the parameter fNL, which represents the degree of primordial local-type non Gaussianity. Specifically, we address the problem of modelling redshift space distortions (RSD) in the tree-level galaxy bispectrum including fNL. We find novel contributions associated with RSD, with the characteristic large scale amplification induced by local-type non-Gaussianity. These RSD effects must be properly accounted for in order to obtain un-biased measurements of fNL from the galaxy bispectrum. We propose an analytic template for the monopole which can be used to fit against data on large scales, extending models used in the recent measurements. Finally, we perform idealised forecasts on σfNL—the accuracy of the determination of local non-linear parameter fNL—from measurements of the galaxy bispectrum. Our findings suggest that current surveys can in principle provide fNL constraints competitive with Planck, and future surveys could improve them further.

  15. High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.

    1996-01-01

    The report for this period includes three papers: 'Associated Absorption at Low and High Redshift'; 'Strong X-ray Absorption in a Broad Absorption Line Quasar: PHL5200'; and 'ASCA and ROSAT X-ray Spectra of High-Redshift Radio-Loud Quasars'. The first gives examples from both low and high redshift for combining information on absorbing material in active galactic nuclei from both x-ray and the UV. The second presents ASCA observations of the z = 1.98 prototype broad absorption line quasar (BALQSO): PHL 5200, detected with both the solid-state imaging spectrometers and the gas imaging spectometers. The third paper presents results on the x-ray properties of 9 high-redshift radio-loud quasars observed by ASCA and ROSAT, including ASCA observations of S5 0014+81 (z = 3.38) and S5 0836+71 (z = 2.17) and ROSAT observations of PKS 2126-158.

  16. MARZ: Redshifting Program

    NASA Astrophysics Data System (ADS)

    Hinton, Samuel

    2016-05-01

    MARZ analyzes objects and produces high quality spectroscopic redshift measurements. Spectra not matched correctly by the automatic algorithm can be redshifted manually by cycling automatic results, manual template comparison, or marking spectral features. The software has an intuitive interface and powerful automatic matching capabilities on spectra, and can be run interactively or from the command line, and runs as a Web application. MARZ can be run on a local server; it is also available for use on a public server.

  17. Plasma Redshift Cosmology

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, Ari

    2011-04-01

    The newly discovered plasma redshift cross section explains a long range of phenomena; including the cosmological redshift, and the intrinsic redshift of Sun, stars, galaxies and quasars. It explains the beautiful black body spectrum of the CMB, and it predicts correctly: a) the observed XRB, b) the magnitude redshift relation for supernovae, and c) the surface- brightness-redshift relation for galaxies. There is no need for Big Bang, Inflation, Dark Energy, Dark Matter, Accelerated Expansion, and Black Holes. The universe is quasi-static and can renew itself forever (for details, see: http://www.plasmaredshift.org). There is no cosmic time dilation. In intergalactic space, the average electron temperature is T = 2.7 million K, and the average electron density is N = 0.0002 per cubic cm. Plasma redshift is derived theoretically from conventional axioms of physics by using more accurate methods than those conventionally used. The main difference is: 1) the proper inclusion of the dielectric constant, 2) more exact calculations of imaginary part of the dielectric constant, and as required 3) a quantum mechanical treatment of the interactions.

  18. Galaxy And Mass Assembly (GAMA): end of survey report and data release 2

    NASA Astrophysics Data System (ADS)

    Liske, J.; Baldry, I. K.; Driver, S. P.; Tuffs, R. J.; Alpaslan, M.; Andrae, E.; Brough, S.; Cluver, M. E.; Grootes, M. W.; Gunawardhana, M. L. P.; Kelvin, L. S.; Loveday, J.; Robotham, A. S. G.; Taylor, E. N.; Bamford, S. P.; Bland-Hawthorn, J.; Brown, M. J. I.; Drinkwater, M. J.; Hopkins, A. M.; Meyer, M. J.; Norberg, P.; Peacock, J. A.; Agius, N. K.; Andrews, S. K.; Bauer, A. E.; Ching, J. H. Y.; Colless, M.; Conselice, C. J.; Croom, S. M.; Davies, L. J. M.; De Propris, R.; Dunne, L.; Eardley, E. M.; Ellis, S.; Foster, C.; Frenk, C. S.; Häußler, B.; Holwerda, B. W.; Howlett, C.; Ibarra, H.; Jarvis, M. J.; Jones, D. H.; Kafle, P. R.; Lacey, C. G.; Lange, R.; Lara-López, M. A.; López-Sánchez, Á. R.; Maddox, S.; Madore, B. F.; McNaught-Roberts, T.; Moffett, A. J.; Nichol, R. C.; Owers, M. S.; Palamara, D.; Penny, S. J.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Proctor, R.; Sadler, E. M.; Sansom, A. E.; Seibert, M.; Sharp, R.; Sutherland, W.; Vázquez-Mata, J. A.; van Kampen, E.; Wilkins, S. M.; Williams, R.; Wright, A. H.

    2015-09-01

    The Galaxy And Mass Assembly (GAMA) survey is one of the largest contemporary spectroscopic surveys of low redshift galaxies. Covering an area of ˜286 deg2 (split among five survey regions) down to a limiting magnitude of r < 19.8 mag, we have collected spectra and reliable redshifts for 238 000 objects using the AAOmega spectrograph on the Anglo-Australian Telescope. In addition, we have assembled imaging data from a number of independent surveys in order to generate photometry spanning the wavelength range 1 nm-1 m. Here, we report on the recently completed spectroscopic survey and present a series of diagnostics to assess its final state and the quality of the redshift data. We also describe a number of survey aspects and procedures, or updates thereof, including changes to the input catalogue, redshifting and re-redshifting, and the derivation of ultraviolet, optical and near-infrared photometry. Finally, we present the second public release of GAMA data. In this release, we provide input catalogue and targeting information, spectra, redshifts, ultraviolet, optical and near-infrared photometry, single-component Sérsic fits, stellar masses, Hα-derived star formation rates, environment information, and group properties for all galaxies with r < 19.0 mag in two of our survey regions, and for all galaxies with r < 19.4 mag in a third region (72 225 objects in total). The data base serving these data is available at http://www.gama-survey.org/.

  19. ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Collister, Adrian A.; Lahav, Ofer

    2004-04-01

    We introduce ANNz, a freely available software package for photometric redshift estimation using artificial neural networks. ANNz learns the relation between photometry and redshift from an appropriate training set of galaxies for which the redshift is already known. Where a large and representative training set is available, ANNz is a highly competitive tool when compared with traditional template-fitting methods. The ANNz package is demonstrated on the Sloan Digital Sky Survey Data Release 1, and for this particular data set the rms redshift error in the range 0<~z<~0.7 is σrms=0.023. Nonideal conditions (spectroscopic sets that are small or brighter than the photometric set for which redshifts are required) are simulated, and the impact on the photometric redshift accuracy is assessed.2

  20. The Muenster Redshift Project - Automated redshift measurements from low-dispersion objective prism Schmidt plates

    NASA Astrophysics Data System (ADS)

    Schuecker, Peter

    A three-dimensional galaxy survey at faint magnitudes and over large volumes of space was carried out as part of the Muenster Redshift Project. Three different methods were used to enhance the reliability of the redshifts measured from objective prison plates: the correlation method, the least-squares method, and the break method where continuous breaks are identified directly. The redshift errors of the individual methods turn out to be 0.007 (correlation), 0.011 (direct identification), and 0.016 (least squares). Using the method described in the paper, it is possible to obtain about 6000 galaxy redshifts from one objective prism plate at high galactic latitudes for objects with m(J) less than 20.

  1. WISE × SuperCOSMOS Photometric Redshift Catalog: 20 Million Galaxies over 3/pi Steradians

    NASA Astrophysics Data System (ADS)

    Bilicki, Maciej; Peacock, John A.; Jarrett, Thomas H.; Cluver, Michelle E.; Maddox, Natasha; Brown, Michael J. I.; Taylor, Edward N.; Hambly, Nigel C.; Solarz, Aleksandra; Holwerda, Benne W.; Baldry, Ivan; Loveday, Jon; Moffett, Amanda; Hopkins, Andrew M.; Driver, Simon P.; Alpaslan, Mehmet; Bland-Hawthorn, Joss

    2016-07-01

    We cross-match the two currently largest all-sky photometric catalogs—mid-infrared Wide-field Infrared Survey Explorer and SuperCOSMOS scans of UKST/POSS-II photographic plates—to obtain a new galaxy sample that covers 3π steradians. In order to characterize and purify the extragalactic data set, we use external GAMA and Sloan Digital Sky Survey spectroscopic information to define quasar and star loci in multicolor space, aiding the removal of contamination from our extended source catalog. After appropriate data cleaning, we obtain a deep wide-angle galaxy sample that is approximately 95% pure and 90% complete at high Galactic latitudes. The catalog contains close to 20 million galaxies over almost 70% of the sky, outside the Zone of Avoidance and other confused regions, with a mean surface density of more than 650 sources per square degree. Using multiwavelength information from two optical and two mid-IR photometric bands, we derive photometric redshifts for all the galaxies in the catalog, using the ANNz framework trained on the final GAMA-II spectroscopic data. Our sample has a median redshift of {z}{med}=0.2, with a broad {dN}/{dz} reaching up to z > 0.4. The photometric redshifts have a mean bias of | δ z| ˜ {10}-3, a normalized scatter of σ z = 0.033, and less than 3% outliers beyond 3σ z . Comparison with external data sets shows no significant variation of photo-z quality with sky position. Together with the overall statistics, we also provide a more detailed analysis of photometric redshift accuracy as a function of magnitudes and colors. The final catalog is appropriate for “all-sky” three-dimensional (3D) cosmology to unprecedented depths, in particular through cross-correlations with other large-area surveys. It should also be useful for source preselection and identification in forthcoming surveys, such as TAIPAN or WALLABY.

  2. Coherent peculiar velocities and periodic redshifts

    SciTech Connect

    Hill, C.T.; Steinhardt, P.J.; Turner, M.S. Pennsylvania Univ., Philadelphia NASA/Fermilab Astrophysics Center, Batavia Chicago Univ., IL )

    1991-01-01

    A coherent, sinusoidal peculiar velocity field of 0.003 amplitude and wavelength of 128/h Mpc could explain the apparent redshift periodicity seen in the recent pencil-beam survey of Broadhurst et al. (1990). Such a peculiar velocity field could arise if the power spectrum of density perturbations has a strong feature at about this wavelength. This explanation has additional predictions: the phase, period, and strength of the periodicity should vary in different directions; the strength of the periodicity should decrease at higher redshifts; and there should be more thin structures perpendicular to the line of sight than parallel to it. 28 refs.

  3. Photometric Redshift Techniques in Big-data Era

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Xia; Zhao, Yong-Heng

    Photometric data increase with large survey projects running. The huge volume of data influences the means and methods to deal with them. As such, the techniques of photometric redshift estimation based on photometric data must be developed and improved.

  4. Cost-benefit of final radiological survey versus radioactive waste disposal.

    PubMed

    Barroso, Jeff; Roberts, Sarah

    2003-02-01

    A significant portion of the cost for D&D is related to low-level waste disposal, decontamination, and final radiological survey. For that reason, a careful cost-benefit analysis must be performed weighing the cost of decontaminating and radiologically surveying the building media for release against the cost of disposing of the material as radioactive waste. This cost-benefit analysis visibly came into play at the Rocky Flats Environmental Technology Site during the recent D&D of two facilities. PMID:12564340

  5. Cost-Benefit of Final Radiological Survey Versus Radioactive Waste Disposal.

    PubMed

    Barroso, Jeff; Roberts, Sarah

    2003-02-01

    ABSTRACT A significant portion of the cost for D&D is related to low-level waste disposal, decontamination, and final radiological survey. For that reason, a careful cost-benefit analysis must be performed weighing the cost of decontaminating and radiologically surveying the building media for release against the cost of disposing of the material as radioactive waste. This cost-benefit analysis visibly came into play at the Rocky Flats Environmental Technology Site during the recent D&D of two facilities. PMID:12555030

  6. Dusty Galaxies at the Highest Redshifts

    NASA Astrophysics Data System (ADS)

    Clements, David L.

    2015-08-01

    Galaxies with very high star formation rates are usually shrouded in substantial amounts of dust obscuration, making their discovery impossible through optical and/or near-IR observations. Observations in the far-IR/submm in contrast can identify such objects from their colours, allowing these rare objects to be followup up in detail. Herschel surveys have found a significant population of such objects at 4redshift record holder lying at z=6.34. Such objects are a challenge for all current models of galaxy formation and evolution. We here present the latest results from the HerMES consortium's ongoing work on this population, including new imaging and spectroscopic redshifts from ALMA, analysis of lensing for bright z>5 sources, and progress in the search for dusty star forming galaxies at still higher redshifts.

  7. Can We Detect the Color-Density Relation with Photometric Redshifts?

    NASA Astrophysics Data System (ADS)

    Lai, Chuan-Chin; Lin, Lihwai; Jian, Hung-Yu; Chiueh, Tzi-Hong; Merson, Alex; Baugh, Carlton M.; Foucaud, Sebastien; Chen, Chin-Wei; Chen, Wen-Ping

    2016-07-01

    A variety of methods have been proposed to define and to quantify galaxy environments. While these techniques work well in general with spectroscopic redshift samples, their application to photometric redshift surveys remains uncertain. To investigate whether galaxy environments can be robustly measured with photo-z samples, we quantify how the density measured with the nearest-neighbor approach is affected by photo-z uncertainties by using the Durham mock galaxy catalogs in which the 3D real-space environments and the properties of galaxies are known exactly. Furthermore, we present an optimization scheme in the choice of parameters used in the 2D projected measurements that yield the tightest correlation with respect to the 3D real-space environments. By adopting the optimized parameters in the density measurements, we show that the correlation between the 2D projected optimized density and the real-space density can still be revealed, and the color-density relation is also visible out to z ˜ 0.8 even for a photo-z uncertainty ({σ }{{{Δ }}z/(1+z)}) up to 0.06. We find that at redshifts 0.3 < z < 0.5 a deep (i ˜ 25) photometric redshift survey with {σ }{{{Δ }}z/(1+z)} = 0.02 yields a performance in small-scale density measurement that is comparable to a shallower i ˜ 22.5 spectroscopic sample with ˜10% sampling rate. Finally, we discuss the application of the local density measurements to the Pan-STARRS1 Medium Deep Survey (PS-MDS), one of the largest deep optical imaging surveys. Using data from ˜5 square degrees of survey area, our results show that it is possible to measure local density and to probe the color-density relation with 3σ confidence level out to z ˜ 0.8 in the PS-MDS. The color-density relation, however, quickly degrades for data covering smaller areas.

  8. Multi-agency radiation survey and site investigation manual (MARSIM). Final report

    SciTech Connect

    1997-12-01

    The MARSSIM provides information on planning, conducting, evaluating, and documenting building surface and surface soil final status radiological surveys for demonstrating compliance with dose or risk-based regulations or standards. The MARSSIM is a multi-agency consensus document that was developed collaboratively by four Federal agencies having authority and control over radioactive materials: Department of Defense (DOD), Department of Energy (DOE), Environmental Protection Agency (EPA), and Nuclear Regulatory Commission (NRC). The MARSSIM`s objective is to describe a consistent approach for planning, performing, and assessing building surface and surface soil final status surveys to meet established dose or risk-based release criteria, while at the same time encouraging an effective use of resources.

  9. Challenges with Final Status Surveys at a Large Decommissioning Site - 13417

    SciTech Connect

    Downey, Heath; Collopy, Peter; Shephard, Eugene; Walter, Nelson; Conant, John

    2013-07-01

    As part of decommissioning a former nuclear fuel manufacturing site, one of the crucial final steps is to conduct Final Status Surveys (FSS) in order to demonstrate compliance with the release criteria. At this decommissioning site, the area for FSS was about 100 hectares (248 acres) and included varying terrain, wooded areas, ponds, excavations, buildings and a brook. The challenges in performing the FSS included determining location, identifying FSS units, logging gamma walkover survey data, determining sample locations, managing water in excavations, and diverting water in the brook. The approaches taken to overcome these challenges will be presented in the paper. The paper will present and discuss lessons learned that will aid others in the FSS process. (authors)

  10. [A method for redshift determination of quasars based on cross correlation].

    PubMed

    Liu, Rong; Duan, Fu-qing; Luo, A-li

    2005-07-01

    This paper presents a novel method for redshift determination of quasars. Firstly, a group of redshifts were determined using the emission line info extracted from the observed spectrum; Secondly, the template was redshifted according to the candidates, and the correlation between the observed spectrum and the redshifted template was measured. Finally, the redshift candidate corresponding to the highest correlation was chosen as the redshift. Compared with the existing methods based on spectral line matching, the proposed method has a lower dependence on the quality of spectral line extraction. Experiments show that this method is robust and superior to the methods based on spectral linematching.

  11. Measuring redshifts using X-ray spectroscopy of galaxy clusters: results from Chandra data and future prospects

    NASA Astrophysics Data System (ADS)

    Yu, H.; Tozzi, P.; Borgani, S.; Rosati, P.; Zhu, Z.-H.

    2011-05-01

    Context. The ubiquitous presence of the Fe line complex in the X-ray spectra of galaxy clusters offers the possibility of measuring their redshift without resorting to spectroscopic follow-up observations. In practice, the blind search of the Fe line in X-ray spectra is a difficult task and is affected not only by limited S/N (particularly at high redshift), but also by several systematic errors, associated with varying Fe abundance values, ICM temperature gradients, and instrumental characteristics. Aims: We assess the accuracy with which the redshift of galaxy clusters can be recovered from an X-ray spectral analysis of Chandra archival data. We present a strategy to compile large surveys of clusters whose identification and redshift measurement are both based on X-ray data alone. Methods: We apply a blind search for K-shell and L-shell Fe line complexes in X-ray cluster spectra using Chandra archival observations of galaxy clusters. The Fe line can be detected in the ICM spectra by simply analyzing the C-statistics variation ΔCstat as a function of the redshift parameter, when all the other model parameters are frozen to the best-fit values. We repeat the measurement under different conditions, and compare the X-ray derived redshift zX with the one obtained by means of optical spectroscopy zo. We explore how a number of priors on metallicity and luminosity can be effectively used to reduce catastrophic errors. The ΔCstat provides the most effective means of discarding wrong redshift measurements and estimating the actual error in zX. Results: We identify a simple and efficient procedure for optimally measuring the redshifts from the X-ray spectral analysis of clusters of galaxies. When this procedure is applied to mock catalogs extracted from high sensitivity, wide-area cluster surveys, such as those proposed with Wide Field X-ray Telescope (WFXT) mission, it is possible to obtain complete samples of X-ray clusters with reliable redshift measurements, thus

  12. Redshifts and Killing vectors

    NASA Astrophysics Data System (ADS)

    Harvey, Alex; Schucking, Engelbert; Surowitz, Eugene J.

    2006-11-01

    Current approaches to physics stress the importance of conservation laws due to spacetime and internal symmetries. In special and general relativity the generators of these symmetries are known as Killing vectors. We use them for the rigorous determination of gravitational and cosmological redshifts.

  13. MARZ: Manual and automatic redshifting software

    NASA Astrophysics Data System (ADS)

    Hinton, S. R.; Davis, Tamara M.; Lidman, C.; Glazebrook, K.; Lewis, G. F.

    2016-04-01

    The Australian Dark Energy Survey (OzDES) is a 100-night spectroscopic survey underway on the Anglo-Australian Telescope using the fibre-fed 2-degree-field (2dF) spectrograph. We have developed a new redshifting application MARZ with greater usability, flexibility, and the capacity to analyse a wider range of object types than the RUNZ software package previously used for redshifting spectra from 2dF. MARZ is an open-source, client-based, Javascript web-application which provides an intuitive interface and powerful automatic matching capabilities on spectra generated from the AAOmega spectrograph to produce high quality spectroscopic redshift measurements. The software can be run interactively or via the command line, and is easily adaptable to other instruments and pipelines if conforming to the current FITS file standard is not possible. Behind the scenes, a modified version of the AUTOZ cross-correlation algorithm is used to match input spectra against a variety of stellar and galaxy templates, and automatic matching performance for OzDES spectra has increased from 54% (RUNZ) to 91% (MARZ). Spectra not matched correctly by the automatic algorithm can be easily redshifted manually by cycling automatic results, manual template comparison, or marking spectral features.

  14. The 2QDES Pilot: the luminosity and redshift dependence of quasar clustering

    NASA Astrophysics Data System (ADS)

    Chehade, Ben; Shanks, T.; Findlay, J.; Metcalfe, N.; Sawangwit, U.; Irwin, M.; González-Solares, E.; Fine, S.; Drinkwater, M. J.; Croom, S.; Jurek, R. J.; Parkinson, D.; Bielby, R.

    2016-06-01

    We present a new redshift survey, the 2dF Quasar Dark Energy Survey pilot (2QDESp), which consists of ≈10 000 quasars from ≈150 deg2 of the southern sky, based on VST-ATLAS imaging and 2dF/AAOmega spectroscopy. Combining our optical photometry with the WISE (W1,W2) bands we can select essentially contamination free quasar samples with 0.8 < z < 2.5 and g < 20.5. At fainter magnitudes, optical UVX selection is still required to reach our g ≈ 22.5 limit. Using both these techniques we observed quasar redshifts at sky densities up to 90 deg-2. By comparing 2QDESp with other surveys (SDSS, 2QZ and 2SLAQ) we find that quasar clustering is approximately luminosity independent, with results for all four surveys consistent with a correlation scale of r0 = 6.1 ± 0.1 h-1 Mpc, despite their decade range in luminosity. We find a significant redshift dependence of clustering, particularly when BOSS data with r0 = 7.3 ± 0.1 h-1 Mpc are included at z ≈ 2.4. All quasars remain consistent with having a single host halo mass of ≈2 ± 1 × 1012 h-1 M⊙. This result implies that either quasars do not radiate at a fixed fraction of the Eddington luminosity or AGN black hole and dark matter halo masses are weakly correlated. No significant evidence is found to support fainter, X-ray selected quasars at low redshift having larger halo masses as predicted by the `hot halo' mode AGN model of Fanidakis et al. (2013). Finally, although the combined quasar sample reaches an effective volume as large as that of the original SDSS LRG sample, we do not detect the BAO feature in these data.

  15. The infrared database of extragalactic observables from Spitzer - I. The redshift catalogue

    NASA Astrophysics Data System (ADS)

    Hernán-Caballero, Antonio; Spoon, Henrik W. W.; Lebouteiller, Vianney; Rupke, David S. N.; Barry, Donald P.

    2016-01-01

    This is the first of a series of papers on the Infrared Database of Extragalactic Observables from Spitzer (IDEOS). In this work, we describe the identification of optical counterparts of the infrared sources detected in Spitzer Infrared Spectrograph (IRS) observations, and the acquisition and validation of redshifts. The IDEOS sample includes all the spectra from the Cornell Atlas of Spitzer/IRS Sources (CASSIS) of galaxies beyond the Local Group. Optical counterparts were identified from correlation of the extraction coordinates with the NASA Extragalactic Database (NED). To confirm the optical association and validate NED redshifts, we measure redshifts with unprecedented accuracy on the IRS spectra (σ(Δz/(1+z)) ˜ 0.0011) by using an improved version of the maximum combined pseudo-likelihood method (MCPL). We perform a multistage verification of redshifts that considers alternate NED redshifts, the MCPL redshift, and visual inspection of the IRS spectrum. The statistics is as follows: the IDEOS sample contains 3361 galaxies at redshift 0 < z < 6.42 (mean: 0.48, median: 0.14). We confirm the default NED redshift for 2429 sources and identify 124 with incorrect NED redshifts. We obtain IRS-based redshifts for 568 IDEOS sources without optical spectroscopic redshifts, including 228 with no previous redshift measurements. We provide the entire IDEOS redshift catalogue in machine-readable formats. The catalogue condenses our compilation and verification effort, and includes our final evaluation on the most likely redshift for each source, its origin, and reliability estimates.

  16. A Determination of the Intergalactic Redshift Dependent UV-Optical-NIR Photon Density Using Deep Galaxy Survey Data and the Gamma-Ray Opacity of the Universe

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2012-01-01

    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of red shift using an approach based on observational data obtained at in different wavelength bands from local to deep galaxy surveys. Our empirically based approach allows us, for the firs.t time, to obtain a completely model independent determination of the IBL and to quantify its uncertainties. Using our results on the IBL, we then place upper and lower limits on the opacity of the universe to gamma-rays, independent of previous constraints.

  17. Host galaxy spectra and consequences for supernova typing from the SDSS SN survey

    SciTech Connect

    Olmstead, Matthew D.; Brown, Peter J.; Brownstein, Joel R.; Dawson, Kyle S.; Sako, Masao; Gupta, Ravi R.; Bassett, Bruce; Kunz, Martin; Bizyaev, Dmitry; Brinkmann, J.; Brewington, Howard; Ebelke, Garrett L.; Campbell, Heather; D'Andrea, Chris B.; Lampeitl, Hubert; Frieman, Joshua A.; Galbany, Lluís; Garnavich, Peter; Hlozek, Renee; Jha, Saurabh W.; and others

    2014-04-01

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey, this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of SN host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future analysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased toward lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  18. The GAMA Panchromatic Survey

    NASA Astrophysics Data System (ADS)

    Driver, Simon P.

    2013-07-01

    The Galaxy And Mass Assembly Survey (GAMA) has now been operating for almost 5 years gathering spectroscopic redshifts for five regions of sky spanning 300 sq degrees in total to a depth of r < 19.8 mag. The survey has amassed over 225,000 redshifts making it the third largest redshift campaign after the SDSS and BOSS surveys. The survey has two novel features that set it apart: (1) complete and uniform sampling to a fixed flux limit (r < 19.8 mag) regardless of galaxy clustering due to multiple-visits to each sky region, enabling the construction of high-fidelity catalogues of groups and pairs, (2) co-ordination with diverse imaging campaigns which together sample an extremely broad range along the electro-magnetic spectrum from the UV (GALEX) through optical (VST KIDs), near-IR (VISTA VIKING), mid-IR (WISE), far-IR (Herschel-Atlas), 1m (GMRT), and eventually 20cm continuum and rest-frame 21cm line measurements (ASKAP DINGO). Apart from the ASKAP campaign all multi-wavelength programmes are either complete or in the final stages of observations and the UV-far-IR data are expected to be fully merged by the end of 2013. This article provides a brief flavour of the coming panchromatic database which will eventually include measurements or upper-limits across 27 wavebands for 380,000 galaxies. GAMA DR2 is scheduled for the end of January 2013.

  19. Metals at high redshifts

    NASA Astrophysics Data System (ADS)

    Petitjean, Patrick

    The amount of metals present in the Universe and its cosmological evolution is a key issue for our understanding of how star formation proceeds from the collapse of the first objects to the formation of present day galaxies. We discuss here recent results at the two extremes of the density scale. 1. Part of the tenuous intergalactic medium (IGM) revealed by neutral hydrogen absorptions in the spectra of remote quasars (the so-called Lyman-α forest) contains metals. This is not surprising as there is a close interplay between the formation of galaxies and the evolution of the IGM. The IGM acts as the baryonic reservoir from which galaxies form, while star formation in the forming galaxies strongly influences the IGM by enrichment with metals and the emission of ionizing radiation. The spatial distribution of metals in the IGM is largely unknown however. The possibility remains that metals are associated with the filaments and sheets of the dark matter spatial distribution where stars are expected to form, whereas the space delineated by these features remains unpolluted. 2. Damped Lyman-α (DLA) systems observed in the spectra of high-redshift quasars are considered as the progenitors of present-day galaxies. Indeed, the large neutral hydrogen column densities observed and the presence of metals imply that the gas is somehow closely associated with regions of star formation. The nature of the absorbing objects is unclear however. It is probable that very different objects contribute to this population of absorption systems. Here we concentrate on summarizing the properties of the gas: presence of dust in small amount; nucleosynthesis signature and lack of H_2 molecules. The presence of H_2 molecules has been investigated in the course of a mini-survey with UVES at the VLT. The upper limits on the molecular fraction, f = 2N(H_2)/(2N(H_2)+N(HI)), derived in eight systems are in the range 1.2 ×10^-7 - 1.6 × 10^-5. There is no evidence in this sample for any

  20. On the gravitational redshift

    NASA Astrophysics Data System (ADS)

    Wilhelm, Klaus; Dwivedi, Bhola N.

    2014-08-01

    The study of the gravitational redshift-a relative wavelength increase of ≈2×10-6 was predicted for solar radiation by Einstein in 1908-is still an important subject in modern physics. In a dispute whether or not atom interferometry experiments can be employed for gravitational redshift measurements, two research teams have recently disagreed on the physical cause of the shift. Regardless of any discussion on the interferometer aspect-we find that both groups of authors miss the important point that the ratio of gravitational to the electrostatic forces is generally very small. For instance, the ratio of the gravitational force acting on an electron in a hydrogen atom situated in the Sun’s photosphere to the electrostatic force between the proton and the electron in such an atom is approximately 3×10-21. A comparison of this ratio with the predicted and observed solar redshift indicates a discrepancy of many orders of magnitude. With Einstein’s early assumption that the frequencies of spectral lines depend only on the generating ions themselves as starting point, we show that a solution can be formulated based on a two-step process in analogy with Fermi’s treatment of the Doppler effect. It provides a sequence of physical processes in line with the conservation of energy and momentum resulting in the observed shift and does not employ a geometric description. The gravitational field affects the release of the photon and not the atomic transition. The control parameter is the speed of light. The atomic emission is then contrasted with the gravitational redshift of matter-antimatter annihilation events.

  1. High Redshift GRBs

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2012-01-01

    The Swift mission has opened a new, high redshift window on the universe. In this review we provide an overview of gamma-ray burst (GRB) science, describe the Swift mission, discuss high-z GRBs and tools for high-z studies, and look forward at future capabilities. A new mission concept - Lobster - is described that would monitor the X-ray sky at order of magnitude higher sensitivity than current missions.

  2. High redshift GRBs

    NASA Astrophysics Data System (ADS)

    Gehrels, Neil; Cannizzo, John K.

    2012-09-01

    The Swift mission has opened a new, high redshift window on the universe. In this review we provide an overview of gamma-ray burst (GRB) science, describe the Swift mission, discuss high-z GRBs and tools for high-z studies, and look forward at future capabilities. A new mission concept - Lobster - is described that would monitor the X-ray sky at order of magnitude higher sensitivity than current missions.

  3. The first analytical expression to estimate photometric redshifts suggested by a machine

    NASA Astrophysics Data System (ADS)

    Krone-Martins, A.; Ishida, E. E. O.; de Souza, R. S.

    2014-09-01

    We report the first analytical expression purely constructed by a machine to determine photometric redshifts (zphot) of galaxies. A simple and reliable functional form is derived using 41 214 galaxies from the Sloan Digital Sky Survey Data Release 10 (SDSS-DR10) spectroscopic sample. The method automatically dropped the u and z bands, relying only on g, r and i for the final solution. Applying this expression to other 1417 181 SDSS-DR10 galaxies, with measured spectroscopic redshifts (zspec), we achieved a mean <(zphot - zspec)/(1 + zspec)> ≲ 0.0086 and a scatter σ(zphot - zspec)/(1 + zspec) ≲ 0.045 when averaged up to z ≲ 1.0. The method was also applied to the PHAT0 data set, confirming the competitiveness of our results when faced with other methods from the literature. This is the first use of symbolic regression in cosmology, representing a leap forward in astronomy-data-mining connection.

  4. High-redshift cosmography

    SciTech Connect

    Vitagliano, Vincenzo; Xia, Jun-Qing; Liberati, Stefano; Viel, Matteo E-mail: xia@sissa.it E-mail: viel@oats.inaf.it

    2010-03-01

    We constrain the parameters describing the kinematical state of the universe using a cosmographic approach, which is fundamental in that it requires a very minimal set of assumptions (namely to specify a metric) and does not rely on the dynamical equations for gravity. On the data side, we consider the most recent compilations of Supernovae and Gamma Ray Bursts catalogues. This allows to further extend the cosmographic fit up to z = 6.6, i.e. up to redshift for which one could start to resolve the low z degeneracy among competing cosmological models. In order to reliably control the cosmographic approach at high redshifts, we adopt the expansion in the improved parameter y = z/(1+z). This series has the great advantage to hold also for z > 1 and hence it is the appropriate tool for handling data including non-nearby distance indicators. We find that Gamma Ray Bursts, probing higher redshifts than Supernovae, have constraining power and do require (and statistically allow) a cosmographic expansion at higher order than Supernovae alone. Exploiting the set of data from Union and GRBs catalogues, we show (for the first time in a purely cosmographic approach parametrized by deceleration q{sub 0}, jerk j{sub 0}, snap s{sub 0}) a definitively negative deceleration parameter q{sub 0} up to the 3σ confidence level. We present also forecasts for realistic data sets that are likely to be obtained in the next few years.

  5. Luminosity calibration of low redshift quasars

    NASA Technical Reports Server (NTRS)

    Wampler, E. J.

    1983-01-01

    European (SERC) were combined with U.S. shifts on the IUE in order to obtain the long integration times required to record spectra of faint quasars. LWR spectra of the nearby giant radio galaxy Centarus A(NGC 5548) was attempted in an effort to determine the chemical composition and stellar populations in this unusual galaxy. The IUE results from the low redshift quasar study, combined with the data from an extensive ground based survey, are described.

  6. High-Redshift Type Ia Supernova Rates in Galaxy Cluster and Field Environments

    NASA Astrophysics Data System (ADS)

    Barbary, Kyle Harris

    steeper delay time distribution at large delay times. To check for environmental dependence and the influence of younger stellar populations the rate is also calculated specifically in cluster red-sequence galaxies and in morphologically early-type galaxies, with results similar to the full cluster rate. Finally, the upper limit of one host-less cluster SN Ia detected in the survey implies that the fraction of stars in the intra-cluster medium is less than 0.47 (95% confidence), consistent with measurements at lower redshifts. The volumetric SN Ia rate can also be used to constrain the SN Ia delay time distribution. However, there have been discrepancies in recent analyses of both the high-redshift rate and its implications for the delay time distribution. Here, the volumetric SN Ia rate out to z ˜ 1.6 is measured, based on ˜12 SNe Ia in the foregrounds and backgrounds of the clusters targeted in the survey. The rate is measured in four broad redshift bins. The results are consistent with previous measurements at z > 1 and strengthen the case for a SN Ia rate that is greater than approximately 0.6 x 10-4 h70 3 yr-1 Mpc-3 at z ˜ 1 and flattening out at higher redshift. Assumptions about host-galaxy dust extinction used in different high-redshift rate measurements are examined. Different assumptions may account for some of the difference in published results for the z ˜ 1 rate.

  7. Photometric redshifts of 5000 Xray selected Stripe 82 sources

    NASA Astrophysics Data System (ADS)

    Tasnim Ananna, Tonima; Salvato, Mara; Urry, C. Megan; LaMassa, Stephanie M.; Stripe 82X Collaboration

    2016-01-01

    We present preliminary spectroscopic and photometric redshifts of 5000 X-ray-selected AGN sources from our Stripe 82X survey, which is designed to study rare high-redshift and/or high-luminosity AGN like the luminous quasars identified in the Sloan Digital Sky Survey but also including heavily reddened AGN not identified as such in SDSS. The sample covers a total of 31.3 deg2 in Stripe 82, a combination of 15.6 deg2 XMM AO13 data, 10.6 deg2 XMM AO10 and archival data, and 7.4 deg2 archival Chandra data. About 80% of the newly discovered X-ray sources have an optical counterpart in the co-added SDSS data; of these, roughly half have spectroscopic redshifts. We derived estimates of the photometric redshifts for the rest, using multiwavelength photometry from GALEX, SDSS, UKIDSS, VISTA, 2MASS, Spitzer, and WISE. The photometric redshifts will be used to determine the fraction of obscured black hole growth at high redshift and/or high luminosity, as well as to derive the evolving X-ray luminosity function and to measure AGN clustering in several redshift slices — information vital to understanding the co-evolution of galaxies and their central black holes.

  8. Naked into the World: IT Teaching Experiences on a Final Primary School Teaching Practice--A Second Survey.

    ERIC Educational Resources Information Center

    Dunn, S.; Ridgway, J.

    1991-01-01

    Describes results of a survey of student teachers in the United Kingdom who described their experiences with information technology (IT) during their final primary teaching practice. Data are related to an earlier survey of the same students during their first teaching practice to explore changes in their practices and beliefs about IT. (14…

  9. Final Report for the Advanced Camera for Surveys (ACS) from Ball Aerospace and Technologies Corporation

    NASA Technical Reports Server (NTRS)

    Volmer, Paul; Sullivan, Pam (Technical Monitor)

    2003-01-01

    The Advanced Camera for Surveys ACS was launched aboard the Space Shuttle Columbia just before dawn on March 1, 2002. After successfully docking with the Hubble Space Telescope (HST), several components were replaced. One of the components was the Advanced Camera for Surveys built by Ball Aerospace & Technologies Corp. (BATC) in Boulder, Colorado. Over the life of the HST contract at BATC hundreds of employees had the pleasure of working on the concept, design, fabrication, assembly and test of ACS. Those employees thank NASA - Goddard Space Flight Center and the science team at Johns Hopkins University (JHU) for the opportunity to participate in building a great science instrument for HST. After installation in HST a mini-functional test was performed and later a complete functional test. ACS performed well and has continued performing well since then. One of the greatest rewards for the BATC employees is a satisfied science team. Following is an excerpt from the JHU final report, "The foremost promise of ACS was to increase Hubble's capability for surveys in the near infrared by a factor of 10. That promise was kept. "

  10. Bayesian photometric redshifts with empirical training sets

    NASA Astrophysics Data System (ADS)

    Wolf, Christian

    2009-07-01

    We combine in a single framework the two complementary benefits of χ2 template fits and empirical training sets used e.g. in neural nets: χ2 is more reliable when its probability density functions (PDFs) are inspected for multiple peaks, while empirical training is more accurate when calibration and priors of query data and training set match. We present a χ2 empirical method that derives PDFs from empirical models as a subclass of kernel regression methods, and apply it to the Sloan Digital Sky Survey Data Release 5 sample of >75000 quasi-stellar objects, which is full of ambiguities. Objects with single-peak PDFs show <1 per cent outliers, rms redshift errors <0.05 and vanishing redshift bias. At z > 2.5, these figures are two times better. Outliers result purely from the discrete nature and limited size of the model, and rms errors are dominated by the intrinsic variety of object colours. PDFs classed as ambiguous provide accurate probabilities for alternative solutions and thus weights for using both solutions and avoiding needless outliers. E.g. the PDFs predict 78.0 per cent of the stronger peaks to be correct, which is true for 77.9 per cent of them. Redshift incompleteness is common in faint spectroscopic surveys and turns into a massive undetectable outlier risk above other performance limitations, but we can quantify residual outlier risks stemming from size and completeness of the model. We propose a matched χ2 error scale for noisy data and show that it produces correct error estimates and redshift distributions accurate within Poisson errors. Our method can easily be applied to future large galaxy surveys, which will benefit from the reliability in ambiguity detection and residual risk quantification.

  11. Redshift-space distortions in massive neutrino and evolving dark energy cosmologies

    NASA Astrophysics Data System (ADS)

    Upadhye, Amol; Kwan, Juliana; Pope, Adrian; Heitmann, Katrin; Habib, Salman; Finkel, Hal; Frontiere, Nicholas

    2016-03-01

    Large-scale structure surveys in the coming years will measure the redshift-space power spectrum to unprecedented accuracy, allowing for powerful new tests of the Λ cold dark matter (Λ CDM ) picture as well as measurements of particle physics parameters such as the neutrino masses. We extend the time-renormalization-group (RG) perturbative framework to redshift space, computing the power spectrum Ps(k ,μ ) in massive neutrino cosmologies with time-dependent dark energy equations of state w (z ). Time-RG is uniquely capable of incorporating scale-dependent growth into the Ps(k ,μ ) computation, which is important for massive neutrinos as well as modified gravity models. Although changes to w (z ) and the neutrino mass fraction both affect the late-time scale dependence of the nonlinear power spectrum, we find that the two effects depend differently on the line-of-sight angle μ . Finally, we use the hacc N-body code to quantify errors in the perturbative calculations. For a Λ CDM model at redshift z =1 , our procedure predicts the monopole (quadrupole) to 1% accuracy up to a wave number 0.19 h /Mpc (0.28 h /Mpc ), compared to 0.08 h /Mpc (0.07 h /Mpc ) for the Kaiser approximation and 0.19 h /Mpc (0.16 h /Mpc ) for the current state-of-the-art perturbation scheme. Our calculation agrees with the simulated redshift-space power spectrum even for neutrino masses above the current bound, and for rapidly evolving dark energy equations of state, |d w /d z |˜1 . Along with this article, we make our redshift-space time-RG implementation publicly available as the code redtime.

  12. Quasar redshifts: the intrinsic component

    NASA Astrophysics Data System (ADS)

    Hansen, Peter M.

    2016-09-01

    The large observed redshift of quasars has suggested large cosmological distances and a corresponding enormous energy output to explain the brightness or luminosity as seen at earth. Alternative or complementary sources of redshift have not been identified by the astronomical community. This study examines one possible source of additional redshift: an intrinsic component based on the plasma characteristics of high temperature and high electron density which are believed to be present.

  13. Searches for high redshift radio galaxies

    SciTech Connect

    De Breuck, C.; Van Breugel, W.; Rottgering, H.; Miley, G.

    1997-05-05

    We have started a search for High Redshift Radio Galaxies (HZRGS) in an area covering 7 sr by selecting a sample of Ultra Steep Spectrum (USS) sources with a low flux density cut-off S1400 > 10 mJy and a steep spectral index cut-off of a < -1.3 (S of about nu-alpha) from the WENSS, NVSS and TEXAS surveys. Our first results for 27 sources show that we are almost twice as effective in finding HZRGs than than surveys of relatively bright radio sources with a spectral index cut-off of a < - 1.0. The redshift distribution is consistent with an extension of the z - a relation to a < -1.3, but a large fraction of our sample (40%) consists of objects which are too faint to observe with 3-4 m class telescopes. Our search is aimed at increasing the number of very high redshift radio galaxies for further detailed studies of the formation and evolution of massive galaxies and their environment.

  14. Field validation of mail surveys: A monograph from the advanced commercial survey methods (COMSURV) project: Final report

    SciTech Connect

    Mihlmester, P.E.; McCarthy, P.M.; Zwack, W.A.

    1986-11-01

    This report presents the results of a demonstration to field validate commercial sector mail survey responses. The study was performed utilizing Virginia Power's 1985 Commercial Customer Survey (general and tailored versions of the questionnaire). The survey was focused on offices and retail food stores. Responses to the mail survey were validated by field visits to a sample of sites responding to the mail survey. Discrepancies between the mail response and field observation for selected variables, and the reason for these discrepancies (to the extent available) were noted. The results were then analyzed to determine variables which are suitable or unsuitable for inclusion in mail surveys. The mail survey performed quite well in the majority of cases for the variables represented. Relative errors were usually small.

  15. Final Status Survey Report for Corrective Action Unit 117 - Pluto Disassembly Facility, Building 2201, Nevada National Security Site, Nevada

    SciTech Connect

    Jeremy Gwin and Douglas Frenette

    2010-09-30

    This document contains the process knowledge, radiological data and subsequent statistical methodology and analysis to support approval for the radiological release of Corrective Action Unit (CAU) 117 – Pluto Disassembly Facility, Building 2201 located in Area 26 of the Nevada National Security Site (NNSS). Preparations for release of the building began in 2009 and followed the methodology described in the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). MARSSIM is the DOE approved process for release of Real Property (buildings and landmasses) to a set of established criteria or authorized limits. The pre-approved authorized limits for surface contamination values and corresponding assumptions were established by DOE O 5400.5. The release criteria coincide with the acceptance criteria of the U10C landfill permit. The U10C landfill is the proposed location to dispose of the radiologically non-impacted, or “clean,” building rubble following demolition. However, other disposition options that include the building and/or waste remaining at the NNSS may be considered providing that the same release limits apply. The Final Status Survey was designed following MARSSIM guidance by reviewing historical documentation and radiological survey data. Following this review a formal radiological characterization survey was performed in two phases. The characterization revealed multiple areas of residual radioactivity above the release criteria. These locations were remediated (decontaminated) and then the surface activity was verified to be less than the release criteria. Once remediation efforts had been successfully completed, a Final Status Survey Plan (10-015, “Final Status Survey Plan for Corrective Action Unit 117 – Pluto Disassembly Facility, Building 2201”) was developed and implemented to complete the final step in the MARSSIM process, the Final Status Survey. The Final Status Survey Plan consisted of categorizing each individual room

  16. Morphologies at High Redshift from Galaxy Zoo

    NASA Astrophysics Data System (ADS)

    Masters, Karen; Melvin, Tom; Simmons, Brooke; Willett, Kyle; Lintott, Chris

    2015-08-01

    I will present results from Galaxy Zoo classification of galaxies observed in public observed frame optical HST surveys (e.g. COSMOS, GOODS) as well as in observed frame NIR with (ie. CANDELS). Early science results from these classifications have investigated the changing bar fraction in disc galaxies as a function of redshift (to z~1 in Melvin et al. 2014; and at z>1 in Simmons et al. 2015), as well as how the morphologies of galaxies on the red sequence have been changing since z~1 (Melvin et al. in prep.). These unique dataset of quantitative visual classifications for high redshift galaxies will be made public in forthcoming publications (planned as Willett et al. for Galaxy Zoo Hubble, and Simmons et al. for Galaxy Zoo CANDELS).

  17. The evolution of neutral gas in damped Lyman α systems from the XQ-100 survey

    NASA Astrophysics Data System (ADS)

    Sánchez-Ramírez, R.; Ellison, S. L.; Prochaska, J. X.; Berg, T. A. M.; López, S.; D'Odorico, V.; Becker, G. D.; Christensen, L.; Cupani, G.; Denney, K. D.; Pâris, I.; Worseck, G.; Gorosabel, J.

    2016-03-01

    We present a sample of 38 intervening damped Lyman α (DLA) systems identified towards 100 z > 3.5 quasars, observed during the XQ-100 survey. The XQ-100 DLA sample is combined with major DLA surveys in the literature. The final combined sample consists of 742 DLAs over a redshift range approximately 1.6 < zabs < 5.0. We develop a novel technique for computing Ω_{H I}^DLA as a continuous function of redshift, and we thoroughly assess and quantify the sources of error therein, including fitting errors and incomplete sampling of the high column density end of the column density distribution function. There is a statistically significant redshift evolution in Ω_{H I}^DLA (≥3σ) from z ˜ 2 to z ˜ 5. In order to make a complete assessment of the redshift evolution of Ω_{H I}, we combine our high-redshift DLA sample with absorption surveys at intermediate redshift and 21-cm emission line surveys of the local universe. Although Ω_{H I}^DLA, and hence its redshift evolution, remains uncertain in the intermediate-redshift regime (0.1 < zabs < 1.6), we find that the combination of high-redshift data with 21-cm surveys of the local universe all yield a statistically significant evolution in Ω_{H I} from z ˜ 0 to z ˜ 5 (≥3σ). Despite its statistical significance, the magnitude of the evolution is small: a linear regression fit between Ω_{H I} and z yields a typical slope of ˜0.17 × 10-3, corresponding to a factor of ˜4 decrease in Ω_{H I} between z = 5 and z = 0.

  18. A Survey of Interventional Radiology Awareness Among Final-Year Medical Students in a European Country

    SciTech Connect

    Leong, Sum; Keeling, Aoife N.; Lee, Michael J.

    2009-07-15

    Interventional radiology (IR) is a rapidly expanding specialty that is facing the challenges of turf wars and personnel shortages. Appropriate exposure of medical students to this field can be vital to recruitment of potential future trainees or referring physicians. The aim of this study was to determine the knowledge and views of final-year medical students in a single EU country regarding various aspects of IR. An electronic survey was sent via e-mail to all final-year medical students in a European country. The students were given a month to respond to the questionnaire. A total of 234 students of 675 (34.5%) replied to the survey. Of the respondents, 35% had previously completed an attachment to the radiology department. The majority of students (63%) thought their knowledge in radiology in general was poor. The percentage of students who correctly identified procedures performed by interventional radiologists was 69% for Hickman line insertion, 79% for fibroid embolization, and 67.5% for lower limb angioplasty. Sixty percent, 30%, and 47% thought that interventional radiologists perform cardiac angioplasties, perform arterial bypasses, and create AV fistulas, respectively. Forty-nine percent felt that interventional radiologists are surgically trained. Eighty-three percent of students were first made aware of angioplasty by a cardiologist. Thirty-one percent thought that interventional radiologists do ward rounds, 24% thought that interventional radiologists have admitting rights, and 26% felt that interventional radiologists run an outpatient practice. A significant number of students (76%) thought that the job prospects in IR are good or excellent but only 40.5% were willing to consider a career in IR. In conclusion, this study indicates that IR remains a nascent but attractive specialty to the majority of medical students. Further development of the existing informal undergraduate curriculum to address shortcomings will ensure that IR continues to attract

  19. Towards an accurate model of the redshift-space clustering of haloes in the quasi-linear regime

    NASA Astrophysics Data System (ADS)

    Reid, Beth A.; White, Martin

    2011-11-01

    Observations of redshift-space distortions in spectroscopic galaxy surveys offer an attractive method for measuring the build-up of cosmological structure, which depends both on the expansion rate of the Universe and on our theory of gravity. The statistical precision with which redshift-space distortions can now be measured demands better control of our theoretical systematic errors. While many recent studies focus on understanding dark matter clustering in redshift space, galaxies occupy special places in the universe: dark matter haloes. In our detailed study of halo clustering and velocity statistics in 67.5 h-3 Gpc3 of N-body simulations, we uncover a complex dependence of redshift-space clustering on halo bias. We identify two distinct corrections which affect the halo redshift-space correlation function on quasi-linear scales (˜30-80 h-1 Mpc): the non-linear mapping between real-space and redshift-space positions, and the non-linear suppression of power in the velocity divergence field. We model the first non-perturbatively using the scale-dependent Gaussian streaming model, which we show is accurate at the <0.5 (2) per cent level in transforming real-space clustering and velocity statistics into redshift space on scales s > 10 (s > 25) h-1 Mpc for the monopole (quadrupole) halo correlation functions. The dominant correction to the Kaiser limit in this model scales like b3. We use standard perturbation theory to predict the real-space pairwise halo velocity statistics. Our fully analytic model is accurate at the 2 per cent level only on scales s > 40 h-1 Mpc for the range of halo masses we studied (with b= 1.4-2.8). We find that recent models of halo redshift-space clustering that neglect the corrections from the bispectrum and higher order terms from the non-linear real-space to redshift-space mapping will not have the accuracy required for current and future observational analyses. Finally, we note that our simulation results confirm the essential but non

  20. Tuning target selection algorithms to improve galaxy redshift estimates

    NASA Astrophysics Data System (ADS)

    Hoyle, Ben; Paech, Kerstin; Rau, Markus Michael; Seitz, Stella; Weller, Jochen

    2016-06-01

    We showcase machine learning (ML) inspired target selection algorithms to determine which of all potential targets should be selected first for spectroscopic follow-up. Efficient target selection can improve the ML redshift uncertainties as calculated on an independent sample, while requiring less targets to be observed. We compare seven different ML targeting algorithms with the Sloan Digital Sky Survey (SDSS) target order, and with a random targeting algorithm. The ML inspired algorithms are constructed iteratively by estimating which of the remaining target galaxies will be most difficult for the ML methods to accurately estimate redshifts using the previously observed data. This is performed by predicting the expected redshift error and redshift offset (or bias) of all of the remaining target galaxies. We find that the predicted values of bias and error are accurate to better than 10-30 per cent of the true values, even with only limited training sample sizes. We construct a hypothetical follow-up survey and find that some of the ML targeting algorithms are able to obtain the same redshift predictive power with 2-3 times less observing time, as compared to that of the SDSS, or random, target selection algorithms. The reduction in the required follow-up resources could allow for a change to the follow-up strategy, for example by obtaining deeper spectroscopy, which could improve ML redshift estimates for deeper test data.

  1. Photometric redshifts for the SDSS Data Release 12

    NASA Astrophysics Data System (ADS)

    Beck, Róbert; Dobos, László; Budavári, Tamás; Szalay, Alexander S.; Csabai, István

    2016-08-01

    We present the methodology and data behind the photometric redshift data base of the Sloan Digital Sky Survey (SDSS) Data Release 12. We adopt a hybrid technique, empirically estimating the redshift via local regression on a spectroscopic training set, then fitting a spectrum template to obtain K-corrections and absolute magnitudes. The SDSS spectroscopic catalogue was augmented with data from other, publicly available spectroscopic surveys to mitigate target selection effects. The training set is comprised of 1976 978 galaxies, and extends up to redshift z ≈ 0.8, with a useful coverage of up to z ≈ 0.6. We provide photometric redshifts and realistic error estimates for the 208 474 076 galaxies of the SDSS primary photometric catalogue. We achieve an average bias of overline{Δ z_{norm}} = {5.84 × 10^{-5}}, a standard deviation of σ(Δznorm) = 0.0205, and a 3σ outlier rate of Po = 4.11 per cent when cross-validating on our training set. The published redshift error estimates and photometric error classes enable the selection of galaxies with high-quality photometric redshifts. We also provide a supplementary error map that allows additional, sophisticated filtering of the data.

  2. ALHAMBRA survey: morphological classification

    NASA Astrophysics Data System (ADS)

    Pović, M.; Huertas-Company, M.; Márquez, I.; Masegosa, J.; Aguerri, J. A. López; Husillos, C.; Molino, A.; Cristóbal-Hornillos, D.

    2015-03-01

    The Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey is a photometric survey designed to study systematically cosmic evolution and cosmic variance (Moles et al. 2008). It employs 20 continuous medium-band filters (3500 - 9700 Å), plus JHK near-infrared (NIR) bands, which enable measurements of photometric redshifts with good accuracy. ALHAMBRA covers > 4 deg2 in eight discontinuous regions (~ 0.5 deg2 per region), of theseseven fields overlap with other extragalactic, multiwavelength surveys (DEEP2, SDSS, COSMOS, HDF-N, Groth, ELAIS-N1). We detect > 600.000 sources, reaching the depth of R(AB) ~ 25.0, and photometric accuracy of 2-4% (Husillos et al., in prep.). Photometric redshifts are measured using the Bayesian Photometric Redshift (BPZ) code (Benítez et al. 2000), reaching one of the best accuracies up to date of δz/z <= 1.2% (Molino et al., in prep.). To deal with the morphological classification of galaxies in the ALHAMBRA survey (Pović et al., in prep.), we used the galaxy Support Vector Machine code (galSVM; Huertas-Company 2008, 2009), one of the new non-parametric methods for morphological classification, specially useful when dealing with low resolution and high-redshift data. To test the accuracy of our morphological classification we used a sample of 3000 local, visually classified galaxies (Nair & Abraham 2010), moving them to conditions typical of our ALHAMBRA data (taking into account the background, redshift and magnitude distributions, etc.), and measuring their morphology using galSVM. Finally, we measured the morphology of ALHAMBRA galaxies, obtaining for each source seven morphological parameters (two concentration indexes, asymmetry, Gini, M20 moment of light, smoothness, and elongation), probability if the source belongs to early- or late-type, and its error. Comparing ALHAMBRA morph COSMOS/ACS morphology (obtained with the same method) we expect to have qualitative separation in two main morphological

  3. Sky Mining - Application to Photomorphic Redshift Estimation

    NASA Astrophysics Data System (ADS)

    Nayak, Pragyansmita

    The field of astronomy has evolved from the ancient craft of observing the sky. In it's present form, astronomers explore the cosmos not just by observing through the tiny visible window used by our eyes, but also by exploiting the electromagnetic spectrum from radio waves to gamma rays. The domain is undoubtedly at the forefront of data-driven science. The data growth rate is expected to be around 50%--100% per year. This data explosion is attributed largely to the large-scale wide and deep surveys of the different regions of the sky at multiple wavelengths (both ground and space-based surveys). This dissertation describes the application of machine learning methods to the estimation of galaxy redshifts leveraging such a survey data. Galaxy is a large system of stars held together by mutual gravitation and isolated from similar systems by vast regions of space. Our view of the universe is closely tied to our understanding of galaxy formation. Thus, a better understanding of the relative location of the multitudes of galaxies is crucial. The position of each galaxy can be characterized using three coordinates. Right Ascension (ra) and Declination (dec) are the two coordinates that locate the galaxy in two dimensions on the plane of the sky. It is relatively straightforward to measure them. In contrast, fixing the third coordinate that is the galaxy's distance from the observer along the line of sight (redshift 'z') is considerably more challenging. "Spectroscopic redshift" method gives us accurate and precise measurements of z. However, it is extremely time-intensive and unusable for faint objects. Additionally, the rate at which objects are being identified via photometric surveys far exceeds the rate at which the spectroscopic redshift measurements can keep pace in determining their distance. As the surveys go deeper into the sky, the proportion of faint objects being identified also continues to increase. In order to tackle both these drawbacks increasing in

  4. Measuring Large-Scale Structure at z ~ 1 with the VIPERS galaxy survey

    NASA Astrophysics Data System (ADS)

    Guzzo, Luigi

    2016-10-01

    The VIMOS Public Extragalactic Redshift Survey (VIPERS) is the largest redshift survey ever conducted with the ESO telescopes. It has used the Very Large Telescope to collect nearly 100,000 redshifts from the general galaxy population at 0.5 < z < 1.2. With a combination of volume and high sampling density that is unique for these redshifts, it allows statistical measurements of galaxy clustering and related cosmological quantities to be obtained on an equal footing with classic results from local redshift surveys. At the same time, the simple magnitude-limited selection and the wealth of ancillary photometric data provide a general view of the galaxy population, its physical properties and the relation of the latter to large-scale structure. This paper presents an overview of the galaxy clustering results obtained so far, together with their cosmological implications. Most of these are based on the ~ 55,000 galaxies forming the first public data release (PDR-1). As of January 2015, observations and data reduction are complete and the final data set of more than 90,000 redshifts is being validated and made ready for the final investigations.

  5. Filling in the 2MASX Redshift Zone of Avoidance

    NASA Astrophysics Data System (ADS)

    Kraan-Korteweg, Renee; Staveley-Smith, Lister; Jarrett, Thomas; Schroeder, Anja; Henning, Trish; van Driel, Wim; Said, Khaled

    2014-04-01

    Despite nearly 20 years of concerted effort, the dynamics of the local Universe remain poorly understood. This in part is due to the lack of data in the Zone of Avoidance (ZOA). The current most homogeneous "all-sky'' redshift survey is the 2MASX Redshift Survey (2MRS). However, 2MASX galaxies in the ZOA were excluded from the Redshift follow-up Survey. To fill in the 2MASX redshift gap and map the hidden large-scale structures we started a systematic HI redshift follow-up programme of the brightest 2MASX galaxies, i.e. complement the 2MRS and the 2MASX Tully-Fisher survey (2MTF). A thousand galaxies without previous redshift measurement and Dec > -38 deg have been observed with the Nancay Radio Telescope (NRT). For the remaining southern ZOA we started using the Parkes Radio Telescope. 121 hours of observing time were allocated in the previous semesters (2012OCTS and 2013OCTS/P831). The TAC rating for our previous semester 2013OCT/P831 was 4.1 and they suggest to resubmit for the remainder of the remaining time in 2014APR, with the expectation those observations will be scheduled at the beginning of April. To complete the survey, a further 94 hours with the Parkes MultiBeam System are needed. With the here proposed observations, the ZoA will have systematic coverage from the northern to southern end, providing a unique TF data set to map the important flow fields that cross the ZOA, including the Great Attractor (GA), Perseus-Pisces(PP), Puppis, and the Local Void (LV).

  6. Probabilistic Photometric Redshifts in the Era of Petascale Astronomy

    SciTech Connect

    Carrasco Kind, Matias

    2014-01-01

    With the growth of large photometric surveys, accurately estimating photometric redshifts, preferably as a probability density function (PDF), and fully understanding the implicit systematic uncertainties in this process has become increasingly important. These surveys are expected to obtain images of billions of distinct galaxies. As a result, storing and analyzing all of these photometric redshift PDFs will be non-trivial, and this challenge becomes even more severe if a survey plans to compute and store multiple different PDFs. In this thesis, we have developed an end-to-end framework that will compute accurate and robust photometric redshift PDFs for massive data sets by using two new, state-of-the-art machine learning techniques that are based on a random forest and a random atlas, respectively. By using data from several photometric surveys, we demonstrate the applicability of these new techniques, and we demonstrate that our new approach is among the best techniques currently available. We also show how different techniques can be combined by using novel Bayesian techniques to improve the photometric redshift precision to unprecedented levels while also presenting new approaches to better identify outliers. In addition, our framework provides supplementary information regarding the data being analyzed, including unbiased estimates of the accuracy of the technique without resorting to a validation data set, identification of poor photometric redshift areas within the parameter space occupied by the spectroscopic training data, and a quantification of the relative importance of the variables used during the estimation process. Furthermore, we present a new approach to represent and store photometric redshift PDFs by using a sparse representation with outstanding compression and reconstruction capabilities. We also demonstrate how this framework can also be directly incorporated into cosmological analyses. The new techniques presented in this thesis are crucial

  7. Relativistic redshifts in quasar broad lines

    SciTech Connect

    Tremaine, Scott; Shen, Yue; Liu, Xin; Loeb, Abraham E-mail: yshen@obs.carnegiescience.edu E-mail: aloeb@cfa.harvard.edu

    2014-10-10

    The broad emission lines commonly seen in quasar spectra have velocity widths of a few percent of the speed of light, so special- and general-relativistic effects have a significant influence on the line profile. We have determined the redshift of the broad Hβ line in the quasar rest frame (determined from the core component of the [O III] line) for over 20,000 quasars from the Sloan Digital Sky Survey Data Release 7 quasar catalog. The mean redshift as a function of line width is approximately consistent with the relativistic redshift that is expected if the line originates in a randomly oriented Keplerian disk that is obscured when the inclination of the disk to the line of sight exceeds ∼30°-45°, consistent with simple active galactic nucleus unification schemes. This result also implies that the net line-of-sight inflow/outflow velocities in the broad-line region are much less than the Keplerian velocity when averaged over a large sample of quasars with a given line width.

  8. Dust Emission from High-Redshift QSOs.

    PubMed

    Carilli; Bertoldi; Menten; Rupen; Kreysa; Fan; Strauss; Schneider; Bertarini; Yun; Zylka

    2000-04-10

    We present detections of emission at 250 GHz (1.2 mm) from two high-redshift QSOs from the Sloan Digital Sky Survey sample using the bolometer array at the IRAM 30 m telescope. The sources are SDSSp 015048.83+004126.2 at z=3.7 and SDSSp J033829.31+002156.3 at z=5.0; the latter is the third highest redshift QSO known and the highest redshift millimeter-emitting source yet identified. We also present deep radio continuum imaging of these two sources at 1.4 GHz using the Very Large Array. The combination of centimeter and millimeter observations indicate that the 250 GHz emission is most likely thermal dust emission, with implied dust masses approximately 108 M middle dot in circle. We consider possible dust heating mechanisms, including UV emission from the active galactic nucleus (AGN) and a massive starburst concurrent with the AGN, with implied star formation rates greater than 103 M middle dot in circle yr-1. PMID:10727380

  9. OzDES multifibre spectroscopy for the Dark Energy Survey: first-year operation and results

    NASA Astrophysics Data System (ADS)

    Yuan, Fang; Lidman, C.; Davis, T. M.; Childress, M.; Abdalla, F. B.; Banerji, M.; Buckley-Geer, E.; Carnero Rosell, A.; Carollo, D.; Castander, F. J.; D'Andrea, C. B.; Diehl, H. T.; Cunha, C. E.; Foley, R. J.; Frieman, J.; Glazebrook, K.; Gschwend, J.; Hinton, S.; Jouvel, S.; Kessler, R.; Kim, A. G.; King, A. L.; Kuehn, K.; Kuhlmann, S.; Lewis, G. F.; Lin, H.; Martini, P.; McMahon, R. G.; Mould, J.; Nichol, R. C.; Norris, R. P.; O'Neill, C. R.; Ostrovski, F.; Papadopoulos, A.; Parkinson, D.; Reed, S.; Romer, A. K.; Rooney, P. J.; Rozo, E.; Rykoff, E. S.; Sako, M.; Scalzo, R.; Schmidt, B. P.; Scolnic, D.; Seymour, N.; Sharp, R.; Sobreira, F.; Sullivan, M.; Thomas, R. C.; Tucker, D.; Uddin, S. A.; Wechsler, R. H.; Wester, W.; Wilcox, H.; Zhang, B.; Abbott, T.; Allam, S.; Bauer, A. H.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carrasco Kind, M.; Covarrubias, R.; Crocce, M.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Maia, M. A. G.; Makler, M.; Marshall, J.; Miller, C. J.; Miquel, R.; Ogando, R.; Plazas, A. A.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Walker, A. R.

    2015-09-01

    The Australian Dark Energy Survey (OzDES) is a five-year, 100-night, spectroscopic survey on the Anglo-Australian Telescope, whose primary aim is to measure redshifts of approximately 2500 Type Ia supernovae host galaxies over the redshift range 0.1 < z < 1.2, and derive reverberation-mapped black hole masses for approximately 500 active galactic nuclei and quasars over 0.3 < z < 4.5. This treasure trove of data forms a major part of the spectroscopic follow-up for the Dark Energy Survey for which we are also targeting cluster galaxies, radio galaxies, strong lenses, and unidentified transients, as well as measuring luminous red galaxies and emission line galaxies to help calibrate photometric redshifts. Here, we present an overview of the OzDES programme and our first-year results. Between 2012 December and 2013 December, we observed over 10 000 objects and measured more than 6 000 redshifts. Our strategy of retargeting faint objects across many observing runs has allowed us to measure redshifts for galaxies as faint as mr = 25 mag. We outline our target selection and observing strategy, quantify the redshift success rate for different types of targets, and discuss the implications for our main science goals. Finally, we highlight a few interesting objects as examples of the fortuitous yet not totally unexpected discoveries that can come from such a large spectroscopic survey.

  10. The Host Galaxies of Type Ia Supernovae at High Redshift

    NASA Astrophysics Data System (ADS)

    Quimby, R.; Aldering, G.; Nugent, P.; Amanullah, R.; Astier, P.; Blanc, G.; Burns, M. S.; Conley, A.; Deustua, S.; Doi, M.; Ellis, R.; Fabbro, S.; Folatelli, G.; Fruchter, A.; Garavini, G.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I. M.; Howell, D. A.; Irwin, M.; Kim, A.; Knop, R. A.; Lidman, C.; McMahon, R.; Mendez, J.; Nobili, S.; Pain, R.; Panagia, N.; Pennypacker, C. R.; Perlmutter, S.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Schaefer, B.; Schahmaneche, K.; Spadafora, A. L.; Walton, N.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.; Supernova Cosmology Project Collaboration

    2002-12-01

    We use the luminosities and B-V colors from the host galaxies of 74 high-redshift (0.17 < z < 0.86) Type Ia supernovae (SNe Ia) discovered by the Supernova Cosmology Project (SCP) to search for environmental effects on supernovae peak luminosities. Using the galaxy luminosity-metallicity relation and the radial metallicity gradient of galaxies as indicators of the progenitor metallicity, we find no significant correlation between peak SNe Ia luminosity and host galaxy metallicity. The projected radial distribution of supernovae tracks the galaxy light and shows no deficit of SNe Ia near the galaxy cores (Shaw effect). The host galaxy luminosity function is calculated, and shown to be consistent with the subset of the Caltech Faint Galaxy Redshift Survey (Cohen et al. 2000) in the same redshift range, as well as the luminosity function of nearby galaxies measured by the Sloan Digital Sky Survey (Blanton et al. 2001).

  11. Dust survey following the final shutdown of TEXTOR: metal particles and fuel retention

    NASA Astrophysics Data System (ADS)

    Fortuna-Zaleśna, E.; Weckmann, A.; Grzonka, J.; Rubel, M.; Esser, H. G.; Freisinger, M.; Kreter, A.; Sergienko, G.; Ström, P.

    2016-02-01

    The work presents results of a broad TEXTOR dust survey in terms of its composition, structure, distribution and fuel content. The dust particles were collected after final shutdown of TEXTOR in December 2013. Fuel retention, as determined by thermal desorption, varied significantly, even by two orders of magnitude, dependent on the dust location in the machine. Dust structure was examined by means of scanning electron microscopy combined with energy-dispersive x-ray spectroscopy, focused ion beam and scanning transmission electron microscopy. Several categories of dust have been identified. Carbon-based stratified and granular deposits were dominating, but the emphasis in studies was on metal dust. They were found in the form of small particles, small spheres, flakes and splashes which formed ‘comet’-like structures, clearly indicating directional effects in the impact on surfaces of plasma-facing components. Nickel-rich alloys from the Inconel liner and iron-based ones from various diagnostic holders were the main components of metal-containing dust, but also molybdenum and tungsten debris were detected. Their origin is discussed.

  12. New Mexico cloud super cooled liquid water survey final report 2009.

    SciTech Connect

    Beavis, Nick; Roskovensky, John K.; Ivey, Mark D.

    2010-02-01

    Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

  13. Final report of the radiological release survey of Building 19 at the Grand Junction Office Facility

    SciTech Connect

    Johnson, R.K.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 19 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

  14. Definitive test of theRh = ctuniverse using redshift drift

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio

    2016-11-01

    The redshift drift of objects moving in the Hubble flow has been proposed as a powerful model-independent probe of the underlying cosmology. A measurement of the first and second order redshift derivatives appears to be well within the reach of upcoming surveys using ELT-HIRES and the SKA Phase 2 array. Here we show that an unambiguous prediction of the R_h=ct cosmology is zero drift at all redshifts, contrasting sharply with all other models in which the expansion rate is variable. For example, multi-year monitoring of sources at redshift z=5 with the ELT-HIRES is expected to show a velocity shift Delta v = -15 cm/s/yr due to the redshift drift in Planck LCDM, while Delta v=0 cm/s/yr in R_h=ct. With an anticipated ELT-HIRES measurement error of +/-5 cm/s/yr after 5 years, these upcoming redshift drift measurements might therefore be able to differentiate between R_h=ct and Planck LCDM at ~3 sigma, assuming that any possible source evolution is well understood. Such a result would provide the strongest evidence yet in favour of the R_h=ct cosmology. With a 20-year baseline, these observations could favor one of these models over the other at better than 5 sigma.

  15. Optical redshifts of 59 galaxies

    NASA Technical Reports Server (NTRS)

    Kelton, P. W.

    1980-01-01

    This paper presents the results of an observing program carried out to measure galaxy redshifts with the Cassegrain Digicon Spectrograph system on the McDonald Observatory 2.1 m Struve telescope. New redshift determinations are presented for 59 galaxies, obtained for emission line spectra by conventional wavelength determination techniques and for absorption line spectra by Fourier transform filtering and cross correlation techniques with respect to velocity standard spectra of NGC 3115 and NGC 4736. With respect to published redshifts for 29 galaxies, the new redshifts show a mean residual of -1 km/sec and rms residual of 49 km/sec, without apparent systematic trends, from -300 to +13,700 km/sec.

  16. Final Report - Independent Confirmatory Survey Summary and Results for the Hematite Decommissioning Project

    SciTech Connect

    E.N. Bailey

    2009-03-18

    The objectives of the confirmatory surveys were to provide independent contractor field data reviews and to generate independent radiological data for use by the NRC in evaluating the adequacy and accuracy of the licensee’s procedures and survey results.

  17. American College Freshman; 1984 Survey; Final Merged File [machine-readable data file].

    ERIC Educational Resources Information Center

    California Univ., Los Angeles. Higher Education Research Inst.

    The Cooperative Institutional Research Program (CIRP) is a continuing longitudinal study of the American higher educational system. CIRP annually conducts a survey of students entering college as first-time, full-time freshmen. The freshman surveys began in 1966; the 1984 survey is the nineteenth in the series. All institutions responding to the…

  18. Survey of Materials Development Needs in the Less Commonly Taught Languages. Final Report.

    ERIC Educational Resources Information Center

    Stansfield, Charles W.; Galloway, Ann

    A project surveyed the instructional materials development needs of the less commonly taught languages (LCTLs) language teaching community. The national survey in 1992 covered 82 languages and surveyed approximately 1,000 language course instructors and program directors at national resource centers and universities in the United States receiving…

  19. Redshifts distribution in A262

    NASA Astrophysics Data System (ADS)

    Hassan, M. S. R.; Abidin, Z. Z.; Ibrahim, U. F. S. U.; Hashim, N.; Lee, D. A. A.

    2016-05-01

    Galaxy clusters are the largest virialized systems in the Universe containing a collection of galaxies of different redshifts. The redshift distribution of galaxies in galaxy clusters is concentrated at a certain redshift range which remarkably tells us that only the galaxies in a certain radial range belong to the galaxy cluster. This leads to a boundary estimation of the cluster. Background and foreground systems are represented by a histogram that determines whether some of the galaxies are too far or too high in redshift to be counted as the member of the cluster. With the recent advances in multifibre spectroscopy, it has become possible to perform detailed analysis of the redshift distribution of several galaxy clusters in the Abell Catalogue. This has given rise to significantly improved estimates of cluster membership, extent and dynamical history. Here we present a spectroscopic analysis of the galaxy cluster A262. We find 55 galaxies fall within z = 0.0143 and 0.0183 with velocity range 4450-5300 km s-1, and are therefore members of the cluster. We derived a new mean redshift of z = 0.016 173 ± 0.000 074 (4852 ± 22 km s-1) for the system of which we compare with our neutral hydrogen (H I) detection which peaks at 4970 ± 0.5 km s-1. It is found that the distribution of H I tends to be located at the edge of the cluster since most of spiral rich galaxies were away from cluster centre.

  20. High redshift QSOs and the x ray background

    NASA Technical Reports Server (NTRS)

    Impey, Chris

    1993-01-01

    ROSAT pointed observations were made of 9 QSO's from the Large Bright Quasar Survey (LBQS). The LBQS is based on machine measurement of objective prism plates taken with the UK Schmidt Telescope. Software has been used to select QSO's by both color and by the presence of spectral features and continuum breaks. The probability of detection can be calculated as a function of magnitude, redshift and spectral features, and the completeness of the survey can be accurately estimated. Nine out of 1040 QSO's in the LBQS have z greater than 3. The observations will provide an important data point in the X-ray luminosity function of QSO's at high redshift. The QSO's with z greater than 3 span less than a magnitude in M(sub B), so can be combined as a homogeneous sample. This analysis is only possible with a sample drawn from a large and complete catalog such as the LBQS. Four of the 9 QSO's that were observed with the ROSAT PSPC for this proposal were detected, including one of the most luminous X-ray sources ever observed. The April 1992 version of the PROS DETECT package was used to reduce the data. The results have been used to search for evolution of the X-ray properties of QSO's in redshift. The 9 QSO's lie in the range -28.7 less than M(sub B) less than -27.8. When combined with data for 16 QSO's in a similar luminosity range at lower redshift correlations with luminosity and redshift can be separated out. The LBQS sample also yields a new constraint on the contribution of high redshift QSO's to the X-ray background. An initial requirement is knowledge of the X-ray properties (alpha(sub OX)) as a function of redshift. Integration over the evolving luminosity function of the LBQS then gives the QSO contribution to the source counts.

  1. Precision photometric redshift calibration for galaxy-galaxy weak lensing

    NASA Astrophysics Data System (ADS)

    Mandelbaum, R.; Seljak, U.; Hirata, C. M.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Carollo, M.; Contini, T.; Cunha, C. E.; Garilli, B.; Iovino, A.; Kampczyk, P.; Kneib, J.-P.; Knobel, C.; Koo, D. C.; Lamareille, F.; Le Fèvre, O.; Le Borgne, J.-F.; Lilly, S. J.; Maier, C.; Mainieri, V.; Mignoli, M.; Newman, J. A.; Oesch, P. A.; Perez-Montero, E.; Ricciardelli, E.; Scodeggio, M.; Silverman, J.; Tasca, L.

    2008-05-01

    Accurate photometric redshifts are among the key requirements for precision weak lensing measurements. Both the large size of the Sloan Digital Sky Survey (SDSS) and the existence of large spectroscopic redshift samples that are flux-limited beyond its depth have made it the optimal data source for developing methods to properly calibrate photometric redshifts for lensing. Here, we focus on galaxy-galaxy lensing in a survey with spectroscopic lens redshifts, as in the SDSS. We develop statistics that quantify the effect of source redshift errors on the lensing calibration and on the weighting scheme, and show how they can be used in the presence of redshift failure and sampling variance. We then demonstrate their use with 2838 source galaxies with spectroscopy from DEEP2 and zCOSMOS, evaluating several public photometric redshift algorithms, in two cases including a full p(z) for each object, and find lensing calibration biases as low as <1 per cent (due to fortuitous cancellation of two types of bias) or as high as 20 per cent for methods in active use (despite the small mean photoz bias of these algorithms). Our work demonstrates that lensing-specific statistics must be used to reliably calibrate the lensing signal, due to asymmetric effects of (frequently non-Gaussian) photoz errors. We also demonstrate that large-scale structure (LSS) can strongly impact the photoz calibration and its error estimation, due to a correlation between the LSS and the photoz errors, and argue that at least two independent degree-scale spectroscopic samples are needed to suppress its effects. Given the size of our spectroscopic sample, we can reduce the galaxy-galaxy lensing calibration error well below current SDSS statistical errors. Based in part on observations undertaken at the European Southern Observatory (ESO) Very Large Telescope (VLT) under Large Programme 175.A-0839. E-mail: rmandelb@ias.edu (RM); seljak@itp.uzh.ch (US) ‡ Hubble Fellow.

  2. A sparse Gaussian process framework for photometric redshift estimation

    NASA Astrophysics Data System (ADS)

    Almosallam, Ibrahim A.; Lindsay, Sam N.; Jarvis, Matt J.; Roberts, Stephen J.

    2016-01-01

    Accurate photometric redshifts are a lynchpin for many future experiments to pin down the cosmological model and for studies of galaxy evolution. In this study, a novel sparse regression framework for photometric redshift estimation is presented. Synthetic data set simulating the Euclid survey and real data from SDSS DR12 are used to train and test the proposed models. We show that approaches which include careful data preparation and model design offer a significant improvement in comparison with several competing machine learning algorithms. Standard implementations of most regression algorithms use the minimization of the sum of squared errors as the objective function. For redshift inference, this induces a bias in the posterior mean of the output distribution, which can be problematic. In this paper, we directly minimize the target metric Δz = (zs - zp)/(1 + zs) and address the bias problem via a distribution-based weighting scheme, incorporated as part of the optimization objective. The results are compared with other machine learning algorithms in the field such as artificial neural networks (ANN), Gaussian processes (GPs) and sparse GPs. The proposed framework reaches a mean absolute Δz = 0.0026(1 + zs), over the redshift range of 0 ≤ zs ≤ 2 on the simulated data, and Δz = 0.0178(1 + zs) over the entire redshift range on the SDSS DR12 survey, outperforming the standard ANNz used in the literature. We also investigate how the relative size of the training sample affects the photometric redshift accuracy. We find that a training sample of >30 per cent of total sample size, provides little additional constraint on the photometric redshifts, and note that our GP formalism strongly outperforms ANNz in the sparse data regime for the simulated data set.

  3. Phase 1 Final status survey plan for the West Valley demonstration project.

    SciTech Connect

    Johnson, R. L.

    2011-05-31

    This plan provides the technical basis and associated protocols to support Phase 1 final status survey (FSS) data collection and interpretation as part of the West Valley Demonstration Project Phase 1 Decommissioning Plan process. This plan is consistent with the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). The Phase 1 Decommissioning Plan provides the relevant derived concentration guideline levels (DCGLs) for the Phase 1 radionuclides of interest. This plan includes protocols that will be applied to the deep excavations planned for Waste Management Area (WMA) 1 and WMA 2, for surface soils outside the WMA 1 and WMA 2 excavations that do not have contamination impacts at depths greater than one meter, and for areas that are used for Phase 1 contaminated soil lay-down purposes. All excavated and lay-down areas will be classified as MARSSIM Class 1 areas. Surface soils that have not been excavated, are not expected to exceed DCGLs, and do not have contamination impacts at depths greater than one meter will be divided into either Class 1 or Class 2 areas depending on the expected potential for surface soil contamination in those areas. The plan uses gamma scans combined with biased soil samples to address DCGLemc concerns. The plan uses systematic soil sampling combined with area factors to address DCGLw and DCGLemc concerns. The Sign test will be used to statistically evaluate DCGLw compliance. If the results from the characterization sampling and analysis plan (CSAP) data collection indicate that background may be a significant issue for Sign test implementation, the Wilcoxon rank sum (WRS) test will be used instead to demonstrate DCGLw compliance. A reference area will be selected on the basis of CSAP data results if the WRS test becomes a necessity. The WMA 1 excavation footprint includes approximately 476 foundation pilings that will be trimmed and left in place. Piling-specific systematic and biased sampling will be conducted to

  4. Redshift Distributions of Galaxies in the DES Science Verification Shear Catalogue and Implications for Weak Lensing

    SciTech Connect

    Bonnett, C.

    2015-07-21

    We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods { annz2, bpz calibrated against BCC-U fig simulations, skynet, and tpz { are analysed. For training, calibration, and testing of these methods, we also construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evalu-ated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-zs. From the galaxies in the DES SV shear catalogue, which have mean redshift 0.72 ±0.01 over the range 0:3 < z < 1:3, we construct three tomographic bins with means of z = {0.45; 0.67,1.00g}. These bins each have systematic uncertainties δz ≲ 0.05 in the mean of the fiducial skynet photo-z n(z). We propagate the errors in the redshift distributions through to their impact on cosmological parameters estimated with cosmic shear, and find that they cause shifts in the value of σ8 of approx. 3%. This shift is within the one sigma statistical errors on σ8 for the DES SV shear catalog. We also found that further study of the potential impact of systematic differences on the critical surface density, Σcrit, contained levels of bias safely less than the statistical power of DES SV data. We recommend a final Gaussian prior for the photo-z bias in the mean of n(z) of width 0:05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis.

  5. Quasar probabilities and redshifts from WISE mid-IR through GALEX UV photometry

    NASA Astrophysics Data System (ADS)

    DiPompeo, M. A.; Bovy, J.; Myers, A. D.; Lang, D.

    2015-09-01

    Extreme deconvolution (XD) of broad-band photometric data can both separate stars from quasars and generate probability density functions for quasar redshifts, while incorporating flux uncertainties and missing data. Mid-infrared photometric colours are now widely used to identify hot dust intrinsic to quasars, and the release of all-sky WISE data has led to a dramatic increase in the number of IR-selected quasars. Using forced photometry on public WISE data at the locations of Sloan Digital Sky Survey (SDSS) point sources, we incorporate this all-sky data into the training of the XDQSOz models originally developed to select quasars from optical photometry. The combination of WISE and SDSS information is far more powerful than SDSS alone, particularly at z > 2. The use of SDSS+WISE photometry is comparable to the use of SDSS+ultraviolet+near-IR data. We release a new public catalogue of 5537 436 (total; 3874 639 weighted by probability) potential quasars with probability PQSO > 0.2. The catalogue includes redshift probabilities for all objects. We also release an updated version of the publicly available set of codes to calculate quasar and redshift probabilities for various combinations of data. Finally, we demonstrate that this method of selecting quasars using WISE data is both more complete and efficient than simple WISE colour-cuts, especially at high redshift. Our fits verify that above z ˜ 3 WISE colours become bluer than the standard cuts applied to select quasars. Currently, the analysis is limited to quasars with optical counterparts, and thus cannot be used to find highly obscured quasars that WISE colour-cuts identify in significant numbers.

  6. Finding high-redshift voids using Lyman α forest tomography

    NASA Astrophysics Data System (ADS)

    Stark, Casey W.; Font-Ribera, Andreu; White, Martin; Lee, Khee-Gan

    2015-11-01

    We present a new method of finding cosmic voids using tomographic maps of Lyα forest flux. We identify cosmological voids with radii of 2-12 h-1 Mpc in a large N-body simulation at z = 2.5, and characterize the signal of the high-redshift voids in density and Lyα forest flux. The void properties are similar to what has been found at lower redshifts, but they are smaller and have steeper radial density profiles. Similarly to what has been found for low-redshift voids, the radial velocity profiles have little scatter and agree very well with the linear theory prediction. We run the same void finder on an ideal Lyα flux field and tomographic reconstructions at various spatial samplings. We compare the tomographic map void catalogues to the density void catalogue and find good agreement even with modest-sized voids (r > 6 h-1 Mpc). Using our simple void-finding method, the configuration of the ongoing COSMOS Lyman Alpha Mapping And Tomography Observations (CLAMATO) survey covering 1 deg2 would provide a sample of about 100 high-redshift voids. We also provide void-finding forecasts for larger area surveys, and discuss how these void samples can be used to test modified gravity models, study high-redshift void galaxies, and to make an Alcock-Paczynski measurement. To aid future work in this area, we provide public access to our simulation products, catalogues, and sample tomographic flux maps.

  7. Maine State Planning Office, 1990--1991 heating season home heating fuels price survey. Final report

    SciTech Connect

    Not Available

    1991-12-31

    The 1990--1991 heating season was the first time in Maine that the Home Heating Fuels Survey was conducted for the United States Department of Energy by the Maine State Planning Office. This season also marked the first time that dealers were surveyed for a price for propane. Under a late agreement, the State of Maine was picked up by the regional survey of the Energy Information Agency in the beginning of October. This accounted for the weekly survey of the traditional participants in the State`s Home Heating Fuels Price Survey being supplemented by biweekly DOE surveys of separate survey samples of oil and propane dealers. The SPO sample identifies 36 dealers in the State of Maine, while the DOE sample was constructed around 22 oil dealers in Maine and New Hampshire and 29 propane dealers in Maine.

  8. Wastewater characterization survey, Victor Valley Wastewater Reclamation Authority and hazardous-waste survey at George AFB, California. Final report

    SciTech Connect

    Binovi, R.D.; Ng, E.K.; Tetla, R.A.

    1987-01-01

    This is a report of a survey of the Victor Wastewater Reclamation Authority Sewerage system, the sewage treatment plant, and effluent from the various operations at George AFB, California. The scope of work included the characterization of the wastewater from George AFB, as well as characterization of effluents from 29 oil/water separators servicing industrial operations on base, flow measurements at three locations on base, a microbiological evaluation of aeration basin foam, bench-scale activated-sludge studies, and a review of results from previous surveys. Recommendations: (1) AFFF (Aqueous Film Forming Foam) should never be discharged to the sewer. (2) Programming for pretreatment should proceed at selected operations. (3) More waste and wastestream analysis be performed. (4) Upgrade waste accumulation points. (5) Implement an aggressive inspection program for oil/water separators. (6) Cut down on nonessential washing.

  9. Visible spectroscopic and photometric survey of Jupiter Trojans: Final results on dynamical families

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Dotto, E.; Hainaut, O.; Marzari, F.; Boehnhardt, H.; De Luise, F.; Barucci, M. A.

    2007-10-01

    We present the results of a visible spectroscopic and photometric survey of Jupiter Trojans belonging to different dynamical families. The survey was carried out at the 3.5 m New Technology Telescope (NTT) of the European Southern Observatory (La Silla, Chile) in April 2003, May 2004 and January 2005. We obtained data on 47 objects, 23 belonging to the L5 swarm and 24 to the L4 one. These data together with those already published by Fornasier et al. [Fornasier, S., Dotto, E., Marzari, F., Barucci, M.A., Boehnhardt, H., Hainaut, O., de Bergh, C., 2004a. Icarus 172, 221-232] and Dotto et al. [Dotto, E., Fornasier, S., Barucci, M.A., Licandro, J., Boehnhardt, H., Hainaut, O., Marzari, F., de Bergh, C., De Luise, F., 2006. Icarus 183, 420-434], acquired since November 2002, constitute a total sample of visible spectra for 80 objects. The survey allows us to investigate six families (Aneas, Anchises, Misenus, Phereclos, Sarpedon, Panthoos) in the L5 cloud and four L4 families (Eurybates, Menelaus, 1986 WD and 1986 TS6). The sample that we measured is dominated by D-type asteroids, with the exception of the Eurybates family in the L4 swarm, where there is a dominance of C- and P-type asteroids. All the spectra that we obtained are featureless with the exception of some Eurybates members, where a drop-off of the reflectance is detected shortward of 5200 Å. Similar features are seen in main belt C-type asteroids and commonly attributed to the intervalence charge transfer transition in oxidized iron. Our sample comprises fainter and smaller Trojans as compared to the literature's data and allows us to investigate the properties of objects with estimated diameter smaller than 40-50 km. The analysis of the spectral slopes and colors versus the estimated diameters shows that the blue and red objects have indistinguishable size distribution, so any relationship between size and spectral slopes has been found. To fully investigate the Trojans population, we include in our

  10. Redshift weights for baryon acoustic oscillations: application to mock galaxy catalogues

    NASA Astrophysics Data System (ADS)

    Zhu, Fangzhou; Padmanabhan, Nikhil; White, Martin; Ross, Ashley J.; Zhao, Gongbo

    2016-09-01

    Large redshift surveys capable of measuring the baryon acoustic oscillation (BAO) signal have proven to be an effective way of measuring the distance-redshift relation in cosmology. Building off the work in Zhu et al., we develop a technique to directly constrain the distance-redshift relation from BAO measurements without splitting the sample into redshift bins. We apply the redshift weighting technique in Zhu et al. to the clustering of galaxies from 1000 Quick particle mesh (QPM) mock simulations after reconstruction and achieve a 0.75 per cent measurement of the angular diameter distance DA at z = 0.64 and the same precision for Hubble parameter H at z = 0.29. These QPM mock catalogues mimic the clustering and noise level of the Baryon Oscillation Spectroscopic Survey Data Release 12 (DR12). We compress the correlation functions in the redshift direction on to a set of weighted correlation functions. These estimators give unbiased DA and H measurements across the entire redshift range of the combined sample. We demonstrate the effectiveness of redshift weighting in improving the distance and Hubble parameter estimates. Instead of measuring at a single `effective' redshift as in traditional analyses, we report our DA and H measurements at all redshifts. The measured fractional error of DA ranges from 1.53 per cent at z = 0.2 to 0.75 per cent at z = 0.64. The fractional error of H ranges from 0.75 per cent at z = 0.29 to 2.45 per cent at z = 0.7. Our measurements are consistent with a Fisher forecast to within 10-20 per cent depending on the pivot redshift. We further show the results are robust against the choice of fiducial cosmologies, galaxy bias models, and redshift-space distortions streaming parameters.

  11. Survey of Postdoctorates at FFRDCs: Final Report [Federally Funded Research and Development Centers

    SciTech Connect

    Mulrow, Jeri

    2010-06-30

    The 2009 FFRDC survey collected the total number of postdocs employed by FFRDCs in the United States—categorized by source of support, citizenship, sex, and field of research—as of October 1, 2009. The universe for the 2009 GSS-FFRDC survey was the Master Government List of Federally Funded Research and Development Centers. The 2009 survey also contacted the NIH’s Intramural Research Program because it employs the largest number of postdocs in the federal government. The FFRDC survey collected data via a web instrument. Topics included the type of support the postdocs received (federal and nonfederal), their sex, citizenship, race/ethnicity, and field of research.

  12. Compact Nuclei in Galaxies at Moderate Redshift

    NASA Astrophysics Data System (ADS)

    Sarajedini, Vicki Lynn

    The purpose of this study is to understand the space density and properties of active galaxies to z ≃ 0.8. We have investigated the frequency and nature of unresolved nuclei in galaxies at moderate redshift as indicators of nuclear activity such as Active Galactic Nuclei (AGN) or starbursts. Candidates are selected by fitting imaged galaxies with multi-component models using maximum likelihood estimate techniques to determine the best model fit. We select those galaxies requiring an unresolved, point source component in the galaxy nucleus, in addition to a disk and/or bulge component, to adequately model the galaxy light. We have searched 70 WFPC2 images primarily from the Medium Deep Survey for galaxies containing compact nuclei. In our survey of 1033 galaxies, the fraction containing an unresolved nuclear component ≥3% of the total galaxy light is 16±3% corrected for incompleteness and 9±1% for nuclei ≥5% of the galaxy light. Most of the nuclei are ~<20% of the total galaxy light. The majority of the host galaxies are spirals with little or no bulge component. The V-I colors of the nuclei are compared with synthetic colors for Seyferts and starburst nuclei to help differentiate between AGNs and starbursts in our sample. Spectroscopic redshifts have been obtained for 35 of our AGN/starburst candidates and photometric redshifts are estimated to an accuracy of σz≃0.1 for the remaining sample. We present the upper limit luminosity function (LF) for low-luminosity AGN (LLAGN) in two redshift bins to z = 0.8. We detect mild number density evolution of the form φ∝ (1+z)1.9 for nuclei at -18 ~

  13. Evolution of the galaxy correlation function at redshifts 0.2 < z < 3

    NASA Astrophysics Data System (ADS)

    Sołtan, Andrzej M.

    2016-10-01

    We determine the auto-correlation function (ACF) of galaxies using massive deep galaxy surveys for which distances to individual objects are assessed using photometric redshifts. The method is applied to the 2deg COSMOS survey of ~ 300000 galaxies with i + < 25 and z ph <~ 3. The distance estimates based on photometric redshifts are not sufficiently accurate to be directly used to determine the ACF. Nevertheless, the photometric redshifts carry statistical information on the data distribution on (very) large scales. The investigation of the surface distribution of galaxies in several redshift (=distance) bins allows us to determine the spatial (3D) ACF over the redshift range of 0.2 - 3.2 or look back time of 2.4 - 11.5 Gy.

  14. SDSS-IV eBOSS emission-line galaxy pilot survey

    NASA Astrophysics Data System (ADS)

    Comparat, J.; Delubac, T.; Jouvel, S.; Raichoor, A.; Kneib, J.-P.; Yèche, C.; Abdalla, F. B.; Le Cras, C.; Maraston, C.; Wilkinson, D. M.; Zhu, G.; Jullo, E.; Prada, F.; Schlegel, D.; Xu, Z.; Zou, H.; Bautista, J.; Bizyaev, D.; Bolton, A.; Brownstein, J. R.; Dawson, K. S.; Escoffier, S.; Gaulme, P.; Kinemuchi, K.; Malanushenko, E.; Malanushenko, V.; Mariappan, V.; Newman, J. A.; Oravetz, D.; Pan, K.; Percival, W. J.; Prakash, A.; Schneider, D. P.; Simmons, A.; Abbott, T. M. C.; Allam, S.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Doel, P.; Eifler, T. F.; Estrada, J.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Miquel, R.; Plazas, A. A.; Reil, K.; Roe, N.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Walker, A. R.; Zhang, Y.

    2016-08-01

    The Sloan Digital Sky Survey IV extended Baryonic Oscillation Spectroscopic Survey (SDSS-IV/eBOSS) will observe 195 000 emission-line galaxies (ELGs) to measure the baryonic acoustic oscillation (BAO) standard ruler at redshift 0.9. To test different ELG selection algorithms, 9000 spectra were observed with the SDSS spectrograph as a pilot survey based on data from several imaging surveys. First, using visual inspection and redshift quality flags, we show that the automated spectroscopic redshifts assigned by the pipeline meet the quality requirements for a reliable BAO measurement. We also show the correlations between sky emission, signal-to-noise ratio in the emission lines, and redshift error. Then we provide a detailed description of each target selection algorithm we tested and compare them with the requirements of the eBOSS experiment. As a result, we provide reliable redshift distributions for the different target selection schemes we tested. Finally, we determine an target selection algorithms that is best suited to be applied on DECam photometry because they fulfill the eBOSS survey efficiency requirements. The catalog is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A121

  15. Final Report: LSAC Skills Analysis. Law School Task Survey. LSAC Research Report Series.

    ERIC Educational Resources Information Center

    Luebke, Stephen W.; Swygert, Kimberly A.; McLeod, Lori D.; Dalessandro, Susan P.; Roussos, Louis A.

    The Law School Admission Council (LSAC) Skills Analysis Survey identifies the skills that are important for success in law school. This information provides validity evidence for the current Law School Admission Test (LSAT) and guides the development of new test items and test specifications. The key question of the survey is "what academic tasks…

  16. Energy Efficiency for Florida Educational Facilities: The 1996 Energy Survey of Florida Schools. Final Report.

    ERIC Educational Resources Information Center

    Callahan, Michael P.; Parker, Danny S.; Dutton, Wanda L.; McIlvaine, Janet E. R.

    Florida has recently completed a survey of energy use and related physical and operational characteristics of the state's public schools. This report presents results from 1,298 surveys received (680 providing matching utility data) revealing that total energy costs for the Florida school system totaled $205 million in 1995. Other data show that…

  17. A Survey of Viewership of Television Series Sponsored by ESAA Legislation. Final Report.

    ERIC Educational Resources Information Center

    Hebbeler, Kathleen; Cosgrove, Michael

    Results are presented of a national survey of in-school students, teachers, and principals to determine the viewership and availability of 11 television series which have been produced and distributed through funding provided by the Emergency School Aid Act (ESAA) to reduce cultural isolation among minority group members. In-home surveys were also…

  18. Canadian Attitudes toward Labour Market Issues: A Survey of Canadian Opinion. Final Report

    ERIC Educational Resources Information Center

    Human Resources and Social Development Canada, 2008

    2008-01-01

    In 2007, Human Resources and Social Development Canada commissioned Environics Research Group Limited to conduct a public opinion survey on labour market issues among 3,000 adult Canadians. The objective of the public opinion survey was to better understand the perceptions of Canadians regarding labour market challenges and opportunities in order…

  19. Final Report Bald and Golden Eagle Territory Surveys for the Lawrence Livermore National Laboratory

    SciTech Connect

    Fratanduono, M. L.

    2014-11-25

    Garcia and Associates (GANDA) was contracted by the Lawrence Livermore National Laboratory (LLNL) to conduct surveys for bald eagles (Haliaeetus leucocephalus) and golden eagles (Aquila chrysaetos) at Site 300 and in the surrounding area out to 10-miles. The survey effort was intended to document the boundaries of eagle territories by careful observation of eagle behavior from selected viewing locations throughout the study area.

  20. Manpower Requirements for Scientific and Technical Communication: An Occupational Survey of Information Professionals. Final Report.

    ERIC Educational Resources Information Center

    Debons, Anthony; And Others

    The first phase of a three-phase program, this study determined the functions entailed in information work and identified the number of individuals who exercise these functions in a survey of 1,193 establishments in state and local government, industry, and academia. The survey revealed that there were over 1.64 million information professionals…

  1. Initiation Rites in American High Schools: A National Survey. Final Report.

    ERIC Educational Resources Information Center

    Hoover, Nadine C.; Pollard, Norman J.

    Noting that high school students are just learning to distinguish between appropriate and inappropriate behavior and that without healthy adult supervision, initiation rites may become hazing incidents, this study surveyed students' experiences with hazing and initiation activities. Participating in the survey were 1,541 students from a random…

  2. A Low-redshift Sample of E+A Galaxies

    NASA Astrophysics Data System (ADS)

    Walker, K. M.; Bergmann, M. P.; Turner, J.

    2004-12-01

    We present the results of a low-redshift survey for E+A galaxies. These galaxies are spectroscopically classified as having strong Balmer and metallic absorption with the absence of any emission. The absorption lines indicate an abundance of A-type stars as well as an old stellar population, while the absence of emission, especially {O ii}, denotes the lack of current star formation. Essential in determining the evolution of early-type galaxies, a low-redshift sample will allow easier morphology observations and further spectroscopic study. Fourteen low-redshift E+A galaxies were found using the Sloan Digital Sky Survey Data Release One following similar criteria as the H-delta strong survey of Goto (2003), except that only galaxies with a redshift lower than z=0.05 were selected. Two of these E+A galaxies were observed with the Cerro Tololo Inter-American Observatory 1.5-m telescope and confirmed to have no emission anywhere along the longslit, including outside the 3" region sampled by the SDSS fibers. This work was supported by the NSF through the CTIO REU program.

  3. ArborZ: PHOTOMETRIC REDSHIFTS USING BOOSTED DECISION TREES

    SciTech Connect

    Gerdes, David W.; Sypniewski, Adam J.; McKay, Timothy A.; Hao, Jiangang; Weis, Matthew R.; Wechsler, Risa H.; Busha, Michael T.

    2010-06-01

    Precision photometric redshifts will be essential for extracting cosmological parameters from the next generation of wide-area imaging surveys. In this paper, we introduce a photometric redshift algorithm, ArborZ, based on the machine-learning technique of boosted decision trees. We study the algorithm using galaxies from the Sloan Digital Sky Survey (SDSS) and from mock catalogs intended to simulate both the SDSS and the upcoming Dark Energy Survey. We show that it improves upon the performance of existing algorithms. Moreover, the method naturally leads to the reconstruction of a full probability density function (PDF) for the photometric redshift of each galaxy, not merely a single 'best estimate' and error, and also provides a photo-z quality figure of merit for each galaxy that can be used to reject outliers. We show that the stacked PDFs yield a more accurate reconstruction of the redshift distribution N(z). We discuss limitations of the current algorithm and ideas for future work.

  4. Prevalence and Associated Factors of Smoking Among Final Year Medical Students: A Multicentric Survey From Pakistan.

    PubMed

    Khubaib, Mohammad U; Shahid, Zuhaib Y; Lodhi, Sameed K; Malik, Hamza; Jan, Mohsin M

    2016-01-01

    Introduction Smoking is the leading cause of lung cancer around the world. In a developing country like Pakistan with low levels of literacy and general awareness about adverse effects of smoking, doctors play a pivotal role in educating the masses about its harmful consequences and providing support for smoking cessation. However, their efficacy is affected if they smoke themselves, and oftentimes the habits cultivated during educational recourse are carried into the professional careers. The aim of this study was to document the prevalence of smoking among final year medical students of Lahore, Pakistan, and the factors associated with it. Methodology Study approval was obtained from Combined Military Hospital (CMH) Lahore Medical College, Ethics Review Committee. A cross-sectional survey was carried out in four medical colleges and hospitals of Lahore, Pakistan. A questionnaire consisting of 14 questions related to basic demographics and smoking was used after being pilot tested on 20 students of CMH. The overall response rate was 74.89%. Data was collected from 337 respondents, of which 38 forms were discarded and 299 forms were analyzed by SPSS V21. Results Among the 299 respondents, there were 128 males (42.81%) and 171 females (57.19%) with 32 (10.70%) smokers. Male students reported smoking (n = 27, 21.09%) more than their female counterparts (n = 5, 0.02%). The mean age of participants was 23.01 years. Students having an active smoker at home had statistically significant positive correlations with current smoking status and the number of cigarettes smoked per day. Students with household smoking contacts were also more likely to smoke if they belonged to the male gender. Conclusion Prevalence of smoking in medical students is lower than in the general population but still considerable in the male students. There is a need to target this particular population with interactive counseling sessions, education campaigns, and anti-smoking rules to decrease

  5. Prevalence and Associated Factors of Smoking Among Final Year Medical Students: A Multicentric Survey From Pakistan

    PubMed Central

    Shahid, Zuhaib Y; Lodhi, Sameed K; Malik, Hamza; Jan, Mohsin M

    2016-01-01

    Introduction Smoking is the leading cause of lung cancer around the world. In a developing country like Pakistan with low levels of literacy and general awareness about adverse effects of smoking, doctors play a pivotal role in educating the masses about its harmful consequences and providing support for smoking cessation. However, their efficacy is affected if they smoke themselves, and oftentimes the habits cultivated during educational recourse are carried into the professional careers. The aim of this study was to document the prevalence of smoking among final year medical students of Lahore, Pakistan, and the factors associated with it. Methodology Study approval was obtained from Combined Military Hospital (CMH) Lahore Medical College, Ethics Review Committee. A cross-sectional survey was carried out in four medical colleges and hospitals of Lahore, Pakistan. A questionnaire consisting of 14 questions related to basic demographics and smoking was used after being pilot tested on 20 students of CMH. The overall response rate was 74.89%. Data was collected from 337 respondents, of which 38 forms were discarded and 299 forms were analyzed by SPSS V21. Results Among the 299 respondents, there were 128 males (42.81%) and 171 females (57.19%) with 32 (10.70%) smokers. Male students reported smoking (n = 27, 21.09%) more than their female counterparts (n = 5, 0.02%). The mean age of participants was 23.01 years. Students having an active smoker at home had statistically significant positive correlations with current smoking status and the number of cigarettes smoked per day. Students with household smoking contacts were also more likely to smoke if they belonged to the male gender. Conclusion Prevalence of smoking in medical students is lower than in the general population but still considerable in the male students. There is a need to target this particular population with interactive counseling sessions, education campaigns, and anti-smoking rules to decrease

  6. Prevalence and Associated Factors of Smoking Among Final Year Medical Students: A Multicentric Survey From Pakistan.

    PubMed

    Khubaib, Mohammad U; Shahid, Zuhaib Y; Lodhi, Sameed K; Malik, Hamza; Jan, Mohsin M

    2016-01-01

    Introduction Smoking is the leading cause of lung cancer around the world. In a developing country like Pakistan with low levels of literacy and general awareness about adverse effects of smoking, doctors play a pivotal role in educating the masses about its harmful consequences and providing support for smoking cessation. However, their efficacy is affected if they smoke themselves, and oftentimes the habits cultivated during educational recourse are carried into the professional careers. The aim of this study was to document the prevalence of smoking among final year medical students of Lahore, Pakistan, and the factors associated with it. Methodology Study approval was obtained from Combined Military Hospital (CMH) Lahore Medical College, Ethics Review Committee. A cross-sectional survey was carried out in four medical colleges and hospitals of Lahore, Pakistan. A questionnaire consisting of 14 questions related to basic demographics and smoking was used after being pilot tested on 20 students of CMH. The overall response rate was 74.89%. Data was collected from 337 respondents, of which 38 forms were discarded and 299 forms were analyzed by SPSS V21. Results Among the 299 respondents, there were 128 males (42.81%) and 171 females (57.19%) with 32 (10.70%) smokers. Male students reported smoking (n = 27, 21.09%) more than their female counterparts (n = 5, 0.02%). The mean age of participants was 23.01 years. Students having an active smoker at home had statistically significant positive correlations with current smoking status and the number of cigarettes smoked per day. Students with household smoking contacts were also more likely to smoke if they belonged to the male gender. Conclusion Prevalence of smoking in medical students is lower than in the general population but still considerable in the male students. There is a need to target this particular population with interactive counseling sessions, education campaigns, and anti-smoking rules to decrease

  7. Survey of protected terrestrial vertebrates on the Oak Ridge Reservation. Final report

    SciTech Connect

    Mitchell, J.M.; Vail, E.R.; Webb, J.W.; King, A.L.; Hamlett, P.A.

    1996-05-01

    Surveys of protected terrestrial vertebrates on the Oak Ridge Reservation (ORR) were conducted from October 1994 through May 1996. The surveys were undertaken to help avoid or minimize the potential impacts of projects on the ORR to species listed by the state or federal government as endangered, threatened, or in need-of-management; federal species of concern were included. Results of the survey will also assist in effectively managing the ORR. Currently, there are 69 species of federal- or state-listed terrestrial vertebrates (20 reptiles and amphibians, 20 mammals, and 29 birds) that may occur in Tennessee. Listed animal species that might be present on the ORR were targeted for survey using a prioritization system based on historical and recent sightings, known species distributions, presence of suitable habitat, literature reviews, and personal communications. Survey methods included trapping, seining, monitoring artificial covers, active searching, and avian surveys. Surveys were conducted during the time of year when each targeted species was most likely to be encountered. The report also includes ancillary information. Records are provided for nonlisted species (44 species of reptiles and amphibians, 155 species of birds, and 28 species of mammals). Categorization of survey sites into 1 or more of 19 habitat types, which are briefly described, is presented. Notes are summarized on the occurrence of threatened and endangered species on the ORR. The report also lists threatened and endangered species not found that might be located by additional surveys, recommends three survey areas for natural-area status due to wildlife value, and suggests several avenues for future work.

  8. Redshift determination through weighted phase correlation: a linearithmic implementation

    NASA Astrophysics Data System (ADS)

    Delchambre, L.

    2016-08-01

    We present a new algorithm having a time complexity of O(N log N) and designed to retrieve the phase at which an input signal and a set of not necessarily orthogonal templates match best in a weighted chi-squared sense. The proposed implementation is based on an orthogonalization algorithm and thus also benefits from high numerical stability. We apply this method successfully to the redshift determination of quasars from the twelfth Sloan Digital Sky Survey (SDSS) quasar catalogue and derive the proper spectral reduction and redshift selection methods. Derivations of the redshift uncertainty and the associated confidence are also provided. The results of this application are comparable to the performance of the SDSS pipeline, while not having a quadratic time dependence.

  9. Radio-loud high-redshift protogalaxy canidates in Bootes

    SciTech Connect

    Croft, S; van Breugel, W; Brown, M J; de Vries, W; Dey, A; Eisenhardt, P; Jannuzi, B; Rottgering, H; Stanford, S A; Stern, D; Willner, S P

    2007-07-20

    We used the Near Infrared Camera (NIRC) on Keck I to obtain K{sub s}-band images of four candidate high-redshift radio galaxies selected using optical and radio data in the NOAO Deep Wide-Field Survey in Bootes. Our targets have 1.4 GHz radio flux densities greater than 1 mJy, but are undetected in the optical. Spectral energy distribution fitting suggests that three of these objects are at z > 3, with radio luminosities near the FR-I/FR-II break. The other has photometric redshift z{sub phot} = 1.2, but may in fact be at higher redshift. Two of the four objects exhibit diffuse morphologies in K{sub s}-band, suggesting that they are still in the process of forming.

  10. The Impact of Stochastic Attenuation on Photometric Redshift Estimates

    NASA Astrophysics Data System (ADS)

    Tepper-García, Thorsten; Fritze-von Alvensleben, Uta

    2007-05-01

    INTRODUCTION: We model the effect of the stochastic absorption by neutral hydrogen (HI) present in the intergalactic medium (IGM), such as Lyalpha Forest, and associated with galaxies (LLS, DLAs), on the photometric redshifts, and compare these results to the predicted photometric redshifts of models where only a mean attenuation is taken into account. METHODS: We model the attenuation due to HI along a random line of sight (LOS) using differential distribution functions constrained from observations (Kim et al. 97,01) in a Monte Carlo fashion (Bershady et al. 99). We then calculate galaxy model spectra of a given spectral type at different redshifts using our Evolutionary Synthesis Code GALEV (Bicker et al. 04), and apply to each spectrum a different attenuation corresponding to a particular random LOS. We obtain in this way an ensemble of attenuated spectral energy distributiond (SED) in the HST and Johnson systems. Using AnalySED (Anders et al. 06), an analysis tool based on a chi-square test, and our template SEDs with mean attenuation-which span a grid in redshift and spectral type-we determine to which extent the redshifts of our simulated spectra are recovered. RESULTS: We find a substantial underestimate of the photometric redshifts of up to Δz=0.3, especially in the range z > 3.0. DISCUSSION: Based on our results, we emphasise the need for the accurate modelling of the attenuation in order to correctly interpret, using evolutionary synthesis codes such as GALEV, the observations of (high-redshift) galaxies observed in deep surveys, for which only photometric information is available.

  11. Final report on the radiological surveys of designated DX firing sites at Los Alamos National Laboratory

    SciTech Connect

    1996-09-09

    CHEMRAD was contracted by Los Alamos National Laboratory to perform USRADS{reg_sign} (UltraSonic Ranging And Data System) radiation scanning surveys at designated DX Sites at the Los Alamos National Laboratory. The primary purpose of these scanning surveys was to identify the presence of Depleted Uranium (D-38) resulting from activities at the DX Firing Sites. This effort was conducted to update the most recent surveys of these areas. This current effort was initiated with site orientation on August 12, 1996. Surveys were completed in the field on September 4, 1996. This Executive Summary briefly presents the major findings of this work. The detail survey results are presented in the balance of this report and are organized by Technical Area and Site number in section 2. This organization is not in chronological order. USRADS and the related survey methods are described in section 3. Quality Control issues are addressed in section 4. Surveys were conducted with an array of radiation detectors either mounted on a backpack frame for man-carried use (Manual mode) or on a tricycle cart (RadCart mode). The array included radiation detectors for gamma and beta surface near surface contamination as well as dose rate at 1 meter above grade. The radiation detectors were interfaced directly to an USRADS 2100 Data Pack.

  12. MARSSIM vs. DOE Order 5400.5: the Final Status Survey plan at the Rocky Flats Environmental Technology Site.

    PubMed

    Roberts, Sarah J; Stevens, Jeff

    2003-06-01

    A challenge unique to the decommissioning of Department of Energy (DOE) facilities involves the compromise between the existing and newly recommended standards for the unrestricted release of property and materials. The Rocky Flats Environmental Technology Site (RFETS) is currently decommissioning numerous plutonium contaminated facilities. The default DOE standard for unrestricted release, Order 5400.5, defines surface activity guidelines as averaged over a 1-square-meter area with a maximum value defined for any given 100-square-centimeter area. While the Order was initially developed to release property and materials from an operating site, it is restrictive in its use when performing Final Status Survey and, to date, no new complex wide standard has been developed. However, the RFETS stakeholders selected the MARSSIM, which provides a progressive method to demonstrate compliance with the defined "dose-based" limits for a specific site, as the governing document in developing a final survey method. The end result is a hybrid final status survey plan that incorporates the requirements of both documents. This plan represents several years of development and negotiation between the contractor, the DOE, the Colorado Department of Public Health and Environment, the Rocky Flats stakeholders, and other interested parties. PMID:12792399

  13. A Model-independent Photometric Redshift Estimator for Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Wang, Yun

    2007-01-01

    The use of Type Ia supernovae (SNe Ia) as cosmological standard candles is fundamental in modern observational cosmology. In this Letter, we derive a simple empirical photometric redshift estimator for SNe Ia using a training set of SNe Ia with multiband (griz) light curves and spectroscopic redshifts obtained by the Supernova Legacy Survey (SNLS). This estimator is analytical and model-independent it does not use spectral templates. We use all the available SNe Ia from SNLS with near-maximum photometry in griz (a total of 40 SNe Ia) to train and test our photometric redshift estimator. The difference between the estimated redshifts zphot and the spectroscopic redshifts zspec, (zphot-zspec)/(1+zspec), has rms dispersions of 0.031 for 20 SNe Ia used in the training set, and 0.050 for 20 SNe Ia not used in the training set. The dispersion is of the same order of magnitude as the flux uncertainties at peak brightness for the SNe Ia. There are no outliers. This photometric redshift estimator should significantly enhance the ability of observers to accurately target high-redshift SNe Ia for spectroscopy in ongoing surveys. It will also dramatically boost the cosmological impact of very large future supernova surveys, such as those planned for the Advanced Liquid-mirror Probe for Astrophysics, Cosmology, and Asteroids (ALPACA) and the Large Synoptic Survey Telescope (LSST).

  14. The Galileo solar redshift experiment

    NASA Technical Reports Server (NTRS)

    Krisher, Timothy P.; Morabito, David D.; Anderson, John D.

    1993-01-01

    From the October 1989 launch to the first December 1990 earth gravity assist, we regularly obtained frequency measurements of the spacecraft clock - an ultrastable crystal oscillator (USO) supplied by Frequency Electronics, Inc. The solar gravitational redshift in frequency was readily detectable, and because of the unique variations in heliocentric distance we could separate the general relativistic effects from the USO's intrinsic frequency variations. We have verified the total frequency shift predicted by general relativity to 0.5 percent accuracy, and the solar gravitational redshift to 1 percent accuracy.

  15. Morphology classification and photometric redshift measurement of galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxia; Li, Lili; Zhao, Yongheng

    2009-01-01

    Based on the Sloan Digital Sky Survey Data Release 5 Galaxy Sample, we explore photometric morphology classification and redshift estimation of galaxies using photometric data and known spectroscopic redshifts. An unsupervised method, k-means algorithm, is used to separate the whole galaxy sample into early- and late-type galaxies. Then, we investigate the photometric redshift measurement with different input patterns by means of artificial neural networks (ANNs) for the total sample and two subsamples. The experimental result indicates that ANNs show better performance when more parameters are applied in the training set, and the mixed accuracy of photometric redshift estimation for the two subsets is superior to σz for the overall sample alone. For the optimal result, the rms deviation of photometric redshifts for the mixed sample amounts to 0.0192, that for the overall sample is 0.0196, meanwhile, that for early- and late-type galaxies adds up to 0.0164 and 0.0217, respectively.

  16. Energy Efficiency and Renewable Energy Network (EREN) customer satisfaction survey, 1997. Final report

    SciTech Connect

    Anderson, A.V.; Henderson, D.P.

    1997-07-01

    the EREN Customer Satisfaction Survey 1997 was designed to follow up the results of the 1995-96 Surveys, enabling comparison to the 1995- 96 baseline, and to provide additional qualitative feedback about EREN. Both the 1995-96 and 1997 Surveys had these objectives: Identify and define actual EREN users; Determine the value or benefits derived from the use of EREN; Determine the kind and quality of services that users want; Determine the users` levels of satisfaction with existing services; Determine users` preferences in both the sources of service and means of delivery; and Establish continuous quality improvement measures. This report presents the methodology used, scope and limitations of the study, description of the survey instrument, and findings regarding demographics, technical capabilities, usage patterns, general use, importance of and satisfaction with resources, and additional information and comments.

  17. Long-life cable development. Cable-processing survey. Final report

    SciTech Connect

    Mangaraj, D.; Preston, J.R.

    1985-09-01

    A survey of cable manufacturers in North America, Europe, and Japan identified state-of-the-art techniques for processing extruded dielectric cables. The review highlights optimal approaches to such process operations as materials handling, extrusion, and vulcanization.

  18. Redshift-space distortions with wide angular separations

    SciTech Connect

    Reimberg, Paulo; Bernardeau, Francis; Pitrou, Cyril E-mail: francis.bernardeau@cea.fr

    2016-01-01

    Redshift-space distortions are generally considered in the plane parallel limit, where the angular separation between the two sources can be neglected. Given that galaxy catalogues now cover large fractions of the sky, it becomes necessary to consider them in a formalism which takes into account the wide angle separations. In this article we derive an operational formula for the matter correlators in the Newtonian limit to be used in actual data sets. In order to describe the geometrical nature of the wide angle RSD effect on Fourier space, we extend the formalism developed in configuration space to Fourier space without relying on a plane-parallel approximation, but under the extra assumption of no bias evolution. We then recover the plane-parallel limit not only in configuration space where the geometry is simpler, but also in Fourier space, and we exhibit the first corrections that should be included in large surveys as a perturbative expansion over the plane-parallel results. We finally compare our results to existing literature, and show explicitly how they are related.

  19. THE REDSHIFT EVOLUTION OF THE RELATION BETWEEN STELLAR MASS, STAR FORMATION RATE, AND GAS METALLICITY OF GALAXIES

    SciTech Connect

    Niino, Yuu

    2012-12-20

    We investigate the relation between stellar mass (M{sub *}), star formation rate (SFR), and metallicity (Z) of galaxies, the so-called fundamental metallicity relation, in the galaxy sample of the Sloan Digital Sky Survey Data Release 7. We separate the galaxies into narrow redshift bins and compare the relation at different redshifts and find statistically significant (>99%) evolution. We test various observational effects that might cause seeming Z evolution and find it difficult to explain the evolution of the relation only by the observational effects. In the current sample of low-redshift galaxies, galaxies with different M{sub *} and SFR are sampled from different redshifts, and there is degeneracy between M{sub *}/SFR and redshift. Hence, it is not straightforward to distinguish a relation between Z and SFR from a relation between Z and redshift. The separation of the intrinsic relation from the redshift evolution effect is a crucial issue in the understanding of the evolution of galaxies.

  20. Can Selforganizing Maps Accurately Predict Photometric Redshifts?

    NASA Technical Reports Server (NTRS)

    Way, Michael J.; Klose, Christian

    2012-01-01

    We present an unsupervised machine-learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization called the self-organizing-map (SOM) approach. A variety of photometrically derived input values were utilized from the Sloan Digital Sky Survey's main galaxy sample, luminous red galaxy, and quasar samples, along with the PHAT0 data set from the Photo-z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root-mean-square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches, such as artificial neural networks and Gaussian process regression. SOM RMSE results (using delta(z) = z(sub phot) - z(sub spec)) are 0.023 for the main galaxy sample, 0.027 for the luminous red galaxy sample, 0.418 for quasars, and 0.022 for PHAT0 synthetic data. The results demonstrate that there are nonunique solutions for estimating SOM RMSEs. Further research is needed in order to find more robust estimation techniques using SOMs, but the results herein are a positive indication of their capabilities when compared with other well-known methods

  1. Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS

    SciTech Connect

    Jouvel, S.; et al.

    2015-09-23

    We present the results of the first test plates of the extended Baryon Oscillation Spectroscopic Survey. This paper focuses on the emission line galaxies (ELG) population targetted from the Dark Energy Survey (DES) photometry. We analyse the success rate, efficiency, redshift distribution, and clustering properties of the targets. From the 9000 spectroscopic redshifts targetted, 4600 have been selected from the DES photometry. The total success rate for redshifts between 0.6 and 1.2 is 71\\% and 68\\% respectively for a bright and faint, on average more distant, samples including redshifts measured from a single strong emission line. We find a mean redshift of 0.8 and 0.87, with 15 and 13\\% of unknown redshifts respectively for the bright and faint samples. In the redshift range 0.6redshifts, the mean redshift for the bright and faint sample is 0.85 and 0.9 respectively. Star contamination is lower than 2\\%. We measure a galaxy bias averaged on scales of 1 and 10~Mpc/h of 1.72 \\pm 0.1 for the bright sample and of 1.78 \\pm 0.12 for the faint sample. The error on the galaxy bias have been obtained propagating the errors in the correlation function to the fitted parameters. This redshift evolution for the galaxy bias is in agreement with theoretical expectations for a galaxy population with MB-5\\log h < -21.0. We note that biasing is derived from the galaxy clustering relative to a model for the mass fluctuations. We investigate the quality of the DES photometric redshifts and find that the outlier fraction can be reduced using a comparison between template fitting and neural network, or using a random forest algorithm.

  2. The Redshift-Distance Relation

    NASA Astrophysics Data System (ADS)

    Segal, I. E.

    1993-06-01

    Key predictions of the Hubble law are inconsistent with direct observations on equitable complete samples of extragalactic sources in the optical, infrared, and x-ray wave bands-e.g., the predicted dispersion in apparent magnitude is persistently greatly in excess of its observed value, precluding an explanation via hypothetical perturbations or irregularities. In contrast, the predictions of the Lundmark (homogeneous quadratic) law are consistent with the observations. The Lundmark law moreover predicts the deviations between Hubble law predictions and observation with statistical consistency, while the Hubble law provides no explanation for the close fit of the Lundmark law. The flux-redshift law F \\varpropto (1 + z)/z appears consistent with observations on equitable complete samples in the entire observed redshift range, when due account is taken of flux limits by an optimal statistical method. Under the theoretical assumption that space is a fixed sphere, as in the Einstein universe, this law implies the redshift-distance relation z = tan^2(r/2R), where R is the radius of the spherical space. This relation coincides with the prediction of chronometric cosmology, which estimates R as 160 ± 40 Mpc (1 parsec = 3.09 x 1016 m) from the proper motion to redshift relation of superluminal sources. Tangential aspects, including statistical methodology, fundamental physical theory, bright cluster galaxy samples, and proposed luminosity evolution, are briefly considered.

  3. The redshift-distance relation.

    PubMed Central

    Segal, I E

    1993-01-01

    Key predictions of the Hubble law are inconsistent with direct observations on equitable complete samples of extragalactic sources in the optical, infrared, and x-ray wave bands-e.g., the predicted dispersion in apparent magnitude is persistently greatly in excess of its observed value, precluding an explanation via hypothetical perturbations or irregularities. In contrast, the predictions of the Lundmark (homogeneous quadratic) law are consistent with the observations. The Lundmark law moreover predicts the deviations between Hubble law predictions and observation with statistical consistency, while the Hubble law provides no explanation for the close fit of the Lundmark law. The flux-redshift law F [symbol, see text] (1 + z)/z appears consistent with observations on equitable complete samples in the entire observed redshift range, when due account is taken of flux limits by an optimal statistical method. Under the theoretical assumption that space is a fixed sphere, as in the Einstein universe, this law implies the redshift-distance relation z = tan2(r/2R), where R is the radius of the spherical space. This relation coincides with the prediction of chronometric cosmology, which estimates R as 160 +/- 40 Mpc (1 parsec = 3.09 x 10(16) m) from the proper motion to redshift relation of superluminal sources. Tangential aspects, including statistical methodology, fundamental physical theory, bright cluster galaxy samples, and proposed luminosity evolution, are briefly considered. PMID:11607390

  4. The Weyl Definition of Redshifts

    ERIC Educational Resources Information Center

    Harvey, Alex

    2012-01-01

    In 1923, Weyl published a (not widely known) protocol for the calculation of redshifts. It is completely independent of the origin of the shift and treats it as a pure Doppler shift. The method is comprehensive and depends solely on the relation between the world lines of source and observer. It has the merit of simplicity of statement and…

  5. The redshift-distance relation.

    PubMed

    Segal, I E

    1993-06-01

    Key predictions of the Hubble law are inconsistent with direct observations on equitable complete samples of extragalactic sources in the optical, infrared, and x-ray wave bands-e.g., the predicted dispersion in apparent magnitude is persistently greatly in excess of its observed value, precluding an explanation via hypothetical perturbations or irregularities. In contrast, the predictions of the Lundmark (homogeneous quadratic) law are consistent with the observations. The Lundmark law moreover predicts the deviations between Hubble law predictions and observation with statistical consistency, while the Hubble law provides no explanation for the close fit of the Lundmark law. The flux-redshift law F [symbol, see text] (1 + z)/z appears consistent with observations on equitable complete samples in the entire observed redshift range, when due account is taken of flux limits by an optimal statistical method. Under the theoretical assumption that space is a fixed sphere, as in the Einstein universe, this law implies the redshift-distance relation z = tan2(r/2R), where R is the radius of the spherical space. This relation coincides with the prediction of chronometric cosmology, which estimates R as 160 +/- 40 Mpc (1 parsec = 3.09 x 10(16) m) from the proper motion to redshift relation of superluminal sources. Tangential aspects, including statistical methodology, fundamental physical theory, bright cluster galaxy samples, and proposed luminosity evolution, are briefly considered.

  6. Obscured AGN at High Redshift

    NASA Technical Reports Server (NTRS)

    Stern, Daniel

    2008-01-01

    This viewgraph presentation reviews the obscured sources of Active Galactic Nuclei (AGN) in the universe at high redshift. The cosmic X-ray background, unified models of AGN and clues to galaxy formation/evolution is the motivation for this study.

  7. CMB quenching of high-redshift radio-loud AGNs

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Haardt, F.; Ciardi, B.; Sbarrato, T.; Gallo, E.; Tavecchio, F.; Celotti, A.

    2015-10-01

    The very existence of more than a dozen of high-redshift (z ≳ 4) blazars indicates that a much larger population of misaligned powerful jetted active galactic nucleus (AGN) was already in place when the Universe was ≲1.5 Gyr old. Such parent population proved to be very elusive, and escaped direct detection in radio surveys so far. High-redshift blazars themselves seem to be failing in producing extended radio lobes, raising questions about the connection between such class and the vaster population of radio galaxies. We show that the interaction of the jet electrons with the intense cosmic microwave background (CMB) radiation explains the lack of extended radio emission in high-redshift blazars and in their parent population, helping to explain the apparently missing misaligned counterparts of high-redshift blazars. On the other hand, the emission from the more compact and more magnetized hotspots are less affected by the enhanced CMB energy density. By modelling the spectral energy distribution of blazar lobes and hotspots, we find that most of them should be detectable by low-frequency deep radio observations, e.g. by LOw-Frequency ARray for radio astronomy and by relatively deep X-ray observations with good angular resolution, e.g. by the Chandra satellite. At high redshifts, the emission of a misaligned relativistic jet, being debeamed, is missed by current large sky area surveys. The isotropic flux produced in the hotspots can be below ˜1 mJy and the isotropic lobe radio emission is quenched by the CMB cooling. Consequently, even sources with very powerful jets can go undetected in current radio surveys, and misclassified as radio-quiet AGNs.

  8. The Intergalactic Medium at High Redshifts

    NASA Astrophysics Data System (ADS)

    Furlanetto, Steven R.

    The intergalactic medium (IGM) contains >95% of the mass in the Universe at high redshifts, and its properties control the earliest phases of structure formation and the reionization process. Although its evolution may seem straightforward, a number of feedback mechanisms can dramatically affect it. Radiative feedback, through a Lyman-Werner background, an X-ray background, and photoionization, affect halo collapse and the clumping of the IGM. We describe how the redshifted 21 cm background can be used to study these effects. Chemical feedback, primarily through supernova winds, changes the modes of star formation and halo cooling; it can be studied through metal absorption lines with the JWST, as well as metal lines in the cosmic microwave background, direct observations of cooling radiation, and fossil evidence in the nearby Universe. Finally, we describe how uncertainties in our modeling of the IGM structure affect reionization models and observations. Detailed studies of helium reionization, which occurs at the much more accessible z˜3, will significantly improve these models over the next few years.

  9. USNRC anchor bolt study data survey and dynamic testing. Final report

    SciTech Connect

    Lindquist, M R

    1982-12-01

    A survey was performed to determine the adequacy of existing concrete expansion anchor test data. Based upon the survey findings, additional dynamic testing to assess the benefits of preload was undertaken. Exploratory testing was performed on typical wedge and shell anchors. It was found that, providing the installation torque is properly applied, residual preload does not significantly affect anchor load-displacement characteristics until the preload drops to less than 50% of the full installation preload. It was concluded that this must be considered in design situations where support stiffness is an important factor.

  10. Final Report of the Mid-Atlantic Marine Wildlife Surveys, Modeling, and Data

    SciTech Connect

    Saracino-Brown, Jocelyn; Smith, Courtney; Gilman, Patrick

    2013-07-01

    The Wind Program hosted a two-day workshop on July 24-25, 2012 with scientists and regulators engaged in marine ecological survey, modeling, and database efforts pertaining to the waters of the Mid-Atlantic region. The workshop was planned by Federal agency, academic, and private partners to promote collaboration between ongoing offshore ecological survey efforts, and to promote the collaborative development of complementary predictive models and compatible databases. The meeting primarily focused on efforts to establish and predict marine mammal, seabird, and sea turtle abundance, density, and distributions extending from the shoreline to the edge of the Exclusive Economic Zone between Nantucket Sound, Massachusetts and Cape Hatteras, North Carolina.

  11. GALAXY CLUSTERS AT HIGH REDSHIFT AND EVOLUTION OF BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Wen, Z. L.; Han, J. L.

    2011-06-10

    Identification of high-redshift clusters is important for studies of cosmology and cluster evolution. Using photometric redshifts of galaxies, we identify 631 clusters from the Canada-France-Hawaii Telescope (CFHT) wide field, 202 clusters from the CFHT deep field, 187 clusters from the Cosmic Evolution Survey (COSMOS) field, and 737 clusters from the Spitzer Wide-area InfraRed Extragalactic Survey (SWIRE) field. The redshifts of these clusters are in the range 0.1 {approx}< z {approx}< 1.6. Merging these cluster samples gives 1644 clusters in the four survey fields, of which 1088 are newly identified and more than half are from the large SWIRE field. Among 228 clusters of z {>=} 1, 191 clusters are newly identified, and most of them from the SWIRE field. With this large sample of high-redshift clusters, we study the color evolution of the brightest cluster galaxies (BCGs). The r' - z' and r{sup +} - m{sub 3.6{mu}m} colors of the BCGs are consistent with a stellar population synthesis model in which the BCGs are formed at redshift z{sub f} {>=} 2 and evolved passively. The g' - z' and B - m{sub 3.6{mu}m} colors of the BCGs at redshifts z > 0.8 are systematically bluer than the passive evolution model for galaxies formed at z{sub f} {approx} 2, indicating star formation in high-redshift BCGs.

  12. An Efficient Approach to Obtaining Large Numbers of Distant Supernova Host Galaxy Redshifts

    NASA Astrophysics Data System (ADS)

    Lidman, C.; Ruhlmann-Kleider, V.; Sullivan, M.; Myzska, J.; Dobbie, P.; Glazebrook, K.; Mould, J.; Astier, P.; Balland, C.; Betoule, M.; Carlberg, R.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I.; Howell, D. A.; Pain, R.; Palanque-Delabrouille, N.; Perrett, K.; Pritchet, C.; Regnault, N.; Rich, J.

    2013-01-01

    We use the wide-field capabilities of the 2 degree field fibre positioner and the AAOmega spectrograph on the Anglo-Australian Telescope (AAT) to obtain redshifts of galaxies that hosted supernovae during the first 3 years of the Supernova Legacy Survey (SNLS). With exposure times ranging from 10 to 60 ks per galaxy, we were able to obtain redshifts for 400 host galaxies in two SNLS fields, thereby substantially increasing the total number of SNLS supernovae with host galaxy redshifts. The median redshift of the galaxies in our sample that hosted photometrically classified Type Ia supernovae (SNe Ia) is z ~ 0.77, which is 25% higher than the median redshift of spectroscopically confirmed SNe Ia in the 3-year sample of the SNLS. Our results demonstrate that one can use wide-field fibre-fed multi-object spectrographs on 4-m telescopes to efficiently obtain redshifts for large numbers of supernova host galaxies over the large areas of the sky that will be covered by future high-redshift supernova surveys, such as the Dark Energy Survey.

  13. RECONSTRUCTING REDSHIFT DISTRIBUTIONS WITH CROSS-CORRELATIONS: TESTS AND AN OPTIMIZED RECIPE

    SciTech Connect

    Matthews, Daniel J.; Newman, Jeffrey A. E-mail: janewman@pitt.ed

    2010-09-20

    Many of the cosmological tests to be performed by planned dark energy experiments will require extremely well-characterized photometric redshift measurements. Current estimates for cosmic shear are that the true mean redshift of the objects in each photo-z bin must be known to better than 0.002(1 + z), and the width of the bin must be known to {approx}0.003(1 + z) if errors in cosmological measurements are not to be degraded significantly. A conventional approach is to calibrate these photometric redshifts with large sets of spectroscopic redshifts. However, at the depths probed by Stage III surveys (such as DES), let alone Stage IV (LSST, JDEM, and Euclid), existing large redshift samples have all been highly (25%-60%) incomplete, with a strong dependence of success rate on both redshift and galaxy properties. A powerful alternative approach is to exploit the clustering of galaxies to perform photometric redshift calibrations. Measuring the two-point angular cross-correlation between objects in some photometric redshift bin and objects with known spectroscopic redshift, as a function of the spectroscopic z, allows the true redshift distribution of a photometric sample to be reconstructed in detail, even if it includes objects too faint for spectroscopy or if spectroscopic samples are highly incomplete. We test this technique using mock DEEP2 Galaxy Redshift survey light cones constructed from the Millennium Simulation semi-analytic galaxy catalogs. From this realistic test, which incorporates the effects of galaxy bias evolution and cosmic variance, we find that the true redshift distribution of a photometric sample can, in fact, be determined accurately with cross-correlation techniques. We also compare the empirical error in the reconstruction of redshift distributions to previous analytic predictions, finding that additional components must be included in error budgets to match the simulation results. This extra error contribution is small for surveys that

  14. A Survey of Five On-line Retrieval Systems. Final Report.

    ERIC Educational Resources Information Center

    Welch, Noreen O.

    This report is a survey of five on-line retrieval systems that, with one exception, have been used to demonstrate on-line access to the recently developed Committee on Scientific and Technical Information (COSATI) inventory of government sponsored work now in progress in the area of information sciences and technology. The report was prepared to…

  15. Bread for the World Membership Survey and Analysis Project. Final Report.

    ERIC Educational Resources Information Center

    Whitaker, William H.; And Others

    This survey was conducted in 1984 of current and former members of Bread for the World (BFW) in order to further understanding of the characteristics, attitudes, level of participation, and needs of people involved with hunger issues and the needs of hungry people. A questionnaire was mailed to 1,296 current and 738 former members. This final…

  16. Industrial Arts Survey. Research and Development Project in Career Education. Final Report.

    ERIC Educational Resources Information Center

    Mohrenweiser, Gary A.

    The purpose of this study was to identify, delineate, and clarify the opinions, attitudes, and perceptions of a number of groups of Minnesota educators relating to the issues and concerns of junior and senior high school industrial arts teachers, secondary school administrators, and industrial arts teacher educators. Separate survey instruments…

  17. The Opinions of Nevada Voters about Their Public Schools. 1990 Needs Assessment Survey. Contractor Final Report.

    ERIC Educational Resources Information Center

    Survey Research Systems, Carson City, NV.

    A telephone public opinion survey asked 866 Nevada registered voters their opinions about the public schools. The developed questionnaire was approved by the Nevada Department of Education. Of the respondents, 51.15% agree that all students should have a specific job skill before graduating from high school and 76.67% agree that more importance…

  18. SURVEY OF PROFESSIONAL JOURNALS IN FIELD OF PUBLIC COMMUNICATION, INCLUDING NEW MEDIA IN EDUCATION. FINAL REPORT.

    ERIC Educational Resources Information Center

    HOBAN, CHARLES F.

    THE SUBSCRIBERS TO FOUR JOURNALS IN THE FIELD OF PUBLIC COMMUNICATION WERE SURVEYED TO DETERMINE (1) WHETHER COMMUNICATION HAS EMERGED AS AN IDENTIFIABLE AREA OF DISCIPLINE, (2) WHAT SHORTCOMINGS READERS PERCEIVE IN PROFESSIONALLY SIGNIFICANT JOURNALS, AND (3) HOW READERS PERCEIVE THE ROLE OF PROFESSIONAL JOURNALS AS A CHANNEL OF COMMUNICATION. A…

  19. Nebraska Survey of Sensory Impaired Children and Youth. Final Report, 1981-82.

    ERIC Educational Resources Information Center

    Rawlings, Brenda W.

    The report describes the second year of a survey of sensory impaired children in Nebraska. It is explained that results have been used to improve administrative planning and cost efficient delivery of services. Demographic and assessment information was collected and analyzed on 888 sensory impaired children (birth to 21) via questionnaires…

  20. Problems, Perplexities and Satisfactions of Students at UT-Knoxville. 1974 Campus Opinion Survey. Final Report.

    ERIC Educational Resources Information Center

    Haskins, Jack B.; Cadotte, Bruce

    All findings and tabulations from the 1974 survey, including a statement of methodology, are reported. This includes a crosstabulation of all results by age, sex, college, class level, and other variables. The data were collected from a representative sample of University of Tennessee at Knoxville students. Among the principal findings are: (1)…

  1. Final Report on the 2007 Clark County School District Teaching and Learning Conditions Survey

    ERIC Educational Resources Information Center

    Berry, Barnett; Fuller, Ed

    2007-01-01

    In 2007, under the leadership of Superintendent Walter Rulffes and the Clark County Education Association (CCEA), the Clark County School District (CCSD) conducted a web-based survey of all school-based licensed educators in which they were asked to share their perceptions of the state of teaching and learning conditions in the district. It was…

  2. Data Analysis of the 1968-69 Survey of Compensatory Education (Title I). Final Report.

    ERIC Educational Resources Information Center

    Glass, Gene V.; And Others

    In this report, the results of analyses of data from ESEA Title I Program evaluations collected in the 1969 Survey of Compensatory Education are presented. These data analyses bear on the evaluation of the operations and impact of the programs in 9236 school districts and 3219 elementary schools, involving 215,995 teachers of 5,733,976 pupils in…

  3. SURVEY OF INFORMATION ON VOCATIONAL AND TECHNICAL EDUCATION IN THE STATE OF ILLINOIS. FINAL REPORT.

    ERIC Educational Resources Information Center

    Corplan Associates, Chicago, IL. Technology Center.

    THE BASIC OBJECTIVE OF THE SURVEY WAS TO GATHER INFORMATION HELPFUL IN PLANNING AND DEVELOPING VOCATIONAL AND TECHNICAL EDUCATION PRIMARILY WITHIN THE PUBLIC SCHOOL SYSTEM. OCCUPATIONAL NEEDS WERE IDENTIFIED FROM FORECASTS OF CHANGES IN CURRENT OCCUPATIONS, AN ANALYSIS OF THE IMPLICATIONS OF SCIENTIFIC AND TECHNOLOGICAL DEVELOPMENTS, AND…

  4. Aerial surveys of endangered whales in the Beaufort Sea, Fall 1989. Final report

    SciTech Connect

    Treacy, S.D.

    1990-11-01

    The OCSLA Amendments of 1978 (43 U.S.C. 1802) established a policy for the management of oil and natural gas in the OCS and for protection of the marine and coastal environments. The amended OCSLA authorizes the Secretary of the Interior to conduct studies in areas or regions of sales to ascertain the environmental impacts on the marine and coastal environments of the outer Continental Shelf and the coastal areas which may be affected by oil and gas development (43 U.S.C. 1346). The report describes field activities and data analyses for aerial surveys of bowhead whales conducted between 1 September 1989 and 20 October 1989 in the Beaufort Sea, primarily between 140 W. and 154 W. longitudes south of 72 N. latitude. Ice cover during September and October 1989 was exceptionally light. A total of 215 bowhead whales, 104 belukha whales, 9 bearded seals, 84 ringed seals, and 32 unidentified pinnipeds were observed in 1989 during 98.70 hours of survey effort that included 38.10 hours on randomized transects. The last sighting of a bowhead whale made during the survey occurred in open water on 19 October 1989. No whales were sighted during a subsequent flight on 20 October 1989. Estimated median and mean water depths were shallower than for previous surveys (1982-1989). This is consistent with a trend for whales to be located in shallower water during years of generally light ice cover.

  5. Radiological survey of the Pearl Harbor Naval Shipyard and Environs, Honolulu, Hawaii. Final report

    SciTech Connect

    Callis, R.S.

    1987-06-01

    This report presents results of the survey conducted by the Eastern Environmental Radiation Facility personnel to assess levels of environmental radioactivity resulting from maintenance and operation of nuclear-powered warships at the Pearl Harbor Naval Shipyard and Environs on the Hawaiian Island of Oahu.

  6. The Racial Attitudes and Perceptions Survey (RAPS). Final Report (Mar 73-Mar 74). Technical Paper 338.

    ERIC Educational Resources Information Center

    Hiett, Robert L.; And Others

    The Racial Attitudes and Perceptions Survey (RAPS) was developed to obtain information from black and white military personnel, including reports of the frequencies of specific discriminatory behaviors and the tension levels associated with each race. The instrument was evaluated in terms of its construct validity and its reliability. Attitudes…

  7. The Physical Activities Survey of Police Officers in New Jersey. Final Report.

    ERIC Educational Resources Information Center

    Goldstein, Leo S.

    A survey of the physical activities of police officers in New Jersey was conducted to collect information about the kinds of physical activities they perform, their present health status, the measures they take to maintain good physical condition, and their appraisal of the present civil service physical performance test battery. Another purpose…

  8. A Study of Interviewer-Respondent Interaction in the Urban Employment Survey. Final Report.

    ERIC Educational Resources Information Center

    Marquis, Kent H.; Cannell, Charles F.

    The purpose of this study was to provide basic knowledge about the kinds and amounts of behavior in a personal survey interview and to investigate the effects of certain respondent demographic characteristics on the verbal behavior of the interviewer and respondent during the interview. Four sample groups of employed males (Negroes and Caucasians…

  9. A Planned Survey Course in British Commonwealth Literature for American College Students. Final Report.

    ERIC Educational Resources Information Center

    Robertson, Robert T.

    To encourage the teaching of British Commonwealth literature to American university students, a broad ranging survey course was designed in which the material was thematically organized. A great body of literature from the 13 countries was scrutinized in order to select 147 representative poems and short stories for an anthology. An effective…

  10. Survey of Entry-Level Skills Training by Selected Missouri Manufacturers. Final Report.

    ERIC Educational Resources Information Center

    Hubbs, Marguerite; Erickson, Richard C.

    Missouri manufacturers of electrical and electronic equipment and related products were surveyed to identify entry-level skills training decision factors and the extent of entry-level skills training by the manufacturers. Two instruments were constructed for use in the study. The Training Decision Inventory was used to assess the influence of…

  11. Compact quiescent galaxies at intermediate redshifts {sup ,}

    SciTech Connect

    Hsu, Li-Yen; Stockton, Alan; Shih, Hsin-Yi

    2014-12-01

    From several searches of the area common to the Sloan Digital Sky Survey and the United Kingdom Infrared Telescope Infrared Deep Sky Survey, we have selected 22 luminous galaxies between z ∼ 0.4 and z ∼ 0.9 that have colors and sizes similar to those of the compact quiescent galaxies at z > 2. By exploring structural parameters and stellar populations, we found that most of these galaxies actually formed most of their stars at z < 2 and are generally less compact than those found at z > 2. Several of these young objects are disk-like or possibly prolate. This lines up with several previous studies that found that massive quiescent galaxies at high redshifts often have disk-like morphologies. If these galaxies were to be confirmed to be disk-like, their formation mechanism must be able to account for both compactness and disks. On the other hand, if these galaxies were to be confirmed to be prolate, the fact that prolate galaxies do not exist in the local universe would indicate that galaxy formation mechanisms have evolved over cosmic time. We also found five galaxies forming over 80% of their stellar masses at z > 2. Three of these galaxies appear to have been modified to have spheroid-like morphologies, in agreement with the scenario of 'inside-out' buildup of massive galaxies. The remaining galaxies, SDSS J014355.21+133451.4 and SDSS J115836.93+021535.1, have truly old stellar populations and disk-like morphologies. These two objects would be good candidates for nearly unmodified compact quiescent galaxies from high redshifts that are worth future study.

  12. Predicting the Redshift 2 Hα Luminosity Function Using [OIII] Emission Line Galaxies

    NASA Astrophysics Data System (ADS)

    Mehta, Vihang; Scarlata, Claudia; Colbert, James W.; Dai, Y. S.; Dressler, Alan; Henry, Alaina; Malkan, Matt; Rafelski, Marc; Siana, Brian; Teplitz, Harry I.; Bagley, Micaela; Beck, Melanie; Ross, Nathaniel R.; Rutkowski, Michael; Wang, Yun

    2015-10-01

    Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure baryonic acoustic oscillations in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the Wide Field Camera 3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of Hα emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8-1.65 μm wavelength range and allowing the detection of Hα emitters up to z ˜ 1.5 and [O iii] emitters to z ˜ 2.3. We derive the Hα-[O iii] bivariate line luminosity function (LLF) for WISP galaxies at z ˜ 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurements and we demonstrate how it can be used to derive the Hα luminosity function by exclusively fitting [O iii] data. Using the z˜ 2 [O iii] LLF and assuming that the relation between Hα and [O iii] luminosity does not change significantly over the redshift range, we predict the Hα number counts at z˜ 2—the upper end of the redshift range of interest for future surveys. For the redshift range 0.7\\lt z\\lt 2, we expect ˜3000 galaxies deg-2 for a flux limit of 3 × 10-16 erg s-1 cm-2 (the proposed depth of the Euclid galaxy redshift survey) and ˜20,000 galaxies deg-2 for a flux limit of ˜10-16 erg s-1 cm-2 (the baseline depth of the WFIRST galaxy redshift survey).

  13. Predicting the Redshift 2 H-Alpha Luminosity Function Using [OIII] Emission Line Galaxies

    NASA Technical Reports Server (NTRS)

    Mehta, Vihang; Scarlata, Claudia; Colbert, James W.; Dai, Y. S.; Dressler, Alan; Henry, Alaina; Malkan, Matt; Rafelski, Marc; Siana, Brian; Teplitz, Harry I.; Bagley, Micaela; Beck, Melanie; Ross, Nathaniel R.; Rutkowski, Michael; Wang, Yun

    2015-01-01

    Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure Baryonic Acoustic Oscillations (BAOs) in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the WFC3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of H-alpha emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8 - 1.65 micrometers wavelength range and allowing the detection of H-alpha emitters up to z approximately equal to 1.5 and [OIII] emitters to z approximately equal to 2.3. We derive the H-alpha-[OIII] bivariate line luminosity function for WISP galaxies at z approximately equal to 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurement, and demonstrate how it can be used to derive the H-alpha luminosity function from exclusively fitting [OIII] data. Using the z approximately equal to 2 [OIII] line luminosity function, and assuming that the relation between H-alpha and [OIII] luminosity does not change significantly over the redshift range, we predict the H-alpha number counts at z approximately equal to 2 - the upper end of the redshift range of interest for the future surveys. For the redshift range 0.7 less than z less than 2, we expect approximately 3000 galaxies per sq deg for a flux limit of 3 x 10(exp -16) ergs per sec per sq cm (the proposed depth of Euclid galaxy redshift survey) and approximately 20,000 galaxies per sq deg for a flux limit of approximately 10(exp -16) ergs per sec per sq cm (the baseline depth of WFIRST galaxy redshift survey).

  14. Photometric Properties of the Most Massive High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Robertson, Brant; Li, Yuexing; Cox, Thomas J.; Hernquist, Lars; Hopkins, Philip F.

    2007-09-01

    We calculate the observable properties of the most massive high-redshift galaxies in the hierarchical formation scenario where stellar spheroid and supermassive black hole growth are fueled by gas-rich mergers. Combining high-resolution hydrodynamical simulations of the hierarchical formation of a z~6 quasar, stellar population synthesis models, template active galactic nucleus (AGN) spectra, prescriptions for interstellar and intergalactic absorption, and the response of modern telescopes, the photometric evolution of galaxies destined to host z~6 quasars is modeled at redshifts z~4-14. These massive galaxies, with enormous stellar masses of M*~1011.5-1012 Msolar and star formation rates of SFR~103-104 Msolar yr-1 at z>~7, satisfy a variety of photometric selection criteria based on Lyman break techniques, including V-band dropouts at z>~5, i-band dropouts at z>~6, and z-band dropouts at z>~7. The observability of the most massive high-redshift galaxies is assessed and compared with a wide range of existing and proposed photometric surveys, including the Sloan Digital Sky Survey (SDSS), Great Observatories Origins Deep Survey (GOODS)/Hubble Ultra Deep Field (HUDF), National Optical Astronomy Observatory Deep Wide-Field Survey (NDWFS), UKIRT Infared Deep Sky Survey (UKIDSS), Infrared Array Camera (IRAC) Shallow Survey, Ultradeep Visible and Infrared Survey Telescope for Astronomy (VISTA), Dark Universe Explorer (DUNE), Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), Large Synoptic Survey Telescope (LSST), and Supernova/Acceleration Probe (SNAP). Massive stellar spheroids descended from z~6 quasars will likely be detected at z~4 by existing surveys, but owing to their low number densities the discovery of quasar progenitor galaxies at z>7 will likely require future surveys of large portions of the sky (>~0.5%) at wavelengths λ>~1 μm. The detection of rare, starbursting, massive galaxies at redshifts z>~6 would provide support for the

  15. Precision Cosmology with a New Probabilistic Photometric Redshifts Approach

    NASA Astrophysics Data System (ADS)

    Carrasco Kind, Matias; Brunner, R. J.

    2013-06-01

    A complete understanding of both dark energy and dark matter remains one of most important challenges in astrophysics today. Recent theoretical and numerical computations have made important progress in quantifying the role of these dark components on the formation and evolution of galaxies through cosmic time, but observational verification of these predictions and the development of new, more stringent constraints has not kept pace. It is in this context that, photometric redshifts have become more important with the growth of large imaging surveys, such as DES and LSST, that have been designed to address this issue. But their basic implementation has not changed significantly from their original development, as most techniques provide a single photometric redshift estimate and an associated error for the an extragalactic source. In this work, we present a unique and powerful solution that leverages the full information contained in the photometric data to address this cosmological challenge with a new approach that provides accurate photometric redshift probability density functions (PDF) for galaxies. This new approach, which scales efficiently to massive data, efficiently combines standard template fitting techniques with powerful machine learning methods. Included in this framework is our recently developed technique entitled Trees for PhotoZ (TPZ); a new, robust, parallel photometric redshift code that uses prediction trees and random forests to generate photo-z PDFs in a reliable and fast manner. In addition, our approach also provides ancillary information about the internal structure of the data, including the relative importance of variables used during the redshift estimation, an identification of areas in the training sample that provide poor predictions, and an accurate outlier rejection method. We will also present current results of this approach on a variety of datasets and discuss, by using specific examples, how the full photo-z PDF can be

  16. Survey of indoor-air-quality diagnostic and mitigation firms. Final report

    SciTech Connect

    Not Available

    1989-11-01

    The document reports on a survey conducted by the U.S. Environmental Protection Agency (EPA) to help assess the capacity of the private sector to provide services related to the diagnoses and mitigation of indoor air quality problems in residential buildings, public buildings, commercial buildings, and other non-industrial environments. Questionnaires were mailed to approximately 7000 firms who EPA thought were potentially offering such services. The body of the report provides a brief summary of the survey findings. In the appendices, the report provides a copy of the questionnaire, lists the firms alphabetically and by State and city, provides addresses and telephone numbers, summarizes their answers to the questionnaire, and provides brief guidance for those seeking the services of such firms. EPA did not attempt to verify the accuracy of the responses received.

  17. DNF - Galaxy photometric redshift by Directional Neighbourhood Fitting

    NASA Astrophysics Data System (ADS)

    De Vicente, J.; Sánchez, E.; Sevilla-Noarbe, I.

    2016-07-01

    Wide field images taken in several photometric bands allow simultaneous measurement of redshifts for thousands of galaxies. A variety of algorithms to make this measurement have appeared in the last few years, the majority of which can be classified as either template- or training-based methods. Among the latter, nearest neighbour estimators stand out as one of the most successful, in terms of both precision and the quality of error estimation. In this paper we describe the Directional Neighbourhood Fitting (DNF) algorithm based on the following: a new neighbourhood metric (Directional Neighbourhood), a photo-z estimation strategy (Neighbourhood Fitting) and a method for generating the photo-z probability distribution function. We compare DNF with other well-known empirical photometric redshift tools using different public data sets (Sloan Digital Sky Survey, VIMOS VLT Deep Survey and Photo-z Accuracy Testing). DNF achieves high-quality results with reliable error.

  18. Airborne gamma-ray spectrometer and magnetometer survey, New Rockford Quadrangle, North Dakota. Final report

    SciTech Connect

    Not Available

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2/sup 0/ x 1/sup 0/ NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2/sup 0/ x 1/sup 0/ NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the New Rockford map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1397 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  19. Airborne gamma-ray spectrometer and magnetometer survey, Mitchell Quadrangle, South Dakota. Final report

    SciTech Connect

    Not Available

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2/sup 0/ x 1/sup 0/ NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2/sup 0/ x 1/sup 0/ NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the Mitchell map area. The purpose of this program is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1479 line miles are in this quadrangle.

  20. Airborne gamma-ray spectrometer and magnetometer survey: Huron quadrangle, South Dakota. Final report

    SciTech Connect

    Not Available

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2/sup 0/ x 1/sup 0/ NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2/sup 0/ x 1/sup 0/ NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the Huron map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1459 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  1. Modifying gravity at low redshift

    SciTech Connect

    Brax, Philippe; Davis, Anne-Christine; Shaw, Douglas E-mail: c.vandebruck@sheffield.ac.uk E-mail: d.shaw@qmul.ac.uk

    2010-04-01

    We consider the growth of cosmological perturbations in modified gravity models where a scalar field mediates a non-universal Yukawa force between different matter species. The growth of the density contrast is altered for scales below the Compton wave-length of the scalar field. As the universe expands, the Compton wave-length varies in time in such a way that scales which were outside the range of the scalar field force may feel it at a lower redshift. In this case, both the exponent γ measuring the growth of Cold Dark Matter perturbations and the slip function representing the ratio of the two Newtonian potentials ψ and φ may differ from their values in General Relativity at low redshift.

  2. Equivalence Principle and Gravitational Redshift

    SciTech Connect

    Hohensee, Michael A.; Chu, Steven; Mueller, Holger; Peters, Achim

    2011-04-15

    We investigate leading order deviations from general relativity that violate the Einstein equivalence principle in the gravitational standard model extension. We show that redshift experiments based on matter waves and clock comparisons are equivalent to one another. Consideration of torsion balance tests, along with matter-wave, microwave, optical, and Moessbauer clock tests, yields comprehensive limits on spin-independent Einstein equivalence principle-violating standard model extension terms at the 10{sup -6} level.

  3. Reionisation and High-Redshift Galaxies: The View from Quasar Absorption Lines

    NASA Astrophysics Data System (ADS)

    Becker, George D.; Bolton, James S.; Lidz, Adam

    2015-12-01

    Determining when and how the first galaxies reionised the intergalactic medium promises to shed light on both the nature of the first objects and the cosmic history of baryons. Towards this goal, quasar absorption lines play a unique role by probing the properties of diffuse gas on galactic and intergalactic scales. In this review, we examine the multiple ways in which absorption lines trace the connection between galaxies and the intergalactic medium near the reionisation epoch. We first describe how the Ly α forest is used to determine the intensity of the ionising ultraviolet background and the global ionising emissivity budget. Critically, these measurements reflect the escaping ionising radiation from all galaxies, including those too faint to detect directly. We then discuss insights from metal absorption lines into reionisation-era galaxies and their surroundings. Current observations suggest a buildup of metals in the circumgalactic environments of galaxies over z ~ 6 to 5, although changes in ionisation will also affect the evolution of metal line properties. A substantial fraction of metal absorbers at these redshifts may trace relatively low-mass galaxies. Finally, we review constraints from the Ly α forest and quasar near zones on the timing of reionisation. Along with other probes of the high-redshift Universe, absorption line data are consistent with a relatively late end to reionisation (5.5 ≲ z ≲ 7); however, the constraints are still fairly week. Significant progress is expected to come through improved analysis techniques, increases in the number of known high-redshift quasars from optical and infrared sky surveys, large gains in sensitivity from next-generation observing facilities, and synergies with other probes of the reionisation era.

  4. THE GENTLE GROWTH OF GALAXIES AT HIGH REDSHIFTS IN OVERDENSE ENVIRONMENTS

    SciTech Connect

    Romano-Díaz, Emilio; Shlosman, Isaac; Choi, Jun-Hwan; Sadoun, Raphael

    2014-08-01

    We have explored prevailing modes of galaxy growth for redshifts z ∼ 6-14, comparing substantially overdense and normal regions of the universe, using high-resolution zoom-in cosmological simulations. Such rare overdense regions have been projected to host high-z quasars. We demonstrate that galaxies in such environments grow predominantly by a smooth accretion from cosmological filaments which dominates the mass input from major, intermediate, and minor mergers. We find that by z ∼ 6, the accumulated galaxy mass fraction from mergers falls short by a factor of 10 of the cumulative accretion mass for galaxies in the overdense regions, and by a factor of 5 in the normal environments. Moreover, the rate of the stellar mass input from mergers also lies below that of an in situ star formation (SF) rate. The fraction of stellar masses in galaxies contributed by mergers in overdense regions is ∼12%, and ∼33% in the normal regions, at these redshifts. Our median SF rates for ∼few × 10{sup 9} M {sub ☉} galaxies agrees well with the recently estimated rates for z ∼ 7 galaxies from Spitzer's SURF-UP survey. Finally, we find that the main difference between the normal and overdense regions lies in the amplified growth of massive galaxies in massive dark matter halos. This leads to the formation of ≳ 10{sup 10} M {sub ☉} galaxies due to the ∼100 fold increase in mass during the above time period. Such galaxies are basically absent in the normal regions at these redshifts.

  5. The Color Selection of Quasars from Redshifts 5 to 10: Cloning and Discovery

    NASA Astrophysics Data System (ADS)

    Chiu, Kuenley; Zheng, Wei; Schneider, Donald P.; Glazebrook, Karl; Iye, Masanori; Kashikawa, Nobunari; Tsvetanov, Zlatan; Yoshida, Michitoshi; Brinkmann, Jon

    2005-07-01

    We present simulations of quasar colors, magnitudes, and numbers at redshifts 5redshift quasars and the cloning of lower redshift Sloan Digital Sky Survey (SDSS) quasars. The 10 quasars have redshifts ranging from z=4.7 to 5.3 and i magnitudes of 20.21-20.94. The natural diversity of spectral features in the cloned sample allows more realistic simulation of the quasar locus width than was previously possible with synthetic template spectra. Colors are generated for the z>6 epoch, taking advantage of the new UKIRT Infrared Deep Sky Survey near-infrared filter set, and we examine the redshift intervals of maximum productivity, discussing color selection and survey depth issues. On the basis of the SDSS sample, we find that the surface density of z>4.7 quasars increases by a factor of 3 times by extending 0.7 i magnitudes deeper than the SDSS spectroscopic survey limit of i=20.2; correspondingly, we predict a total of ~400 faint quasars in the SDSS main area that have redshift z>4.7 and magnitudes i<20.9.

  6. Close companions to two high-redshift quasars

    SciTech Connect

    McGreer, Ian D.; Fan, Xiaohui; Bian, Fuyan; Strauss, Michael A.; Haiman, Zoltàn; Richards, Gordon T.; Jiang, Linhua; Schneider, Donald P.

    2014-10-01

    We report the serendipitous discoveries of companion galaxies to two high-redshift quasars. SDSS J025617.7+001904 is a z = 4.79 quasar included in our recent survey of faint quasars in the SDSS Stripe 82 region. The initial MMT slit spectroscopy shows excess Lyα emission extending well beyond the quasar's light profile. Further imaging and spectroscopy with LBT/MODS1 confirms the presence of a bright galaxy (i {sub AB} = 23.6) located 2'' (12 kpc projected) from the quasar with strong Lyα emission (EW{sub 0} ≈ 100 Å) at the redshift of the quasar, as well as faint continuum. The second quasar, CFHQS J005006.6+344522 (z = 6.25), is included in our recent HST SNAP survey of z ∼ 6 quasars searching for evidence of gravitational lensing. Deep imaging with ACS and WFC3 confirms an optical dropout ∼4.5 mag fainter than the quasar (Y {sub AB} = 25) at a separation of 0.''9. The red i {sub 775} – Y {sub 105} color of the galaxy and its proximity to the quasar (5 kpc projected if at the quasar redshift) strongly favor an association with the quasar. Although it is much fainter than the quasar, it is remarkably bright when compared to field galaxies at this redshift, while showing no evidence for lensing. Both systems may represent late-stage mergers of two massive galaxies, with the observed light for one dominated by powerful ongoing star formation and for the other by rapid black hole growth. Observations of close companions are rare; if major mergers are primarily responsible for high-redshift quasar fueling then the phase when progenitor galaxies can be observed as bright companions is relatively short.

  7. Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory

    NASA Astrophysics Data System (ADS)

    Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun

    2010-09-01

    We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2% , and the growth-rate parameter by ˜5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.

  8. Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory

    SciTech Connect

    Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun

    2010-09-15

    We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2%, and the growth-rate parameter by {approx}5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.

  9. FINAL REPORT FOR INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE HEMATITE DECOMMISSIONING PROJECT, FESTUS, MISSOURI

    SciTech Connect

    Bailey, Erika N.; Lee, Jason D.

    2012-09-21

    ORAU conducted confirmatory surveys of the Hematite site during the period of June 12 through June 13, 2012. The survey activities included in-process inspections, document review, walkover surveys, sampling activities, and laboratory analysis of split samples. WEC was forthcoming with information relating to practices, procedures, and surface scan results. Scans performed by the WEC technician were extremely thorough and methodical. The WEC and ORAU technicians identified the same areas of elevated activity with comparable detector responses. WEC sampling of re-use soils, waste soils, sediments, and groundwater were conducted under ORAU observation. The sampling efforts observed by ORAU were performed in accordance with site-specific procedures and in a manner sufficient to provide quality supporting data. Three observations were made during groundwater sampling activities. First, the water level indicator was re-used without submitting rinse blank. Second, bubbles created during tubing extraction could indicate the presence of volatilized organic compounds. Third, samplers did not use a photo ionization detector prior to sample collection to indicate the presence of volatile organic vapors. Results of split samples indicated a high level of comparability between the WEC and ORAU/ORISE radiological laboratories. Analytical practices and procedures appear to be sufficient in providing quality radiochemical data. All concentrations from the Soil Re-Use Area and sediment samples are below Uniform radionuclide-specific derived concentration guideline level (DCGL{sub W}) limits; thus, comparisons to the less conservative stratified geometry were not required. Results were compared to individual DCGLs and using the sum of fractions approach. Both composite soil samples collected from the Waste Handling Area (Bins 1 and 4) were well below the prescribed USEI waste acceptance criteria.

  10. Survey of copper in Kings Bay and Cumberland Sound. Final report, 15-23 January 1985

    SciTech Connect

    Lieberman, S.H.; Johnston, R.K.; Bower, D.R.; Inman, S.M.

    1985-10-01

    A multiparameter survey consisting of physical, chemical, and biological measurements was performed to map the copper distribution in Kings Bay and Cumberland Sound, Georgia. The results of this study suggest (1) Kings Bay was probably not a source of elevated copper levels during the study interval, (2) dewatering of the dredge spoil containment area does not appear to be a souce of cooper pollution, and (3) concentrations in the Lower Turning Basin of Kings Bay were slightly higher than levels in the Upper Basin or in Cumberland Sound, suggesting possible input from copper antifouling coatings.

  11. Airborne gamma-ray spectrometer and magnetometer survey: north/south tieline. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted along the 99/sup 0/ longitude meridian from the Canadian border southward to the Mexican border. A total of 1555 line miles of geophysical data were acquired and, subsequently, compiled. The north-south tieline was flown as part of the National Uranium Resources Evaluation. NURE is a program of the US Department of Energy's Grand Junction, Colorado, office to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  12. Final Report - Partial Support of the Survey of Gradudate Students and Posdoctorates in Science and Engineering

    SciTech Connect

    Mulrow, Jeri

    2000-09-01

    Federally Funded Research and Development Centers (FFRDCs) are organizations that perform research and development and are exclusively or substantially financed by the federal government and are supported by the federal government either to meet a particular R&D objective or, in some instances, to provide major facilities at universities for research and associated training purposes. Many FFRDCs employ postdoctoral researchers (postdocs). The 2009 FFRDC survey collected the total number of postdocs employed by FFRDCs in the United States--categorized by source of support, citizenship, sex, and field of research--as of October 1, 2009.

  13. NURE aerial gamma ray and magnetic detail survey of portions of northeast Washington. Final report

    SciTech Connect

    Not Available

    1981-11-01

    The Northeast Washington Survey was performed under the United States Department of Energy's National Uranium Resource Evaluation (NURE) Program, which is designed to provide radioelement distribution information to assist in assessing the uraniferous material potential of the United States. The radiometric and ancilliary data were digitally recorded and processed. The results are presented in the form of stacked profiles, contour maps, flight path maps, statistical tables and frequency distribution histograms. These graphical outputs are presented at a scale of 1:62,500 and are contained in the individual Volume 2 reports.

  14. New York Harbor water quality survey, 1994. (Includes appendices). Final report

    SciTech Connect

    Brosnan, T.M.; O`Shea, M.L.

    1995-11-15

    This summary presents the results of the 1994 survey, followed by a synopsis of recent changes to pollutant loads from NYC facilities. In general, conventional water quality, as indicated by coliform bacterica and DO levels, continues to improve in most areas of NY Harbor. However, violations of the `never less than` DO standards, although improved, are still occasionally recorded at 50-75% of all stations in summer. Therefore, loadings of nutrients and organic carbon, and changes in water column stratification and flushing rate, remain a concern, as does the appropriateness of the current `never the less` DO standards.

  15. New York Harbor water quality survey, 1994. Executive summary. Final report

    SciTech Connect

    Brosnan, T.M.; O`Shea, M.L.

    1995-10-24

    This summary presents the results of the 1994 survey, followed by a synopsis of recent changes to pollutant loads from NYC facilities. In general, conventional water quality, as indicated by coliform bacterica and DO levels, continues to improve in most areas of NY Harbor. However, violations of the `never less than` DO standards, although improved, are still occasionally recorded at 50-75% of all stations in summer. Therefore, loadings of nutrients and organic carbon, and changes in water column stratification and flushing rate, remain a concern, as does the appropriateness of the current `never the less` DO standards.

  16. Tracing quasar narrow-line regions across redshift: a library of high-S/N optical spectra

    NASA Astrophysics Data System (ADS)

    Tammour, A.; Gallagher, S. C.; Richards, Gordon

    2015-04-01

    In a single optical spectrum, the quasar narrow-line region (NLR) reveals low-density, photoionized gas in the host galaxy interstellar medium (ISM), while the immediate vicinity of the central engine generates the accretion disc continuum and broad emission lines. To isolate these two components, we construct a library of high-S/N optical composite spectra created from the Sloan Digital Sky Survey Data Release 7. We divide the sample into bins of continuum luminosity and Hβ full width at half-maximum that are used to construct median composites at different redshift steps up to 0.75. We measure the luminosities of the narrow-emission lines [Ne V] λ3427, [Ne III] λ3870, [O III] λ5007, and [O II] λ3728 with ionization potentials (IPs) of 97, 40, 35, and 13.6 eV, respectively. The high IP lines' luminosities show no evidence of increase with redshift consistent with no evolution in the AGN spectral energy distribution or the host galaxy ISM illuminated by the continuum. In contrast, we find that the [O II] line becomes stronger at higher redshifts, and we interpret this as a consequence of enhanced star formation contributing to the [O II] emission in host galaxies at higher redshifts. The SFRs estimated from the [O II] luminosities show a flatter increase with z than non-AGN galaxies given our assumed AGN contribution to the [O II] luminosity. Finally, we confirm an inverse correlation between the strength of the Fe II λ4570 complex and both the [O III] equivalent width (though not the luminosity) and the width of the Hβ line as known from the eigenvector 1 correlations.

  17. Airborne gamma-ray spectrometer and magnetometer survey: Susanville quadrangle, California. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Susanville, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1642.8 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  18. Airborne gamma-ray spectrometer and magnetometer survey: Ukiah quadrangle, California. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Ukiah, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1517 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  19. Aerial radiometric and magnetic survey: San Antonio National Topographic Map, Texas. Final report

    SciTech Connect

    Not Available

    1980-05-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the San Antonio National Topographic Map NH14-8 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium, and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.

  20. State Geological Survey Contributions to the National Geothermal Data System- Final Technical Report

    SciTech Connect

    Allison, M. Lee; Richard, Stephen M.

    2015-03-13

    The State Geological Survey Contributions to the National Geothermal Data System project is built on the work of the project managed by Boise State University to design and build the National Geothermal Data System, by deploying it nationwide and populating it with data principally from State Geological Surveys through collaboration with the Association of American State Geologists (AASG). This project subsequently incorporated the results of the design-build and other DOE-funded projects in support of the NGDS. The NGDS (www.geothermaldata.org) provides free open access to millions of data records, images, maps, and reports, sharing relevant geoscience, production, and land use data in 30+ categories to propel geothermal development and production in the U.S. NGDS currently serves information gathered from hundreds of the U.S. Department of Energy sponsored development and research projects and geologic data feeds from 60+ data providers throughout all 50 states. These data are relevant to geothermal energy exploration and development, but also have broad applicability in other areas including natural resources (e.g., energy, minerals, water), natural hazards, and land use and management.

  1. Aerial radiometric and magnetic survey, San Angelo National Topographic Map: Texas, West Texas Project. Final report

    SciTech Connect

    Not Available

    1980-05-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the San Angelo National Topographic Map NH14-1 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium, and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included.

  2. Aerial radiometric and magnetic survey: Perryton National Topographic Map, Texas/Oklahoma/Kansas. Final report

    SciTech Connect

    Not Available

    1980-05-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the Perryton National Topographic Map NJ14-10 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.

  3. Airborne gamma-ray spectrometer and magnetometer survey: Chico quadrangle, California. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Chico, California, map area. Traverse lines were flown in an east-west direction at a line spacing of three. Tie lines were flown north-south approximately twelve miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 3026.4 line miles are in the quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  4. Airborne gamma-ray spectrometer and magnetometer survey: Alturas quadrangle, California. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Alturas, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1631.6 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  5. A survey of daily asthmatic activity patterns in Cincinnati. Final report

    SciTech Connect

    Not Available

    1992-11-01

    A survey was undertaken in Cincinnati to obtain information on the activity patterns of asthmatics. Because studies have demonstrated symptomatic responses to elevated levels of SO{sub 2} only during outdoor exercise, information on the behavioral patterns of asthmatics is vital for the accurate estimation of risk due to air pollution exposures. In particular, data detailing the actual likelihood of asthmatics being engaged in strenuous outdoor activity at any given time of day is essential for an accurate appraisal of response probability. This, in turn, is necessary for an accurate estimate of risk. In the absence of such activity data, those concerned with the setting of short-term SO{sub 2} regulations are required to use purely subjective judgment to estimate how many asthmatics are engaged in strenuous outdoor exercise when SO{sub 2} levels are high enough to affect them. The activity pattern data give an indication of how much such an assumption would overestimate the true response and thus the true risk associated with SO{sub 2}. Lack of information on the activity patterns of asthmatics has thus been a critical gap in the SO{sub 2} risk assessment process. The primary purpose of this survey was to fill that gap.

  6. Airborne gamma-ray spectrometer and magnetometer survey, Medford Quadrangle Oregon. Final report

    SciTech Connect

    Not Available

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and mag