Sample records for survival tips based

  1. Transjugular Intrahepatic Porto-Systemic Shunt in Patients with Liver Cirrhosis and Model for End-Stage Liver Disease ≥15.

    PubMed

    Ascha, Mona; Hanouneh, Mohamad; S Ascha, Mustafa; Zein, Nizar N; Sands, Mark; Lopez, Rocio; Hanouneh, Ibrahim A

    2017-02-01

    It is not known whether transjugular intrahepatic porto-systemic shunt (TIPS) is safe in patients with advanced liver cirrhosis. The aim of our study was to evaluate the impact of TIPS on transplant-free survival in patients with liver cirrhosis and MELD score ≥15. All adult patients who underwent TIPS at our institution between 2004 and 2011 were identified (N = 470). A total of 144 patients had MELD ≥15 at the time of TIPS. These patients were matched 1:1 to patients with liver cirrhosis who did not undergo TIPS based on age and MELD score using the greedy algorithm. Patients were followed up until time of death or liver transplantation. Kaplan-Meier curves and log-rank tests were used to test for differences in survival outcome between the two groups. A total of 288 patients with liver cirrhosis were included, of whom 144 underwent TIPS and 144 did not. The two groups were matched based on age and MELD score and were comparable with regard to gender and ethnicity. Mean MELD and Child-Pugh scores in the study population were 20.9 ± 6.5 and 10.5 ± 1.8, respectively. The most common indication for TIPS was varices (49 %), followed by refractory ascites (42 %). In the first 2 months post-TIPS, there was increased mortality or liver transplantation in patients who had TIPS compared to those who did not, but this did not reach statistical significance (p = 0.07). However, after 2 months, TIPS is associated with 56 % lower risk of dying or needing liver transplantation (p < 0.01) than cirrhotic patients who did not undergo TIPS. In patients with liver cirrhosis and MELD ≥15, TIPS might improve transplant-free survival for patients who live for at least 2 months after the procedure.

  2. Improved recovery of cryotherapy-treated shoot tips following thermotherapy of in vitro-grown stock shoots of raspberry (Rubus idaeus L.).

    PubMed

    Wang, Qiaochun; Valkonen, Jari P T

    2009-01-01

    Raspberry bushy dwarf virus (RBDV) can be efficiently eradicated from raspberry plants (Rubus idaeus) by a procedure combining thermotherapy and cryotherapy. However, the bottleneck of this procedure is that, following thermotherapy, cryopreserved shoot tips become chlorotic during regrowth and eventually die after several subcultures. In addition, survival of heat-treated stock shoots and recovery of cryopreserved shoot tips following thermotherapy are low. The present study focused towards improving regrowth of cryopreserved raspberry shoot tips following thermotherapy. Results showed that preconditioning stock shoots with salicylic acid (SA; 0.01-0.1 mM) markedly increased survival of stock shoots after 4 weeks of thermotherapy. Regrowth of cryopreserved shoot tips following thermotherapy was also significantly enhanced when SA (0.05-0.1 mM) was used for preconditioning stock shoots. Addition of either Fe-ethylenediaminetetracetic acid (Fe-EDTA, 50 mg per L) or Fe-ethylenediaminedi(o)hydroxyphenylacetic acid (Fe-EDDHA, 50 mg per L) to post-culture medium strongly promoted regrowth and totally prevented chlorosis of shoots regenerated from cryopreserved shoot tips following thermotherapy. Using the parameters optimized in the present study, about 80 percent survival of heat-treated stock shoots and about 33 percent regrowth of cryopreserved shoot tips following thermotherapy were obtained. Morphology of plants regenerated from cryopreserved shoot tips following thermotherapy was identical to that of control plants, based on observations of leaf shape and size, internode length and plant height. Optimization of the thermotherapy procedure followed by cryotherapy will facilitate the wider application of this technique to eliminate viruses which can invade meristems.

  3. Long-term benefits to the growth of ponderosa pines from controlling southwestern pine tip moth (Lepidoptera: Tortricidae) and weeds.

    PubMed

    Wagner, Michael R; Chen, Zhong

    2004-12-01

    The southwestern pine tip moth, Rhyacionia neomexicana (Dyar) (Lepidoptera: Tortricidae), is a native forest pest that attacks seedlings and saplings of ponderosa pine, Pinus ponderosa Dougl. ex Laws, in the southwestern United States. Repeated attacks can cause severe deformation of host trees and significant long-term growth loss. Alternatively, effective control of R. neomexicana, vegetative competition, or both in young pine plantations may increase survival and growth of trees for many years after treatments are applied. We test the null hypothesis that 4 yr of R. neomexicana and weed control with insecticide, weeding, and insecticide plus weeding would not have any residual effect on survival and growth of trees in ponderosa pine plantation in northern Arizona 14 yr post-treatment, when the trees were 18 yr old. Both insecticide and weeding treatment increased tree growth and reduced the incidence of southwestern pine tip moth damage compared with the control. However, weeding alone also significantly increased tree survival, whereas insecticide alone did not. The insecticide plus weeding treatment had the greatest tree growth and survival, and the lowest rate of tip moth damage. Based on these results, we rejected our null hypothesis and concluded that there were detectable increases in the survival and growth of ponderosa pines 14 yr after treatments applied to control R. neomexicana and weeds.

  4. Genetic stability assessment of wWasabi plants regenerated from long-term cryopreserved shoot tips using morphological, biochemical and molecular analysis.

    PubMed

    Matsumoto, Toshikazu; Akihiro, Takashi; Maki, Shinya; Mochida, Kouhei; Kitagawa, Masaru; Tanaka, Daisuke; Yamamoto, Shin-Ichi; Niino, Takao

    2013-01-01

    This study compared the effect of cryopreserved storage duration of wasabi shoot tips, which derived from the same in vitro mother-plant. We compared the survival of shoot tips and the genetic stability of regenerated plants originating from four experimental groups: shoot tips stored in a -150°C deep-freezer for 10 years; shoot tips stored in liquid nitrogen for 2 h; shoot tips treated with PVS2 vitrification solution; and untreated controls. No significant difference in survival was observed between the four experimental groups. Survival ranged between 93 and 100%. Genetic stability of plants regenerated from cryopreserved shoot tips was assessed over a period of 24 months using morphological, biochemical and molecular markers. While glucose, fructose and glutamic acid concentrations differed slightly between experimental groups after 16 months, these differences disappeared after 24 months. No significant differences were noted for the morphological markers studied (petiole length, shoot number and leaf index). No differences were observed in RAPD profiles obtained with the six primers tested.

  5. Predictors of Shunt Dysfunction and Overall Survival in Patients with Variceal Bleeding Treated with Transjugular Portosystemic Shunt Creation Using the Fluency Stent Graft.

    PubMed

    Wan, Yue-Meng; Li, Yu-Hua; Xu, Ying; Wu, Hua-Mei; Li, Ying-Chun; Wu, Xi-Nan; Yang, Jin-Hui

    2018-01-16

    Transjugular intrahepatic portosystemic shunt (TIPS) is an established method for portal hypertension. This study was to investigate the long-term safety, technical success, and patency of TIPS, and to determine the risk factors and clinical impacts of shunt dysfunction. A total of 154 consecutive patients undergoing embolotherapy of gastric coronary vein and/or short gastric vein and TIPS creation were prospectively studied. Follow-up data included technical success, patency and revision of TIPS, and overall survival of patients. During the study, the primary and secondary technical success rates were 98.7% and 100%, respectively. Sixty-three patients developed shunt dysfunction, 30 with shunt stenosis and 33 with shunt occlusion. The cumulative 60-month primary, primary assisted, and secondary patency rates were 19.6%, 43.0%, and 93.4%, respectively. The cumulative 60-month overall survival rates were similar between the TIPS dysfunction group and the TIPS non-dysfunction group (68.6% vs. 58.6%, P = .096). Baseline portal vein thrombosis (P < .001), use of bare stents (P = .018), and portal pressure gradient (PPG) (P = .020) were independent predictors for shunt dysfunction, hepatocellular carcinoma (P < .001), and ascites (P = .003) for overall survival. The accuracy of PPG for shunt dysfunction was statistically significant (P < .001), and a cutoff value of 8.5 had 77.8% sensitivity and 64.8% specificity. The long-term safety, technical success, and patency of TIPS were good; baseline portal vein thrombosis, use of bare stents, and PPG were significantly associated with shunt dysfunction; shunt dysfunction has little impact on patients' long-term survival because of high secondary patency rates. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  6. Transjugular intrahepatic portosystemic shunt creation for cirrhotic portal hypertension is well tolerated among patients with portal vein thrombosis.

    PubMed

    Merola, Jonathan; Fortune, Brett E; Deng, Yanhong; Ciarleglio, Maria; Amirbekian, Smbat; Chaudhary, Noami; Shanbhogue, Alampady; Ayyagari, Rajasekhara; Rodriguez-Davalos, Manuel I; Teperman, Lewis; Charles, Hearns W; Sigal, Samuel H

    2018-06-01

    Portal vein thrombosis (PVT) develops in cirrhotic patients because of stagnation of blood flow. Transjugular intrahepatic portosystemic shunt (TIPS) creates a low-resistance conduit that restores portal venous patency and blood flow. The effect of PVT on transplant-free survival in cirrhotic patients undergoing TIPS creation was evaluated. A multicenter, retrospective cohort study of patients who underwent TIPS creation for cirrhotic portal hypertension was carried out. A Cox model with propensity score adjustment was developed to evaluate the effect of PVT on 90-day and 3-year transplant-free survival. A subgroup analysis examining mortality of those with superior and inferior PVT was also carried out. A total of 252 consecutive TIPS creations were assessed, including 65 in patients with PVT. Survival of patients with high Model for End-stage Liver Disease scores (≥18) and PVT was not statistically different compared with patients with low Model for End-stage Liver Disease scores (<18) and no PVT at 90 days (P=0.46) and 3 years (P=0.42). Those with superior PVT had improved 90-day and 3-year survival both compared with patients with a inferior PVT and those without a PVT (P<0.01, all cases). The presence of PVT does not impair the prognosis of patients following TIPS creation, particularly in patients with superior portal occlusion.

  7. Recovery patterns, histological observations and genetic integrity in Malus shoot tips cryopreserved using droplet-vitrification and encapsulation-dehydration procedures.

    PubMed

    Li, Bai-Quan; Feng, Chao-Hong; Wang, Min-Rui; Hu, Ling-Yun; Volk, Gayle; Wang, Qiao-Chun

    2015-11-20

    A droplet-vitrification procedure is described for cryopreservation of Malus shoot tips. Survival patterns, recovery types, histological observations, and genetic integrity were compared for Malus shoot tips cryopreserved using this droplet-vitrification procedure and an encapsulation-dehydration procedure that was previously reported by us. In both procedures, three types of shoot tip recovery were observed following cryopreservation: callus formation without shoot regrowth, leaf formation without shoot regrowth, and shoot regrowth. Three categories of histological observations were also identified in cross-sections of shoot tips recovered after cryopreservation using the two cryogenic procedures. In category 1, almost all of the cells (94-95%) in the apical dome (AD) were damaged or killed and only some cells (30-32%) in the leaf primordia (LPs) survived. In category 2, only a few cells (18-20%) in the AD and some cells (30-31%) in the LPs survived. In category 3, majority of the cells (60-62%) in the AD and some cells (30-33%) in the LPs survived. These data suggest that shoot regrowth is correlated to the presence of a majority of surviving cells in the AD after liquid nitrogen exposure. No polymorphic bands were detected by inter-simple sequence repeats or by random amplified polymorphic DNA assessments, and ploidy levels analyzed by flow cytometry were unchanged when plants recovered after cryoexposure were compared to controls. The droplet-vitrification procedure appears to be robust since seven genotypes representing four Malus species and one hybrid recovered shoots following cryopreservation. Mean shoot regrowth levels of these seven genotypes were 48% in the droplet-vitrification method, which were lower than those (61%) in the encapsulation-dehydration procedure reported in our previous study, suggesting the latter may be preferred for routine cryobanking applications for Malus shoot tips. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Recovery patterns, histological observations and genetic integrity in Malus shoot tips cryopreserved using droplet vitrification and encapsulation-dehydration procedures

    USDA-ARS?s Scientific Manuscript database

    A droplet-vitrification procedure is described for cryopreservation of Malus shoot tips. Survival patterns, recovery types, histological observations, and genetic integrity were compared for Malus shoot tips cryopreserved using this droplet-vitrification procedure and an encapsulation-dehydration pr...

  9. Circulating Elastin Fragments Are Not Affected by Hepatic, Renal and Hemodynamic Changes, But Reflect Survival in Cirrhosis with TIPS.

    PubMed

    Nielsen, M J; Lehmann, J; Leeming, D J; Schierwagen, R; Klein, S; Jansen, C; Strassburg, C P; Bendtsen, F; Møller, S; Sauerbruch, T; Karsdal, M A; Krag, A; Trebicka, J

    2015-11-01

    Progressive fibrosis increases hepatic resistance and causes portal hypertension with complications. During progressive fibrosis remodeling and deposition of collagens and elastin occur. Elastin remodeling is crucially involved in fibrosis progression in animal models and human data. This study investigated the association of circulating elastin with the clinical outcome in cirrhotic patients with severe portal hypertension receiving transjugular intrahepatic porto-systemic shunt (TIPS). We analyzed portal and hepatic venous samples of 110 cirrhotic patients obtained at TIPS insertion and 2 weeks later. The circulating levels of elastin fragments (ELM) were determined using specific monoclonal ELISA. The relationship of ELM with clinical short-time follow-up and long-term outcome was investigated. Circulating levels of ELM showed a gradient across the liver before TIPS with higher levels in the hepatic vein. Interestingly, the circulating ELM levels remained unchanged after TIPS. The circulating levels of ELM in portal and hepatic veins correlated with platelet counts and inversely with serum sodium. Hepatic venous levels of ELM were higher in CHILD C compared to CHILD A and B and were associated with the presence of ascites. Patients with high levels of ELM in the hepatic veins before TIPS showed poorer survival. In multivariate analysis ELM levels in the hepatic veins and MELD were independent predictors of mortality in these patients. This study demonstrated that circulating levels of ELM are not associated with hemodynamic changes, but might reflect fibrosis remodeling and predict survival in patients with severe portal hypertension receiving TIPS independently of MELD.

  10. An Approach to Endovascular and Percutaneous Management of Transjugular Intrahepatic Portosystemic Shunt (TIPS) Dysfunction: A Pictorial Essay and Clinical Practice Algorithm.

    PubMed

    Pereira, Keith; Baker, Reginald; Salsamendi, Jason; Doshi, Mehul; Kably, Issam; Bhatia, Shivank

    2016-05-01

    Transjugular intrahepatic portosystemic shunts (TIPS) have evolved as an effective and durable nonsurgical option in the treatment of portal hypertension (PH). It has been shown to improve survival in decompensated cirrhosis and may also serve as a bridge to liver transplantation. In spite of the technical improvements in the procedure, problems occur with the shunt which jeopardizes effective treatment of the PH. Appropriate management is vital to ensure the longevity of the conduit. Shunt revision techniques include endovascular revision techniques and new shunt creation or, in the appropriate patients, alternative/rescue therapies. The ability of interventional radiologists to restore adequate TIPS function has enormous implications for quality of life with palliation, morbidity/mortality related to variceal bleeding and survival if transplant candidates can live long enough to receive a new liver. As such, it is imperative that these treatment strategies are understood and employed when these patients are encountered. In this review, the restoration of appropriate shunt function using various techniques will be discussed as they apply to a variety of clinical scenarios, based on literature. In addition, illustrative case examples highlighting our experience at an academic tertiary medical center will be included. It is the intent to have this document serve as a concise and informative reference to be used by those who may encounter patients with suboptimal functioning TIPS.

  11. LONG-TERM PRECONDITIONING OF PLANTLETS: A PRACTICAL METHOD FOR ENHANCING SURVIVAL OF PINEAPPLE (Ananas comosus Merr.) SHOOT TIPS CRYOPRESERVED USING VITRIFICATION.

    PubMed

    Hu, W H; Liu, S F; Liaw, S I

    2015-01-01

    The purpose of this study was to develop an efficient cryopreservation protocol for pineapple (Ananas comosus Merr.) shoot tips. The optimal state of pineapple plantlets was investigated by using sucrose preconditioning to enhance survival after cryostorage. To achieve a suitable state of plantlets before cryopreservation, 0.2 M to 0.4 M sucrose concentrations combined with short- (0-7 days), medium- (15-30 days), and long-term (75-150 days) preconditioning periods were compared. The highest survival (100 %) was achieved using the following procedure: intact plantlets underwent long-term preconditioning with 0.2 M sucrose for 135 days, dissected shoot tips were treated with a loading solution containing 2.0 M glycerol + 0.4 M sucrose for 60 min at 25 degree and the shoot tips were dehydrated in PVS2 for 2h at 0 degree C before being plunged in liquid nitrogen. Rewarming was conducted in a water-bath for 30 s at 40 degree C and PVS2 was replaced with a 1.2 M sucrose solution for 30 min at 25 degree C. The shoot tips were transferred on semisolid medium and left in the dark for 1 week, then in dim light for 3 weeks.

  12. Vitrification-based cryopreservation of shoot-tips of Pinus kesiya Royle ex. Gord.

    PubMed

    Kalita, V; Choudhury, H; Kumaria, S; Tandon, P

    2012-01-01

    The present investigation was aimed at developing a protocol for long-term preservation of germplasm of Pinus kesiya Royle ex. Gord. through vitrification. Some of the critical components affecting explant tolerance to cryopreservation, such as effects of preculture, vitrification solutions, exposure time to vitrification solutions, volume of vitrification solution and its toxicity, washing of vitrified tissues after thawing, were analysed. The results showed that shoot regrowth of P. kesiya shoot-tips was considerably affected when exposed to cryoprotectants for longer periods of time (longer than 10 min). Among different vitrification solutions studied, maximum survival (76 percent) of shoot-tips was achieved with mVSL (using 0.6 ml of the solution) in MS basal medium containing 4.0 mg l-1 N6-benzyladenine (BA).

  13. Eating Well While Eating Out

    MedlinePlus

    ... stuff, like caffeine. Tips for Eating at a Restaurant Most restaurant portions are way larger than the average serving ... of your dish home. Here are some other restaurant survival tips: Ask for sauces and salad dressings ...

  14. The Evolution of Transjugular Intrahepatic Portosystemic Shunt: Tips

    PubMed Central

    Fanelli, Fabrizio

    2014-01-01

    Since Richter's description in the literature in 1989 of the first procedure on human patients, transjugular intrahepatic portosystemic shunt (TIPS) has been worldwide considered as a noninvasive technique to manage portal hypertension complications. TIPS succeeds in lowering the hepatic sinusoidal pressure and in increasing the circulatory flow, thus reducing sodium retention, ascites recurrence, and variceal bleeding. Required several revisions of the shunt TIPS can be performed in case of different conditions such as hepatorenal syndrome, hepatichydrothorax, portal vein thrombosis, and Budd-Chiari syndrome. Most of the previous studies on TIPS procedure were based on the use of bare stents and most patients chose TIPS 2-3 years after traditional treatment, thus making TIPS appear to be not superior to endoscopy in survival rates. Bare stents were associated with higher incidence of shunt failure and consequently patients required several revisions during the follow-up. With the introduction of a dedicated e-PTFE covered stent-graft, these problems were completely solved, No more reinterventions are required with a tremendous improvement of patient's quality of life. One of the main drawbacks of the use of e-PTFE covered stent-graft is higher incidence of hepatic encephalopathy. In those cases refractory to the conventional medical therapy, a shunt reduction must be performed. PMID:27335841

  15. Fifty-three years' experience with randomized clinical trials of emergency portacaval shunt for bleeding esophageal varices in Cirrhosis: 1958-2011.

    PubMed

    Orloff, Marshall J

    2014-02-01

    Emergency treatment of bleeding esophageal varices (BEV) consists mainly of endoscopic and pharmacologic measures, with transjugular intrahepatic portal-systemic shunt (TIPS) performed when bleeding is not controlled. Surgical shunt has been relegated to salvage. At the University of California, San Diego, Medical Center, our group has conducted 10 studies of emergency portacaval shunt (EPCS) during 46 years. To describe 2 randomized clinical trials (RCTs) conducted from 1988 to 2011 in unselected consecutive patients who received emergency treatment for BEV. In RCT No. 1, a total of 211 unselected consecutive patients with cirrhosis and acute BEV were randomized to emergency endoscopic sclerotherapy (EEST) (n=106) or EPCS (n=105). In RCT No. 2, a total of 154 unselected consecutive patients with cirrhosis and acute BEV were randomized to TIPS (n=78) or EPCS (n=76). Diagnostic workup was completed within 6 hours of initial contact, and primary treatment was initiated within 8 to 12 hours. Regular follow-up for up to 10 years was accomplished in 100% of the patients. In RCT No. 1, EEST or EPCS; in RCT No. 2, TIPS or EPCS. The 2 groups were compared with regard to survival, control of bleeding, portal-systemic encephalopathy, and direct cost of care. RESULTS Distribution in Child risk classes was almost identical. One-third of patients were in Child class C. Permanent control of bleeding was achieved by EEST in only 20% of the patients and by TIPS in only 22%. In contrast, EPCS permanently controlled bleeding in 97% and 100% of the patients in RCT No. 2 and RCT No. 1, respectively (P<.001). Survival was significantly greater following EPCS than after EEST and TIPS (P<.001). Median survival was more than 10 years following EPCS compared with 1.99 years after TIPS. Occlusion of TIPS was demonstrated in 84% of the patients, 63% of whom underwent TIPS revision, which failed in 80% of the cases. Recurrent portal-systemic encephalopathy developed in 35% of the patients who underwent EEST and 61% of those who received TIPS. In contrast, portal-systemic encephalopathy occurred in 15% of the patients who received EPCS in RCT No. 1 and 21% of those in RCT No. 2. Direct costs of care were 5 to 7 times greater in the EEST ($168100) and TIPS ($264800) groups than in the EPCS ($39000) group (P<.001). Emergency portacaval shunt permanently stopped variceal bleeding, almost never became occluded, accomplished 5 times the long-term survival than EEST or TIPS, and was much less costly than EEST or TIPS. The widespread practice of using EPCS mainly as salvage for failure of endoscopic therapy or TIPS is not supported by the definitive results of these long-term RCTs in unselected patients with cirrhosis. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00690027 and NCT00734227.

  16. Family Caregivers and Transportation: A Few Survival Tips (Healthy Living Tips)

    MedlinePlus

    ... Plan ahead and allow plenty of time. • Show empathy and caring to your loved one. • Avoid rush ... INFORMATION ABOUT AOA U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES, ADMINISTRATION ON AGING, WASHINGTON, D.C. 20201 ...

  17. Characterization of liver function parameter alterations after transjugular intrahepatic portosystemic shunt creation and association with early mortality.

    PubMed

    Casadaban, Leigh C; Parvinian, Ahmad; Couture, Patrick M; Minocha, Jeet; Knuttinen, M Grace; Bui, James T; Gaba, Ron C

    2014-12-01

    The purpose of this article is to characterize the temporal evolution and clinical impact of laboratory liver function parameters after transjugular intrahepatic portosystemic shunt (TIPS) creation. In this single-institution retrospective study, 157 patients (98 men and 59 women; median age, 55 years) underwent TIPS between 2000 and 2012 and had 1-month hepatobiliary laboratory follow-up. Medical record review was used to compare baseline, peak, and low bilirubin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase, and international normalized ratio (INR) levels within 30 days after TIPS in surviving and dying patients to assess laboratory responses to shunt creation. TIPSs were created with a hemodynamic success rate of 98%, with median pressure gradient reduction of 13 mm Hg. Ninety-day mortality was 21%. Hepatobiliary laboratory values showed significant increases in the days after TIPS compared with baseline levels (bilirubin, 1.6 vs 3.5 mg/dL; AST, 49 vs 149 U/L; ALT, 26 vs 90 U/L; alkaline phosphatase, 97 vs 177 U/L; and INR, 1.5 vs 2.0; p<0.05 in all cases). Patients surviving to 90 days experienced statistically significant but transient laboratory value elevations-up to twofold over baseline-within days of TIPS, whereas patients dying within 90 days experienced three-to fourfold increases over a longer period that did not return to baseline. Differences in laboratory evolution were statistically significant in surviving versus dying patients. TIPS results in acute transient elevation of hepatobiliary enzymes, which may be more pronounced in patients with early mortality. An exaggerated laboratory elevation in excess of threefold greater than baseline or a prolonged increase exceeding 1 week may herald poorer clinical outcome.

  18. [Early transjugular intrahepatic portosystemic shunt: When, how and in whom?].

    PubMed

    Ruiz-Blard, Esteban; Baiges, Anna; Turon, Fanny; Hernández-Gea, Virginia; García-Pagán, Juan Carlos

    2016-01-01

    Early TIPS is basically a new application of an old concept. This intervention used to be a useful rescue therapy when other interventions failed but has now become a primary intervention in patients with variceal bleeding and risk factors for poor prognosis. This technique has also been proven to control bleeding and has a definite survival advantage at 6 weeks and 1 year over standard therapy with vasoactive drugs and endoscopy, without increasing the rate of adverse events. In well-trained hands and with appropriate candidate selection, early TIPS is a safe, life-saving and evidenced-based procedure. Copyright © 2015 Elsevier España, S.L.U. y AEEH y AEG. All rights reserved.

  19. Paclitaxel, Ifosfamide, and Cisplatin Efficacy for First-Line Treatment of Patients With Intermediate- or Poor-Risk Germ Cell Tumors

    PubMed Central

    Hu, James; Dorff, Tanya B.; Lim, Kristina; Patil, Sujata; Woo, Kaitlin M.; Carousso, Maryann; Hughes, Amanda; Sheinfeld, Joel; Bains, Manjit; Daneshmand, Siamak; Ketchens, Charlene; Bajorin, Dean F.; Bosl, George J.; Quinn, David I.; Motzer, Robert J.

    2016-01-01

    Purpose Paclitaxel, ifosfamide, and cisplatin (TIP) achieved complete responses (CRs) in two thirds of patients with advanced germ cell tumors (GCTs) who relapsed after first-line chemotherapy with cisplatin and etoposide with or without bleomycin. We tested the efficacy of first-line TIP in patients with intermediate- or poor-risk disease. Patients and Methods In this prospective, multicenter, single-arm phase II trial, previously untreated patients with International Germ Cell Cancer Collaborative Group poor-risk or modified intermediate-risk GCTs received four cycles of TIP (paclitaxel 240 mg/m2 over 2 days, ifosfamide 6 g/m2 over 5 days with mesna support, and cisplatin 100 mg/m2 over 5 days) once every 3 weeks with granulocyte colony-stimulating factor support. The primary end point was the CR rate. Results Of the first 41 evaluable patients, 28 (68%) achieved a CR, meeting the primary efficacy end point. After additional accrual on an extension phase, total enrollment was 60 patients, including 40 (67%) with poor risk and 20 (33%) with intermediate risk. Thirty-eight (68%) of 56 evaluable patients achieved a CR and seven (13%) achieved partial responses with negative markers (PR-negative) for a favorable response rate of 80%. Five of seven achieving PR-negative status had seminoma and therefore did not undergo postchemotherapy resection of residual masses. Estimated 3-year progression-free survival and overall survival rates were 72% (poor risk, 63%; intermediate risk, 90%) and 91% (poor risk, 87%; intermediate risk, 100%), respectively. Grade 3 to 4 toxicities consisted primarily of reversible hematologic or electrolyte abnormalities, including neutropenic fever in 18%. Conclusion TIP demonstrated efficacy as first-line therapy for intermediate- and poor-risk GCTs with an acceptable safety profile. Given higher rates of favorable response, progression-free survival, and overall survival compared with prior first-line studies, TIP warrants further study in this population. PMID:27185842

  20. An Approach to Endovascular and Percutaneous Management of Transjugular Intrahepatic Portosystemic Shunt (TIPS) Dysfunction: A Pictorial Essay and Clinical Practice Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Keith, E-mail: keithjppereira@gmail.com; Baker, Reginald, E-mail: rbaker@med.miami.edu; Salsamendi, Jason

    Transjugular intrahepatic portosystemic shunts (TIPS) have evolved as an effective and durable nonsurgical option in the treatment of portal hypertension (PH). It has been shown to improve survival in decompensated cirrhosis and may also serve as a bridge to liver transplantation. In spite of the technical improvements in the procedure, problems occur with the shunt which jeopardizes effective treatment of the PH. Appropriate management is vital to ensure the longevity of the conduit. Shunt revision techniques include endovascular revision techniques and new shunt creation or, in the appropriate patients, alternative/rescue therapies. The ability of interventional radiologists to restore adequate TIPSmore » function has enormous implications for quality of life with palliation, morbidity/mortality related to variceal bleeding and survival if transplant candidates can live long enough to receive a new liver. As such, it is imperative that these treatment strategies are understood and employed when these patients are encountered. In this review, the restoration of appropriate shunt function using various techniques will be discussed as they apply to a variety of clinical scenarios, based on literature. In addition, illustrative case examples highlighting our experience at an academic tertiary medical center will be included. It is the intent to have this document serve as a concise and informative reference to be used by those who may encounter patients with suboptimal functioning TIPS.« less

  1. Phosphorylation of Tip60 by GSK-3 determines the induction of PUMA and apoptosis by p53

    PubMed Central

    Charvet, Céline; Wissler, Manuela; Brauns-Schubert, Prisca; Wang, Shang-Jui; Tang, Yi; Sigloch, Florian C.; Mellert, Hestia; Brandenburg, Martin; Lindner, Silke E.; Breit, Bernhard; Green, Douglas R.; McMahon, Steven B.; Borner, Christoph; Gu, Wei; Maurer, Ulrich

    2011-01-01

    Summary Activation of p53 by DNA damage results in either cell cycle arrest, allowing DNA repair and cell survival, or induction of apoptosis. As these opposite outcomes are both mediated by p53 stabilization, additional mechanisms to determine this decision must exist. Here we show that glycogen synthase kinase-3 (GSK-3) is required for the p53-mediated induction of the pro-apoptotic BH3 only-protein PUMA, an essential mediator of p53-induced apoptosis. Inhibition of GSK-3 protected from cell death induced by DNA damage and promoted increased long-term cell survival. We demonstrate that GSK-3 phosphorylates serine 86 of the p53-acetyltransferase Tip60. A Tip60S86A mutant was less active to induce p53 K120 acetylation, Histone 4 acetylation and expression of PUMA. Our data suggest that GSK-3 mediated Tip60S86-phosphorylation provides a link between PI3K signaling and the choice for or against apoptosis induction by p53. PMID:21658600

  2. A phase II single institution single arm prospective study with paclitaxel, ifosfamide and cisplatin (TIP) as first-line chemotherapy in high-risk germ cell tumor patients with more than ten years follow-up and retrospective correlation with ERCC1, Topoisomerase 1, 2A, p53 and HER-2 expression.

    PubMed

    Ligia Cebotaru, Cristina; Zenovia Antone, Nicoleta; Diana Olteanu, Elena; Bejinariu, Nona; Buiga, Rares; Todor, Nicolae; Ioana Iancu, Dana; Eliade Ciuleanu, Tudor; Nagy, Viorica

    2016-01-01

    One half of high-risk germ cell tumor (HRGCT) patients relapse after standard chemotherapy. This phase II study evaluated prospectively the toxicity and efficacy in first-line of the paclitaxel-ifosfamide-cisplatin combination (TIP) in HRGCT patients and tried to identify biomarkers that may allow patient-tailored treatments. Between October 1997- September 2000, 28 chemo-naive HRGCT patients were enrolled. Patients received 4 cycles of TIP (paclitaxel 175 mg/m(2) day 1/; ifosfamide 1.2 g/m(2)/day, days 1-5; Mesna 1.2 g/m(2)/day, days 1-5; and cisplatin 20 mg/m(2)/day, days 1-5 every 3 weeks). A non-randomized comparison was made between HRGCT patients treated in the same period with first-line TIP and bleomycin-etoposide-cisplatin (BEP) (28 patients vs 20). In 17 HRGCT patients treated between 1998-2006, ERCC1, Topoisomerase 1 and 2A, p53 and HER-2 expression was retrospectively analysed by immunohistochemistry (IHC) (7 patients with TIP, 10 with BEP), and correlations were made with response to chemotherapy and survival. With a median follow-up of 72 months [range 48+...89+], 5-year disease free survival (DFS) was 55%, with 95% CI 36-72, and the overall survival (OS) was 63%, with 95% CI 44-78. In June 2015, with a median follow-up of 196.47 months (range 177.30-209.27) (>15 years), 12 [%?] patients were alive and disease-free, and 16 [%?] had died (12 specific causes). There was no significant correlation between the expression of ERCC1, Topoisomerase 1 and 2A, HER-2 and p53 and response to treatment. Long-term follow-up showed no difference in OS between TIP vs BEP as first-line therapy. Both regimens had mild toxicity.

  3. Suitability of Cryopreservation for the Long‐term Storage of Rare and Endangered Plant Species: a Case History for Cosmos atrosanguineus

    PubMed Central

    WILKINSON, TIM; WETTEN, ANDREW; PRYCHID, CHRISSIE; FAY, MICHAEL F.

    2003-01-01

    The suitability of cryopreservation for the secure, long‐term storage of the rare and endangered species Cosmos atrosanguineus was investigated. Using encapsulation/dehydration of shoot tips in alginate strips, survival rates of up to 100 % and shoot regeneration of up to 35 % were achieved. Light and electron microscopy studies indicated that cellular damage to some regions of the shoot tip during the freeze/thaw procedure was high, although cell survival in and around the meristematic region allowed shoot tip regeneration. The genetic fingerprinting technique, amplified fragment length polymorphisms (AFLPs), showed that no detectable genetic variation was present between material of C. atrosanguineus at the time of initiation into tissue culture and that which had been cryopreserved, stored in liquid nitrogen for 12 months and regenerated. Weaned plantlets that were grown under glasshouse conditions exhibited no morphological variation from non‐frozen controls. PMID:12495921

  4. Combined transjugular intrahepatic portosystemic shunt and other interventions for hepatocellular carcinoma with portal hypertension.

    PubMed

    Qiu, Bin; Zhao, Meng-Fei; Yue, Zhen-Dong; Zhao, Hong-Wei; Wang, Lei; Fan, Zhen-Hua; He, Fu-Liang; Dai, Shan; Yao, Jian-Nan; Liu, Fu-Quan

    2015-11-21

    To evaluate combination transjugular intrahepatic portosystemic shunt (TIPS) and other interventions for hepatocellular carcinoma (HCC) and portal hypertension. Two hundred and sixty-one patients with HCC and portal hypertension underwent TIPS combined with other interventional treatments (transarterial chemoembolization/transarterial embolization, radiofrequency ablation, hepatic arterio-portal fistulas embolization, and splenic artery embolization) from January 1997 to January 2010 at Beijing Shijitan Hospital. Two hundred and nine patients (121 male and 88 female, aged 25-69 years, mean 48.3 ± 12.5 years) with complete clinical data were recruited. We evaluated the safety of the procedure (procedure-related death and serious complications), change of portal vein pressure before and after TIPS, symptom relief [e.g., ascites, hydrothorax, esophageal gastric-fundus variceal bleeding (EGVB)], cumulative rates of survival, and distributary channel restenosis. The characteristics of the patients surviving ≥ 5 and < 5 years were also analyzed. The portosystemic pressure was decreased from 29.0 ± 4.1 mmHg before TIPS to 18.1 ± 2.9 mmHg after TIPS (t = 69.32, P < 0.05). Portosystemic pressure was decreased and portal hypertension symptoms were ameliorated. During the 5 year follow-up, the total recurrence rate of resistant ascites or hydrothorax was 7.2% (15/209); 36.8% (77/209) for EGVB; and 39.2% (82/209) for hepatic encephalopathy. The cumulative rates of distributary channel restenosis at 1, 2, 3, 4, and 5 years were 17.2% (36/209), 29.7% (62/209), 36.8% (77/209), 45.5% (95/209) and 58.4% (122/209), respectively. No procedure-related deaths and serious complications (e.g., abdominal bleeding, hepatic failure, and distant metastasis) occurred. Moreover, Child-Pugh score, portal vein tumor thrombosis, lesion diameter, hepatic arterio-portal fistulas, HCC diagnosed before or after TIPS, stent type, hepatic encephalopathy, and type of other interventional treatments were related to 5 year survival after comparing patient characteristics. TIPS combined with other interventional treatments seems to be safe and efficacious in patients with HCC and portal hypertension.

  5. Transjugular Intrahepatic Portosystemic Shunt for Portal Hypertension in Hepatocellular Carcinoma with Portal Vein Tumor Thrombus.

    PubMed

    Qiu, Bin; Li, Kai; Dong, Xiaoqun; Liu, Fu-Quan

    2017-09-01

    In patients with hepatocellular carcinoma (HCC), limited therapeutic options are available for portal hypertension resulted from portal vein tumor thrombus (PVTT). We aimed to determine safety and efficacy of TIPS for treatment of symptomatic portal hypertension in HCC with PVTT. We evaluated clinical characteristics of 95 patients with HCC and PVTT out of 992 patients who underwent TIPS. The primary endpoints included success rate, procedural mortality, serious complications, decrease in portosystemic pressure gradient, and symptom relief. The secondary endpoints included recurrence of portal hypertension, overall survival, adverse events related to treatments for HCC, and quality of life measured by Karnofsky Performance Status Scale (KPS). Success rate of TIPS was 95.8% (91/95), with procedural mortality of 1.1%. Serious complications related to TIPS procedure occurred in 2.1% (2/95) of patients. The symptoms of portal hypertension were well relieved. Variceal bleeding was successfully controlled and terminated in 100% of patients, with a recurrence rate of 39.2% in 12 months. Refractory ascites/hydrothorax was controlled partially or completely in 92.9% of patients during 1 month after TIPS, with a recurrence rate of 17.9% in 12 months. Survival rate at 6, 12, 24, and 36 months was 75.8, 52.7, 26.4, and 3.3%, respectively. No unexpected adverse event related to treatments for HCC was observed. The KPS score was 49 ± 4.5 and 63 ± 4.7 before and 1 month after TIPS, respectively (p < 0.001). TIPS is a safe and efficacious treatment for symptomatic portal hypertension in HCC with PVTT.

  6. Winter Survival: A Consumer's Guide to Winter Preparedness.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This booklet discusses a variety of topics to help consumers prepare for winter. Tips for the home include: winterizing the home, dealing with a loss of heat or power failure, and what you need to have on hand. Another section gives driving tips and what to do in a storm. Health factors include suggestions for keeping warm, signs and treatment for…

  7. The Primary Teacher's Survival Guide.

    ERIC Educational Resources Information Center

    Heyda, Pamela A.

    This guide for primary school teachers presents commonly asked questions and answers. Chapter 1, "How Do I Set Up My Classroom?" discusses desk and furniture arrangement. Chapter 2, "How Do I Survive the First Days of School?" offers tips for meeting and greeting students, establishing routines, and presenting activities.…

  8. Raising Multiple Birth Children: A Parents' Survival Guide. Surviving the First Three Years of Twins & Supertwins.

    ERIC Educational Resources Information Center

    Laut, William; Laut, Sheila

    Although the rate of multiple births has skyrocketed, many parents of twins and triplets find that they are struggling on their own to cope with the emotional, psychological, and financial pressures of parenting more than one baby. This book is a survival guide for parents of multiples, containing a compendium of tips and techniques collected from…

  9. Too Old for This, Too Young for That! Your Survival Guide for the Middle-School Years.

    ERIC Educational Resources Information Center

    Mosatche, Harriet S.; Unger, Karen

    Noting that the early adolescent years may be likened to a roller coaster, often unpredictable but exciting and filled with possibility, this book is designed as a survival guide for students in grades 6 through 9 and addresses questions about the new choices and challenges ahead. The seven chapters or "survival tips" are: (1) "Get Used to Your…

  10. For Parents' Sake: A Survival Kit for Parents and Kids. Volume II: Tips for Parents.

    ERIC Educational Resources Information Center

    Butchee, Brenda, Ed.; And Others

    Developed by the Oklahoma State Department of Health, this booklet is the second in a series that provides tips that parents can use to help their children grow. The booklet is divided into three sections. The first section, "Getting Along as a Person," discusses a child's self-esteem, self-concept, and self-control, and suggests ways for parents…

  11. Strategic Airlift Modernization: Analysis of C-5 Modernization and C-17 Acquisition Issues

    DTIC Science & Technology

    2007-11-28

    shaped more like an aircraft’s wing, to generate lift through aerodynamic forces. Advocates hope airships may be capable of carrying a complete Army...sea basing concept. Detractors challenge airship survivability and ability to operate in adverse weather. Also, hybrid airships use aerodynamic lift and...100 turbofan engines Wingspan: 169 feet 10 inches (to winglet tips) (51.76 meters) Length: 174 feet (53 meters) Height: 55 feet 1 inch (16.79 meters

  12. Survival Guide for the First-Year Special Education Teacher.

    ERIC Educational Resources Information Center

    Carballo, Julie Berchtold; And Others

    This book offers guidelines to support beginning special education teachers in their first year of teaching. "Getting Ready To Teach" covers things to do before school begins, such as organizing the classroom and establishing planning and record-keeping strategies. "Tips for the Classroom" focuses on surviving the first day, establishing classroom…

  13. The Classroom Teacher's Technology Survival Guide

    ERIC Educational Resources Information Center

    Johnson, Doug

    2012-01-01

    This is a must-have resource for all K-12 teachers and administrators who want to really make the best use of available technologies. Written by Doug Johnson, an expert in educational technology, "The Classroom Teacher's Technology Survival Guide" is replete with practical tips teachers can easily use to engage their students and make their…

  14. Role of Tat-interacting protein of 110 kDa and microRNAs in the regulation of hematopoiesis.

    PubMed

    Liu, Ying; He, Johnny J

    2016-07-01

    Hematopoiesis is regulated by cellular factors including transcription factors, microRNAs, and epigenetic modifiers. Understanding how these factors regulate hematopoiesis is pivotal for manipulating them to achieve their desired potential. In this review, we will focus on HIV-1 Tat-interacting protein of 110 kDa (Tip110) and its regulation of hematopoiesis. There are several pathways in hematopoiesis that involve Tip110 regulation. Tip110 is expressed in human cord blood CD34 cells; its expression decreases when CD34 cells begin to differentiate. Tip110 is also expressed in mouse marrow hematopoietic stem cells (HSC) and hematopoietic progenitor cells (HPC). Tip110 expression increases the number, survival, and cell cycling of HPC. Tip110-mediated regulation of hematopoiesis has been linked to its reciprocal control of proto-oncogene expression. Small noncoding microRNAs (miRs) have been shown to play important roles in regulation of hematopoiesis. miR-124 specifically targets 3'-untranslated region of Tip110 and subsequently regulates Tip110 expression in HSC. Our recent findings for manipulating expression levels of Tip110 in HSC and HPC could be useful for expanding HSC and HPC and for improving engraftment of cord blood HSC/HPC.

  15. Hibernation-Based Therapy to Improve Survival of Severe Blood Loss

    DTIC Science & Technology

    2016-06-01

    leaks extravascularly • Necrosis and inflammation involving the ear tip is considered to be a more severe manifestation of vascular damage associated...similar lesions to the 2M test solution, it appears that 2M test solution is more likely to cause vascular necrosis and inflammation (noted at 24 hours...injections • Although DMSO induced similar lesions to the 4M test solution, it appears that 4M test solution is more likely to cause vascular necrosis and

  16. Hibernation Based Therapy to Improve Survival of Severe Blood Loss

    DTIC Science & Technology

    2016-06-01

    leaks extravascularly • Necrosis and inflammation involving the ear tip is considered to be a more severe manifestation of vascular damage associated...similar lesions to the 2M test solution, it appears that 2M test solution is more likely to cause vascular necrosis and inflammation (noted at 24 hours...injections • Although DMSO induced similar lesions to the 4M test solution, it appears that 4M test solution is more likely to cause vascular necrosis and

  17. What Every New Media Specialist Needs to Know: These 10 Tips Can Help Your Career Get off to a Great Start

    ERIC Educational Resources Information Center

    Corbo, Donna; Sample, Candace

    2010-01-01

    It's not easy being a media specialist, especially if one is new to the profession or one has switched schools and is suddenly the "new kid on the block." This article offers 10 road-tested tips that will help every new media specialist not only survive, but also "thrive": (1) Learn the curriculum; (2) Document! Document! Document! (3) Smile and…

  18. Prognostic capability of different liver disease scoring systems for prediction of early mortality after transjugular intrahepatic portosystemic shunt creation.

    PubMed

    Gaba, Ron C; Couture, Patrick M; Bui, James T; Knuttinen, M Grace; Walzer, Natasha M; Kallwitz, Eric R; Berkes, Jamie L; Cotler, Scott J

    2013-03-01

    To compare the performance of various liver disease scoring systems in predicting early mortality after transjugular intrahepatic portosystemic shunt (TIPS) creation. In this single-institution retrospective study, eight scoring systems were used to grade liver disease in 211 patients (male-to-female ratio = 131:80; mean age, 54 y) before TIPS creation from 1999-2011. Scoring systems included bilirubin level, Child-Pugh (CP) score, Model for End-Stage Liver Disease (MELD) and Model for End-Stage Liver Disease sodium (MELD-Na) score, Emory score, prognostic index (PI), Acute Physiology and Chronic Health Evaluation (APACHE) 2 score, and Bonn TIPS early mortality (BOTEM) score. Medical record review was used to identify 30-day and 90-day clinical outcomes. The relationship of scoring parameters with mortality outcomes was assessed with multivariate analysis, and the relative ability of systems to predict mortality after TIPS creation was evaluated by comparing area under receiver operating characteristic (AUROC) curves. TIPS were successfully created for variceal hemorrhage (n = 121), ascites (n = 72), hepatic hydrothorax (n = 15), and portal vein thrombosis (n = 3). All scoring systems had a significant association with 30-day and 90-day mortality (P<.050 in each case) on multivariate analysis. Based on 30-day and 90-day AUROC, MELD (0.878, 0.816) and MELD-Na (0.863, 0.823) scores had the best capability to predict early mortality compared with bilirubin (0.786, 0.749), CP (0.822, 0.771), Emory (0.786, 0.681), PI (0.854, 0.760), APACHE 2 (0.836, 0.735), and BOTEM (0.798, 0.698), with statistical superiority over bilirubin, Emory, and BOTEM scores. Several liver disease scoring systems have prognostic value for early mortality after TIPS creation. MELD and MELD-Na scores most effectively predict survival after TIPS creation. Copyright © 2013. Published by Elsevier Inc.

  19. Efficacy of TACE in TIPS Patients: Comparison of Treatment Response to Chemoembolization for Hepatocellular Carcinoma in Patients With and Without a Transjugular Intrahepatic Portosystemic Shunt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, Yuo-Chen, E-mail: yuo-chen.kuo@ucsf.edu; Kohi, Maureen P., E-mail: maureen.kohi@ucsf.edu; Naeger, David M., E-mail: david.naeger@ucsf.edu

    Purpose: To compare treatment response after transarterial chemoembolization (TACE) for hepatocellular carcinoma (HCC) in patients with and without a transjugular intrahepatic portosystemic shunt (TIPS). Materials and Methods: A retrospective review of patients who underwent conventional TACE for HCC between January 2005 and December 2009 identified 10 patients with patent TIPS. From the same time period, 23 patients without TIPS were selected to control for comparable Model for End-Stage Liver Disease and Child-Pugh-Turcotte scores. The two groups showed similar distribution of Barcelona Clinic Liver Cancer and United Network of Organ Sharing stages. Target HCC lesions were evaluated according to the modifiedmore » response evaluation criteria in solid tumors (mRECIST) guidelines. Transplantation rate, time to tumor progression, and overall survival (OS) were documented. Results: After TACE, the rate of complete response was significantly greater in non-TIPS patients compared with TIPS patients (74 vs. 30 %, p = 0.03). Objective response rate (complete and partial response) trended greater in the non-TIPS group (83 vs. 50 %, p = 0.09). The liver transplantation rate was 80 and 74 % in the TIPS and non-TIPS groups, respectively (p = 1.0). Time to tumor progression was similar (p = 0.47) between the two groups. OS favored the non-TIPS group (p = 0.01) when censored for liver transplantation. Conclusion: TACE is less effective in achieving complete or partial response using mRECIST criteria in TIPS patients compared with those without a TIPS. Nevertheless, similar clinical outcomes may be achieved, particularly in TIPS patients who are liver-transplantation candidates.« less

  20. Clinical efficiency of Piezo-ICSI using micropipettes with a wall thickness of 0.625 μm.

    PubMed

    Hiraoka, Kenichiro; Kitamura, Seiji

    2015-12-01

    The purposes of the present study are to assess the clinical efficiency of Piezo-intracytoplasmic sperm injection (ICSI) and to improve the Piezo-ICSI method for human oocytes. We examined three ICSI methods to determine their clinical efficiency by comparing the survival, fertilization, good-quality day-3 embryo, pregnancy, and live birth rates. The three ICSI methods tested were conventional ICSI (CI) (using beveled spiked micropipettes with a wall thickness of 1 μm), conventional Piezo-ICSI (CPI) (using flat-tipped micropipettes with a wall thickness of 0.925 μm), and improved Piezo-ICSI (IPI) (using flat-tipped micropipettes with a wall thickness of 0.625 μm). We collectively investigated 2020 mature oocytes retrieved from 437 patients between October 2010 and January 2014. The survival rates after CI, CPI, and IPI were 90, 95, and 99 %, respectively. The fertilization rates after CI, CPI, and IPI were 68, 75, and 89 %, respectively. The good-quality day-3 embryo rates after CI, CPI, and IPI were 37, 43, and 55 %, respectively. The pregnancy rates after the transfer of good-quality day-3 embryo of CI, CPI, and IPI were 19, 21, and 31 %, respectively. The live birth rates of CI, CPI, and IPI were 15, 16, and 25 %, respectively. Significantly higher survival, fertilization, good-quality day-3 embryo, pregnancy, and live birth rates were obtained using IPI. When comparing the IPI to the CI and CPI, the results revealed that the Piezo-ICSI using flat-tipped micropipettes with a wall thickness of 0.625 μm significantly improves survival, fertilization, good-quality day-3 embryo, pregnancy, and live birth rates.

  1. Substitution of a single amino acid residue in the aromatic/arginine selectivity filter alters the transport profiles of tonoplast aquaporin homologs.

    PubMed

    Azad, Abul Kalam; Yoshikawa, Naoki; Ishikawa, Takahiro; Sawa, Yoshihiro; Shibata, Hitoshi

    2012-01-01

    Aquaporins are integral membrane proteins that facilitate the transport of water and some small solutes across cellular membranes. X-ray crystallography of aquaporins indicates that four amino acids constitute an aromatic/arginine (ar/R) pore constriction known as the selectivity filter. On the basis of these four amino acids, tonoplast aquaporins called tonoplast intrinsic proteins (TIPs) are divided into three groups in Arabidopsis. Herein, we describe the characterization of two group I TIP1s (TgTIP1;1 and TgTIP1;2) from tulip (Tulipa gesneriana). TgTIP1;1 and TgTIP1;2 have a novel isoleucine in loop E (LE2 position) of the ar/R filter; the residue at LE2 is a valine in all group I TIPs from model plants. The homologs showed mercury-sensitive water channel activity in a fast kinetics swelling assay upon heterologous expression in Pichia pastoris. Heterologous expression of both homologs promoted the growth of P. pastoris on ammonium or urea as sole sources of nitrogen and decreased growth and survival in the presence of H(2)O(2). TgTIP1;1- and TgTIP1;2-mediated H(2)O(2) conductance was demonstrated further by a fluorescence assay. Substitutions in the ar/R selectivity filter of TgTIP1;1 showed that mutants that mimicked the ar/R constriction of group I TIPs could conduct the same substrates that were transported by wild-type TgTIP1;1. In contrast, mutants that mimicked group II TIPs showed no evidence of urea or H(2)O(2) conductance. These results suggest that the amino acid residue at LE2 position is critical for the transport selectivity of the TIP homologs and group I TIPs might have a broader spectrum of substrate selectivity than group II TIPs. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Submicrometer fiber-optic chemical sensors: Measuring pH inside single cells

    NASA Astrophysics Data System (ADS)

    Kopelman, R.

    Starting from scratch, we went in two and a half years to 0.04 micron optical microscopy resolution. We have demonstrated the application of near-field scanning optical microscopy to DNA samples and opened the new fields of near-field scanning spectroscopy and submicron opto-chemical sensors. All of these developments have been important steps towards in-situ DNA imaging and characterization on the nanoscale. Our first goal was to make NSOM (near-field scanning optical microscopy) a working enterprise, capable of 'zooming-in' towards a sample and imaging with a resolution exceeding that of traditional microscopy by a factor of ten. This has been achieved. Not only do we have a resolution of about 40 nm but we can image a 1 x 1 micron object in less than 10 seconds. Furthermore, the NSOM is a practical instrument. The tips survive for days or weeks of scanning and new methods of force feedback will soon protect the most fragile samples. Reproducible images of metal gratings, gold particles, dye balls (for calibration) and of several DNA samples have been made, proving the practicality of our approach. We also give highly resolved Force/NSOM images of human blood cells. Our second goal has been to form molecular optics (e.g., exciton donor) tips with a resolution of 2-10 nm for molecular excitation microscopy (MEM). We have produced such tips, and scanned with them, but only with a resolution comparable to that of our standard NSOM tips. However, we have demonstrated their potential for high resolution imaging capabilities: (1) An energy transfer (tip to sample) based feedback capability. (2) A Kasha (external heavy atom) effect based feedback. In addition, a novel and practical opto-chemical sensor that is a billion times smaller than the best ones available has been developed as well. Finally, we have also performed spatially resolved fluorescence spectroscopy.

  3. Cryopreservation of in vitro grown shoot tips of Diospyros kaki thunb. using different methods.

    PubMed

    Niu, Y L; Luo, Z R; Zhang, Y F; Zhang, Q L

    2012-01-01

    The objective of this study was to compare the potential of different cryopreservation strategies for in vitro shoot tips of Diospyros kaki Thunb. The treatments consisted of three different cryopreservation methods: vitrification, droplet-vitrification and modified droplet-vitrification. The following variables were assessed: cold acclimation, sucrose concentration in the preculture medium and PVS2 treatment time. A higher average survival level was obtained using the modified droplet-vitrification method compared to the other two methods.

  4. Direct Percutaneous Embolization of Bleeding Stomal Varices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naidu, Sailen G., E-mail: naidu.sailen@mayo.ed; Castle, Erik P.; Kriegshauser, J. Scott

    2010-02-15

    Stomal variceal bleeding can develop in patients with underlying cirrhosis and portal hypertension. Most patients are best treated with transjugular intrahepatic portosystemic shunt (TIPS) creation because this addresses the underlying problem of portal hypertension. However, some patients are not good candidates for TIPS creation because they have end-stage liver disease or encephalopathy. We describe such a patient who presented with recurrent bleeding stomal varices, which was successfully treated with percutaneous coil embolization. The patient had bleeding-free survival for 1 month before death from unrelated causes.

  5. Women School Executives Get Serious about Success.

    ERIC Educational Resources Information Center

    Rist, Marilee C.

    1984-01-01

    Summarizes the business and discussions of the Chicago convention of the National Conference of Women School Executives. Includes tips on how women can swim in the shark-infested waters of administration--and survive. (JW)

  6. Transjugular Intrahepatic Portosystemic Shunt Placement During Pregnancy: A Case Series of Five Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingraham, Christopher R., E-mail: cringra@uw.edu; Padia, Siddharth A., E-mail: spadia@uw.edu; Johnson, Guy E., E-mail: gej@uw.edu

    Background and AimsComplications of portal hypertension, such as variceal hemorrhage and ascites, are associated with significant increases in both mortality and complications during pregnancy. Transjugular intrahepatic portosystemic shunt (TIPS) is a well-established procedure for treating portal hypertension, but the safety of TIPS during pregnancy is largely unknown. In this series, we review five patients who underwent TIPS placement while pregnant and describe their clinical outcomes.MethodsFive pregnant patients with cirrhosis and portal hypertension underwent elective TIPS for complications of portal hypertension (four for secondary prevention of variceal bleeding and one for refractory ascites). Outcomes measured were recurrent bleeding episodes or needmore » for further paracenteses during pregnancy, estimated radiation dose to the fetus and gestational age at delivery. All patients were followed after delivery to evaluate technical and clinical success of the procedure.ResultsAll five patients survived pregnancy and went on to deliver successfully. When TIPS was performed for secondary prevention of variceal bleeding (n = 4), no patients demonstrated variceal bleeding after TIPS placement. When TIPS was performed for refractory ascites (n = 1), no further paracenteses were required. All patients delivered successfully, albeit prematurely. Average radiation dose estimated to the fetus was 16.3 mGy.ConclusionsThis series suggests that TIPS can be performed in selective pregnant patients with portal hypertension, with little added risk to the mother or fetus.« less

  7. Outcomes of Locoregional Tumor Therapy for Patients with Hepatocellular Carcinoma and Transjugular Intrahepatic Portosystemic Shunts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padia, Siddharth A., E-mail: spadia@uw.edu; Chewning, Rush H., E-mail: rchewnin@uw.edu; Kogut, Matthew J., E-mail: kogutm@uw.edu

    PurposeLocoregional therapy for hepatocellular carcinoma (HCC) can be challenging in patients with a transjugular intrahepatic portosystemic shunt (TIPS). This study compares safety and imaging response of ablation, chemoembolization, radioembolization, and supportive care in patients with both TIPS and HCC.MethodsThis retrospective study included 48 patients who had both a TIPS and a diagnosis of HCC. Twenty-nine of 48 (60 %) underwent treatment for HCC, and 19/48 (40 %) received best supportive care (i.e., symptomatic management only). While etiology of cirrhosis and indication for TIPS were similar between the two groups, treated patients had better baseline liver function (34 vs. 67 % Child-Pugh class C).more » Tumor characteristics were similar between the two groups. A total of 39 ablations, 17 chemoembolizations, and 10 yttrium-90 radioembolizations were performed on 29 patients.ResultsAblation procedures resulted in low rates of hepatotoxicity and clinical toxicity. Post-embolization/ablation syndrome occurred more frequently in patients undergoing chemoembolization than ablation (47 vs. 15 %). Significant hepatic dysfunction occurred more frequently in the chemoembolization group than the ablation group. Follow-up imaging response showed objective response in 100 % of ablation procedures, 67 % of radioembolization procedures, and 50 % of chemoembolization procedures (p = 0.001). When censored for OLT, patients undergoing treatment survived longer than patients receiving supportive care (2273 v. 439 days, p = 0.001).ConclusionsAblation appears to be safe and efficacious for HCC in patients with TIPS. Catheter-based approaches are associated with potential increased toxicity in this patient population. Chemoembolization appears to be associated with increased toxicity compared to radioembolization.« less

  8. Cryoprotectants and their components induce plasmolytic responses in sweet potato suspension cells

    USDA-ARS?s Scientific Manuscript database

    Plant genebanks often use cryopreservation to securely conserve clonally propagated collections. Shoot tip cryopreservation procedures may employ vitrification techniques whereby highly concentrated solutions remove water and prevent ice crystallization, ensuring survival after liquid nitrogen expos...

  9. A novel tracking tool for the analysis of plant-root tip movements.

    PubMed

    Russino, A; Ascrizzi, A; Popova, L; Tonazzini, A; Mancuso, S; Mazzolai, B

    2013-06-01

    The growth process of roots consists of many activities, such as exploring the soil volume, mining minerals, avoiding obstacles and taking up water to fulfil the plant's primary functions, that are performed differently, depending on environmental conditions. Root movements are strictly related to a root decision strategy, which helps plants to survive under stressful conditions by optimizing energy consumption. In this work, we present a novel image-analysis tool to study the kinematics of the root tip (apex), named analyser for root tip tracks (ARTT). The software implementation combines a segmentation algorithm with additional software imaging filters in order to realize a 2D tip detection. The resulting paths, or tracks, arise from the sampled tip positions through the acquired images during the growth. ARTT allows work with no markers and deals autonomously with new emerging root tips, as well as handling a massive number of data relying on minimum user interaction. Consequently, ARTT can be used for a wide range of applications and for the study of kinematics in different plant species. In particular, the study of the root growth and behaviour could lead to the definition of novel principles for the penetration and/or control paradigms for soil exploration and monitoring tasks. The software capabilities were demonstrated by experimental trials performed with Zea mays and Oryza sativa.

  10. Regulation of H+ Extrusion and Cytoplasmic pH in Maize Root Tips Acclimated to a Low-Oxygen Environment.

    PubMed

    Xia, J. H.; Roberts, JKM.

    1996-05-01

    We tested the hypothesis that H+ extrusion contributes to cytoplasmic pH regulation and tolerance of anoxia in maize (Zea mays) root tips. We studied root tips of whole seedlings that were acclimated to a low-oxygen environment by pretreatment in 3% (v/v) O2. Acclimated root tips characteristically regulate cytoplasmic pH near neutrality and survive prolonged anoxia, whereas nonacclimated tips undergo severe cytoplasmic acidosis and die much more quickly. We show that the plasma membrane H+-ATPase can operate under anoxia and that net H+ extrusion increases when cytoplasmic pH falls. However, at an external pH near 6.0, H+ extrusion contributes little to cytoplasmic pH regulation. At more acidic external pH values, net H+ flux into root tips increases dramatically, leading to a decrease in cytoplasmic pH and reduced tolerance of anoxia. We present evidence that, under these conditions, H+ pumps are activated to partly offset acidosis due to H+ influx and, thereby, contribute to cytoplasmic pH regulation and tolerance of anoxia. The regulation of H+ extrusion under anoxia is discussed with respect to the acclimation response and mechanisms of intracellular pH regulation in aerobic plant cells.

  11. Hiring an associate dean of academic affairs.

    PubMed

    Pressler, Jana L; Kenner, Carole A

    2009-01-01

    Many new nursing leaders assuming deanships, assistant deanships, or interim deanships have limited education, experience, or background to prepare them for the job. To assist new deans and those aspiring to be deans, the authors of this department, 2 deans, offer survival tips based on their personal experiences and insights. They address common issues, challenges, and opportunities that face academic executive teams, such as negotiating an executive contract, obtaining faculty lines, building effective work teams, managing difficult employees, and creating nimble organizational structure to respond to changing consumer, healthcare delivery, and community needs. The authors welcome counterpoint discussions with readers.

  12. Effecting change in striving to achieve capacity.

    PubMed

    Pressler, Jana L; Kenner, Carole

    2007-01-01

    Many new nursing leaders assuming deanships and assistant or interim deanships have limited education, experience, or background to prepare them for the job. To assist new deans and those aspiring to be deans, the authors of this department, 2 deans, offer survival tips based on their personal experiences and insights. They address common issues, challenges, and opportunities that face academic executive teams, such as negotiating an executive contract, obtaining faculty lines, building effective work teams, managing difficult employees, and creating nimble organizational structure to respond to changing consumer, healthcare delivery, and community needs. The authors welcome counterpoint discussions with readers.

  13. Embracing new directions in curricula and teaching.

    PubMed

    Pressler, Jana L; Kenner, Carole

    2009-01-01

    Many new nursing leaders assuming deanships or assistant or interim deanships have limited education, experience, or background to prepare them for the job. To assist new deans and those aspiring to be deans, the authors of this department, 2 deans, offer survival tips based on their personal experiences and insights. They address common issues, challenges, and opportunities that face academic executive teams, such as negotiating an executive contract, obtaining faculty lines, building effective work teams, managing difficult employees, and creating nimble organizational structure to respond to changing consumer, healthcare delivery, and community needs. The authors welcome counterpoint discussions with readers.

  14. Addressing the underperformance of faculty and staff.

    PubMed

    Kenner, Carole; Pressler, Jana L

    2006-01-01

    Many new nursing leaders assuming work as deans, assistant deans, or interim deans have limited education, experience, or background to prepare them for the job. To assist new deans and those aspiring to be deans, the authors of this department, both deans, offer survival tips based on their personal experiences and insights. They address common issues, challenges, and opportunities that face academic executive teams, such as negotiating an executive contract, obtaining faculty lines, building effective work teams, managing difficult employees, and creating nimble organizational structure to respond to changing consumer, healthcare delivery, and community needs. The authors welcome counterpoint discussions with readers.

  15. When does outsourcing become a right source for academic excellence?

    PubMed

    Kenner, Carole; Pressler, Jana L

    2006-01-01

    Many new nursing leaders assuming deanships, assistant deanships, or interim deanships have limited education, experience, or background to prepare them for the job. To assist new deans and those aspiring to be deans, the authors of this department, 2 deans, offer survival tips based on their personal experiences and insights. They address common issues, challenges, and opportunities that face academic executive teams, such as negotiating an executive contract, obtaining faculty lines, building effective work teams, managing difficult employees, and creating nimble organizational structure to respond to changing consumer, healthcare delivery, and community needs. The authors welcome counterpoint discussions with readers.

  16. Capitalizing on joint ventures to economize in nursing.

    PubMed

    Pressler, Jana L; Kenner, Carole A

    2010-01-01

    Many new nursing leaders assuming deanships, assistant, or interim deanships have limited education, experience, or background to prepare them for the job. To assist new deans and those aspiring to be deans, the authors of this department offer survival tips based on their personal experiences and insights. They address common issues, challenges, and opportunities that face academic executive teams, such as negotiating an executive contract, obtaining faculty lines, building effective work teams, managing difficult employees, and creating nimble organizational structure to respond to changing consumer, healthcare delivery, and community needs. The authors welcome counterpoint discussions with readers.

  17. Starting small and early for research funding.

    PubMed

    Pressler, Jana L; Kenner, Carole A

    2009-01-01

    Many new nursing leaders assuming deanships or assistant or interim deanships have limited education, experience, or background to prepare them for the job. To assist new deans and those aspiring to be deans, the authors of this department, 2 deans, offer survival tips based on their personal experiences and insights. They address common issues, challenges, and opportunities that face academic executive teams, such as negotiating an executive contract, obtaining faculty lines, building effective work teams, managing difficult employees, and creating nimble organizational structure to respond to changing consumer, healthcare delivery, and community needs. The authors welcome counterpoint discussions with readers.

  18. The ripple effect: advancing faculty research?

    PubMed

    Kenner, Carole; Pressler, Jana L

    2008-01-01

    Many new nursing leaders assuming deanships or assistant or interim deanships have limited education, experience, or background to prepare them for the job. To assist new deans and those aspiring to be deans, the authors of this department, 2 deans, offer survival tips based on their personal experiences and insights. They address common issues, challenges, and opportunities that face academic executive teams, such as negotiating an executive contract, obtaining faculty lines, building effective work teams, managing difficult employees, and creating nimble organizational structure to respond to changing consumer, healthcare delivery, and community needs. The authors welcome counterpoint discussions with readers.

  19. Performance evaluations and literacy.

    PubMed

    Pressler, Jana L; Kenner, Carole A

    2009-01-01

    Many new nursing leaders assuming deanships or assistant or interim deanships have limited education, experience, or background to prepare them for the job. To assist new deans and those aspiring to be deans, the authors of this department, 2 deans, offer survival tips based on their personal experiences and insights. They address common issues, challenges, and opportunities that face academic executive teams, such as negotiating an executive contract, obtaining faculty lines, building effective work teams, managing difficult employees, and creating nimble organizational structure to respond to changing consumer, healthcare delivery, and community needs. The authors welcome counterpoint discussions with readers.

  20. Return on investment: an essential economics measure in higher education.

    PubMed

    Pressler, Jana L; Kenner, Carole A

    2014-01-01

    Many new nursing leaders assuming deanships, assistant deanships, or interim deanships have limited education, experience, or background to prepare them for the job. To assist new deans and those aspiring to be deans, the authors of this department offer survival tips based on their personal experiences and insights. They address common issues, challenges, and opportunities that face academic executive teams, such as negotiating an executive contract, obtaining faculty lines, building effective work teams, managing difficult employees, and creating nimble organizational structure to respond to changing consumer, healthcare delivery, and community needs. The authors welcome counterpoint discussions with readers.

  1. Management of Bleeding Duodenal Varices with Combined TIPS Decompression and Trans-TIPS Transvenous Obliteration Utilizing 3% Sodium Tetradecyl Sulfate Foam Sclerosis

    PubMed Central

    Saad, Wael E; Lippert, Allison; Schwaner, Sandra; Al-Osaimi, Abdullah; Sabri, Saher; Saad, Nael

    2014-01-01

    Objectives: Endoscopic experience in the management of duodenal varices (DVs) is limited and challenging given the anatomic constraints and limited experience. The endovascular management of DVs is not yet established and the controversy of whether to manage them by decompression with a transjugular intrahepatic portosystemic shunt (TIPS) or by transvenous obliteration is unresolved. In the literature, the 6–12 month rebleeding rate of DVs after TIPS is 21-37% and after transvenous obliteration is 13%. The purpose of the study is to evaluate the clinical outcome of combined TIPS decompression and transvenous obliteration/sclerosis. Materials and Methods: This is a retrospective study (case series) of two institutions, evaluating patients who underwent TIPS and/or transvenous obliteration/sclerosis for bleeding DVs (from January 2009 to June 2013). TIPS was performed according to a standard procedure using covered stents. Transvenous obliteration (variceal sclerosis) from the systemic and/or portal venous circulation was performed utilizing 3% sodium tetradecyl sulfate foam. Transvenous obliteration was commonly augmented with coils and/or vascular plugs. Technical (technical success of establishing TIPS and completely obliterating the DVs) and clinical outcomes (rebleeding rate and survival) were evaluated. Results: Five patients with liver cirrhosis presenting with bleeding DVs were included in the study with all eventually (and coincidentally) receiving TIPS and transvenous obliteration. Two of the five patients underwent concomitant TIPS and transvenous obliteration in the same procedural setting. However, three patients underwent transvenous obliteration due to bleeding despite a patent TIPS that had been previously placed. The average time from TIPS placement to transvenous obliteration was 125 days (range: 3-324 days). After having both procedures, there was no rebleeding in the patients during a mean follow-up period of 22 months (6–50 months). Coils and/or metallic vascular plugs were used to augment the sclerosant obliteration in four of five patients. Conclusion: The combination of TIPS decompression and foam sclerosant transvenous obliteration appears to be effective in preventing rebleeding in this limited case series and compares favorably with the existing evidence for either approach [TIPS or balloon-occluded retrograde transvenous obliteration (BRTO)] alone. PMID:25558434

  2. Management of Bleeding Duodenal Varices with Combined TIPS Decompression and Trans-TIPS Transvenous Obliteration Utilizing 3% Sodium Tetradecyl Sulfate Foam Sclerosis.

    PubMed

    Saad, Wael E; Lippert, Allison; Schwaner, Sandra; Al-Osaimi, Abdullah; Sabri, Saher; Saad, Nael

    2014-01-01

    Endoscopic experience in the management of duodenal varices (DVs) is limited and challenging given the anatomic constraints and limited experience. The endovascular management of DVs is not yet established and the controversy of whether to manage them by decompression with a transjugular intrahepatic portosystemic shunt (TIPS) or by transvenous obliteration is unresolved. In the literature, the 6-12 month rebleeding rate of DVs after TIPS is 21-37% and after transvenous obliteration is 13%. The purpose of the study is to evaluate the clinical outcome of combined TIPS decompression and transvenous obliteration/sclerosis. This is a retrospective study (case series) of two institutions, evaluating patients who underwent TIPS and/or transvenous obliteration/sclerosis for bleeding DVs (from January 2009 to June 2013). TIPS was performed according to a standard procedure using covered stents. Transvenous obliteration (variceal sclerosis) from the systemic and/or portal venous circulation was performed utilizing 3% sodium tetradecyl sulfate foam. Transvenous obliteration was commonly augmented with coils and/or vascular plugs. Technical (technical success of establishing TIPS and completely obliterating the DVs) and clinical outcomes (rebleeding rate and survival) were evaluated. Five patients with liver cirrhosis presenting with bleeding DVs were included in the study with all eventually (and coincidentally) receiving TIPS and transvenous obliteration. Two of the five patients underwent concomitant TIPS and transvenous obliteration in the same procedural setting. However, three patients underwent transvenous obliteration due to bleeding despite a patent TIPS that had been previously placed. The average time from TIPS placement to transvenous obliteration was 125 days (range: 3-324 days). After having both procedures, there was no rebleeding in the patients during a mean follow-up period of 22 months (6-50 months). Coils and/or metallic vascular plugs were used to augment the sclerosant obliteration in four of five patients. The combination of TIPS decompression and foam sclerosant transvenous obliteration appears to be effective in preventing rebleeding in this limited case series and compares favorably with the existing evidence for either approach [TIPS or balloon-occluded retrograde transvenous obliteration (BRTO)] alone.

  3. Protein crystal growth results from shuttle flight 51-F

    NASA Technical Reports Server (NTRS)

    Bugg, C. E.

    1985-01-01

    The protein crystal growth (PCG) experiments run on 51-F were analyzed. It was found that: (1) sample stability is increased over that observed during the experiments on flight 51-D; (2) the dialysis experiments produced lysozyme crystals that were significantly larger than those obtained in our identical ground-based studies; (3) temperature fluctuations apparently caused problems during the crystallization experiments on 51-F; (4) it is indicated that teflon tape stabilizes droplets on the syringe tips; (5) samples survived during the reentry and landing in glass tips that were not stoppered with plungers; (6) from the ground-based studies, it was expected that equilibration should be complete within 2 to 4 days for all of these vapor-diffusion experiments, thus it appears that the vapor diffusion rates are somewhat slower under microgravity conditions; (7) drop tethering was highly successful, all four of the tethered drops were stable, even though they contained MPD solutions; (8) the PCG experiments on 51-F were done to assess the hardware and experimental procedures that are developed for future flights, when temperature control will be available. Lysozyme crystals obtained by microdialysis are considerably larger than those obtained on the ground, using the identical apparatus and procedures.

  4. Predictive value of liver and spleen stiffness in advanced alcoholic cirrhosis with refractory ascites.

    PubMed

    Lindner, Franziska; Mühlberg, Reinhard; Wiegand, Johannes; Tröltzsch, Michael; Hoffmeister, Albrecht; Keim, Volker; Karlas, Thomas

    2018-06-01

     Recurrent ascitic decompensation is a frequent complication of advanced alcoholic liver disease. Ascites can be controlled by transjugular intrahepatic portosystemic shunt (TIPS) implantation, but specific pre-procedural outcome predictors are not well established. Liver and spleen stiffness measurement (LSM, SSM) correlate with outcome of compensated liver disease, but data for decompensated cirrhosis disease are scarce. Therefore, the predictive value of LSM and SSM was evaluated in patients with refractory ascites treated with TIPS insertion or receiving conservative therapy.  Patients with alcoholic liver cirrhosis and recurrent or refractory ascites were stratified according to TIPS eligibility. LSM was prospectively assessed by transient elastography (TE, XL probe) and point shear wave elastography (pSWE). pSWE was also used for SSM. The primary study endpoint was transplant-free survival after 12 months. In addition, correlation of LSM and SSM with TIPS complications was analyzed.  43 patients (16 % female, age 55.5 [28.6 - 79.6] years) were recruited, n = 20 underwent TIPS and n = 23 were treated with repeated paracenteses only. 15 patients died and five underwent liver transplantation during follow-up. LSM and SSM at baseline did not predict the patients' outcome in the TIPS cohort and in patients with conservative therapy. SSM was increased in two cases with spontaneous TIPS occlusion and declined after revision.  LSM and SSM cannot be recommended for risk stratification in cirrhotic patients with refractory ascites. SSM may be useful in monitoring TIPS function during follow-up. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Maternal Vaccination with a Fimbrial Tip Adhesin and Passive Protection of Neonatal Mice against Lethal Human Enterotoxigenic Escherichia coli Challenge

    PubMed Central

    Luiz, Wilson B.; Rodrigues, Juliana F.; Crabb, Joseph H.

    2015-01-01

    Globally, enterotoxigenic Escherichia coli (ETEC) is a leading cause of childhood and travelers' diarrhea, for which an effective vaccine is needed. Prevalent intestinal colonization factors (CFs) such as CFA/I fimbriae and heat-labile enterotoxin (LT) are important virulence factors and protective antigens. We tested the hypothesis that donor strand-complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, is a protective antigen, using a lethal neonatal mouse ETEC challenge model and passive dam vaccination. For CFA/I-ETEC strain H10407, which has been extensively studied in volunteers, an inoculum of 2 × 107 bacteria resulted in 50% lethal doses (LD50) in neonatal DBA/2 mice. Vaccination of female DBA/2 mice with CFA/I fimbriae or dscCfaE, each given with a genetically attenuated LT adjuvant (LTK63) by intranasal or orogastric delivery, induced high antigen-specific serum IgG and fecal IgA titers and detectable milk IgA responses. Neonates born to and suckled by dams antenatally vaccinated with each of these four regimens showed 78 to 93% survival after a 20× LD50 challenge with H10407, compared to 100% mortality in pups from dams vaccinated with sham vaccine or LTK63 only. Crossover experiments showed that high pup survival rates after ETEC challenge were associated with suckling but not birthing from vaccinated dams, suggesting that vaccine-specific milk antibodies are protective. In corroboration, preincubation of the ETEC inoculum with antiadhesin and antifimbrial bovine colostral antibodies conferred a dose-dependent increase in pup survival after challenge. These findings indicate that the dscCfaE fimbrial tip adhesin serves as a protective passive vaccine antigen in this small animal model and merits further evaluation. PMID:26371126

  6. Outcomes in variceal hemorrhage following the use of a balloon tamponade device.

    PubMed

    Nadler, Jonathan; Stankovic, Nikola; Uber, Amy; Holmberg, Mathias J; Sanchez, Leon D; Wolfe, Richard E; Chase, Maureen; Donnino, Michael W; Cocchi, Michael N

    2017-10-01

    Variceal hemorrhage is associated with high morbidity and mortality. A balloon tamponade device (BTD), such as the Sengstaken-Blakemore or Minnesota tube, may be used in cases of variceal hemorrhage. While these devices may be effective at controlling acute bleeding, the effect on patient outcomes remains less clear. We sought to describe the number of patients with variceal hemorrhage and a BTD who survive to discharge, survive to one-year, and develop complications related to a BTD. In this retrospective study, we identified patients at a single, tertiary care center who underwent placement of a BTD for upper gastrointestinal hemorrhage between 2003 and 2014. Patient characteristics and outcomes were summarized using descriptive statistics. 34 patients with a BTD were identified. Median age was 57.5 (IQR 47-63) and 76% (26/34) were male. Approximately 59% (20/34) of patients survived to discharge, and 41% (13/32) were alive after one year. Two patients were lost to follow-up. Of those surviving to discharge, 95% (19/20) had undergone transjugular intrahepatic portosystemic shunt (TIPS), while 36% (5/14) of patients who did not survive to discharge had TIPS (p<0.01). One complication, an esophageal perforation, was identified and managed conservatively. In this cohort of patients undergoing BTD placement for variceal hemorrhage, approximately 59% of patients were alive at discharge and 41% were alive after one year. Placement of a BTD as a temporizing measure in the management of acute variceal hemorrhage may be helpful, particularly when utilized as a bridge to more definitive therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Outcomes in variceal hemorrhage following the use of a balloon tamponade device

    PubMed Central

    Nadler, Jonathan; Stankovic, Nikola; Uber, Amy; Holmberg, Mathias J.; Sanchez, Leon D.; Wolfe, Richard E.; Chase, Maureen; Donnino, Michael W.; Cocchi, Michael N.

    2017-01-01

    Background Variceal hemorrhage is associated with high morbidity and mortality. A balloon tamponade device (BTD), such as the Sengstaken-Blakemore or Minnesota tube, may be used in cases of variceal hemorrhage. While these devices may be effective at controlling acute bleeding, the effect on patient outcomes remains less clear. We sought to describe the number of patients with variceal hemorrhage and a BTD who survive to discharge, survive to one-year, and develop complications related to a BTD. Methods In this retrospective study, we identified patients at a single, tertiary care center who underwent placement of a BTD for upper gastrointestinal hemorrhage between 2003 and 2014. Patient characteristics and outcomes were summarized using descriptive statistics. Results 34 patients with a BTD were identified. Median age was 57.5 (IQR 47–63) and 76% (26/34) were male. Approximately 59% (20/34) of patients survived to discharge, and 41% (13/32) were alive after one year. Two patients were lost to follow-up. Of those surviving to discharge, 95% (19/20) had undergone transjugular intrahepatic portosystemic shunt (TIPS), while 36% (5/14) of patients who did not survive to discharge had TIPS (p < 0.01). One complication, an esophageal perforation, was identified and managed conservatively. Conclusion In this cohort of patients undergoing BTD placement for variceal hemorrhage, approximately 59% of patients were alive at discharge and 41% were alive after one year. Placement of a BTD as a temporizing measure in the management of acute variceal hemorrhage may be helpful, particularly when utilized as a bridge to more definitive therapy. PMID:28460805

  8. The use of Emeraid Exotic Carnivore Diet improves postsurgical recovery and survival of long-tailed ducks

    USGS Publications Warehouse

    Olsen, Glenn H.; Ford, Scott; Perry, Matthew C.; Wells-Berlin, Alicia M.

    2010-01-01

    Gavage feeding is a commonly used technique in wildlife rehabilitation. While implanting satellite transmitters in long-tailed ducks (Clangula hyemalis), a need for extra postsurgical nutritional support was identified. A new product, Emeraid Exotic Carnivore Diet, has proven effective in maintaining and even increasing the birds' body weights while in captivity. This has resulted in a 54-g increase in weight at release and better survival postrelease. Tips for mixing and using the new diet are included.

  9. Beating the Futures Conference Game.

    ERIC Educational Resources Information Center

    Simmonds, W. H. Clive

    1983-01-01

    Conference survival tips include: (1) noting the different kinds of speakers, their strengths and weaknesses; (2) discovering the reasons for often apparent cross-talk and misunderstanding; and (3) using the concept of futuring to gain ideas as to what can be done after the conference ends. (RM)

  10. Survival rate of eukaryotic cells following electrophoretic nanoinjection.

    PubMed

    Simonis, Matthias; Hübner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-25

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for the delivery of molecules. The tip size of these pipettes is approximately ten times smaller than typical microinjection pipettes and rather than pressure pulses as delivery method, moderate DC electric fields are used to drive charged molecules out of the tip. Here, we show that this approach leads to a significantly higher survival rate of nanoinjected cells and that injection with nanopipettes has a significantly lower impact on the proliferation behavior of injected cells. Thus, we propose that injection with nanopipettes using electrophoretic delivery is an excellent alternative when working with valuable and rare living cells, such as primary cells or stem cells.

  11. Use of concomitant variceal embolization and prophylactic antiplatelet/anticoagulative in transjugular intrahepatic portosystemic shunting: A retrospective study of 182 cirrhotic portal hypertension patients.

    PubMed

    Tang, Yingmei; Zheng, Sheng; Yang, Jinhui; Bao, Weimin; Yang, Lihong; Li, Yingchun; Xu, Ying; Yang, Jing; Tong, Yuyun; Gao, Jinhang; Tang, Chengwei

    2017-12-01

    Transjugular intrahepatic portosystemic shunting (TIPS) is an effective treatment modality for refractory variceal bleeding and ascites in patients with cirrhotic portal hypertension (CPH). Variceal rebleeding and shunt dysfunction are major post-TIPS morbidities. This study aimed to retrospectively evaluate the effectiveness and safety of use of concomitant variceal embolization and prophylactic antiplatelet/anticoagulative in patients with CPH undergoing TIPS. Between October 2006 and October 2011, 182 patients with CPH were retrospectively and consecutively hospitalized for elective TIPS with Fluency stenting. Concomitant variceal embolization was given after establishing the shunt. Subcutaneous heparin was given after TIPS and replaced by oral clopidogrel, aspirin, or warfarin for at least 6 months. Main outcome measures included shunt patency rate, recurrence of CPH (rebleeding and/or refractory ascites), hepatic encephalopathy (HE) frequency, and post-TIPS survival. The cumulative primary patency rate was 96%, 94%, 90%, 88%, and 88% at 6, 12, 24, 36, and 48 months, respectively. Shunt stenosis occurred in 16 (9%) patients, gastrointestinal (GI) rebleeding in 32 (17.5%) patients, recurrence of refractory ascites 44 (48%) patients, HE in 42 (23%) patients, and death in 36 (20%) patients during the follow-up period. Use of concomitant variceal embolization and prophylactic antiplatelet/anticoagulative was associated with a favorable shunt patency and a low risk of GI rebleeding.

  12. Crack tip fracture toughness of base glasses for dental restoration glass-ceramics using crack opening displacements.

    PubMed

    Deubener, J; Höland, M; Höland, W; Janakiraman, N; Rheinberger, V M

    2011-10-01

    The critical stress intensity factor, also known as the crack tip toughness K(tip), was determined for three base glasses, which are used in the manufacture of glass-ceramics. The glasses included the base glass for a lithium disilicate glass-ceramic, the base glass for a fluoroapatite glass-ceramic and the base glass for a leucite glass-ceramic. These glass-ceramic are extensively used in the form of biomaterials in restorative dental medicine. The crack tip toughness was established by using crack opening displacement profiles under experimental conditions. The crack was produced by Vickers indentation. The crack tip toughness parameters determined for the three glass-ceramics differed quite significantly. The crack tip parameters of the lithium disilicate base glass and the leucite base glass were higher than that of the fluoroapatite base glass. This last material showed glass-in-glass phase separation. The discussion of the results clearly shows that the droplet glass phase is softer than the glass matrix. Therefore, the authors conclude that a direct relationship exists between the chemical nature of the glasses and the crack tip parameter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The tip/tilt tracking sensor based on multi-anode photo-multiplier tube

    NASA Astrophysics Data System (ADS)

    Ma, Xiao-yu; Rao, Chang-hui; Tian, Yu; Wei, Kai

    2013-09-01

    Based on the demands of high sensitivity, precision and frame rate of tip/tilt tracking sensors in acquisition, tracking and pointing (ATP) systems for satellite-ground optical communications, this paper proposes to employ the multiple-anode photo-multiplier tubes (MAPMTs) in tip/tilt tracking sensors. Meanwhile, an array-type photon-counting system was designed to meet the requirements of the tip/tilt tracking sensors. The experiment results show that the tip/tilt tracking sensors based on MAPMTs can achieve photon sensitivity and high frame rate as well as low noise.

  14. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2006-08-22

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  15. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V.; Wang, Chengpu

    2004-11-16

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  16. Theoretical study of carbon-based tips for scanning tunnelling microscopy.

    PubMed

    González, C; Abad, E; Dappe, Y J; Cuevas, J C

    2016-03-11

    Motivated by recent experiments, we present here a detailed theoretical analysis of the use of carbon-based conductive tips in scanning tunnelling microscopy. In particular, we employ ab initio methods based on density functional theory to explore a graphitic, an amorphous carbon and two diamond-like tips for imaging with a scanning tunnelling microscope (STM), and we compare them with standard metallic tips made of gold and tungsten. We investigate the performance of these tips in terms of the corrugation of the STM images acquired when scanning a single graphene sheet. Moreover, we analyse the impact of the tip-sample distance and show that it plays a fundamental role in the resolution and symmetry of the STM images. We also explore in depth how the adsorption of single atoms and molecules in the tip apexes modifies the STM images and demonstrate that, in general, it leads to an improved image resolution. The ensemble of our results provides strong evidence that carbon-based tips can significantly improve the resolution of STM images, as compared to more standard metallic tips, which may open a new line of research in scanning tunnelling microscopy.

  17. Method to improve the blade tip-timing accuracy of fiber bundle sensor under varying tip clearance

    NASA Astrophysics Data System (ADS)

    Duan, Fajie; Zhang, Jilong; Jiang, Jiajia; Guo, Haotian; Ye, Dechao

    2016-01-01

    Blade vibration measurement based on the blade tip-timing method has become an industry-standard procedure. Fiber bundle sensors are widely used for tip-timing measurement. However, the variation of clearance between the sensor and the blade will bring a tip-timing error to fiber bundle sensors due to the change in signal amplitude. This article presents methods based on software and hardware to reduce the error caused by the tip clearance change. The software method utilizes both the rising and falling edges of the tip-timing signal to determine the blade arrival time, and a calibration process suitable for asymmetric tip-timing signals is presented. The hardware method uses an automatic gain control circuit to stabilize the signal amplitude. Experiments are conducted and the results prove that both methods can effectively reduce the impact of tip clearance variation on the blade tip-timing and improve the accuracy of measurements.

  18. Within-patient temporal variance in MELD score and impact on survival prediction after TIPS creation.

    PubMed

    Gaba, Ron C; Shah, Kruti D; Couture, Patrick M; Parvinian, Ahmad; Minocha, Jeet; Knuttinen, M Grace; Bui, James T

    2013-01-01

    To assess within-patient temporal variability in Model for End Stage Liver Disease (MELD) scores and impact on outcome prognostication after transjugular intrahepatic portosystemic shunt (TIPS) creation. In this single institution retrospective study, MELD score was calculated in 68 patients (M:F = 42:26, mean age 55 years) at 4 pre-procedure time points (1, 2-6, 7-14, and 15-35 days) before TIPS creation. Medical record review was used to identify 30- and 90-day clinical outcomes. Within-patient variability in pre-procedure MELD scores was assessed using repeated measures analysis of variance, and the ability of MELD scores at different time points to predict post-TIPS mortality was evaluated by comparing area under receiver operating characteristic (AUROC) curves. TIPS were successfully created for ascites (n = 30), variceal hemorrhage (n = 29), hepatic hydrothorax (n = 8), and portal vein thrombosis (n = 1). Pre-TIPS MELD scores showed significant (P = 0.032) within-subject variance that approached ± 18.5%. Higher MELD scores demonstrated greater variability in sequential scores as compared to lower MELD scores. Overall 30- and 90-day patient mortality was 22% (15/67) and 38% (24/64). AUROC curves showed that most recent MELD scores performed on the day of TIPS had superior predictive capacity for 30- (0.876, P = 0.037) and 90-day (0.805 P = 0.020) mortality compared to MELD scores performed 2-6 or 7-14 days prior. In conclusion, MELD scores show within-patient variability over time, and scores calculated on the day of TIPS most accurately predict risk and should be used for patient selection and counseling.

  19. Experimental vitrification of human compacted morulae and early blastocysts using fine diameter plastic micropipettes.

    PubMed

    Cremades, N; Sousa, M; Silva, J; Viana, P; Sousa, S; Oliveira, C; Teixeira da Silva, J; Barros, A

    2004-02-01

    Vitrification of human blastocysts has been successfully applied using grids, straws and cryoloops. We assessed the survival rate of human compacted morulae and early blastocysts vitrified in pipette tips with a smaller inner diameter and solution volume than the previously described open pulled straw (OPS) method. Excess day 5 human embryos (n = 63) were experimentally vitrified in vessels. Embryos were incubated at 37 degrees C with sperm preparation medium (SPM) for 1 min, SPM + 7.5% ethylene glycol (EG)/dimethylsulphoxide (DMSO) for 3 min, and SPM + 16.5% EG + 16.5% DMSO + 0.67 mol/l sucrose for 25 s. They were then aspirated (0.5 microl) into a plastic micropipette tip (0.36 mm inner diameter), exposed to liquid nitrogen (LN(2)) vapour for 2 min before being placed into a pre-cooled cryotube, which was then closed and plunged into LN(2). Embryos were warmed and diluted using 0.33 mol/l and 0.2 mol/l sucrose. The survival rate for compacted morulae was 73% (22/30) and 82% (27/33) for early blastocysts. The survival rates of human compacted morulae and early blastocysts after vitrification with this simple technique are similar to those reported in the literature achieved by slow cooling and other vitrification protocols.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishchenko, L; Khan, M; Aizenberg, J

    Certain natural organisms use micro-patterned surface chemistry, or ice-nucleating species, to control water condensation and ice nucleation for survival under extreme conditions. As an analogy to these biological approaches, it is shown that functionalized, hydrophilic polymers and particles deposited on the tips of superhydrophobic posts induce precise topographical control over water condensation and freezing at the micrometer scale. A bottom-up deposition process is used to take advantage of the limited contact area of a non-wetting aqueous solution on a superhydrophobic surface. Hydrophilic polymer deposition on the tips of these geometrical structures allows spatial control over the nucleation, growth, and coalescencemore » of micrometer-scale water droplets. The hydrophilic tips nucleate water droplets with extremely uniform nucleation and growth rates, uniform sizes, an increased stability against coalescence, and asymmetric droplet morphologies. Control of freezing behavior is also demonstrated via deposition of ice-nucleating AgI nanoparticles on the tips of these structures. This combination of the hydrophilic polymer and AgI particles on the tips was used to achieve templating of ice nucleation at the micrometer scale. Preliminary results indicate that control over ice crystal size, spatial symmetry, and position might be possible with this method. This type of approach can serve as a platform for systematically analyzing micrometer-scale condensation and freezing phenomena, and as a model for natural systems.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishchenko, Lidiya; Khan, M.; Aizenberg, Joanna

    Certain natural organisms use micro-patterned surface chemistry, or ice-nucleating species, to control water condensation and ice nucleation for survival under extreme conditions. As an analogy to these biological approaches, it is shown that functionalized, hydrophilic polymers and particles deposited on the tips of superhydrophobic posts induce precise topographical control over water condensation and freezing at the micrometer scale. A bottom-up deposition process is used to take advantage of the limited contact area of a non-wetting aqueous solution on a superhydrophobic surface. Hydrophilic polymer deposition on the tips of these geometrical structures allows spatial control over the nucleation, growth, and coalescencemore » of micrometer-scale water droplets. The hydrophilic tips nucleate water droplets with extremely uniform nucleation and growth rates, uniform sizes, an increased stability against coalescence, and asymmetric droplet morphologies. Furthermore, control of freezing behavior is also demonstrated via deposition of ice-nucleating AgI nanoparticles on the tips of these structures. The combination of the hydrophilic polymer and AgI particles on the tips was used to achieve templating of ice nucleation at the micrometer scale. Preliminary results indicate that control over ice crystal size, spatial symmetry, and position might be possible with this method. This type of approach can serve as a platform for systematically analyzing micrometer-scale condensation and freezing phenomena, and as a model for natural systems.« less

  2. Graded-index fiber tip optical tweezers: numerical simulation and trapping experiment.

    PubMed

    Gong, Yuan; Ye, Ai-Yan; Wu, Yu; Rao, Yun-Jiang; Yao, Yao; Xiao, Song

    2013-07-01

    Optical fiber tweezers based on a graded-index multimode fiber (GIMMF) tip is proposed. Light propagation characteristics and gradient force distribution near the GIMMF tip are numerically investigated, which are further compared with that of optical fiber tips based on conventional single mode fibers. The simulated results indicated that by selecting optimal GIMMF length, the gradient force of the GIMMF tip tweezers is about 4 times higher than that of the SMF tip tweezers with a same shape. To prove the feasibility of such a new concept, optical trapping of yeast cells with a diameter of ~5 μm using the chemically-etched GIMMF tip is experimentally demonstrated and the trapping force is also calculated.

  3. Survival Guide for the First-Year Special Education Teacher. Revised Edition.

    ERIC Educational Resources Information Center

    Cohen, Mary Kemper; And Others

    This guidebook offers practical advice to support special education teachers in their first year of teaching. The first chapter, "Getting Ready To Teach," outlines preparations necessary before school begins, such as organizing the classroom and establishing planning and record-keeping strategies. "Tips for the Classroom" lists what teachers…

  4. 100 Library Lifesavers: A Survival Guide for School Library Media Specialists.

    ERIC Educational Resources Information Center

    Bacon, Pamela S.

    This book contains tips (author's suggestions), tools (ready-to-use lifesavers), and talk (quotes from practicing media specialists) for school librarians at all grade levels. A total of 100 lifesavers are included, covering areas such as inventory, motivation strategies, disciplinary approaches, library checkout, Internet searching, the traveling…

  5. Building Big with David Macaulay. Activity Guide.

    ERIC Educational Resources Information Center

    Sammons, James; Sammons, Fran Lyons; Curtis, Paul

    This activity guide is designed for educators and features suggestions for possible activity paths for different amounts of available time and survival tips for activity leaders. Each activity is divided into two sections--educator ideas and activity handouts. Activity sections include: (1) Foundations; (2) Bridges; (3) Domes; (4) Skyscrapers; (5)…

  6. New Job Blues--Survival Tips for the New Employee.

    ERIC Educational Resources Information Center

    Strauss, David J.

    1991-01-01

    The new student affairs employee is counseled about initial adjustment to a new job and institution. Recommendations are made for gathering information about the job and the available job-specific and general resources, establishing relationships with students and other professionals, and tending to personal well-being. (MSE)

  7. TIPS versus endoscopic therapy for variceal rebleeding in cirrhosis: A meta-analysis update.

    PubMed

    Zhang, Hu; Zhang, Hui; Li, Hui; Zhang, Heng; Zheng, Dan; Sun, Chen-Ming; Wu, Jie

    2017-08-01

    Endoscopic therapy (ET) is most common method for preventing variceal bleeding in cirrhosis, but the outcomes are not perfect. Recently, transjugular intrahepatic portosystemic shunt (TIPS) is introduced into clinical practice. However, the beneficial effects of TIPS compared to ET on cirrhotic patients is unknown. The aim of this study was to evaluate and compare the effects of TIPS with those of the most frequently used ET for prevention of variceal rebleeding (VRB) in liver cirrhosis. The Pub-Med, EMBASE, and Cochrane Library databases were searched from inception to February 2017. The primary study outcomes included the incidence of VRB, all-cause mortality, bleeding-related death, and the incidence of post-treatment hepatic encephalopathy (PTE). The odds ratios (ORs) with 95% confidence intervals (CI) were pooled for dichotomous variables. Subgroup analyses were performed. Twenty-four studies were eligible and they included 1120 subjects treated with TIPS and 1065 subjects treated with ET. Although there was no significant difference in survival and PTE, TIPS was superior to ET in decreasing the incidence of VRB (OR=0.27; 95% CI, 0.19-0.39, P<0.00001), and decreasing the incidence of bleeding-related death (OR=0.21; 95% CI, 0.13-0.32, P<0.00001). Subgroup analysis found a lower mortality (OR=0.48; 95% CI, 0.23-0.97; P=0.04) without any increased incidence of PTE (OR=1.37; 95% CI, 0.75-2.50; P=0.31) in the studies of a greater proportion (≥40%) of patients with Child-Pugh class C cirrhosis receiving TIPS, and TIPS with covered stent did not increase the risk of PTE compared to ET (OR=1.52, 95% CI =0.82-2.80, P=0.18). It was concluded that TIPS with covered stent might be considered the preferred choice of therapy in patients with severe liver disease for secondary prophylaxis.

  8. Educator's Guide to the National Aquarium in Baltimore.

    ERIC Educational Resources Information Center

    Chase, Valerie; And Others

    This guide is designed for educators planning trips to the National Aquarium in Baltimore. The first part provides tips on organizing a school visit and information on the aquarium lobby and exhibits. These exhibits are: (1) Maryland: Mountains to the Sea; (2) Surviving through Adaptation; (3) North Atlantic to the Pacific; (4) South American Rain…

  9. Four Tips for Surviving Standardized Testing

    ERIC Educational Resources Information Center

    Martin, Anna

    2012-01-01

    As the tenth anniversary of NCLB has come and gone, both new and experienced educators continue to wrestle yearly with the standardized testing culture that has pervaded the educational experience of nearly every American child and teacher. Despite the requests for waivers to exempt certain states from NCLB, the majority of students and their…

  10. The Paraprofessional's Handbook for Effective Support in Inclusive Classrooms

    ERIC Educational Resources Information Center

    Causton-Theoharis, Julie

    2009-01-01

    "What does a great paraprofessional need to know and do?" Find out in this survival guide, equally useful for the brand-new paraprofessional or the 20-year classroom veteran. Packed with friendly guidance, practical tips, and relatable first-person stories, this book reveals the best ways to provide effective, respectful services to students in…

  11. The Long Non-coding RNA HOTTIP Enhances Pancreatic Cancer Cell Proliferation, Survival and Migration

    EPA Science Inventory

    ABSTRACTHOTTIP is a long non-coding RNA (lncRNA) transcribed from the 5' tip of the HOXA locus and is associated with the polycomb repressor complex 2 (PRC2) and WD repeat containing protein 5 (WDR5)/mixed lineage leukemia 1 (MLL1) chromatin modifying complexes. HOTTIP is expres...

  12. Melatonin enhances the recovery of cryopreserved shoot tips of American elm (Ulmus Americana L.)

    USDA-ARS?s Scientific Manuscript database

    Climate change and the global migrations of people and goods have exposed trees to new diseases and abiotic challenges that threaten the survival of species. In vitro germplasm storage via cryopreservation is an effective tool to ensure conservation of tree species, but plant cells and tissues are e...

  13. Survival rate of eukaryotic cells following electrophoretic nanoinjection

    PubMed Central

    Simonis, Matthias; Hübner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-01

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for the delivery of molecules. The tip size of these pipettes is approximately ten times smaller than typical microinjection pipettes and rather than pressure pulses as delivery method, moderate DC electric fields are used to drive charged molecules out of the tip. Here, we show that this approach leads to a significantly higher survival rate of nanoinjected cells and that injection with nanopipettes has a significantly lower impact on the proliferation behavior of injected cells. Thus, we propose that injection with nanopipettes using electrophoretic delivery is an excellent alternative when working with valuable and rare living cells, such as primary cells or stem cells. PMID:28120926

  14. Mammalian Cell Encapsulation in Alginate Beads Using a Simple Stirred Vessel.

    PubMed

    Hoesli, Corinne A; Kiang, Roger L J; Raghuram, Kamini; Pedroza, René G; Markwick, Karen E; Colantuoni, Antonio M R; Piret, James M

    2017-06-29

    Cell encapsulation in alginate beads has been used for immobilized cell culture in vitro as well as for immunoisolation in vivo. Pancreatic islet encapsulation has been studied extensively as a means to increase islet survival in allogeneic or xenogeneic transplants. Alginate encapsulation is commonly achieved by nozzle extrusion and external gelation. Using this method, cell-containing alginate droplets formed at the tip of nozzles fall into a solution containing divalent cations that cause ionotropic alginate gelation as they diffuse into the droplets. The requirement for droplet formation at the nozzle tip limits the volumetric throughput and alginate concentration that can be achieved. This video describes a scalable emulsification method to encapsulate mammalian cells in 0.5% to 10% alginate with 70% to 90% cell survival. By this alternative method, alginate droplets containing cells and calcium carbonate are emulsified in mineral oil, followed by a decrease in pH leading to internal calcium release and ionotropic alginate gelation. The current method allows the production of alginate beads within 20 min of emulsification. The equipment required for the encapsulation step consists in simple stirred vessels available to most laboratories.

  15. Surgery for Locally Recurrent Rectal Cancer: Tips, Tricks, and Pitfalls.

    PubMed

    Warrier, Satish K; Heriot, Alexander G; Lynch, Andrew Craig

    2016-06-01

    Rectal cancer can recur locally in up to 10% of the patients who undergo definitive resection for their primary cancer. Surgical salvage is considered appropriate in the curative setting as well as select cases with palliative intent. Disease-free survival following salvage resection is dependent upon achieving an R0 resection margin. A clear understanding of applied surgical anatomy, appropriate preoperative planning, and a multidisciplinary approach to aggressive soft tissue, bony, and vascular resection with appropriate reconstruction is necessary. Technical tips, tricks, and pitfalls that may assist in managing these cancers are discussed and the roles of additional boost radiation and intraoperative radiation therapy in the management of such cancers are also discussed.

  16. Efficient regeneration of sorghum, Sorghum bicolor (L.) Moench, from shoot-tip explant.

    PubMed

    Syamala, D; Devi, Prathibha

    2003-12-01

    Novel protocols for production of multiple shoot-tip clumps and somatic embryos of Sorghum bicolor (L.) Moench were developed with long-term goal of crop improvement through genetic transformation. Multiple shoot-tip clumps were developed in vitro from shoot-tip explant of one-week old seedling, cultured on MS medium containing only BA (0.5, 1 or 2 mg/l) or both BA (1 or 2 mg/l) and 2,4-D (0.5 mg/l) with bi-weekly subculture. Somatic embryos were directly produced on the enlarged dome shaped growing structures that developed from the shoot-tips of one-week old seedling explants (without any callus formation) when cultured on MS medium supplemented with both 2,4-D (0.5 mg/l) and BA (0.5 mg/l). However, the supplementation of MS medium with only 2,4-D (0.5 mg/l) induced compact callus without any plantlet regeneration. Each multiple shoot-clump was capable of regenerating more than 80 shoots via an intensive differentiation of both axillary and adventitious shoot buds, the somatic embryos were capable of 90% germination, plant conversion and regeneration. The regenerated shoots could be efficiently rooted on MS medium containing indole-3-butyric acid (IBA 1 mg/l). The plants were successfully transplanted to glasshouse and grown to maturity with a survival rate of 98%. Morphogenetic response of the explants was found to be genotypically independent.

  17. Maternal vaccination with a fimbrial tip adhesin and passive protection of neonatal mice against lethal human enterotoxigenic Escherichia coli challenge.

    PubMed

    Luiz, Wilson B; Rodrigues, Juliana F; Crabb, Joseph H; Savarino, Stephen J; Ferreira, Luis C S

    2015-12-01

    Globally, enterotoxigenic Escherichia coli (ETEC) is a leading cause of childhood and travelers' diarrhea, for which an effective vaccine is needed. Prevalent intestinal colonization factors (CFs) such as CFA/I fimbriae and heat-labile enterotoxin (LT) are important virulence factors and protective antigens. We tested the hypothesis that donor strand-complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, is a protective antigen, using a lethal neonatal mouse ETEC challenge model and passive dam vaccination. For CFA/I-ETEC strain H10407, which has been extensively studied in volunteers, an inoculum of 2 × 10(7) bacteria resulted in 50% lethal doses (LD50) in neonatal DBA/2 mice. Vaccination of female DBA/2 mice with CFA/I fimbriae or dscCfaE, each given with a genetically attenuated LT adjuvant (LTK63) by intranasal or orogastric delivery, induced high antigen-specific serum IgG and fecal IgA titers and detectable milk IgA responses. Neonates born to and suckled by dams antenatally vaccinated with each of these four regimens showed 78 to 93% survival after a 20× LD50 challenge with H10407, compared to 100% mortality in pups from dams vaccinated with sham vaccine or LTK63 only. Crossover experiments showed that high pup survival rates after ETEC challenge were associated with suckling but not birthing from vaccinated dams, suggesting that vaccine-specific milk antibodies are protective. In corroboration, preincubation of the ETEC inoculum with antiadhesin and antifimbrial bovine colostral antibodies conferred a dose-dependent increase in pup survival after challenge. These findings indicate that the dscCfaE fimbrial tip adhesin serves as a protective passive vaccine antigen in this small animal model and merits further evaluation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. The glycan-binding protein galectin-1 controls survival of epithelial cells along the crypt-villus axis of small intestine.

    PubMed

    Muglia, C; Mercer, N; Toscano, M A; Schattner, M; Pozner, R; Cerliani, J P; Gobbi, R Papa; Rabinovich, G A; Docena, G H

    2011-05-26

    Intestinal epithelial cells serve as mechanical barriers and active components of the mucosal immune system. These cells migrate from the crypt to the tip of the villus, where different stimuli can differentially affect their survival. Here we investigated, using in vitro and in vivo strategies, the role of galectin-1 (Gal-1), an evolutionarily conserved glycan-binding protein, in modulating the survival of human and mouse enterocytes. Both Gal-1 and its specific glyco-receptors were broadly expressed in small bowel enterocytes. Exogenous Gal-1 reduced the viability of enterocytes through apoptotic mechanisms involving activation of both caspase and mitochondrial pathways. Consistent with these findings, apoptotic cells were mainly detected at the tip of the villi, following administration of Gal-1. Moreover, Gal-1-deficient (Lgals1(-/-)) mice showed longer villi compared with their wild-type counterparts in vivo. In an experimental model of starvation, fasted wild-type mice displayed reduced villi and lower intestinal weight compared with Lgals1(-/-) mutant mice, an effect reflected by changes in the frequency of enterocyte apoptosis. Of note, human small bowel enterocytes were also prone to this pro-apoptotic effect. Thus, Gal-1 is broadly expressed in mucosal tissue and influences the viability of human and mouse enterocytes, an effect which might influence the migration of these cells from the crypt, the integrity of the villus and the epithelial barrier function.

  19. Field-assisted nanopatterning of metals, metal oxides and metal salts

    NASA Astrophysics Data System (ADS)

    Liu, Jun-Fu; Miller, Glen P.

    2009-02-01

    The tip-based nanofabrication method called field-assisted nanopatterning or FAN has now been extended to the transfer of metals, metal oxides and metal salts onto various receiving substrates including highly ordered pyrolytic graphite, passivated gold and indium-tin oxide. Standard atomic force microscope tips were first dip-coated using suspensions of inorganic compounds in solvent. The films prepared in this manner were non-uniform and contained inorganic nanoparticles. Tip-based nanopatterning on chosen substrates was conducted under high electric field conditions. The same tip was used for both nanofabrication and imaging. Arbitrary patterns were formed with dimensions that ranged from tens of microns to sub-20 nm and were controlled by tuning the tip bias during fabrication. Most tip-based nanopatterning techniques are limited in terms of the type of species that can be deposited and the type of substrates onto which the deposition occurs. With the successful deposition of inorganic species reported here, FAN is demonstrated to be a truly versatile tip-based nanofabrication technique that is useful for the deposition of a wide variety of both organic and inorganic species including small molecules, large molecules and polymers.

  20. Micro-cone targets for producing high energy and low divergence particle beams

    DOEpatents

    Le Galloudec, Nathalie

    2013-09-10

    The present invention relates to micro-cone targets for producing high energy and low divergence particle beams. In one embodiment, the micro-cone target includes a substantially cone-shaped body including an outer surface, an inner surface, a generally flat and round, open-ended base, and a tip defining an apex. The cone-shaped body tapers along its length from the generally flat and round, open-ended base to the tip defining the apex. In addition, the outer surface and the inner surface connect the base to the tip, and the tip curves inwardly to define an outer surface that is concave, which is bounded by a rim formed at a juncture where the outer surface meets the tip.

  1. SRF selectively controls tip cell invasive behavior in angiogenesis.

    PubMed

    Franco, Claudio A; Blanc, Jocelyne; Parlakian, Ara; Blanco, Raquel; Aspalter, Irene M; Kazakova, Natalia; Diguet, Nicolas; Mylonas, Elena; Gao-Li, Jacqueline; Vaahtokari, Anne; Penard-Lacronique, Virgine; Fruttiger, Markus; Rosewell, Ian; Mericskay, Mathias; Gerhardt, Holger; Li, Zhenlin

    2013-06-01

    Efficient angiogenic sprouting is essential for embryonic, postnatal and tumor development. Serum response factor (SRF) is known to be important for embryonic vascular development. Here, we studied the effect of inducible endothelial-specific deletion of Srf in postnatal and adult mice. We find that endothelial SRF activity is vital for postnatal growth and survival, and is equally required for developmental and pathological angiogenesis, including during tumor growth. Our results demonstrate that SRF is selectively required for endothelial filopodia formation and cell contractility during sprouting angiogenesis, but seems dispensable for vascular remodeling. At the molecular level, we observe that vascular endothelial growth factor A induces nuclear accumulation of myocardin-related transcription factors (MRTFs) and regulates MRTF/SRF-dependent target genes including Myl9, which is important for endothelial cell migration in vitro. We conclude that SRF has a unique function in regulating migratory tip cell behavior during sprouting angiogenesis. We hypothesize that targeting the SRF pathway could provide an opportunity to selectively target tip cell filopodia-driven angiogenesis to restrict tumor growth.

  2. [TIPS

    PubMed

    Brazzini, Augusto; Carrillo, Alvaro; Cantella, Raúl

    1998-01-01

    Esophageal hemorrage due to variceal bleeding in cirrhotic patients represents a serious problem for the physician in charge, especially in this country where liver transplants are inexistent; and also, it is a drama for the patient and its familly. We propose here the Transjugular Intrahepatic Portosystemic Shunt (TIPS). Twenty one patients were part of a study where 23 TIPS were placed, observing an immediate improval in 18 of them, a rebleeding in 2, within the first 24 and 48 hours. An embolization of the coronary veins was performed in the procedure in 15 patients, and a second intervention due to rebleeding in 2 of them. In the latter patients, the embolization of the coronary veins was rutinary.The survival of the patients has been outstanding.We conclude that this interventional procedure is a worldwide reality in the treatment of esophageal hemorrage by variceal bleeding due to portal hipertension, and it does not cut down the probability of liver transplant, unfortunately inexistent in our country. This procedure results in a low morbimortality with an adequate quality of life.

  3. Carbon Nanotube Based Nano-Electro-Mechanical Systems (NEMS)

    NASA Technical Reports Server (NTRS)

    Han, Jie; Dai, Hongjie; Saini, Subhash

    1998-01-01

    Carbon nanotubes (CNT) enable nanoelectromechanical systems (NEMS) because of their inherent nanostructure, intrinsic electric conductivity and mechanical resilience. The collaborative work between Stanford (experiment) and NASA Ames (theory and simulation) has made progress in two types of CNT based NEMS for nanoelectronics and sensor applications. The CNT tipped scanning probe microscopy (SPM) is a NEMS in which CNT tips are used for nanoscale probing, imaging and manipulating. It showed great improvement in probing surfaces and biological systems over conventional tips. We have recently applied it to write (lithography) and read (image) uniform SiO2 lines on large Si surface area at speed up to 0.5 mm per s. Preliminary work using approximately 10 nm multiwall nanotube tips produced approximately 10 nm structures and showed that the CNT tips didn't wear down when crashed as conventional tips often do. This presents a solution to the long standing tip-wear problem in SPM nanolithography. We have also explored potential of CNT tips in imaging DNA in water. Preliminary experiment using 10 nm CNT tips reached 5 nm resolution. The 1 nm nanolithography and 1 nm DNA imaging can be expected by using approximately 1 nm CNT tips. In contrast to CNT tipped SPM, we also fabricated CNT devices on silicon wafer in which CNTs connect patterned metallic lines on SiO2/Si by a simple chemical vapor deposition process. Using conventional lithography for silicon wafer, we have been able to obtain CNT based transistors and sensors. Investigations of the CNT NEMS as physical, biological and chemical sensors are in progress and will be discussed.

  4. Super Searchers on Madison Avenue: Top Advertising and Marketing Professionals Share Their Online Research Strategies. Super Searchers, Volume XI.

    ERIC Educational Resources Information Center

    Villamora, Grace Avellana

    This book presents interviews with 13 research professionals that contain favorite online search strategies and research tools, anecdotes, "how to" survival tips, and best-practice examples. The appendix lists referenced sites and sources in the following categories: (1) online resources; (2) books, annuals, newsletters, magazines, and…

  5. 500 Questions and Answers for New Teachers: A Survival Guide.

    ERIC Educational Resources Information Center

    Torreano, Joanna Montagna

    This book presents tips, in the form of questions and answers, to help beginning teachers feel less isolated. There are six sections. "Getting Your Act Together" includes "What To Do Before School Opens"; "The First Day of School"; "Open House"; "Goal Setting"; and "Last Day of School.""Getting To Know You" includes "Administrators"; "Board of…

  6. Using survival analysis for assessing resistance to Phytophthora lateralis in Port-Orford-Cedar families

    Treesearch

    Sylvia R. Mori; Richard A. Sniezko; Angelia Kegley; Jim Hamlin

    2012-01-01

    In a greenhouse trial to examine genetic resistance among seedling families (half-sib, full-sib, and selfed) of Port-Orford-cedar (Chamaecyparis lawsoniana (A. Murr.) Parl.) to the root pathogen Phytophthora lateralis, the root tips of seedlings were inoculated, and the subsequent mortality was followed over a 3 year period....

  7. Ectomycorrihizae of Table Mountain Pine and the Influence of Prescribed Burning on their Survival

    Treesearch

    Lisa E. Ellis; Thomas A. Waldrop; Frank H. Tainter

    2002-01-01

    High-intensity prescribed fires have been recommended to regenerate Table Mountain pine (Pinus pungens). However, tests of these burns produced few seedlings, possibly due to soil sterilization. This study examined abundance of mycorrhizal root tips in the field after a high-intensity fire and in the laboratory after exposing rooting media to...

  8. Take Charge of Your Career

    ERIC Educational Resources Information Center

    Brown, Marshall A.

    2013-01-01

    Today's work world is full of uncertainty. Every day, people hear about another organization going out of business, downsizing, or rightsizing. To prepare for these uncertain times, one must take charge of their own career. This article presents some tips for surviving in today's world of work: (1) Be self-managing; (2) Know what you…

  9. Comparing deflection measurements of a magnetically steerable catheter using optical imaging and MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lillaney, Prasheel, E-mail: Prasheel.Lillaney@ucsf.edu; Caton, Curtis; Martin, Alastair J.

    2014-02-15

    Purpose: Magnetic resonance imaging (MRI) is an emerging modality for interventional radiology, giving clinicians another tool for minimally invasive image-guided interventional procedures. Difficulties associated with endovascular catheter navigation using MRI guidance led to the development of a magnetically steerable catheter. The focus of this study was to mechanically characterize deflections of two different prototypes of the magnetically steerable catheterin vitro to better understand their efficacy. Methods: A mathematical model for deflection of the magnetically steerable catheter is formulated based on the principle that at equilibrium the mechanical and magnetic torques are equal to each other. Furthermore, two different image basedmore » methods for empirically measuring the catheter deflection angle are presented. The first, referred to as the absolute tip method, measures the angle of the line that is tangential to the catheter tip. The second, referred to the base to tip method, is an approximation that is used when it is not possible to measure the angle of the tangent line. Optical images of the catheter deflection are analyzed using the absolute tip method to quantitatively validate the predicted deflections from the mathematical model. Optical images of the catheter deflection are also analyzed using the base to tip method to quantitatively determine the differences between the absolute tip and base to tip methods. Finally, the optical images are compared to MR images using the base to tip method to determine the accuracy of measuring the catheter deflection using MR. Results: The optical catheter deflection angles measured for both catheter prototypes using the absolute tip method fit very well to the mathematical model (R{sup 2} = 0.91 and 0.86 for each prototype, respectively). It was found that the angles measured using the base to tip method were consistently smaller than those measured using the absolute tip method. The deflection angles measured using optical data did not demonstrate a significant difference from the angles measured using MR image data when compared using the base to tip method. Conclusions: This study validates the theoretical description of the magnetically steerable catheter, while also giving insight into different methods and modalities for measuring the deflection angles of the prototype catheters. These results can be used to mechanically model future iterations of the design. Quantifying the difference between the different methods for measuring catheter deflection will be important when making deflection measurements in future studies. Finally, MR images can be used to reliably measure deflection angles since there is no significant difference between the MR and optical measurements.« less

  10. Compound parabolic concentrator optical fiber tip for FRET-based fluorescent sensors

    NASA Astrophysics Data System (ADS)

    Ul Hassan, Hafeez; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-09-01

    The Compound Parabolic Concentrator (CPC) optical fiber tip shape has been proposed for intensity based fluorescent sensors working on the principle of FRET (Förster Resonance Energy Transfer). A simple numerical Zemax model has been used to optimize the CPC tip geometry for a step-index multimode polymer optical fiber for an excitation and emission wavelength of 550 nm and 650nm, respectively. The model suggests an increase of a factor of 1.6 to 4 in the collected fluorescent power for an ideal CPC tip, as compared to the plane-cut fiber tip for fiber lengths between 5 and 45mm.

  11. A review of turbine blade tip heat transfer.

    PubMed

    Bunker, R S

    2001-05-01

    This paper presents a review of the publicly available knowledge base concerning turbine blade tip heat transfer, from the early fundamental research which laid the foundations of our knowledge, to current experimental and numerical studies utilizing engine-scaled blade cascades and turbine rigs. Focus is placed on high-pressure, high-temperature axial-turbine blade tips, which are prevalent in the majority of today's aircraft engines and power generating turbines. The state of our current understanding of turbine blade tip heat transfer is in the transitional phase between fundamentals supported by engine-based experience, and the ability to a priori correctly predict and efficiently design blade tips for engine service.

  12. Investigation of the shape transferability of nanoscale multi-tip diamond tools in the diamond turning of nanostructures

    NASA Astrophysics Data System (ADS)

    Luo, Xichun; Tong, Zhen; Liang, Yingchun

    2014-12-01

    In this article, the shape transferability of using nanoscale multi-tip diamond tools in the diamond turning for scale-up manufacturing of nanostructures has been demonstrated. Atomistic multi-tip diamond tool models were built with different tool geometries in terms of the difference in the tip cross-sectional shape, tip angle, and the feature of tool tip configuration, to determine their effect on the applied forces and the machined nano-groove geometries. The quality of machined nanostructures was characterized by the thickness of the deformed layers and the dimensional accuracy achieved. Simulation results show that diamond turning using nanoscale multi-tip tools offers tremendous shape transferability in machining nanostructures. Both periodic and non-periodic nano-grooves with different cross-sectional shapes can be successfully fabricated using the multi-tip tools. A hypothesis of minimum designed ratio of tool tip distance to tip base width (L/Wf) of the nanoscale multi-tip diamond tool for the high precision machining of nanostructures was proposed based on the analytical study of the quality of the nanostructures fabricated using different types of the multi-tip tools. Nanometric cutting trials using nanoscale multi-tip diamond tools (different in L/Wf) fabricated by focused ion beam (FIB) were then conducted to verify the hypothesis. The investigations done in this work imply the potential of using the nanoscale multi-tip diamond tool for the deterministic fabrication of period and non-periodic nanostructures, which opens up the feasibility of using the process as a versatile manufacturing technique in nanotechnology.

  13. Fiber-optic laser Doppler turbine tip clearance probe

    NASA Astrophysics Data System (ADS)

    Büttner, Lars; Pfister, Thorsten; Czarske, Jürgen

    2006-05-01

    A laser Doppler based method for in situ single blade tip clearance measurements of turbomachines with high precision is presented for what we believe is the first time. The sensor is based on two superposed fanlike interference fringe systems generated by two laser wavelengths from a fiber-coupled, passive, and therefore compact measurement head employing diffractive optics. Tip clearance measurements at a transonic centrifugal compressor performed during operation at 50,000 rpm (833 Hz, 586 m/s tip speed) are reported. At these speeds the measured uncertainty of the tip position was less than 20 μm, a factor of 2 more accurate than that of capacitive probes. The sensor offers great potential for in situ and online high-precision tip clearance measurements of metallic and nonmetallic turbine blades.

  14. Fiber-optic laser Doppler turbine tip clearance probe.

    PubMed

    Büttner, Lars; Pfister, Thorsten; Czarske, Jürgen

    2006-05-01

    A laser Doppler based method for in situ single blade tip clearance measurements of turbomachines with high precision is presented for what we believe is the first time. The sensor is based on two superposed fanlike interference fringe systems generated by two laser wavelengths from a fiber-coupled, passive, and therefore compact measurement head employing diffractive optics. Tip clearance measurements at a transonic centrifugal compressor performed during operation at 50,000 rpm (833 Hz, 586 m/s tip speed) are reported. At these speeds the measured uncertainty of the tip position was less than 20 microm, a factor of 2 more accurate than that of capacitive probes. The sensor offers great potential for in situ and online high-precision tip clearance measurements of metallic and nonmetallic turbine blades.

  15. Improvement of banana cv. Rasthali (Silk, AAB) against Fusarium oxysporum f.sp. cubense (VCG 0124/5) through induced mutagenesis: Determination of LD50 specific to mutagen, explants, toxins and in vitro and in vivo screening for Fusarium wilt resistance.

    PubMed

    Saraswathi, M S; Kannan, G; Uma, S; Thangavelu, R; Backiyarani, S

    2016-05-01

    Shoot tips and in vitro grown proliferating buds of banana cv. Rasthali (Silk, AAB) were treated with various concentrations and durations of chemical mutagens viz., EMS, NaN3 and DES. LD50 for shoot tips based on 50% reduction in fresh weight was determined as 2% for 3 h, 0.02% for 5 h and 0.15% for 5 h, while for proliferating buds, they were 0.6% for 30 min, 0.01% for 2 h and 0.06% for 2 h for the mutagens EMS, NaN3 and DES, respectively. Subsequently, the mutated explants were screened in vitro against fusarium wilt using selection agents like fusaric acid and culture filtrate. LD50 for in vitro selection agents calculated based on 50% survival of explants was 0.050 mM and 7% for fusaric acid and culture filtrate, respectively and beyond which a rapid decline in growth was observed. This was followed by pot screening which led to the identification of three putative resistant mutants with an internal disease score of 1 (corm completely clean, no vascular discolouration). The putative mutants identified in the present study have also been mass multiplied in vitro.

  16. Teaching Elementary School Students to Be Effective Writers: Instructional Tips Based on the Educator's Practice Guide

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2017

    2017-01-01

    Instructional tips help educators carry out recommendations contained in IES Educator's Practice Guides. The tips, based on a practice guide authored by Steve Graham, Alisha Bollinger, Carol Booth Olson, Catherine D'Aoust, Charles MacArthur, Deborah McCutchen, and Natalie Olinghouse, translate these recommendations into actionable approaches that…

  17. Wind Tunnel Evaluation of a Model Helicopter Main-Rotor Blade With Slotted Airfoils at the Tip

    NASA Technical Reports Server (NTRS)

    Noonan, Kevin W.; Yeager, William T., Jr.; Singleton, Jeffrey D.; Wilbur, Matthew L.; Mirick, Paul H.

    2001-01-01

    Data for rotors using unconventional airfoils are of interest to permit an evaluation of this technology's capability to meet the U.S. Army's need for increased helicopter mission effectiveness and improved safety and survivability. Thus, an experimental investigation was conducted in the Langley Transonic Dynamics Tunnel (TDT) to evaluate the effect of using slotted airfoils in the rotor blade tip region (85 to 100 percent radius) on rotor aerodynamic performance and loads. Four rotor configurations were tested in forward flight at advance ratios from 0.15 to 0.45 and in hover in-ground effect. The hover tip Mach number was 0.627, which is representative of a design point of 4000-ft geometric altitude and a temperature of 95 F. The baseline rotor configuration had a conventional single-element airfoil in the tip region. A second rotor configuration had a forward-slotted airfoil with a -6 deg slat, a third configuration had a forward-slotted airfoil with a -10 slat, and a fourth configuration had an aft-slotted airfoil with a 3 deg flap (trailing edge down). The results of this investigation indicate that the -6 deg slat configuration offers some performance and loads benefits over the other three configurations.

  18. Elimination of two viruses which interact synergistically from sweetpotato by shoot tip culture and cryotherapy.

    PubMed

    Wang, Q C; Valkonen, J P T

    2008-12-01

    Sweet potato chlorotic stunt virus (SPCSV; Closteroviridae) and Sweet potato feathery mottle virus (SPFMV; Potyviridae) interact synergistically and cause severe diseases in co-infected sweetpotato plants (Ipomoea batatas). Sweetpotato is propagated vegetatively and virus-free planting materials are pivotal for sustainable production. Using cryotherapy, SPCSV and SPCSV were eliminated from all treated single-virus-infected and co-infected shoot tips irrespective of size (0.5-1.5mm including 2-4 leaf primordia). While shoot tip culture also eliminated SPCSV, elimination of SPFMV failed in 90-93% of the largest shoot tips (1.5mm) using this technique. Virus distribution to different leaf primordia and tissues within leaf primordia in the shoot apex and petioles was not altered by co-infection of the viruses in the fully virus-susceptible sweetpotato genotype used. SPFMV was immunolocalized to all types of tissues and up to the fourth-youngest leaf primordium. In contrast, SPCSV was detected only in the phloem and up to the fifth leaf primordium. Because only cells in the apical dome of the meristem and the two first leaf primordia survived cryotherapy, all data taken together could explain the results of virus elimination. The simple and efficient cryotherapy protocol developed for virus elimination can also be used for preparation of sweetpotato materials for long-term preservation.

  19. Effect of technical parameters on transjugular intrahepatic portosystemic shunts utilizing stent grafts.

    PubMed

    Andring, Brice; Kalva, Sanjeeva P; Sutphin, Patrick; Srinivasa, Rajiv; Anene, Alvin; Burrell, Marc; Xi, Yin; Pillai, Anil K

    2015-07-14

    To assess the effect of technical parameters on outcomes of transjugular intrahepatic portosystemic shunt (TIPS) created using a stent graft. The medical records of 68 patients who underwent TIPS placement with a stent graft from 2008 to 2014 were reviewed by two radiologists blinded to the patient outcomes. Digital Subtraction Angiographic images with a measuring catheter in two orthogonal planes was used to determine the TIPS stent-to-inferior vena cava distance (SIVCD), hepatic vein to parenchymal tract angle (HVTA), portal vein to parenchymal tract angle (PVTA), and the accessed portal vein. The length and diameter of the TIPS stent and the use of concurrent variceal embolization were recorded by review of the patient's procedure note. Data on re-intervention within 30 d of TIPS placement, recurrence of symptoms, and survival were collected through the patient's chart. Cox proportional regression analysis was performed to assess the effect of these technical parameters on primary patency of TIPS, time to recurrence of symptoms, and all-cause mortality. There was no significant association between the SIVCD and primary patency (P = 0.23), time to recurrence of symptoms (P = 0.83), or all-cause mortality (P = 0.18). The 3, 6, and 12-mo primary patency rates for a SIVCD ≥ 1.5 cm were 82.4%, 64.7%, and 50.3% compared to 89.3%, 83.8%, and 60.6% for a SIVCD of < 1.5 cm (P = 0.29). The median time to stenosis for a SIVCD of ≥ 1.5 cm was 19.1 mo vs 15.1 mo for a SIVCD of < 1.5 cm (P = 0.48). There was no significant association between the following factors and primary patency: HVTA (P = 0.99), PVTA (P = 0.65), accessed portal vein (P = 0.35), TIPS stent diameter (P = 0.93), TIPS stent length (P = 0.48), concurrent variceal embolization (P = 0.13) and reinterventions within 30 d (P = 0.24). Furthermore, there was no correlation between these technical parameters and time to recurrence of symptoms or all-cause mortality. Recurrence of symptoms was associated with stent graft stenosis (P = 0.03). TIPS stent-to-caval distance and other parameters have no significant effect on primary patency, time to recurrence of symptoms, or all-cause mortality following TIPS with a stent-graft.

  20. Segmental liver ischemia/infarction after elective transjugular intrahepatic portosystemic shunt creation: clinical outcomes in 10 patients.

    PubMed

    Lopera, Jorge E; Katabathina, Venkata; Bosworth, Brian; Garg, Deepak; Kroma, Ghazwan; Garza-Berlanga, Andres; Suri, Rajeev; Wholey, Michael

    2015-06-01

    To determine the clinical significance and potential mechanisms of segmental liver ischemia and infarction following elective creation of a transjugular intrahepatic portosystemic shunt (TIPS). A retrospective review of 374 elective TIPS creations between March 2006 and September 2014 was performed, yielding 77 contrast-enhanced scans for review. Patients with imaging evidence of segmental perfusion defects were identified. Model for End-stage Liver Disease scores, liver volume, and percentage of liver ischemia/infarct were calculated. Clinical outcomes after TIPS creation were reviewed. Ten patients showed segmental liver ischemia/infarction on contrast-enhanced imaging after elective TIPS creation. Associated imaging findings included thrombosis of the posterior division (n = 7) and anterior division (n = 3) of the right portal vein (PV). The right hepatic vein was thrombosed in 5 patients, as was the middle hepatic vein in 3 and the left hepatic vein in 1. One patient had acute thrombosis of the shunt and main PV. Three patients developed acute liver failure: 2 died within 30 days and 1 required emergent liver transplantation. One patient died of acute renal failure 20 days after TIPS creation. A large infarct in a transplant recipient resulted in biloma formation. Five patients survived without additional interventions with follow-up times ranging from 3 months to 5 years. Segmental perfusion defects are not an uncommon imaging finding after elective TIPS creation. Segmental ischemia was associated with thrombosis of major branches of the PVs and often of the hepatic veins. Clinical outcomes varied significantly, from transient problems to acute liver failure with high mortality rates. Copyright © 2015 SIR. Published by Elsevier Inc. All rights reserved.

  1. The glycan-binding protein galectin-1 controls survival of epithelial cells along the crypt-villus axis of small intestine

    PubMed Central

    Muglia, C; Mercer, N; Toscano, M A; Schattner, M; Pozner, R; Cerliani, J P; Gobbi, R Papa; Rabinovich, G A; Docena, G H

    2011-01-01

    Intestinal epithelial cells serve as mechanical barriers and active components of the mucosal immune system. These cells migrate from the crypt to the tip of the villus, where different stimuli can differentially affect their survival. Here we investigated, using in vitro and in vivo strategies, the role of galectin-1 (Gal-1), an evolutionarily conserved glycan-binding protein, in modulating the survival of human and mouse enterocytes. Both Gal-1 and its specific glyco-receptors were broadly expressed in small bowel enterocytes. Exogenous Gal-1 reduced the viability of enterocytes through apoptotic mechanisms involving activation of both caspase and mitochondrial pathways. Consistent with these findings, apoptotic cells were mainly detected at the tip of the villi, following administration of Gal-1. Moreover, Gal-1-deficient (Lgals1−/−) mice showed longer villi compared with their wild-type counterparts in vivo. In an experimental model of starvation, fasted wild-type mice displayed reduced villi and lower intestinal weight compared with Lgals1−/− mutant mice, an effect reflected by changes in the frequency of enterocyte apoptosis. Of note, human small bowel enterocytes were also prone to this pro-apoptotic effect. Thus, Gal-1 is broadly expressed in mucosal tissue and influences the viability of human and mouse enterocytes, an effect which might influence the migration of these cells from the crypt, the integrity of the villus and the epithelial barrier function. PMID:21614093

  2. Charge gradient microscopy

    DOEpatents

    Roelofs, Andreas; Hong, Seungbum

    2018-02-06

    A method for rapid imaging of a material specimen includes positioning a tip to contact the material specimen, and applying a force to a surface of the material specimen via the tip. In addition, the method includes moving the tip across the surface of the material specimen while removing electrical charge therefrom, generating a signal produced by contact between the tip and the surface, and detecting, based on the data, the removed electrical charge induced through the tip during movement of the tip across the surface. The method further includes measuring the detected electrical charge.

  3. Motorized manipulator for positioning a TEM specimen

    DOEpatents

    Schmid, Andreas Karl; Andresen, Nord

    2010-12-14

    The invention relates to a motorized manipulator for positioning a TEM specimen holder with sub-micron resolution parallel to a y-z plane and rotating the specimen holder in the y-z plane, the manipulator comprising a base (2), and attachment means (30) for attaching the specimen holder to the manipulator, characterized in that the manipulator further comprises at least three nano-actuators (3.sup.a, 3.sup.b, 3.sup.c) mounted on the base, each nano-actuator showing a tip (4.sup.a, 4.sup.b, 4.sup.c), the at least three tips defining the y-z plane, each tip capable of moving with respect to the base in the y-z plane; a platform (5) in contact with the tips of the nano-actuators; and clamping means (6) for pressing the platform against the tips of the nano-actuators; as a result of which the nano-actuators can rotate the platform with respect to the base in the y-z plane and translate the platform parallel to the y-z plane.

  4. Parasitoids of the nantucket pine tip moth (Lepidoptera: Tortricidae) in the coastal plain of Georgia

    Treesearch

    Kenneth W. McCravy; C. Wayne Berisford

    2000-01-01

    Parasitism of the Nantucket pine tip moth, Rhyacionia frustrana (Comstock), was studied for four consecutive generations in the Georgia coastal plain by collecting tip moth-infested shoots and rearing adult moths and parasitoids. Nineteen species of parasitoids were collected. Based on numbers of emerging adults, the overall tip moth parasitism rate...

  5. Probabilistic Analysis and Design of a Raked Wing Tip for a Commercial Transport

    NASA Technical Reports Server (NTRS)

    Mason Brian H.; Chen, Tzi-Kang; Padula, Sharon L.; Ransom, Jonathan B.; Stroud, W. Jefferson

    2008-01-01

    An approach for conducting reliability-based design and optimization (RBDO) of a Boeing 767 raked wing tip (RWT) is presented. The goal is to evaluate the benefits of RBDO for design of an aircraft substructure. A finite-element (FE) model that includes eight critical static load cases is used to evaluate the response of the wing tip. Thirteen design variables that describe the thickness of the composite skins and stiffeners are selected to minimize the weight of the wing tip. A strain-based margin of safety is used to evaluate the performance of the structure. The randomness in the load scale factor and in the strain limits is considered. Of the 13 variables, the wing-tip design was controlled primarily by the thickness of the thickest plies in the upper skins. The report includes an analysis of the optimization results and recommendations for future reliability-based studies.

  6. Effect of IOP based infusion system with and without balanced phaco tip on cumulative dissipated energy and estimated fluid usage in comparison to gravity fed infusion in torsional phacoemulsification.

    PubMed

    Malik, Praveen K; Dewan, Taru; Patidar, Arun Kr; Sain, Ekta

    2017-01-01

    To evaluate the effect of three different combinations of tip designs and infusion systems in torsional phacoemulsification (INFINITI and CENTURION) in patients with cataract. According to the manufacturer, two unique improvements in the Centurion are: active fluid dynamic management system and use of an intrepid balanced tip. The study specifically aimed to evaluate the beneficial effects, if any, of change in tip design and infusion system individually and in combination on both per-operative parameters as well as endothelial health over 6 months. One hundred and twenty six consenting patients of grade 4.0-6.9 senile cataract were randomized into three groups for phacoemulsification: Group A ( n  = 42): Gravity fed infusion system and 45 0 Kelman miniflared ABS phaco tip; Group B ( n  = 42): intraocular pressure (IOP) based infusion system and 45 0 Kelman miniflared ABS phaco tip; Group C ( n  = 42): IOP based infusion system and 45 0 Intrepid balanced phaco tip. The cumulative dissipated energy (CDE), estimated fluid usage (EFU) and total aspiration time (TAT) were compared peroperatively. The endothelial parameters were followed up postoperatively for six months. The three arms were matched for age ( p  = 0.525), gender ( p  = 0.96) and grade of cataract ( p  = 0.177). Group C was associated with significant reductions in CDE ( p  = 0.001), EFU ( p  < 0.0005) as well as TAT ( p  = 0.001) in comparison to the other groups. All three groups had comparable baseline endothelial cell density ( p  = 0.876) and central corneal thickness ( p  = 0.561). On post-operative evaluation, although all groups were comparable till 3 months, by 6 months, the percentage losses in endothelial cell density were significantly lower in group C as compared to the other groups. Use of an IOP based phacoemulsification system in association with use of the Intrepid balanced tip reduces the CDE, EFU and TAT in comparison to a gravity fed system with a mini flared tip or IOP based system with a mini flared tip while also providing better endothelial preservation thus favouring the use of an IOP fed system with a balanced tip. Trial registration No.: CTRI/2016/06/007022.

  7. Teaching Elementary School Students to Be Effective Writers. Summary of Evidence for Instructional Tips Based on the Educator's Practice Guide

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2017

    2017-01-01

    Instructional tips help educators carry out recommendations contained in IES Educator's Practice Guides. This summary of evidence describes the research evidence that supports the use of the instructional tips in classrooms, and is based on a practice guide authored by Steve Graham, Alisha Bollinger, Carol Booth Olson, Catherine D'Aoust, Charles…

  8. In Vitro Propagation and Branching Morphogenesis from Single Ureteric Bud Cells.

    PubMed

    Yuri, Shunsuke; Nishikawa, Masaki; Yanagawa, Naomi; Jo, Oak D; Yanagawa, Norimoto

    2017-02-14

    A method to maintain and rebuild ureteric bud (UB)-like structures from UB cells in vitro could provide a useful tool for kidney regeneration. We aimed in our present study to establish a serum-free culture system that enables the expansion of UB progenitor cells, i.e., UB tip cells, and reconstruction of UB-like structures. We found that fibroblast growth factors or retinoic acid (RA) was sufficient for the survival of UB cells in serum-free condition, while the proliferation and maintenance of UB tip cells required glial cell-derived neurotrophic factor together with signaling from either WNT-β-catenin pathway or RA. The activation of WNT-β-catenin signaling in UB cells by endogenous WNT proteins required R-spondins. Together with Rho kinase inhibitor, our culture system facilitated the expansion of UB tip cells to form UB-like structures from dispersed single cells. The UB-like structures thus formed retained the original UB characteristics and integrated into the native embryonic kidneys. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. The Sea Level Rise Tipping Point of Delta Survival

    NASA Astrophysics Data System (ADS)

    Turner, R. E.; Kearney, M.; Parkinson, R. W.

    2017-12-01

    The estimated rate of global eustatic sea-level rise (RSLR) associated with the formation of thirty-six of the world's coastal deltas was calculated for the last 22,000 years. These deltas are located in a variety of environmental settings in respect to tidal range, isostasy, and climate. After correcting the original uncalibrated radiocarbon age estimates to calibrated years, 90% of the deltas appear to have formed at an average age of 8,109 ± 122 BP and a median age of 7,967 BP. This age corresponds to a period of significant deceleration in the RSLR to between 5 mm yr-1 and 10 mm yr-1, and is in agreement with two regional estimates of vegetation growth limits with respect to RSLR. This RSLR tipping point for delta formation can be used to inform forecasts of delta resiliency under conditions of climate change and concomitant sea level rise. The RSLR is accelerating and will likely be several times higher than the formation tipping point by the end of this century. Hence, the demise of the world's deltaic environments are likely to occur within the same time frame.

  10. Transverse vibration and buckling of a cantilevered beam with tip body under constant axial base acceleration

    NASA Technical Reports Server (NTRS)

    Storch, J.; Gates, S.

    1983-01-01

    The planar transverse bending behavior of a uniform cantilevered beam with rigid tip body subject to constant axial base acceleration was analyzed. The beam is inextensible and capable of small elastic transverse bending deformations only. Two classes of tip bodies are recognized: (1) mass centers located along the beam tip tangent line; and (2) mass centers with arbitrary offset towards the beam attachment point. The steady state response is studied for the beam end condition cases: free, tip mass, tip body with restricted mass center offset, and tip body with arbitrary mass center offset. The first three cases constitute classical Euler buckling problems, and the characteristic equation for the critical loads/accelerations are determined. For the last case a unique steady state solution exists. The free vibration response is examined for the two classes of tip body. The characteristic equation, eigenfunctions and their orthogonality properties are obtained for the case of restricted mass center offset. The vibration problem is nonhomogeneous for the case of arbitrary mass center offset. The exact solution is obtained as a sum of the steady state solution and a superposition of simple harmonic motions.

  11. A Blade Tip Timing Method Based on a Microwave Sensor

    PubMed Central

    Zhang, Jilong; Duan, Fajie; Niu, Guangyue; Jiang, Jiajia; Li, Jie

    2017-01-01

    Blade tip timing is an effective method for blade vibration measurements in turbomachinery. This method is increasing in popularity because it is non-intrusive and has several advantages over the conventional strain gauge method. Different kinds of sensors have been developed for blade tip timing, including optical, eddy current and capacitance sensors. However, these sensors are unsuitable in environments with contaminants or high temperatures. Microwave sensors offer a promising potential solution to overcome these limitations. In this article, a microwave sensor-based blade tip timing measurement system is proposed. A patch antenna probe is used to transmit and receive the microwave signals. The signal model and process method is analyzed. Zero intermediate frequency structure is employed to maintain timing accuracy and dynamic performance, and the received signal can also be used to measure tip clearance. The timing method uses the rising and falling edges of the signal and an auto-gain control circuit to reduce the effect of tip clearance change. To validate the accuracy of the system, it is compared experimentally with a fiber optic tip timing system. The results show that the microwave tip timing system achieves good accuracy. PMID:28492469

  12. An optical fiber bundle sensor for tip clearance and tip timing measurements in a turbine rig.

    PubMed

    García, Iker; Beloki, Josu; Zubia, Joseba; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Jiménez, Felipe

    2013-06-05

    When it comes to measuring blade-tip clearance or blade-tip timing in turbines, reflective intensity-modulated optical fiber sensors overcome several traditional limitations of capacitive, inductive or discharging probe sensors. This paper presents the signals and results corresponding to the third stage of a multistage turbine rig, obtained from a transonic wind-tunnel test. The probe is based on a trifurcated bundle of optical fibers that is mounted on the turbine casing. To eliminate the influence of light source intensity variations and blade surface reflectivity, the sensing principle is based on the quotient of the voltages obtained from the two receiving bundle legs. A discrepancy lower than 3% with respect to a commercial sensor was observed in tip clearance measurements. Regarding tip timing measurements, the travel wave spectrum was obtained, which provides the average vibration amplitude for all blades at a particular nodal diameter. With this approach, both blade-tip timing and tip clearance measurements can be carried out simultaneously. The results obtained on the test turbine rig demonstrate the suitability and reliability of the type of sensor used, and suggest the possibility of performing these measurements in real turbines under real working conditions.

  13. A Blade Tip Timing Method Based on a Microwave Sensor.

    PubMed

    Zhang, Jilong; Duan, Fajie; Niu, Guangyue; Jiang, Jiajia; Li, Jie

    2017-05-11

    Blade tip timing is an effective method for blade vibration measurements in turbomachinery. This method is increasing in popularity because it is non-intrusive and has several advantages over the conventional strain gauge method. Different kinds of sensors have been developed for blade tip timing, including optical, eddy current and capacitance sensors. However, these sensors are unsuitable in environments with contaminants or high temperatures. Microwave sensors offer a promising potential solution to overcome these limitations. In this article, a microwave sensor-based blade tip timing measurement system is proposed. A patch antenna probe is used to transmit and receive the microwave signals. The signal model and process method is analyzed. Zero intermediate frequency structure is employed to maintain timing accuracy and dynamic performance, and the received signal can also be used to measure tip clearance. The timing method uses the rising and falling edges of the signal and an auto-gain control circuit to reduce the effect of tip clearance change. To validate the accuracy of the system, it is compared experimentally with a fiber optic tip timing system. The results show that the microwave tip timing system achieves good accuracy.

  14. An Optical Fiber Bundle Sensor for Tip Clearance and Tip Timing Measurements in a Turbine Rig

    PubMed Central

    García, Iker; Beloki, Josu; Zubia, Joseba; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Jiménez, Felipe

    2013-01-01

    When it comes to measuring blade-tip clearance or blade-tip timing in turbines, reflective intensity-modulated optical fiber sensors overcome several traditional limitations of capacitive, inductive or discharging probe sensors. This paper presents the signals and results corresponding to the third stage of a multistage turbine rig, obtained from a transonic wind-tunnel test. The probe is based on a trifurcated bundle of optical fibers that is mounted on the turbine casing. To eliminate the influence of light source intensity variations and blade surface reflectivity, the sensing principle is based on the quotient of the voltages obtained from the two receiving bundle legs. A discrepancy lower than 3% with respect to a commercial sensor was observed in tip clearance measurements. Regarding tip timing measurements, the travel wave spectrum was obtained, which provides the average vibration amplitude for all blades at a particular nodal diameter. With this approach, both blade-tip timing and tip clearance measurements can be carried out simultaneously. The results obtained on the test turbine rig demonstrate the suitability and reliability of the type of sensor used, and suggest the possibility of performing these measurements in real turbines under real working conditions. PMID:23739163

  15. Identifying tips for intramolecular NC-AFM imaging via in situ fingerprinting

    NASA Astrophysics Data System (ADS)

    Sang, Hongqian; Jarvis, Samuel P.; Zhou, Zhichao; Sharp, Peter; Moriarty, Philip; Wang, Jianbo; Wang, Yu; Kantorovich, Lev

    2014-10-01

    A practical experimental strategy is proposed that could potentially enable greater control of the tip apex in non-contact atomic force microscopy experiments. It is based on a preparation of a structure of interest alongside a reference surface reconstruction on the same sample. Our proposed strategy is as follows. Spectroscopy measurements are first performed on the reference surface to identify the tip apex structure using a previously collected database of responses of different tips to this surface. Next, immediately following the tip identification protocol, the surface of interest is studied (imaging, manipulation and/or spectroscopy). The prototype system we choose is the mixed Si(111)-7×7 and surface which can be prepared on the same sample with a controlled ratio of reactive and passivated regions. Using an ``in silico'' approach based on ab initio density functional calculations and a set of tips with varying chemical reactivities, we show how one can perform tip fingerprinting using the Si(111)-7×7 reference surface. Then it is found by examining the imaging of a naphthalene tetracarboxylic diimide (NTCDI) molecule adsorbed on surface that negatively charged tips produce the best intramolecular contrast attributed to the enhancement of repulsive interactions.

  16. Reference system for scanning probe tip fingerprinting

    NASA Astrophysics Data System (ADS)

    Turansky, Robert; Bamidele, Joseph; Sugawara, Yasuhiro; Kantorovitch, Lev; Stich, Ivan

    2012-02-01

    Knowledge of the chemical structure of the tip asperity in Non-Contact Atomic Force Microscopy (NC-AFM) is crucial as controlled manipulation of atoms and/or molecules on surfaces can only be performed if this information is available. However, a simple and robust protocol for ensuring a specific tip termination has not yet been developed. We propose a procedure for chemical tip finger printing and an example of a reference system, the oxygen-terminated Cu(110) surface, that enables one to ensure a specific tip termination with Si, Cu, or O atoms. To follow this up and unambiguously determine tip types, we performed a theoretical DFT study of the line scans with the tip models in question and found that the tip characterization made based on experimental results (Cu/O-terminated tip imaging Cu/O atoms) is in fact incorrect and the opposite is true (Cu/O-terminated tip imaging O/Cu atoms). This protocol allows the tip asperity's chemical structure to be verified and established both before as well as at any stage of the manipulation experiment when numerous tip changes may take place.

  17. A novel method for accurate needle-tip identification in trans-rectal ultrasound-based high-dose-rate prostate brachytherapy.

    PubMed

    Zheng, Dandan; Todor, Dorin A

    2011-01-01

    In real-time trans-rectal ultrasound (TRUS)-based high-dose-rate prostate brachytherapy, the accurate identification of needle-tip position is critical for treatment planning and delivery. Currently, needle-tip identification on ultrasound images can be subject to large uncertainty and errors because of ultrasound image quality and imaging artifacts. To address this problem, we developed a method based on physical measurements with simple and practical implementation to improve the accuracy and robustness of needle-tip identification. Our method uses measurements of the residual needle length and an off-line pre-established coordinate transformation factor, to calculate the needle-tip position on the TRUS images. The transformation factor was established through a one-time systematic set of measurements of the probe and template holder positions, applicable to all patients. To compare the accuracy and robustness of the proposed method and the conventional method (ultrasound detection), based on the gold-standard X-ray fluoroscopy, extensive measurements were conducted in water and gel phantoms. In water phantom, our method showed an average tip-detection accuracy of 0.7 mm compared with 1.6 mm of the conventional method. In gel phantom (more realistic and tissue-like), our method maintained its level of accuracy while the uncertainty of the conventional method was 3.4mm on average with maximum values of over 10mm because of imaging artifacts. A novel method based on simple physical measurements was developed to accurately detect the needle-tip position for TRUS-based high-dose-rate prostate brachytherapy. The method demonstrated much improved accuracy and robustness over the conventional method. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  18. Ducted fan inlet/exit and rotor tip flow improvements for vertical lift systems

    NASA Astrophysics Data System (ADS)

    Akturk, Ali

    The current research utilized experimental and computational techniques in 5" and 22" diameter ducted fan test systems that have been custom designed and manufactured. Qualitative investigation of flow around the ducted fan was also performed using smoke flow visualizations. Quantitative measurements consisted of 2D and 3D velocity measurements using planar and Stereoscopic Particle Image Velocimetry (PIV and SPIV), high resolution total pressure measurements using Kiel total pressure probes and real time six-component force and torque measurements. The computational techniques used in this thesis included a recently developed radial equilibrium based rotor model(REBRM) and a three dimensional Reynolds-Averaged Navier Stokes (RANS) based CFD model. A radial equilibrium based rotor model (REBRM) developed by the author was effectively integrated into a three-dimensional RANS based computational system. The PIV measurements and computational flow predictions using (REBRM) near the fan inlet plane were in a good agreement at hover and forward flight conditions. The aerodynamic modifications resulting from the fan inlet flow distortions in forward flight regime were clearly captured in 2D PIV results. High resolution total pressure measurements at the downstream of the fan rotor showed that tip leakage, rotor hub separation, and passage flow related total pressure losses were dominant in hover condition. However, the losses were dramatically increased in forward flight because of inlet lip separation and distortion. A novel ducted fan inlet flow conditioning concept named "Double Ducted Fan" (DDF) was developed. The (DDF) concept has a potential to significantly improve the performance and controllability of VTOL UAVs and many other ducted fan based vertical lift systems. The new concept that will significantly reduce the inlet lip separation related performance penalties used a secondary stationary duct system to control "inlet lip separation" occurring especially at elevated forward flight velocities. The (DDF) is self-adjusting in a wide forward flight velocity range. DDFs corrective aerodynamic in influence becomes more pronounced with increasing flight velocity due to its inherent design properties. RANS simulations of the flow around rotor blades and duct geometry in the rotating frame of reference provided a comprehensive description of the tip leakage and passage flow in the flow environment of the two ducted fan research facilities developed throughout this thesis. The aerodynamic measurements and results of the RANS simulation showed good agreement especially near the tip region. A number of novel tip treatments based on custom designed pressure side extensions were introduced. Various tip leakage mitigation schemes were introduced by varying the chordwise location and the width of the extension in the circumferential direction. The current study showed that a proper selection of the pressure side bump location and width were the two critical parameters in influencing the success of the tip leakage mitigation approach. Significant gains in axial mean velocity component were observed when a proper pressure side tip extension was used. It is also observed that an effective tip leakage mitigation scheme significantly reduced the tangential velocity component near the tip of the axial fan blade. Reduced tip clearance related flow interactions were essential in improving the energy efficiency and range of ducted fan based vehicle. Full and inclined pressure side tip squealers were designed. Squealer tips were effective in changing the overall trajectory of the tip vortex to a higher path in radial direction. The interaction of rotor blades and tip vortex was effectively reduced and aerodynamic performance of the rotor blades was improved. The overall aerodynamic gain was a measurable reduction in leakage mass flow rate. This leakage reduction increased thrust significantly. Full and inclined pressure side tip squealers increased thrust obtained in hover condition by 9.1 % and 9.6 % respectively. A reduction or elimination of the momentum deficit in tip vortices is essential to reduce the adverse performance effects originating from the unsteady and highly turbulent tip leakage flows rotating against a stationary casing. The novel tip treatments developed throughout this thesis research are highly effective in reducing the adverse performance effects of ducted fan systems developed for VTOL vehicles. (Abstract shortened by UMI.)

  19. First collaborative experience with thulium laser ablation of localized upper urinary tract urothelial tumors using retrograde intra-renal surgery.

    PubMed

    Defidio, Lorenzo; De Dominicis, Mauro; Di Gianfrancesco, Luca; Fuchs, Gerhard; Patel, Anup

    2011-09-01

    Thulium laser ablation (TLA) outcomes with blinded performance evaluation after retrograde intra-renal surgical (RIRS) treatment of upper urinary tract transitional cell carcinomas (UUT-TCC). A UUT-TCC patient cohort undergoing RIRS-TLA by an international endoscopic surgical collaboration in a European center (April 2005-July 2009), underwent outcomes evaluation. All 4 surgeons were blinded and independently scored both TLA and Holmium:YAG laser ablation performance aspects annually using a Likert scoring system (0-10). All patients (n = 59, median age 66 years, 9 with solitary kidney) had complete UUT inspection. Presenting lesion(s) were intra-renal (n = 30, 51%), ureteral (n = 13, 22%), and combined (n = 16, 27%). Single-stage TLA sufficed in 81.4% (tumors < 1.5 cm). Significant recurrence free survival differences occurred according to primary tumor size >/< 1.5 cm and multi-focality, but location made no difference. Median Likert scores were i) fiber-tip stability --5.5/8.75, p = 0.016; ii) reduced bleeding--5/8.5, p = 0.004; iii)fiber-tip precision--5.5/8.5, p = 0.003; iv) mucosal perforation reduction--3.5/7.5, p = 0.001; v) ablation efficiency tumors < 1.5 cm--6/9, p = 0.017; tumors > 1.5 cm--6.75/6.75, p = 1, and vi) overall efficiency--6/7.5, p = 0.09, for Holmium:YAG and TLA, respectively. The Thulium laser delivered non-inferior recurrence free survival to RIRS-UUT-TCC Holmium:YAG laser ablation, but better median parameter performance scores in fiber-tip stability, precision, reduced bleeding and mucosal perforation reduction in expert ratings. Despite improved photothermal coagulation, and endo-visualization for tumors < 1.5 cm, both ablation and overall efficiency remained challenging for larger tumors with both existing laser technologies.

  20. Tips and tricks of the surgical technique for borderline resectable pancreatic cancer: mesenteric approach and modified distal pancreatectomy with en-bloc celiac axis resection.

    PubMed

    Hirono, Seiko; Yamaue, Hiroki

    2015-02-01

    Borderline resectable (BR) pancreatic cancer involves the portal vein and/or superior mesenteric vein (PV/SMV), major arteries including the superior mesenteric artery (SMA) or common hepatic artery (CHA), and sometimes includes the involvement of the celiac axis. We herein describe tips and tricks for a surgical technique with video assistance, which may increase the R0 rates and decrease the mortality and morbidity for BR pancreatic cancer patients. First, we describe the techniques used for the "artery-first" approach for BR pancreatic cancer with involvement of the PV/SMV and/or SMA. Next, we describe the techniques used for distal pancreatectomy with en-bloc celiac axis resection (DP-CAR) and tips for decreasing the delayed gastric emptying (DGE) rates for advanced pancreatic body cancer. The mesenteric approach, followed by the dissection of posterior tissues of the SMV and SMA, is a feasible procedure to obtain R0 rates and decrease the mortality and morbidity, and the combination of this aggressive procedure and adjuvant chemo(radiation) therapy may improve the survival of BR pancreatic cancer patients. The DP-CAR procedure may increase the R0 rates for pancreatic cancer patients with involvement within 10 mm from the root of the splenic artery, as well as the CHA or celiac axis, and preserving the left gastric artery may lead to a decrease in the DGE rates in cases where there is more than 10 mm between the tumor edge and the root of the left gastric artery. The development of safer surgical procedures is necessary to improve the survival of BR pancreatic cancer patients. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  1. Study of mechanical behavior of AFM silicon tips under mechanical load

    NASA Astrophysics Data System (ADS)

    Kopycinska-Mueller, M.; Gluch, J.; Köhler, B.

    2016-11-01

    In this paper we address critical issues concerning calibration of AFM based methods used for nanoscale mechanical characterization of materials. It has been shown that calibration approaches based on macroscopic models for contact mechanics may yield excellent results in terms of the indentation modulus of the sample, but fail to provide a comprehensive and actual information concerning the tip-sample contact radius or the mechanical properties of the tip. Explanations for the severely reduced indentation modulus of the tip included the inadequacies of the models used for calculations of the tip-sample contact stiffness, discrepancies in the actual and ideal shape of the tip, presence of the amorphous silicon phase within the silicon tip, as well as negligence of the actual size of the stress field created in the tip during elastic interactions. To clarify these issues, we investigated the influence of the mechanical load applied to four AFM silicon tips on their crystalline state by exposing them to systematically increasing loads, evaluating the character of the tip-sample interactions via the load-unload stiffness curves, and assessing the state of the tips from HR-TEM images. The results presented in this paper were obtained in a series of relatively simple and basic atomic force acoustic microscopy (AFAM) experiments. The novel combination of TEM imaging of the AFM tips with the analysis of the load-unload stiffness curves gave us a detailed insight into their mechanical behavior under load conditions. We were able to identify the limits for the elastic interactions, as well as the hallmarks for phase transformation and dislocation formation and movement. The comparison of the physical dimensions of the AFM tips, geometry parameters determined from the values of the contact stiffness, and the information on the crystalline state of the tips allowed us a better understanding of the nanoscale contact.

  2. A tonoplast intrinsic protein in Gardenia jasminoides

    NASA Astrophysics Data System (ADS)

    Gao, Lan; Li, Hao-Ming

    2017-08-01

    Physiological and molecular studies proved that plasma membrane intrinsic proteins (PIPs) and tonoplast intrinsic proteins (TIPs) subfamily of aquaporins play key functions in plant water homeostasis. Five specialized subgroups (TIP1-5) of TIPs have been found in higher plants, in which the TIP1 and TIP2 isoforms are the largest arbitrary groups. TIPs have high water-transport activity than PIPs, some TIPs can transport other small molecule such as urea, ammonia, hydrogen peroxide, and carbon dioxide. In this work, the structure of the putative tonoplast aquaporin from Gardenia jasminoides (GjTIP) was analyzed. Its transcript level has increased during fruit maturation. A phylogenetic analysis indicates that the protein belongs to TIP1 subfamily. A three-dimensional model structure of GjTIP was built based on crystal structure of an ammonia-permeable AtTIP2-1 from Arabidopsis thaliana. The model structure displayed as a homo-tetramer, each monomer has six trans-membrane and two half-membrane-spanning α helices. The data suggests that the GjTIP has tendency to be a mixed function aquaporin, might involve in water, urea and hydrogen peroxide transport, and the gating machanism founded in some AQPs involving pH and phosphorylation response have not been proved in GjTIP.

  3. Top Ten Tips for Assessing Project-Based Learning: Plus, a Bonus Tip on How to Assemble a PBL Tool Kit

    ERIC Educational Resources Information Center

    George Lucas Educational Foundation, 2011

    2011-01-01

    This classroom guide is intended to inspire and expand teachers' thinking about effective assessment in project-based learning (PBL). The tips listed in this guide are organized to follow the arc of a project. First comes planning, then the launch into active learning, and then a culminating presentation. Reflection is the final stage, and it's…

  4. Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine. Part 1; Experimental Results

    NASA Technical Reports Server (NTRS)

    Bunker, Ronald S.; Bailey, Jeremy C.; Ameri, Ali A.

    1999-01-01

    A combined computational and experimental study has been performed to investigate the detailed distribution of convective heat transfer coefficients on the first stage blade tip surface for a geometry typical of large power generation turbines(>100MW). This paper is concerned with the design and execution of the experimental portion of the study. A stationary blade cascade experiment has been run consisting of three airfoils, the center airfoil having a variable tip gap clearance. The airfoil models the aerodynamic tip section of a high pressure turbine blade with inlet Mach number of 0.30, exit Mach number of 0.75, pressure ratio of 1.45, exit Reynolds number based on axial chord of 2.57 x 10(exp 6), and total turning of about 110 degrees. A hue detection based liquid crystal method is used to obtain the detailed heat transfer coefficient distribution on the blade tip surface for flat, smooth tip surfaces with both sharp and rounded edges. The cascade inlet turbulence intensity level took on values of either 5% or 9%. The cascade also models the casing recess in the shroud surface ahead of the blade. Experimental results are shown for the pressure distribution measurements on the airfoil near the tip gap, on the blade tip surface, and on the opposite shroud surface. Tip surface heat transfer coefficient distributions are shown for sharp-edge and rounded-edge tip geometries at each of the inlet turbulence intensity levels.

  5. Theoretical Study of tip apex electronic structure in Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Choi, Heesung; Huang, Min; Randall, John; Cho, Kyeongjae

    2011-03-01

    Scanning Tunneling Microscope (STM) has been widely used to explore diverse surface properties with an atomic resolution, and STM tip has played a critical role in controlling surface structures. However, detailed information of atomic and electronic structure of STM tip and the fundamental understanding of STM images are still incomplete. Therefore, it is important to develop a comprehensive understanding of the electronic structure of STM tip. We have studied the atomic and electronic structures of STM tip with various transition metals (TMs) by DFT method. The d-electrons of TM tip apex atoms show different orbital states near the Fermi level. We will present comprehensive data of STM tips from our DFT calculation. Verified quantification of the tip electronic structures will lead to fundamental understanding of STM tip structure-property relationship. This work is supported by the DARPA TBN Program and the Texas ETF. DARPA Tip Based Nanofabrication Program and the Emerging Technology Fund of the State of Texas.

  6. Kalman filter-based EM-optical sensor fusion for needle deflection estimation.

    PubMed

    Jiang, Baichuan; Gao, Wenpeng; Kacher, Daniel; Nevo, Erez; Fetics, Barry; Lee, Thomas C; Jayender, Jagadeesan

    2018-04-01

    In many clinical procedures such as cryoablation that involves needle insertion, accurate placement of the needle's tip at the desired target is the major issue for optimizing the treatment and minimizing damage to the neighboring anatomy. However, due to the interaction force between the needle and tissue, considerable error in intraoperative tracking of the needle tip can be observed as needle deflects. In this paper, measurements data from an optical sensor at the needle base and a magnetic resonance (MR) gradient field-driven electromagnetic (EM) sensor placed 10 cm from the needle tip are used within a model-integrated Kalman filter-based sensor fusion scheme. Bending model-based estimations and EM-based direct estimation are used as the measurement vectors in the Kalman filter, thus establishing an online estimation approach. Static tip bending experiments show that the fusion method can reduce the mean error of the tip position estimation from 29.23 mm of the optical sensor-based approach to 3.15 mm of the fusion-based approach and from 39.96 to 6.90 mm, at the MRI isocenter and the MRI entrance, respectively. This work established a novel sensor fusion scheme that incorporates model information, which enables real-time tracking of needle deflection with MRI compatibility, in a free-hand operating setup.

  7. Nanostar probes for tip-enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Woong; Kim, Nara; Park, Joon Won; Kim, Zee Hwan

    2015-12-01

    To overcome the current limit of tip-enhanced spectroscopy that is based on metallic nano-probes, we developed a new scanning probe with a metallic nanostar, a nanoparticle with sharp spikes. A Au nanoparticle of 5 nm was first attached to the end of a tip through DNA-DNA hybridization and mechanical pick-up. The nanoparticle was converted to a nanostar with a core diameter of ~70 nm and spike lengths between 50 nm and 80 nm through the reduction of Au3+ with ascorbic acid in the presence of Ag+. Fabrication yields of such tips exceeded 60%, and more than 80% of such tips showed a mechanical durability sufficient for use in scanning microscopy. Effectiveness of the new probes for tip-enhanced Raman scattering (TERS) and tip-enhanced fluorescence (TEF) was confirmed. The probes exhibited the necessary enhancement for TEF, and the tip-on and tip-off ratios varied between 5 and 100. This large tip-to-tip variability may arise from the uncontrolled orientation of the apexes of the spike with respect to the sample surface, which calls for further fabrication improvement. The result overall supports a new fabrication approach for the probe that is effective for tip-enhanced spectroscopy.To overcome the current limit of tip-enhanced spectroscopy that is based on metallic nano-probes, we developed a new scanning probe with a metallic nanostar, a nanoparticle with sharp spikes. A Au nanoparticle of 5 nm was first attached to the end of a tip through DNA-DNA hybridization and mechanical pick-up. The nanoparticle was converted to a nanostar with a core diameter of ~70 nm and spike lengths between 50 nm and 80 nm through the reduction of Au3+ with ascorbic acid in the presence of Ag+. Fabrication yields of such tips exceeded 60%, and more than 80% of such tips showed a mechanical durability sufficient for use in scanning microscopy. Effectiveness of the new probes for tip-enhanced Raman scattering (TERS) and tip-enhanced fluorescence (TEF) was confirmed. The probes exhibited the necessary enhancement for TEF, and the tip-on and tip-off ratios varied between 5 and 100. This large tip-to-tip variability may arise from the uncontrolled orientation of the apexes of the spike with respect to the sample surface, which calls for further fabrication improvement. The result overall supports a new fabrication approach for the probe that is effective for tip-enhanced spectroscopy. Electronic supplementary information (ESI) available: Illustrations of TERS and TEF experiments, information about the TEM images, scheme of surface preparation and peak assignments of TERS spectra. See DOI: 10.1039/c5nr06657c

  8. The influence of tip shape on bending force during needle insertion

    PubMed Central

    van de Berg, Nick J.; de Jong, Tonke L.; van Gerwen, Dennis J.; Dankelman, Jenny; van den Dobbelsteen, John J.

    2017-01-01

    Steering of needles involves the planning and timely modifying of instrument-tissue force interactions to allow for controlled deflections during the insertion in tissue. In this work, the effect of tip shape on these forces was studied using 10 mm diameter needle tips. Six different tips were selected, including beveled and conical versions, with or without pre-bend or pre-curve. A six-degree-of-freedom force/torque sensor measured the loads during indentations in tissue simulants. The increased insertion (axial) and bending (radial) forces with insertion depth — the force-displacement slopes — were analyzed. Results showed that the ratio between radial and axial forces was not always proportional. This means that the tip load does not have a constant orientation, as is often assumed in mechanics-based steering models. For all tip types, the tip-load assumed a more radial orientation with increased axial load. This effect was larger for straight tips than for pre-bent or pre-curved tips. In addition, the force-displacement slopes were consistently higher for (1) increased tip angles, and for (2) beveled tips compared to conical tips. Needles with a bent or curved tip allow for an increased bending force and a decreased variability of the tip load vector orientation. PMID:28074939

  9. Comparison of Various Supersonic Turbine Tip Designs to Minimize Aerodynamic Loss and Tip Heating

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali

    2012-01-01

    The rotor tips of axial turbines experience high heat flux and are the cause of aerodynamic losses due to tip clearance flows, and in the case of supersonic tips, shocks. As stage loadings increase, the flow in the tip gap approaches and exceeds sonic conditions. This introduces effects such as shock-boundary layer interactions and choked flow that are not observed for subsonic tip flows that have been studied extensively in literature. This work simulates the tip clearance flow for a flat tip, a diverging tip gap and several contoured tips to assess the possibility of minimizing tip heat flux while maintaining a constant massflow from the pressure side to the suction side of the rotor, through the tip clearance. The Computational Fluid Dynamics (CFD) code GlennHT was used for the simulations. Due to the strong favorable pressure gradients the simulations assumed laminar conditions in the tip gap. The nominal tip gap width to height ratio for this study is 6.0. The Reynolds number of the flow is 2.4 x 10(exp 5) based on nominal tip width and exit velocity. A wavy wall design was found to reduce heat flux by 5 percent but suffered from an additional 6 percent in aerodynamic loss coefficient. Conventional tip recesses are found to perform far worse than a flat tip due to severe shock heating. Overall, the baseline flat tip was the second best performer. A diverging converging tip gap with a hole was found to be the best choice. Average tip heat flux was reduced by 37 percent and aerodynamic losses were cut by over 6 percent.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkle, J.G.

    In order to study effects of constraint on fracture toughness, it is important to select the right location within the crack-tip field for investigation. In 1950 Hill postulated that close to a circular notch tip the principal stress directions would be radial and circumferential, so that the plastic slip lines (maximum shear stress trajectories) would be logarithmic spirals. The resulting equation for stress normal to the notch symmetry plane, neglecting strain hardening, was identical to that for the circumferential stress near the bore of an ideally plastic thick-walled hollow cylinder under external radial tension, because the relevant geometries are identical.more » In 1969, Rice and Johnson developed a near crack-tip, plane strain, large-strain rigid-plastic analysis considering strain hardening and assuming an infinitely sharp initial crack tip. Shortly afterwards, Merkle, following Hill's suggestion, proposed an approximate analysis of the stresses and strains ahead of a blunted crack tip on the plane of symmetry, based on a circular blunted crack tip. The analysis amounted to a hollow cylinder analogy, including the effects of strain hardening. The original hollow cylinder analogy was based on small strain theory, and the calculated strain distributions did not agree well with the Rice and Johnson results very near the blunted crack tip. Therefore, the hollow cylinder analogy equations have been rederived, based on large strain theory, and the agreement with the Rice and Johnson results and other more recent numerical results is good. Calculations illustrate the effects of transverse strain on the principal stresses very close to a blunting crack tip and show that, theoretically, a singularity still exists at the tip of a blunting crack. 10 refs., 9 figs.« less

  11. Effects of geometric variables on rub characteristics of Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Wolak, J.; Wisander, D. W.

    1981-01-01

    Experiments simulating rub interactions between Ti-6Al-4V blade tips and various seal materials were conducted. The number of blade tips and the blade tip geometry were varied to determine their effects on rub forces and on wear phenomena. Contact was found to be quite unsteady for all blade tip geometries except for those incorporating deliberately rounded blade tips. The unsteady contact was characterized by long periods of rubbing contact and increasing blade tip that terminated in sudden rapid metal removal, sometimes accompanied by tearing and disruption of porous seal material under the rub surface. A model describing the blade tip loading is proposed and is based on the propagation of an elastic stress wave through the seal material as the seal material is dynamically compressed by the blade tip leading edge.

  12. Electromicroinjection of particles into living cells

    DOEpatents

    Ray, F. Andrew; Cram, L. Scott; Galey, William R.

    1988-01-01

    Method and apparatus for introducing particles into living cells. Fluorescently-stained human chromosomes are introduced into cultured, mitotic Chinese hamster cells using electromicroinjection. The recipient cells frequently survived the physiological perturbation imposed by a successful chromosome injection. Successfully injected recipient cells maintained viability as evidenced by their ability to be expanded. The technique relies on the surface charge of fluorescently stained chromosomes and their ability to be attracted and repelled to and from the tip of a micropipette. The apparatus includes a micropipette having a tip suitable for piercing the membrane of a target cell and an electrode inserted into the lumen thereof. The target cells and suspended particles are located in an electrically conducted solution, and the lumen of the micropipette is filled with an electrically conducting solution which contacts the electrode located therein. A second electrode is also located in the conducting solution containing the target cells and particles. Voltages applied to the electrode within the micropipette attract the particles to the region of the tip thereof. The particles adhere to the surface of the micropipette with sufficient force that insertion of the micropipette tip and attached particle through the membrane of a target cell will not dislodge the particle. By applying a voltage having the opposite polarity of the attraction voltage, the particles are expelled from the micropipette to which is then withdrawn from the cell body.

  13. Development of constraint-based system-level models of microbial metabolism.

    PubMed

    Navid, Ali

    2012-01-01

    Genome-scale models of metabolism are valuable tools for using genomic information to predict microbial phenotypes. System-level mathematical models of metabolic networks have been developed for a number of microbes and have been used to gain new insights into the biochemical conversions that occur within organisms and permit their survival and proliferation. Utilizing these models, computational biologists can (1) examine network structures, (2) predict metabolic capabilities and resolve unexplained experimental observations, (3) generate and test new hypotheses, (4) assess the nutritional requirements of the organism and approximate its environmental niche, (5) identify missing enzymatic functions in the annotated genome, and (6) engineer desired metabolic capabilities in model organisms. This chapter details the protocol for developing genome-scale models of metabolism in microbes as well as tips for accelerating the model building process.

  14. Business continuity 2014: From traditional to integrated Business Continuity Management.

    PubMed

    Ee, Henry

    As global change continues to generate new challenges and potential threats to businesses, traditional business continuity management (BCM) slowly reveals its limitations and weak points to ensuring 'business resiliency' today. Consequently, BCM professionals also face the challenge of re-evaluating traditional concepts and introducing new strategies and industry best practices. This paper points to why traditional BCM is no longer sufficient in terms of enabling businesses to survive in today's high-risk environment. It also looks into some of the misconceptions about BCM and other stumbling blocks to establishing effective BCM today. Most importantly, however, this paper provides tips based on the Business Continuity Institute's (BCI) Good Practices Guideline (GPG) and the latest international BCM standard ISO 22301 on how to overcome the issues and challenges presented.

  15. Tip-tilt disturbance model identification based on non-linear least squares fitting for Linear Quadratic Gaussian control

    NASA Astrophysics Data System (ADS)

    Yang, Kangjian; Yang, Ping; Wang, Shuai; Dong, Lizhi; Xu, Bing

    2018-05-01

    We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This identification method based on Levenberg-Marquardt method conducts with a little prior information and no auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay mode by simulation.

  16. Hydrodynamics Analysis and CFD Simulation of Portal Venous System by TIPS and LS.

    PubMed

    Wang, Meng; Zhou, Hongyu; Huang, Yaozhen; Gong, Piyun; Peng, Bing; Zhou, Shichun

    2015-06-01

    In cirrhotic patients, portal hypertension is often associated with a hyperdynamic changes. Transjugular Intrahepatic Portosystemic Shunt (TIPS) and Laparoscopic splenectomy are both treatments for liver cirrhosis due to portal hypertension. While, the two different interventions have different effects on hemodynamics after operation and the possibilities of triggering PVT are different. How hemodynamics of portal vein system evolving with two different operations remain unknown. Based on ultrasound and established numerical methods, CFD technique is applied to analyze hemodynamic changes after TIPS and Laparoscopic splenectomy. In this paper, we applied two 3-D flow models to the hemodynamic analysis for two patients who received a TIPS and a laparoscopic splenectomy, both therapies for treating portal hypertension induced diseases. The current computer simulations give a quantitative analysis of the interplay between hemodynamics and TIPS or splenectomy. In conclusion, the presented computational model can be used for the theoretical analysis of TIPS and laparoscopic splenectomy, clinical decisions could be made based on the simulation results with personal properly treatment.

  17. Characterization and Modeling of Nano-organic Thin Film Phototransistors Based on 6,13(Triisopropylsilylethynyl)-Pentacene: Photovoltaic Effect

    NASA Astrophysics Data System (ADS)

    Jouili, A.; Mansouri, S.; Al-Ghamdi, Ahmed A.; El Mir, L.; Farooq, W. A.; Yakuphanoglu, F.

    2017-04-01

    Organic thin film transistors based on 6,13(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) with various channel widths and thicknesses of the active layer (300 nm and 135 nm) were photo-characterized. The photoresponse behavior and the gate field dependence of the charge transport were analyzed in detail. The surface properties of TIPS-pentacene deposited on silicon dioxide substrate were investigated using an atomic force microscope. We confirm that the threshold voltage values of the TIPS-pentacene transistor depend on the intensity of white light illumination. With the multiple trapping and release model, we have developed an analytical model that was applied to reproduce the experimental output characteristics of organic thin film transistors based on TIPS-pentacene under dark and under light illumination.

  18. Surviving and Thriving Your First Year in Private Practice

    PubMed Central

    Schwab, Elizabeth Falk

    2016-01-01

    Taking the leap toward a career as a private practice owner is daunting. When in the initial stages of starting a private practice, I searched for current advice from an audiologist who had recently confronted the same challenges I was about to face. Because of the limited information available, I documented my process in hopes of providing an overview of my startup experience to help others. Included is a timeline of startup tasks and a sample budget to use as a reference. In this chapter, I share my experiences, both the positives and the negatives, and tips with the goal of helping you survive and thrive in your first year in private practice. PMID:28028322

  19. Torsional Dynamics of Steerable Needles: Modeling and Fluoroscopic Guidance

    PubMed Central

    Swensen, John P.; Lin, MingDe; Okamura, Allison M.; Cowan, Noah J.

    2017-01-01

    Needle insertions underlie a diversity of medical interventions. Steerable needles provide a means by which to enhance existing needle-based interventions and facilitate new ones. Tip-steerable needles follow a curved path and can be steered by twisting the needle base during insertion, but this twisting excites torsional dynamics that introduce a discrepancy between the base and tip twist angles. Here, we model the torsional dynamics of a flexible rod—such as a tip-steerable needle—during subsurface insertion and develop a new controller based on the model. The torsional model incorporates time-varying mode shapes to capture the changing boundary conditions inherent during insertion. Numerical simulations and physical experiments using two distinct setups—stereo camera feedback in semi-transparent artificial tissue and feedback control with real-time X-ray imaging in optically opaque artificial tissue— demonstrate the need to account for torsional dynamics in control of the needle tip. PMID:24860026

  20. Technology Tips

    ERIC Educational Resources Information Center

    Mathematics Teacher, 2004

    2004-01-01

    Some inexpensive or free ways that enable to capture and use images in work are mentioned. The first tip demonstrates the methods of using some of the built-in capabilities of the Macintosh and Windows-based PC operating systems, and the second tip describes methods to capture and create images using SnagIt.

  1. Cryopreservation of chayote (Sechium edule JACQ. SW.) zygotic embryos and shoot-tips from in vitro plantlets.

    PubMed

    Abdelnour-Esquivel, Ana; Engelmann, Florent

    2002-01-01

    This paper presents the development of cryopreservation protocols for zygotic embryos and apices of chayote (Sechium edule Jacq. Sw.), a tropical plant species with recalcitrant seeds. Zygotic embryos of two cultivars, Ccocro negro (CN) and Claudio (Cl) could withstand cryopreservation, with survival percentages of 10 and 30 %, after desiccation to 23 and 19 % moisture content (fresh weight basis), respectively. Apices sampled on in vitro plantlets of cultivars Cl, 13 and JM were successfully cryopreserved using a vitrification technique. Optimal conditions included the culture of mother-plants for 22 days on medium containing 0.3 M sucrose, culture of excised apices on the same medium for 1 day, loading of apices for 20 min with 2M glycerol + 0.4M glycerol, treatment with a series of diluted PVS2 solution (60 % PVS2 followed by 80 % PVS2 solution for 15 min (cultivar Cocoro Blanco [CB]) or 30 min (cultivars CN and Cl) at each concentration), rapid freezing and thawing, washing of shoot-tips with a 1.2 M sucrose solution, followed by recovery on media with progressively decreasing sucrose concentrations until the standard concentration of 0.1 M was reached. The highest survival percentages achieved ranged between 17 and 38 %, depending on the cultivar.

  2. Magnetic elements for switching magnetization magnetic force microscopy tips.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cambel, V.; Elias, P.; Gregusova, D.

    2010-09-01

    Using combination of micromagnetic calculations and magnetic force microscopy (MFM) imaging we find optimal parameters for novel magnetic tips suitable for switching magnetization MFM. Switching magnetization MFM is based on two-pass scanning atomic force microscopy with reversed tip magnetization between the scans. Within the technique the sum of the scanned data with reversed tip magnetization depicts local atomic forces, while their difference maps the local magnetic forces. Here we propose the design and calculate the magnetic properties of tips suitable for this scanning probe technique. We find that for best performance the spin-polarized tips must exhibit low magnetic moment, lowmore » switching fields, and single-domain state at remanence. The switching field of such tips is calculated and optimum shape of the Permalloy elements for the tips is found. We show excellent correspondence between calculated and experimental results for Py elements.« less

  3. Arctic tipping points in an Earth system perspective.

    PubMed

    Wassmann, Paul; Lenton, Timothy M

    2012-02-01

    We provide an introduction to the volume The Arctic in the Earth System perspective: the role of tipping points. The terms tipping point and tipping element are described and their role in current science, general debates, and the Arctic are elucidated. From a wider perspective, the volume focuses upon the role of humans in the Arctic component of the Earth system and in particular the envelope for human existence, the Arctic ecosystems. The Arctic climate tipping elements, the tipping elements in Arctic ecosystems and societies, and the challenges of governance and anticipation are illuminated through short summaries of eight publications that derive from the Arctic Frontiers conference in 2011 and the EU FP7 project Arctic Tipping Points. Then some ideas based upon resilience thinking are developed to show how wise system management could ease pressures on Arctic systems in order to keep them away from tipping points.

  4. Enhanced Performance Consistency in Nanoparticle/TIPS Pentacene-Based Organic Thin Film Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhengran; Xiao, Kai; Durant, William Mark

    2011-01-01

    In this study, inorganic silica nanoparticles are used to manipulate the morphology of 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS pentacene) thin films and the performance of solution-processed organic thin-film transistors (OTFTs). This approach is taken to control crystal anisotropy, which is the origin of poor consistency in TIPS pentacene based OTFT devices. Thin film active layers are produced by drop-casting mixtures of SiO{sub 2} nanoparticles and TIPS pentacene. The resultant drop-cast films yield improved morphological uniformity at {approx}10% SiO{sub 2} loading, which also leads to a 3-fold increase in average mobility and nearly 4 times reduction in the ratio of measured mobility standard deviationmore » ({mu}{sub Stdev}) to average mobility ({mu}{sub Avg}). Grazing-incidence X-ray diffraction, scanning and transmission electron microscopy as well as polarized optical microscopy are used to investigate the nanoparticle-mediated TIPS pentacene crystallization. The experimental results suggest that the SiO{sub 2} nanoparticles mostly aggregate at TIPS pentacene grain boundaries, and 10% nanoparticle concentration effectively reduces the undesirable crystal misorientation without considerably compromising TIPS pentacene crystallinity.« less

  5. Silver nanowires for highly reproducible cantilever based AFM-TERS microscopy: towards a universal TERS probe.

    PubMed

    Walke, Peter; Fujita, Yasuhiko; Peeters, Wannes; Toyouchi, Shuichi; Frederickx, Wout; De Feyter, Steven; Uji-I, Hiroshi

    2018-04-26

    Tip-enhanced Raman scattering (TERS) microscopy is a unique analytical tool to provide complementary chemical and topographic information of surfaces with nanometric resolution. However, difficulties in reliably producing the necessary metallized scanning probe tips has limited its widespread utilisation, particularly in the case of cantilever-based atomic force microscopy. Attempts to alleviate tip related issues using colloidal or bottom-up engineered tips have so far not reported consistent probes for both Raman and topographic imaging. Here we demonstrate the reproducible fabrication of cantilever-based high-performance TERS probes for both topographic and Raman measurements, based on an approach that utilises noble metal nanowires as the active TERS probe. The tips show 10 times higher TERS contrasts than the most typically used electrochemically-etched tips, and show a reproducibility for TERS greater than 90%, far greater than found with standard methods. We show that TERS can be performed in tapping as well as contact AFM mode, with optical resolutions around or below 15 nm, and with a maximum resolution achieved in tapping-mode of 6 nm. Our work illustrates that superior TERS probes can be produced in a fast and cost-effective manner using simple wet-chemistry methods, leading to reliable and reproducible high-resolution and high-sensitivity TERS, and thus renders the technique applicable for a broad community.

  6. Hard-tip, soft-spring lithography.

    PubMed

    Shim, Wooyoung; Braunschweig, Adam B; Liao, Xing; Chai, Jinan; Lim, Jong Kuk; Zheng, Gengfeng; Mirkin, Chad A

    2011-01-27

    Nanofabrication strategies are becoming increasingly expensive and equipment-intensive, and consequently less accessible to researchers. As an alternative, scanning probe lithography has become a popular means of preparing nanoscale structures, in part owing to its relatively low cost and high resolution, and a registration accuracy that exceeds most existing technologies. However, increasing the throughput of cantilever-based scanning probe systems while maintaining their resolution and registration advantages has from the outset been a significant challenge. Even with impressive recent advances in cantilever array design, such arrays tend to be highly specialized for a given application, expensive, and often difficult to implement. It is therefore difficult to imagine commercially viable production methods based on scanning probe systems that rely on conventional cantilevers. Here we describe a low-cost and scalable cantilever-free tip-based nanopatterning method that uses an array of hard silicon tips mounted onto an elastomeric backing. This method-which we term hard-tip, soft-spring lithography-overcomes the throughput problems of cantilever-based scanning probe systems and the resolution limits imposed by the use of elastomeric stamps and tips: it is capable of delivering materials or energy to a surface to create arbitrary patterns of features with sub-50-nm resolution over centimetre-scale areas. We argue that hard-tip, soft-spring lithography is a versatile nanolithography strategy that should be widely adopted by academic and industrial researchers for rapid prototyping applications.

  7. Detecting and Segregating Black Tip-Damaged Wheat Kernels Using Visible and Near Infrared Spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Detection of individual wheat kernels with black tip symptom (BTS) and black tip damage (BTD) was demonstrated using near infrared reflectance spectroscopy (NIRS) and silicon light-emitting-diode (LED) based instruments. The two instruments tested, a single kernel near-infrared spectroscopy instrume...

  8. A study of the noise radiation from four helicopter rotor blades. [tests in Ames 40 by 20 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Lee, A.; Mosher, M.

    1978-01-01

    Acoustic measurements were taken of a modern helicopter rotor with four blade tip shapes in the NASA Ames 40-by-80-Foot Wind Tunnel. The four tip shapes are: rectangular, swept, trapezoidal, and swept tapered in platform. Acoustic effects due to tip shape changes were studied based on the dBA level, peak noise pressure, and subjective rating. The swept tapered blade was found to be the quietest above an advancing tip Mach number of about 0.9, and the swept blade was the quietest at low speed. The measured high speed impulsive noise was compared with theoretical predictions based on thickness effects; good agreement was found.

  9. Micromachined array tip for multifocus fiber-based optical coherence tomography.

    PubMed

    Yang, Victor X D; Munce, Nigel; Pekar, Julius; Gordon, Maggie L; Lo, Stewart; Marcon, Norman E; Wilson, Brian C; Vitkin, I Alex

    2004-08-01

    High-resolution optical coherence tomography demands a large detector bandwidth and a high numerical aperture for real-time imaging, which is difficult to achieve over a large imaging depth. To resolve these conflicting requirements we propose a novel multifocus fiber-based optical coherence tomography system with a micromachined array tip. We demonstrate the fabrication of a prototype four-channel tip that maintains a 9-14-microm spot diameter with more than 500 microm of imaging depth. Images of a resolution target and a human tooth were obtained with this tip by use of a four-channel cascaded Michelson fiber-optic interferometer, scanned simultaneously at 8 kHz with geometric power distribution across the four channels.

  10. Trials of Improved Practices (TIPs) to Enhance the Dietary and Iron-Folate Intake during Pregnancy- A Quasi Experimental Study among Rural Pregnant Women of Varanasi, India.

    PubMed

    Shivalli, Siddharudha; Srivastava, Ratan Kumar; Singh, Gyan Prakash

    2015-01-01

    Behavior Change Communications (BCC) play a decisive role in modifying socio-cultural norms affecting the perception and nutritional practices during pregnancy. To examine the effectiveness of 'Trials of Improved Practices' (TIPs) on dietary and iron-folate intake during pregnancy. Community based quasi experimental study with a control group. Four villages of Chiraigaon Community Development Block of Varanasi, India from May 2010 and recruited from August 2010. End line assessment, after 12 weeks of intervention, was completed in April 2011. Pregnant women in 13-28 weeks of gestation. TIPs was implemented in addition to ongoing essential obstetric care services in two villages through 3 home (assessment, negotiation and evaluation) visits and only assessment and evaluation visits in the other two control villages. Interpersonal communication, endorsing the active participation of family members and home based reminder materials were the TIPs based strategies. The effect of TIPs was assessed by comparing key outcome variables at baseline and after 12 weeks of intervention. Hemoglobin%, anemia prevalence, weight gain, compliance for iron-folate supplementation and dietary intake of calorie, protein, calcium and iron. A total of 86 participants completed the study. At the end, mean hemoglobin levels were 11.5±1.24 g/dl and 10.37±1.38 g/dl in the TIPs and control groups, respectively. The prevalence of anemia reduced by half in TIPs group and increased by 2.4% in the control group. Weight gain (grams/week) was significantly (p<0.01) higher in TIPs group (326.9±91.8 vs. 244.6±97.4). More than 85% of the PW in TIPs group were compliant for Iron-folate and only 38% were compliant among controls. The mean intake of protein increased by 1.78gm in intervention group and decreased by 1.81 gm in controls (p<0.05). More than two thirds of PW in TIPs group were taking one extra meal and only one third of controls were doing the same. TIPs found to be an effective approach to improve the nutritional status of pregnant women in the study area. TIPs strategy could be further explored on larger sample representing different socio-cultural and geographical areas. Clinical Trial Registry of India CTRI/2015/02/005517.

  11. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors

    PubMed Central

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-01-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization. PMID:26713213

  12. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors.

    PubMed

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-12-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization.

  13. Preliminary Neutronics Analysis of the ITER Toroidal Interferometer and Polarimeter Diagnostic Corner Cube Retroreflectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tresemer, K. R.

    2015-07-01

    ITER is an international project under construction in France that will demonstrate nuclear fusion at a power plant-relevant scale. The Toroidal Interferometer and Polarimeter (TIP) Diagnostic will be used to measure the plasma electron line density along 5 laser-beam chords. This line-averaged density measurement will be input to the ITER feedback-control system. The TIP is considered the primary diagnostic for these measurements, which are needed for basic ITER machine control. Therefore, system reliability & accuracy is a critical element in TIP’s design. There are two major challenges to the reliability of the TIP system. First is the survivability and performancemore » of in-vessel optics and second is maintaining optical alignment over long optical paths and large vessel movements. Both of these issues greatly depend on minimizing the overall distortion due to neutron & gamma heating of the Corner Cube Retroreflectors (CCRs). These are small optical mirrors embedded in five first wall locations around the vacuum vessel, corresponding to certain plasma tangency radii. During the development of the design and location of these CCRs, several iterations of neutronics analyses were performed to determine and minimize the total distortion due to nuclear heating of the CCRs. The CCR corresponding to TIP Channel 2 was chosen for analysis as a good middle-road case, being an average distance from the plasma (of the five channels) and having moderate neutron shielding from its blanket shield housing. Results show that Channel 2 meets the requirements of the TIP Diagnostic, but barely. These results suggest other CCRs might be at risk of exceeding thermal deformation due to nuclear heating.« less

  14. Trafficking and Health: A Systematic Review of Research Methods.

    PubMed

    Cannon, Abby C; Arcara, Jennet; Graham, Laurie M; Macy, Rebecca J

    2018-04-01

    Trafficking in persons (TIP) is a human rights violation with serious public health consequences. Unfortunately, assessing TIP and its health sequelae rigorously and reliably is challenging due to TIP's clandestine nature, variation in definitions of TIP, and the need to use research methods that ensure studies are ethical and feasible. To help guide practice, policy, and research to assess TIP and health, we undertook a systematic literature review of 70 peer-reviewed, published articles to (a) identify TIP and health research methods being used, (b) determine what we can learn about TIP and health from these varied methodologies, and (c) determine the gaps that exist in health-focused TIP research. Results revealed that there are various quantitative and qualitative data collection and analysis methods being used to investigate TIP and health. Furthermore, findings show that the limitations of current methodologies affect what is known about TIP and health. In particular, varying definitions, participant recruitment strategies, ethical standards, and outcome measures all affect what is known about TIP and health. Moreover, findings demonstrate an urgent need for representative and nonpurposive recruitment strategies in future investigations of TIP and health as well as research on risk and protective factors related to TIP and health, intervention effectiveness, long-term health outcomes, and research on trafficked people beyond women trafficked for sex. We offer recommendations for research, policy, and practice based on review results.

  15. Dental abrasion as a cutting process.

    PubMed

    Lucas, Peter W; Wagner, Mark; Al-Fadhalah, Khaled; Almusallam, Abdulwahab S; Michael, Shaji; Thai, Lidia A; Strait, David S; Swain, Michael V; van Casteren, Adam; Renno, Waleed M; Shekeban, Ali; Philip, Swapna M; Saji, Sreeja; Atkins, Anthony G

    2016-06-06

    A mammalian tooth is abraded when a sliding contact between a particle and the tooth surface leads to an immediate loss of tooth tissue. Over time, these contacts can lead to wear serious enough to impair the oral processing of food. Both anatomical and physiological mechanisms have evolved in mammals to try to prevent wear, indicating its evolutionary importance, but it is still an established survival threat. Here we consider that many wear marks result from a cutting action whereby the contacting tip(s) of such wear particles acts akin to a tool tip. Recent theoretical developments show that it is possible to estimate the toughness of abraded materials via cutting tests. Here, we report experiments intended to establish the wear resistance of enamel in terms of its toughness and how friction varies. Imaging via atomic force microscopy (AFM) was used to assess the damage involved. Damage ranged from pure plastic deformation to fracture with and without lateral microcracks. Grooves cut with a Berkovich diamond were the most consistent, suggesting that the toughness of enamel in cutting is 244 J m(-2), which is very high. Friction was higher in the presence of a polyphenolic compound, indicating that this could increase wear potential.

  16. Retrieval of the 1964 Laser Literature Using MIT's Project Tip.

    ERIC Educational Resources Information Center

    Keenan, Stella; Terry, Edward

    Reported are the performance characteristics of the Massachusetts Institute of Technology Technical Information Program (TIP) system based on a study involving three search strategies in retrieval o f laser articles published in 1964. The TIP system provides access to (1) title, (2) author(s), (3) bibliographic references, and (4) literature…

  17. STEM TIPS: Supporting the Beginning Secondary STEM Teacher

    ERIC Educational Resources Information Center

    Jones, Griff; Dana, Thomas; LaFramenta, Joanne; Adams, Thomasenia Lott; Arnold, Jason Dean

    2016-01-01

    The STEM TIPS mobile-ready support platform gives institutions or school districts the ability to provide immediate and customized mentoring to teachers through multiple tiers of web-based support and resources. Using the results of a needs assessment, STEM TIPS was created and launched in partnership with 18 Florida school districts. Further…

  18. Intracellular Ca(2+) and K(+) concentration in Brassica oleracea leaf induces differential expression of transporter and stress-related genes.

    PubMed

    Lee, Jeongyeo; Kim, Jungeun; Choi, Jae-Pil; Lee, MiYe; Kim, Min Keun; Lee, Young Han; Hur, Yoonkang; Nou, Ill-Sup; Park, Sang Un; Min, Sung Ran; Kim, HyeRan

    2016-03-09

    One of the most important members of the genus Brassica, cabbage, requires a relatively high level of calcium for normal growth (Plant Cell Environ 7: 397-405, 1984; Plant Physiol 60: 854-856, 1977). Localized Ca(2+) deficiency in cabbage leaves causes tip-burn, bringing about serious economic losses (Euphytica 9:203-208, 1960; Ann Bot 43:363-372, 1979; Sci Hortic 14:131-138, 1981). Although it has been known that the occurrence of tip-burn is related to Ca(2+) deficiency, there is limited information on the underlying mechanisms of tip-burn or the relationship between Ca(2+) and tip-burn incidence. To obtain more information on the genetic control of tip-burn symptoms, we focused on the identification of genes differentially expressed in response to increasing intracellular Ca(2+) and K(+) concentrations in B. oleracea lines derived from tip-burn susceptible, tip-burn resistant cabbages (B. oleracea var. capitata), and kale (B. oleracea var. acephala). We compared the levels of major macronutrient cations, including Ca(2+) and K(+), in three leaf segments, the leaf apex (LA), middle of leaf (LM), and leaf base (LB), of tip-burn susceptible, tip-burn resistant cabbages, and kale. Ca(2+) and K(+) concentrations were highest in kale, followed by tip-burn resistant and then tip-burn susceptible cabbages. These cations generally accumulated to a greater extent in the LB than in the LA. Transcriptome analysis identified 58,096 loci as putative non-redundant genes in the three leaf segments of the three B. oleracea lines and showed significant changes in expression of 27,876 loci based on Ca(2+) and K(+) levels. Among these, 1844 loci were identified as tip-burn related phenotype-specific genes. Tip-burn resistant cabbage and kale-specific genes were largely related to stress and transport activity based on GO annotation. Tip-burn resistant cabbage and kale plants showed phenotypes clearly indicative of heat-shock, freezing, and drought stress tolerance compared to tip-burn susceptible cabbages, demonstrating a correlation between intracellular Ca(2+) and K(+) concentrations and tolerance of abiotic stress with differential gene expression. We selected 165 genes that were up- or down-regulated in response to increasing Ca(2+) and K(+) concentrations in the three leaf segments of the three plant lines. Gene ontology enrichment analysis indicated that these genes participated in regulatory metabolic processes or stress responses. Our results indicate that the genes involved in regulatory metabolic processes or stress responses were differentially expressed in response to increasing Ca(2+) and K(+) concentrations in the B. oleracea leaf. Our transcriptome data and the genes identified may serve as a starting point for understanding the mechanisms underlying essential macronutrient deficiencies in plants, as well as the features of tip-burn in cabbage and other Brassica species.

  19. Impact of the Tips From Former Smokers Campaign on Population-Level Smoking Cessation, 2012–2015

    PubMed Central

    Davis, Kevin C.; Beistle, Diane; King, Brian A.; Duke, Jennifer; Rodes, Robert; Graffunder, Corinne

    2018-01-01

    This study provides estimates of the long-term cumulative impact of the Centers for Disease Control and Prevention’s national tobacco education campaign, Tips From Former Smokers (Tips), on population-level smoking cessation. We used recently published estimates of the association between increased Tips campaign media doses and quit attempts to calculate campaign-attributable population sustained (6-month) quits during 2012–2015. Tips led to approximately 522,000 sustained quits during 2012–2015. These findings indicate that the Tips campaign’s comprehensive approach to combining evidence-based messages with the promotion of cessation resources was successful in achieving substantial long-term cigarette cessation at the population level over multiple years. PMID:29862960

  20. Forces and electronic transport in a contact formed by a graphene tip and a defective MoS2 monolayer: a theoretical study.

    PubMed

    di Felice, D; Dappe, Y J; González, C

    2018-06-01

    A theoretical study of a graphene-like tip used in atomic force microscopy (AFM) is presented. Based on first principles simulations, we proved the low reactivity of this kind of tip, using a MoS 2 monolayer as the testing sample. Our simulations show that the tip-MoS 2 interaction is mediated through weak van der Waals forces. Even on the defective monolayer, the interaction is reduced by one order of magnitude with respect to the values obtained using a highly reactive metallic tip. On the pristine monolayer, the S atoms were imaged for large distances together with the substitutional defects which should be observed as brighter spots in non-contact AFM measurements. This result is in contradiction with previous simulations performed with Cu or Si tips where the metallic defects were imaged for much larger distances than the S atoms. For shorter distances, the Mo sites will be brighter even though a vacancy is formed. On the other hand, the largest conductance value is obtained over the defect formed by two Mo atoms occupying a S divacancy when the half-occupied p y -states of the graphene-like tip find a better coupling with d-orbitals of the highest substitutional atom. Due to the weak interaction, no conductance plateau is formed in any of the sites. A great advantage of this tip lies in the absence of atomic transfer between the tip and the sample leading to a more stable AFM measurement. Finally, and as previously shown, we confirm the atomic resolution in a scanning tunneling microscopy simulation using this graphene-based tip.

  1. Lateral Tip Control Effects in CD-AFM Metrology: The Large Tip Limit.

    PubMed

    Dixson, Ronald G; Orji, Ndubuisi G; Goldband, Ryan S

    2016-01-25

    Sidewall sensing in critical dimension atomic force microscopes (CD-AFMs) usually involves continuous lateral dithering of the tip or the use of a control algorithm and fast response piezo actuator to position the tip in a manner that resembles touch-triggering of coordinate measuring machine (CMM) probes. All methods of tip position control, however, induce an effective tip width that may deviate from the actual geometrical tip width. Understanding the influence and dependence of the effective tip width on the dither settings and lateral stiffness of the tip can improve the measurement accuracy and uncertainty estimation for CD-AFM measurements. Since CD-AFM typically uses tips that range from 15 nm to 850 nm in geometrical width, the behavior of effective tip width throughout this range should be understood. The National Institute of Standards and Technology (NIST) has been investigating the dependence of effective tip width on the dither settings and lateral stiffness of the tip, as well as the possibility of material effects due to sample composition. For tip widths of 130 nm and lower, which also have lower lateral stiffness, the response of the effective tip width to lateral dither is greater than for larger tips. However, we have concluded that these effects will not generally result in a residual bias, provided that the tip calibration and sample measurement are performed under the same conditions. To validate that our prior conclusions about the dependence of effective tip width on lateral stiffness are valid for large CD-tips, we recently performed experiments using a very large non-CD tip with an etched plateau of approximately 2 μm width. The effective lateral stiffness of these tips is at least 20 times greater than typical CD-AFM tips, and these results supported our prior conclusions about the expected behavior for larger tips. The bottom-line importance of these latest observations is that we can now reasonably conclude that a dither slope of 3 nm/V is the baseline response due to the induced motion of the cantilever base.

  2. Lateral Tip Control Effects in CD-AFM Metrology: The Large Tip Limit

    PubMed Central

    Dixson, Ronald G.; Orji, Ndubuisi G.; Goldband, Ryan S.

    2016-01-01

    Sidewall sensing in critical dimension atomic force microscopes (CD-AFMs) usually involves continuous lateral dithering of the tip or the use of a control algorithm and fast response piezo actuator to position the tip in a manner that resembles touch-triggering of coordinate measuring machine (CMM) probes. All methods of tip position control, however, induce an effective tip width that may deviate from the actual geometrical tip width. Understanding the influence and dependence of the effective tip width on the dither settings and lateral stiffness of the tip can improve the measurement accuracy and uncertainty estimation for CD-AFM measurements. Since CD-AFM typically uses tips that range from 15 nm to 850 nm in geometrical width, the behavior of effective tip width throughout this range should be understood. The National Institute of Standards and Technology (NIST) has been investigating the dependence of effective tip width on the dither settings and lateral stiffness of the tip, as well as the possibility of material effects due to sample composition. For tip widths of 130 nm and lower, which also have lower lateral stiffness, the response of the effective tip width to lateral dither is greater than for larger tips. However, we have concluded that these effects will not generally result in a residual bias, provided that the tip calibration and sample measurement are performed under the same conditions. To validate that our prior conclusions about the dependence of effective tip width on lateral stiffness are valid for large CD-tips, we recently performed experiments using a very large non-CD tip with an etched plateau of approximately 2 μm width. The effective lateral stiffness of these tips is at least 20 times greater than typical CD-AFM tips, and these results supported our prior conclusions about the expected behavior for larger tips. The bottom-line importance of these latest observations is that we can now reasonably conclude that a dither slope of 3 nm/V is the baseline response due to the induced motion of the cantilever base. PMID:27087883

  3. A flap based on the plantar digital artery arch branch to improve appearance of reconstructed fingers: Anatomical and clinical application.

    PubMed

    Tang, Lin-Feng; Ju, Ji-Hui; Liu, Yue-Fei; Lan, Bo; Hou, Rui-Xing

    2018-02-01

    To investigate blood supply features of the flap based on the plantar digital artery arch and arch branch artery, and the treatment of outcomes of reconstructed fingers by the plantar digital artery arch branch island flap. Eight fresh foot specimens were employed with red emulsion infusion and microdissection. The vascular organization was observed in the second toe, such as initiation site, the course, and the number of the plantar digital artery arch branch. There were 15 fingers of 13 patients (8 males and 5 females) with finger defects accompanied by toe transfer, using the plantar digital artery arch branch flap inserted in the neck of the second toe to correct the appearance defect caused by a narrow "neck" and a bulbous tip. The intact plantar digital arches were identified in all specimens. The plantar digital artery arch had 5 branches. The range of external diameter of the arch branch was 0.4-0.6 mm. All the plantar digital artery arch branch island flaps and the reconstructed fingers survived. These cases were conducted with a follow-up period for 3-18 months (average, 9 months). All the plantar digital artery arch branch island flaps and reconstructed fingers demonstrated a satisfactory appearance and favorable sense function. The reconstructed finger-tip characteristic was good, with no obvious scar hyperplasia. The range of flexion and extension of reconstructed fingers was favorable as well. The plantar digital artery arch and arch branch artery possess regular vasa vasorum and abundant vascularity. A flap based on the plantar digital artery arch branch is an ideal selection for plastic surgery of reconstructed fingers. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    PubMed Central

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115

  5. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-07-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.

  6. Terahertz Nanofocusing with Cantilevered Terahertz-Resonant Antenna Tips.

    PubMed

    Mastel, Stefan; Lundeberg, Mark B; Alonso-González, Pablo; Gao, Yuanda; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Koppens, Frank H L; Nikitin, Alexey Y; Hillenbrand, Rainer

    2017-11-08

    We developed THz-resonant scanning probe tips, yielding strongly enhanced and nanoscale confined THz near fields at their tip apex. The tips with length in the order of the THz wavelength (λ = 96.5 μm) were fabricated by focused ion beam (FIB) machining and attached to standard atomic force microscopy (AFM) cantilevers. Measurements of the near-field intensity at the very tip apex (25 nm radius) as a function of tip length, via graphene-based (thermoelectric) near-field detection, indicate their first and second order geometrical antenna resonances for tip length of 33 and 78 μm, respectively. On resonance, we find that the near-field intensity is enhanced by one order of magnitude compared to tips of 17 μm length (standard AFM tip length), which is corroborated by numerical simulations that further predict remarkable intensity enhancements of about 10 7 relative to the incident field. Because of the strong field enhancement and standard AFM operation of our tips, we envision manifold and straightforward future application in scattering-type THz near-field nanoscopy and THz photocurrent nanoimaging, nanoscale nonlinear THz imaging, or nanoscale control and manipulation of matter employing ultrastrong and ultrashort THz pulses.

  7. Tips for Teachers of Evidence-based Medicine: Clinical Prediction Rules (CPRs) and Estimating Pretest Probability

    PubMed Central

    McGinn, Thomas; Jervis, Ramiro; Wisnivesky, Juan; Keitz, Sheri

    2008-01-01

    Background Clinical prediction rules (CPR) are tools that clinicians can use to predict the most likely diagnosis, prognosis, or response to treatment in a patient based on individual characteristics. CPRs attempt to standardize, simplify, and increase the accuracy of clinicians’ diagnostic and prognostic assessments. The teaching tips series is designed to give teachers advice and materials they can use to attain specific educational objectives. Educational Objectives In this article, we present 3 teaching tips aimed at helping clinical learners use clinical prediction rules and to more accurately assess pretest probability in every day practice. The first tip is designed to demonstrate variability in physician estimation of pretest probability. The second tip demonstrates how the estimate of pretest probability influences the interpretation of diagnostic tests and patient management. The third tip exposes learners to various examples and different types of Clinical Prediction Rules (CPR) and how to apply them in practice. Pilot Testing We field tested all 3 tips with 16 learners, a mix of interns and senior residents. Teacher preparatory time was approximately 2 hours. The field test utilized a board and a data projector; 3 handouts were prepared. The tips were felt to be clear and the educational objectives reached. Potential teaching pitfalls were identified. Conclusion Teaching with these tips will help physicians appreciate the importance of applying evidence to their every day decisions. In 2 or 3 short teaching sessions, clinicians can also become familiar with the use of CPRs in applying evidence consistently in everyday practice. PMID:18491194

  8. Allele compensation in tip60+/- mice rescues white adipose tissue function in vivo.

    PubMed

    Gao, Yuan; Hamers, Nicole; Rakhshandehroo, Maryam; Berger, Ruud; Lough, John; Kalkhoven, Eric

    2014-01-01

    Adipose tissue is a key regulator of energy homestasis. The amount of adipose tissue is largely determined by adipocyte differentiation (adipogenesis), a process that is regulated by the concerted actions of multiple transcription factors and cofactors. Based on in vitro studies in murine 3T3-L1 preadipocytes and human primary preadipocytes, the transcriptional cofactor and acetyltransferase Tip60 was recently identified as an essential adipogenic factor. We therefore investigated the role of Tip60 on adipocyte differentiation and function, and possible consequences on energy homeostasis, in vivo. Because homozygous inactivation results in early embryonic lethality, Tip60+/- mice were used. Heterozygous inactivation of Tip60 had no effect on body weight, despite slightly higher food intake by Tip60+/- mice. No major effects of heterozygous inactivation of Tip60 were observed on adipose tissue and liver, and Tip60+/- displayed normal glucose tolerance, both on a low fat and a high fat diet. While Tip60 mRNA was reduced to 50% in adipose tissue, the protein levels were unaltered, suggesting compensation by the intact allele. These findings indicate that the in vivo role of Tip60 in adipocyte differentiation and function cannot be properly addressed in Tip60+/- mice, but requires the generation of adipose tissue-specific knock out animals or specific knock-in mice.

  9. Fabrication of a trimer/single atom tip for gas field ion sources by means of field evaporation without tip heating.

    PubMed

    Kim, Kwang-Il; Kim, Young Heon; Ogawa, Takashi; Choi, Suji; Cho, Boklae; Ahn, Sang Jung; Park, In-Yong

    2018-05-11

    A gas field ion source (GFIS) has many advantages that are suitable for ion microscope sources, such as high brightness and a small virtual source size, among others. In order to apply a tip-based GFIS to an ion microscope, it is better to create a trimer/single atom tip (TSAT), where the ion beam must be generated in several atoms of the tip apex. Here, unlike the conventional method which uses tip heating or a reactive gas, we show that the tip surface can be cleaned using only the field evaporation phenomenon and that the TSAT can also be fabricated using an insulating layer containing tungsten oxide, which remains after electrochemical etching. Using this method, we could get TSAT over 90% of yield. Copyright © 2018. Published by Elsevier B.V.

  10. Modulated microwave microscopy and probes used therewith

    DOEpatents

    Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

    2012-09-11

    A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

  11. The midline-based nasolabial transposition (MNT) flap: an original single-stage technique for nasal tip reconstruction.

    PubMed

    Beustes-Stefanelli, Matthieu; O'Toole, Greg; Schertenleib, Pierre

    2015-04-01

    Nasolabial flaps based on the lateral side of the nose for the reconstruction of lateral nasal defects in a single-stage procedure have been described. Similarly, in midline defects, nasolabial flaps can be used but a 2-stage procedure is classically required. The Midline-based Nasolabial Transposition (MNT) flap is presented as a new single-stage procedure for nasal tip reconstruction. Between 2009 and 2011, an MNT flap was used as a single-stage procedure in 3 cases of large nasal defects of the tip where the forehead flap was either contraindicated or rejected as an option by the patient. There were no complications and a satisfactory aesthetic result was achieved in all cases. The MNT flap is a new single-stage procedure for large nasal tip defects and as such represents an interesting alternative to the classical 2-stage forehead and nasolabial flaps, especially in elderly patients.

  12. Visualizing In Situ Microstructure Dependent Crack Tip Stress Distribution in IN-617 Using Nano-mechanical Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Mohanty, Debapriya P.; Tomar, Vikas

    2016-11-01

    Inconel 617 (IN-617) is a solid solution alloy, which is widely used in applications that require high-temperature component operation due to its high-temperature stability and strength as well as strong resistance to oxidation and carburization. The current work focuses on in situ measurements of stress distribution under 3-point bending at elevated temperature in IN-617. A nanomechanical Raman spectroscopy measurement platform was designed and built based on a combination of a customized open Raman spectroscopy (NMRS) system incorporating a motorized scanning and imaging system with a nanomechanical loading platform. Based on the scanning of the crack tip notch area using the NMRS notch tip, stress distribution under applied load with micron-scale resolution for analyzed microstructures is predicted. A finite element method-based formulation to predict crack tip stresses is presented and validated using the presented experimental data.

  13. Medication-Assisted Treatment For Opioid Addiction in Opioid Treatment Programs. Treatment Improvement Protocol (TIP) Series 43

    ERIC Educational Resources Information Center

    Tinkler, Emily; Vallejos Bartlett, Catalina; Brooks, Margaret; Gilbert, Johnatnan Max; Henderson, Randi; Shuman, Deborah, J.

    2005-01-01

    TIP 43 provides best-practice guidelines for medication-assisted treatment of opioid addiction in opioid treatment programs (OTPs). The primary intended audience for this volume is substance abuse treatment providers and administrators who work in OTPs. Recommendations in the TIP are based on both an analysis of current research and determinations…

  14. Enhancing Leadership Quality. TQ Source Tips & Tools: Emerging Strategies to Enhance Educator Quality

    ERIC Educational Resources Information Center

    National Comprehensive Center for Teacher Quality, 2008

    2008-01-01

    Teaching Quality (TQ) Source Tips & Tools: Emerging Strategies to Enhance Educator Quality is an online resource developed by the TQ Center. It is designed to help education practitioners tap into strategies and resources they can use to enhance educator quality. This publication is based on the TQ Source Tips & Tools topic area "Enhancing…

  15. Floc Formation Reduces the pH Stress Experienced by Microorganisms Living in Alkaline Environments

    PubMed Central

    Charles, C. J.; Rout, S. P.; Patel, K. A.; Akbar, S.; Laws, A. P.; Jackson, B. R.; Boxall, S. A.

    2017-01-01

    ABSTRACT The survival of microorganisms within a cementitious geological disposal facility for radioactive wastes heavily depends on their ability to survive the calcium-dominated, hyperalkaline conditions resulting from the dissolution of the cementitious materials. The results from this study show that the formation of flocs, composed of a complex mixture of extracellular polymeric substances (EPS), provides protection against alkaline pH values up to 13.0. The flocs were dominated by Alishewanella and Dietzia spp., producing a mannose-rich carbohydrate fraction incorporating extracellular DNA, resulting in Ca2+ sequestration. EPS provided a ∼10-μm thick layer around the cells within the center of the flocs, which were capable of growth at pH values of 11.0 and 11.5, maintaining internal pH values of 10.4 and 10.7, respectively. Microorganisms survived at a pH of 12.0, where an internal floc pH of 11.6 was observed, as was a reduced associated biomass. We observed limited floc survival (<2 weeks) at a pH of 13.0. This study demonstrates that flocs maintain lower internal pHs in response to the hyperalkaline conditions expected to occur within a cementitious geological disposal facility for radioactive wastes and indicates that floc communities within such a facility can survive at pHs up to 12.0. IMPORTANCE The role of extracellular polymeric substances (EPS) in the survival of microorganisms in hyperalkaline conditions is poorly understood. Here, we present the taxonomy, morphology, and chemical characteristics of an EPS-based microbial floc, formed by a consortium isolated from an anthropogenic hyperalkaline site. Short-term (<2 weeks) survival of the flocs at a pH of 13 was observed, with indefinite survival observed at a pH of 12.0. Measurements from micro-pH electrodes (10-μm-diameter tip) demonstrated that flocs maintain lower internal pHs in response to hyperalkaline conditions (pH 11.0, 11.5, and 12.0), demonstrating that floc formation and EPS production are survival strategies under hyperalkaline conditions. The results indicate how microbial communities may survive and propagate within the hyperalkaline environment that is expected to prevail in a cementitious geological disposal facility for radioactive wastes; the results are also relevant to the wider extremophile community. PMID:28087527

  16. Floc Formation Reduces the pH Stress Experienced by Microorganisms Living in Alkaline Environments.

    PubMed

    Charles, C J; Rout, S P; Patel, K A; Akbar, S; Laws, A P; Jackson, B R; Boxall, S A; Humphreys, P N

    2017-03-15

    The survival of microorganisms within a cementitious geological disposal facility for radioactive wastes heavily depends on their ability to survive the calcium-dominated, hyperalkaline conditions resulting from the dissolution of the cementitious materials. The results from this study show that the formation of flocs, composed of a complex mixture of extracellular polymeric substances (EPS), provides protection against alkaline pH values up to 13.0. The flocs were dominated by Alishewanella and Dietzia spp., producing a mannose-rich carbohydrate fraction incorporating extracellular DNA, resulting in Ca 2+ sequestration. EPS provided a ∼10-μm thick layer around the cells within the center of the flocs, which were capable of growth at pH values of 11.0 and 11.5, maintaining internal pH values of 10.4 and 10.7, respectively. Microorganisms survived at a pH of 12.0, where an internal floc pH of 11.6 was observed, as was a reduced associated biomass. We observed limited floc survival (<2 weeks) at a pH of 13.0. This study demonstrates that flocs maintain lower internal pHs in response to the hyperalkaline conditions expected to occur within a cementitious geological disposal facility for radioactive wastes and indicates that floc communities within such a facility can survive at pHs up to 12.0. IMPORTANCE The role of extracellular polymeric substances (EPS) in the survival of microorganisms in hyperalkaline conditions is poorly understood. Here, we present the taxonomy, morphology, and chemical characteristics of an EPS-based microbial floc, formed by a consortium isolated from an anthropogenic hyperalkaline site. Short-term (<2 weeks) survival of the flocs at a pH of 13 was observed, with indefinite survival observed at a pH of 12.0. Measurements from micro-pH electrodes (10-μm-diameter tip) demonstrated that flocs maintain lower internal pHs in response to hyperalkaline conditions (pH 11.0, 11.5, and 12.0), demonstrating that floc formation and EPS production are survival strategies under hyperalkaline conditions. The results indicate how microbial communities may survive and propagate within the hyperalkaline environment that is expected to prevail in a cementitious geological disposal facility for radioactive wastes; the results are also relevant to the wider extremophile community. Copyright © 2017 American Society for Microbiology.

  17. Smart helicopter rotor with active blade tips

    NASA Astrophysics Data System (ADS)

    Bernhard, Andreas Paul Friedrich

    2000-10-01

    The smart active blade tip (SABT) rotor is an on-blade rotor vibration reduction system, incorporating active blade tips that can be independently pitched with respect to the main blade. The active blade tip rotor development included an experimental test program culminating in a Mach scale hover test, and a parallel development of a coupled, elastic actuator and rotor blade analysis for preliminary design studies and hover performance prediction. The experimental testing focussed on a small scale rotor on a bearingless Bell-412 hub. The fabricated Mach-scale active-tip rotor has a diameter of 1.524 m, a blade chord of 76.2 mm and incorporated a 10% span active tip. The nominal operating speed is 2000 rpm, giving a tip Mach number of 0.47. The blade tips are driven by a novel piezo-induced bending-torsion coupled actuator beam, located spanwise in the hollow mid-cell of the main rotor blade. In hover at 2000 rpm, at 2 deg collective, and for an actuation of 125 Vrms, the measured blade tip deflection at the first four rotor harmonics is between +/-1.7 and +/-2.8 deg, increasing to +/-5.3 deg at 5/rev with resonant amplification. The corresponding oscillatory amplitude of the rotor thrust coefficient is between 0.7 · 10-3 and 1.3 · 10-1 at the first four rotor harmonics, increasing to 2.1 · 10-3 at 5/rev. In general, the experimental blade tip frequency response and corresponding rotor thrust response are well captured by the analysis. The flexbeam root flap bending moment is predicted in trend, but is significantly over-estimated. The blade tips did not deflect as expected at high collective settings, because of the blade tip shaft locking up in the bearing. This is caused by the high flap bending moment on the blade tip shaft. Redesign of the blade tip shaft assembly and bearing support is identified as the primary design improvement for future research. The active blade tip rotor was also used as a testbed for the evaluation of an adaptive neural-network based control algorithm. Effective background vibration reduction of an intentional 1/rev hover imbalance was demonstrated. The control algorithm also showed the capability to generate desired multi-frequency control loads on the hub, based on artificial signal injection into the vibration measurement. The research program demonstrates the technical feasibility of the active blade tip concept for vibration reduction and warrants further investigation in terms of closed loop forward flight tests in the windtunnel and full scale design studies.

  18. Aeroelastic considerations for torsionally soft rotors

    NASA Technical Reports Server (NTRS)

    Mantay, W. R.; Yeager, W. T., Jr.

    1985-01-01

    A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and six tip designs were tested on the torsionally soft blades. The designs incorporated a systemmatic variation in geometric parameters including sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. A track sensitivity study was also conducted at several advance ratios for both rotors. Based on the test results, tip parameter variations generated significant rotor performance and loads differences for both baseline and torsionally soft blades.

  19. Effects of Double-Leakage Tip Clearance Flow on the Performance of a Compressor Stage with a Large Rotor Tip Gap

    NASA Technical Reports Server (NTRS)

    Hah, Chunill

    2016-01-01

    Effects of a large rotor tip gap on the performance of a one and half stage axial compressor are investigated in detail with a numerical simulation based on LES and available PIV data. The current paper studies the main flow physics, including why and how the loss generation is increased with the large rotor tip gap. The present study reveals that when the tip gap becomes large, tip clearance fluid goes over the tip clearance core vortex and enters into the next blade's tip gap, which is called double-leakage tip clearance flow. As the tip clearance flow enters into the adjacent blade's tip gap, a vortex rope with a lower pressure core is generated. This vortex rope breaks up the tip clearance core vortex of the adjacent blade, resulting in a large additional mixing. This double-leakage tip clearance flow occurs at all operating conditions, from design flow to near stall condition, with the large tip gap for the current compressor stage. The double-leakage tip clearance flow, its interaction with the tip clearance core vortex of the adjacent blade, and the resulting large mixing loss are the main flow mechanism of the large rotor tip gap in the compressor. When the tip clearance is smaller, flow near the end wall follows more closely with the main passage flow and this double-leakage tip clearance flow does not happen near the design flow condition for the current compressor stage. When the compressor with a large tip gap operates at near stall operation, a strong vortex rope is generated near the leading edge due to the double-leakage flow. Part of this vortex separates from the path of the tip clearance core vortex and travels from the suction side of the blade toward the pressure side of the blade. This vortex is generated periodically at near stall operation with a large tip gap. As the vortex travels from the suction side to the pressure side of the blade, a large fluctuation of local pressure forces blade vibration. Nonsynchronous blade vibration occurs due to this vortex as the frequency of this vortex generation is not the same as the rotor. The present investigation confirms that this vortex is a part of separated tip clearance vortex, which is caused by the double-leakage tip clearance flow.

  20. Tip-Based Nanofabrication for Scalable Manufacturing

    DOE PAGES

    Hu, Huan; Kim, Hoe; Somnath, Suhas

    2017-03-16

    Tip-based nanofabrication (TBN) is a family of emerging nanofabrication techniques that use a nanometer scale tip to fabricate nanostructures. Here in this review, we first introduce the history of the TBN and the technology development. We then briefly review various TBN techniques that use different physical or chemical mechanisms to fabricate features and discuss some of the state-of-the-art techniques. Subsequently, we focus on those TBN methods that have demonstrated potential to scale up the manufacturing throughput. Finally, we discuss several research directions that are essential for making TBN a scalable nano-manufacturing technology.

  1. Tip-Based Nanofabrication for Scalable Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Huan; Kim, Hoe; Somnath, Suhas

    Tip-based nanofabrication (TBN) is a family of emerging nanofabrication techniques that use a nanometer scale tip to fabricate nanostructures. Here in this review, we first introduce the history of the TBN and the technology development. We then briefly review various TBN techniques that use different physical or chemical mechanisms to fabricate features and discuss some of the state-of-the-art techniques. Subsequently, we focus on those TBN methods that have demonstrated potential to scale up the manufacturing throughput. Finally, we discuss several research directions that are essential for making TBN a scalable nano-manufacturing technology.

  2. A viscoplastic study of crack-tip deformation and crack growth in a nickel-based superalloy at elevated temperature

    NASA Astrophysics Data System (ADS)

    Zhao, L. G.; Tong, J.

    Viscoplastic crack-tip deformation behaviour in a nickel-based superalloy at elevated temperature has been studied for both stationary and growing cracks in a compact tension (CT) specimen using the finite element method. The material behaviour was described by a unified viscoplastic constitutive model with non-linear kinematic and isotropic hardening rules, and implemented in the finite element software ABAQUS via a user-defined material subroutine (UMAT). Finite element analyses for stationary cracks showed distinctive strain ratchetting behaviour near the crack tip at selected load ratios, leading to progressive accumulation of tensile strain normal to the crack-growth plane. Results also showed that low frequencies and superimposed hold periods at peak loads significantly enhanced strain accumulation at crack tip. Finite element simulation of crack growth was carried out under a constant Δ K-controlled loading condition, again ratchetting was observed ahead of the crack tip, similar to that for stationary cracks. A crack-growth criterion based on strain accumulation is proposed where a crack is assumed to grow when the accumulated strain ahead of the crack tip reaches a critical value over a characteristic distance. The criterion has been utilized in the prediction of crack-growth rates in a CT specimen at selected loading ranges, frequencies and dwell periods, and the predictions were compared with the experimental results.

  3. Trials of Improved Practices (TIPs) to Enhance the Dietary and Iron-Folate Intake during Pregnancy- A Quasi Experimental Study among Rural Pregnant Women of Varanasi, India

    PubMed Central

    Shivalli, Siddharudha; Srivastava, Ratan Kumar; Singh, Gyan Prakash

    2015-01-01

    Background Behavior Change Communications (BCC) play a decisive role in modifying socio-cultural norms affecting the perception and nutritional practices during pregnancy. Objective To examine the effectiveness of ‘Trials of Improved Practices’ (TIPs) on dietary and iron-folate intake during pregnancy. Design Community based quasi experimental study with a control group Setting Four villages of Chiraigaon Community Development Block of Varanasi, India from May 2010 and recruited from August 2010. End line assessment, after 12 weeks of intervention, was completed in April 2011. Participants Pregnant women in 13–28 weeks of gestation Intervention TIPs was implemented in addition to ongoing essential obstetric care services in two villages through 3 home (assessment, negotiation and evaluation) visits and only assessment and evaluation visits in the other two control villages. Interpersonal communication, endorsing the active participation of family members and home based reminder materials were the TIPs based strategies. The effect of TIPs was assessed by comparing key outcome variables at baseline and after 12 weeks of intervention. Outcome Measures Hemoglobin%, anemia prevalence, weight gain, compliance for iron-folate supplementation and dietary intake of calorie, protein, calcium and iron. Results A total of 86 participants completed the study. At the end, mean hemoglobin levels were 11.5±1.24 g/dl and 10.37±1.38 g/dl in the TIPs and control groups, respectively. The prevalence of anemia reduced by half in TIPs group and increased by 2.4% in the control group. Weight gain (grams/week) was significantly (p<0.01) higher in TIPs group (326.9±91.8 vs. 244.6±97.4). More than 85% of the PW in TIPs group were compliant for Iron-folate and only 38% were compliant among controls. The mean intake of protein increased by 1.78gm in intervention group and decreased by 1.81 gm in controls (p<0.05). More than two thirds of PW in TIPs group were taking one extra meal and only one third of controls were doing the same. Conclusion TIPs found to be an effective approach to improve the nutritional status of pregnant women in the study area. TIPs strategy could be further explored on larger sample representing different socio-cultural and geographical areas. Trial Registration Clinical Trial Registry of India CTRI/2015/02/005517 PMID:26367775

  4. An Interprofessional Web-Based Resource for Health Professions Preceptors

    PubMed Central

    McLeod, Elizabeth; Kwong, Mona; Tidball, Glynnis; Collins, John; Neufeld, Lois; Drynan, Donna

    2012-01-01

    Objective. To develop a Web-based preceptor education resource for healthcare professionals and evaluate its usefulness. Methods. Using an open source platform, 8 online modules called “E-tips for Practice Education” (E-tips) were developed that focused on topics identified relevant across healthcare disciplines. A cross-sectional survey design was used to evaluate the online resource. Ninety preceptors from 10 health disciplines affiliated with the University of British Columbia evaluated the E-tips. Results. The modules were well received by preceptors, with all participants indicating that they would recommend these modules to their colleagues, over 80% indicating the modules were very to extremely applicable, and over 60% indicating that E-tips had increased their confidence in their ability to teach. Conclusion. Participants reported E-tips to be highly applicable to their teaching role as preceptors. Given their multidisciplinary focus, these modules address a shared language and ideas about clinical teaching among those working in multi-disciplinary settings. PMID:23193332

  5. URANS simulations of the tip-leakage cavitating flow with verification and validation procedures

    NASA Astrophysics Data System (ADS)

    Cheng, Huai-yu; Long, Xin-ping; Liang, Yun-zhi; Long, Yun; Ji, Bin

    2018-04-01

    In the present paper, the Vortex Identified Zwart-Gerber-Belamri (VIZGB) cavitation model coupled with the SST-CC turbulence model is used to investigate the unsteady tip-leakage cavitating flow induced by a NACA0009 hydrofoil. A qualitative comparison between the numerical and experimental results is made. In order to quantitatively evaluate the reliability of the numerical data, the verification and validation (V&V) procedures are used in the present paper. Errors of numerical results are estimated with seven error estimators based on the Richardson extrapolation method. It is shown that though a strict validation cannot be achieved, a reasonable prediction of the gross characteristics of the tip-leakage cavitating flow can be obtained. Based on the numerical results, the influence of the cavitation on the tip-leakage vortex (TLV) is discussed, which indicates that the cavitation accelerates the fusion of the TLV and the tip-separation vortex (TSV). Moreover, the trajectory of the TLV, when the cavitation occurs, is close to the side wall.

  6. Chem-Braze Abradable Seal Attachment

    DTIC Science & Technology

    1980-05-01

    bonding system for attaching sintered abradable seals such as FELTMETAL® to titanium -, steel- and nickel-base compressor blade tip-shrouds has been... blade tip-shrouds was developed. The improved Chem-Braze system incorporates glycerin as an inhibitor to prevent premature evaporation which prolongs...compressor blade tip-shrouds using the improved Chem-Braze system compared to attachment with gold-nickel braze. p. p. FORM . . yn

  7. Forces and electronic transport in a contact formed by a graphene tip and a defective MoS2 monolayer: a theoretical study

    NASA Astrophysics Data System (ADS)

    di Felice, D.; Dappe, Y. J.; González, C.

    2018-06-01

    A theoretical study of a graphene-like tip used in atomic force microscopy (AFM) is presented. Based on first principles simulations, we proved the low reactivity of this kind of tip, using a MoS2 monolayer as the testing sample. Our simulations show that the tip–MoS2 interaction is mediated through weak van der Waals forces. Even on the defective monolayer, the interaction is reduced by one order of magnitude with respect to the values obtained using a highly reactive metallic tip. On the pristine monolayer, the S atoms were imaged for large distances together with the substitutional defects which should be observed as brighter spots in non-contact AFM measurements. This result is in contradiction with previous simulations performed with Cu or Si tips where the metallic defects were imaged for much larger distances than the S atoms. For shorter distances, the Mo sites will be brighter even though a vacancy is formed. On the other hand, the largest conductance value is obtained over the defect formed by two Mo atoms occupying a S divacancy when the half-occupied p y -states of the graphene-like tip find a better coupling with d-orbitals of the highest substitutional atom. Due to the weak interaction, no conductance plateau is formed in any of the sites. A great advantage of this tip lies in the absence of atomic transfer between the tip and the sample leading to a more stable AFM measurement. Finally, and as previously shown, we confirm the atomic resolution in a scanning tunneling microscopy simulation using this graphene-based tip.

  8. Simulation of CNT-AFM tip based on finite element analysis for targeted probe of the biological cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yousefi, Amin Termeh, E-mail: at.tyousefi@gmail.com; Miyake, Mikio, E-mail: miyakejaist@gmail.com; Ikeda, Shoichiro, E-mail: sho16.ikeda@gmail.com

    Carbon nanotubes (CNTs) are potentially ideal tips for atomic force microscopy (AFM) due to the robust mechanical properties, nano scale diameter and also their ability to be functionalized by chemical and biological components at the tip ends. This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cell’s. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). This reliable integration of CNT-AFM tip process provides a new class of high performance nanoprobes for single biological cellmore » analysis.« less

  9. Technical tips for collagenase injection treatment for Dupuytren contracture.

    PubMed

    Meals, Roy A; Hentz, Vincent R

    2014-06-01

    We describe technical tips for injecting collagenase into Dupuytren cords based on experience acquired during the prerelease Food and Drug Administration clinical trials and with subsequent clinical practice. These tips include techniques for extracting the reconstituted enzyme efficiently from the vial, injecting the cord(s) with increased safety to the tendons, and anesthetizing the hand before manipulation. The tips are intended to supplement but by no means replace the manufacturer's prescribing information and training video. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  10. A stiffness derivative finite element technique for determination of crack tip stress intensity factors

    NASA Technical Reports Server (NTRS)

    Parks, D. M.

    1974-01-01

    A finite element technique for determination of elastic crack tip stress intensity factors is presented. The method, based on the energy release rate, requires no special crack tip elements. Further, the solution for only a single crack length is required, and the crack is 'advanced' by moving nodal points rather than by removing nodal tractions at the crack tip and performing a second analysis. The promising straightforward extension of the method to general three-dimensional crack configurations is presented and contrasted with the practical impossibility of conventional energy methods.

  11. Simulating contrast inversion in atomic force microscopy imaging with real-space pseudopotentials

    NASA Astrophysics Data System (ADS)

    Lee, Alex J.; Sakai, Yuki; Chelikowsky, James R.

    2017-02-01

    Atomic force microscopy (AFM) measurements have reported contrast inversions for systems such as Cu2N and graphene that can hamper image interpretation and characterization. Here, we apply a simulation method based on ab initio real-space pseudopotentials to gain an understanding of the tip-sample interactions that influence the inversion. We find that chemically reactive tips induce an attractive binding force that results in the contrast inversion. We find that the inversion is tip height dependent and not observed when using less reactive CO-functionalized tips.

  12. Wettability of AFM tip influences the profile of interfacial nanobubbles

    NASA Astrophysics Data System (ADS)

    Teshima, Hideaki; Takahashi, Koji; Takata, Yasuyuki; Nishiyama, Takashi

    2018-02-01

    To accurately characterize the shape of interfacial nanobubbles using atomic force microscopy (AFM), we investigated the effect of wettability of the AFM tip while operating in the peak force tapping (PFT) mode. The AFM tips were made hydrophobic and hydrophilic by Teflon AF coating and oxygen plasma treatment, respectively. It was found that the measured base radius of nanobubbles differed between AFM height images and adhesion images, and that this difference depended on the tip wettability. The force curves obtained during the measurements were also different depending on the wettability, especially in the range of the tip/nanobubble interaction and in the magnitude of the maximum attractive force in the retraction period. The difference suggests that hydrophobic tips penetrate the gas/liquid interface of the nanobubbles, with the three phase contact line being pinned on the tip surface; hydrophilic tips on the other hand do not penetrate the interface. We then quantitatively estimated the pinning position and recalculated the true profiles of the nanobubbles by comparing the height images and adhesion images. As the AFM tip was made more hydrophilic, the penetration depth decreased and eventually approached zero. This result suggests that the PFT measurement using a hydrophilic tip is vital for the acquisition of reliable nanobubble profiles.

  13. Allele Compensation in Tip60+/− Mice Rescues White Adipose Tissue Function In Vivo

    PubMed Central

    Gao, Yuan; Hamers, Nicole; Rakhshandehroo, Maryam; Berger, Ruud; Lough, John; Kalkhoven, Eric

    2014-01-01

    Adipose tissue is a key regulator of energy homestasis. The amount of adipose tissue is largely determined by adipocyte differentiation (adipogenesis), a process that is regulated by the concerted actions of multiple transcription factors and cofactors. Based on in vitro studies in murine 3T3-L1 preadipocytes and human primary preadipocytes, the transcriptional cofactor and acetyltransferase Tip60 was recently identified as an essential adipogenic factor. We therefore investigated the role of Tip60 on adipocyte differentiation and function, and possible consequences on energy homeostasis, in vivo. Because homozygous inactivation results in early embryonic lethality, Tip60+/− mice were used. Heterozygous inactivation of Tip60 had no effect on body weight, despite slightly higher food intake by Tip60+/− mice. No major effects of heterozygous inactivation of Tip60 were observed on adipose tissue and liver, and Tip60+/− displayed normal glucose tolerance, both on a low fat and a high fat diet. While Tip60 mRNA was reduced to 50% in adipose tissue, the protein levels were unaltered, suggesting compensation by the intact allele. These findings indicate that the in vivo role of Tip60 in adipocyte differentiation and function cannot be properly addressed in Tip60+/− mice, but requires the generation of adipose tissue-specific knock out animals or specific knock-in mice. PMID:24870614

  14. Biophysical Characterization of the Type III Secretion Tip Proteins and the Tip Proteins Attached to Bacterium-Like Particles

    PubMed Central

    Choudhari, Shyamal P.; Chen, Xiaotong; Kim, Jae Hyun; van Roosmalen, Maarten L.; Greenwood, Jamie C.; Joshi, Sangeeta B.; Picking, William D.; Leenhouts, Kees; Middaugh, C. Russell; Picking, Wendy L.

    2014-01-01

    Bacterium-like particles (BLPs), derived from Lactococcus lactis, offer a self-adjuvanting delivery vehicle for subunit protein vaccines. Proteins can be specifically loaded onto the BLPs via a peptidoglycan anchoring domain (PA). In this study, the tip proteins IpaD, SipD and LcrV belonging to type three secretion systems of Shigella flexneri, Salmonella enterica and Yersinia enterocolitica, respectively, were fused to the PA and loaded onto the BLPs. Herein, we biophysically characterized these nine samples and condensed the spectroscopic results into three-index empirical phase diagrams (EPDs). The EPDs show distinctions between the IpaD/SipD and LcrV subfamilies of tip proteins, based on their physical stability, even upon addition of the PA. Upon attachment to the BLPs, the BLPs become defining moiety in the spectroscopic measurements, leaving the tip proteins to have a subtle yet modulating effect on the structural integrity of the tip proteins-BLPs binding. In summary, this work provides a comprehensive view of physical stability of the tip proteins and tip protein-BLPs and serves as a baseline for screening of excipients to increase the stability of the tip protein-BLPs for future vaccine formulation. PMID:24916512

  15. Application of two-dimensional unsteady aerodynamic to a free-tip rotor response analysis

    NASA Technical Reports Server (NTRS)

    Yates, L.; Kumagai, H.

    1985-01-01

    The free-tip rotor utilizes a rotor blade tip which is structurally decoupled from the blade inboard section. The tip is free to pitch about its own pitch axis to respond to the local flow angularity changes. The tip also experiences the heaving motion due to the flapping of the rotor blade. For an airfoil in any pitching and heaving motion which can be expanded into a Fourier series, the lift and moment calculated by Theodoren's theory is simply the linear combination of the lift and moment calculated for each harmonic. These lift and moment are then used to determine the response of the free-tip rotor. A parametric study is performed to determine the effect of mechanical damping, mechanical spring, sweep, friction, and a constant control moment on the free-tip rotor response characteristics and the resulting azimuthal lift distributions. The results showed that the free-tip has the capability to suppress the oscillatory lift distribution around the azimuth and to eliminate a significant negative life peak on the advancing tip. This result agrees with the result of the previous analysis based on the steady aerodynamics.

  16. Probing the probe: AFM tip-profiling via nanotemplates to determine Hamaker constants from phase-distance curves.

    PubMed

    Rodriguez, Raul D; Lacaze, Emmanuelle; Jupille, Jacques

    2012-10-01

    A method to determine the van der Waals forces from phase-distance curves recorded by atomic force microscopy (AFM) in tapping mode is presented. The relationship between the phase shift and the tip-sample distance is expressed as a function of the product of the Hamaker constant by tip radius. Silica-covered silicon tips are used to probe silica-covered silicon substrate in dry conditions to avoid capillary effects. Tips being assumed spherical, radii are determined in situ by averaging profiles recorded in different directions on hematite nanocrystals acting as nanotemplates, thus accounting for tip anisotropy. Through a series of reproducible measurements performed with tips of various radii (including the in-situ characterization of a damaged tip), a value of (6.3±0.4)×10(-20) J is found for the Hamaker constant of interacting silica surfaces in air, in good agreement with tabulated data. The results demonstrate that the onset of the tip-surface interaction is dominated by the van der Waals forces and that the total force can be modeled in the framework of the harmonic approximation. Based on the tip radius and the Hamaker constant associated to the tip-substrate system, the model is quite flexible. Once the Hamaker constant is known, a direct estimate of the tip size can be achieved whereas when the tip size is known, a quantitative evaluation of the van der Waals force becomes possible on different substrates with a spatial resolution at the nanoscale. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Experimental study of a generic high-speed civil transport: Tabulated data

    NASA Technical Reports Server (NTRS)

    Belton, Pamela S.; Campbell, Richard L.

    1992-01-01

    An experimental study of a generic high-speed civil transport was conducted in LaRC's 8-Foot Transonic Pressure Tunnel. The data base was obtained for the purpose of assessing the accuracy of various levels of computational analysis. Two models differing only in wing tip geometry were tested with and without flow-through nacelles. The baseline model has a curved or crescent wing tip shape while the second model has a more conventional straight wing tip shape. The study was conducted at Mach numbers from 0.30-1.19. Force data were obtained on both the straight and curved wing tip models. Only the curved wing tip model was instrumented for measuring pressures. Longitudinal and lateral-directional aerodynamic data are presented without analysis in tabulated form. Pressure coefficients for the curved wing tip model are also presented in tabulated form.

  18. Predictive Modeling and Optimization of Vibration-assisted AFM Tip-based Nanomachining

    NASA Astrophysics Data System (ADS)

    Kong, Xiangcheng

    The tip-based vibration-assisted nanomachining process offers a low-cost, low-effort technique in fabricating nanometer scale 2D/3D structures in sub-100 nm regime. To understand its mechanism, as well as provide the guidelines for process planning and optimization, we have systematically studied this nanomachining technique in this work. To understand the mechanism of this nanomachining technique, we firstly analyzed the interaction between the AFM tip and the workpiece surface during the machining process. A 3D voxel-based numerical algorithm has been developed to calculate the material removal rate as well as the contact area between the AFM tip and the workpiece surface. As a critical factor to understand the mechanism of this nanomachining process, the cutting force has been analyzed and modeled. A semi-empirical model has been proposed by correlating the cutting force with the material removal rate, which was validated using experimental data from different machining conditions. With the understanding of its mechanism, we have developed guidelines for process planning of this nanomachining technique. To provide the guideline for parameter selection, the effect of machining parameters on the feature dimensions (depth and width) has been analyzed. Based on ANOVA test results, the feature width is only controlled by the XY vibration amplitude, while the feature depth is affected by several machining parameters such as setpoint force and feed rate. A semi-empirical model was first proposed to predict the machined feature depth under given machining condition. Then, to reduce the computation intensity, linear and nonlinear regression models were also proposed and validated using experimental data. Given the desired feature dimensions, feasible machining parameters could be provided using these predictive feature dimension models. As the tip wear is unavoidable during the machining process, the machining precision will gradually decrease. To maintain the machining quality, the guideline for when to change the tip should be provided. In this study, we have developed several metrics to detect tip wear, such as tip radius and the pull-off force. The effect of machining parameters on the tip wear rate has been studied using these metrics, and the machining distance before a tip must be changed has been modeled using these machining parameters. Finally, the optimization functions have been built for unit production time and unit production cost subject to realistic constraints, and the optimal machining parameters can be found by solving these functions.

  19. Energy dissipation in the blade tip region of an axial fan

    NASA Astrophysics Data System (ADS)

    Bizjan, B.; Milavec, M.; Širok, B.; Trenc, F.; Hočevar, M.

    2016-11-01

    A study of velocity and pressure fluctuations in the tip clearance flow of an axial fan is presented in this paper. Two different rotor blade tip designs were investigated: the standard one with straight blade tips and the modified one with swept-back tip winglets. Comparison of integral sound parameters indicates a significant noise level reduction for the modified blade tip design. To study the underlying mechanisms of the energy conversion and noise generation, a novel experimental method based on simultaneous measurements of local flow velocity and pressure has also been developed and is presented here. The method is based on the phase space analysis by the use of attractors, which enable more accurate identification and determination of the local flow structures and turbulent flow properties. Specific gap flow energy derived from the pressure and velocity time series was introduced as an additional attractor parameter to assess the flow energy distribution and dissipation within the phase space, and thus determines characteristic sources of the fan acoustic emission. The attractors reveal a more efficient conversion of the pressure to kinetic flow energy in the case of the modified (tip winglet) fan blade design, and also a reduction in emitted noise levels. The findings of the attractor analysis are in a good agreement with integral fan characteristics (efficiency and noise level), while offering a much more accurate and detailed representation of gap flow phenomena.

  20. A survey on monopolar radiofrequency treatment.

    PubMed

    Suh, Dong Hye; Hong, Eun Sun; Kim, Hyun Joo; Lee, Sang Jun; Kim, Hei Sung

    2017-09-01

    This questionnaire-based study was aimed to measure the level of appreciation, awareness of the special tips, and practice patterns of monopolar radiofrequency among Korean dermatologists practicing a specific monopolar radiofrequency device (Thermage® Inc., Hayward, CA). A total of 82 surveys were analyzed to show that the majority of participants (78.8%) were highly satisfied with the outcomes of monopolar radiofrequency treatment. All respondents were aware of the Eye Tip 0.25 cm 2 , and the majority knew the difference between the Face tip (blue) and the Total tip (orange). Most (86.3%) agreed to the statement that 900 shots were appropriate for facial tightening in those between the ages of 35 and 65 years. 66.2% of participants reported to have perform monopolar radiofrequency to extra-facial sites within the past year. As for the tips, the Total tip was most popular for all body sties and the Big tip was favored for the abdomen, thighs and buttock. We hope our data allow dermatologists to better utilize monopolar radiofrequency. © 2017 Wiley Periodicals, Inc.

  1. Effect of CT Specimen Thickness on the Mechanical Characteristics at the Crack Tip of Stress Corrosion Cracking in Ni-based Alloys

    NASA Astrophysics Data System (ADS)

    Yinghao, Cui; He, Xue; Lingyan, Zhao

    2017-12-01

    It’s important to obtain accurate stress corrosion crack(SCC) growth rate for quantitative life prediction of components in nuclear power plants. However, the engineering practice shows that the crack tip constraint effect has a great influence on the mechanical properties and crack growth rate of SCC at crack tip. To study the influence of the specimen thickness on the crack tip mechanical properties of SCC, the stress, strain and C integral at creep crack tip are analyzed under different specimens thickness. Results show that the cracked specimen is less likely to crack due to effect of crack tip constraint. When the thickness ratio B/W is larger than 0.1, the crack tip constraint is almost ineffective. Value of C integral is the largest when B/W is 0.25. Then specimen thickness has little effect on the value of C integral. The effect of specimen thickness on the value of C integral is less significant at higher thickness ratio.

  2. Vis- and NIR-based instruments for detection of black-tip damaged wheat kernels: A comparative study

    USDA-ARS?s Scientific Manuscript database

    Black-tip (BT) present in wheat kernels is a non-mycotoxic fungus that attacks the kernels wherein any of a number of molds forms a dark brown or black sooty mold at the tip of the wheat kernel. Three spectrometers covering the spectral ranges 950-1636nm (Spec1), 600-1045nm (Spec2), and 380-780nm (S...

  3. Modeling and estimation of tip contact force for steerable ablation catheters.

    PubMed

    Khoshnam, Mahta; Skanes, Allan C; Patel, Rajni V

    2015-05-01

    The efficacy of catheter-based cardiac ablation procedures can be significantly improved if real-time information is available concerning contact forces between the catheter tip and cardiac tissue. However, the widely used ablation catheters are not equipped for force sensing. This paper proposes a technique for estimating the contact forces without direct force measurements by studying the changes in the shape of the deflectable distal section of a conventional 7-Fr catheter (henceforth called the "deflectable distal shaft," the "deflectable shaft," or the "shaft" of the catheter) in different loading situations. First, the shaft curvature when the tip is moving in free space is studied and based on that, a kinematic model for the deflectable shaft in free space is proposed. In the next step, the shaft shape is analyzed in the case where the tip is in contact with the environment, and it is shown that the curvature of the deflectable shaft provides useful information about the loading status of the catheter and can be used to define an index for determining the range of contact forces exerted by the ablation tip. Experiments with two different steerable ablation catheters show that the defined index can detect the range of applied contact forces correctly in more than 80% of the cases. Based on the proposed technique, a framework for obtaining contact force information by using the shaft curvature at a limited number of points along the deflectable shaft is constructed. The proposed kinematic model and the force estimation technique can be implemented together to describe the catheter's behavior before contact, detect tip/tissue contact, and determine the range of contact forces. This study proves that the flexibility of the catheter's distal shaft provides a means of estimating the force exerted on tissue by the ablation tip.

  4. Cut-cell method based large-eddy simulation of tip-leakage flow

    NASA Astrophysics Data System (ADS)

    Pogorelov, Alexej; Meinke, Matthias; Schröder, Wolfgang

    2015-07-01

    The turbulent low Mach number flow through an axial fan at a Reynolds number of 9.36 × 105 based on the outer casing diameter is investigated by large-eddy simulation. A finite-volume flow solver in an unstructured hierarchical Cartesian setup for the compressible Navier-Stokes equations is used. To account for sharp edges, a fully conservative cut-cell approach is applied. A newly developed rotational periodic boundary condition for Cartesian meshes is introduced such that the simulations are performed just for a 72° segment, i.e., the flow field over one out of five axial blades is resolved. The focus of this numerical analysis is on the development of the vortical flow structures in the tip-gap region. A detailed grid convergence study is performed on four computational grids with 50 × 106, 250 × 106, 1 × 109, and 1.6 × 109 cells. Results of the instantaneous and the mean fan flow field are thoroughly analyzed based on the solution with 1 × 109 cells. High levels of turbulent kinetic energy and pressure fluctuations are generated by a tip-gap vortex upstream of the blade, the separating vortices inside the tip gap, and a counter-rotating vortex on the outer casing wall. An intermittent interaction of the turbulent wake, generated by the tip-gap vortex, with the downstream blade, leads to a cyclic transition with high pressure fluctuations on the suction side of the blade and a decay of the tip-gap vortex. The disturbance of the tip-gap vortex results in an unsteady behavior of the turbulent wake causing the intermittent interaction. For this interaction and the cyclic transition, two dominant frequencies are identified which perfectly match with the characteristic frequencies in the experimental sound power level and therefore explain their physical origin.

  5. Word Study Instruction in the K-2 Classroom

    ERIC Educational Resources Information Center

    Williams, Cheri; Phillips-Birdsong, Colleen; Hufnagel, Krissy; Hungler, Diane; Lundstrom, Ruth P.

    2009-01-01

    This article describes nine tips for implementing a word study program in the K-2 classroom. These tips are based on the results of four classroom-based qualitative research projects collaboratively conducted by a university professor and four primary-grade teacher-researchers. The article suggests that through small-group word study instruction…

  6. Reynolds-averaged Navier-Stokes computation on tip clearance flow in a compressor cascade using an unstructured grid

    NASA Astrophysics Data System (ADS)

    Shin, Sangmook

    2001-07-01

    A three-dimensional unstructured incompressible RANS code has been developed using artificial compressibility and Spalart-Allmaras eddy viscosity model. A node-based finite volume method is used in which all flow variables are defined at the vertices of tetrahedrons in an unstructured grid. The inviscid fluxes are computed by using the Roe's flux difference splitting method, and higher order accuracy is attained by data reconstruction based on Taylor series expansion. Gauss theorem is used to formulate necessary gradients. For time integration, an implicit scheme based on linearized Euler backward method is used. A tetrahedral unstructured grid generation code has been also developed and applied to the tip clearance flow in a highly staggered cascade. Surface grids are first generated in the flow passage and blade tip by using several triangulation methods including Delaunay triangulation, advancing front method and advancing layer method. Then the whole computational domain including tip gap region is filled with prisms using the surface grids. The code has been validated by comparisons with available computational and experimental results for several test cases: inviscid flow around NACA section, laminar and turbulent flow over a flat plate, turbulent flow through double-circular arc cascade and laminar flow through a square duct with 90° bend. Finally the code is applied to a linear cascade that has GE rotor B section with tip clearance and a high stagger angle of 56.9°. The overall structure of the tip clearance flow is well predicted. Loss of loading due to tip leakage flow and reloading due to tip leakage vortex are presented. On the end wall, separation line of the tip leakage vortex and reattachment line of passage vortex are identified. Prediction of such an interaction presents a challenge to RANS computations. The effects of blade span on the flow structure have been also investigated. Two cascades with blades of aspect ratios of 0.5 and 1.0 are considered. By comparing pressure distributions on the blade, it is shown that the aspect ratio has strong effects on loading distribution on the blade although the tip gap height is very small (0.016 chord). Grid convergence study has been carried out with three different grids for pressure distributions and limiting streamlines on the end wall. (Abstract shortened by UMI.)

  7. Calcium in Gravitropism of the Moss Pohlia nutans (Hedw.) Lindb. protonemata

    NASA Astrophysics Data System (ADS)

    Khorkavtsiv, O. Ya; Demkiv, O. T.; Khorkavtsiv, Ya. D.

    Protonemata of mosses of Pohlia nutans grow both by extension and division of single apical cells which are negatively gravitropic in darkness. The fluorescence of Ca2+ increased in the tip of apical cells from the first hours of gravitropism stimulation. Cytochemical investigations confirmed the existence of a well pronounced tip-to-base Ca2+-gradient, its formation being favoured by localization of calcium influx in the tip of the apical cell. Measurement of the cytochemical reaction intensity showed that the level of Ca2+-ATFase activity is low in apex and increases towards the base of the apical cell. The gravitropic protonemata and filaments which grew on the clinostat showed similar distributions of the Ca2+ and Ca2+-ATFase activity along the apical cell axis. Thus, these data demonstrate that growing apical cells of gravitropic protonemata have a high tip-to-base Ca2+ gradient, the Ca2+ transport being afforded by Ca2+-ATFase.

  8. Automated On-tip Affinity Capture Coupled with Mass Spectrometry to Characterize Intact Antibody-Drug Conjugates from Blood

    NASA Astrophysics Data System (ADS)

    Li, Ke Sherry; Chu, Phillip Y.; Fourie-O'Donohue, Aimee; Srikumar, Neha; Kozak, Katherine R.; Liu, Yichin; Tran, John C.

    2018-05-01

    Antibody-drug conjugates (ADCs) present unique challenges for ligand-binding assays primarily due to the dynamic changes of the drug-to-antibody ratio (DAR) distribution in vivo and in vitro. Here, an automated on-tip affinity capture platform with subsequent mass spectrometry analysis was developed to accurately characterize the DAR distribution of ADCs from biological matrices. A variety of elution buffers were tested to offer optimal recovery, with trastuzumab serving as a surrogate to the ADCs. High assay repeatability (CV 3%) was achieved for trastuzumab antibody when captured below the maximal binding capacity of 7.5 μg. Efficient on-tip deglycosylation was also demonstrated in 1 h followed by affinity capture. Moreover, this tip-based platform affords higher throughput for DAR characterization when compared with a well-characterized bead-based method.

  9. [TREATMENT OBSERVATION OF NASAL TIP DEFECTS RECONSTRUCTED BY BILOBED FLAPS AFTER GAINT NEVI EXCISION].

    PubMed

    Li, Zhengyong; Pu, Yi; Cen, Ying; Wu, Junliang; Zhang, Zhenyu

    2016-11-08

    To discuss a reliable and aesthetic surgery method for the reconstruction of large defects on the top of nose after giant nevi resection. Between January 2011 and June 2015, 46 cases of nasal tip defects caused by giant nevi resection were treated. Of 46 cases, 22 were male and 24 were female, aged 15-59 years (median, 28 years). The right ala nasi was involved in 28 cases, the apex nasi in 8 cases, and the left ala nasi in 10 cases. The diameters of nevi were from 8 to 12 mm (mean, 9.75 mm); no alar cartilage was invaded. Hair growth was seen in 14 cases. The duration of nasal nevi was from 3 years to 49 years (mean, 9.8 years). There were 9 recurrent patients who received laser therapy before surgery. The defects sizes after excision were from 10 mm×10 mm to 14 mm×14 mm. The bilobed flaps were used for one-stage reconstruction, which sizes were from 11 mm×10 mm to 15 mm×14 mm and from 10 mm×10 mm to 15 mm×14 mm. All the incisions healed by first intention, and the flaps survived. No complication of intracranial hemorrhage or subdural hemorrhage occurred. The patients were followed up 6 months to 5 years (mean, 18 months). The appearance of nasal tip and nasolabial fold was satisfactory, and no recurrence was found during follow-up. One-stage bilobed flap reconstruction for nasal tip defects after giant nevus resection is one of the effective, safe, and aesthetic surgery methods.

  10. Measurement of Rotating Blade Tip Clearance with Fibre-Optic Probe

    NASA Astrophysics Data System (ADS)

    Cao, S. Z.; Duan, F. J.; Zhang, Y. G.

    2006-10-01

    This paper described a tip clearance measuring system with fibre-optic probe. The system is based on a novel tip clearance sensor of optical fibre-bundle mounted on the casing, rotating speed synchronization sensor mounted on the rotating shaft, the tip clearance preamplification processing circuit followed by high speed data-acquisition unit. A novel tip clearance sensor of trifurcated optical fibre bundle was proposed and demonstrated. It is independent of material of measured surface but capacitive probe demands target conductive. Measurements can be taken under severe conditions such as ionization. Sensor circuitry and data acquisition circuit were successfully designed. With the help of Rotation synchronized sensor, all the blades can be detected in real-time. Because of fibre-optic sensor, the measuring system has commendably frequency response, which can work well in high rotating speed from 0-15000rpm.The measurement range of tip clearance is 0-3mm with 25um precision.

  11. Femtosecond laser micromachining of compound parabolic concentrator fiber tipped glucose sensors.

    PubMed

    Hassan, Hafeez Ul; Lacraz, Amédée; Kalli, Kyriacos; Bang, Ole

    2017-03-01

    We report on highly accurate femtosecond (fs) laser micromachining of a compound parabolic concentrator (CPC) fiber tip on a polymer optical fiber (POF). The accuracy is reflected in an unprecedented correspondence between the numerically predicted and experimentally found improvement in fluorescence pickup efficiency of a Förster resonance energy transfer-based POF glucose sensor. A Zemax model of the CPC-tipped sensor predicts an optimal improvement of a factor of 3.96 compared to the sensor with a plane-cut fiber tip. The fs laser micromachined CPC tip showed an increase of a factor of 3.5, which is only 11.6% from the predicted value. Earlier state-of-the-art fabrication of the CPC-shaped tip by fiber tapering was of so poor quality that the actual improvement was 43% lower than the predicted improvement of the ideal CPC shape.

  12. Femtosecond laser micromachining of compound parabolic concentrator fiber tipped glucose sensors

    NASA Astrophysics Data System (ADS)

    Hassan, Hafeez Ul; Lacraz, Amédée; Kalli, Kyriacos; Bang, Ole

    2017-03-01

    We report on highly accurate femtosecond (fs) laser micromachining of a compound parabolic concentrator (CPC) fiber tip on a polymer optical fiber (POF). The accuracy is reflected in an unprecedented correspondence between the numerically predicted and experimentally found improvement in fluorescence pickup efficiency of a Förster resonance energy transfer-based POF glucose sensor. A Zemax model of the CPC-tipped sensor predicts an optimal improvement of a factor of 3.96 compared to the sensor with a plane-cut fiber tip. The fs laser micromachined CPC tip showed an increase of a factor of 3.5, which is only 11.6% from the predicted value. Earlier state-of-the-art fabrication of the CPC-shaped tip by fiber tapering was of so poor quality that the actual improvement was 43% lower than the predicted improvement of the ideal CPC shape.

  13. Prediction of Unshsrouded Rotor Blade Tip Heat Transfer

    NASA Technical Reports Server (NTRS)

    Ameri, A. A.; Steinthorsson, E.

    1994-01-01

    The rate of heat transfer on the tip of a turbine rotor blade and on the blade surface in the vicinity of the tip, was successfully predicted. The computations were performed with a multiblock computer code which solves the Reynolds Averaged Navier-Stokes equations using an efficient multigrid method. The case considered for the present calculations was the Space Shuttle Main Engine (SSME) high pressure fuel side turbine. The predictions of the blade tip heat transfer agreed reasonably well with the experimental measurements using the present level of grid refinement. On the tip surface, regions with high rate of heat transfer was found to exist close to the pressure side and suction side edges. Enhancement of the heat transfer was also observed on the blade surface near the tip. Further comparison of the predictions was performed with results obtained from correlations based on fully developed channel flow.

  14. Two-photon excited fluorescence from a pseudoisocyanine-attached gold-coated tip via a thin tapered fiber under a weak continuous wave excitation.

    PubMed

    Ren, Fang; Takashima, Hideaki; Tanaka, Yoshito; Fujiwara, Hideki; Sasaki, Keiji

    2013-11-18

    A simple tapered fiber based photonic-plasmonic hybrid nanostructure composed of a thin tapered fiber and a pseudoisocyanine (PIC)-attached Au-coated tip was demonstrated. Using this simple hybrid nanostructure, we succeeded in observing two-photon excited fluorescence from the PIC dye molecules under a weak continuous wave excitation condition. From the results of the tip-fiber distance dependence and excitation polarization dependence, we found that using a thin tapered fiber and an Au-coated tip realized efficient coupling of the incident light (~95%) and LSP excitation at the Au-coated tip, suggesting the possibility of efficiently inducing two-photon excited fluorescence from the PIC dye molecules attached on the Au-coated tip. This simple photonic-plasmonic hybrid system is one of the promising tools for single photon sources, highly efficient plasmonic sensors, and integrated nonlinear plasmonic devices.

  15. A new aeroelastic model for composite rotor blades with straight and swept tips

    NASA Technical Reports Server (NTRS)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    1992-01-01

    An analytical model for predicting the aeroelastic behavior of composite rotor blades with straight and swept tips is presented. The blade is modeled by beam type finite elements along the elastic axis. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. Tip sweep can induce aeroelastic instability by flap-twist coupling. Tip anhedral causes lag-torsion and flap-axial couplings, however, its effects on blade stability is less pronounced than the effect due to sweep. Composite ply orientation has a substantial effect on blade stability.

  16. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Southwest). Brown Rock Crab, Red Rock Crab, and Yellow Crab

    DTIC Science & Technology

    1989-12-01

    staged by examining the California (Talent 1982). pleopod tips (P. Reilly, pcrs. comm.). The specific hormonal mechanisms that control molting cycles...Coos Bay, Oregon, was correlated California, they sometimes occur near the cooling water with changes in salinity ; because red rock crabs are...discharges of coastal power plants. Adams (1970) osmoconformers, survival was low at salinities below observed both juvenile and adult brown rock crabs in the

  17. Effects of contact shape on the scaling of biological attachments

    NASA Astrophysics Data System (ADS)

    Spolenak, Ralph; Gorb, Stanislav; Gao, Huajian; Arzt, Eduard

    2005-02-01

    Adhesion of biological systems has recently received much research attention: the survival of organisms ranging from single cells and mussels to insects, spiders and geckos relies crucially on their mechanical interaction with their environments. For spiders, lizards and possible other 'dry' adhesive systems, explanations for adhesion are based on van der Waals interaction, and the adhesion of single-contact elements has been described by the classical Johnson-Kendall-Roberts (JKR) model derived for spherical contacts. However, real biological contacts display a variety of shapes and only rarely resemble a hemisphere. Here, we theoretically assess the influence of various contact shapes on the pull-off force for single contacts as well as their scaling potential in contact arrays. It is concluded that other shapes, such as a toroidal contact geometry, should lead to better attachment; such geometries are observed in our microscopic investigations of hair-tip shapes in beetles and flies.

  18. Study of tip clearance flow in a turbomachinery cascade using large eddy simulation

    NASA Astrophysics Data System (ADS)

    You, Donghyun

    In liquid handling systems like pumps and ducted propulsors, low pressure events in the vicinity and downstream of the rotor tip gap can induce tip-leakage cavitation which leads to noise, vibration, performance loss, and erosions of blade and casing wall. In order to analyze the dynamics of the tip-clearance flow and determine the underlying mechanism for the low pressure events, a newly developed large-eddy simulation (LES) solver which combines an immersed-boundary method with a generalized curvilinear structured grid has been employed. An analysis of the LES results has been performed to understand the mean flow field, turbulence characteristics, vortex dynamics, and pressure fluctuations in the turbomachinery cascade with tip gap. In the cascade passage, the tip-leakage jet, which is generated by the pressure difference between the pressure and suction sides of the blade tip, is found to produce highly enhanced vorticity magnitude and significant levels of turbulent kinetic energy. Based on the understanding of the flow field, a guideline for reducing viscous loss in the cascade is provided. Analyses of the energy spectra and space-time correlations of the velocity fluctuations suggest that the tip-leakage vortex is subject to pitchwise wandering motion. The largest pressure drop and most intense pressure fluctuations due to the formation of the tip-leakage vortex are found at the location where the strongest portion of the tip-leakage vortex is found. Present study suggests that the tip-leakage vortex needs to be controlled in its origin to reduce cavitation in the present configuration. The effects of tip-gap size on the end-wall vortical structures and on the velocity and pressure fields have been investigated. The present analysis indicates that the mechanism for the generation of the vorticity and turbulent kinetic energy is mostly unchanged by the tip-gap size variation. However, larger tip-gap sizes are found to be more inductive to tip-leakage cavitation judged by the levels of negative mean pressure and pressure fluctuations.

  19. Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis.

    PubMed

    Pang, Yongqi; Li, Lijuan; Ren, Fei; Lu, Pingli; Wei, Pengcheng; Cai, Jinghui; Xin, Lingguo; Zhang, Juan; Chen, Jia; Wang, Xuechen

    2010-06-01

    Boron (B) toxicity to plants is responsible for low crop productivity in many regions of the world. Here we report a novel and effective means to alleviate the B toxicity to plants under high B circumstance. Functional characterization of AtTIP5;1, an aquaporin gene, revealed that overexpression of AtTIP5;1 (OxAtTIP5;1) in Arabidopsis significantly increased its tolerance to high B toxicity. Compared to wild-type plants, OxAtTIP5;1 plants exhibited longer hypocotyls, accelerated development, increased silique production under high B treatments. GUS staining and quantitative RT-PCR (qRT-PCR) results demonstrated that the expression of AtTIP5;1 was induced by high B concentration treatment. Subcellular localization analysis revealed that the AtTIP5;1-GFP fusion protein was localized on the tonoplast membrane, which was consistent with the prediction based on bioinformatics. Taken together, our results suggest that AtTIP5;1 is involved in B transport pathway possibly via vacuolar compartmentation for B, and that overexpression of AtTIP5;1 in plants may provide an effective way to overcome the problem resulting from high B concentration toxicity. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  20. Large eddy simulation of tip-leakage flow in an axial flow fan

    NASA Astrophysics Data System (ADS)

    Park, Keuntae; Choi, Haecheon; Choi, Seokho; Sa, Yongcheol; Kwon, Oh-Kyoung

    2016-11-01

    An axial flow fan with a shroud generates a complicated tip-leakage flow by the interaction of the axial flow with the fan blades and shroud near the blade tips. In this study, large eddy simulation is performed for tip-leakage flow in a forward-swept axial flow fan inside an outdoor unit of an air-conditioner, operating at the design condition of the Reynolds number of 547,000 based on the radius of blade tip and the tip velocity. A dynamic global model is used for a subgrid-scale model, and an immersed boundary method in a non-inertial reference frame is adopted. The present simulation clearly reveals the generation and evolution of tip-leakage vortex near the blade tip by the leakage flow. At the inception of the leakage vortex near the leading edge of the suction-side of the blade tip, the leakage vortex is composed of unsteady multiple vortices containing high-frequency fluctuations. As the leakage vortex develops downstream along a slant line toward the following blade, large and meandering movements of the leakage vortex are observed. Thus low-frequency broad peaks of velocity and pressure occur near the pressure surface. Supported by the KISTI Supercomputing Center (KSC-2016-C3-0027).

  1. Levator alae nasi muscle V-Y island flap for nasal tip reconstruction.

    PubMed

    La Padula, Simone; Abbate, Vincenzo; Di Monta, Gianluca; Schonauer, Fabrizio

    2017-03-01

    Nasal tip reconstruction can be very challenging. It requires close attention to skin texture, colour and thickness matching, with the respect of the nasal aesthetic units and symmetry. Flaps are usually preferred to skin grafts where possible. Based on different donor areas, various flaps have been described for reconstruction of this region. Here we present a new V-Y myocutaneous island flap based on the levator alae nasi muscle (LAN muscle) blood supply. This flap may represent an alternative to the nasalis myocutaneous sliding V-Y flap previously described by Rybka. As its pivot point it is located more cranially than the nasalis flap, and it can advance more medially than the Rybka flap, with the possibility of covering larger defects of the nasal tip area, up to 1.8 cm in diameter. Over the past 5 years, 24 patients received nasal tip reconstruction with this flap following the resection of basal cell carcinomas. Good tip projection was maintained, and the aesthetic outcome was satisfactory, with well healed scars. We recommend this technique as an alternative to other flaps for nasal tip defects, especially if paramedian. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  2. Fusion of electromagnetic trackers to improve needle deflection estimation: simulation study.

    PubMed

    Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2013-10-01

    We present a needle deflection estimation method to anticipate needle bending during insertion into deformable tissue. Using limited additional sensory information, our approach reduces the estimation error caused by uncertainties inherent in the conventional needle deflection estimation methods. We use Kalman filters to combine a kinematic needle deflection model with the position measurements of the base and the tip of the needle taken by electromagnetic (EM) trackers. One EM tracker is installed on the needle base and estimates the needle tip position indirectly using the kinematic needle deflection model. Another EM tracker is installed on the needle tip and estimates the needle tip position through direct, but noisy measurements. Kalman filters are then employed to fuse these two estimates in real time and provide a reliable estimate of the needle tip position, with reduced variance in the estimation error. We implemented this method to compensate for needle deflection during simulated needle insertions and performed sensitivity analysis for various conditions. At an insertion depth of 150 mm, we observed needle tip estimation error reductions in the range of 28% (from 1.8 to 1.3 mm) to 74% (from 4.8 to 1.2 mm), which demonstrates the effectiveness of our method, offering a clinically practical solution.

  3. TipMT: Identification of PCR-based taxon-specific markers.

    PubMed

    Rodrigues-Luiz, Gabriela F; Cardoso, Mariana S; Valdivia, Hugo O; Ayala, Edward V; Gontijo, Célia M F; Rodrigues, Thiago de S; Fujiwara, Ricardo T; Lopes, Robson S; Bartholomeu, Daniella C

    2017-02-11

    Molecular genetic markers are one of the most informative and widely used genome features in clinical and environmental diagnostic studies. A polymerase chain reaction (PCR)-based molecular marker is very attractive because it is suitable to high throughput automation and confers high specificity. However, the design of taxon-specific primers may be difficult and time consuming due to the need to identify appropriate genomic regions for annealing primers and to evaluate primer specificity. Here, we report the development of a Tool for Identification of Primers for Multiple Taxa (TipMT), which is a web application to search and design primers for genotyping based on genomic data. The tool identifies and targets single sequence repeats (SSR) or orthologous/taxa-specific genes for genotyping using Multiplex PCR. This pipeline was applied to the genomes of four species of Leishmania (L. amazonensis, L. braziliensis, L. infantum and L. major) and validated by PCR using artificial genomic DNA mixtures of the Leishmania species as templates. This experimental validation demonstrates the reliability of TipMT because amplification profiles showed discrimination of genomic DNA samples from Leishmania species. The TipMT web tool allows for large-scale identification and design of taxon-specific primers and is freely available to the scientific community at http://200.131.37.155/tipMT/ .

  4. Image simulation and surface reconstruction of undercut features in atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Qian, Xiaoping; Villarrubia, John; Tian, Fenglei; Dixson, Ronald

    2007-03-01

    CD-AFMs (critical dimension atomic force microscopes) are instruments with servo-control of the tip in more than one direction. With appropriately "boot-shaped" or flared tips, such instruments can image vertical or even undercut features. As with any AFM, the image is a dilation of the sample shape with the tip shape. Accurate extraction of the CD requires a correction for the tip effect. Analytical methods to correct images for the tip shape have been available for some time for the traditional (vertical feedback only) AFMs, but were until recently unavailable for instruments with multi-dimensional feedback. Dahlen et al. [J. Vac. Sci. Technol. B23, pp. 2297-2303, (2005)] recently introduced a swept-volume approach, implemented for 2-dimensional (2D) feedback. It permits image simulation and sample reconstruction, techniques previously developed for the traditional instruments, to be extended for the newer tools. We have introduced [X. Qian and J. S. Villarrubia, Ultramicroscopy, in press] an alternative dexel-based method, that does the same in either 2D or 3D. This paper describes the application of this method to sample shapes of interest in semiconductor manufacturing. When the tip shape is known (e.g., by prior measurement using a tip characterizer) a 3D sample surface may be reconstructed from its 3D image. Basing the CD measurement upon such a reconstruction is shown here to remove some measurement artifacts that are not removed (or are incompletely removed) by the existing measurement procedures.

  5. Development of eddy current microscopy for high resolution electrical conductivity imaging using atomic force microscopy.

    PubMed

    Nalladega, V; Sathish, S; Jata, K V; Blodgett, M P

    2008-07-01

    We present a high resolution electrical conductivity imaging technique based on the principles of eddy current and atomic force microscopy (AFM). An electromagnetic coil is used to generate eddy currents in an electrically conducting material. The eddy currents generated in the conducting sample are detected and measured with a magnetic tip attached to a flexible cantilever of an AFM. The eddy current generation and its interaction with the magnetic tip cantilever are theoretically modeled using monopole approximation. The model is used to estimate the eddy current force between the magnetic tip and the electrically conducting sample. The theoretical model is also used to choose a magnetic tip-cantilever system with appropriate magnetic field and spring constant to facilitate the design of a high resolution electrical conductivity imaging system. The force between the tip and the sample due to eddy currents is measured as a function of the separation distance and compared to the model in a single crystal copper. Images of electrical conductivity variations in a polycrystalline dual phase titanium alloy (Ti-6Al-4V) sample are obtained by scanning the magnetic tip-cantilever held at a standoff distance from the sample surface. The contrast in the image is explained based on the electrical conductivity and eddy current force between the magnetic tip and the sample. The spatial resolution of the eddy current imaging system is determined by imaging carbon nanofibers in a polymer matrix. The advantages, limitations, and applications of the technique are discussed.

  6. Axial compressor blade design for desensitization of aerodynamic performance and stability to tip clearance

    NASA Astrophysics Data System (ADS)

    Erler, Engin

    Tip clearance flow is the flow through the clearance between the rotor blade tip and the shroud of a turbomachine, such as compressors and turbines. This flow is driven by the pressure difference across the blade (aerodynamic loading) in the tip region and is a major source of loss in performance and aerodynamic stability in axial compressors of modern aircraft engines. An increase in tip clearance, either temporary due to differential radial expansion between the blade and the shroud during transient operation or permanent due to engine wear or manufacturing tolerances on small blades, increases tip clearance flow and results in higher fuel consumption and higher risk of engine surge. A compressor design that can reduce the sensitivity of its performance and aerodynamic stability to tip clearance increase would have a major impact on short and long-term engine performance and operating envelope. While much research has been carried out on improving nominal compressor performance, little had been done on desensitization to tip clearance increase beyond isolated observations that certain blade designs such as forward chordwise sweep, seem to be less sensitive to tip clearance size increase. The current project aims to identify through a computational study the flow features and associated mechanisms that reduces sensitivity of axial compressor rotors to tip clearance size and propose blade design strategies that can exploit these results. The methodology starts with the design of a reference conventional axial compressor rotor followed by a parametric study with variations of this reference design through modification of the camber line and of the stacking line of blade profiles along the span. It is noted that a simple desensitization method would be to reduce the aerodynamic loading of the blade tip which would reduce the tip clearance flow and its proportional contribution to performance loss. However, with the larger part of the work on the flow done in this region, this approach would entail a nominal performance penalty. Therefore, the chosen rotor design philosophy aims to keep the spanwise loading constant to avoid trading performance for desensitization. The rotor designs that resulted from this exercise are simulated in ANSYS CFX at different tip clearance sizes. The change in their performance with respect to tip clearance size (sensitivity) is compared both on an integral level in terms of pressure ratio and adiabatic efficiency, as well as on a detailed level in terms of aerodynamic losses and blockage associated with tip clearance flow. The sensitivity of aerodynamic stability is evaluated either directly through the simulations of the rotor characteristics up to the stall point (expensive in time and resources) for a few designs or indirectly through the position of the interface between the incoming and tip clearance flow with respect to the rotor leading edge plane. The latter approach is based on a generally observed stall criteria in modern axial compressors. The rotor designs are then assessed according to their sensitivity in comparison to that of the reference rotor design to detect features that can explain the trend in sensitivity to tip clearance size. These features can then be validated and the associated flow mechanisms explained through numerical simulations and modelling. Analysis of the database from the rotor parametric study shows that the observed trend in sensitivity cannot be explained by the shifting of the aerodynamic loading along the blade chord, as initially hypothesized based on the literature review. Instead, two flow features are found to reduce sensitivity of performance and stability to tip clearance, namely an increase in incoming meridional momentum in the tip region and a reduction/elimination of double leakage flow. Double leakage flow is the flow that exits the tip clearance of one blade and proceeds into the clearance of the adjacent blade rather than convecting downstream out of the local blade passage. These flow features are isolated and validated based on the reference rotor design through changes in the inlet total pressure condition to alter incoming flow momentum and blade number count to change double leakage rate. In terms of flow mechanism, double leakage is shown to be detrimental to performance and stability, and its proportional increase with tip clearance size explains the sensitivity increase in the presence of double leakage and, conversely, the desensitization effect of reducing or eliminating double leakage. The increase in incoming meridional momentum in the tip region reduces sensitivity to tip clearance through its reduction of double leakage as well as through improved mixing with tip clearance flow, as demonstrated by an analytical model without double leakage flow. The above results imply that any blade design strategy that exploits the two desensitizing flow features would reduce the performance and stability sensitivity to tip clearance size. The increase of the incoming meridional momentum can be achieved through forward chordwise sweep of the blade. The reduction of double leakage without changing blade pitch can be obtained by decreasing the blade stagger angle in the tip region. Examples of blade designs associated with these strategies are shown through CFX simulations to be successful in reducing sensitivity to tip clearance size.

  7. Web-Based Tailored Intervention for Preparation of Parents and Children for Outpatient Surgery (WebTIPS): Formative Evaluation and Randomized Controlled Trial

    PubMed Central

    Fortier, Michelle A.; Bunzli, Elizabeth; Walthall, Jessica; Olshansky, Ellen; Saadat, Haleh; Santistevan, Ricci; Mayes, Linda; Kain, Zeev N.

    2015-01-01

    Background The purpose of this two-phase project was to conduct formative evaluation and test the preliminary efficacy of a newly developed web-based, tailored behavioral preparation program (WebTIPS) for children undergoing outpatient surgery and their parents Methods Phase I enrolled 13 children aged 2–7 years undergoing outpatient elective surgery and their parents for formative evaluation of WebTIPS. Parent participation focus groups which are common in qualitative research and are a method of asking research participants about their perceptions and attitudes regarding a product or concept. In phase II, children age 2–7 years in two medical centers were randomly assigned to receive the WebTIPS program (n = 38) compared to children receiving standard of care (n = 44). The primary outcome of phase II was child and parent preoperative anxiety. Results In phase I, parents reported WebTIPS to be both helpful (p < 0.001) and easy to use (p < 0.001). In phase II, children in the WebTIPS group (36.2 ± 14.1) were less anxious than children in the standard of care group (46.0 ± 19.0) at entrance to the operating room (p = 0.02; Cohen’s d = 0.59) and introduction of the anesthesia mask (43.5 ± 21.7 vs. 57.0 ± 21.2, respectively, p = 0.01; Cohen’s d = 0.63). Parents in the WebTIPS group (32.1 ± 7.4) also experienced less anxiety compared to parents in the control group (36.8 ± 7.1) in the preoperative holding area (p = 0.004; Cohen’s d = 0.65). Conclusions WebTIPS was well received by parents and children and led to reductions in preoperative anxiety. PMID:25790213

  8. Mature Drivers: Traffic Safety Tips

    DOT National Transportation Integrated Search

    1996-01-01

    This fact sheet, NHTSA Facts: Summer 1996, discusses safety tips for drivers aged 70 and older. It notes that mature drivers: rank lower in aggressive actions; tend to make necessary safety adjustments in their driving, based on their own experience;...

  9. Low power femtosecond tip-based nanofabrication with advanced control

    NASA Astrophysics Data System (ADS)

    Liu, Jiangbo; Guo, Zhixiong; Zou, Qingze

    2018-02-01

    In this paper, we propose an approach to enable the use of low power femtosecond laser in tip-based nanofabrication (TBN) without thermal damage. One major challenge in laser-assisted TBN is in maintaining precision control of the tip-surface positioning throughout the fabrication process. An advanced iterative learning control technique is exploited to overcome this challenge in achieving high-quality patterning of arbitrary shape on a metal surface. The experimental results are analyzed to understand the ablation mechanism involved. Specifically, the near-field radiation enhancement is examined via the surface-enhanced Raman scattering effect, and it was revealed the near-field enhanced plasma-mediated ablation. Moreover, silicon nitride tip is utilized to alleviate the adverse thermal damage. Experiment results including line patterns fabricated under different writing speeds and an "R" pattern are presented. The fabrication quality with regard to the line width, depth, and uniformity is characterized to demonstrate the efficacy of the proposed approach.

  10. Blade resonance parameter identification based on tip-timing method without the once-per revolution sensor

    NASA Astrophysics Data System (ADS)

    Guo, Haotian; Duan, Fajie; Zhang, Jilong

    2016-01-01

    Blade tip-timing is the most effective method for blade vibration online measurement of turbomachinery. In this article a synchronous resonance vibration measurement method of blade based on tip-timing is presented. This method requires no once-per revolution sensor which makes it more generally applicable in the condition where this sensor is difficult to install, especially for the high-pressure rotors of dual-rotor engines. Only three casing mounted probes are required to identify the engine order, amplitude, natural frequency and the damping coefficient of the blade. A method is developed to identify the blade which a tip-timing data belongs to without once-per revolution sensor. Theoretical analyses of resonance parameter measurement are presented. Theoretic error of the method is investigated and corrected. Experiments are conducted and the results indicate that blade resonance parameter identification is achieved without once-per revolution sensor.

  11. Photoacoustic shock wave emission and cavitation from structured optical fiber tips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammadzadeh, M.; Gonzalez-Avila, S. R.; Ohl, C. D., E-mail: cdohl@ntu.edu.sg

    Photoacoustic waves generated at the tip of an optical fiber consist of a compressive shock wave followed by tensile diffraction waves. These tensile waves overlap along the fiber axis and form a cloud of cavitation bubbles. We demonstrate that shaping the fiber tip through micromachining alters the number and direction of the emitted waves and cavitation clouds. Shock wave emission and cavitation patterns from five distinctively shaped fiber tips have been studied experimentally and compared to a linear wave propagation model. In particular, multiple shock wave emission and generation of strong tension away from the fiber axis have been realizedmore » using modified fiber tips. These altered waveforms may be applied for novel microsurgery protocols, such as fiber-based histotripsy, by utilizing bubble-shock wave interaction.« less

  12. Control of Leakage Flow by Triple Squealer Configuration in Axial Flow Turbine

    NASA Astrophysics Data System (ADS)

    El-Ghandour, Mohamed; Ibrahim, Mohammed K.; Mori, Koichi; Nakamura, Yoshiaki

    A new turbine blade tip shape called triple squealer is proposed. This shape is based on the conventional double squealer, and the cavity on the tip surface is divided into two parts by using a third squealer along the blade camber line. The effect of the ratio of groove depth to span (GDS ratio) was investigated. The flat-tip case (baseline case) and double-squealer case were calculated for comparison. In-house, unstructured, 3D, Navier-Stokes, finite volume, multiblock code with DES (Detached Eddy Simulation) as turbulence model was used to calculate the flow field around the tip. The computational results show that the reduction in the mass flow rate of the leakage flow for the triple squealer is 15.69% compared to the flat-tip case.

  13. Random Vibration Analysis of the Tip-tilt System in the GMT Fast Steering Secondary Mirror

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Don; Kim, Young-Soo; Kim, Ho-Sang; Lee, Chan-Hee; Lee, Won Gi

    2017-09-01

    A random vibration analysis was accomplished on the tip-tilt system of the fast steering secondary mirror (FSM) for the Giant Magellan Telescope (GMT). As the FSM was to be mounted on the top end of the secondary truss and disturbed by the winds, dynamic effects of the FSM disturbances on the tip-tilt correction performance was studied. The coupled dynamic responses of the FSM segments were evaluated with a suggested tip-tilt correction modeling. Dynamic equations for the tip-tilt system were derived from the force and moment equilibrium on the segment mirror and the geometric compatibility conditions with four design parameters. Statically stationary responses for the tip-tilt actuations to correct the wind-induced disturbances were studied with two design parameters based on the spectral density function of the star image errors in the frequency domain. Frequency response functions and root mean square values of the dynamic responses and the residual star image errors were numerically calculated for the off-axis and on-axis segments of the FSM. A prototype of on-axis segment of the FSM was developed for tip-tilt actuation tests to confirm the ratio of tip-tilt force to tip-tilt angle calculated from the suggested dynamic equations of the tip-tilt system. Tip-tilt actuation tests were executed at 4, 8 and 12 Hz by measuring displacements of piezoelectric actuators and reaction forces acting on the axial supports. The derived ratios of rms tip-tilt force to rms tip-tilt angle from tests showed a good correlation with the numerical results. The suggested process of random vibration analysis on the tip-tilt system to correct the wind-induced disturbances of the FSM segments would be useful to advance the FSM design and upgrade the capability to achieve the least residual star image errors by understanding the details of dynamics.

  14. Role of hydrogen on the incipient crack tip deformation behavior in α-Fe: An atomistic perspective

    NASA Astrophysics Data System (ADS)

    Adlakha, I.; Solanki, K. N.

    2018-01-01

    A crack tip in α-Fe presents a preferential trap site for hydrogen, and sufficient concentration of hydrogen can change the incipient crack tip deformation response, causing a transition from a ductile to a brittle failure mechanism for inherently ductile alloys. In this work, the effect of hydrogen segregation around the crack tip on deformation in α-Fe was examined using atomistic simulations and the continuum based Rice-Thompson criterion for various modes of fracture (I, II, and III). The presence of a hydrogen rich region ahead of the crack tip was found to cause a decrease in the critical stress intensity factor required for incipient deformation for various crack orientations and modes of fracture examined here. Furthermore, the triaxial stress state ahead of the crack tip was found to play a crucial role in determining the effect of hydrogen on the deformation behavior. Overall, the segregation of hydrogen atoms around the crack tip enhanced both dislocation emission and cleavage behavior suggesting that hydrogen has a dual role during the deformation in α-Fe.

  15. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morawski, Ireneusz; Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław; Spiegelberg, Richard

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. Themore » high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.« less

  16. Uniaxial alignment of triisopropylsilylethynyl pentacene via zone-casting technique.

    PubMed

    Su, Yajun; Gao, Xiang; Liu, Jiangang; Xing, Rubo; Han, Yanchun

    2013-09-14

    Uniaxially aligned triisopropylsilylethynyl pentacene (TIPS-pentacene) crystals over a large area were fabricated using zone-casting technique. The array of TIPS-pentacene displayed a high orientation degree with a dichroic ratio (DR) of 0.80. The crystals were arranged with c axis perpendicular to the substrate and the long axis of the ribbon corresponded to the a axis of TIPS-pentacene. The properties of the solutions and the processing parameters were shown to influence the formation of the oriented TIPS-pentacene crystalline array. Solvent with a low boiling point (such as chloroform) favoured the orientation of the ribbon-like crystals. The concentration of the solution should be appropriate, ensuring the crystallization velocity of TIPS-pentacene matching with the receding of the meniscus. Besides, we proved that the casting speed should be large enough to induce a sufficient concentration gradient. The orientation mechanism of TIPS-pentacene was attributed to a synergy of the ordered nuclei and a match between the crystallization velocity and the casting speed. Field effect transistors (FETs) based on the oriented TIPS-pentacene crystalline array showed a mobility of 0.67 cm(2) V(-1) s(-1).

  17. Aeroelastic considerations for torsionally soft rotors

    NASA Technical Reports Server (NTRS)

    Mantay, W. R.; Yeager, W. T., Jr.

    1986-01-01

    A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and six tip designs were tested on the torsionally soft blades. The designs incorporated a systemmatic variation in geometric parameters including sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. A track sensitivity study was also conducted at several advance ratios for both rotors. Based on the test results, tip parameter variations generated significant rotor performance and loads differences for both baseline and torsionally soft blades. Azimuthal variation of elastic twist generated by variations in the tip parameters strongly correlated with rotor performance and loads, but the magnitude of advancing blade elastic twist did not. In addition, fixed system vibratory loads and rotor track for potential conformable rotor candidates appears very sensitive to parametric rotor changes.

  18. New technique for mouse oocyte injection via a modified holding pipette.

    PubMed

    Lyu, Q F; Deng, L; Xue, S G; Cao, S F; Liu, X Y; Jin, W; Wu, L Q; Kuang, Y P

    2010-11-01

    To improve mouse oocyte survival from intracytoplasmic sperm injection, the sharp tip of the injection pipette has been modified to have a flat end. Here, for the same goal but for a more convenient manipulation, a sharp injection pipette was kept whereas the holding pipette was modified to have a trumpet-shaped opening, which allows deeper injection into the oocyte as it is held. Mouse oocyte injection with mouse and human spermatozoa was performed at 37°C. For the injection of mouse oocyte with mouse sperm head, a significantly higher survival rate (83%) was achieved by utilizing the modified holding pipette than the conventional one (21%; P<0.001) and the fertilization rates were normal and comparable for both methods (82% versus 81%). A superior survival rate (82%) and acceptable normal fertilization rate (71%) were also achieved by utilizing the modified holding pipette for interspecies ICSI (injecting mouse oocyte with human spermatozoon). Taken together, by utilizing a holding pipette with a trumpet-shaped opening, acceptable rates of mouse oocyte survival and fertilization can be achieved using a sharp injection pipette under conditions usual for human oocyte injection. Copyright © 2010 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  19. Tips from the Classroom: Introducing the Friendly and Useful Computer; Using Annotations to Identify Composition Errors; Building a Scaffold with Video Clips; Movie Karaoke; Gotcha.

    ERIC Educational Resources Information Center

    Dudley, Albert P.; And Others

    1997-01-01

    Presents various tips that are useful in the classroom for teaching second languages. These tips focus on teaching basic computer operations; using annotations to foster error corrections in language; using video clips as a part of a U.S. history or culture-based English-as-a-Second-Language lesson; using karaoke to speak with less inhibition; and…

  20. Patterns of spatio-temporal distribution of winter chronic photoinhibition in leaves of three evergreen Mediterranean species with contrasting acclimation responses.

    PubMed

    Silva-Cancino, María Carolina; Esteban, Raquel; Artetxe, Unai; Plazaola, José Ignacio García

    2012-03-01

    High irradiance and relatively low temperature, which characterize Mediterranean winters, cause chilling stress in plants. Downregulation of photosynthetic efficiency is a mechanism that allows plants to survive these conditions. This study aims to address whether this process shows a regular spatial pattern across leaf surface or not. Three species (Buxus sempervirens, Cistus albidus and Arctostaphylos uva-ursi) with contrasting responses to winter stress were studied. During 7 days, macro and micro Fv/Fm spatial patterns were monitored by the use of chlorophyll fluorescence imaging techniques. In the field, the strongest photoinhibition was found in B. sempervirens, while there was almost no chronic photoinhibition in C. albidus. In leaves of the first species, Fv/Fm decreased from base to tip while in C. albidus it was uniform over the leaf lamina. An intermediate behavior is shown by A. uva-ursi leaves. Spatial heterogeneity distribution of Fv/Fm was found inside the leaves, resulting in greater Fv/Fm values in the inner layers than in the outer ones. Neither xanthophyll-linked downregulation of Fv/Fm nor protein remobilization were the reasons for such spatial patterns since pigment composition and nitrogen content did not reveal tip-base differences. During recovery from winter, photoinhibition changes occurred in Fv/Fm, pigments and chloroplast ultrastructure. This work shows for the first time that irrespective of physiological mechanisms responsible for development of winter photoinhibition, there is an acclimation response with strong spatio-temporal variability at leaf level in some species. This observation should be taken into account when modeling or scaling up photosynthetic responses. Copyright © Physiologia Plantarum 2011.

  1. Surgical tool detection and tracking in retinal microsurgery

    NASA Astrophysics Data System (ADS)

    Alsheakhali, Mohamed; Yigitsoy, Mehmet; Eslami, Abouzar; Navab, Nassir

    2015-03-01

    Visual tracking of surgical instruments is an essential part of eye surgery, and plays an important role for the surgeons as well as it is a key component of robotics assistance during the operation time. The difficulty of detecting and tracking medical instruments in-vivo images comes from its deformable shape, changes in brightness, and the presence of the instrument shadow. This paper introduces a new approach to detect the tip of surgical tool and its width regardless of its head shape and the presence of the shadows or vessels. The approach relies on integrating structural information about the strong edges from the RGB color model, and the tool location-based information from L*a*b color model. The probabilistic Hough transform was applied to get the strongest straight lines in the RGB-images, and based on information from the L* and a*, one of these candidates lines is selected as the edge of the tool shaft. Based on that line, the tool slope, the tool centerline and the tool tip could be detected. The tracking is performed by keeping track of the last detected tool tip and the tool slope, and filtering the Hough lines within a box around the last detected tool tip based on the slope differences. Experimental results demonstrate the high accuracy achieved in term of detecting the tool tip position, the tool joint point position, and the tool centerline. The approach also meets the real time requirements.

  2. Note: Low-temperature scanning tunneling microscope with detachable scanner and reliable transfer mechanism for tip and sample exchange

    NASA Astrophysics Data System (ADS)

    Ge, Weifeng; Wang, Jihao; Wang, Junting; Zhang, Jing; Hou, Yubin; Lu, Qingyou

    2017-12-01

    A homebuilt low-temperature scanning tunneling microscope (STM) featuring a detachable scanner based on a double slider design, along with a reliable transfer mechanism for tip and sample exchange, is present. The coarse motor is decoupled from the scanner, which prevents the motor instabilities including vibrations and drifts from entering the tip-sample loop and thus improves the performance of the STM. In addition, in situ exchange of tips and samples can be implemented easily and reliably using a winch-type transfer mechanism. Atomically resolved images on graphite are demonstrated to show the performance of the proposed STM.

  3. Numerical study on the mechanisms of the SERS of gold-coated pyramidal tip substrates.

    PubMed

    Li, Rui; Wang, Qiao; Li, Hong; Liu, Kun; Pan, Shi; Zhan, Weishen; Chen, Maodu

    2016-06-29

    In this paper, the physical enhancement mechanisms of the surface-enhanced Raman scattering (SERS) of pyramidal tip substrates are studied theoretically. We structure the periodic square-based arrays of adjacent nanometer pyramidal gold-coated tips on silicon. In order to determine the contribution of plasmonic or diffraction effects on the SERS, three-dimensional (3D) numerical simulations are implemented by taking into account the substrate coated with a gold thin film or a perfect electrical conductor thin film. The tip distance, metal coating thickness and incident light polarization angle are also optimized to investigate whether the further SERS signal can be enhanced.

  4. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    DOEpatents

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  5. Note: Low-temperature scanning tunneling microscope with detachable scanner and reliable transfer mechanism for tip and sample exchange.

    PubMed

    Ge, Weifeng; Wang, Jihao; Wang, Junting; Zhang, Jing; Hou, Yubin; Lu, Qingyou

    2017-12-01

    A homebuilt low-temperature scanning tunneling microscope (STM) featuring a detachable scanner based on a double slider design, along with a reliable transfer mechanism for tip and sample exchange, is present. The coarse motor is decoupled from the scanner, which prevents the motor instabilities including vibrations and drifts from entering the tip-sample loop and thus improves the performance of the STM. In addition, in situ exchange of tips and samples can be implemented easily and reliably using a winch-type transfer mechanism. Atomically resolved images on graphite are demonstrated to show the performance of the proposed STM.

  6. Algorithmic localisation of noise sources in the tip region of a low-speed axial flow fan

    NASA Astrophysics Data System (ADS)

    Tóth, Bence; Vad, János

    2017-04-01

    An objective and algorithmised methodology is proposed to analyse beamform data obtained for axial fans. Its application is demonstrated in a case study regarding the tip region of a low-speed cooling fan. First, beamforming is carried out in a co-rotating frame of reference. Then, a distribution of source strength is extracted along the circumference of the rotor at the blade tip radius in each analysed third-octave band. The circumferential distributions are expanded into Fourier series, which allows for filtering out the effects of perturbations, on the basis of an objective criterion. The remaining Fourier components are then considered as base sources to determine the blade-passage-periodic flow mechanisms responsible for the broadband noise. Based on their frequency and angular location, the base sources are grouped together. This is done using the fuzzy c-means clustering method to allow the overlap of the source mechanisms. The number of clusters is determined in a validity analysis. Finally, the obtained clusters are assigned to source mechanisms based on the literature. Thus, turbulent boundary layer - trailing edge interaction noise, tip leakage flow noise, and double leakage flow noise are identified.

  7. Moving an Evidence-Based Policy Agenda Forward: Leadership Tips From the Field.

    PubMed

    Garrett, Teresa

    2018-05-01

    Advancing evidence-based policy change is a leadership challenge that nurses should embrace. Key tips to ensure that evidence-based policy changes are successful at the individual, community, and population levels are offered to help nurses through the change process. The public trust in the nursing profession is a leverage point that should be used to advance the use of evidence, expedite change, and improve health for students and across communities.

  8. Survival after Radiofrequency Ablation in 122 Patients with Inoperable Colorectal Lung Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillams, Alice, E-mail: alliesorting@gmail.com; Khan, Zahid; Osborn, Peter

    2013-06-15

    Purpose. To analyze the factors associated with favorable survival in patients with inoperable colorectal lung metastases treated with percutaneous image-guided radiofrequency ablation. Methods. Between 2002 and 2011, a total of 398 metastases were ablated in 122 patients (87 male, median age 68 years, range 29-90 years) at 256 procedures. Percutaneous CT-guided cool-tip radiofrequency ablation was performed under sedation/general anesthesia. Maximum tumor size, number of tumors ablated, number of procedures, concurrent/prior liver ablation, previous liver or lung resection, systemic chemotherapy, disease-free interval from primary resection to lung metastasis, and survival from first ablation were recorded prospectively. Kaplan-Meier analysis was performed, andmore » factors were compared by log rank test. Results. The initial number of metastases ablated was 2.3 (range 1-8); the total number was 3.3 (range 1-15). The maximum tumor diameter was 1.7 (range 0.5-4) cm, and the number of procedures was 2 (range 1-10). The major complication rate was 3.9 %. Overall median and 3-year survival rate were 41 months and 57 %. Survival was better in patients with smaller tumors-a median of 51 months, with 3-year survival of 64 % for tumors 2 cm or smaller versus 31 months and 44 % for tumors 2.1-4 cm (p = 0.08). The number of metastases ablated and whether the tumors were unilateral or bilateral did not affect survival. The presence of treated liver metastases, systemic chemotherapy, or prior lung resection did not affect survival. Conclusion. Three-year survival of 57 % in patients with inoperable colorectal lung metastases is better than would be expected with chemotherapy alone. Patients with inoperable but small-volume colorectal lung metastases should be referred for ablation.« less

  9. Carbon-nanotube probes for three-dimensional critical-dimension metrology

    NASA Astrophysics Data System (ADS)

    Park, B. C.; Ahn, S. J.; Choi, J.; Jung, K. Y.; Song, W. Y.

    2006-03-01

    We fabricate three kinds of carbon nanotube (CNT) probes to be employed in critical dimension atomic force microscope (CD-AFM). Despite unique advantages in its size and hardness, use of nanotube tip has been limited due to the lack of reproducible control of CNT orientation and its shape. We proposed that CNT alignment issues can be addressed based on the ion beam bending process, where a CNT free-standing on the apex of an AFM tip aligns itself in parallel to the FIB direction so that its free end is directed toward the ion source, with no external electric or magnetic field involved. The process allowed us to embody cylindrical probes of CNT diameters, and subsequently two additional types of CNT tips. One is ball-ended CNT tip which has, at the end of CNT tip, side-protrusions of tungsten/amorphous carbon in the horizontal dithering direction. The other is 'bent' CNT tip where the end of CNT is bent to a side direction. Using the former type of CNT tip, both sides of trench/line sidewall can be measured except for bottom corners, while the corners can be reached with the latter type, but the only one sidewall can be measured at a tip setting. The three types of tips appear to satisfy the requirements in both the size and accessibility to the re-entrant sidewall, and are awaiting actual test in CD-AFM.

  10. The lateral crural rein flap: a novel technique for management of tip rotation in primary rhinoplasty.

    PubMed

    Kuran, Ismail; Öreroğlu, Ali Rıza; Efendioğlu, Kamran

    2014-09-01

    An important consideration in rhinoplasty is maintenance of the applied tip rotation. Different techniques have been proposed to accomplish this. Loss of rotation after surgery not only results in a derotated tip but also can create a supratip deformity. As a supplement to dorsal reconstruction, the authors introduced and applied the lateral crural rein flap technique, whereby cartilage flaps are created from the cephalic portion of the lateral crura to control and stabilize tip rotation. Eleven patients underwent primary open-approach rhinoplasty that included the lateral crural rein technique; the mean follow-up time was 18 months. Excess cephalic portions of the lateral crura were prepared as medial crura-based cartilaginous flaps and were incorporated into the nasal dorsum (similar to spreader grafts) and stabilized to achieve the desired tip rotation. The lateral crural rein flap technique provided stability to the nasal tip while minimizing derotation in the postoperative period. Long-term follow-up revealed maintenance of the nasal tip rotation and symmetric dorsal aesthetic lines. The lateral crural rein flap technique is effective for controlling nasal tip rotation while reducing lateral crural cephalic excess. Longevity of the applied tip rotation is reinforced by secure attachment of the lower nasal cartilage complex to the midvault structures. 4. © 2014 The American Society for Aesthetic Plastic Surgery, Inc.

  11. Stochastic integrated assessment of climate tipping points indicates the need for strict climate policy

    NASA Astrophysics Data System (ADS)

    Lontzek, Thomas S.; Cai, Yongyang; Judd, Kenneth L.; Lenton, Timothy M.

    2015-05-01

    Perhaps the most `dangerous’ aspect of future climate change is the possibility that human activities will push parts of the climate system past tipping points, leading to irreversible impacts. The likelihood of such large-scale singular events is expected to increase with global warming, but is fundamentally uncertain. A key question is how should the uncertainty surrounding tipping events affect climate policy? We address this using a stochastic integrated assessment model, based on the widely used deterministic DICE model. The temperature-dependent likelihood of tipping is calibrated using expert opinions, which we find to be internally consistent. The irreversible impacts of tipping events are assumed to accumulate steadily over time (rather than instantaneously), consistent with scientific understanding. Even with conservative assumptions about the rate and impacts of a stochastic tipping event, today’s optimal carbon tax is increased by ~50%. For a plausibly rapid, high-impact tipping event, today’s optimal carbon tax is increased by >200%. The additional carbon tax to delay climate tipping grows at only about half the rate of the baseline carbon tax. This implies that the effective discount rate for the costs of stochastic climate tipping is much lower than the discount rate for deterministic climate damages. Our results support recent suggestions that the costs of carbon emission used to inform policy are being underestimated, and that uncertain future climate damages should be discounted at a low rate.

  12. Dispensing Processes Impact Apparent Biological Activity as Determined by Computational and Statistical Analyses

    PubMed Central

    Ekins, Sean; Olechno, Joe; Williams, Antony J.

    2013-01-01

    Dispensing and dilution processes may profoundly influence estimates of biological activity of compounds. Published data show Ephrin type-B receptor 4 IC50 values obtained via tip-based serial dilution and dispensing versus acoustic dispensing with direct dilution differ by orders of magnitude with no correlation or ranking of datasets. We generated computational 3D pharmacophores based on data derived by both acoustic and tip-based transfer. The computed pharmacophores differ significantly depending upon dispensing and dilution methods. The acoustic dispensing-derived pharmacophore correctly identified active compounds in a subsequent test set where the tip-based method failed. Data from acoustic dispensing generates a pharmacophore containing two hydrophobic features, one hydrogen bond donor and one hydrogen bond acceptor. This is consistent with X-ray crystallography studies of ligand-protein interactions and automatically generated pharmacophores derived from this structural data. In contrast, the tip-based data suggest a pharmacophore with two hydrogen bond acceptors, one hydrogen bond donor and no hydrophobic features. This pharmacophore is inconsistent with the X-ray crystallographic studies and automatically generated pharmacophores. In short, traditional dispensing processes are another important source of error in high-throughput screening that impacts computational and statistical analyses. These findings have far-reaching implications in biological research. PMID:23658723

  13. Field enhanced graphene based dual hexagonal ring optical antenna for tip-enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Aditya, Rachakonda A. N. S.; Thampy, Anand Sreekantan

    2018-05-01

    Field enhanced graphene based dual hexagonal ring optical antenna has been designed in IR regime. Outcomes of hexagonal rings with gold and graphene materials and their effect has been studied and analyzed. Graphene based structures are found to have better and enhanced results as compared to that of gold. In addition, a two fold increase in bandwidth (∼30 THz) and cross-section (∼6.00E+06 nm2) has been observed in case of graphene. Field patterns for various tip/corner curvatures are simulated and localized/regional field patterns are justified. The effect of inter ring spacing on absorption cross section has been studied for every 10 nm increase in spacing. This absorption enhancement in addition to field localization makes the current structure feasible for tip enhanced spectroscopy.

  14. Multitip scanning bio-Kelvin probe

    NASA Astrophysics Data System (ADS)

    Baikie, I. D.; Smith, P. J. S.; Porterfield, D. M.; Estrup, P. J.

    1999-03-01

    We have developed a novel multitip scanning Kelvin probe which can measure changes in biological surface potential ΔVs to within 2 mV and, quasisimultaneously monitor displacement to <1 μm. The control and measurement subcomponents are PC based and incorporate a flexible user interface permitting software control of each individual tip, measurement, and scan parameters. We review the mode of operation and design features of the scanning bio-Kelvin probe including tip steering, signal processing, tip calibration, and novel tip tracking/dithering routines. This system uniquely offers both tip-to-sample spacing control (which is essential to avoid spurious changes in ΔVs due to variations in mean spacing) and a dithering routine to maintain tip orientation to the biological specimen, irrespective of the latter's movement. These features permit long term (>48 h) "active" tracking of the displacement and biopotentials developed along and around a plant shoot in response to an environmental stimulus, e.g., differential illumination (phototropism) or changes in orientation (gravitropism).

  15. Magnetic force microscopy with frequency-modulated capacitive tip-sample distance control

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Schwenk, J.; Mandru, A. O.; Penedo, M.; Baćani, M.; Marioni, M. A.; Hug, H. J.

    2018-01-01

    In a step towards routinely achieving 10 nm spatial resolution with magnetic force microscopy, we have developed a robust method for active tip-sample distance control based on frequency modulation of the cantilever oscillation. It allows us to keep a well-defined tip-sample distance of the order of 10 nm within better than +/- 0.4 nm precision throughout the measurement even in the presence of energy dissipative processes, and is adequate for single-passage non-contact operation in vacuum. The cantilever is excited mechanically in a phase-locked loop to oscillate at constant amplitude on its first flexural resonance mode. This frequency is modulated by an electrostatic force gradient generated by tip-sample bias oscillating from a few hundred Hz up to a few kHz. The sum of the side bands’ amplitudes is a proxy for the tip-sample distance and can be used for tip-sample distance control. This method can also be extended to other scanning probe microscopy techniques.

  16. Sub-10-micrometer toughening and crack tip toughness of dental enamel.

    PubMed

    Ang, Siang Fung; Schulz, Anja; Pacher Fernandes, Rodrigo; Schneider, Gerold A

    2011-04-01

    In previous studies, enamel showed indications to occlude small cracks in-vivo and exhibited R-curve behaviors for bigger cracks ex-vivo. This study quantifies the crack tip's toughness (K(I0),K(III0)), the crack's closure stress and the cohesive zone size at the crack tip of enamel and investigates the toughening mechanisms near the crack tip down to the length scale of a single enamel crystallite. The crack-opening-displacement (COD) profile of cracks induced by Vickers indents on mature bovine enamel was studied using atomic force microscopy (AFM). The mode I crack tip toughness K(I0) of cracks along enamel rod boundaries and across enamel rods exhibit a similar range of values: K(I0,Ir)=0.5-1.6MPa m(0.5) (based on Irwin's 'near-field' solution) and K(I0,cz)=0.8-1.5MPa m(0.5) (based on the cohesive zone solution of the Dugdale-Muskhelishvili (DM) crack model). The mode III crack tip toughness K(III0,Ir) was computed as 0.02-0.15MPa m(0.5). The crack-closure stress at the crack tip was computed as 163-770 MPa with a cohesive zone length and width 1.6-10.1μm and 24-44 nm utilizing the cohesive zone solution. Toughening elements were observed under AFM and SEM: crack bridging due to protein ligament and hydroxyapatite fibres (micro- and nanometer scale) as well as microcracks were identified. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  17. Human Ska complex and Ndc80 complex interact to form a load-bearing assembly that strengthens kinetochore–microtubule attachments

    PubMed Central

    Zelter, Alex; Riffle, Michael; MacCoss, Michael J.; Asbury, Charles L.; Davis, Trisha N.

    2018-01-01

    Accurate segregation of chromosomes relies on the force-bearing capabilities of the kinetochore to robustly attach chromosomes to dynamic microtubule tips. The human Ska complex and Ndc80 complex are outer-kinetochore components that bind microtubules and are required to fully stabilize kinetochore–microtubule attachments in vivo. While purified Ska complex tracks with disassembling microtubule tips, it remains unclear whether the Ska complex–microtubule interaction is sufficiently strong to make a significant contribution to kinetochore–microtubule coupling. Alternatively, Ska complex might affect kinetochore coupling indirectly, through recruitment of phosphoregulatory factors. Using optical tweezers, we show that the Ska complex itself bears load on microtubule tips, strengthens Ndc80 complex-based tip attachments, and increases the switching dynamics of the attached microtubule tips. Cross-linking mass spectrometry suggests the Ska complex directly binds Ndc80 complex through interactions between the Ska3 unstructured C-terminal region and the coiled-coil regions of each Ndc80 complex subunit. Deletion of the Ska complex microtubule-binding domain or the Ska3 C terminus prevents Ska complex from strengthening Ndc80 complex-based attachments. Together, our results indicate that the Ska complex can directly strengthen the kinetochore–microtubule interface and regulate microtubule tip dynamics by forming an additional connection between the Ndc80 complex and the microtubule. PMID:29487209

  18. Characterization of the Interaction between the Salmonella Type III Secretion System Tip Protein SipD and the Needle Protein PrgI by Paramagnetic Relaxation Enhancement*

    PubMed Central

    Rathinavelan, Thenmalarchelvi; Tang, Chun; De Guzman, Roberto N.

    2011-01-01

    Many Gram-negative bacteria that cause major diseases and mortality worldwide require the type III secretion system (T3SS) to inject virulence proteins into their hosts and cause infections. A structural component of the T3SS is the needle apparatus, which consists of a base, an external needle, and a tip complex. In Salmonella typhimurium, the external needle is assembled by the polymerization of the needle protein PrgI. On top of this needle sits a tip complex, which is partly formed by the tip protein SipD. How SipD interacts with PrgI during the assembly of the T3SS needle apparatus remains unknown. The central region of PrgI forms an α-helical hairpin, whereas SipD has a long central coiled-coil, which is a defining structural feature of other T3SS tip proteins as well. Using NMR paramagnetic relaxation enhancement, we have identified a specific region on the SipD coiled-coil that interacts directly with PrgI. We present a model of how SipD might dock at the tip of the needle based on our paramagnetic relaxation enhancement results, thus offering new insight about the mechanism of assembly of the T3SS needle apparatus. PMID:21138848

  19. Transoesophageal echocardiographic evaluation of central venous catheter positioning using Peres' formula or a radiological landmark-based approach: a prospective randomized single-centre study.

    PubMed

    Ahn, J H; Kim, I S; Yang, J H; Lee, I G; Seo, D H; Kim, S P

    2017-02-01

    The lower superior vena cava (SVC), near its junction with the right atrium (RA), is considered the ideal location for the central venous catheter tip to ensure proper function and prevent injuries. We determined catheter insertion depth with a new formula using the sternoclavicular joint and the carina as radiological landmarks, with a 1.5 cm safety margin. The accuracy of tip positioning with the radiological landmark-based technique (R) and Peres' formula (P) was compared using transoesophageal echocardiography. Real-time ultrasound-guided central venous catheter insertion was done through the right internal jugular or subclavian vein. Patients were randomly assigned to either the P group (n=93) or the R group (n=95). Optimal catheter tip position was considered to be within 2 cm above and 1 cm below the RA-SVC junction. Catheter tip position, abutment, angle to the vascular wall, and flow stream were evaluated on a bicaval view. The distance from the skin insertion point to the RA-SVC junction and determined depth of catheter insertion were more strongly correlated in the R group [17.4 (1.2) and 16.7 (1.5) cm; r=0.821, P<0.001] than in the P group [17.3 (1.2) and 16.4 (1.1) cm; r=0.517, P<0.001], with z=3.96 (P<0.001). More tips were correctly positioned in the R group than in the P group (74 vs 93%, P=0.001). Abutment, tip angle to the lateral wall >40°, and disrupted flow stream were comparable. Catheter tip position was more accurate with a radiological landmark-based technique than with Peres' formula. Clinical Trial Registry of Korea: https://cris.nih.go.kr/cris/index.jsp KCT0001937. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Positively selected FimH residues enhance virulence during urinary tract infection by altering FimH conformation.

    PubMed

    Schwartz, Drew J; Kalas, Vasilios; Pinkner, Jerome S; Chen, Swaine L; Spaulding, Caitlin N; Dodson, Karen W; Hultgren, Scott J

    2013-09-24

    Chaperone-usher pathway pili are a widespread family of extracellular, Gram-negative bacterial fibers with important roles in bacterial pathogenesis. Type 1 pili are important virulence factors in uropathogenic Escherichia coli (UPEC), which cause the majority of urinary tract infections (UTI). FimH, the type 1 adhesin, binds mannosylated glycoproteins on the surface of human and murine bladder cells, facilitating bacterial colonization, invasion, and formation of biofilm-like intracellular bacterial communities. The mannose-binding pocket of FimH is invariant among UPEC. We discovered that pathoadaptive alleles of FimH with variant residues outside the binding pocket affect FimH-mediated acute and chronic pathogenesis of two commonly studied UPEC strains, UTI89 and CFT073. In vitro binding studies revealed that, whereas all pathoadaptive variants tested displayed the same high affinity for mannose when bound by the chaperone FimC, affinities varied when FimH was incorporated into pilus tip-like, FimCGH complexes. Structural studies have shown that FimH adopts an elongated conformation when complexed with FimC, but, when incorporated into the pilus tip, FimH can adopt a compact conformation. We hypothesize that the propensity of FimH to adopt the elongated conformation in the tip corresponds to its mannose binding affinity. Interestingly, FimH variants, which maintain a high-affinity conformation in the FimCGH tip-like structure, were attenuated during chronic bladder infection, implying that FimH's ability to switch between conformations is important in pathogenesis. Our studies argue that positively selected residues modulate fitness during UTI by affecting FimH conformation and function, providing an example of evolutionary tuning of structural dynamics impacting in vivo survival.

  1. Comparison of Technical and Clinical Outcome of Transjugular Portosystemic Shunt Placement Between a Bare Metal Stent and a PTFE-Stentgraft Device.

    PubMed

    Lauermann, J; Potthoff, A; Mc Cavert, M; Marquardt, S; Vaske, B; Rosenthal, H; von Hahn, T; Wacker, F; Meyer, B C; Rodt, Thomas

    2016-04-01

    To analyse technical and clinical success of transjugular intrahepatic portosystemic shunt (TIPS) in patients with portal hypertension and compare a stent and a stentgraft with regard to clinical and technical outcome and associated costs. 170 patients (56 ± 12 years, 32.9% females) treated with TIPS due to portal hypertension were reviewed. 80 patients received a stent (group 1) and 83 a stentgraft (group 2), and seven interventions were unsuccessful. Technical data, periprocedural imaging, follow-up ultrasound and clinical data were analysed with focus on technical success, patency, clinical outcome and group differences. Cost analysis was performed. Portal hypertension was mainly caused by ethyltoxic liver cirrhosis with ascites as dominant symptom (80%). Technical success was 93.5% with mean portosystemic gradient decrease from 16.1 ± 4.8 to 5.1 ± 2.1 mmHg. No significant differences in technical success and portosystemic gradient decrease between the groups were observed. Kaplan-Meier analysis yielded significant differences in primary patency after 14 days, 6 months and 2 years in favour of the stentgraft. Both groups showed good clinical results without significant difference in 1-year survival and hepatic encephalopathy rate. Costs to establish TIPS and to manage 2-year follow-up with constant patency and clinical success were 8876 € (group 1) and 9394 € (group 2). TIPS is a safe and effective procedure to manage portal hypertension. Stent and stentgraft enabled good technical and clinical results with a low complication rate. Primary patency rates are clearly in favour of the stentgraft, whereas the stent was more cost effective with similar clinical results in both groups.

  2. Comparison of Technical and Clinical Outcome of Transjugular Portosystemic Shunt Placement Between a Bare Metal Stent and a PTFE-Stentgraft Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lauermann, J., E-mail: jostlauermann@gmail.com; Potthoff, A.; Mc Cavert, M.

    PurposeTo analyse technical and clinical success of transjugular intrahepatic portosystemic shunt (TIPS) in patients with portal hypertension and compare a stent and a stentgraft with regard to clinical and technical outcome and associated costs.Materials and Methods170 patients (56 ± 12 years, 32.9 % females) treated with TIPS due to portal hypertension were reviewed. 80 patients received a stent (group 1) and 83 a stentgraft (group 2), and seven interventions were unsuccessful. Technical data, periprocedural imaging, follow-up ultrasound and clinical data were analysed with focus on technical success, patency, clinical outcome and group differences. Cost analysis was performed.ResultsPortal hypertension was mainly caused by ethyltoxicmore » liver cirrhosis with ascites as dominant symptom (80 %). Technical success was 93.5 % with mean portosystemic gradient decrease from 16.1 ± 4.8 to 5.1 ± 2.1 mmHg. No significant differences in technical success and portosystemic gradient decrease between the groups were observed. Kaplan–Meier analysis yielded significant differences in primary patency after 14 days, 6 months and 2 years in favour of the stentgraft. Both groups showed good clinical results without significant difference in 1-year survival and hepatic encephalopathy rate. Costs to establish TIPS and to manage 2-year follow-up with constant patency and clinical success were 8876 € (group 1) and 9394 € (group 2).ConclusionTIPS is a safe and effective procedure to manage portal hypertension. Stent and stentgraft enabled good technical and clinical results with a low complication rate. Primary patency rates are clearly in favour of the stentgraft, whereas the stent was more cost effective with similar clinical results in both groups.« less

  3. Flow Instability and Flow Control Scaling Laws

    NASA Astrophysics Data System (ADS)

    van Ness, Daniel; Corke, Thomas; Morris, Scott

    2006-11-01

    A flow instability that is receptive to perturbations is present in the tip clearance leakage flow over the tip of a turbine blade. This instability was investigated through the introduction of active flow control in the viscous flow field. Control was implemented in the form of a dielectric barrier discharge created by a weakly-ionized plasma actuation arrangement. The experimental setup consisted of a low-speed linear turbine cascade made up of an array of nine Pratt & Whitney ``PakB'' turbine blades. This idealized cascade configuration was used to examine the tip clearance leakage flow that exists within the low pressure turbine stage of a gas-turbine engine. The center blade of the cascade array had a variable tip clearance up to five percent chord. Reynolds numbers based on axial blade chord varied from 10^4 to 10^5. Multi-port pressure probe measurements, as well as Stereo Particle Image Velocimetry were used to document the dependence of the instability on the frequency and amplitude of flow control perturbations. Scaling laws based on the variation of blade tip clearance height and inflow conditions were investigated. These results permitted an improved understanding of the mechanism of flow instability.

  4. An integrated optical sensor for GMAW feedback control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P.L.; Watkins, A.D.; Larsen, E.D.

    1992-08-01

    The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major ``off-the-shelf`` components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position andmore » width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.« less

  5. An integrated optical sensor for GMAW feedback control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P.L.; Watkins, A.D.; Larsen, E.D.

    1992-01-01

    The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major off-the-shelf'' components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position andmore » width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.« less

  6. Cryopreservation of in vitro grown shoot tips and apical meristems of the forage legume Arachis pintoi.

    PubMed

    Rey, Hebe Y; Faloci, Mirta; Medina, Ricardo; Dolce, Natalia; Mroginski, Luis; Engelmann, Florent

    2009-01-01

    A cryopreservation protocol using the encapsulation-dehydration procedure was established for shoot tips (2-3 mm in length) and meristems (0.3-0.5 mm) sampled from in vitro plantlets of diploid and triploid cytotypes of Arachis pintoi. The optimal protocol was the following: after dissection, explants were precultured for 24 h on establishment medium (EM), encapsulated in calcium alginate beads and pretreated in liquid EM medium with daily increasing sucrose concentration (0.5, 0.75, 1.0 M) and desiccated to 22-23 percent moisture content (fresh weight basis). Explants were frozen using slow cooling (1 C per min from 25C to -30C followed by direct immersion in liquid nitrogen), thawed rapidly and post-cultured in liquid EM medium enriched with daily decreasing sucrose concentrations (0.75, 0.50, 0.1 M). Explants were then transferred to solid EM medium in order to achieve shoot regeneration, then on Murashige and Skoog medium supplemented with 0.05 microM naphthalene acetic acid to induce rooting of shoots. With this procedure, 53 percent and 56 percent of cryopreserved shoot tips of the diploid and triploid cytotypes, respectively, survived and formed plants. However, only 16 percent of cryopreserved meristems of both cytotypes regenerated plants. Using ten isozyme systems and seven RAPD profiles, no modification induced by cryopreservation could be detected in plantlets regenerated from cryopreserved material.

  7. Simulating contrast inversion in atomic force microscopy imaging with real-space pseudopotentials

    NASA Astrophysics Data System (ADS)

    Lee, Alex; Sakai, Yuki; Chelikowsky, James

    Atomic force microscopy measurements have reported contrast inversions for systems such as Cu2N and graphene that can hamper image interpretation and characterization. Here, we apply a simulation method based on ab initio real-space pseudopotentials to gain an understanding of the tip-sample interactions that influence the inversion. We find that chemically reactive tips induce an attractive binding force that results in the contrast inversion. The inversion is tip height dependent and not observed when using less reactive CO-functionalized tips. Work is supported by the DOE under DOE/DE-FG02-06ER46286 and by the Welch Foundation under Grant F-1837. Computational resources were provided by NERSC and XSEDE.

  8. Self-aligned grating couplers on template-stripped metal pyramids via nanostencil lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klemme, Daniel J.; Johnson, Timothy W.; Mohr, Daniel A.

    2016-05-23

    We combine nanostencil lithography and template stripping to create self-aligned patterns about the apex of ultrasmooth metal pyramids with high throughput. Three-dimensional patterns such as spiral and asymmetric linear gratings, which can couple incident light into a hot spot at the tip, are presented as examples of this fabrication method. Computer simulations demonstrate that spiral and linear diffraction grating patterns are both effective at coupling light to the tip. The self-aligned stencil lithography technique can be useful for integrating plasmonic couplers with sharp metallic tips for applications such as near-field optical spectroscopy, tip-based optical trapping, plasmonic sensing, and heat-assisted magneticmore » recording.« less

  9. Twelve tips for "flipping" the classroom.

    PubMed

    Moffett, Jennifer

    2015-04-01

    The flipped classroom is a pedagogical model in which the typical lecture and homework elements of a course are reversed. The following tips outline the steps involved in making a successful transition to a flipped classroom approach. The tips are based on the available literature alongside the author's experience of using the approach in a medical education setting. Flipping a classroom has a number of potential benefits, for example increased educator-student interaction, but must be planned and implemented carefully to support effective learning.

  10. DIY Tomography sample holder

    NASA Astrophysics Data System (ADS)

    Lari, L.; Wright, I.; Boyes, E. D.

    2015-10-01

    A very simple tomography sample holder at minimal cost was developed in-house. The holder is based on a JEOL single tilt fast exchange sample holder where its exchangeable tip was modified to allow high angle degree tilt. The shape of the tip was designed to retain mechanical stability while minimising the lateral size of the tip. The sample can be mounted on as for a standard 3mm Cu grids as well as semi-circular grids from FIB sample preparation. Applications of the holder on different sample systems are shown.

  11. Plasmon resonances on opto-capacitive nanostructures

    NASA Astrophysics Data System (ADS)

    Shahcheraghi, N.; Dowd, A.; Arnold, M. D.; Cortie, M. B.

    2015-12-01

    Silver is considered as one of the most desirable materials for plasmonic devices due to it having low loss, low epsilon2, across the visible spectrum. In addition, silver nanotriangles can self-assemble into complex structures that can include tip-totip or base-to-base arrangements. While the optical properties of tip-to-tip dimers of nanotriangles have been quite intensively studied, the geometric inverse, the base-to-base configuration, has received much less attention. Here we report the results of a computational study of the optical response of this latter configuration. Calculations were performed using the discrete dipole approximation. The effect of gap size and substrate are considered. The results indicate that the base-to-base configuration can sustain a strong coupled dipole and various multimode resonances. The pairing of the parallel triangle edges produces a strongly capacitive configuration and very intense electric fields over an extended volume of space. Therefore, the base-to-base configuration could be suitable for a range of plasmonic applications that require a strong and uniform concentration of electric field. Examples include refractometeric sensing or metal-enhanced fluorescence.

  12. Computational Investigation of Novel Tip Leakage Mitigation Methods for High Pressure Turbine Blades

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Gupta, Abhinav; Shyam, Vikram

    2014-01-01

    This paper presents preliminary findings on a possible approach to reducing tip leakage losses. In this paper a computational study was conducted on the Energy Efficient Engine (EEE) High Pressure Turbine (HPT) rotor tip geometry using the commercial numerical solver ANSYS FLUENT. The flow solver was validated against aerodynamic data acquired in the NASA Transonic Turbine Blade Cascade facility. The scope of the ongoing study is to computationally investigate how the tip leakage and overall blade losses are affected by (1) injection from the tip near the pressure side, (2) injection from the tip surface at the camber line, and (3) injection from the tip surface into the tip separation bubble. The objective is to identify the locations on the tip surface at which to place appropriately configured blowing keeping in mind the film cooling application of tip blowing holes. The validation was conducted at Reynolds numbers of 85,000, 343,000, and 685,000 and at engine realistic flow conditions. The coolant injection simulations were conducted at a Reynolds number of 343,000 based on blade chord and inlet velocity and utilized the SST turbulence model in FLUENT. The key parameters examined are the number of jets, jet angle and jet location. A coolant to inlet pressure ratio of 1.0 was studied for angles of +30 deg, -30 deg, and 90 deg to the local free stream on the tip. For the 3 hole configuration, 3 holes spaced 3 hole diameters apart with length to diameter ratio of 1.5 were used. A simulation including 11 holes along the entire mean camber line is also presented (30 deg toward suction side). In addition, the effect of a single hole is also compared to a flat tip with no injection. The results provide insight into tip flow control methods and can be used to guide further investigation into tip flow control. As noted in past research it is concluded that reducing leakage flow is not necessarily synonymous with reducing losses due to leakage.

  13. Computational Investigation of Novel Tip Leakage Mitigation Methods for High Pressure Turbine Blades

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Gupta, Abhinav; Shyam, Vikram

    2014-01-01

    This paper presents preliminary findings on a possible approach to reducing tip leakage losses. In this paper a computational study was conducted on the EEE (Energy Efficient Engine) HPT (High Pressure Turbine) rotor tip geometry using the commercial numerical solver ANSYS FLUENT. The flow solver was validated against aerodynamic data acquired in the NASA Transonic Turbine Blade Cascade facility. The scope of the ongoing study is to computationally investigate how the tip leakage and overall blade losses are affected by 1. injection from the tip near the pressure side, 2. injection from the tip surface at the camber line, and 3. injection from the tip surface into the tip separation bubble. The objective is to identify the locations on the tip surface at which to place appropriately configured blowing keeping in mind the film cooling application of tip blowing holes. The validation was conducted at Reynolds numbers of 85,000, 343,000 and 685,000 and at engine realistic flow conditions. The coolant injection simulations were conducted at a Reynolds number of 343,000 based on blade chord and inlet velocity and utilized the SST turbulence model in FLUENT. The key parameters examined are the number of jets, jet angle and jet location. A coolant to inlet pressure ratio of 1.0 was studied for angles of +30 deg., -30 deg. and 90 deg. to the local free stream on the tip. For the 3 hole configuration, 3 holes spaced 3 hole diameters apart with length to diameter ratio of 1.5 were used. A simulation including 11 holes along the entire mean camber line is also presented (30 degrees toward suction side). In addition, the effect of a single hole is also compared to a flat tip with no injection. The results provide insight into tip flow control methods and can be used to guide further investigation into tip flow control. As noted in past research it is concluded that reducing leakage flow is not necessarily synonymous with reducing losses due to leakage.

  14. Developing a computer security training program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    We all know that training can empower the computer protection program. However, pushing computer security information outside the computer security organization into the rest of the company is often labeled as an easy project or a dungeon full of dragons. Used in part or whole, the strategy offered in this paper may help the developer of a computer security training program ward off dragons and create products and services. The strategy includes GOALS (what the result of training will be), POINTERS (tips to ensure survival), and STEPS (products and services as a means to accomplish the goals).

  15. Differences between the family-centered "COPCA" program and traditional infant physical therapy based on neurodevelopmental treatment principles.

    PubMed

    Dirks, Tineke; Blauw-Hospers, Cornill H; Hulshof, Lily J; Hadders-Algra, Mijna

    2011-09-01

    Evidence for effectiveness of pediatric physical therapy in infants at high risk for developmental motor disorders is limited. Therefore, "Coping With and Caring for Infants With Special Needs" (COPCA), a family-centered, early intervention program, was developed. The COPCA program is based on 2 components: (1) family involvement and educational parenting and (2) the neuromotor principles of the neuronal group selection theory. The COPCA coach uses principles of coaching to encourage the family's own capacities for solving problems of daily care and incorporating variation, along with trial and error in daily activities. The purpose of this study was to evaluate whether the content of sessions of the home-based, early intervention COPCA program differs from that of traditional infant physical therapy (TIP) sessions, which in the Netherlands are largely based on neurodevelopmental treatment. The study was conducted at the University Medical Center Groningen in the Netherlands. A quantitative video analysis of therapy sessions was conducted with infants participating in a 2-arm randomized trial. Forty-six infants at high risk for developmental motor disorders were randomly assigned to receive COPCA (n=21) or TIP (n=25) between 3 and 6 months corrected age. Intervention sessions were videotaped at 4 and 6 months corrected age and analyzed with a standardized observation protocol for the classification of physical therapy actions. Outcome parameters were relative amounts of time spent on specific physical therapy actions. The content of COPCA and TIP differed substantially. For instance, in TIP sessions, more time was spent on facilitation techniques, including handling, than in COPCA sessions (29% versus 3%, respectively). During COPCA, more time was spent on family coaching and education than during TIP (16% versus 4%, respectively). The major limitation of the study was its restriction to the Netherlands, implying that findings cannot be generalized automatically to other countries. The COPCA program differs broadly from TIP as applied in the Netherlands. Studies on the effectiveness of this family-centered program are needed.

  16. TAKING IT TO THE PEWS: A CBPR-GUIDED HIV AWARENESS AND SCREENING PROJECT WITH BLACK CHURCHES

    PubMed Central

    Berkley-Patton, Jannette; Bowe-Thompson, Carole; Bradley-Ewing, Andrea; Hawes, Starlyn; Moore, Erin; Williams, Eric; Martinez, David; Goggin, Kathy

    2014-01-01

    Utilizing a community-based participatory research (CBPR) approach is a potentially effective strategy for exploring the development, implementation, and evaluation of HIV interventions in African American churches. This CBPR-guided study describes a church-based HIV awareness and screening intervention (Taking It to the Pews [TIPS]) that fully involved African American church leaders in all phases of the research project. Findings from the implementation and evaluation phases indicated that church leaders delivered TIPS Tool Kit activities on an ongoing basis (about twice a month) over a 9-month period. TIPS church members were highly exposed to TIPS activities (e.g., 91% reported receiving HIV educational brochures, 84% heard a sermon about HIV). Most (87%) believed that the church should talk about HIV, and 77% believed that the church should offer HIV screening. These findings suggest that implementing an HIV intervention in Black church settings is achievable, particularly when a CBPR approach is used. PMID:20528130

  17. Dielectrophoresis-Assisted Raman Spectroscopy of Intravesicular Analytes on Metallic Pyramids.

    PubMed

    Barik, Avijit; Cherukulappurath, Sudhir; Wittenberg, Nathan J; Johnson, Timothy W; Oh, Sang-Hyun

    2016-02-02

    Chemical analysis of membrane-bound containers such as secretory vesicles, organelles, and exosomes can provide insights into subcellular biology. These containers are loaded with a range of important biomolecules, which further underscores the need for sensitive and selective analysis methods. Here we present a metallic pyramid array for intravesicular analysis by combining site-selective dielectrophoresis (DEP) and Raman spectroscopy. Sharp pyramidal tips act as a gradient force generator to trap nanoparticles or vesicles from the solution, and the tips are illuminated by a monochromatic light source for concurrent spectroscopic detection of trapped analytes. The parameters suitable for DEP trapping were optimized by fluorescence microscopy, and the Raman spectroscopy setup was characterized by a nanoparticle based model system. Finally, vesicles loaded with 4-mercaptopyridine were concentrated at the tips and their Raman spectra were detected in real time. These pyramidal tips can perform large-area array-based trapping and spectroscopic analysis, opening up possibilities to detect molecules inside cells or cell-derived vesicles.

  18. Mapping the force field of a hydrogen-bonded assembly

    NASA Astrophysics Data System (ADS)

    Sweetman, A. M.; Jarvis, S. P.; Sang, Hongqian; Lekkas, I.; Rahe, P.; Wang, Yu; Wang, Jianbo; Champness, N. R.; Kantorovich, L.; Moriarty, P.

    2014-05-01

    Hydrogen bonding underpins the properties of a vast array of systems spanning a wide variety of scientific fields. From the elegance of base pair interactions in DNA to the symmetry of extended supramolecular assemblies, hydrogen bonds play an essential role in directing intermolecular forces. Yet fundamental aspects of the hydrogen bond continue to be vigorously debated. Here we use dynamic force microscopy (DFM) to quantitatively map the tip-sample force field for naphthalene tetracarboxylic diimide molecules hydrogen-bonded in two-dimensional assemblies. A comparison of experimental images and force spectra with their simulated counterparts shows that intermolecular contrast arises from repulsive tip-sample interactions whose interpretation can be aided via an examination of charge density depletion across the molecular system. Interpreting DFM images of hydrogen-bonded systems therefore necessitates detailed consideration of the coupled tip-molecule system: analyses based on intermolecular charge density in the absence of the tip fail to capture the essential physical chemistry underpinning the imaging mechanism.

  19. Detection of Membrane Puncture with Haptic Feedback using a Tip-Force Sensing Needle.

    PubMed

    Elayaperumal, Santhi; Bae, Jung Hwa; Daniel, Bruce L; Cutkosky, Mark R

    2014-09-01

    This paper presents calibration and user test results of a 3-D tip-force sensing needle with haptic feedback. The needle is a modified MRI-compatible biopsy needle with embedded fiber Bragg grating (FBG) sensors for strain detection. After calibration, the needle is interrogated at 2 kHz, and dynamic forces are displayed remotely with a voice coil actuator. The needle is tested in a single-axis master/slave system, with the voice coil haptic display at the master, and the needle at the slave end. Tissue phantoms with embedded membranes were used to determine the ability of the tip-force sensors to provide real-time haptic feedback as compared to external sensors at the needle base during needle insertion via the master/slave system. Subjects were able to determine the position of the embedded membranes with significantly better accuracy using FBG tip feedback than with base feedback using a commercial force/torque sensor (p = 0.045) or with no added haptic feedback (p = 0.0024).

  20. Detection of Membrane Puncture with Haptic Feedback using a Tip-Force Sensing Needle

    PubMed Central

    Elayaperumal, Santhi; Bae, Jung Hwa; Daniel, Bruce L.; Cutkosky, Mark R.

    2015-01-01

    This paper presents calibration and user test results of a 3-D tip-force sensing needle with haptic feedback. The needle is a modified MRI-compatible biopsy needle with embedded fiber Bragg grating (FBG) sensors for strain detection. After calibration, the needle is interrogated at 2 kHz, and dynamic forces are displayed remotely with a voice coil actuator. The needle is tested in a single-axis master/slave system, with the voice coil haptic display at the master, and the needle at the slave end. Tissue phantoms with embedded membranes were used to determine the ability of the tip-force sensors to provide real-time haptic feedback as compared to external sensors at the needle base during needle insertion via the master/slave system. Subjects were able to determine the position of the embedded membranes with significantly better accuracy using FBG tip feedback than with base feedback using a commercial force/torque sensor (p = 0.045) or with no added haptic feedback (p = 0.0024). PMID:26509101

  1. Superconducting scanning tunneling microscopy tips in a magnetic field: Geometry-controlled order of the phase transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eltschka, Matthias, E-mail: m.eltschka@fkf.mpg.de; Jäck, Berthold; Assig, Maximilian

    The properties of geometrically confined superconductors significantly differ from their bulk counterparts. Here, we demonstrate the geometrical impact for superconducting scanning tunneling microscopy (STM) tips, where the confinement ranges from the atomic to the mesoscopic scale. To this end, we compare the experimentally determined magnetic field dependence for several vanadium tips to microscopic calculations based on the Usadel equation. For our theoretical model of a superconducting cone, we find a direct correlation between the geometry and the order of the superconducting phase transition. Increasing the opening angle of the cone changes the phase transition from first to second order. Comparingmore » our experimental findings to the theory reveals first and second order quantum phase transitions in the vanadium STM tips. In addition, the theory also explains experimentally observed broadening effects by the specific tip geometry.« less

  2. A nanoscale vacuum-tube diode triggered by few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Higuchi, Takuya; Maisenbacher, Lothar; Liehl, Andreas; Dombi, Péter; Hommelhoff, Peter

    2015-02-01

    We propose and demonstrate a nanoscale vacuum-tube diode triggered by few-cycle near-infrared laser pulses. It represents an ultrafast electronic device based on light fields, exploiting near-field optical enhancement at surfaces of two metal nanotips. The sharper of the two tips displays a stronger field-enhancement, resulting in larger photoemission yields at its surface. One laser pulse with a peak intensity of 4.7 × 1011 W/cm2 triggers photoemission of ˜16 electrons from the sharper cathode tip, while emission from the blunter anode tip is suppressed by 19 dB to ˜0.2 electrons per pulse. Thus, the laser-triggered current between two tips exhibit a rectifying behavior, in analogy to classical vacuum-tube diodes. According to the kinetic energy of the emitted electrons and the distance between the tips, the total operation time of this laser-triggered nanoscale diode is estimated to be below 1 ps.

  3. Tip-enhanced Raman mapping with top-illumination AFM.

    PubMed

    Chan, K L Andrew; Kazarian, Sergei G

    2011-04-29

    Tip-enhanced Raman mapping is a powerful, emerging technique that offers rich chemical information and high spatial resolution. Currently, most of the successes in tip-enhanced Raman scattering (TERS) measurements are based on the inverted configuration where tips and laser are approaching the sample from opposite sides. This results in the limitation of measurement for transparent samples only. Several approaches have been developed to obtain tip-enhanced Raman mapping in reflection mode, many of which involve certain customisations of the system. We have demonstrated in this work that it is also possible to obtain TERS nano-images using an upright microscope (top-illumination) with a gold-coated Si atomic force microscope (AFM) cantilever without significant modification to the existing integrated AFM/Raman system. A TERS image of a single-walled carbon nanotube has been achieved with a spatial resolution of ∼ 20-50 nm, demonstrating the potential of this technique for studying non-transparent nanoscale materials.

  4. Aeroelastic behavior of composite rotor blades with swept tips

    NASA Technical Reports Server (NTRS)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    1992-01-01

    This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction.

  5. Measurements of lightning rod responses to nearby strikes

    NASA Astrophysics Data System (ADS)

    Moore, C. B.; Aulich, G. D.; Rison, W.

    2000-05-01

    Following Benjamin Franklin's invention of the lightning rod, based on his discovery that electrified objects could be discharged by approaching them with a metal needle in hand, conventional lightning rods in the U.S. have had sharp tips. In recent years, the role of the sharp tip in causing a lightning rod to act as a strike receptor has been questioned leading to experiments in which pairs of various sharp-tipped and blunt rods have been exposed beneath thunderclouds to determine the better strike receptor. After seven years of tests, none of the sharp Franklin rods or of the so-called “early streamer emitters” has been struck, but 12 blunt rods with tip diameters ranging from 12.7 mm to 25.4 mm have taken strikes. Our field experiments and our analyses indicate that the strike-reception probabilities of Franklin's rods are greatly increased when their tips are made moderately blunt.

  6. Taxicab tipping and sunlight

    PubMed Central

    2017-01-01

    Does the level of sunlight affect the tipping percentage in taxicab rides in New York City? We examined this question using data on 13.82 million cab rides from January to October in 2009 in New York City combined with data on hourly levels of solar radiation. We found a small but statistically significant positive relationship between sunlight and tipping, with an estimated tipping increase of 0.5 to 0.7 percentage points when transitioning from a dark sky to full sunshine. The findings are robust to two-way clustering of standard errors based on hour-of-the-day and day-of-the-year and controlling for day-of-the-year, month-of-the-year, cab driver fixed effects, weather conditions, and ride characteristics. The NYC cab ride context is suitable for testing the association between sunlight and tipping due to the largely random assignment of riders to drivers, direct exposure to sunlight, and low confounding from variation in service experiences. PMID:28594917

  7. Taxicab tipping and sunlight.

    PubMed

    Devaraj, Srikant; Patel, Pankaj C

    2017-01-01

    Does the level of sunlight affect the tipping percentage in taxicab rides in New York City? We examined this question using data on 13.82 million cab rides from January to October in 2009 in New York City combined with data on hourly levels of solar radiation. We found a small but statistically significant positive relationship between sunlight and tipping, with an estimated tipping increase of 0.5 to 0.7 percentage points when transitioning from a dark sky to full sunshine. The findings are robust to two-way clustering of standard errors based on hour-of-the-day and day-of-the-year and controlling for day-of-the-year, month-of-the-year, cab driver fixed effects, weather conditions, and ride characteristics. The NYC cab ride context is suitable for testing the association between sunlight and tipping due to the largely random assignment of riders to drivers, direct exposure to sunlight, and low confounding from variation in service experiences.

  8. Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade

    NASA Technical Reports Server (NTRS)

    Azad, Gm S.; Han, Je-Chin; Boyle, Robert J.

    2000-01-01

    Experimental investigations are performed to measure the detailed heat transfer coefficient and static pressure distributions on the squealer tip of a gas turbine blade in a five-bladed stationary linear cascade. The blade is a 2-dimensional model of a modem first stage gas turbine rotor blade with a blade tip profile of a GE-E(sup 3) aircraft gas turbine engine rotor blade. A squealer (recessed) tip with a 3.77% recess is considered here. The data on the squealer tip are also compared with a flat tip case. All measurements are made at three different tip gap clearances of about 1%, 1.5%, and 2.5% of the blade span. Two different turbulence intensities of 6.1% and 9.7% at the cascade inlet are also considered for heat transfer measurements. Static pressure measurements are made in the mid-span and near-tip regions, as well as on the shroud surface opposite to the blade tip surface. The flow condition in the test cascade corresponds to an overall pressure ratio of 1.32 and an exit Reynolds number based on the axial chord of 1.1 x 10(exp 6). A transient liquid crystal technique is used to measure the heat transfer coefficients. Results show that the heat transfer coefficient on the cavity surface and rim increases with an increase in tip clearance. 'Me heat transfer coefficient on the rim is higher than the cavity surface. The cavity surface has a higher heat transfer coefficient near the leading edge region than the trailing edge region. The heat transfer coefficient on the pressure side rim and trailing edge region is higher at a higher turbulence intensity level of 9.7% over 6.1 % case. However, no significant difference in local heat transfer coefficient is observed inside the cavity and the suction side rim for the two turbulence intensities. The squealer tip blade provides a lower overall heat transfer coefficient when compared to the flat tip blade.

  9. [Detection of single-walled carbon nanotube bundles by tip-enhanced Raman spectroscopy].

    PubMed

    Wu, Xiao-Bin; Wang, Jia; Wang, Rui; Xu, Ji-Ying; Tian, Qian; Yu, Jian-Yuan

    2009-10-01

    Raman spectroscopy is a powerful technique in the characterization of carbon nanotubes (CNTs). However, this spectral method is subject to two obstacles. One is spatial resolution, namely the diffraction limits of light, and the other is its inherent small Raman cross section and weak signal. To resolve these problems, a new approach has been developed, denoted tip-enhanced Raman spectroscopy (TERS). TERS has been demonstrated to be a powerful spectroscopic and microscopic technique to characterize nanomaterial or nanostructures. Excited by a focused laser beam, an enhanced electric field is generated in the vicinity of a metallic tip because of the surface plasmon polariton (SPP) and lightening rod effect. Consequently, Raman signal from the sample area illuminated by the enhanced field nearby the tip is enhanced. At the same time, the topography is obtained in the nanometer scale. The exact corresponding relationship between the localized Raman and the topography makes the Raman identification at the nanometer scale to be feasible. In the present paper, based on an inverted microscope and a metallic AFM tip, a tip-enhanced Raman system was set up. The radius of the Au-coated metallic tip is about 30 nm. The 532 nm laser passes through a high numerical objective (NA0.95) from the bottom to illuminate the tip to excite the enhanced electric field. Corresponding with the AFM image, the tip-enhanced near-field Raman of a 100 nm diameter single-walled carbon nanotube (SWNT) bundles was obtained. The SWNTs were prepared by arc method. Furthermore, the near-field Raman of about 3 SWNTs of the bundles was received with the spatial resolution beyond the diffraction limit. Compared with the far-field Raman, the enhancement factor of the tip-enhanced Raman is more than 230. With the super-diffraction spatial resolution and the tip-enhanced Raman ability, tip-enhanced Raman spectroscopy will play an important role in the nano-material and nano-structure characterization.

  10. Numerical investigation of tip clearance cavitation in Kaplan runners

    NASA Astrophysics Data System (ADS)

    Nikiforova, K.; Semenov, G.; Kuznetsov, I.; Spiridonov, E.

    2016-11-01

    There is a gap between the Kaplan runner blade and the shroud that makes for a special kind of cavitation: cavitation in the tip leakage flow. Two types of cavitation caused by the presence of clearance gap are known: tip vortex cavitation that appears at the core of the rolled up vortex on the blade suction side and tip clearance cavitation that appears precisely in the gap between the blade tip edge and the shroud. In the context of this work numerical investigation of the model Kaplan runner has been performed taking into account variable tip clearance for several cavitation regimes. The focus is put on investigation of structure and origination of mechanism of cavitation in the tip leakage flow. Calculations have been performed with the help of 3-D unsteady numerical model for two-phase medium. Modeling of turbulent flow in this work has been carried out using full equations of Navier-Stokes averaged by Reynolds with correction for streamline curvature and system rotation. For description of this medium (liquid-vapor) simplification of Euler approach is used; it is based on the model of interpenetrating continuums, within the bounds of this two- phase medium considered as a quasi-homogeneous mixture with the common velocity field and continuous distribution of density for both phases. As a result, engineering techniques for calculation of cavitation conditioned by existence of tip clearance in model turbine runner have been developed. The detailed visualization of the flow was carried out and vortex structure on the suction side of the blade was reproduced. The range of frequency with maximum value of pulsation was assigned and maximum energy frequency was defined; it is based on spectral analysis of the obtained data. Comparison between numerical computation results and experimental data has been also performed. The location of cavitation zone has a good agreement with experiment for all analyzed regimes.

  11. SELF ALIGNED TIP DEINSULATION OF ATOMIC LAYER DEPOSITED AL2O3 AND PARYLENE C COATED UTAH ELECTRODE ARRAY BASED NEURAL INTERFACES

    PubMed Central

    Xie, Xianzong; Rieth, Loren; Negi, Sandeep; Bhandari, Rajmohan; Caldwell, Ryan; Sharma, Rohit; Tathireddy, Prashant; Solzbacher, Florian

    2014-01-01

    The recently developed alumina and Parylene C bi-layer encapsulation improved the lifetime of neural interfaces. Tip deinsulation of Utah electrode array based neural interfaces is challenging due to the complex 3D geometries and high aspect ratios of the devices. A three-step self-aligned process was developed for tip deinsulation of bilayer encapsulated arrays. The deinsulation process utilizes laser ablation to remove Parylene C, O2 reactive ion etching to remove carbon and Parylene residues, and buffered oxide etch to remove alumina deposited by atomic layer deposition, and expose the IrOx tip metallization. The deinsulated iridium oxide area was characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy to determine the morphology, surface morphology, composition, and electrical properties of the deposited layers and deinsulated tips. The alumina layer was found to prevent the formation of micro cracks on iridium oxide during the laser ablation process, which has been previously reported as a challenge for laser deinsulation of Parylene films. The charge injection capacity, charge storage capacity, and impedance of deinsulated iridium oxide were characterized to determine the deinsulation efficacy compared to Parylene-only insulation. Deinsulated iridium oxide with bilayer encapsulation had higher charge injection capacity (240 vs 320 nC) and similar electrochemical impedance (2.5 vs 2.5 kΩ) compared to deinsulated iridium oxide with only Parylene coating for an area of 2 × 10−4 cm2. Tip impedances were in the ranges of 20 to 50 kΩ, with median of 32 KΩ and standard deviation of 30 kΩ, showing the effectiveness of the self-aligned deinsulation process for alumina and Parylene C bi-layer encapsulation. The relatively uniform tip impedance values demonstrated the consistency of tip exposures. PMID:24771981

  12. A Dynamic Mesh-Based Approach to Model Melting and Shape of an ESR Electrode

    NASA Astrophysics Data System (ADS)

    Karimi-Sibaki, E.; Kharicha, A.; Bohacek, J.; Wu, M.; Ludwig, A.

    2015-10-01

    This paper presents a numerical method to investigate the shape of tip and melt rate of an electrode during electroslag remelting process. The interactions between flow, temperature, and electromagnetic fields are taken into account. A dynamic mesh-based approach is employed to model the dynamic formation of the shape of electrode tip. The effect of slag properties such as thermal and electrical conductivities on the melt rate and electrode immersion depth is discussed. The thermal conductivity of slag has a dominant influence on the heat transfer in the system, hence on melt rate of electrode. The melt rate decreases with increasing thermal conductivity of slag. The electrical conductivity of slag governs the electric current path that in turn influences flow and temperature fields. The melting of electrode is a quite unstable process due to the complex interaction between the melt rate, immersion depth, and shape of electrode tip. Therefore, a numerical adaptation of electrode position in the slag has been implemented in order to achieve steady state melting. In fact, the melt rate, immersion depth, and shape of electrode tip are interdependent parameters of process. The generated power in the system is found to be dependent on both immersion depth and shape of electrode tip. In other words, the same amount of power was generated for the systems where the shapes of tip and immersion depth were different. Furthermore, it was observed that the shape of electrode tip is very similar for the systems running with the same ratio of power generation to melt rate. Comparison between simulations and experimental results was made to verify the numerical model.

  13. The interaction of a gold atom with carbon nanohorn and carbon nanotube tips and their complexes with a CO molecule: A first principle calculation

    NASA Astrophysics Data System (ADS)

    Khongpracha, P.; Probst, M.; Limtrakul, J.

    2008-07-01

    The interactions of a gold atom with: (a) a single-wall carbon nanohorn (SWNH) conic tip; (b) with a single-wall carbon nanotube (SWNT) tip; and (c) their complexes with a CO molecule were studied using first-principle calculations based on density functional theory. The analysis of the pyramidalization angle (θp) as well as the π-orbital misalignment angles indicate that there should be many reactive carbon sites on the tips of SWNH and SWNT. It was found that SWNH provides reactive sites that can more selectively interact with the target atom. We identified five sites on both the SWNT tip and the nanohorn where attachment of a gold atom leads to a stable complex. This metal is found to be bi-coordinated with the tip of SWNH, while it is mono-coordinated with the SWNT tip. The largest interaction energies are -10.75 kcal/mol and -16.17 kcal/mol, respectively. The CO probe molecule binds to Au on the Au/SWNH or Au/SWNT tips with interaction energies of -22.34 and -18.29 kcal/mol, respectively. The main contributions of the interaction with both carbon nanostructures stems from σ-donation and π-backbonding. The results suggest that SWNHs could be one of the promising candidates for the development of high-specifity nanosensors.

  14. Small-tip fast recovery imaging using non-slice-selective tailored tip-up pulses and RF-spoiling

    PubMed Central

    Nielsen, Jon-Fredrik; Yoon, Daehyun; Noll, Douglas C.

    2012-01-01

    Small-tip fast recovery (STFR) imaging is a new steady-state imaging sequence that is a potential alternative to balanced steady-state free precession (bSSFP). Under ideal imaging conditions, STFR may provide comparable signal-to-noise ratio (SNR) and image contrast as bSSFP, but without signal variations due to resonance offset. STFR relies on a tailored “tip-up”, or “fast recovery”, RF pulse to align the spins with the longitudinal axis after each data readout segment. The design of the tip-up pulse is based on the acquisition of a separate off-resonance (B0) map. Unfortunately, the design of fast (a few ms) slice- or slab-selective RF pulses that accurately tailor the excitation pattern to the local B0 inhomogeneity over the entire imaging volume remains a challenging and unsolved problem. We introduce a novel implementation of STFR imaging based on non-slice-selective tip-up pulses, which simplifies the RF design problem significantly. Out-of-slice magnetization pathways are suppressed using RF-spoiling. Brain images obtained with this technique show excellent gray/white matter contrast, and point to the possibility of rapid steady-state T2/T1-weighted imaging with intrinsic suppression of cerebrospinal fluid, through-plane vessel signal, and off-resonance artifacts. In the future we expect STFR imaging to benefit significantly from parallel excitation hardware and high-order gradient shim systems. PMID:22511367

  15. Make Celebrations Fun, Healthy, and Active: 10 Tips to Creating Healthy, Active Events

    MedlinePlus

    United States Department of Agriculture 10 tips Nutrition Education Series MyPlate MyWins Based on the Dietary Guidelines for Americans Make celebrations ... out some of the recipes on WhatsCooking.fns.usda.gov. 8 Keep it simple Have others participate ...

  16. In-Process Atomic-Force Microscopy (AFM) Based Inspection

    PubMed Central

    Mekid, Samir

    2017-01-01

    A new in-process atomic-force microscopy (AFM) based inspection is presented for nanolithography to compensate for any deviation such as instantaneous degradation of the lithography probe tip. Traditional method used the AFM probes for lithography work and retract to inspect the obtained feature but this practice degrades the probe tip shape and hence, affects the measurement quality. This paper suggests a second dedicated lithography probe that is positioned back-to-back to the AFM probe under two synchronized controllers to correct any deviation in the process compared to specifications. This method shows that the quality improvement of the nanomachining, in progress probe tip wear, and better understanding of nanomachining. The system is hosted in a recently developed nanomanipulator for educational and research purposes. PMID:28561747

  17. Proteomic and metabolomic analyses of soybean root tips under flooding stress.

    PubMed

    Komatsu, Setsuko; Nakamura, Takuji; Sugimoto, Yurie; Sakamoto, Kazunori

    2014-01-01

    Flooding is one of the serious problems for soybean plants because it inhibits growth. Proteomic and metabolomic techniques were used to determine whether proteins and metabolites are altered in the root tips of soybeans under flooding stress. Two-day-old soybean plants were flooded for 2 days, and proteins and metabolites were extracted from root tips. Flooding-responsive proteins were identified using two-dimensional- or SDS-polyacrylamide gel electrophoresis- based proteomics techniques. Using both techniques, 172 proteins increased and 105 proteins decreased in abundance in the root tips of flood-stressed soybean. The abundance of methionine synthase, heat shock cognate protein, urease, and phosphoenol pyruvate carboxylase was significantly increased by flooding stress. Furthermore, 73 flooding-responsive metabolites were identified using capillary electrophoresis-mass spectrometry. The levels of gamma-aminobutyric acid, glycine, NADH2, and phosphoenol pyruvate were increased by flooding stress. Taken together, these results suggest that synthesis of phosphoenol pyruvate by way of oxaloacetate produced in the tricarboxylic acid cycle is activated in soybean root tips in response to flooding stress, and that flooding stress also leads to modulation of the urea cycle in the root tips.

  18. Numerical analysis of turbine blade tip treatments

    NASA Technical Reports Server (NTRS)

    Gopalaswamy, Nath S.; Whitaker, Kevin W.

    1992-01-01

    Three-dimensional solutions of the Navier-Stokes equations for a turbine blade with a turning angle of 180 degrees have been computed, including blade tip treatments involving cavities. The geometry approximates a preliminary design for the GGOT (Generic Gas Oxidizer Turbine). The data presented here will be compared with experimental data to be obtained from a linear cascade using original GGOT blades. Results have been computed for a blade with 1 percent clearance, based on chord, and three different cavity sizes. All tests were conducted at a Reynolds number of 4 x 10 exp 7. The grid contains 39,440 points with 10 spanwise planes in the tip clearance region of 5.008E-04 m. Streamline plots and velocity vectors together with velocity divergence plots reveal the general flow behavior in the clearance region. Blade tip temperature calculations suggest placement of a cavity close to the upstream side of the blade tip for reduction of overall blade tip temperature. The solutions do not account for the relative motion between the endwall and the turbine blade. The solutions obtained are generally consistent with previous work done in this area,

  19. Aeroelastic modeling of composite rotor blades with straight and swept tips

    NASA Technical Reports Server (NTRS)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    1992-01-01

    This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the FEM are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction. These results illustrate the inherent potential for aeroelastic tailoring present in composite rotor blades with swept tips, which still remains to be exploited in the design process.

  20. Characteristics of tip-leakage flow in an axial fan

    NASA Astrophysics Data System (ADS)

    Park, Keuntae; Choi, Haecheon; Choi, Seokho; Sa, Yongcheol

    2014-11-01

    An axial fan with a shroud generates complicated vortical structures by the interaction of the axial flow with the fan blades and shroud near the blade tips. Large eddy simulation (LES) is performed for flow through a forward-swept axial fan, operating at the design condition of Re = 547,000 based on the radius of blade tip and the tip velocity. A dynamic global model (Lee et al. 2010) is used for a subgrid-scale model, and an immersed boundary method in a non-inertial reference frame (Kim & Choi 2006) is adopted for the present simulation. It is found that two vortical structures are formed near the blade tip: the main tip leakage vortex (TLV) and the auxiliary TLV. The main TLV is initiated near the leading edge, develops downstream, and impinges on the pressure surface of the next blade, where the pressure fluctuations and turbulence intensity become high. On the other hand, the auxiliary TLV is initiated at the aft part of the blade but is relatively weak such that it merges with the main TLV. Supported by the KISTI Supercomputing Center (KSC-2014-C2-014).

  1. On the development of a magnetoresistive sensor for blade tip timing and blade tip clearance measurement systems

    NASA Astrophysics Data System (ADS)

    Tomassini, R.; Rossi, G.; Brouckaert, J.-F.

    2014-05-01

    The accurate control of the gap between static and rotating components is vital to preserve the mechanical integrity and ensure a correct functioning of any rotating machinery. Moreover, tip leakage above the airfoil tip results in relevant aerodynamic losses. One way to measure and to monitor blade tip gaps is by the so-called Blade Tip Clearance (BTC) technique. Another fundamental phenomenon to control in the turbomachines is the vibration of the blades. For more than half a century, this has been performed by installing strain gauges on the blades and using telemetry to transmit the signals. The Blade Tip Timing (BTT) technique, (i.e. measuring the blade time of arrival from the casing at different angular locations with proximity sensors) is currently being adopted by all manufacturers as a replacement for the classical strain gauge technique because of its non-intrusive character. This paper presents a novel magnetoresistive sensor for blade tip timing and blade tip clearance systems, which offers high temporal and high spatial resolution simultaneously. The sensing element adopted is a Wheatstone bridge of Permalloy elements. The principle of the sensor is based on the variation of magnetic field at the passage of ferromagnetic objects. Two different configurations have been realized, a digital and an analogue sensor. Measurements of tip clearance have been performed in an high speed compressor and the calibration curve is reported. Measurements of blade vibration have been carried out in a dedicated calibration bench; results are presented and discussed. The magnetoresistive sensor is characterized by high repeatability, low manufacturing costs and measurement accuracy in line with the main probes used in turbomachinery testing. The novel sensor has great potential and is capable of fulfilling the requirements for a simultaneous BTC and BTT measurement system.

  2. Association Between Media Dose, Ad Tagging, and Changes in Web Traffic for a National Tobacco Education Campaign: A Market-Level Longitudinal Study.

    PubMed

    Shafer, Paul R; Davis, Kevin C; Patel, Deesha; Rodes, Robert; Beistle, Diane

    2016-02-17

    In 2012, the US Centers for Disease Control and Prevention (CDC) launched Tips From Former Smokers (Tips), the first federally funded national tobacco education campaign. In 2013, a follow-up Tips campaign aired on national cable television networks, radio, and other channels, with supporting digital advertising to drive traffic to the Tips campaign website. The objective of this study was to use geographic and temporal variability in 2013 Tips campaign television media doses and ad tagging to evaluate changes in traffic to the campaign website in response to specific doses of campaign media. Linear regression models were used to estimate the dose-response relationship between weekly market-level television gross rating points (GRPs) and weekly Web traffic to the Tips campaign website. This relationship was measured using unique visitors, total visits, and page views as outcomes. Ad GRP effects were estimated separately for ads tagged with the Tips campaign website URL and 1-800-QUIT-NOW. In the average media market, an increase of 100 television GRPs per week for ads tagged with the Tips campaign website URL was associated with an increase of 650 unique visitors (P<.001), 769 total visits (P<.001), and 1255 total page views (P<.001) per week. The associations between GRPs for ads tagged with 1-800-QUIT-NOW and each Web traffic measure were also statistically significant (P<.001), but smaller in magnitude. Based on these findings, we estimate that the 16-week 2013 Tips television campaign generated approximately 660,000 unique visitors, 900,000 total visits, and 1,390,000 page views for the Tips campaign website. These findings can help campaign planners forecast the likely impact of targeted advertising efforts on consumers' use of campaign-specific websites.

  3. NMR Model of PrgI-SipD Interaction and its Implications in the Needle-Tip Assembly of the Salmonella Type III Secretion System

    PubMed Central

    Rathinavelan, Thenmalarchelvi; Lara-Tejero, Maria; Lefebre, Matthew; Chatterjee, Srirupa; McShan, Andrew C.; Guo, Da-Chuan; Tang, Chun; Galan, Jorge E.; De Guzman, Roberto N.

    2014-01-01

    Salmonella and other pathogenic bacteria use the type III secretion system (T3SS) to inject virulence proteins into human cells to initiate infections. The structural component of the T3SS contains a needle and a needle tip. The needle is assembled from PrgI needle protomers and the needle tip is capped with several copies of the SipD tip protein. How a tip protein docks on the needle is unclear. A crystal structure of a PrgI-SipD fusion protein docked on the PrgI needle results in steric clash of SipD at the needle tip when modeled on the recent atomic structure of the needle. Thus, there is currently no good model of how SipD is docked on the PrgI needle tip. Previously, we showed by NMR paramagnetic relaxation enhancement (PRE) methods that a specific region in the SipD coiled-coil is the binding site for PrgI. Others have hypothesized that a domain of the tip protein – the N-terminal α-helical hairpin, has to swing away during the assembly of the needle apparatus. Here, we show by PRE methods that a truncated form of SipD lacking the α-helical hairpin domain binds more tightly to PrgI. Further, PRE-based structure calculations revealed multiple PrgI binding sites on the SipD coiled-coil. Our PRE results together with the recent NMR-derived atomic structure of the Salmonella needle suggest a possible model of how SipD might dock at the PrgI needle tip. SipD and PrgI are conserved in other bacterial T3SSs, thus our results have wider implication in understanding other needle-tip complexes. PMID:24951833

  4. A Mobile App Offering Distractions and Tips to Cope With Cigarette Craving: A Qualitative Study

    PubMed Central

    Smith, Wally; Pearce, Jon; Borland, Ron

    2014-01-01

    Background Despite considerable effort, most smokers relapse within a few months after quitting due to cigarette craving. The widespread adoption of mobile phones presents new opportunities to provide support during attempts to quit. Objective To design and pilot a mobile app "DistractMe" to enable quitters to access and share distractions and tips to cope with cigarette cravings. Methods A qualitative study with 14 smokers who used DistractMe on their mobiles during the first weeks of their quit attempt. Based on interviews, diaries, and log data, we examined how the app supported quitting strategies. Results Three distinct techniques of coping when using DistractMe were identified: diversion, avoidance, and displacement. We further identified three forms of engagement with tips for coping: preparation, fortification, and confrontation. Overall, strategies to prevent cravings and their effects (avoidance, displacement, preparation, and fortification) were more common than immediate coping strategies (diversion and confrontation). Tips for coping were more commonly used than distractions to cope with cravings, because they helped to fortify the quit attempt and provided opportunities to connect with other users of the application. However, distractions were important to attract new users and to facilitate content sharing. Conclusions Based on the qualitative results, we recommend that mobile phone-based interventions focus on tips shared by peers and frequent content updates. Apps also require testing with larger groups of users to assess whether they can be self-sustaining. PMID:25099632

  5. Measuring the hemodynamic response to primary pharmacoprophylaxis of variceal bleeding: a cost-effectiveness analysis.

    PubMed

    Imperiale, Thomas F; Chalasani, Naga; Klein, Robert W

    2003-12-01

    The hemodynamic response to ss-blockers alone or with nitrates is highly predictive of efficacy in prevention of variceal bleeding. Hemodynamic monitoring (HDM) requires catheterization of the hepatic vein and measurement of the hepatic venous pressure gradient, the difference between wedged and free hepatic venous pressure. The aim of this study was to compare HDM with no HDM in patients considered for primary pharmacoprophylaxis of esophageal variceal bleeding. A decision model was constructed to compare HDM with no HDM in cirrhotic patients with moderate to large esophageal varices. Patients intolerant to beta-blocker therapy would undergo endoscopic variceal ligation; those with an inadequate hemodynamic response (HDR) to beta-blocker therapy could have nitrates added before ligation was considered. Variceal bleeding was treated with ligation, with transjugular intrahepatic portosystemic shunt (TIPS) reserved for refractory bleeding. Probabilities of treatment responses as well as risks of bleeding and mortality were based on published literature. Only direct costs were considered during the 5-yr time horizon. Outcomes were cost in United States dollars, survival length in life-years, and proportions of patients who experienced variceal bleeding, TIPS insertion, and mortality from any cause. In the base case analysis, HDM was either cost-saving ($2,523 US dollars /life-year gained) or cost-effective (incremental cost-effectiveness ratio of $5,200 US dollars/life-year saved) compared with no HDM, depending on whether nitrates were added to beta-blocker therapy. HDM reduced variceal bleeding by nearly 60% and had a small effect on all-cause mortality. In the sensitivity analysis, HDM was sensitive to the time horizon, as it was not cost-effective for a time horizon of <22 months and was not cost-saving before 49 months. The cost-effectiveness of HDM was not sensitive to reasonable variation in the probability of HDR to beta-blocker therapy, risk of bleeding, risk reduction with pharmacotherapy, or to the costs of HDM, bleeding, ligation, or TIPS. Probabilistic sensitivity analysis indicated that HDM was more effective and less costly 100% and 57% of the time, respectively. Compared with the current standard of no HDM, measuring the hemodynamic response of primary pharmacoprophylaxis substantially reduces the number of bleeding episodes and is cost-effective or cost-saving over a wide range of sensitivity analyses. A randomized trial of HDM is needed to verify its efficacy in clinical practice.

  6. Tips for charting the course of a successful health research career

    PubMed Central

    Mbuagbaw, Lawrence; Morfaw, Frederick; Kunda, John-Eudes L; Mukonzo, Jackson K; Kastner, Jasmine; Zhang, Shiyuan; Kokolo, Madzouka; Thabane, Lehana

    2013-01-01

    Young health researchers all over the world often encounter difficulties in the early stages of their careers. Formal acquisition of research skills in academic settings does not always offer sufficient guidance to overcome these challenges. Based on the collective experiences of some young researchers and research mentors, we describe some tips for a successful health career and offer some useful resources. These tips include: institutional affiliation, early manuscript writing, early manuscript reviewing, finding a mentor, collaboration and networking, identifying sources of funding, establishing research interests, investing in research methods training, developing interpersonal and personal skills, providing mentorship, and balancing work with everyday life. The rationale behind these tips and how to achieve them is provided. PMID:23650449

  7. Studies of reproductive output of the desert tortoise at Joshua Tree National Park, the Mojave National Preserve, and comparative sites

    USGS Publications Warehouse

    Lovich, J.E.; Medica, P.; Avery, H.; Meyer, K.; Bowser, G.; Brown, A.

    1999-01-01

    The stability of any population is a function of how many young are produced and how many survive to reproduce. Populations with low reproductive output and high mortality will decline until such time as deaths and births are at least balanced. Monitoring populations of sensitive species is particularly important to ensure that conditions do not favor decline or extinction. Turtles, including tortoises, are characterized by life history traits that make them slow to adapt to rapid changes in mortality and habitat alteration. Long life spans (in excess of 50 years), late maturity, and widely variable nest success are traits that allowed turtles to outlive the dinosaurs, but they are poorly adapted for life in the rapidly changing modern world. Increased mortality of young and adults can seriously tip the delicate balance required for turtles to survive.

  8. Investigation of tip clearance flow physics in axial flow turbine rotors

    NASA Astrophysics Data System (ADS)

    Xiao, Xinwen

    In axial turbines, the tip clearance between casing wall and rotating blades results in a tip leakage flow, which significantly affects loss production, heat protection, vibration and noise. It is important to minimize these effects for a better turbine engine performance and higher reliability. Most of previous efforts were concentrated on turbine cascades that however may not completely and correctly simulate the flow physics in practical turbine rotors. An investigation has to be performed in turbine rotors to reveal the real tip leakage flow physics in order to provide a scientific basis for minimizing its effects. This is the objective of this thesis research. The three dimensional flow field near the end wall/tip clearance region in a turbine rotor has been investigated experimentally, complemented by a numerical simulation to study the influences of inlet turbulence intensities on the development of the tip leakage flow. The experimental investigation is carried out in a modern unshrouded high pressure turbine stage. The survey region covers 20% span near the end wall, and extends axially from 10% chord upstream of the leading edge, through the rotor passage, and to 20% chord downstream of the trailing edge. It has been found that the tip leakage effects extend only to the surveyed region. The three dimensional LDV technique is used to measure the velocity and turbulence field upstream of the rotor, inside the rotor passage, and near the trailing edge. The static pressure on blade surfaces is surveyed from the rotating frame. The transient pressure on the casing wall is measured using a dynamic pressure sensor with a shaft encoder. A rotating Five Hole Probe is employed to measure the losses as well as the pressure and the three dimensional velocity field at 20% chord downstream of the rotor. The unsteady flow field is also investigated at this location by using a slanted single-element Hot Wire technique. The physics of the tip leakage flow and vortex in turbine rotors, including its inception location, development, interaction with the main stream and the passage vortex, and decay, are revealed. The rotation effects on the boundary layer flow and the turbulence structure are discussed. The effects of the relative motion between the blade and the casing wall on the flow field near the tip clearance region are also investigated. The structure of the rotor wake, the nozzle wake, and their interaction are interpreted based on the instantaneous Hot Wire data. The numerical simulation on the influence of the inlet turbulence intensity on the development of the tip leakage flow is based on previous efforts. The results indicate that the tip leakage vortex diffuses very quickly under a high inlet turbulence intensity, resulting in a very weak tip leakage vortex and less losses.

  9. C-arm cone beam computed tomography needle path overlay for fluoroscopic guided vertebroplasty.

    PubMed

    Tam, Alda L; Mohamed, Ashraf; Pfister, Marcus; Chinndurai, Ponraj; Rohm, Esther; Hall, Andrew F; Wallace, Michael J

    2010-05-01

    Retrospective review. To report our early clinical experience using C-arm cone beam computed tomography (C-arm CBCT) with fluoroscopic overlay for needle guidance during vertebroplasty. C-arm CBCT is advanced three-dimensional (3-D) imaging technology that is currently available on state-of-the-art flat panel based angiography systems. The imaging information provided by C-arm CBCT allows for the acquisition and reconstruction of "CT-like" images in flat panel based angiography/interventional suites. As part of the evolution of this technology, enhancements allowing the overlay of cross-sectional imaging information can now be integrated with real time fluoroscopy. We report our early clinical experience with C-arm CBCT with fluoroscopic overlay for needle guidance during vertebroplasty. This is a retrospective review of 10 consecutive oncology patients who underwent vertebroplasty of 13 vertebral levels using C-arm CBCT with fluoroscopic overlay for needle guidance from November 2007 to December 2008. Procedural data including vertebral level, approach (transpedicular vs. extrapedicular), access (bilateral vs. unilateral) and complications were recorded. Technical success with the overlay technology was assessed based on accuracy which consisted of 4 measured parameters: distance from target to needle tip, distance from planned path to needle tip, distance from midline to needle tip, and distance from the anterior 1/3 of the vertebral body to needle tip. Success within each parameter required that the distance between the needle tip and parameter being evaluated be no more than 5 mm on multiplanar CBCT or fluoroscopy. Imaging data for 12 vertebral levels was available for review. All vertebral levels were treated using unilateral access and 9 levels were treated with an extrapedicular approach. Technical success rates were 92% for both distance from planned path and distance from midline to final needle tip, 100% when distance from needle tip to the anterior 1/3 border of the vertebral body was measured, and 75% when distance from target to needle tip was measured. There were no major complications. Minor complications consisted of 3 cases (25%) of cement extravasation. C-arm CBCT with needle path overlay for fluoroscopic guided vertebroplasty is feasible and allows for reliable unilateral therapy of both lumbar and thoracic vertebral bodies. Extrapedicular approaches were performed safely and with good accuracy of reaching the targets.

  10. 23. AIRCRAFT IN STORAGE, TIPPED ON THEIR NOSES. Photographic copy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. AIRCRAFT IN STORAGE, TIPPED ON THEIR NOSES. Photographic copy of historic photograph. 1947 OAMA (original print located at Ogden Air Logistics Center, Hill Air Force Base, Utah). Photographer Unknown - Hill Field, Airplane Repair Hangars No. 1-No. 4, 5875 Southgate Avenue, Layton, Davis County, UT

  11. Maximizing ion current rectification in a bipolar conical nanopore fluidic diode using optimum junction location.

    PubMed

    Singh, Kunwar Pal

    2016-10-12

    The ion current rectification has been obtained as a function of the location of a heterojunction in a bipolar conical nanopore fluidic diode for different parameters to determine the junction location for maximum ion current rectification using numerical simulations. Forward current peaks for a specific location of the junction and reverse current decreases with the junction location due to a change in ion enrichment/depletion in the pore. The optimum location of the heterojunction shifts towards the tip with base/tip diameter and surface charge density, and towards the base with the electrolyte concentration. The optimum location of the heterojunction has been approximated by an equation as a function of pore length, base/tip diameter, surface charge density and electrolyte concentration. The study is useful to design a rectifier with maximum ion current rectification for practical purposes.

  12. Confined detection volume of fluorescence correlation spectroscopy by bare fiber probes.

    PubMed

    Lu, Guowei; Lei, Franck H; Angiboust, Jean-François; Manfait, Michel

    2010-04-01

    A fiber-tip-based near-field fluorescence correlation spectroscopy (FCS) has been developed for confining the detection volume to sub-diffraction-limited dimensions. This near-field FCS is based on near-field illumination by coupling a scanning near-field optical microscope (SNOM) to a conventional confocal FCS. Single-molecule FCS analysis at 100 nM Rhodamine 6G has been achieved by using bare chemically etched, tapered fiber tips. The detection volume under control of the SNOM system has been reduced over one order of magnitude compared to that of the conventional confocal FCS. Related factors influencing the near-field FCS performance are investigated and discussed in detail. In this proof-of-principle study, the preliminary experimental results suggest that the fiber-tip-based near-field FCS might be a good alternative to realize localized analysis at the single-molecule level.

  13. Rhinoplasty. The difficult nasal tip: total resection of the alar cartilages.

    PubMed

    Rodriguez-Camps, Salvador

    2009-01-01

    There are many ways to reconstruct and make nasal tips more attractive. Sometimes we cannot find the best way unless we at least remove all surplus from the tip. This may occur in primary or secondary rhinoplasty. In principle, anything is possible when relocating and reconstructing. However, sometimes we face reality when we uncover the tip: broken or bulging cartilages that are difficult to put right. For this reason, in 1987 we thought of totally resectioning the alar cartilages in a case of secondary rhinoplasty with an unsightly appearance. After a year the result was seen to be correct from an aesthetic and a functional perspective and is still so today. Aesthetically, it kept its shape and did not collapse with nasal respiratory failure. We covered the end of the crus medialis with a small, temporary, one- to two-layered fascia patch. Except in exceptional cases, we now use this procedure: Total sectioning of the alar cartilages including the domes, or maintenance of them by preserving the fibroadipose tip tissue with a suture in the middle of the end of the crus medialis and by covering this with temporary fascia, which usually has two layers depending on the thickness of the skin of the tip. This procedure is indicated mainly in secondary rhinoplasty when the cartilages of the tip are completely destroyed, and in primary rhinoplasty when the tip is excessively wide and bulbous. Our philosophy is, therefore, elegance and beauty of the nasal tip with a solid and equilateral base without prejudices.

  14. Rational design and validation of a Tip60 histone acetyltransferase inhibitor

    NASA Astrophysics Data System (ADS)

    Gao, Chunxia; Bourke, Emer; Scobie, Martin; Famme, Melina Arcos; Koolmeister, Tobias; Helleday, Thomas; Eriksson, Leif A.; Lowndes, Noel F.; Brown, James A. L.

    2014-06-01

    Histone acetylation is required for many aspects of gene regulation, genome maintenance and metabolism and dysfunctional acetylation is implicated in numerous diseases, including cancer. Acetylation is regulated by histone acetyltransferases (HATs) and histone deacetylases and currently, few general HAT inhibitors have been described. We identified the HAT Tip60 as an excellent candidate for targeted drug development, as Tip60 is a key mediator of the DNA damage response and transcriptional co-activator. Our modeling of Tip60 indicated that the active binding pocket possesses opposite charges at each end, with the positive charges attributed to two specific side chains. We used structure based drug design to develop a novel Tip60 inhibitor, TH1834, to fit this specific pocket. We demonstrate that TH1834 significantly inhibits Tip60 activity in vitro and treating cells with TH1834 results in apoptosis and increased unrepaired DNA damage (following ionizing radiation treatment) in breast cancer but not control cell lines. Furthermore, TH1834 did not affect the activity of related HAT MOF, as indicated by H4K16Ac, demonstrating specificity. The modeling and validation of the small molecule inhibitor TH1834 represents a first step towards developing additional specific, targeted inhibitors of Tip60 that may lead to further improvements in the treatment of breast cancer.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilbao, Jose Ignacio; Quiroga, Jorge; Herrero, Jose Ignacio

    Since the insertion of the first TIPS in 1989 much has been learned about this therapeutic procedure. It has an established role for the treatment of some complications of portal hypertension: prevention of recurrent variceal bleeding and rescue of patients with acute uncontrollable variceal bleeding. In addition TIPS is useful for Budd-Chiari syndrome, refractory ascites and hepatorenal syndrome, although its specific role in these indications remains to be definitively established. However, the decrease in sinusoidal blood flow induced by TIPS can lead to the patient developing hepatic encephalopathy and liver failure in some cases. Therefore, TIPS should be used withmore » caution in patients with very poor liver function. From a technical point of view, successful placement of TIPS is achieved in more than 98% of cases by experienced groups. At present, evaluation of TIPS dysfunction based on morphology probably leads to an overdiagnosis of this complication since most of these cases are not associated with clinical manifestations (recurrent bleeding or refractory ascites). The major disadvantage of TIPS remains its poor long-term patency requiring a mandatory surveillance program. The indicator for shunt function/malfunction should be the portosystemic pressure gradient, which is best assessed by intravascular measurements. Shunt obstructions may be prevented or reduced by the use of stent-grafts in the future.« less

  16. Characterizing nanoscale scanning probes using electron microscopy: A novel fixture and a practical guide

    NASA Astrophysics Data System (ADS)

    Jacobs, Tevis D. B.; Wabiszewski, Graham E.; Goodman, Alexander J.; Carpick, Robert W.

    2016-01-01

    The nanoscale geometry of probe tips used for atomic force microscopy (AFM) measurements determines the lateral resolution, contributes to the strength of the tip-surface interaction, and can be a significant source of uncertainty in the quantitative analysis of results. While inverse imaging of the probe tip has been used successfully to determine probe tip geometry, direct observation of the tip profile using electron microscopy (EM) confers several advantages: it provides direct (rather than indirect) imaging, requires fewer algorithmic parameters, and does not require bringing the tip into contact with a sample. In the past, EM-based observation of the probe tip has been achieved using ad hoc mounting methods that are constrained by low throughput, the risk of contamination, and repeatability issues. We report on a probe fixture designed for use in a commercial transmission electron microscope that enables repeatable mounting of multiple AFM probes as well as a reference grid for beam alignment. This communication describes the design, fabrication, and advantages of this probe fixture, including full technical drawings for machining. Further, best practices are discussed for repeatable, non-destructive probe imaging. Finally, examples of the fixture's use are described, including characterization of common commercial AFM probes in their out-of-the-box condition.

  17. Centering Pregnancy: practical tips for your practice.

    PubMed

    DeCesare, Julie Z; Jackson, Jessica R

    2015-03-01

    With increased access to care, current health delivery systems will need expansion to meet higher demands and needs. To define Centering Pregnancy and practical tips for implementation into both private and academic practices. Evidence was gathered through literature reviews. It was found that Centering Pregnancy offers a patient-centered, evidence-based approach to helping with access issues, as well as improving outcomes. This article describes the benefits of Centering Pregnancy to the practice, the provider, and the patient. Practical implementation tips will be offered, with suggestions for negating common implementation barriers.

  18. Sensitive liquid refractive index sensors using tapered optical fiber tips.

    PubMed

    Tai, Yi-Hsin; Wei, Pei-Kuen

    2010-04-01

    An optical fiber sensor based on the change of optical confinement in a subwavelength tip is presented. The optical spot is substantially increased when the environmental refractive index (RI) increases from 1.3 to 1.4. By measuring the intensity of low angular spectral components, an intensity sensitivity up to 8000% per RI unit is achieved. The fiber tip sensors take advantage of the small detection volume and real-time responses. We demonstrate the application of the nanofiber sensors for measuring concentrations of acids and evaporation rates of aqueous mixtures.

  19. Axial compressor gas path design for desensitization of aerodynamic performance and stability to tip clearance

    NASA Astrophysics Data System (ADS)

    Cevik, Mert

    Tip clearance is the necessary small gap left between the moving rotor tip and stationary shroud of a turbomachine. In a compressor, the pressure driven flow through this gap, called tip clearance flow, has a major and generally detrimental impact on compressor performance (pressure ratio and efficiency) and aerodynamic stability (stall margin). The increase in tip clearance, either temporary during transient engine operations or permanent from wear, leads to a drop in compressor performance and aerodynamic stability which results in a fuel consumption increase and a reduced operating envelope for a gas turbine engine. While much research has looked into increasing compressor performance and stall margin at the design (minimum or nominal) tip clearance, very little attention has been paid for reducing the sensitivity of these parameters to tip clearance size increase. The development of technologies that address this issue will lead to aircraft engines whose performance and operating envelope are more robust to operational demands and wear. The current research is the second phase of a research programme to develop design strategies to reduce the sensitivity of axial compressor performance and aerodynamic stability to tip clearance. The first phase had focused on blade design strategies and had led to the discovery and explanation of two flow features that reduces tip sensitivity, namely increased incoming meridional momentum in the rotor tip region and reduction/elimination of double leakage. Double leakage is the flow that exits one tip clearance and enters the tip clearance of the adjacent blade instead of convecting downstream out of the rotor passage. This flow was shown to be very detrimental to compressor performance and stall margin. Two rotor design strategies involving sweep and tip stagger reduction were proposed and shown by CFD simulations to exploit these features to reduce sensitivity. As the second phase, the objectives of the current research project are to develop gas path design strategies for axial compressors to achieve the same goal, to assess their ability to be combined with desensitizing axial compressor blade design strategies and to be applied to non-axial compressors. The search for gas path design strategies was based on the exploitation of the two flow desensitizing features listed above. Two gas path design strategies were proposed and analyzed. The first was gas path contouring in the form of a concave gas path to increase incoming tip meridional momentum.

  20. Alginate Encapsulation of Begonia Microshoots for Short-Term Storage and Distribution

    PubMed Central

    Sakhanokho, Hamidou F.; Pounders, Cecil T.; Blythe, Eugene K.

    2013-01-01

    Synthetic seeds were formed from shoot tips of two in vitro grown Begonia cultivars using 3% sodium alginate in Murashige and Skoog medium (MS) salt solution as the gel matrix and 100 mM calcium chloride for complexation. Synthetic seed formation was achieved by releasing the sodium alginate/explant combination into 100 mM calcium chloride (CaCl2 ·H2O) solution for 30 or 45 min. Both control and encapsulated shoots were transferred into sterile Petri dishes and stored at 4°C or 22°C for 0, 2, 4, 6, or 8 weeks. Conversion of synthetic seeds into plantlets for both storage environments was assessed in MS medium or peat-based substrate. No significant difference was found between the 30 and 45 min CaCl2 ·H2O treatments or the two cultivars. Encapsulation of explants improved survival rate over time irrespective of the medium type or storage environment. Survival rates of 88, 53, 28, and 11% for encapsulated microshoots versus 73, 13, 0, and 0% for control explants were achieved in microshoots stored for 2, 4, 6, and 8 weeks, respectively. The best results were obtained when synthetic seeds were stored at 4°C and germinated on MS medium. Regenerated plantlets were successfully established in potting soil. PMID:24396296

  1. Postburn Neck Reconstruction With Preexpanded Upper Back Perforator Flaps: Free-Style Design and An Update of Treatment Strategies.

    PubMed

    Li, Haizhou; Wang, Zi; Gu, Bin; Gao, Yashan; Xie, Feng; Zhu, Hainan; Li, Qingfeng; Zan, Tao

    2018-05-14

    For extensive postburn neck deformities, the preexpanded flaps in the upper back region were used and gained a uniform skin appearance and esthetic contours. Free-style perforator-based free-tissue transfer that represents the most recent advance in reconstructive surgery may provide more versatility of these flaps. We retrospectively reviewed 31 patients treated at our institution for postburn neck contracture from March 2010 to May 2016. Various upper back flaps were designed according to the dominant perforators and the shape of the defect after fully releasing the neck contracture. Thirty-one patients received neck reconstructions with the versatile applications of the preexpanded upper back perforator flaps. Tip necrosis was observed in one case, and the others survived completely. The donor sites were all primarily closed. No incision dehiscence was observed. The free-style design has significantly increased the potential and versatility of the upper back flaps in reconstruction of severe neck scar contracture.

  2. How to perform combined cutting balloon and high pressure balloon valvuloplasty for dogs with subaortic stenosis.

    PubMed

    Kleman, Mandi E; Estrada, Amara H; Maisenbacher, Herbert W; Prošek, Robert; Pogue, Brandon; Shih, Andre; Paolillo, Joseph A

    2012-01-01

    Subvalvular aortic stenosis (SAS) is one of the most common congenital cardiac malformations in dogs. Unfortunately, the long term success rate and survival data following either open heart surgery or catheter based intervention has been disappointing in dogs with severe subaortic stenosis. Medical therapy is currently the only standard recommended treatment option. A cutting balloon dilation catheter has been used successfully for resistant coronary artery and peripheral pulmonary arterial stenoses in humans. This catheter is unique in that it has the ability to cut, or score, the stenotic region prior to balloon dilatation of the stenosis. The use of cutting balloon valvuloplasty combined with high pressure valvuloplasty for dogs with severe subaortic stenosis has recently been reported to be a safe and feasible alternative therapeutic option. The following report describes this technique, outlines the materials required, and provides some 'tips' for successful percutaneous subaortic balloon valvuloplasty. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Epigenetic Regulation of Axonal Growth of Drosophila Pacemaker Cells by Histone Acetyltransferase Tip60 Controls Sleep

    PubMed Central

    Pirooznia, Sheila K.; Chiu, Kellie; Chan, May T.; Zimmerman, John E.; Elefant, Felice

    2012-01-01

    Tip60 is a histone acetyltransferase (HAT) enzyme that epigenetically regulates genes enriched for neuronal functions through interaction with the amyloid precursor protein (APP) intracellular domain. However, whether Tip60-mediated epigenetic dysregulation affects specific neuronal processes in vivo and contributes to neurodegeneration remains unclear. Here, we show that Tip60 HAT activity mediates axonal growth of the Drosophila pacemaker cells, termed “small ventrolateral neurons” (sLNvs), and their production of the neuropeptide pigment-dispersing factor (PDF) that functions to stabilize Drosophila sleep–wake cycles. Using genetic approaches, we show that loss of Tip60 HAT activity in the presence of the Alzheimer’s disease-associated APP affects PDF expression and causes retraction of the sLNv synaptic arbor required for presynaptic release of PDF. Functional consequence of these effects is evidenced by disruption of the sleep–wake cycle in these flies. Notably, overexpression of Tip60 in conjunction with APP rescues these sleep–wake disturbances by inducing overelaboration of the sLNv synaptic terminals and increasing PDF levels, supporting a neuroprotective role for dTip60 in sLNv growth and function under APP-induced neurodegenerative conditions. Our findings reveal a novel mechanism for Tip60 mediated sleep–wake regulation via control of axonal growth and PDF levels within the sLNv-encompassing neural network and provide insight into epigenetic-based regulation of sleep disturbances observed in neurodegenerative diseases like Alzheimer’s disease. PMID:22982579

  4. Tapered optical fiber tip probes based on focused ion beam-milled Fabry-Perot microcavities

    NASA Astrophysics Data System (ADS)

    André, Ricardo M.; Warren-Smith, Stephen C.; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M. I.; Latifi, H.; Marques, Manuel B.; Bartelt, Hartmut; Frazão, Orlando

    2016-09-01

    Focused ion beam technology is combined with dynamic chemical etching to create microcavities in tapered optical fiber tips, resulting in fiber probes for temperature and refractive index sensing. Dynamic chemical etching uses hydrofluoric acid and a syringe pump to etch standard optical fibers into cone structures called tapered fiber tips where the length, shape, and cone angle can be precisely controlled. On these tips, focused ion beam is used to mill several different types of Fabry-Perot microcavities. Two main cavity types are initially compared and then combined to form a third, complex cavity structure. In the first case, a gap is milled on the tapered fiber tip which allows the external medium to penetrate the light guiding region and thus presents sensitivity to external refractive index changes. In the second, two slots that function as mirrors are milled on the tip creating a silica cavity that is only sensitive to temperature changes. Finally, both cavities are combined on a single tapered fiber tip, resulting in a multi-cavity structure capable of discriminating between temperature and refractive index variations. This dual characterization is performed with the aid of a fast Fourier transform method to separate the contributions of each cavity and thus of temperature and refractive index. Ultimately, a tapered optical fiber tip probe with sub-standard dimensions containing a multi-cavity structure is projected, fabricated, characterized and applied as a sensing element for simultaneous temperature and refractive index discrimination.

  5. In vivo study of partial liver resection on pigs using a 1.9 μm thulium fiber laser

    NASA Astrophysics Data System (ADS)

    Theisen-Kunde, D.; Wolken, H.; Danicke, V.; Brinkmann, R.; Bruch, H.; Kleemann, M.

    2011-07-01

    Dissection of liver tissue can be performed by different techniques (ultrasound, mono and bipolar dissection, water jet dissection and by stapler). In this animal study the potential of a Thulium fiber laser system was investigated for open parenchyma dissection. Based on a cw Thulium fiber laser (IPG laser GmbH, Burbach, Germany), emitting a wavelength at 1.9 μm and a maximal power at 50 W, a surgical dissection device was developed at the Medical Laser Centre Luebeck. Cw laser radiation (40 Watt) was transmitted via a 365 μm fiber with a polished distal fiber tip. Procedure was performed in contact mode; irradiance at the distal fiber tip was 38.2 kW/cm2. After general anesthesia and a median laparotomy an atypical laser resection of the liver was performed in 3 pigs. Healing process was controlled after 2-3 weeks by histological analysis (H&E staining). The final evaluation data included total resection time, blood loss, bile leakage and mass of dissected tissue. All animals treated in this study were cared for in accordance to the European convention on animal care. In general the dissection with the 1.9 μm laser radiation was easily performed. Hemostasis was highly sufficient so blood loss and bile leakage was negligible. Total resection time including hemostasis of the remaining tissue was 26 +/- 12 min. Weight of resected tissue was 17 +/- 8 g. During survival period no complications (bleeding or inflammation) occurred. After 2 weeks histology showed ongoing scar formation about 1 - 2 mm in depth of the dissected area.

  6. Persistent Atrial Fibrillation Ablation using the Tip-Versatile Ablation Catheter.

    PubMed

    Davies, Edward J; Clayton, Ben; Lines, Ian; Haywood, Guy A

    2016-07-01

    The mechanisms by which persistent atrial fibrillation (PsAF) develops are incompletely understood. Consequently, the optimal strategy for the ablative management of PsAF remains debated. Current methods are often time consuming, complex and non-reproducible. We assessed the Tip-Versatile Ablation Catheter (T-VAC) technique, a rapidly delivered, empirical technique based on the box-set concept using duty-cycled linear catheter ablation technology. Forty-four procedures in 40 patients undergoing PsAF ablation with the novel technique were prospectively entered onto a database: 27 de novo. Primary endpoint was freedom from arrhythmia at over two-year follow-up. Secondary endpoints were time to first arrhythmia recurrence, freedom from atrial fibrillation (AF) on and off antiarrhythmic drugs (AAD), procedural and fluoroscopy duration and complication rate. At mean follow-up of 33 months, absolute freedom from arrhythmia recurrence was 45% in the de novo group. Overall, at 33 (IQR 24-63) months, 60% of de novo patients were in sustained normal sinus rhythm and a further 15% reported only occasional paroxysms of AF at long-term follow-up. Procedure time was 192±25 mins, total energy delivered 2239±883s and fluoroscopy time was 60±10mins. In selected patients with persistent AF, a long-term rate of 60% arrhythmia free survival off AAD can be achieved using this novel T-VAC technique. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  7. VEDA: a web-based virtual environment for dynamic atomic force microscopy.

    PubMed

    Melcher, John; Hu, Shuiqing; Raman, Arvind

    2008-06-01

    We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.

  8. Invited Article: VEDA: A web-based virtual environment for dynamic atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Melcher, John; Hu, Shuiqing; Raman, Arvind

    2008-06-01

    We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.

  9. Air-Flow Navigated Crystal Growth for TIPS Pentacene-Based Organic Thin-Film Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhengran; Chen, Jihua; Sun, Zhenzhong

    2012-01-01

    6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene) is a promising active channel material of organic thin-film transistors (OTFTs) due to its solubility, stability, and high mobility. However, the growth of TIPS pentacene crystals is intrinsically anisotropic and thus leads to significant variation in the performance of OTFTs. In this paper, air flow is utilized to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs, and the resulted films are examined with optical microscopy, grazing-incidence X-ray diffraction, and thin-film transistor measurements. Under air-flow navigation (AFN), TIPS pentacene drop-cast from toluene solution has been observed to form thin films with improved crystalmore » orientation and increased areal coverage on substrates, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency defined by the ratio of average mobility to the standard deviation of the field-effect mobilities.« less

  10. Precise Orientation of a Single C60 Molecule on the Tip of a Scanning Probe Microscope

    NASA Astrophysics Data System (ADS)

    Chiutu, C.; Sweetman, A. M.; Lakin, A. J.; Stannard, A.; Jarvis, S.; Kantorovich, L.; Dunn, J. L.; Moriarty, P.

    2012-06-01

    We show that the precise orientation of a C60 molecule which terminates the tip of a scanning probe microscope can be determined with atomic precision from submolecular contrast images of the fullerene cage. A comparison of experimental scanning tunneling microscopy data with images simulated using computationally inexpensive Hückel theory provides a robust method of identifying molecular rotation and tilt at the end of the probe microscope tip. Noncontact atomic force microscopy resolves the atoms of the C60 cage closest to the surface for a range of molecular orientations at tip-sample separations where the molecule-substrate interaction potential is weakly attractive. Measurements of the C60C60 pair potential acquired using a fullerene-terminated tip are in excellent agreement with theoretical predictions based on a pairwise summation of the van der Waals interactions between C atoms in each cage, i.e., the Girifalco potential [L. Girifalco, J. Phys. Chem. 95, 5370 (1991)JPCHAX0022-365410.1021/j100167a002].

  11. Cellular and dendritic growth in a binary melt - A marginal stability approach

    NASA Technical Reports Server (NTRS)

    Laxmanan, V.

    1986-01-01

    A simple model for the constrained growth of an array of cells or dendrites in a binary alloy in the presence of an imposed positive temperature gradient in the liquid is proposed, with the dendritic or cell tip radius calculated using the marginal stability criterion of Langer and Muller-Krumbhaar (1977). This approach, an approach adopting the ad hoc assumption of minimum undercooling at the cell or dendrite tip, and an approach based on the stability criterion of Trivedi (1980) all predict tip radii to within 30 percent of each other, and yield a simple relationship between the tip radius and the growth conditions. Good agreement is found between predictions and data obtained in a succinonitrile-acetone system, and under the present experimental conditions, the dendritic tip stability parameter value is found to be twice that obtained previously, possibly due to a transition in morphology from a cellular structure with just a few side branches, to a more fully developed dendritic structure.

  12. Sharp Tips on the Atomic Force Microscope

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows the eight sharp tips of the NASA's Phoenix Mars Lander's Atomic Force Microscope, or AFM. The AFM is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer, or MECA.

    The microscope maps the shape of particles in three dimensions by scanning them with one of the tips at the end of a beam. For the AFM image taken, the tip at the end of the upper right beam was used. The tip pointing up in the enlarged image is the size of a smoke particle at its base, or 2 microns. This image was taken with a scanning electron microscope before Phoenix launched on August 4, 2007.

    The AFM was developed by a Swiss-led consortium in collaboration with Imperial College London.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Rotor tip clearance effects on overall and blade-element performance of axial-flow transonic fan stage

    NASA Technical Reports Server (NTRS)

    Moore, R. D.

    1982-01-01

    The effects of tip clearance on the overall and blade-element performance of an axial-flow transonic fan stage are presented. The 50-centimeter-diameter fan was tested at four tip clearances (nonrotating) from 0.061 to 0.178 centimeter. The calculated radial growth of the blades was 0.040 centimeter at design conditions. The decrease in overall stage performance with increasing clearance is attributed to the loss in rotor performance. For the rotor the effects of clearance on performance parameters extended to about 70 percent of blade span from the tip. The stage still margin based on an assumed operating line decreased from 15.3 to 0 percent as the clearance increased from 0.061 to 0.178 centimeter.

  14. Interaction of trace elements and welding parameters on GTA weld shape. [Variation with penetration and tip angle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgardt, P.; Heiple, C.R.

    1985-01-01

    Good penetration and poor penetration steels have different responses to changes in temperature distribution on the weld pool surface. Penetration of 304 SS was varied using S and Se dopants. The weld parameter investigated was the electrode tip angle. Results of bead-on-plate GTA welds show that there is a difference in response of weld pool shape to tip angle depending on penetration: Low penetration base metal showed no dependence, intermediate penetration steel showed a small linear decrease of weld depth-to-width ratio (d/w) with tip angle, while high penetration steel showed an increase of d/w up to a maximum at aboutmore » 50/sup 0/, followed by a decrease in d/w. (DLC)« less

  15. Writing with Voice

    ERIC Educational Resources Information Center

    Kesler, Ted

    2012-01-01

    In this Teaching Tips article, the author argues for a dialogic conception of voice, based in the work of Mikhail Bakhtin. He demonstrates a dialogic view of voice in action, using two writing examples about the same topic from his daughter, a fifth-grade student. He then provides five practical tips for teaching a dialogic conception of voice in…

  16. Digital Image Analysis System for Monitoring Crack Growth at Elevated Temperature

    DTIC Science & Technology

    1988-05-01

    The objective of the research work reported here was to develop a new concept, based on Digital Image Analysis , for monitoring the crack-tip position...a 512 x 512 pixel frame. c) Digital Image Analysis software developed to locate and digitize the position of the crack-tip, on the observed image

  17. 1998 Anthropometric Survey of U.S. Army Personnel: Bivariate Frequency Tables

    DTIC Science & Technology

    1990-05-01

    trapezius landmark at the base of the neck and the acromion landmark at the tip of the shoulder. 94 SITTING HEIGHT (SITTHGHT) - vertical distance...wall against which the posterior trunk is in contact and the tip of the thumb when the arm is extended anteriorly. 110 VERTICAL TRUNK CIRCUMFERENCE

  18. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes.

    PubMed

    Bienert, Gerd P; Møller, Anders L B; Kristiansen, Kim A; Schulz, Alexander; Møller, Ian M; Schjoerring, Jan K; Jahn, Thomas P

    2007-01-12

    The metabolism of aerobic organisms continuously produces reactive oxygen species. Although potentially toxic, these compounds also function in signaling. One important feature of signaling compounds is their ability to move between different compartments, e.g. to cross membranes. Here we present evidence that aquaporins can channel hydrogen peroxide (H2O2). Twenty-four aquaporins from plants and mammals were screened in five yeast strains differing in sensitivity toward oxidative stress. Expression of human AQP8 and plant Arabidopsis TIP1;1 and TIP1;2 in yeast decreased growth and survival in the presence of H2O2. Further evidence for aquaporin-mediated H2O2 diffusion was obtained by a fluorescence assay with intact yeast cells using an intracellular reactive oxygen species-sensitive fluorescent dye. Application of silver ions (Ag+), which block aquaporin-mediated water diffusion in a fast kinetics swelling assay, also reversed both the aquaporin-dependent growth repression and the H2O2-induced fluorescence. Our results present the first molecular genetic evidence for the diffusion of H2O2 through specific members of the aquaporin family.

  19. Determination of Wind Turbine Near-Wake Length Based on Stability Analysis

    NASA Astrophysics Data System (ADS)

    Sørensen, Jens N.; Mikkelsen, Robert; Sarmast, Sasan; Ivanell, Stefan; Henningson, Dan

    2014-06-01

    A numerical study on the wake behind a wind turbine is carried out focusing on determining the length of the near-wake based on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier-Stokes equations using the actuator line (ACL) method. The wake is perturbed by applying stochastic or harmonic excitations in the neighborhood of the tips of the blades. The flow field is then analyzed to obtain the stability properties of the tip vortices in the wake of the wind turbine. As a main outcome of the study it is found that the amplification of specific waves (traveling structures) along the tip vortex spirals is responsible for triggering the instability leading to wake breakdown. The presence of unstable modes in the wake is related to the mutual inductance (vortex pairing) instability where there is an out-of-phase displacement of successive helix turns. Furthermore, using the non-dimensional growth rate, it is found that the pairing instability has a universal growth rate equal to π/2. Using this relationship, and the assumption that breakdown to turbulence occurs once a vortex has experienced sufficient growth, we provide an analytical relationship between the turbulence intensity and the stable wake length. The analysis leads to a simple expression for determining the length of the near wake. This expression shows that the near wake length is inversely proportional to thrust, tip speed ratio and the logarithmic of the turbulence intensity.

  20. Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor

    NASA Astrophysics Data System (ADS)

    Pfister, T.; Büttner, L.; Czarske, J.; Krain, H.; Schodl, R.

    2006-07-01

    This paper presents a novel fibre optic laser Doppler position sensor for single blade tip clearance and vibration measurements at turbo machines, which offers high temporal resolution and high position resolution simultaneously. The sensor principle is based on the generation of a measurement volume consisting of two superposed fan-like interference fringe systems with contrary fringe spacing gradients using wavelength division multiplexing. A flexible and robust measurement system with an all-passive fibre coupled measurement head has been realized employing diffractive and refractive optics. Measurements of tip clearance and rotor vibrations at a transonic centrifugal compressor performed during operation at up to 50 000 rpm (833 Hz) corresponding to 21.7 kHz blade frequency and 586 m s-1 blade tip velocity are presented. The results are in excellent agreement with those of capacitive probes. The mean uncertainty of the position measurement was around 20 µm and, thus, considerably better than for conventional tip clearance probes. Consequently, this sensor is capable of fulfilling the requirements for future active clearance control systems and has great potential for in situ and online tip clearance and vibration measurements at metallic and non-metallic turbine blades with high precision.

  1. A new algorithm for primary hypospadias repair based on tip urethroplasty.

    PubMed

    Sozubir, Selami; Snodgrass, Warren

    2003-08-01

    Decision making in hypospadias repair potentially can be simplified by tubularized incised plate (TIP) urethroplasty. The authors report management and outcomes in a consecutive series of primary hypospadias repairs in which the intent was to perform TIP. Records of 106 consecutive boys undergoing hypospadias repair by 1 surgeon were reviewed. Position of the meatus, degree and management of curvature, technical details of the urethroplasty, and postoperative complications were recorded. Curvature was noted in 24 (23%) of patients, but could be corrected with preservation of the urethral plate in all but 3. In another boy, the incised plate was thought "unhealthy" for tubularization. The remaining 102 underwent TIP, of whom, 75 had distal and 27 had proximal hypospadias. Complications, primarily fistulas, occurred in 14 (13%) of these patients. The other 4 boys underwent staged repairs that utilized TIP for the glanular urethra at the second operation. The authors found decision making was no longer determined by meatal location as in the past, but by severity of curvature and appearance of the incised urethral plate. Because severe curvature requiring plate transection or an "unhealthy" incised plate are uncommonly encountered, TIP repair can be performed for most hypospadias operations.

  2. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy.

    PubMed

    Wang, Wei; Viswanathan, Akila N; Damato, Antonio L; Chen, Yue; Tse, Zion; Pan, Li; Tokuda, Junichi; Seethamraju, Ravi T; Dumoulin, Charles L; Schmidt, Ehud J; Cormack, Robert A

    2015-12-01

    In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization using magnetic resonance imaging (MRI) and CT. The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter's trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve. High-resolution 3D MRI of the phantom was performed followed by catheter digitization based on the catheter's imaging artifacts. The catheter trajectory error was characterized in terms of the mean distance between corresponding dwell points in MRTR-generated catheter trajectory and MRI-based catheter digitization. The MRTR-based catheter trajectory reconstruction process was also performed on three gynecologic cancer patients, and then compared with catheter digitization based on MRI and CT. The catheter tip localization error increased as the MRTR stylet moved further off-center and as the stylet's orientation deviated from the main magnetic field direction. Fifteen catheters' trajectories were reconstructed by MRTR. Compared with MRI-based digitization, the mean 3D error of MRTR-generated trajectories was 1.5 ± 0.5 mm with an in-plane error of 0.7 ± 0.2 mm and a tip error of 1.7 ± 0.5 mm. MRTR resolved ambiguity in catheter assignment due to crossed catheter paths, which is a common problem in image-based catheter digitization. In the patient studies, the MRTR-generated catheter trajectory was consistent with digitization based on both MRI and CT. The MRTR system provides accurate catheter tip localization and trajectory reconstruction in the MR environment. Relative to the image-based methods, it improves the speed, safety, and reliability of the catheter trajectory reconstruction in interstitial brachytherapy. MRTR may enable in-procedural dosimetric evaluation of implant target coverage.

  3. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy

    PubMed Central

    Wang, Wei; Viswanathan, Akila N.; Damato, Antonio L.; Chen, Yue; Tse, Zion; Pan, Li; Tokuda, Junichi; Seethamraju, Ravi T.; Dumoulin, Charles L.; Schmidt, Ehud J.; Cormack, Robert A.

    2015-01-01

    Purpose: In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization using magnetic resonance imaging (MRI) and CT. Methods: The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter’s trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve. High-resolution 3D MRI of the phantom was performed followed by catheter digitization based on the catheter’s imaging artifacts. The catheter trajectory error was characterized in terms of the mean distance between corresponding dwell points in MRTR-generated catheter trajectory and MRI-based catheter digitization. The MRTR-based catheter trajectory reconstruction process was also performed on three gynecologic cancer patients, and then compared with catheter digitization based on MRI and CT. Results: The catheter tip localization error increased as the MRTR stylet moved further off-center and as the stylet’s orientation deviated from the main magnetic field direction. Fifteen catheters’ trajectories were reconstructed by MRTR. Compared with MRI-based digitization, the mean 3D error of MRTR-generated trajectories was 1.5 ± 0.5 mm with an in-plane error of 0.7 ± 0.2 mm and a tip error of 1.7 ± 0.5 mm. MRTR resolved ambiguity in catheter assignment due to crossed catheter paths, which is a common problem in image-based catheter digitization. In the patient studies, the MRTR-generated catheter trajectory was consistent with digitization based on both MRI and CT. Conclusions: The MRTR system provides accurate catheter tip localization and trajectory reconstruction in the MR environment. Relative to the image-based methods, it improves the speed, safety, and reliability of the catheter trajectory reconstruction in interstitial brachytherapy. MRTR may enable in-procedural dosimetric evaluation of implant target coverage. PMID:26632065

  4. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei, E-mail: wwang21@partners.org; Viswanathan, Akila N.; Damato, Antonio L.

    2015-12-15

    Purpose: In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization usingmore » magnetic resonance imaging (MRI) and CT. Methods: The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter’s trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve. High-resolution 3D MRI of the phantom was performed followed by catheter digitization based on the catheter’s imaging artifacts. The catheter trajectory error was characterized in terms of the mean distance between corresponding dwell points in MRTR-generated catheter trajectory and MRI-based catheter digitization. The MRTR-based catheter trajectory reconstruction process was also performed on three gynecologic cancer patients, and then compared with catheter digitization based on MRI and CT. Results: The catheter tip localization error increased as the MRTR stylet moved further off-center and as the stylet’s orientation deviated from the main magnetic field direction. Fifteen catheters’ trajectories were reconstructed by MRTR. Compared with MRI-based digitization, the mean 3D error of MRTR-generated trajectories was 1.5 ± 0.5 mm with an in-plane error of 0.7 ± 0.2 mm and a tip error of 1.7 ± 0.5 mm. MRTR resolved ambiguity in catheter assignment due to crossed catheter paths, which is a common problem in image-based catheter digitization. In the patient studies, the MRTR-generated catheter trajectory was consistent with digitization based on both MRI and CT. Conclusions: The MRTR system provides accurate catheter tip localization and trajectory reconstruction in the MR environment. Relative to the image-based methods, it improves the speed, safety, and reliability of the catheter trajectory reconstruction in interstitial brachytherapy. MRTR may enable in-procedural dosimetric evaluation of implant target coverage.« less

  5. Modeling and Control of Needles with Torsional Friction

    PubMed Central

    Reed, Kyle B.; Okamura, Allison M.; Cowan, Noah J.

    2010-01-01

    A flexible needle can be accurately steered by robotically controlling the bevel tip orientation as the needle is inserted into tissue. Friction between the long, flexible needle shaft and the tissue can cause a significant discrepancy between the orientation of the needle tip and the orientation of the base where the needle angle is controlled. Our experiments show that several common phantom tissues used in needle steering experiments impart substantial friction forces to the needle shaft, resulting in a lag of over 45° for a 10 cm insertion depth in some phantoms; clinical studies report torques large enough to cause similar errors during needle insertions. Such angle discrepancies will result in poor performance or failure of path planners and image-guided controllers, since the needles used in percutaneous procedures are too small for state-of-the-art imaging to accurately measure the tip angle. To compensate for the angle discrepancy, we develop an estimator using a mechanics-based model of the rotational dynamics of a needle being inserted into tissue. Compared to controllers that assume a rigid needle in a frictionless environment, our estimator-based controller improves the tip angle convergence time by nearly 50% and reduces the path deviation of the needle by 70%. PMID:19695979

  6. Using the Real-Ear-to-Coupler Difference within the American Academy of Audiology Pediatric Amplification Guideline: Protocols for Applying and Predicting Earmold RECDs.

    PubMed

    Moodie, Sheila; Pietrobon, Jonathan; Rall, Eileen; Lindley, George; Eiten, Leisha; Gordey, Dave; Davidson, Lisa; Moodie, K Shane; Bagatto, Marlene; Haluschak, Meredith Magathan; Folkeard, Paula; Scollie, Susan

    2016-03-01

    Real-ear-to-coupler difference (RECD) measurements are used for the purposes of estimating degree and configuration of hearing loss (in dB SPL ear canal) and predicting hearing aid output from coupler-based measures. Accurate measurements of hearing threshold, derivation of hearing aid fitting targets, and predictions of hearing aid output in the ear canal assume consistent matching of RECD coupling procedure (i.e., foam tip or earmold) with that used during assessment and in verification of the hearing aid fitting. When there is a mismatch between these coupling procedures, errors are introduced. The goal of this study was to quantify the systematic difference in measured RECD values obtained when using a foam tip versus an earmold with various tube lengths. Assuming that systematic errors exist, the second goal was to investigate the use of a foam tip to earmold correction for the purposes of improving fitting accuracy when mismatched RECD coupling conditions occur (e.g., foam tip at assessment, earmold at verification). Eighteen adults and 17 children (age range: 3-127 mo) participated in this study. Data were obtained using simulated ears of various volumes and earmold tubing lengths and from patients using their own earmolds. Derived RECD values based on simulated ear measurements were compared with RECD values obtained for adult and pediatric ears for foam tip and earmold coupling. Results indicate that differences between foam tip and earmold RECDs are consistent across test ears for adults and children which support the development of a correction between foam tip and earmold couplings for RECDs that can be applied across individuals. The foam tip to earmold correction values developed in this study can be used to provide improved estimations of earmold RECDs. This may support better accuracy in acoustic transforms related to transforming thresholds and/or hearing aid coupler responses to ear canal sound pressure level for the purposes of fitting behind-the-ear hearing aids. American Academy of Audiology.

  7. Tip clearance effects on loads and performances of semi-open impeller centrifugal pumps at different specific speeds

    NASA Astrophysics Data System (ADS)

    Boitel, G.; Fedala, D.; Myon, N.

    2016-11-01

    Relevant industrial standards or customer's specifications could strictly forbid any device adjusting the axial rotor/stator position, so that tip clearance between semi-open impeller and casing might become a result of the pump machining tolerances and assembling process, leading to big tip clearance variations compared to its nominal value. Consequently, large disparities of global performances (head, power, efficiency) and axial loads are observed with high risk of both specifications noncompliance and bearing damages. This work aims at quantifying these variations by taking into account tip clearance value and pump specific speed. Computational Fluid Dynamics is used to investigate this phenomenon by means of steady simulations led on a semi-open centrifugal pump numerical model including secondary flows, based on a k-omega SST turbulence model. Four different specific speed pump sizes are simulated (from 8 to 50, SI units), with three tip clearances for each size on a wide flow range (from 40% to 120% of the best efficiency point). The numerical results clearly show that head, power and efficiency increase as the tip clearance decreases for the whole flow range. This effect is more significant when the specific speed is low. Meanwhile, the resulting axial thrust on the impeller is very sensitive to the tip clearance and can even lead to direction inversion.

  8. Dynamics of Isolated Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Pennings, Pepijn; Bosschers, Johan; van Terwisga, Tom

    2014-11-01

    Performance of ship propellers and comfort levels in the surroundings are limited by various forms of cavitation. Amongst these forms tip vortex cavitation is one of the first appearing forms and is expected to be mainly responsible for the emission of broadband pressure fluctuations typically occurring between the 4th to the 7th blade passing frequency (approx. 40--70 Hz). These radiated pressure pulses are likely to excite parts of the hull structure resulting in a design compromise between efficiency and comfort. Insight is needed in the mechanism of acoustic emission from the oscillations by a tip vortex cavity. In the current experimental study the tip vortex cavity from a blade with an elliptic planform and sections based on NACA 662 - 415 with meanline a = 0 . 8 is observed using high speed shadowgraphy in combination with blade force and acoustic measurements. An analytic model describing three main cavity deformation modes is verified and used to explain the origin of a cavity eigenfrequency or ``vortex singing'' phenomenon observed by Maines and Arndt (1997) on the tip vortex cavity originating from the same blade. As no hydrodynamic sound originating from the tip vortex cavity was observed it is posed that a tip flow instability is essential for ``vortex singing.'' This research was funded by the Lloyd's Register Foundation as part of the International Institute for Cavitation Research.

  9. Surface modifications with Lissajous trajectories using atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Wei; Yao, Nan, E-mail: nyao@princeton.edu

    2015-09-14

    In this paper, we report a method for atomic force microscopy surface modifications with single-tone and multiple-resolution Lissajous trajectories. The tip mechanical scratching experiments with two series of Lissajous trajectories were carried out on monolayer films. The scratching processes with two scan methods have been illustrated. As an application, the tip-based triboelectrification phenomenon on the silicon dioxide surface with Lissajous trajectories was investigated. The triboelectric charges generated within the tip rubbed area on the surface were characterized in-situ by scanning Kelvin force microscopy. This method would provide a promising and cost-effective approach for surface modifications and nanofabrication.

  10. Theoretical modelling of AFM for bimetallic tip-substrate interactions

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1991-01-01

    Recently, a new technique for calculating the defect energetics of alloys based on Equivalent Crystal Theory was developed. This new technique successfully predicts the bulk properties for binary alloys as well as segregation energies in the dilute limit. The authors apply this limit for the calculation of energy and force as a function of separation of an atomic force microscope (AFM) tip and substrate. The study was done for different combinations of tip and sample materials. The validity of the universality discovered for the same metal interfaces is examined for the case of different metal interactions.

  11. Association Between Media Dose, Ad Tagging, and Changes in Web Traffic for a National Tobacco Education Campaign: A Market-Level Longitudinal Study

    PubMed Central

    Davis, Kevin C; Patel, Deesha; Rodes, Robert; Beistle, Diane

    2016-01-01

    Background In 2012, the US Centers for Disease Control and Prevention (CDC) launched Tips From Former Smokers (Tips), the first federally funded national tobacco education campaign. In 2013, a follow-up Tips campaign aired on national cable television networks, radio, and other channels, with supporting digital advertising to drive traffic to the Tips campaign website. Objective The objective of this study was to use geographic and temporal variability in 2013 Tips campaign television media doses and ad tagging to evaluate changes in traffic to the campaign website in response to specific doses of campaign media. Methods Linear regression models were used to estimate the dose-response relationship between weekly market-level television gross rating points (GRPs) and weekly Web traffic to the Tips campaign website. This relationship was measured using unique visitors, total visits, and page views as outcomes. Ad GRP effects were estimated separately for ads tagged with the Tips campaign website URL and 1-800-QUIT-NOW. Results In the average media market, an increase of 100 television GRPs per week for ads tagged with the Tips campaign website URL was associated with an increase of 650 unique visitors (P<.001), 769 total visits (P<.001), and 1255 total page views (P<.001) per week. The associations between GRPs for ads tagged with 1-800-QUIT-NOW and each Web traffic measure were also statistically significant (P<.001), but smaller in magnitude. Conclusions Based on these findings, we estimate that the 16-week 2013 Tips television campaign generated approximately 660,000 unique visitors, 900,000 total visits, and 1,390,000 page views for the Tips campaign website. These findings can help campaign planners forecast the likely impact of targeted advertising efforts on consumers’ use of campaign-specific websites. PMID:26887959

  12. Designing topological defects in 2D materials using scanning probe microscopy and a self-healing mechanism: a density functional-based molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Popov, Igor; Đurišić, Ivana; Belić, Milivoj R.

    2017-12-01

    Engineering of materials at the atomic level is one of the most important aims of nanotechnology. The unprecedented ability of scanning probe microscopy to address individual atoms opened up the possibilities for nanomanipulation and nanolitography of surfaces and later on of two-dimensional materials. While the state-of-the-art scanning probe lithographic methods include, primarily, adsorption, desorption and repositioning of adatoms and molecules on substrates or tailoring nanoribbons by etching of trenches, the precise modification of the intrinsic atomic structure of materials is yet to be advanced. Here we introduce a new concept, scanning probe microscopy with a rotating tip, for engineering of the atomic structure of membranes based on two-dimensional materials. In order to indicate the viability of the concept, we present our theoretical research, which includes atomistic modeling, molecular dynamics simulations, Fourier analysis and electronic transport calculations. While stretching can be employed for fabrication of atomic chains only, our comprehensive molecular dynamics simulations indicate that nanomanipulation by scanning probe microscopy with a rotating tip is capable of assembling a wide range of topological defects in two-dimensional materials in a rather controllable and reproducible manner. We analyze two possibilities. In the first case the probe tip is retracted from the membrane while in the second case the tip is released beneath the membrane allowing graphene to freely relax and self-heal the pore made by the tip. The former approach with the tip rotation can be achieved experimentally by rotation of the sample, which is equivalent to rotation of the tip, whereas irradiation of the membrane by nanoclusters can be utilized for the latter approach. The latter one has the potential to yield a yet richer diversity of topological defects on account of a lesser determinacy. If successfully realized experimentally the concept proposed here could be an important step toward controllable nanostructuring of two-dimensional materials.

  13. Designing topological defects in 2D materials using scanning probe microscopy and a self-healing mechanism: a density functional-based molecular dynamics study.

    PubMed

    Popov, Igor; Đurišić, Ivana; Belić, Milivoj R

    2017-12-08

    Engineering of materials at the atomic level is one of the most important aims of nanotechnology. The unprecedented ability of scanning probe microscopy to address individual atoms opened up the possibilities for nanomanipulation and nanolitography of surfaces and later on of two-dimensional materials. While the state-of-the-art scanning probe lithographic methods include, primarily, adsorption, desorption and repositioning of adatoms and molecules on substrates or tailoring nanoribbons by etching of trenches, the precise modification of the intrinsic atomic structure of materials is yet to be advanced. Here we introduce a new concept, scanning probe microscopy with a rotating tip, for engineering of the atomic structure of membranes based on two-dimensional materials. In order to indicate the viability of the concept, we present our theoretical research, which includes atomistic modeling, molecular dynamics simulations, Fourier analysis and electronic transport calculations. While stretching can be employed for fabrication of atomic chains only, our comprehensive molecular dynamics simulations indicate that nanomanipulation by scanning probe microscopy with a rotating tip is capable of assembling a wide range of topological defects in two-dimensional materials in a rather controllable and reproducible manner. We analyze two possibilities. In the first case the probe tip is retracted from the membrane while in the second case the tip is released beneath the membrane allowing graphene to freely relax and self-heal the pore made by the tip. The former approach with the tip rotation can be achieved experimentally by rotation of the sample, which is equivalent to rotation of the tip, whereas irradiation of the membrane by nanoclusters can be utilized for the latter approach. The latter one has the potential to yield a yet richer diversity of topological defects on account of a lesser determinacy. If successfully realized experimentally the concept proposed here could be an important step toward controllable nanostructuring of two-dimensional materials.

  14. How To Help Students Succeed in School--Beyond the Academics. Tips for Principals from NASSP.

    ERIC Educational Resources Information Center

    National Association of Secondary School Principals, Reston, VA.

    Researchers from the University of Wisconsin and Stanford University conducted a study as part of the Madison National Center on Effective Secondary Schools. Based on findings from their study and on other research, this publication provides the following 10 tips addressed directly to parents and administrators desiring to help teenagers meet the…

  15. Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation.

    PubMed

    Paiva, Joana S; Jorge, Pedro A S; Rosa, Carla C; Cunha, João P S

    2018-05-01

    The tip of an optical fiber has been considered an attractive platform in Biology. The simple cleaved end of an optical fiber can be machined, patterned and/or functionalized, acquiring unique properties enabling the exploitation of novel optical phenomena. Prompted by the constant need to measure and manipulate nanoparticles, the invention of the Scanning Near-field Optical Microscopy (SNOM) triggered the optimization and development of novel fiber tip microfabrication methods. In fact, the fiber tip was soon considered a key element in SNOM by confining light to sufficiently small extensions, challenging the diffraction limit. As result and in consequence of the newly proposed "Lab On Tip" concept, several geometries of fiber tips were applied in three main fields: imaging (in Microscopy/Spectroscopy), biosensors and micromanipulation (Optical Fiber Tweezers, OFTs). These are able to exert forces on microparticles, trap and manipulate them for relevant applications, as biomolecules mechanical study or protein aggregates unfolding. This review presents an overview of the main achievements, most impactful studies and limitations of fiber tip-based configurations within the above three fields, along the past 10 years. OFTs could be in future a valuable tool for studying several cellular phenomena such as neurodegeneration caused by abnormal protein fibrils or manipulating organelles within cells. This could contribute to understand the mechanisms of some diseases or biophenomena, as the axonal growth in neurons. To the best of our knowledge, no other review article has so far provided such a broad view. Despite of the limitations, fiber tips have key roles in Biology/Medicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Improving the lateral resolution of quartz tuning fork-based sensors in liquid by integrating commercial AFM tips into the fiber end.

    PubMed

    Gonzalez, Laura; Martínez-Martín, David; Otero, Jorge; de Pablo, Pedro José; Puig-Vidal, Manel; Gómez-Herrero, Julio

    2015-01-14

    The use of quartz tuning fork sensors as probes for scanning probe microscopy is growing in popularity. Working in shear mode, some methods achieve a lateral resolution comparable with that obtained with standard cantilevered probes, but only in experiments conducted in air or vacuum. Here, we report a method to produce and use commercial AFM tips in electrically driven quartz tuning fork sensors operating in shear mode in a liquid environment. The process is based on attaching a standard AFM tip to the end of a fiber probe which has previously been sharpened. Only the end of the probe is immersed in the buffer solution during imaging. The lateral resolution achieved is about 6 times higher than that of the etched microfiber on its own.

  17. Some effects on SPM based surface measurement

    NASA Astrophysics Data System (ADS)

    Wenhao, Huang; Yuhang, Chen

    2005-01-01

    The scanning probe microscope (SPM) has been used as a powerful tool for nanotechnology, especially in surface nanometrology. However, there are a lot of false images and modifications during the SPM measurement on the surfaces. This is because of the complex interaction between the SPM tip and the surface. The origin is not only due to the tip material or shape, but also to the structure of the sample. So people are paying much attention to draw true information from the SPM images. In this paper, we present some simulation methods and reconstruction examples for the microstructures and surface roughness based on SPM measurement. For example, in AFM measurement, we consider the effects of tip shape and dimension, also the surface topography distribution in both height and space. Some simulation results are compared with other measurement methods to verify the reliability.

  18. CFD simulations of a wind turbine for analysis of tip vortex breakdown

    NASA Astrophysics Data System (ADS)

    Kimura, K.; Tanabe, Y.; Aoyama, T.; Matsuo, Y.; Arakawa, C.; Iida, M.

    2016-09-01

    This paper discusses about the wake structure of wind turbine via the use of URANS and Quasi-DNS, focussing on the tip vortex breakdown. The moving overlapped structured grids CFD Solver based on a fourth-order reconstruction and an all-speed scheme, rFlow3D is used for capturing the characteristics of tip vortices. The results from the Model Experiments in Controlled Conditions project (MEXICO) was accordingly selected for executing wake simulations through the variation of tip speed ratio (TSR); in an operational wind turbine, TSR often changes in value. Therefore, it is important to assess the potential effects of TSR on wake characteristics. The results obtained by changing TSR show the variations of the position of wake breakdown and wake expansion. The correspondence between vortices and radial/rotational flow is also confirmed.

  19. Twelve tips for the effective use of videos in medical education.

    PubMed

    Dong, Chaoyan; Goh, Poh Sun

    2015-02-01

    Videos can promote learning by either complementing classroom activities, or in self-paced online learning modules. Despite the wide availability of online videos in medicine, it can be a challenge for many educators to decide when videos should be used, how to best use videos, and whether to use existing videos or produce their own. We outline 12 tips based on a review of best practices in curriculum design, current research in multimedia learning and our experience in producing and using educational videos. The 12 tips review the advantages of using videos in medical education, present requirements for teachers and students, discuss how to integrate video into a teaching programme, and describe technical requirements when producing one's own videos. The 12 tips can help medical educators use videos more effectively to promote student engagement and learning.

  20. Stiffness Control of Surgical Continuum Manipulators

    PubMed Central

    Mahvash, Mohsen; Dupont, Pierre E.

    2013-01-01

    This paper introduces the first stiffness controller for continuum robots. The control law is based on an accurate approximation of a continuum robot’s coupled kinematic and static force model. To implement a desired tip stiffness, the controller drives the actuators to positions corresponding to a deflected robot configuration that produces the required tip force for the measured tip position. This approach provides several important advantages. First, it enables the use of robot deflection sensing as a means to both sense and control tip forces. Second, it enables stiffness control to be implemented by modification of existing continuum robot position controllers. The proposed controller is demonstrated experimentally in the context of a concentric tube robot. Results show that the stiffness controller achieves the desired stiffness in steady state, provides good dynamic performance, and exhibits stability during contact transitions. PMID:24273466

  1. Twelve tips for implementing whole-task curricula: how to make it work.

    PubMed

    Dolmans, Diana H J M; Wolfhagen, Ineke H A P; Van Merriënboer, Jeroen J G

    2013-10-01

    Whole-task models of learning and instructional design, such as problem-based learning, are nowadays very popular. Schools regularly encounter large problems when they implement whole-task curricula. The main aim of this article is to provide 12 tips that may help to make the implementation of a whole-task curriculum successful. Implementing whole-task curricula fails when the implementation is not well prepared. Requirements that must be met to make the implementation of whole task models into a success are described as twelve tips. The tips are organized in four clusters and refer to (1) the infrastructure, (2) the teachers, (3) the students, and (4) the management of the educational organization. Finally, the presented framework will be critically discussed and the importance of shared values and a change of culture is emphasized.

  2. Calcium-Mediated Adhesion of Nanomaterials in Reservoir Fluids.

    PubMed

    Eichmann, Shannon L; Burnham, Nancy A

    2017-09-14

    Globally, a small percentage of oil is recovered from reservoirs using primary and secondary recovery mechanisms, and thus a major focus of the oil industry is toward developing new technologies to increase recovery. Many new technologies utilize surfactants, macromolecules, and even nanoparticles, which are difficult to deploy in harsh reservoir conditions and where failures cause material aggregation and sticking to rock surfaces. To combat these issues, typically material properties are adjusted, but recent studies show that adjusting the dispersing fluid chemistry could have significant impact on material survivability. Herein, the effect of injection fluid salinity and composition on nanomaterial fate is explored using atomic force microscopy (AFM). The results show that the calcium content in reservoir fluids affects the interactions of an AFM tip with a calcite surface, as surrogates for nanomaterials interacting with carbonate reservoir rock. The extreme force sensitivity of AFM provides the ability to elucidate small differences in adhesion at the pico-Newton (pN) level and provides direct information about material survivability. Increasing the calcium content mitigates adhesion at the pN-scale, a possible means to increase nanomaterial survivability in oil reservoirs or to control nanomaterial fate in other aqueous environments.

  3. Dynamic test results for the CASES ground experiment

    NASA Technical Reports Server (NTRS)

    Bukley, Angelia P.; Patterson, Alan F.; Jones, Victoria L.

    1993-01-01

    The Controls, Astrophysics, and Structures Experiment in Space (CASES) Ground Test Facility (GTF) has been developed at Marshall Space Flight Center (MSFC) to provide a facility for the investigation of Controls/Structures Interaction (CSI) phenomena, to support ground testing of a potential shuttle-based CASES flight experiment, and to perform limited boom deployment and retraction dynamics studies. The primary objectives of the ground experiment are to investigate CSI on a test article representative of a Large Space Structure (LSS); provide a platform for Guest Investigators (GI's) to conduct CSI studies; to test and evaluate LSS control methodologies, system identification (ID) techniques, failure mode analysis; and to compare ground test predictions and flight results. The proposed CASES flight experiment consists of a 32 meter deployable/retractable boom at the end of which is an occulting plate. The control objective of the experiment is to maintain alignment of the tip plate (occulter) with a detector located at the base of the boom in the orbiter bay. The tip plate is pointed towards a star, the sun, or the galactic center to collect high-energy X-rays emitted by these sources. The tip plate, boom, and detector comprise a Fourier telescope. The occulting holes in the tip plate are approximately one millimeter in diameter making the alignment requirements quite stringent. Control authority is provided by bidirectional linear thrusters located at the boom tip and Angular Momentum Exchange Devices (AMED's) located at mid-boom and at the tip. The experiment embodies a number of CSI control problems including vibration suppression, pointing a long flexible structure, and disturbance rejection. The CASES GTF is representative of the proposed flight experiment with identical control objectives.

  4. Thermomechanical coupling and dynamic strain ageing in ductile fracture

    NASA Astrophysics Data System (ADS)

    Delafosse, David

    1995-01-01

    This work is concerned with plastic deformation at the tip of a ductile tearing crack during propagation. Two kinds of effects are investigated: the thermomechanical coupling at the tip of a mobile ductile crack, and the influence of Dynamic Strain Aging (DSA) on ductile fracture. Three alloys are studied: a nickel based superalloy (N18), a soft carbon steel, and an Al-Li light alloy (2091). The experimental study of the thermo mechanical coupling effects by means of infrared thermography stresses the importance of plastic dissipation in the energy balance of ductile fracture. Numerical simulations involving plastic deformation as the only dissipation mechanism account for the main part of the measured heating. The effects of DSA on ductile tearing are investigated in the 2091 Al-Li alloy. Based on the strain rate/temperature dependence predicted by the standard model of DSA, an experimental procedure is set up for this purpose. Three main effects are evidenced. A maximum in tearing resistance is shown to be associated with the minimum of strain rate sensitivity. Through a simple model, this peak in tearing resistance is attributed to an increase in plastic dissipation as the strain rate sensitivity is decreased. Heterogenous plastic deformation is observed in the crack tip plastic zone. Comparison with uniaxial testing allows us to identify the observed strain heterogeneities as Portevin-Le Chatelier instabilities in the crack tip plastic zone. We perform a simplified numerical analysis of the effect of strain localization on crack tip screening. Finally, small crack propagation instabilities appear at temperatures slightly above that of the tearing resistance peak. These are interpreted as resulting from a positive feed-back between the local heating at the tip of a moving crack and the decrease in tearing resistance with increasing temperature.

  5. Analytical Modeling of Pressure Wall Hole Size and Maximum Tip-to-Tip Crack Length for Perforating Normal and Oblique Orbital Debris Impacts

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Mohamed, Essam

    1997-01-01

    This report presents the results of a study whose objective was to develop first-principles-based models of hole size and maximum tip-to-tip crack length for a spacecraft module pressure wall that has been perforated in an orbital debris particle impact. The hole size and crack length models are developed by sequentially characterizing the phenomena comprising the orbital debris impact event, including the initial impact, the creation and motion of a debris cloud within the dual-wall system, the impact of the debris cloud on the pressure wall, the deformation of the pressure wall due to debris cloud impact loading prior to crack formation, pressure wall crack initiation, propagation, and arrest, and finally pressure wall deformation following crack initiation and growth. The model development has been accomplished through the application of elementary shock physics and thermodynamic theory, as well as the principles of mass, momentum, and energy conservation. The predictions of the model developed herein are compared against the predictions of empirically-based equations for hole diameters and maximum tip-to-tip crack length for three International Space Station wall configurations. The ISS wall systems considered are the baseline U.S. Lab Cylinder, the enhanced U.S. Lab Cylinder, and the U.S. Lab Endcone. The empirical predictor equations were derived from experimentally obtained hole diameters and crack length data. The original model predictions did not compare favorably with the experimental data, especially for cases in which pressure wall petalling did not occur. Several modifications were made to the original model to bring its predictions closer in line with the experimental results. Following the adjustment of several empirical constants, the predictions of the modified analytical model were in much closer agreement with the experimental results.

  6. A Fluorescence Reporter Model Defines “Tip-DCs” as the Cellular Source of Interferon β in Murine Listeriosis

    PubMed Central

    Dresing, Philipp; Borkens, Stephanie; Kocur, Magdalena; Kropp, Sonja; Scheu, Stefanie

    2010-01-01

    Production of type I interferons, consisting mainly of multiple IFNα subtypes and IFNβ, represents an essential part of the innate immune defense against invading pathogens. While in most situations, namely viral infections, this class of cytokines is indispensable for host survival they mediate a detrimental effect during infection with L. monocytogenes by rendering macrophages insensitive towards IFNγ signalling which leads to a lethal bacterial pathology in mice. Due to a lack of suitable analytic tools the precise identity of the cell population responsible for type I IFN production remains ill-defined and so far these cells have been described to be macrophages. As in general IFNβ is the first type I interferon to be produced, we took advantage of an IFNβ fluorescence reporter-knockin mouse model in which YFP is expressed from a bicistronic mRNA linked by an IRES to the endogenous ifnb mRNA to assess the IFNβ production on a single cell level in situ. Our results showed highest frequencies and absolute numbers of IFNβ+ cells in the spleen 24 h after infection with L. monocytogenes where they were located predominately in the white pulp within the foci of infection. Detailed FACS surface marker analyses, intracellular cytokine stainings and T cell proliferation assays revealed that the IFNβ+ cells were a phenotypically and functionally further specialized subpopulation of TNF and iNOS producing DCs (Tip-DCs) which are known to be essential for the early containment of L. monocytogenes infection. We proved that the IFNβ+ cells exhibited the hallmark characteristics of Tip-DCs as they produced iNOS and TNF and possessed T cell priming abilities. These results point to a yet unappreciated ambiguous role for a multi-effector, IFNβ producing subpopulation of Tip-DCs in controlling the balance between containment of L. monocytogenes infection and effects detrimental to the host driven by IFNβ. PMID:21179567

  7. A fluorescence reporter model defines "Tip-DCs" as the cellular source of interferon β in murine listeriosis.

    PubMed

    Dresing, Philipp; Borkens, Stephanie; Kocur, Magdalena; Kropp, Sonja; Scheu, Stefanie

    2010-12-16

    Production of type I interferons, consisting mainly of multiple IFNα subtypes and IFNβ, represents an essential part of the innate immune defense against invading pathogens. While in most situations, namely viral infections, this class of cytokines is indispensable for host survival they mediate a detrimental effect during infection with L. monocytogenes by rendering macrophages insensitive towards IFNγ signalling which leads to a lethal bacterial pathology in mice. Due to a lack of suitable analytic tools the precise identity of the cell population responsible for type I IFN production remains ill-defined and so far these cells have been described to be macrophages. As in general IFNβ is the first type I interferon to be produced, we took advantage of an IFNβ fluorescence reporter-knockin mouse model in which YFP is expressed from a bicistronic mRNA linked by an IRES to the endogenous ifnb mRNA to assess the IFNβ production on a single cell level in situ. Our results showed highest frequencies and absolute numbers of IFNβ+ cells in the spleen 24 h after infection with L. monocytogenes where they were located predominately in the white pulp within the foci of infection. Detailed FACS surface marker analyses, intracellular cytokine stainings and T cell proliferation assays revealed that the IFNβ+ cells were a phenotypically and functionally further specialized subpopulation of TNF and iNOS producing DCs (Tip-DCs) which are known to be essential for the early containment of L. monocytogenes infection. We proved that the IFNβ+ cells exhibited the hallmark characteristics of Tip-DCs as they produced iNOS and TNF and possessed T cell priming abilities. These results point to a yet unappreciated ambiguous role for a multi-effector, IFNβ producing subpopulation of Tip-DCs in controlling the balance between containment of L. monocytogenes infection and effects detrimental to the host driven by IFNβ.

  8. Polymer scaffolds with no skin-effect for tissue engineering applications fabricated by thermally induced phase separation.

    PubMed

    Kasoju, Naresh; Kubies, Dana; Sedlačík, Tomáš; Janoušková, Olga; Koubková, Jana; Kumorek, Marta M; Rypáček, František

    2016-01-11

    Thermally induced phase separation (TIPS) based methods are widely used for the fabrication of porous scaffolds for tissue engineering and related applications. However, formation of a less-/non-porous layer at the scaffold's outer surface at the air-liquid interface, often known as the skin-effect, restricts the cell infiltration inside the scaffold and therefore limits its efficacy. To this end, we demonstrate a TIPS-based process involving the exposure of the just quenched poly(lactide-co-caprolactone):dioxane phases to the pure dioxane for a short time while still being under the quenching strength, herein after termed as the second quenching (2Q). Scanning electron microscopy, mercury intrusion porosimetry and contact angle analysis revealed a direct correlation between the time of 2Q and the gradual disappearance of the skin, followed by the widening of the outer pores and the formation of the fibrous filaments over the surface, with no effect on the internal pore architecture and the overall porosity of scaffolds. The experiments at various quenching temperatures and polymer concentrations revealed the versatility of 2Q in removing the skin. In addition, the in vitro cell culture studies with the human primary fibroblasts showed that the scaffolds prepared by the TIPS based 2Q process, with the optimal exposure time, resulted in a higher cell seeding and viability in contrast to the scaffolds prepared by the regular TIPS. Thus, TIPS including the 2Q step is a facile, versatile and innovative approach to fabricate the polymer scaffolds with a skin-free and fully open porous surface morphology for achieving a better cell response in tissue engineering and related applications.

  9. Survival of mouse embryos after vitrification depending on the cooling rate of the cryoprotectant solution.

    PubMed

    Hredzák, R; Ostró, A; Zdilová, Viera; Maracek, I; Kacmárik, J

    2006-03-01

    The aim of the study was to determine the relationship between the rate of cooling of eight-cell mouse embryos to the temperature of liquid nitrogen (-196 degrees C) and their developmental capacity after thawing on the basis of their ability to leave the zona pellucida ('hatching') during in vitro culturing. Eight-cell embryos were obtained from superovulated female mice and divided into three experimental and one control group. Embryos from the experimental groups were cryopreserved by the vitrification method using ethylene glycol as cryoprotectant. The vitrification protocols used in the study differed in the rate of cooling of the cryoprotectant solution. Embryos from the first group were frozen in conventional 0.25-ml plastic straws, those from the second group in pipetting 'tips', and embryos from the third group, placed in vitrification solution, were introduced dropwise directly into liquid nitrogen. The control group of embryos was cultured in vitro without freezing in a culturing medium in an environment consisting of 95% air and 5% CO2. The developmental capacity of thawed embryos was assessed on the basis of their ability to leave the zona pellucida ('hatching') after three days of in vitro culturing. In the control group 95.1% of embryos 'hatched'. A significantly higher number of embryos that 'hatched' after thawing was observed in the group introduced dropwise directly into liquid nitrogen (60.0%) compared to the group frozen in pipetting 'tips' (37.9%). The group frozen in straws yielded significantly the lowest proportion of 'hatching' embryos (8.1%). These results showed that increasing cooling rates during vitrification of embryos improved their survival.

  10. A universal piezo-driven ultrasonic cell microinjection system.

    PubMed

    Huang, Haibo; Mills, James K; Lu, Cong; Sun, Dong

    2011-08-01

    Over the past decade, the rapid development of biotechnologies such as gene injection, in-vitro fertilization, intracytoplasmic sperm injection (ICSI) and drug development have led to great demand for highly automated, high precision equipment for microinjection. Recently a new cell injection technology using piezo-driven pipettes with a very small mercury column was proposed and successfully applied in ICSI to a variety of mammal species. Although this technique significantly improves the survival rates of the ICSI process, shortcomings due to the toxicity of mercury and damage to the cell membrane due to large lateral tip oscillations of the injector pipette may limit its application. In this paper, a new cell injection system for automatic batch injection of suspended cells is developed. A new design of the piezo-driven cell injector is proposed for automated suspended cell injection. This new piezo-driven cell injector design relocates the piezo oscillation actuator to the injector pipette which eliminates the vibration effect on other parts of the micromanipulator. A small piezo stack is sufficient to perform the cell injection process. Harmful lateral tip oscillations of the injector pipette are reduced substantially without the use of a mercury column. Furthermore, ultrasonic vibration micro-dissection (UVM) theory is utilized to analyze the piezo-driven cell injection process, and the source of the lateral oscillations of the injector pipette is investigated. From preliminary experiments of cell injection of a large number of zebrafish embryos (n = 200), the injector pipette can easily pierce through the cell membrane at a low injection speed and almost no deformation of the cell wall, and with a high success rate(96%) and survival rate(80.7%) This new injection approach shows good potential for precision injection with less damage to the injected cells.

  11. SU-E-J-81: Beveled Needle Tip Detection Error in Ultrasound-Guided Prostate Brachytherapy.

    PubMed

    Leu, S; Ruiz, B; Podder, T

    2012-06-01

    To quantify the needle tip detection errors in ultrasound images due to bevel-tip orientation in relation to the location on template grid. Transrectal ultrasound (TRUS) system (BK Medical) with physical template grid and 18-gauge bevel-tip (20-deg beveled angle) brachytherapy needle (Bard Medical, Covington, GA) were used. The TRUS was set at 6.5MHz in water phantom at 40°C and measurements were taken with 50% and 100% TRUS gains. Needles were oriented with bevel-tip facing up (0-degree) and inserted through template grid-holes. Reference needle depths were measured when needle tip image intensity was bright enough for potentially consistent readings. High-resolution digital vernier caliper was used to measure needle depth. Needle bevel-tip orientation was then changed to bevel down (by rotating 180-degree) and needle depth was adjusted by retracting so that the needle-tip image intensity appeared similar to when the needle bevel-tip was at 0-degree orientation. Clinically relevant locations were considered for needle placement on the template grids (1st row to 9th row, and 'a-f' columns). For 50% TRUS gain, bevel tip detection errors/differences were 0.69±0.30mm (1st row) to 3.23±0.22mm (9th row) and 0.78±0.71mm (1st row) to 4.14±0.56mm (9th row) in columns 'a' and 'D', respectively. The corresponding errors for 100% TRUS gain were 0.57±0.25mm to 5.24±0.36mm and 0.84±0.30mm to 4.2±0.20mm in columns 'a' and 'D', respectively. These errors/differences varied linearly for grid-hole locations on the rows and columns in between, smaller to large depending on distance from the TRUS probe. Observed no effect of gains (50% vs. 100%) along 'D' column, which was directly above the TRUS probe. Experiment results revealed that the beveled needle tip orientation could significantly impact the detection accuracy of the needle tips, based on which the seeds might be delivered. These errors may lead to considerable dosimetric deviations in prostate brachytherapy seed implantation. © 2012 American Association of Physicists in Medicine.

  12. Structure, composition and properties of naturally occurring non-calcified crustacean cuticle.

    PubMed

    Cribb, B W; Rathmell, A; Charters, R; Rasch, R; Huang, H; Tibbetts, I R

    2009-05-01

    Crustaceans are known for their hard, calcified exoskeleton; however some regions appear different in colour and opacity. These include leg and cheliped tips in the grapsid crab, Metopograpsus frontalis. The chelipeds and leg tips contain only trace levels of calcium but a significant mass of the halogens, chlorine (Cl) and bromine (Br). In contrast, the carapace is heavily calcified and contains only a trace mass of Cl and no Br. In transverse section across the non-calcified tip regions of cheliped and leg the mass percent of halogens varies with position. As such, the exoskeleton of M. frontalis provides a useful model to examine a possible correlation of halogen concentration with the physical properties of hardness (H) and reduced elastic modulus (E(r)), within a chitin-based matrix. Previously published work suggests a correlation exists between Cl concentration and hardness in similar tissues that contain a metal (e.g. zinc). However, in M. frontalis H and E(r) did not vary significantly across cheliped or leg tip despite differences in halogen concentration. The non-calcified regions of M. frontalis are less hard and less stiff than the carapace but equivalent to values found for insect cuticle lacking metals. Cheliped tips showed a complex morphological layering that differed from leg tips.

  13. Characterizing nanoscale scanning probes using electron microscopy: A novel fixture and a practical guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Tevis D. B., E-mail: tjacobs@pitt.edu; Wabiszewski, Graham E.; Goodman, Alexander J.

    2016-01-15

    The nanoscale geometry of probe tips used for atomic force microscopy (AFM) measurements determines the lateral resolution, contributes to the strength of the tip-surface interaction, and can be a significant source of uncertainty in the quantitative analysis of results. While inverse imaging of the probe tip has been used successfully to determine probe tip geometry, direct observation of the tip profile using electron microscopy (EM) confers several advantages: it provides direct (rather than indirect) imaging, requires fewer algorithmic parameters, and does not require bringing the tip into contact with a sample. In the past, EM-based observation of the probe tipmore » has been achieved using ad hoc mounting methods that are constrained by low throughput, the risk of contamination, and repeatability issues. We report on a probe fixture designed for use in a commercial transmission electron microscope that enables repeatable mounting of multiple AFM probes as well as a reference grid for beam alignment. This communication describes the design, fabrication, and advantages of this probe fixture, including full technical drawings for machining. Further, best practices are discussed for repeatable, non-destructive probe imaging. Finally, examples of the fixture’s use are described, including characterization of common commercial AFM probes in their out-of-the-box condition.« less

  14. Dynamic fields near a crack tip growing in an elastic-perfectly-plastic solid

    NASA Technical Reports Server (NTRS)

    Nemat-Nasser, S.; Gao, Y. C.

    1983-01-01

    A full asymptotic solution is presented for the fields in the neighborhood of the tip of a steadily advancing crack in an incompressible elastic-perfectly-plastic solid. There are four findings for mode I crack growth in the plane strain condition. The first is that the entire crack tip in steady crack growth is surrounded by a plastic region and that no elastic unloading is predicted by the complete dynamic asymptotic solution. The second is that, in contrast to the quasi-static solution, the dynamic solution yields strain fields with a logarithmic singularity everywhere near the crack tip. The third is that whereas the stress field varies throughout the entire crack tip neighborhood, it does not exhibit behavior that can be approximated by a constant field followed by an essentially centered-fan field and then by another constant field, especially for small crack growth speeds. The fourth finding is that there are two shock fronts emanating from the crack tip across which certain stress and strain components undergo jump discontinuities. After reviewing the mode III steady-state crack growth, it is concluded that ductile fracture criteria for nonstationary cracks must be based on solutions that include the inertia effects and that for this purpose quasi-static solutions may be inadequate.

  15. Recommendations for Achieving Accurate Numerical Simulation of Tip Clearance Flows in Transonic Compressor Rotors

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Strazisar, Anthony J.; Wood, Jerry R,; Hathaway, Michael D.; Okiishi, Theodore H.

    2000-01-01

    The tip clearance flows of transonic compressor rotors are important because they have a significant impact on rotor and stage performance. While numerical simulations of these flows are quite sophisticated. they are seldom verified through rigorous comparisons of numerical and measured data because these kinds of measurements are rare in the detail necessary to be useful in high-speed machines. In this paper we compare measured tip clearance flow details (e.g. trajectory and radial extent) with corresponding data obtained from a numerical simulation. Recommendations for achieving accurate numerical simulation of tip clearance flows are presented based on this comparison. Laser Doppler Velocimeter (LDV) measurements acquired in a transonic compressor rotor, NASA Rotor 35, are used. The tip clearance flow field of this transonic rotor was simulated using a Navier-Stokes turbomachinery solver that incorporates an advanced k-epsilon turbulence model derived for flows that are not in local equilibrium. Comparison between measured and simulated results indicates that simulation accuracy is primarily dependent upon the ability of the numerical code to resolve important details of a wall-bounded shear layer formed by the relative motion between the over-tip leakage flow and the shroud wall. A simple method is presented for determining the strength of this shear layer.

  16. Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip

    PubMed Central

    Bornschlögl, Thomas; Romero, Stéphane; Vestergaard, Christian L.; Joanny, Jean-François; Van Nhieu, Guy Tran; Bassereau, Patricia

    2013-01-01

    Filopodia are dynamic, finger-like plasma membrane protrusions that sense the mechanical and chemical surroundings of the cell. Here, we show in epithelial cells that the dynamics of filopodial extension and retraction are determined by the difference between the actin polymerization rate at the tip and the retrograde flow at the base of the filopodium. Adhesion of a bead to the filopodial tip locally reduces actin polymerization and leads to retraction via retrograde flow, reminiscent of a process used by pathogens to invade cells. Using optical tweezers, we show that filopodial retraction occurs at a constant speed against counteracting forces up to 50 pN. Our measurements point toward retrograde flow in the cortex together with frictional coupling between the filopodial and cortical actin networks as the main retraction-force generator for filopodia. The force exerted by filopodial retraction, however, is limited by the connection between filopodial actin filaments and the membrane at the tip. Upon mechanical rupture of the tip connection, filopodia exert a passive retraction force of 15 pN via their plasma membrane. Transient reconnection at the tip allows filopodia to continuously probe their surroundings in a load-and-fail manner within a well-defined force range. PMID:24198333

  17. Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips

    PubMed Central

    Moro, Alessandro; Foresta, Enrico; Falchi, Marco; De Angelis, Paolo; D'Amato, Giuseppe; Pelo, Sandro

    2017-01-01

    The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation. PMID:28246596

  18. Structure and properties of small molecule-polymer blend semiconductors for organic thin film transistors.

    PubMed

    Kang, Jihoon; Shin, Nayool; Jang, Do Young; Prabhu, Vivek M; Yoon, Do Y

    2008-09-17

    A comprehensive structural and electrical characterization of solution-processed blend films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) semiconductor and poly(alpha-methylstyrene) (PalphaMS) insulator was performed to understand and optimize the blend semiconductor films, which are very attractive as the active layer in solution-processed organic thin-film transistors (OTFTs). Our study, based on careful measurements of specular neutron reflectivity and grazing-incidence X-ray diffraction, showed that the blends with a low molecular-mass PalphaMS exhibited a strong segregation of TIPS-pentacene only at the air interface, but surprisingly the blends with a high molecular-mass PalphaMS showed a strong segregation of TIPS-pentacene at both air and bottom substrate interfaces with high crystallinity and desired orientation. This finding led to the preparation of a TIPS-pentacene/PalphaMS blend active layer with superior performance characteristics (field-effect mobility, on/off ratio, and threshold voltage) over those of neat TIPS-pentacene, as well as the solution-processability of technologically attractive bottom-gate/bottom-contact OTFT devices.

  19. Tip60 HAT Action Mediates Environmental Enrichment Induced Cognitive Restoration

    PubMed Central

    Xu, Songjun; Panikker, Priyalakshmi; Iqbal, Sahira; Elefant, Felice

    2016-01-01

    Environmental enrichment (EE) conditions have beneficial effects for reinstating cognitive ability in neuropathological disorders like Alzheimer’s disease (AD). While EE benefits involve epigenetic gene control mechanisms that comprise histone acetylation, the histone acetyltransferases (HATs) involved remain largely unknown. Here, we examine a role for Tip60 HAT action in mediating activity- dependent beneficial neuroadaptations to EE using the Drosophila CNS mushroom body (MB) as a well-characterized cognition model. We show that flies raised under EE conditions display enhanced MB axonal outgrowth, synaptic marker protein production, histone acetylation induction and transcriptional activation of cognition linked genes when compared to their genotypically identical siblings raised under isolated conditions. Further, these beneficial changes are impaired in both Tip60 HAT mutant flies and APP neurodegenerative flies. While EE conditions provide some beneficial neuroadaptive changes in the APP neurodegenerative fly MB, such positive changes are significantly enhanced by increasing MB Tip60 HAT levels. Our results implicate Tip60 as a critical mediator of EE-induced benefits, and provide broad insights into synergistic behavioral and epigenetic based therapeutic approaches for treatment of cognitive disorder. PMID:27454757

  20. Tip60 HAT Action Mediates Environmental Enrichment Induced Cognitive Restoration.

    PubMed

    Xu, Songjun; Panikker, Priyalakshmi; Iqbal, Sahira; Elefant, Felice

    2016-01-01

    Environmental enrichment (EE) conditions have beneficial effects for reinstating cognitive ability in neuropathological disorders like Alzheimer's disease (AD). While EE benefits involve epigenetic gene control mechanisms that comprise histone acetylation, the histone acetyltransferases (HATs) involved remain largely unknown. Here, we examine a role for Tip60 HAT action in mediating activity- dependent beneficial neuroadaptations to EE using the Drosophila CNS mushroom body (MB) as a well-characterized cognition model. We show that flies raised under EE conditions display enhanced MB axonal outgrowth, synaptic marker protein production, histone acetylation induction and transcriptional activation of cognition linked genes when compared to their genotypically identical siblings raised under isolated conditions. Further, these beneficial changes are impaired in both Tip60 HAT mutant flies and APP neurodegenerative flies. While EE conditions provide some beneficial neuroadaptive changes in the APP neurodegenerative fly MB, such positive changes are significantly enhanced by increasing MB Tip60 HAT levels. Our results implicate Tip60 as a critical mediator of EE-induced benefits, and provide broad insights into synergistic behavioral and epigenetic based therapeutic approaches for treatment of cognitive disorder.

  1. High temperature heat source generation with quasi-continuous wave semiconductor lasers at power levels of 6 W for medical use.

    PubMed

    Fujimoto, Takahiro; Imai, Yusuke; Tei, Kazuyoku; Ito, Shinobu; Kanazawa, Hideko; Yamaguchi, Shigeru

    2014-01-01

    We investigate a technology to create a high temperature heat source on the tip surface of the glass fiber proposed for medical surgery applications. Using 4 to 6 W power level semiconductor lasers at a wavelength of 980 nm, a laser coupled fiber tip was preprocessed to contain a certain amount of titanium oxide powder with a depth of 100 μm from the tip surface so that the irradiated low laser energy could be perfectly absorbed to be transferred to thermal energy. Thus, the laser treatment can be performed without suffering from any optical characteristic of the material. A semiconductor laser was operated quasi-continuous wave mode pulse time duration of 180 ms and >95% of the laser energy was converted to thermal energy in the fiber tip. Based on two-color thermometry, by using a gated optical multichannel analyzer with a 0.25 m spectrometer in visible wavelength region, the temperature of the fiber tip was analyzed. The temperature of the heat source was measured to be in excess 3100 K.

  2. Uptake of liquid from wet surfaces by the brush-tipped proboscis of a butterfly.

    PubMed

    Lee, Seung Chul; Lee, Sang Joon

    2014-11-06

    This study investigated the effect of the brush-tipped proboscis of the Asian comma (Polygonia c-aureum) on wet-surface feeding. The tip region of this proboscis was observed, especially two microstructures; the intake slits through which liquid passes into the proboscis and the brush-like sensilla styloconica. The sensilla styloconica were connected laterally to the intake slits in the tip region. The liquid-feeding flow between the proboscis and the wet surface was measured by micro-particle image velocimetry. During liquid feeding, the sensilla styloconica region accumulates liquid by pinning the air-liquid interface to the tips of the sensilla styloconica, thus the intake slit region remains immersed. The film flow that passes through the sensilla styloconica region shows a parabolic velocity profile, and the corresponding flow rate is proportional to the cubed length of the sensilla styloconica. Based on these observations, we demonstrated that the sensilla styloconica promotes the uptake of liquid from wet surfaces. This study may inspire the development of a microfluidic device to collect liquid from moist substrates.

  3. Uptake of liquid from wet surfaces by the brush-tipped proboscis of a butterfly

    PubMed Central

    Lee, Seung Chul; Lee, Sang Joon

    2014-01-01

    This study investigated the effect of the brush-tipped proboscis of the Asian comma (Polygonia c-aureum) on wet-surface feeding. The tip region of this proboscis was observed, especially two microstructures; the intake slits through which liquid passes into the proboscis and the brush-like sensilla styloconica. The sensilla styloconica were connected laterally to the intake slits in the tip region. The liquid-feeding flow between the proboscis and the wet surface was measured by micro-particle image velocimetry. During liquid feeding, the sensilla styloconica region accumulates liquid by pinning the air-liquid interface to the tips of the sensilla styloconica, thus the intake slit region remains immersed. The film flow that passes through the sensilla styloconica region shows a parabolic velocity profile, and the corresponding flow rate is proportional to the cubed length of the sensilla styloconica. Based on these observations, we demonstrated that the sensilla styloconica promotes the uptake of liquid from wet surfaces. This study may inspire the development of a microfluidic device to collect liquid from moist substrates. PMID:25373895

  4. Uptake of liquid from wet surfaces by the brush-tipped proboscis of a butterfly

    NASA Astrophysics Data System (ADS)

    Lee, Seung Chul; Lee, Sang Joon

    2014-11-01

    This study investigated the effect of the brush-tipped proboscis of the Asian comma (Polygonia c-aureum) on wet-surface feeding. The tip region of this proboscis was observed, especially two microstructures; the intake slits through which liquid passes into the proboscis and the brush-like sensilla styloconica. The sensilla styloconica were connected laterally to the intake slits in the tip region. The liquid-feeding flow between the proboscis and the wet surface was measured by micro-particle image velocimetry. During liquid feeding, the sensilla styloconica region accumulates liquid by pinning the air-liquid interface to the tips of the sensilla styloconica, thus the intake slit region remains immersed. The film flow that passes through the sensilla styloconica region shows a parabolic velocity profile, and the corresponding flow rate is proportional to the cubed length of the sensilla styloconica. Based on these observations, we demonstrated that the sensilla styloconica promotes the uptake of liquid from wet surfaces. This study may inspire the development of a microfluidic device to collect liquid from moist substrates.

  5. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips.

    PubMed

    Roychowdhury, Anita; Gubrud, M A; Dana, R; Anderson, J R; Lobb, C J; Wellstood, F C; Dreyer, M

    2014-04-01

    We describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T. We focus on the design of the two-tip STM head, as well as the sample transfer mechanism, which allows in situ transfer from an ultra high vacuum preparation chamber while the STM is at 1.5 K. Other design details such as the vibration isolation and rf-filtered wiring are also described. Their effectiveness is demonstrated via spectral current noise characteristics and the root mean square roughness of atomic resolution images. The high-field capability is shown by the magnetic field dependence of the superconducting gap of CuxBi2Se3. Finally, we present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 μeV.

  6. Formation and Growth of Micro and Macro Bubbles on Copper-Graphite Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Sankovic, John M.; Motil, Brian J.; Zhang, Nengli

    2007-01-01

    Micro scale boiling behavior in the vicinity of graphite micro-fiber tips on the coppergraphite composite boiling surfaces is investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the copper matrix in pool boiling. In virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each of which sitting on several tips. The growth processes of the micro and macro bubbles are analyzed and formulated followed by an analysis of bubble departure on the composite surfaces. Based on these analyses, the enhancement mechanism of the pool boiling heat transfer on the composite surfaces is clearly revealed. Experimental results of pool boiling heat transfer both for water and Freon-113 on the composite surfaces convincingly demonstrate the enhancement effects of the unique structure of Cu-Gr composite surfaces on boiling heat transfer.

  7. Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips.

    PubMed

    Moro, Alessandro; Gasparini, Giulio; Foresta, Enrico; Saponaro, Gianmarco; Falchi, Marco; Cardarelli, Lorenzo; De Angelis, Paolo; Forcione, Mario; Garagiola, Umberto; D'Amato, Giuseppe; Pelo, Sandro

    2017-01-01

    The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation.

  8. Social Media Tips to Enhance Medical Education.

    PubMed

    Shah, Vikas; Kotsenas, Amy L

    2017-06-01

    In this article, we describe how social media can supplement traditional education, articulate the advantages and disadvantages of various social media platforms for both teachers and learners, discuss best practices to maintain confidentiality of protected health information, and provide tips for implementing social media-based teaching into the training curriculum. Copyright © 2017 The Association of University Radiologists. All rights reserved.

  9. One-by-one single-molecule detection of mutated nucleobases by monitoring tunneling current using a DNA tip.

    PubMed

    Bui, Phuc Tan; Nishino, Tomoaki; Shiigi, Hiroshi; Nagaoka, Tsutomu

    2015-01-31

    A DNA molecule was utilized as a probe tip to achieve single-molecule genetic diagnoses. Hybridization of the probe and target DNAs resulted in electron tunneling along the emergent double-stranded DNA. Simple stationary monitoring of the tunneling current leads to single-molecule DNA detection and discovery of base mismatches and methylation.

  10. The tip of the Red Giant Branch as a Distance Indicator for Resolved Galaxies: II. Computer Simulations

    NASA Technical Reports Server (NTRS)

    Madore, B. F.; Freedman, W. L.

    1994-01-01

    Based on both empirical data for nearby galaxies, and on computer simulations, we show that measuring the position of the tip of the first-ascent red-giant branch (TRGB) provides a means of obtaining the distances to nearby galaxies with a precision and accuracy comparable to using Cepheids and/or RR Lyrae variables.

  11. Measurement of circulation around wing-tip vortices and estimation of lift forces using stereo PIV

    NASA Astrophysics Data System (ADS)

    Asano, Shinichiro; Sato, Haru; Sakakibara, Jun

    2017-11-01

    Applying the flapping flight to the development of an aircraft as Mars space probe and a small aircraft called MAV (Micro Air Vehicle) is considered. This is because Reynolds number assumed as the condition of these aircrafts is low and similar to of insects and small birds flapping on the earth. However, it is difficult to measure the flow around the airfoil in flapping flight directly because of its three-dimensional and unsteady characteristics. Hence, there is an attempt to estimate the flow field and aerodynamics by measuring the wake of the airfoil using PIV, for example the lift estimation method based on a wing-tip vortex. In this study, at the angle of attack including the angle after stall, we measured the wing-tip vortex of a NACA 0015 cross-sectional and rectangular planform airfoil using stereo PIV. The circulation of the wing-tip vortex was calculated from the obtained velocity field, and the lift force was estimated based on Kutta-Joukowski theorem. Then, the validity of this estimation method was examined by comparing the estimated lift force and the force balance data at various angles of attack. The experiment results are going to be presented in the conference.

  12. Realtime system for GLAS on WHT

    NASA Astrophysics Data System (ADS)

    Skvarč, Jure; Tulloch, Simon; Myers, Richard M.

    2006-06-01

    The new ground layer adaptive optics system (GLAS) on the William Herschel Telescope (WHT) on La Palma will be based on the existing natural guide star adaptive optics system called NAOMI. A part of the new developments is a new control system for the tip-tilt mirror. Instead of the existing system, built around a custom built multiprocessor computer made of C40 DSPs, this system uses an ordinary PC machine and a Linux operating system. It is equipped with a high sensitivity L3 CCD camera with effective readout noise of nearly zero. The software design for the tip-tilt system is being completely redeveloped, in order to make a use of object oriented design which should facilitate easier integration with the rest of the observing system at the WHT. The modular design of the system allows incorporation of different centroiding and loop control methods. To test the system off-sky, we have built a laboratory bench using an artificial light source and a tip-tilt mirror. We present results of tip-tilt correction quality using different centroiding algorithms and different control loop methods at different light levels. This system will serve as a testing ground for a transition to a completely PC-based real-time control system.

  13. Novel planar field emission of ultra-thin individual carbon nanotubes.

    PubMed

    Song, Xuefeng; Gao, Jingyun; Fu, Qiang; Xu, Jun; Zhao, Qing; Yu, Dapeng

    2009-10-07

    In this work, we proposed and realized a new prototype of planar field emission device based on as-grown individual carbon nanotubes (CNTs) on the surface of a Si-SiO2 substrate. The anode, cathode and the CNT tip all lie on the same surface, so the electron emission is reduced from three-dimensional to two-dimensional. The benefits of such a design include usage of thinner CNT emitters, integrity with planar technology, stable construction, better heat dissipation, etc. A tip-to-tip field emission device was presented besides the tip-to-electrode one. Real-time, in situ observation of the planar field emission was realized in a scanning electron microscope (SEM). Measurements showed that the minimum voltage for 10 nA field emission current was only 8.0 V and the maximum emission current density in an individual CNT emitter (1.0 nm in diameter) exceeded 5.7 x 10(8) A cm(-2). These results stand out in the comparison with recent works on individual CNT field emission, indicating that the planar devices based on ultra-thin individual CNTs are more competitive candidates for next-generation electron field emitters.

  14. Root Tip Shape Governs Root Elongation Rate under Increased Soil Strength1[OPEN

    PubMed Central

    Kirchgessner, Norbert; Walter, Achim

    2017-01-01

    Increased soil strength due to soil compaction or soil drying is a major limitation to root growth and crop productivity. Roots need to exert higher penetration force, resulting in increased penetration stress when elongating in soils of greater strength. This study aimed to quantify how the genotypic diversity of root tip geometry and root diameter influences root elongation under different levels of soil strength and to determine the extent to which roots adjust to increased soil strength. Fourteen wheat (Triticum aestivum) varieties were grown in soil columns packed to three bulk densities representing low, moderate, and high soil strength. Under moderate and high soil strength, smaller root tip radius-to-length ratio was correlated with higher genotypic root elongation rate, whereas root diameter was not related to genotypic root elongation. Based on cavity expansion theory, it was found that smaller root tip radius-to-length ratio reduced penetration stress, thus enabling higher root elongation rates in soils with greater strength. Furthermore, it was observed that roots could only partially adjust to increased soil strength. Root thickening was bounded by a maximum diameter, and root tips did not become more acute in response to increased soil strength. The obtained results demonstrated that root tip geometry is a pivotal trait governing root penetration stress and root elongation rate in soils of greater strength. Hence, root tip shape needs to be taken into account when selecting for crop varieties that may tolerate high soil strength. PMID:28600344

  15. Consequences of Fluid Lag in Three-Dimensional Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Advani (Deceased), S. H.; Lee, T. S.; Dean, R. H.; Pak, C. K.; Avasthi, J. M.

    1997-04-01

    Research investigations on three-dimensional (3-D) rectangular hydraulic fracture configurations with varying degrees of fluid lag are reported. This paper demonstrates that a 3-D fracture model coupled with fluid lag (a small region of reduced pressure) at the fracture tip can predict very large excess pressure measurements for hydraulic fracture processes. Predictions of fracture propagation based on critical stress intensity factors are extremely sensitive to the pressure profile at the tip of a propagating fracture. This strong sensitivity to the pressure profile at the tip of a hydraulic fracture is more strongly pronounced in 3-D models versus 2-D models because 3-D fractures are clamped at the top and bottom, and pressures in the 3-D fractures that are far removed from the fracture tip have little effect on the stress intensity factor at the fracture tip. This rationale for the excess pressure mechanism is in marked contrast to the crack tip process damage zone assumptions and attendant high rock fracture toughness value hypotheses advanced in the literature. A comparison with field data is presented to illustrate the proposed fracture fluid pressure sensitivity phenomenon. This paper does not attempt to calculate the length of the fluid lag region in a propagating fracture but instead attempts to show that the pressure profile at the tip of the propagating fracture plays a major role in fracture propagation, and this role is magnified in 3-D models. Int. J. Numer. Anal. Meth. Geomech., vol. 21, 229-240 (1997).

  16. Effect of the depressor septi nasi muscle modification on nasal tip rotation and projection.

    PubMed

    Toutounchi, Javad S; Biroon, Sogol H; Banaem, Samira M; Toutounchi, Neghisa S; Nezami, Nariman; Salari, Behzad

    2015-06-01

    The nasal tip is an important esthetic feature of the face and surgery on it is the most challenging part of a rhinoplasty. In the present study, we evaluated the effects of modification of the depressor septi nasi muscle on nasal tip rotation and projection. Eighty primary rhinoplasty patients who required nasal tip modifications were enrolled in a randomized clinical trial from October 2008 to March 2012. A study group composed of 40 patients underwent rhinoplasty including cutting and repositioning of the depressor septi nasi muscle and another group of 40 patients (control) underwent rhinoplasty without manipulation of the depressor septi nasi muscle. Nasal tip rotation and projection, and patient satisfaction were evaluated before and 6 months after the operation. Following rhinoplasty including cutting of the depressor septi nasi muscle, nasal tip rotation and projection, and patient satisfaction were improved in 70, 57.5, and 85 % of the patients, respectively; and in the control group, they were improved in 82.5, 55, and 67.5 %, respectively (P = 0.089, 0.607, and 0.069). Cutting and repositioning of the depressor septi nasi muscle as an adjunct to rhinoplasty is not associated with any additional advantage in terms of nasal tip rotation and projection, or patient satisfaction. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  17. Fe65 is required for Tip60-directed histone H4 acetylation at DNA strand breaks

    PubMed Central

    Stante, Maria; Minopoli, Giuseppina; Passaro, Fabiana; Raia, Maddalena; Vecchio, Luigi Del; Russo, Tommaso

    2009-01-01

    Fe65 is a binding partner of the Alzheimer's β-amyloid precursor protein APP. The possible involvement of this protein in the cellular response to DNA damage was suggested by the observation that Fe65 null mice are more sensitive to genotoxic stress than WT counterpart. Fe65 associated with chromatin under basal conditions and its involvement in DNA damage repair requires this association. A known partner of Fe65 is the histone acetyltransferase Tip60. Considering the crucial role of Tip60 in DNA repair, we explored the hypothesis that the phenotype of Fe65 null cells depended on its interaction with Tip60. We demonstrated that Fe65 knockdown impaired recruitment of Tip60-TRRAP complex to DNA double strand breaks and decreased histone H4 acetylation. Accordingly, the efficiency of DNA repair was decreased upon Fe65 suppression. To explore whether APP has a role in this mechanism, we analyzed a Fe65 mutant unable to bind to APP. This mutant failed to rescue the phenotypes of Fe65 null cells; furthermore, APP/APLP2 suppression results in the impairment of recruitment of Tip60-TRRAP complex to DNA double strand breaks, decreased histone H4 acetylation and repair efficiency. On these bases, we propose that Fe65 and its interaction with APP play an important role in the response to DNA damage by assisting the recruitment of Tip60-TRRAP to DNA damage sites. PMID:19282473

  18. Twelve tips for applying change models to curriculum design, development and delivery.

    PubMed

    McKimm, Judy; Jones, Paul Kneath

    2017-10-25

    Drawing primarily from business and management literature and the authors' experience, these 12 tips provide guidance to organizations, teams, and individuals involved in curriculum or program development at undergraduate, postgraduate, and continuing education levels. The tips are based around change models and approaches and can help underpin successful curriculum review, development, and delivery, as well as fostering appropriate educational innovation. A range of tools exist to support systematic program development and review, but even relatively simple changes need to take account of many factors, including the complexity of the environment, stakeholder engagement, cultural and psychological aspects, and the importance of followers.

  19. Earth Girl 2: Learning and Perfecting Tsunami Preparedness with a Casual Strategy Game

    NASA Astrophysics Data System (ADS)

    Kerlow, I.; Taisne, B.; Switzer, A.; Meltzner, A. J.; Hubbard, J.; Sieh, K.

    2014-12-01

    "Earth Girl 2: Preparing for the Tsunami" is an interactive game about making strategic decisions that can directly increase the survival rate in coastal communities during earthquake and tsunami scenarios. Earth Girl is the host and guide in this casual strategy game with social impact, and the player is the protagonist. The game was developed by an interdisciplinary team of scientists and game artists at the Earth Observatory of Singapore. Earth Girl 2 is based on real-life situations, with an emphasis on learning preparedness and survival skills. It was inspired by the kids who live in coastal communities throughout Asia, and by the stories told by survivors of recent tsunamis. The action takes place in four main areas: the Market, the Map, the Toolbox, and two dozen game levels with a variety of evacuation scenarios. The gameplay encourages proactive exploration and discovery of these scenarios, with Earth Girl providing knowledge, tips and feedback throughout the game. The basic game play includes: learning about tsunami hazards by talking to people at the market, choosing tools based on a budget, exploring the site and making strategic decisions, and learning from watching the simulation. The level of success of players in this game depends on their strategic decisions which is somewhat tied to their level of interaction with the virtual community. The game is currently being tested with children in Southeast Asian communities and is scheduled for release in late 2014. The presentation will demonstrate aspects of the game (played on an iPad connected to the projector), and will describe some of the challenges and solutions encountered by the interdisciplinary team.

  20. Optical Fiber-Tip Sensors Based on In-Situ µ-Printed Polymer Suspended-Microbeams.

    PubMed

    Yao, Mian; Ouyang, Xia; Wu, Jushuai; Zhang, A Ping; Tam, Hwa-Yaw; Wai, P K A

    2018-06-05

    Miniature optical fiber-tip sensors based on directly µ-printed polymer suspended-microbeams are presented. With an in-house optical 3D μ-printing technology, SU-8 suspended-microbeams are fabricated in situ to form Fabry⁻Pérot (FP) micro-interferometers on the end face of standard single-mode optical fiber. Optical reflection spectra of the fabricated FP micro-interferometers are measured and fast Fourier transform is applied to analyze the cavity of micro-interferometers. The applications of the optical fiber-tip sensors for refractive index (RI) sensing and pressure sensing, which showed 917.3 nm/RIU to RI change and 4.29 nm/MPa to pressure change, respectively, are demonstrated in the experiments. The sensors and their optical µ-printing method unveil a new strategy to integrate complicated microcomponents on optical fibers toward 'lab-on-fiber' devices and applications.

  1. Development and experimental characterization of a new non contact sensor for blade tip timing

    NASA Astrophysics Data System (ADS)

    Brouckaert, Jean-Francois; Marsili, Roberto; Rossi, Gianluca; Tomassini, Roberto

    2012-06-01

    Performances of blade tip timing measurement systems (BTT), recently used for non contact turbine blade vibration measurements, in terms of uncertainty and resolution are strongly affected by sensor characteristics. The sensors used for BTT generate pulses, to be used also for precise measurements of turbine blades time of arrival. All the literature on this measurement techniques do not address this problem in a clear way, defining the relevant dynamic and static sensor characteristics, fundamental for this application. Till now proximity sensors used are based on optical, capacitive, eddy current and microwave measuring principle. Also pressure sensors has been used. In this paper a new sensing principle is proposed. A proximity sensor based on magnetoresistive sensing element has been assembled end tested. A simple and portable test bench with variable speed, blade tip width, variable clearance was built and used in order to characterize the main sensor performances.

  2. High resolution tip-tilt positioning system for a next generation MLL-based x-ray microscope

    DOE PAGES

    Xu, Weihe; Schlossberger, Noah; Xu, Wei; ...

    2017-11-15

    Multilayer Laue lenses (MLLs) are x-ray focusing optics with the potential to focus hard x-rays down to a single nanometer level. In order to achieve point focus, an MLL microscope needs to have the capability to perform tip-tilt motion of MLL optics and to hold the angular position for an extended period of time. Here, we present a 2D tip-tilt system that can achieve an angular resolution of over 100 microdegree with a working range of 4°, by utilizing a combination of laser interferometer and mini retroreflector. The linear dimensions of the developed system are about 30 mm in allmore » directions, and the thermal dissipation of the system during operation is negligible. Compact design and high angular resolution make the developed system suitable for MLL optics alignment in the next generation of MLL-based x-ray microscopes.« less

  3. High resolution tip-tilt positioning system for a next generation MLL-based x-ray microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Weihe; Schlossberger, Noah; Xu, Wei

    Multilayer Laue lenses (MLLs) are x-ray focusing optics with the potential to focus hard x-rays down to a single nanometer level. In order to achieve point focus, an MLL microscope needs to have the capability to perform tip-tilt motion of MLL optics and to hold the angular position for an extended period of time. Here, we present a 2D tip-tilt system that can achieve an angular resolution of over 100 microdegree with a working range of 4°, by utilizing a combination of laser interferometer and mini retroreflector. The linear dimensions of the developed system are about 30 mm in allmore » directions, and the thermal dissipation of the system during operation is negligible. Compact design and high angular resolution make the developed system suitable for MLL optics alignment in the next generation of MLL-based x-ray microscopes.« less

  4. Gap-mode enhancement on MoS2 probed by functionalized tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Alajlan, Abdulrahman M.; Voronine, Dmitri V.; Sinyukov, Alexander M.; Zhang, Zhenrong; Sokolov, Alexei V.; Scully, Marlan O.

    2016-09-01

    Surface enhancement of molecular spectroscopic signals has been widely used for sensing and nanoscale imaging. Because of the weak electromagnetic enhancement of Raman signals on semiconductors, it is motivating but challenging to study the electromagnetic effect separately from the chemical effects. We report tip-enhanced Raman scattering measurements on Au and bulk MoS2 substrates using a metallic tip functionalized with copper phthalocyanine molecules and demonstrate similar gap-mode enhancement on both substrates. We compare the experimental results with theoretical calculations to confirm the gap-mode enhancement on MoS2 using a well-established electrostatic model. The functionalized tip approach allows for suppressing the background and is ideal for separating electromagnetic and chemical enhancement mechanisms on various substrates. Our results may find a wide range of applications in MoS2-based devices, sensors, and metal-free nanoscale bio-imaging.

  5. Twelve tips for effective body language for medical educators.

    PubMed

    Hale, Andrew J; Freed, Jason; Ricotta, Daniel; Farris, Grace; Smith, C Christopher

    2017-09-01

    A significant proportion of human communication is nonverbal. Although the fields of business and psychology have significant literature on effectively using body language in a variety of situations, there is limited literature on effective body language for medical educators. To provide 12 tips to highlight effective body language strategies and techniques for medical educators. The tips provided are based on our experiences and reflections as clinician-educators and the available literature. The 12 tips presented offer specific strategies to engage learners, balance learner participation, and bring energy and passion to teaching. Medical educators seeking to maximize their effectiveness would benefit from an understanding of how body language affects a learning environment and how body language techniques can be used to engage audiences, maintain attention, control challenging learners, and convey passion for a topic. Understanding and using body language effectively is an important instructional skill.

  6. Ab initio simulations of subatomic resolution images in noncontact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Minjung; Chelikowsky, James R.

    2015-03-01

    Direct imaging of polycyclic aromatic molecules with a subatomic resolution has recently been achieved with noncontact atomic force microscopy (nc-AFM). Specifically, nc-AFM employing a CO functionalized tip has provided details of the chemical bond in aromatic molecules, including the discrimination of bond order. However, the underlying physics of such high resolution imaging remains problematic. By employing new, efficient algorithms based on real space pseudopotentials, we calculate the forces between the nc-AFM tip and specimen. We simulate images of planar organic molecules with two different approaches: 1) with a chemically inert tip and 2) with a CO functionalized tip. We find dramatic differences in the resulting images, which are consistent with recent experimental work. Our work is supported by the DOE under DOE/DE-FG02-06ER46286 and by the Welch Foundation under Grant F-1837. Computational resources were provided by NERSC and XSEDE.

  7. Fabrication of near-field optical apertures in aluminium by a highly selective corrosion process in the evanescent field.

    PubMed

    Haefliger, D; Stemmer, A

    2003-03-01

    A simple, one-step process to fabricate high-quality apertures for scanning near-field optical microscope probes based on aluminium-coated silicon nitride cantilevers is presented. A thin evanescent optical field at a glass-water interface was used to heat the aluminium at the tip apex due to light absorption. The heat induced a breakdown of the passivating oxide layer and local corrosion of the metal, which selectively exposed the front-most part of the probe tip from the aluminium. Apertures with a protruding silicon nitride tip up to 72 nm in height were fabricated. The height of the protrusion was controlled by the extent of the evanescent field, whereas the diameter depended on the geometry of the probe substrate. The corrosion process proved to be self-terminating, yielding highly reproducible tip heights. Near-field optical resolution in a transmission mode of 85 nm was demonstrated.

  8. Enhanced female attractiveness with use of cosmetics and male tipping behavior in restaurants.

    PubMed

    Guéguen, Nicolas; Jacob, Celine

    2011-01-01

    Several studies have found that cosmetics improve female facial attractiveness when judgments are made based on photographs. However, these studies were conducted only in the laboratory, while field studies are scarce in the literature. In fact, only one study has tested the effect of cosmetics on behavior. In this study the effect of cosmetics on tipping behavior and the link between behavior and judgment on the physical attractiveness of waitresses wearing or not wearing cosmetics were tested. A female waitress with or without makeup was instructed to act in her usual way with her patrons. Results showed that the makeup condition was associated with a significant increase in the tipping behavior of male customers. It was also found that the effect of makeup on tipping behavior was mediated by the perception of the physical attractiveness of the waitress, but only when considering male customers.

  9. Optical fiber meta-tips

    NASA Astrophysics Data System (ADS)

    Principe, Maria; Micco, Alberto; Crescitelli, Alessio; Castaldi, Giuseppe; Consales, Marco; Esposito, Emanuela; La Ferrara, Vera; Galdi, Vincenzo; Cusano, Andrea

    2016-04-01

    We report on the first example of a "meta-tip" configuration that integrates a metasurface on the tip of an optical fiber. Our proposed design is based on an inverted-Babinet plasmonic metasurface obtained by patterning (via focused ion beam) a thin gold film deposited on the tip of an optical fiber, so as to realize an array of rectangular aperture nanoantennas with spatially modulated sizes. By properly tuning the resonances of the aperture nanoantennas, abrupt variations can be impressed in the field wavefront and polarization. We fabricated and characterized several proof-of-principle prototypes operating an near-infrared wavelengths, and implementing the beam-steering (with various angles) of the cross-polarized component, as well as the excitation of surface waves. Our results pave the way to the integration of the exceptional field-manipulation capabilities enabled by metasurfaces with the versatility and ubiquity of fiber-optics technological platforms.

  10. Performance of post-processing algorithms for rainfall intensity using measurements from tipping-bucket rain gauges

    NASA Astrophysics Data System (ADS)

    Stagnaro, Mattia; Colli, Matteo; Lanza, Luca Giovanni; Chan, Pak Wai

    2016-11-01

    Eight rainfall events recorded from May to September 2013 at Hong Kong International Airport (HKIA) have been selected to investigate the performance of post-processing algorithms used to calculate the rainfall intensity (RI) from tipping-bucket rain gauges (TBRGs). We assumed a drop-counter catching-type gauge as a working reference and compared rainfall intensity measurements with two calibrated TBRGs operated at a time resolution of 1 min. The two TBRGs differ in their internal mechanics, one being a traditional single-layer dual-bucket assembly, while the other has two layers of buckets. The drop-counter gauge operates at a time resolution of 10 s, while the time of tipping is recorded for the two TBRGs. The post-processing algorithms employed for the two TBRGs are based on the assumption that the tip volume is uniformly distributed over the inter-tip period. A series of data of an ideal TBRG is reconstructed using the virtual time of tipping derived from the drop-counter data. From the comparison between the ideal gauge and the measurements from the two real TBRGs, the performances of different post-processing and correction algorithms are statistically evaluated over the set of recorded rain events. The improvement obtained by adopting the inter-tip time algorithm in the calculation of the RI is confirmed. However, by comparing the performance of the real and ideal TBRGs, the beneficial effect of the inter-tip algorithm is shown to be relevant for the mid-low range (6-50 mmh-1) of rainfall intensity values (where the sampling errors prevail), while its role vanishes with increasing RI in the range where the mechanical errors prevail.

  11. Assessing physiological tipping points in response to ocean acidification

    NASA Astrophysics Data System (ADS)

    Dupont, S. T.; Dorey, N.; Lançon, P.; Thorndyke, M. S.

    2011-12-01

    Impact of near-future ocean acidification on marine invertebrates was mostly assessed in single-species perturbation experiment. Moreover, most of these experiments are short-term, only consider one life-history stage and one or few parameters. They do not take into account important processes such as natural variability and acclimation and evolutionary processes. In many studies published so far, there is a clear lack between the observed effects and individual fitness, most of the deviation from the control being considered as potentially negative for the tested species. However, individuals are living in a fluctuating world and changes can also be interpreted as phenotypic plasticity and may not translate into negative impact on fitness. For example, a vent mussel can survive for decades in very acidic waters despite a significantly reduced calcification compare to control (Tunnicliffe et al. 2009). This is possible thanks to the absence of predatory crabs as a result of acidic conditions that may also inhibit carapace formation. This illustrates the importance to take into account ecological interactions when interpreting single-species experiments and to consider the relative fitness between interacting species. To understand the potential consequence of ocean acidification on any given ecosystem, it is then critical to consider the relative impact on fitness for every interactive species and taking into account the natural fluctuation in environment (e.g. pH, temperature, food concentration, abundance) and discriminate between plasticity with no direct impact on fitness and teratology with direct consequence on survival. In this presentation, we will introduce the concept of "physiological tipping point" in the context of ocean acidification. This will be illustrated by some work done on sea urchin development. Embryos and larvae of the sea urchin Strongylocentrotus droebachiensis were exposed to a range of pH from 8.1 to 6.5. When exposed to low pH, growth rate is decreased. However, the intensity of the impact on the growth rate is depending on the tested pH. When pH is 7.3 or higher, only a small delay in development is observed with no effect on larval morphology (phenotypic plasticity). When the pH is lower than 7.3, the impact is more severe together with major developmental abnormalities. At pH 6.5, the development is totally arrested. The link between a species physiological tipping point and environmental variability will be discussed.

  12. Isocyanate and total inhalable particulate air measurements in the European wood panel industry.

    PubMed

    Vangronsveld, E; Berckmans, S; Verbinnen, K; Van Leeuw, C; Bormans, C

    2010-11-01

    It is well known that the use of MDI (methylene diphenyldiisocyanate) as an alternative for formaldehyde-based resins is seen as a responsible option to reduce formaldehyde emissions for CWP (Composite Wood Products) in buildings. However, there are concerns raised regarding the exposure risk of workers. The purpose of this article is to provide the reader with factual information to demonstrate that the use of MDI compared to other agents used in CWP production processes does not pose increased inhalation exposure risks for workers. Personal and area air measurements were carried out at nine Composite Wood Panel plants throughout Europe to assess potential inhalation exposures to MDI and wood dust as Total Inhalable Particulates (TIP). In total, 446 pairs of samples were collected for MDI and TIP of which 283 pairs were personal samples and the remaining 163 pairs were area samples collected at key locations along the production line. This data together with published formaldehyde exposure data has been used to evaluate the exposure safety margin opposite what are considered relevant occupational exposure limits. The methods used for sampling and analysing MDI and TIP are based on internationally accepted methods, i.e. MDHS 25/3 (or ISO 16702) for MDI, and MDHS 14/3 for TIP. The job functions with an increased exposure profile for TIP were the cleaners, drying operators and quality control staff, and for MDI, the cleaners and quality control staff. The areas with an increased exposure profile for TIP are the conveyor area from OSB blender to former area and the OSB press infeed, and for MDI the OSB weigh belt and OSB former bin area. The exposure safety margin opposite the selected exposure limits can be ranked as MDI>TIP>formaldehyde (high margin of safety to low margin of safety), indicating that the use of MDI also reduces the exposure risks to workers during production of CWP compared to formaldehyde. By reducing the airborne TIP concentrations, a respiratory sensitiser, MDI workplace concentrations in general can be reduced further. This can be achieved by improving design and/or maintenance and testing programmes of existing control measures, which should be in place already to effectively control exposure to TIP and formaldehyde. The airborne concentration of MDI at workstations situated after pressing (curing) is regarded as extremely low and likely mainly constituted by workplace emissions from elsewhere in the plant. Copyright © 2010 Elsevier GmbH. All rights reserved.

  13. Gas turbine blade film cooling and blade tip heat transfer

    NASA Astrophysics Data System (ADS)

    Teng, Shuye

    The detailed heat transfer coefficient and film cooling effectiveness distributions as well as the detailed coolant jet temperature profiles on the suction side of a gas turbine blade were measured using a transient liquid crystal image method and a traversing cold wire and thermocouple probe, respectively. The blade has only one row of film holes near the gill hole portion on the suction side of the blade. The hole geometries studied include standard cylindrical holes and holes with diffuser shaped exit portion (i.e. fanshaped holes and laidback fanshaped holes). Tests were performed on a five-blade linear cascade in a low-speed wind tunnel. The mainstream Reynolds number based on cascade exit velocity was 5.3 x 105. The upstream unsteady wakes were simulated using a spoke-wheel type wake generator. The wake Strouhal number was kept at 0 and 0.1. The coolant blowing ratio was varied from 0.4 to 1.2. Results show that both expanded holes have significantly improved thermal protection over the surface downstream of the ejection location, particularly at high blowing ratios. However, the expanded hole injections induce earlier boundary layer transition to turbulence and enhance heat transfer coefficients at the latter part of the blade suction surface. In general, the unsteady wake tends to reduce film cooling effectiveness. Measurements of detailed heat transfer coefficient distributions on a turbine blade tip were performed in the same wind tunnel facility as above. The central blade had a variable tip gap clearance. Measurements were made at three different tip gap clearances of about 1.1%, 2.1%, and 3% of the blade span. Static pressure distributions were measured in the blade mid-span and on the shroud surface. Detailed heat transfer coefficient distributions were measured on the blade tip surface. Results show that reduced tip clearance leads to reduced heat transfer coefficient over the blade tip surface. Results also show that reduced tip clearance tends to weaken the unsteady wake effect on blade tip heat transfer.

  14. Six years' experience of tolerance induction in renal transplantation using stem cell therapy.

    PubMed

    Vanikar, Aruna V; Trivedi, Hargovind L; Thakkar, Umang G

    2018-02-01

    Tolerance induction (TI) has been attempted with chimerism/clonal deletion. We report results of TI protocol (TIP) using stem cell therapy (SCT) included adipose derived mesenchymal stem cells (AD-MSC) and hematopoietic stem cells (HSC) in 10 living-donor related renal transplantation (LDRT) patients under non-myeloablative conditioning with Bortezomib, Methylprednisone, rabbit-anti-thymoglobulin and Rituximab, without using conventional immunosuppression. Transplantation was performed following acceptable lymphocyte cross-match, flow cross-match, single antigen assay and negative mixed lymphocyte reaction (MLR). Monitoring included serum creatinine (SCr), donor specific antibodies (DSA) and MLR. Protocol biopsies were planned after 100days and yearly in willing patients. Rescue immunosuppression was planned for rejection/DSA/positive MLR. Over mean 6±0.37year follow-up patient survival was 80% and death-censored graft survival was 90%. Mean SCr was 1.44±0.41mg/dL. This is the first clinical report of sustained TI in LDRT for 6years using SCT. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Analysis of ploidy and the patterns of amplified fragment length polymorphism and methylation sensitive amplified polymorphism in strawberry plants recovered from cryopreservation.

    PubMed

    Hao, Yu-Jin; You, Chun-Xiang; Deng, Xui-Xin

    2002-01-01

    Shoot-tips of 10 strawberry genotypes were successfully cryopreserved using a modified encapsulation-dehydration method. All genotypes survived cryopreservation with high survival and regeneration rates. Eight Joho single-bud sibling lines were established as a model system for genetic analysis. Although cytological examination found chromosomal variation in both non-cryopreserved and cryopreserved samples, the ploidy constitution remained relatively stable after cryopreservation. DNA samples digested with MseI and PstI were used for amplified fragmentation length polymorphism (AFLP) assay. In 16 primer combinations, only one, namely, PCCA-MCAG, detected one site where band pattern changed after cryopreservation, which might be contributed to the change in DNA methylation status at PstI recognition site. Methylation sensitive amplified polymorphism (MSAP) assay was carried out for further investigation on the influence of cryopreservation on DNA methylation status. It was found that cryopreservation induced a significant change in DNA methylation status.

  16. Note: reliable and reusable ultrahigh vacuum optical viewports.

    PubMed

    Arora, P; Sen Gupta, A

    2012-04-01

    We report a simple technique for the realization of ultrahigh vacuum optical viewports. The technique relies on using specially designed thin copper knife-edges and using a thin layer of Vacseal(®) on tip of the knife-edges between the optical flat and the ConFlat(®) (CF) flange. The design of the windows is such that it gives uniform pressure on the flat without breaking it. The assembled window is a complete unit, which can be mounted directly onto a CF flange of the vacuum chamber. It can be removed and reused without breaking the window seal. The design is reliable as more than a dozen such windows have survived several bake out and cooling cycles and have been leak tested up to 10(-11) Torr l/s level with a commercial Helium leak detector. The advantages of this technique are ease of assembly and leak proof sealing that survives multiple temperature cycling making the windows reliable and reusable. © 2012 American Institute of Physics

  17. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival.

    PubMed

    Davì, Valeria; Tanimoto, Hirokazu; Ershov, Dmitry; Haupt, Armin; De Belly, Henry; Le Borgne, Rémi; Couturier, Etienne; Boudaoud, Arezki; Minc, Nicolas

    2018-04-23

    How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Characterization of E. CHLOROTICUS Sea Urchin Tooth Using Nanoindentation and SEM

    NASA Astrophysics Data System (ADS)

    Laxminarayana, Radhika; Rodrigues, Samantha; Dickinson, Michelle

    The teeth of Evenchinus chloroticus are not only vital tools for their survival but also have fascinating structures in the world of science and engineering. Despite being compositionally similar to rocks, these teeth are still able to scrape along the hard surfaces of rocks for food, while having the unique ability to self-sharpen. Yet these abilities arise from the properties of the teeth, which are in turn dependent on their design and composition. Nanoindentation was used in this study to characterise the hardness across the sea urchin tooth in detail. It focuses on the chewing tip since the main grinding function is performed by this region. In addition, SEM and EDS were used to explore any correlations between the mechanical properties of the tooth and its composition. It was found that there were two main relatively hard regions (stone part in the centre of the top flange part and another similar region in the centre of the bottom keel zone). These regions are similar in structure, consisting of thin needles and matrix and have a higher magnesium content compared to other areas of the tooth, which is attributed to the greater proportion of matrix present. Furthermore, the regions below the stone part and at the start of the keel zone appear to be weaker, which might be due to the significant amount of pores in these areas. The sharp tip is maintained by shedding of the primary plates surrounding the stone part and the keel fibres, leaving only the stone part at the chewing tip.

  19. RNA-seq for gene identification and transcript profiling in relation to root growth of bermudagrass (Cynodon dactylon) under salinity stress.

    PubMed

    Hu, Longxing; Li, Huiying; Chen, Liang; Lou, Yanhong; Amombo, Erick; Fu, Jinmin

    2015-08-04

    Soil salinity is one of the most significant abiotic stresses affecting plant shoots and roots growth. The adjustment of root architecture to spatio-temporal heterogeneity in salinity is particularly critical for plant growth and survival. Bermudagrass (Cynodon dactylon) is a widely used turf and forage perennial grass with a high degree of salinity tolerance. Salinity appears to stimulate the growth of roots and decrease their mortality in tolerant bermudagrass. To estimate a broad spectrum of genes related to root elongation affected by salt stress and the molecular mechanisms that control the positive response of root architecture to salinity, we analyzed the transcriptome of bermudagrass root tips in response to salinity. RNA-sequencing was performed in root tips of two bermudagrass genotypes contrasting in salt tolerance. A total of 237,850,130 high quality clean reads were generated and 250,359 transcripts were assembled with an average length of 1115 bp. Totally, 103,324 unigenes obtained with 53,765 unigenes (52 %) successfully annotated in databases. Bioinformatics analysis indicated that major transcription factor (TF) families linked to stress responses and growth regulation (MYB, bHLH, WRKY) were differentially expressed in root tips of bermudagrass under salinity. In addition, genes related to cell wall loosening and stiffening (xyloglucan endotransglucosylase/hydrolases, peroxidases) were identified. RNA-seq analysis identified candidate genes encoding TFs involved in the regulation of lignin synthesis, reactive oxygen species (ROS) homeostasis controlled by peroxidases, and the regulation of phytohormone signaling that promote cell wall loosening and therefore root growth under salinity.

  20. Generation and Long-term Maintenance of Nerve-free Hydra.

    PubMed

    Tran, Cassidy M; Fu, Sharon; Rowe, Trevor; Collins, Eva-Maria S

    2017-07-07

    The interstitial cell lineage of Hydra includes multipotent stem cells, and their derivatives: gland cells, nematocytes, germ cells, and nerve cells. The interstitial cells can be eliminated through two consecutive treatments with colchicine, a plant-derived toxin that kills dividing cells, thus erasing the potential for renewal of the differentiated cells that are derived from the interstitial stem cells. This allows for the generation of Hydra that lack nerve cells. A nerve-free polyp cannot open its mouth to feed, egest, or regulate osmotic pressure. Such animals, however, can survive and be cultured indefinitely in the laboratory if regularly force-fed and burped. The lack of nerve cells allows for studies of the role of the nervous system in regulating animal behavior and regeneration. Previously published protocols for nerve-free Hydra maintenance involve outdated techniques such as mouth-pipetting with hand-pulled micropipette tips to feed and clean the Hydra. Here, an improved protocol for maintenance of nerve-free Hydra is introduced. Fine-tipped forceps are used to force open the mouth and insert freshly killed Artemia. Following force-feeding, the body cavity of the animal is flushed with fresh medium using a syringe and hypodermic needle to remove undigested material, referred to here as "burping". This new method of force-feeding and burping nerve-free Hydra through the use of forceps and syringes eliminates the need for mouth-pipetting using hand-pulled micropipette tips. It thus makes the process safer and significantly more time efficient. To ensure that the nerve cells in the hypostome have been eliminated, immunohistochemistry using anti-tyrosine-tubulin is conducted.

  1. Wind-tunnel test of an articulated helicopter rotor model with several tip shapes

    NASA Technical Reports Server (NTRS)

    Berry, J. D.; Mineck, R. E.

    1980-01-01

    Six interchangeable tip shapes were tested: a square (baseline) tip, an ogee tip, a subwing tip, a swept tip, a winglet tip, and a short ogee tip. In hover at the lower rotational speeds the swept, ogee, and short ogee tips had about the same torque coefficient, and the subwing and winglet tips had a larger torque coefficient than the baseline square tip blades. The ogee and swept tip blades required less torque coefficient at lower rotational speeds and roughly equivalent torque coefficient at higher rotational speeds compared with the baseline square tip blades in forward flight. The short ogee tip required higher torque coefficient at higher lift coefficients than the baseline square tip blade in the forward flight test condition.

  2. Tipping point analysis of atmospheric oxygen concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livina, V. N.; Forbes, A. B.; Vaz Martins, T. M.

    2015-03-15

    We apply tipping point analysis to nine observational oxygen concentration records around the globe, analyse their dynamics and perform projections under possible future scenarios, leading to oxygen deficiency in the atmosphere. The analysis is based on statistical physics framework with stochastic modelling, where we represent the observed data as a composition of deterministic and stochastic components estimated from the observed data using Bayesian and wavelet techniques.

  3. An evaluation of fossil tip-dating versus node-age calibrations in tetraodontiform fishes (Teleostei: Percomorphaceae).

    PubMed

    Arcila, Dahiana; Alexander Pyron, R; Tyler, James C; Ortí, Guillermo; Betancur-R, Ricardo

    2015-01-01

    Time-calibrated phylogenies based on molecular data provide a framework for comparative studies. Calibration methods to combine fossil information with molecular phylogenies are, however, under active development, often generating disagreement about the best way to incorporate paleontological data into these analyses. This study provides an empirical comparison of the most widely used approach based on node-dating priors for relaxed clocks implemented in the programs BEAST and MrBayes, with two recently proposed improvements: one using a new fossilized birth-death process model for node dating (implemented in the program DPPDiv), and the other using a total-evidence or tip-dating method (implemented in MrBayes and BEAST). These methods are applied herein to tetraodontiform fishes, a diverse group of living and extinct taxa that features one of the most extensive fossil records among teleosts. Previous estimates of time-calibrated phylogenies of tetraodontiforms using node-dating methods reported disparate estimates for their age of origin, ranging from the late Jurassic to the early Paleocene (ca. 150-59Ma). We analyzed a comprehensive dataset with 16 loci and 210 morphological characters, including 131 taxa (95 extant and 36 fossil species) representing all families of fossil and extant tetraodontiforms, under different molecular clock calibration approaches. Results from node-dating methods produced consistently younger ages than the tip-dating approaches. The older ages inferred by tip dating imply an unlikely early-late Jurassic (ca. 185-119Ma) origin for this order and the existence of extended ghost lineages in their fossil record. Node-based methods, by contrast, produce time estimates that are more consistent with the stratigraphic record, suggesting a late Cretaceous (ca. 86-96Ma) origin. We show that the precision of clade age estimates using tip dating increases with the number of fossils analyzed and with the proximity of fossil taxa to the node under assessment. This study suggests that current implementations of tip dating may overestimate ages of divergence in calibrated phylogenies. It also provides a comprehensive phylogenetic framework for tetraodontiform systematics and future comparative studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. 75 FR 26889 - Airworthiness Directives; Arrow Falcon Exporters, Inc. (previously Utah State University) et al...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ... the forward tip weight retention block (tip block) or aft tip closure (tip closure), loss of the blade...) forward tip weight retention block (tip block) and the aft tip closure (tip closure) for adhesive bond... prevent loss of a tip block or tip closure, loss of a blade, and subsequent loss of control of the...

  5. Genome-Wide Characterization of Major Intrinsic Proteins in Four Grass Plants and Their Non-Aqua Transport Selectivity Profiles with Comparative Perspective

    PubMed Central

    Azad, Abul Kalam; Ahmed, Jahed; Alum, Md. Asraful; Hasan, Md. Mahbub; Ishikawa, Takahiro; Sawa, Yoshihiro; Katsuhara, Maki

    2016-01-01

    Major intrinsic proteins (MIPs), commonly known as aquaporins, transport not only water in plants but also other substrates of physiological significance and heavy metals. In most of the higher plants, MIPs are divided into five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs). Herein, we identified 68, 42, 38 and 28 full-length MIPs, respectively in the genomes of four monocot grass plants, specifically Panicum virgatum, Setaria italica, Sorghum bicolor and Brachypodium distachyon. Phylogenetic analysis showed that the grass plants had only four MIP subfamilies including PIPs, TIPs, NIPs and SIPs without XIPs. Based on structural analysis of the homology models and comparing the primary selectivity-related motifs [two NPA regions, aromatic/arginine (ar/R) selectivity filter and Froger's positions (FPs)] of all plant MIPs that have been experimentally proven to transport non-aqua substrates, we predicted the transport profiles of all MIPs in the four grass plants and also in eight other plants. Groups of MIP subfamilies based on ar/R selectivity filter and FPs were linked to the non-aqua transport profiles. We further deciphered the substrate selectivity profiles of the MIPs in the four grass plants and compared them with their counterparts in rice, maize, soybean, poplar, cotton, Arabidopsis thaliana, Physcomitrella patens and Selaginella moellendorffii. In addition to two NPA regions, ar/R filter and FPs, certain residues, especially in loops B and C, contribute to the functional distinctiveness of MIP groups. Expression analysis of transcripts in different organs indicated that non-aqua transport was related to expression of MIPs since most of the unexpressed MIPs were not predicted to facilitate the transport of non-aqua molecules. Among all MIPs in every plant, TIP (BdTIP1;1, SiTIP1;2, SbTIP2;1 and PvTIP1;2) had the overall highest mean expression. Our study generates significant information for understanding the diversity, evolution, non-aqua transport profiles and insight into comparative transport selectivity of plant MIPs, and provides tools for the development of transgenic plants. PMID:27327960

  6. Information extraction from FN plots of tungsten microemitters.

    PubMed

    Mussa, Khalil O; Mousa, Marwan S; Fischer, Andreas

    2013-09-01

    Tungsten based microemitter tips have been prepared both clean and coated with dielectric materials. For clean tungsten tips, apex radii have been varied ranging from 25 to 500 nm. These tips were manufactured by electrochemical etching a 0.1 mm diameter high purity (99.95%) tungsten wire at the meniscus of two molar NaOH solution. Composite micro-emitters considered here are consisting of a tungsten core coated with different dielectric materials-such as magnesium oxide (MgO), sodium hydroxide (NaOH), tetracyanoethylene (TCNE), and zinc oxide (ZnO). It is worthwhile noting here, that the rather unconventional NaOH coating has shown several interesting properties. Various properties of these emitters were measured including current-voltage (IV) characteristics and the physical shape of the tips. A conventional field emission microscope (FEM) with a tip (cathode)-screen (anode) separation standardized at 10 mm was used to electrically characterize the electron emitters. The system was evacuated down to a base pressure of ∼10(-8) mbar when baked at up to ∼180 °C overnight. This allowed measurements of typical field electron emission (FE) characteristics, namely the IV characteristics and the emission images on a conductive phosphorus screen (the anode). Mechanical characterization has been performed through a FEI scanning electron microscope (SEM). Within this work, the mentioned experimental results are connected to the theory for analyzing Fowler-Nordheim (FN) plots. We compared and evaluated the data extracted from clean tungsten tips of different radii and determined deviations between the results of different extraction methods applied. In particular, we derived the apex radii of several clean and coated tungsten tips by both SEM imaging and analyzing FN plots. The aim of this analysis is to support the ongoing discussion on recently developed improvements of the theory for analyzing FN plots related to metal field electron emitters, which in particular introduces a new form of intercept correction factors. The results derived demonstrate the applicability of the applied method on needle shaped - i.e. non planar - emitters as well as its limits. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Genome-Wide Characterization of Major Intrinsic Proteins in Four Grass Plants and Their Non-Aqua Transport Selectivity Profiles with Comparative Perspective.

    PubMed

    Azad, Abul Kalam; Ahmed, Jahed; Alum, Md Asraful; Hasan, Md Mahbub; Ishikawa, Takahiro; Sawa, Yoshihiro; Katsuhara, Maki

    2016-01-01

    Major intrinsic proteins (MIPs), commonly known as aquaporins, transport not only water in plants but also other substrates of physiological significance and heavy metals. In most of the higher plants, MIPs are divided into five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs). Herein, we identified 68, 42, 38 and 28 full-length MIPs, respectively in the genomes of four monocot grass plants, specifically Panicum virgatum, Setaria italica, Sorghum bicolor and Brachypodium distachyon. Phylogenetic analysis showed that the grass plants had only four MIP subfamilies including PIPs, TIPs, NIPs and SIPs without XIPs. Based on structural analysis of the homology models and comparing the primary selectivity-related motifs [two NPA regions, aromatic/arginine (ar/R) selectivity filter and Froger's positions (FPs)] of all plant MIPs that have been experimentally proven to transport non-aqua substrates, we predicted the transport profiles of all MIPs in the four grass plants and also in eight other plants. Groups of MIP subfamilies based on ar/R selectivity filter and FPs were linked to the non-aqua transport profiles. We further deciphered the substrate selectivity profiles of the MIPs in the four grass plants and compared them with their counterparts in rice, maize, soybean, poplar, cotton, Arabidopsis thaliana, Physcomitrella patens and Selaginella moellendorffii. In addition to two NPA regions, ar/R filter and FPs, certain residues, especially in loops B and C, contribute to the functional distinctiveness of MIP groups. Expression analysis of transcripts in different organs indicated that non-aqua transport was related to expression of MIPs since most of the unexpressed MIPs were not predicted to facilitate the transport of non-aqua molecules. Among all MIPs in every plant, TIP (BdTIP1;1, SiTIP1;2, SbTIP2;1 and PvTIP1;2) had the overall highest mean expression. Our study generates significant information for understanding the diversity, evolution, non-aqua transport profiles and insight into comparative transport selectivity of plant MIPs, and provides tools for the development of transgenic plants.

  8. Host-Specialist Dominated Ectomycorrhizal Communities of Pinus cembra are not Affected by Temperature Manipulation

    PubMed Central

    Rainer, Georg; Kuhnert, Regina; Unterholzer, Mara; Dresch, Philipp; Gruber, Andreas; Peintner, Ursula

    2015-01-01

    Ectomycorrhizae (EM) are important for the survival of seedlings and trees, but how they will react to global warming or changes in soil fertility is still in question. We tested the effect of soil temperature manipulation and nitrogen fertilization on EM communities in a high-altitude Pinus cembra afforestation. The trees had been inoculated in the 1960s in a nursery with a mixture of Suillus placidus, S. plorans and S. sibircus. Sampling was performed during the third year of temperature manipulation in June and October 2013. Root tips were counted, sorted into morphotypes, and sequenced. Fungal biomass was measured as ergosterol and hyphal length. The EM potential of the soil was assessed with internal transcribed spacers (ITS) clone libraries from in-growth mesh bags (MB). Temperature manipulation of ± 1 °C had no effect on the EM community. A total of 33 operational taxonomic units (OTUs) were identified, 20 from the roots, 13 from MB. The inoculated Suillus spp. colonized 82% of the root tips, thus demonstrating that the inoculation was sustainable. Nitrogen fertilization had no impact on the EM community, but promoted depletion in soil organic matter, and caused a reduction in soil fungal biomass. PMID:29376899

  9. The past, present and future distribution of a deep-sea shrimp in the Southern Ocean

    PubMed Central

    Costello, Mark J.

    2016-01-01

    Shrimps have a widespread distribution across the shelf, slope and seamount regions of the Southern Ocean. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity and adaptability in response to environmental change. We use species distribution models to predict changes in the geographic range of the deep-sea Antarctic shrimp Nematocarcinus lanceopes under changing climatic conditions from the Last Glacial Maximum to the present and to the year 2100. The present distribution range indicates a pole-ward shift of the shrimp population since the last glaciation. This occurred by colonization of slopes from nearby refugia located around the northern part of Scotia Arc, southern tip of South America, South Georgia, Bouvet Island, southern tip of the Campbell plateau and Kerguelen plateau. By 2100, the shrimp are likely to expand their distribution in east Antarctica but have a continued pole-ward contraction in west Antarctica. The range extension and contraction process followed by the deep-sea shrimp provide a geographic context of how other deep-sea Antarctic species may have survived during the last glaciation and may endure with projected changing climatic conditions in the future. PMID:26925334

  10. The past, present and future distribution of a deep-sea shrimp in the Southern Ocean.

    PubMed

    Basher, Zeenatul; Costello, Mark J

    2016-01-01

    Shrimps have a widespread distribution across the shelf, slope and seamount regions of the Southern Ocean. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity and adaptability in response to environmental change. We use species distribution models to predict changes in the geographic range of the deep-sea Antarctic shrimp Nematocarcinus lanceopes under changing climatic conditions from the Last Glacial Maximum to the present and to the year 2100. The present distribution range indicates a pole-ward shift of the shrimp population since the last glaciation. This occurred by colonization of slopes from nearby refugia located around the northern part of Scotia Arc, southern tip of South America, South Georgia, Bouvet Island, southern tip of the Campbell plateau and Kerguelen plateau. By 2100, the shrimp are likely to expand their distribution in east Antarctica but have a continued pole-ward contraction in west Antarctica. The range extension and contraction process followed by the deep-sea shrimp provide a geographic context of how other deep-sea Antarctic species may have survived during the last glaciation and may endure with projected changing climatic conditions in the future.

  11. Autophagy and self-preservation: a step ahead from cell plasticity?

    PubMed

    Galliot, Brigitte

    2006-01-01

    Silencing the SPINK-related gene Kazal1 in hydra gland cells induces an excessive autophagy of both gland and digestive cells, leading to animal death. Moreover, during regeneration, autophagosomes are immediately detected in regenerating tips, where Kazal1 expression is lowered. When Kazal1 is completely silenced, hydra no longer survive the amputation stress (Chera S, de Rosa R, Miljkovic-Licina M, Dobretz K, Ghila L, Kaloulis K, Galliot B. Silencing of the hydra serine protease inhibitor Kazal1 gene mimics the human Spink1 pancreatic phenotype. J Cell Sci 2006; 119:846-57). These results highlight the essential digestive and cytoprotective functions played by Kazal1 in hydra. In mammals, autophagy of exocrine pancreatic cells is also induced upon SPINK1/Spink3 inactivation, whereas Spink3 is activated in injured pancreatic cells. Hence SPINKs, by preventing an excessive autophagy, appear to act as key players of the stress-induced self-preservation program. In hydra, this program is a prerequisite to the early cellular transition, whereby digestive cells of the regenerating tips transform into a head-organizer center. Enhancing the self-preservation program in injured tissues might therefore be the condition for unmasking their potential cell and/or developmental plasticity.

  12. Needle localization using a moving stylet/catheter in ultrasound-guided regional anesthesia: a feasibility study

    NASA Astrophysics Data System (ADS)

    Beigi, Parmida; Rohling, Robert

    2014-03-01

    Despite the wide range and long history of ultrasound guided needle insertions, an unresolved issue in many cases is clear needle visibility. A well-known ad hoc technique to detect the needle is to move the stylet and look for changes in the needle appearance. We present a new method to automatically locate a moving stylet/catheter within a stationary cannula using motion detection. We then use this information to detect the needle trajectory and the tip. The differences between the current frame and the previous frame are detected and localized, to minimize the influence of tissue global motions. A polynomial fit based on the detected needle axis determines the estimated stylet shaft trajectory, and the extent of the differences along the needle axis represents the tip. Over a few periodic movements of the stylet including its full insertion into the cannula to the tip, a combination of polynomial fits determines the needle trajectory and the last detected point represents the needle tip. Experiments are conducted in water bath and bovine muscle tissue for several stylet/catheter materials. Results show that a plastic stylet has the best needle shaft and tip localization accuracy in the water bath with RMSE = 0:16 mm and RMSE = 0:51 mm, respectively. In the bovine tissue, the needle tip was best localized with the plastic catheter with RMSE = 0:33 mm. The stylet tip localization was most accurate with the steel stylet, with RMSE = 2:81 mm and the shaft was best localized with the plastic catheter, with RMSE = 0:32 mm.

  13. BOREAS HYD-9 Tipping Bucket Rain Gauge Data

    NASA Technical Reports Server (NTRS)

    Kouwen, Nick; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Soulis, Ric; Jenkinson, Wayne; Graham, Allyson; Neff, Todd; Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS HYD-9 team collected several data sets containing precipitation and strearnflow measurements over the BOREAS study areas. This data set contains the measurements from the tipping bucket rain gauges at the BOREAS NSA and SSA. These measurements were submitted in 15-minute and 1-hour intervals. Only the 15-minute interval data set was loaded into the data base tables. Data were collected from the tipping bucket gauges from mid-April until mid-October in 1994, 1995, and 1996. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  14. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots.

    PubMed

    Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan

    2016-07-20

    The objective of this study was to investigate Al(3+)-induced IAA transport, distribution, and the relation of these two processes to Al(3+)-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L(-1) IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al(3+)-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al(3+) stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al(3+)-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips.

  15. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots

    PubMed Central

    Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan

    2016-01-01

    The objective of this study was to investigate Al3+-induced IAA transport, distribution, and the relation of these two processes to Al3+-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L−1 IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al3+-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al3+ stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al3+-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips. PMID:27435109

  16. Simulation of Heterogeneous Atom Probe Tip Shapes Evolution during Field Evaporation Using a Level Set Method and Different Evaporation Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijie; Li, Dongsheng; Xu, Wei

    2015-04-01

    In atom probe tomography (APT), accurate reconstruction of the spatial positions of field evaporated ions from measured detector patterns depends upon a correct understanding of the dynamic tip shape evolution and evaporation laws of component atoms. Artifacts in APT reconstructions of heterogeneous materials can be attributed to the assumption of homogeneous evaporation of all the elements in the material in addition to the assumption of a steady state hemispherical dynamic tip shape evolution. A level set method based specimen shape evolution model is developed in this study to simulate the evaporation of synthetic layered-structured APT tips. The simulation results ofmore » the shape evolution by the level set model qualitatively agree with the finite element method and the literature data using the finite difference method. The asymmetric evolving shape predicted by the level set model demonstrates the complex evaporation behavior of heterogeneous tip and the interface curvature can potentially lead to the artifacts in the APT reconstruction of such materials. Compared with other APT simulation methods, the new method provides smoother interface representation with the aid of the intrinsic sub-grid accuracy. Two evaporation models (linear and exponential evaporation laws) are implemented in the level set simulations and the effect of evaporation laws on the tip shape evolution is also presented.« less

  17. Preparation of Regular Specimens for Atom Probes

    NASA Technical Reports Server (NTRS)

    Kuhlman, Kim; Wishard, James

    2003-01-01

    A method of preparation of specimens of non-electropolishable materials for analysis by atom probes is being developed as a superior alternative to a prior method. In comparison with the prior method, the present method involves less processing time. Also, whereas the prior method yields irregularly shaped and sized specimens, the present developmental method offers the potential to prepare specimens of regular shape and size. The prior method is called the method of sharp shards because it involves crushing the material of interest and selecting microscopic sharp shards of the material for use as specimens. Each selected shard is oriented with its sharp tip facing away from the tip of a stainless-steel pin and is glued to the tip of the pin by use of silver epoxy. Then the shard is milled by use of a focused ion beam (FIB) to make the shard very thin (relative to its length) and to make its tip sharp enough for atom-probe analysis. The method of sharp shards is extremely time-consuming because the selection of shards must be performed with the help of a microscope, the shards must be positioned on the pins by use of micromanipulators, and the irregularity of size and shape necessitates many hours of FIB milling to sharpen each shard. In the present method, a flat slab of the material of interest (e.g., a polished sample of rock or a coated semiconductor wafer) is mounted in the sample holder of a dicing saw of the type conventionally used to cut individual integrated circuits out of the wafers on which they are fabricated in batches. A saw blade appropriate to the material of interest is selected. The depth of cut and the distance between successive parallel cuts is made such that what is left after the cuts is a series of thin, parallel ridges on a solid base. Then the workpiece is rotated 90 and the pattern of cuts is repeated, leaving behind a square array of square posts on the solid base. The posts can be made regular, long, and thin, as required for samples for atom-probe analysis. Because of their small volume and regularity, the amount of FIB-milling time can be much less than that of the method of sharp shards. Individual posts can be broken off for mounting in a manner similar to that of the method of sharp shards. Alternatively, the posts can be left intact on the base and the base can be cut to a small square (e.g., 3 by 3 mm) suitable for mounting in an atom probe of a type capable of accepting multiple-tip specimens. The advantage of multiple-tip specimens is the possibility of analyzing many tips without the time-consuming interchange of specimens.

  18. Influence of blade tip rounding on tip leakage vortex cavitation of axial flow pump

    NASA Astrophysics Data System (ADS)

    Wu, S. Q.; Shi, W. D.; Zhang, D. S.; Yao, J.; Cheng, C.

    2013-12-01

    Tip leakage flow in axial flow pumps is mainly caused by the tip clearance, which is the main cause of tip leakage vortex cavitation and blade tip cavitation erosion. In order to improve tip clearance flow and reduce TLV cavitation, four schemes were adopted to the round blade tip. These are: no tip rounding, one time tip clearance tip rounding, two times tip clearance tip rounding, four times tip clearance tip rounding. Using SST k-ω turbulence model and Zwart cavitation model in CFX software, this simulation obtained four kinds of inner flow field results. The numerical results indicated that with the increase of r*, NPSHc gradually increased and the cavitation performance reduced. However, corner vortex was eliminated so that cavitation in gap was restrained. But TLV vorticity increased and cavitation's range here had a little expansion. Combined with the research of this paper and the different analyses of four schemes, we recommend adopting the two times of the tip clearance rounding.

  19. Stroboscobic near-field scanning optical microscopy for 3D mapping of mode profiles of plasmonic nanostructures (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dana, Aykutlu; Ozgur, Erol; Torunoglu, Gamze

    2016-09-01

    We present a dynamic approach to scanning near field optical microscopy that extends the measurement technique to the third dimension, by strobing the illumination in sync with the cantilever oscillation. Nitrogen vacancy (NV) centers in nanodiamonds placed on cantilever tips are used as stable emitters for emission enhancement. Local field enhancement and modulation of optical density states are mapped in three dimensions based on fluorescence intensity and spectrum changes as the tip is scanned over plasmonic nanostructures. The excitation of NV centers is done using a total internal reflection setup. Using a digital phase locked loop to pulse the excitation in various tip sample separations, 2D slices of fluorescence enhancement can be recorded. Alternatively, a conventional SNOM tip can be used to selectively couple wideband excitation to the collection path, with subdiffraction resolution of 60 nm in x and y and 10 nm in z directions. The approach solves the problem of tip-sample separation stabilization over extended periods of measurement time, required to collect data resolved in emission wavelength and three spatial dimensions. The method can provide a unique way of accessing the three dimensional field and mode profiles of nanophotonics structures.

  20. Ultrastructural analysis of cell component distribution in the apical cell of Ceratodon protonemata

    NASA Technical Reports Server (NTRS)

    Walker, L. M.; Sack, F. D.

    1995-01-01

    A distinctive feature of tip-growing plant cells is that cell components are distributed differentially along the length of the cell, although most ultrastructural analyses have been qualitative. The longtitudinal distribution of cell components was studied both qualitatively and quantitatively in the apical cell of dark-grown protonemata of the moss Ceratodon. The first 35 micrometers of the apical cell was analyzed stereologically using transmission electron microscopy. There were four types of distributions along the cell's axis, three of them differential: (1) tubular endoplasmic reticulum was evenly distributed, (2) cisternal endoplasmic reticulum and Golgi vesicles were distributed in a tip-to-base gradient, (3) plastids, vacuoles, and Golgi stacks were enriched in specific areas, although the locations of the enrichments varied, and (4) mitochondria were excluded in the tip-most 5 micrometers and evenly distributed throughout the remaining 30 micrometers. This study provides one of the most comprehensive quantitative, ultrastructural analyses of the distribution of cell components in the apex of any tip-growing plant cell. The finding that almost every component had its own spatial arrangement demonstrates the complexity of the organization and regulation of the distribution of components in tip-growing cells.

  1. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roychowdhury, Anita; Center for Nanophysics and Advanced Materials, Department of Physics, University of Maryland, College Park, Maryland 20740; Gubrud, M. A.

    We describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T. We focus on the design of the two-tip STM head, as well as the sample transfer mechanism, which allows in situ transfer from an ultra high vacuum preparation chamber while the STM is at 1.5 K. Other design details such as the vibration isolation and rf-filtered wiring are also described. Their effectiveness is demonstrated viamore » spectral current noise characteristics and the root mean square roughness of atomic resolution images. The high-field capability is shown by the magnetic field dependence of the superconducting gap of Cu{sub x}Bi{sub 2}Se{sub 3}. Finally, we present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 μeV.« less

  2. Probing the effect of tip pressure on fungal growth: Application to Aspergillus nidulans

    NASA Astrophysics Data System (ADS)

    González-Bermúdez, Blanca; Li, Qingxuan; Guinea, Gustavo V.; Peñalva, Miguel A.; Plaza, Gustavo R.

    2017-08-01

    The study of fungal cells is of great interest due to their importance as pathogens and as fermenting fungi and for their appropriateness as model organisms. The differential pressure between the hyphal cytoplasm and the bordering medium is essential for the growth process, because the pressure is correlated with the growth rate. Notably, during the invasion of tissues, the external pressure at the tip of the hypha may be different from the pressure in the surrounding medium. We report the use of a method, based on the micropipette-aspiration technique, to study the influence of this external pressure at the hyphal tip. Moreover, this technique makes it possible to study hyphal growth mechanics in the case of very thin hyphae, not accessible to turgor pressure probes. We found a correlation between the local pressure at the tip and the growth rate for the species Arpergillus nidulans. Importantly, the proposed method allows one to measure the pressure at the tip required to arrest the hyphal growth. Determining that pressure could be useful to develop new medical treatments for fungal infections. Finally, we provide a mechanical model for these experiments, taking into account the cytoplasm flow and the wall deformation.

  3. Tubularized incised plate urethroplasty for hypospadias reoperation: a review and meta-analysis.

    PubMed

    Mousavi, Seyed A; Aarabi, Mohsen

    2014-01-01

    Tubularized Incised Plate (TIP) urethroplasty is a technique for urethral reconstruction of hypospadias although there are some controversies for its use in recurrent cases. The aim of this study was to review the results of TIP technique in various studies and the usage of different flaps for covering the repair site. Extensive Search was performed for articles published between 1994 and 2013 in common electronic databases. The overall TIP complication rates were estimated by a fixed effects model meta-analysis. 17 articles of hypospadia repair using the TIP method were reviewed. All studies performed surgery and repair on the basis of the Snodgrass's method; however, some introduced modifications to the method. The prevalence of complications in repeated TIP surgery was 11.1 to 33.3% and the most prevalent complication in different studies was fistula. Based on the meta-analysis, the overall estimation of complications was 21.8% (95% CI: 18.3 to 25.5). Most studies performed the incision of the urethral plate to create a supportive coverage upon neourethra, and confirmed its success. We recommend further investigation on using different flaps in well-designed randomized controlled trials to choose the best surgical method for repairing recurrent hypospadias.

  4. Bubble Departure from Metal-Graphite Composite Surfaces and Its Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Sankovic, John M.; Motil, Brian J.; Yang, W-J.; Zhang, Nengli

    2010-01-01

    The formation and growth processes of a bubble in the vicinity of graphite micro-fiber tips on metal-graphite composite boiling surfaces and their effects on boiling behavior are investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the metal matrix in pool boiling. By virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the end of the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each spanning several tips. The necking process of a detaching macro bubble is analyzed. It is revealed that a liquid jet is produced by sudden break-off of the bubble throat. The composite surfaces not only have higher temperatures in micro- and macrolayers but also make higher frequency of the bubble departure, which increase the average heat fluxes in both the bubble growth stage and in the bubble departure period. Based on these analyses, the enhancement mechanism of pool boiling heat transfer on composite surfaces is clearly revealed.

  5. In silico simulations of tunneling barrier measurements for molecular orbital-mediated junctions: A molecular orbital theory approach to scanning tunneling microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terryn, Raymond J.; Sriraman, Krishnan; Olson, Joel A., E-mail: jolson@fit.edu

    A new simulator for scanning tunneling microscopy (STM) is presented based on the linear combination of atomic orbitals molecular orbital (LCAO-MO) approximation for the effective tunneling Hamiltonian, which leads to the convolution integral when applied to the tip interaction with the sample. This approach intrinsically includes the structure of the STM tip. Through this mechanical emulation and the tip-inclusive convolution model, dI/dz images for molecular orbitals (which are closely associated with apparent barrier height, ϕ{sub ap}) are reported for the first time. For molecular adsorbates whose experimental topographic images correspond well to isolated-molecule quantum chemistry calculations, the simulator makes accuratemore » predictions, as illustrated by various cases. Distortions in these images due to the tip are shown to be in accord with those observed experimentally and predicted by other ab initio considerations of tip structure. Simulations of the tunneling current dI/dz images are in strong agreement with experiment. The theoretical framework provides a solid foundation which may be applied to LCAO cluster models of adsorbate–substrate systems, and is extendable to emulate several aspects of functional STM operation.« less

  6. Investigation of translaminar fracture in fibrereinforced composite laminates---applicability of linear elastic fracture mechanics and cohesive-zone model

    NASA Astrophysics Data System (ADS)

    Hou, Fang

    With the extensive application of fiber-reinforced composite laminates in industry, research on the fracture mechanisms of this type of materials have drawn more and more attentions. A variety of fracture theories and models have been developed. Among them, the linear elastic fracture mechanics (LEFM) and cohesive-zone model (CZM) are two widely-accepted fracture models, which have already shown applicability in the fracture analysis of fiber-reinforced composite laminates. However, there remain challenges which prevent further applications of the two fracture models, such as the experimental measurement of fracture resistance. This dissertation primarily focused on the study of the applicability of LEFM and CZM for the fracture analysis of translaminar fracture in fibre-reinforced composite laminates. The research for each fracture model consisted of two sections: the analytical characterization of crack-tip fields and the experimental measurement of fracture resistance parameters. In the study of LEFM, an experimental investigation based on full-field crack-tip displacement measurements was carried out as a way to characterize the subcritical and steady-state crack advances in translaminar fracture of fiber-reinforced composite laminates. Here, the fiber-reinforced composite laminates were approximated as anisotropic solids. The experimental investigation relied on the LEFM theory with a modification with respect to the material anisotropy. Firstly, the full-field crack-tip displacement fields were measured by Digital Image Correlation (DIC). Then two methods, separately based on the stress intensity approach and the energy approach, were developed to measure the crack-tip field parameters from crack-tip displacement fields. The studied crack-tip field parameters included the stress intensity factor, energy release rate and effective crack length. Moreover, the crack-growth resistance curves (R-curves) were constructed with the measured crack-tip field parameters. In addition, an error analysis was carried out with an emphasis on the influence of out-of-plane rotation of specimen. In the study of CZM, two analytical inverse methods, namely the field projection method (FPM) and the separable nonlinear least-squares method, were developed for the extraction of cohesive fracture properties from crack-tip full-field displacements. Firstly, analytical characterizations of the elastic fields around a crack-tip cohesive zone and the cohesive variables within the cohesive zone were derived in terms of an eigenfunction expansion. Then both of the inverse methods were developed based on the analytical characterization. With the analytical inverse methods, the cohesive-zone law (CZL), cohesive-zone size and position can be inversely computed from the cohesive-crack-tip displacement fields. In the study, comprehensive numerical tests were carried out to investigate the applicability and robustness of two inverse methods. From the numerical tests, it was found that the field projection method was very sensitive to noise and thus had limited applicability in practice. On the other hand, the separable nonlinear least-squares method was found to be more noise-resistant and less ill-conditioned. Subsequently, the applicability of separable nonlinear least-squares method was validated with the same translaminar fracture experiment for the study of LEFM. Eventually, it was found that the experimental measurements of R-curves and CZL showed a great agreement, in both of the fracture energy and the predicted load carrying capability. It thus demonstrated the validity of present research for the translaminar fracture of fiber-reinforced composite laminates.

  7. Imaging of implant needles for real-time HDR-brachytherapy prostate treatment using biplane ultrasound transducers.

    PubMed

    Siebert, Frank-André; Hirt, Markus; Niehoff, Peter; Kovács, György

    2009-08-01

    Ultrasound imaging is becoming increasingly important in prostate brachytherapy. In high-dose-rate (HDR) real-time planning procedures the definition of the implant needles is often performed by transrectal ultrasound. This article describes absolute measurements of the visibility and accuracy of manual detection of implant needle tips and compares measurement results of different biplane ultrasound systems in transversal and longitudinal (i.e., sagittal) ultrasound modes. To obtain a fixed coordinate system and stable conditions the measurements were carried out in a water tank using a dedicated marker system. Needles were manually placed in the phantom until the observer decided by the real-time ultrasound image that the zero position was reached. A comparison of three different ultrasound systems yielded an offset between 0.8 and 3.1 mm for manual detection of the needle tip in ultrasound images by one observer. The direction of the offset was discovered to be in the proximal direction, i.e., the actual needle position was located more distally compared to the ultrasound-based definition. In the second part of the study, the ultrasound anisotropy of trocar implant needles is reported. It was shown that the integrated optical density in a region of interest around the needle tip changes with needle rotation. Three peaks were observed with a phase angle of 120 degrees. Peaks appear not only in transversal but also in longitudinal ultrasound images, with a phase shift of 60 degrees. The third section of this study shows results of observer dependent influences on needle tip detection in sagittal ultrasound images considering needle rotation. These experiments were carried out using the marker system in a water tank. The needle tip was placed exactly at the position z=0 mm. It was found that different users tend to differently interpret the same ultrasound images. The needle tip was manually detected five times in the ultrasound images by three experienced observers at positions (+/- standard deviation) -0.53 +/- 0.16, -0.16 +/- 0.14, and -0.30 +/- 0.16 mm using a gain of 15 dB. The minus sign indicates that the needle tips were detected more proximally than the actual position of the needle tip. When using a gain of -15 dB the mean values of two observers resulted in -0.62 +/- 0.08 and -0.51 +/- 0.12 mm. Additionally an alternative approach to the direct needle tip definition was investigated. Two observers detected the solid part of the needle tip in sagittal images. This solid part, often named as "dead space end," is the distance between the needle tip and the beginning of the hollow part of the implant needle. The dead space end is 6.2 mm for the investigated needle type. Two users found mean values of -6.70 +/- 0.16 and -7.00 +/- 0.06 mm, respectively, for 15 dB gain and -6.90 +/- 0.09 and -7.02 +/- 0.06 mm using the -15 dB gain setting. The results show that ultrasound-based needle tip definition in sagittal viewing mode is accurate. The inter- and intraobserver errors should, however, be taken into account. A lower gain setting of the ultrasound system reduces the intraobserver error.

  8. Determination of Villous Rigidity in the Distal Ileum of the Possum (Trichosurus vulpecula)

    PubMed Central

    Lim, Yuen Feung; Lentle, Roger G.; Janssen, Patrick W. M.; Williams, Martin A. K.; de Loubens, Clément; Mansel, Bradley W.; Chambers, Paul

    2014-01-01

    We investigated the passive mechanical properties of villi in ex vivo preparations of sections of the wall of the distal ileum from the brushtail possum (Trichosurus vulpecula) by using a flow cell to impose physiological and supra-physiological levels of shear stress on the tips of villi. We directly determined the stress applied from the magnitude of the local velocities in the stress inducing flow and additionally mapped the patterns of flow around isolated villi by tracking the trajectories of introduced 3 µm microbeads with bright field micro particle image velocimetry (mPIV). Ileal villi were relatively rigid along their entire length (mean 550 µm), and exhibited no noticeable bending even at flow rates that exceeded calculated normal physiological shear stress (>0.5 mPa). However, movement of villus tips indicated that the whole rigid structure of a villus could pivot about the base, likely from laxity at the point of union of the villous shaft with the underlying mucosa. Flow moved upward toward the tip on the upper portions of isolated villi on the surface facing the flow and downward toward the base on the downstream surface. The fluid in sites at distances greater than 150 µm below the villous tips was virtually stagnant indicating that significant convective mixing in the lower intervillous spaces was unlikely. Together the findings indicate that mixing and absorption is likely to be confined to the tips of villi under conditions where the villi and intestinal wall are immobile and is unlikely to be greatly augmented by passive bending of the shafts of villi. PMID:24956476

  9. An open design microfabricated nib-like nanoelectrospray emitter tip on a conducting silicon substrate for the application of the ionization voltage.

    PubMed

    Le Gac, Séverine; Rolando, Christian; Arscott, Steve

    2006-01-01

    This paper describes a novel emitter tip having the shape of a nib and based on an open structure for nano-electrospray ionization mass spectrometry (nanoESI-MS). The nib structure is fabricated with standard lithography techniques using SU-8, an epoxy-based negative photoresist. The tip is comprised of a reservoir, a capillary slot and a point-like feature, and is fabricated on a silicon wafer. We present here a novel scheme for interfacing such nib tips to MS by applying the ionization voltage directly onto the semi-conductor support. The silicon support is in direct contact with the liquid to be analyzed at the reservoir and microchannel level, thus allowing easy use in ESI-MS. This scheme is especially advantageous for automated analysis as the manual step of positioning a metallic wire into the reservoir is avoided. In addition, the analysis performance was enhanced compared with the former scheme, as demonstrated by the tests of standard peptides (gramicidin S, Glu-fibrinopeptide B). The limit of detection was determined to be lower than 10(-2) microM. Due to their enhanced performance, these microfabricated sources might be of great interest for analysis requiring very high sensitivity, such as proteomics analysis using nanoESI-MS.

  10. AC Electroosmotic Pumping in Nanofluidic Funnels.

    PubMed

    Kneller, Andrew R; Haywood, Daniel G; Jacobson, Stephen C

    2016-06-21

    We report efficient pumping of fluids through nanofluidic funnels when a symmetric AC waveform is applied. The asymmetric geometry of the nanofluidic funnel induces not only ion current rectification but also electroosmotic flow rectification. In the base-to-tip direction, the funnel exhibits a lower ion conductance and a higher electroosmotic flow velocity, whereas, in the tip-to-base direction, the funnel has a higher ion conductance and a lower electroosmotic flow velocity. Consequently, symmetric AC waveforms easily pump fluid through the nanofunnels over a range of frequencies, e.g., 5 Hz to 5 kHz. In our experiments, the nanofunnels were milled into glass substrates with a focused ion beam (FIB) instrument, and the funnel design had a constant 5° taper with aspect ratios (funnel tip width to funnel depth) of 0.1 to 1.0. We tracked ion current rectification by current-voltage (I-V) response and electroosmotic flow rectification by transport of a zwitterionic fluorescent probe. Rectification of ion current and electroosmotic flow increased with increasing electric field applied to the nanofunnel. Our results support three-dimensional simulations of ion transport and electroosmotic transport through nanofunnels, which suggest the asymmetric electroosmotic transport stems from an induced pressure at the junction of the nanochannel and nanofunnel tip.

  11. The Power of Reflective Professional Development in Changing Elementary School Teachers' Instructional Practices

    NASA Astrophysics Data System (ADS)

    Cavedon, Carolina Christmann

    With the new goal of K-12 education being to prepare students to be college and career ready at the end of high school, education needs to start changing at the elementary school level. The literature suggests that teachers need reflective professional development (PD) to effectively teach to the new standards and to demonstrate change to their current instructional practices. This mixed-method multiple-case study investigated the impacts of a reflective professional development (PD) in changing elementary school teachers' instructional practices. Teachers Instructional Portfolios (TIPs) were scored with a TIP rubric based on best practices in teaching mathematics problem-solving and science inquiry. The TIPs were also analyzed with a qualitative coding scheme. Case descriptions were written and all the collected data were used to explain the impacts of the reflective PD on changes in teachers' instructional practices. While we found no predictive patterns in relation to teachers changing their classroom practices based on the reflective PD, we claim that teachers' desire to change might contribute to improvements in instruction. We also observed that teachers' self-assessment scores tend to be higher than the actual TIP scores corroborating with the literature on the usage of self-assessment to evaluate teachers' instructional practices.

  12. Bandlike Transport in Ferroelectric-Based Organic Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Laudari, A.; Guha, S.

    2016-10-01

    The dielectric constant of polymer-ferroelectric dielectrics may be tuned by changing the temperature, offering a platform for monitoring changes in interfacial transport with the polarization strength in organic field-effect transistors (FETs). Temperature-dependent transport studies of FETs are carried out from a solution-processed organic semiconductor, 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), using both ferroelectric- and nonferroelectric-gate insulators. Nonferroelectric dielectric-based TIPS-pentacene FETs show a clear activated transport, in contrast to the ferroelectric dielectric polymer, poly(vinylidene fluoride-trifluoroethylene), where a negative temperature coefficient of the mobility is observed in the ferroelectric temperature range. The current-voltage (I -V ) characteristics from TIPS-pentacene diodes signal a space-charge-limited conduction (SCLC) for a discrete set of trap levels, suggesting that charge injection and transport occurs through regions of ordering in the semiconductor. The carrier mobility extracted from temperature-dependent I -V characteristics from the trap-free SCLC region shows a negative coefficient beyond 200 K, similar to the trend observed in FETs with the ferroelectric dielectric. At moderate temperatures, the polarization-fluctuation-dominant transport inherent in a ferroelectric dielectric, in conjunction with the nature of traps, results in an effective detrapping of the shallow-trap states into more mobile states in TIPS-pentacene.

  13. Aeroelasticity and structural optimization of composite helicopter rotor blades with swept tips

    NASA Technical Reports Server (NTRS)

    Yuan, K. A.; Friedmann, P. P.

    1995-01-01

    This report describes the development of an aeroelastic analysis capability for composite helicopter rotor blades with straight and swept tips, and its application to the simulation of helicopter vibration reduction through structural optimization. A new aeroelastic model is developed in this study which is suitable for composite rotor blades with swept tips in hover and in forward flight. The hingeless blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. Arbitrary cross-sectional shape, generally anisotropic material behavior, transverse shears and out-of-plane warping are included in the blade model. The nonlinear equations of motion, derived using Hamilton's principle, are based on a moderate deflection theory. Composite blade cross-sectbnal properties are calculated by a separate linear, two-dimensional cross section analysis. The aerodynamic loads are obtained from quasi-steady, incompressible aerodynamics, based on an implicit formulation. The trim and steady state blade aeroelastic response are solved in a fully coupled manner. In forward flight, where the blade equations of motion are periodic, the coupled trim-aeroelastic response solution is obtained from the harmonic balance method. Subsequently, the periodic system is linearized about the steady state response, and its stability is determined from Floquet theory.

  14. Impact of tip-gap size and periodicity on turbulent transition

    NASA Astrophysics Data System (ADS)

    Pogorelov, Alexej; Meinke, Matthias; Schroeder, Wolfgang

    2015-11-01

    Large-Eddy Simulations of the flow field in an axial fan are performed at a Reynolds number of 936.000 based on the diameter and the rotational speed of the casing wall. A finite-volume flow solver based on a conservative Cartesian cut-cell method is used to solve the unsteady compressible Navier-Stokes equations. Computations are performed at a flow rate coefficient of 0.165 and a tip-gap size of s/D =0.01, for a 72 degrees fan section resolving only one out of five blades and a full fan resolving all five blades to investigate the impact of the periodic boundary condition. Furthermore, a grid convergence study is performed using four computational grids. Results of the flow field are analyzed for the computational grid with 1 billion cells. An interaction of the turbulent wake, generated by the tip-gap vortex, with the downstream blade, is observed, which leads to a cyclic transition with high pressure fluctuations on the suction side of the blade. Two dominant frequencies are identified which perfectly match with the characteristic frequencies in the experimental sound power level such that their physical origin is explained. A variation of the tip-gap size alters the transition on the suction side, i.e., no cyclic transition is observed.

  15. Spline-based Rayleigh-Ritz methods for the approximation of the natural modes of vibration for flexible beams with tip bodies

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1985-01-01

    Rayleigh-Ritz methods for the approximation of the natural modes for a class of vibration problems involving flexible beams with tip bodies using subspaces of piecewise polynomial spline functions are developed. An abstract operator theoretic formulation of the eigenvalue problem is derived and spectral properties investigated. The existing theory for spline-based Rayleigh-Ritz methods applied to elliptic differential operators and the approximation properties of interpolatory splines are useed to argue convergence and establish rates of convergence. An example and numerical results are discussed.

  16. Fabry-Perot interferometer fiber tip sensor based on a glass microsphere glued at the etched end of multimode fiber

    NASA Astrophysics Data System (ADS)

    Chen, Weiping P.; Wang, Dongning N.; Xu, Ben; Wang, Zhaokun K.; Zhao, Chun-Liu

    2017-05-01

    We demonstrate an optical Fabry-Perot interferometer fiber tip sensor based on a glass microsphere glued at the etched end of a multimode fiber. The fiber device is miniature and robust, with a convenient reflection mode of operation, a high temperature sensitivity of 202.6 pm/°C within the range from 5°C to 90°C, a good refractive index sensitivity of ˜119 nm/RIU within the range from 1.331 to 1.38, and a gas pressure sensitivity of 0.19 dB/MPa.

  17. Visual tracking of da Vinci instruments for laparoscopic surgery

    NASA Astrophysics Data System (ADS)

    Speidel, S.; Kuhn, E.; Bodenstedt, S.; Röhl, S.; Kenngott, H.; Müller-Stich, B.; Dillmann, R.

    2014-03-01

    Intraoperative tracking of laparoscopic instruments is a prerequisite to realize further assistance functions. Since endoscopic images are always available, this sensor input can be used to localize the instruments without special devices or robot kinematics. In this paper, we present an image-based markerless 3D tracking of different da Vinci instruments in near real-time without an explicit model. The method is based on different visual cues to segment the instrument tip, calculates a tip point and uses a multiple object particle filter for tracking. The accuracy and robustness is evaluated with in vivo data.

  18. An experimental investigation of free-tip response to a jet

    NASA Technical Reports Server (NTRS)

    Young, L. A.

    1986-01-01

    The aerodynamic response of passively oscillating tips appended to a model helicopter rotor was investigated during a whirl test. Tip responsiveness was found to meet free-tip rotor requirements. Experimental and analytical estimates of the free-tip aerodynamic spring, mechanical spring, and aerodynamic damping were calculated and compared. The free tips were analytically demonstrated to be operating outside the tip resonant response region at full-scale tip speeds. Further, tip resonance was shown to be independent of tip speed, given the assumption that the tip forcing frequency is linearly dependent upon the rotor rotational speed.

  19. Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor

    NASA Astrophysics Data System (ADS)

    Zhao, Liyuan; Wang, Yan; Yuan, Yonggui; Liu, Yongjun; Liu, Shuangqiang; Sun, Weimin; Yang, Jun; Li, Hanyang

    2017-11-01

    We developed a tunable whispering gallery mode (WGM) microlaser based on dye-doped cholesteric liquid crystal (CLC) microdroplets with controllable size in an aqueous environment. An individual dye-doped CLC microdroplet confined at the tip of a microcapillary was optically pumped via a tapered optical fiber tip positioned within its vicinity. Numerical simulations and various spectral characteristics verify the WGM resonance of the lasing in microdroplets. Thermal tuning of the lasing modes is realized due to the thermo-optic effect of CLC. The proposed CLC microdroplet-based WGM resonator was applied as a temperature sensor and exhibited maximum temperature sensitivity up to 0.96 nm/°C.

  20. Note: High-speed Z tip scanner with screw cantilever holding mechanism for atomic-resolution atomic force microscopy in liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reza Akrami, Seyed Mohammad; Miyata, Kazuki; Asakawa, Hitoshi

    High-speed atomic force microscopy has attracted much attention due to its unique capability of visualizing nanoscale dynamic processes at a solid/liquid interface. However, its usability and resolution have yet to be improved. As one of the solutions for this issue, here we present a design of a high-speed Z-tip scanner with screw holding mechanism. We perform detailed comparison between designs with different actuator size and screw arrangement by finite element analysis. Based on the design giving the best performance, we have developed a Z tip scanner and measured its performance. The measured frequency response of the scanner shows a flatmore » response up to ∼10 kHz. This high frequency response allows us to achieve wideband tip-sample distance regulation. We demonstrate the applicability of the scanner to high-speed atomic-resolution imaging by visualizing atomic-scale calcite crystal dissolution process in water at 2 s/frame.« less

  1. Resonant antenna probes for tip-enhanced infrared near-field microscopy.

    PubMed

    Huth, Florian; Chuvilin, Andrey; Schnell, Martin; Amenabar, Iban; Krutokhvostov, Roman; Lopatin, Sergei; Hillenbrand, Rainer

    2013-03-13

    We report the development of infrared-resonant antenna probes for tip-enhanced optical microscopy. We employ focused-ion-beam machining to fabricate high-aspect ratio gold cones, which replace the standard tip of a commercial Si-based atomic force microscopy cantilever. Calculations show large field enhancements at the tip apex due to geometrical antenna resonances in the cones, which can be precisely tuned throughout a broad spectral range from visible to terahertz frequencies by adjusting the cone length. Spectroscopic analysis of these probes by electron energy loss spectroscopy, Fourier transform infrared spectroscopy, and Fourier transform infrared near-field spectroscopy corroborates their functionality as resonant antennas and verifies the broad tunability. By employing the novel probes in a scattering-type near-field microscope and imaging a single tobacco mosaic virus (TMV), we experimentally demonstrate high-performance mid-infrared nanoimaging of molecular absorption. Our probes offer excellent perspectives for optical nanoimaging and nanospectroscopy, pushing the detection and resolution limits in many applications, including nanoscale infrared mapping of organic, molecular, and biological materials, nanocomposites, or nanodevices.

  2. Mechanical manipulation of magnetic nanoparticles by magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jinyun; Zhang, Wenxiao; Li, Yiquan; Zhu, Hanxing; Qiu, Renxi; Song, Zhengxun; Wang, Zuobin; Li, Dayou

    2017-12-01

    A method has been developed in this work for the mechanical manipulation of magnetic nanoparticles (MNPs). A helical curve was designed as the capture path to pick up and remove the target nanoparticle on a mica surface by a magnetic probe based on the magnetic force microscope (MFM). There were magnetic, tangential and pushing forces acting on the target particle during the approaching process when the tip followed the helical curve as the capture path. The magnetic force was significant when the tip was closer to the particle. The target particle can be attached on the surface of the magnetic probe tip and then be picked up after the tip retracted from the mica surface. Theoretical analysis and experimental results were presented for the pick-up and removal of MNPs. With this method, the precision and flexibility of manipulation of MNPs were improved significantly compared to the pushing or sliding of the target object away from the corresponding original location following a planned path.

  3. The effect of tip vortex structure on helicopter noise due to blade/vortex interaction

    NASA Technical Reports Server (NTRS)

    Wolf, T. L.; Widnall, S. E.

    1978-01-01

    A potential cause of helicopter impulsive noise, commonly called blade slap, is the unsteady lift fluctuation on a rotor blade due to interaction with the vortex trailed from another blade. The relationship between vortex structure and the intensity of the acoustic signal is investigated. The analysis is based on a theoretical model for blade/vortex interaction. Unsteady lift on the blades due to blade/vortex interaction is calculated using linear unsteady aerodynamic theory, and expressions are derived for the directivity, frequency spectrum, and transient signal of the radiated noise. An inviscid rollup model is used to calculate the velocity profile in the trailing vortex from the spanwise distribution of blade tip loading. A few cases of tip loading are investigated, and numerical results are presented for the unsteady lift and acoustic signal due to blade/vortex interaction. The intensity of the acoustic signal is shown to be quite sensitive to changes in tip vortex structure.

  4. Optimisation of readout performance of phase-change probe memory in terms of capping layer and probe tip

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wright, C. David; Aziz, Mustafa. M.; Yang, Ci Hui; Yang, Guo Wei

    2014-11-01

    The capping layer and the probe tip that serve as the protective layer and the recording tool, respectively, for phase-change probe memory play an important role on the writing performance of phase-change probe memory, thus receiving considerable attention. On the other hand, their influence on the readout performance of phasechange probe memory has rarely been reported before. A three-dimensional parametric study based on the Laplace equation was therefore conducted to investigate the effect of the capping layer and the probe tip on the resulting reading contrast for the two cases of reading a crystalline bit from an amorphous matrix and reading an amorphous bit from a crystalline matrix. The results indicated that a capping layer with a thickness of 2 nm and an electrical conductivity of 50 Ω-1m-1 is able to provide an appropriate reading contrast for both the cases, while satisfying the previous writing requirement, particularly with the assistance of a platinum silicide probe tip.

  5. Novel fiber optic tip designs and devices for laser surgery

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas Clifton

    Fiber optic delivery of laser energy has been used for years in various types of surgical procedures in the human body. Optical energy provides several benefits over electrical or mechanical surgery, including the ability to selectively target specific tissue types while preserving others. Specialty fiber optic tips have also been introduced to further customize delivery of laser energy to the tissue. Recent evolution in lasers and miniaturization has opened up opportunities for many novel surgical techniques. Currently, ophthalmic surgeons use relatively invasive mechanical tools to dissect retinal deposits which occur in proliferative diabetic retinopathy. By using the tight focusing properties of microspheres combined with the short optical penetration depth of the Erbium:YAG laser and mid-IR fiber delivery, a precise laser scalpel can be constructed as an alternative, less invasive and more precise approach to this surgery. Chains of microspheres may allow for a self limiting ablation depth of approximately 10 microm based on the defocusing of paraxial rays. The microsphere laser scalpel may also be integrated with other surgical instruments to reduce the total number of handpieces for the surgeon. In current clinical laser lithotripsy procedures, poor input coupling of the Holmium:YAG laser energy frequently damages and requires discarding of the optical fiber. However, recent stone ablation studies with the Thulium fiber laser have provided comparable results to the Ho:YAG laser. The improved spatial beam profile of the Thulium fiber laser can also be efficiently coupled into a fiber approximately one third the diameter and reduces the risk of damaging the fiber input. For this reason, the trunk optical fiber minus the distal fiber tip can be preserved between procedures. The distal fiber tip, which degrades during stone ablation, could be made detachable and disposable. A novel, low-profile, twist-locking, detachable distal fiber tip interface was designed, assembled, and tested for use in Thulium fiber laser lithotripsy. A 1.00-mm-outer-diameter detachable fiber tip interface was designed, constructed, and tested ex vivo on urinary stones in the laboratory. Similar stone ablation rates between the previously studied tapered distal fiber tip and the detachable fiber tip were measured. For urologists desiring faster TFL lithotripsy procedures, the incorporation of detachable distal fiber tips allows for rapid replacement of damaged fiber tips without concern about the laser to trunk fiber connection. This method for preserving the trunk fiber could be a motivation for integrating a dedicated laser fiber into the ureteroscope, with detachable distal tips, thus freeing the working channel for the use of other surgical instruments. During laser lithotripsy, distal fiber tip degradation increases as the fiber core diameter decreases. However, smaller fiber diameters (≤ 200 microm) are more desirable because of increased saline irrigation rates in the single working channel of the ureteroscope and less impact on ureteroscope deflection. A hollow fiber cap is proposed to reduced fiber tip degradation in small diameter fibers, without compromising stone ablation rates. The disadvantage of the hollow fiber tip observed in the study is the increase in stone retropulsion. However, integrating the hollow fiber tip with a clinically used stone basket may allow for a robust stone ablation instrument that also minimizes retropulsion. These surgical approaches involving novel specialty fiber optic tip designs are discussed in this thesis.

  6. Vibration measurement by atomic force microscopy with laser readout

    NASA Astrophysics Data System (ADS)

    Snitka, Valentinas J.; Mizariene, Vida; Kalinauskas, Margiris; Lucinskas, Paulius

    1998-06-01

    Micromachined cantilever beams are widely used for different microengineering and nanotechnology actuators and sensors applications. The micromechanical cantilever tip-based data storage devices with reading real data at the rates exceeding 1Mbit/s have been demonstrated. The vibrational noise spectrum of a cantilever limits the data storage resolution. Therefore the possibility to measure the microvibrations and acoustic fields in different micromachined devices are of great interest. We describe a method to study a micromechanical cantilever and surface vibrations based on laser beam deflection measurements. The influence of piezoelectric plate vibrations and the tip- surface contact condition on the cantilever vibrations were investigated in the frequency range of 1-200 kHz. The experiments were performed using the measurement results. The V-shaped cantilevers exited by the normal vibrations due to the non-linearity at the tip-surface contact vibrates with a complex motion and has a lateral vibration mode coupled with normal vibration mode. The possibility to use laser deflection technique for the vibration measurements in micromachined structures with nano resolution is shown.

  7. Monolithic methacrylate packed 96-tips for high throughput bioanalysis.

    PubMed

    Altun, Zeki; Skoglund, Christina; Abdel-Rehim, Mohamed

    2010-04-16

    In the pharmaceutical industry the growing number of samples to be analyzed requires high throughput and fully automated analytical techniques. Commonly used sample-preparation methods are solid-phase extraction (SPE), liquid-liquid extraction (LLE) and protein precipitation. In this paper we will discus a new sample-preparation technique based on SPE for high throughput drug extraction developed and used by our group. This new sample-preparation method is based on monolithic methacrylate polymer as packing sorbent for 96-tip robotic device. Using this device a 96-well plate could be handled in 2-4min. The key aspect of the monolithic phase is that monolithic material can offer both good binding capacity and low back-pressure properties compared to e.g. silica phases. The present paper presents the successful application of monolithic 96-tips and LC-MS/MS by the sample preparation of busulphan, rescovitine, metoprolol, pindolol and local anaesthetics from human plasma samples and cyklophosphamid from mice blood samples. Copyright 2009 Elsevier B.V. All rights reserved.

  8. A non-resonant fiber scanner based on an electrothermally-actuated MEMS stage

    PubMed Central

    Zhang, Xiaoyang; Duan, Can; Liu, Lin; Li, Xingde; Xie, Huikai

    2015-01-01

    Scanning fiber tips provides the most convenient way for forward-viewing fiber-optic microendoscopy. In this paper, a distal fiber scanning method based on a large-displacement MEMS actuator is presented. A single-mode fiber is glued on the micro-platform of an electrothermal MEMS stage to realize large range non-resonantscanning. The micro-platform has a large piston scan range of up to 800 µm at only 6V. The tip deflection of the fiber can be further amplified by placing the MEMS stage at a proper location along the fiber. A quasi-static model of the fiber-MEMS assembly has been developed and validated experimentally. The frequency response has also been studied and measured. A fiber tip deflection of up to 1650 µm for the 45 mm-long movable fiber portion has been achieved when the MEMS electrothermal stage was placed 25 mm away from the free end. The electrothermally-actuated MEMS stage shows a great potential for forward viewing fiber scanning and optical applications. PMID:26347583

  9. Simulation and characterization of silicon-based 0.5-MHz ultrasonic nozzles

    NASA Astrophysics Data System (ADS)

    Song, Y. L.; Tsai, S. C.; Chen, W. J.; Chou, Y. F.; Tseng, T. K.; Tsai, C. S.

    2004-01-01

    This paper compares the simulation results with the experimental results of impedance analysis and longitudinal vibration measurement of micro-fabricated 0.5 MHz silicon-based ultrasonic nozzles. Impedance analysis serves as a good diagnostic tool for evaluation of longitudinal vibration of the nozzles. Each nozzle is made of a piezoelectric drive section and a silicon-resonator consisting of multiple Fourier horns each with half wavelength design and twice amplitude magnification. The experimental results verified the simulation prediction of one pure longitudinal vibration mode at the resonant frequency in excellent agreement with the design value. Furthermore, at the resonant frequency, the measured longitudinal vibration amplitude gain at the nozzle tip increases as the number of Fourier horns (n) increases in good agreement with the theoretical value of 2n. Using this design, very high vibration amplitude at the nozzle tip can be achieved with no reduction in the tip cross sectional area. Therefore, the required electric drive power should be drastically reduced, decreasing the likelihood of transducer failure in ultrasonic atomization.

  10. A statistical approach to the brittle fracture of a multi-phase solid

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Lua, Y. I.; Belytschko, T.

    1991-01-01

    A stochastic damage model is proposed to quantify the inherent statistical distribution of the fracture toughness of a brittle, multi-phase solid. The model, based on the macrocrack-microcrack interaction, incorporates uncertainties in locations and orientations of microcracks. Due to the high concentration of microcracks near the macro-tip, a higher order analysis based on traction boundary integral equations is formulated first for an arbitrary array of cracks. The effects of uncertainties in locations and orientations of microcracks at a macro-tip are analyzed quantitatively by using the boundary integral equations method in conjunction with the computer simulation of the random microcrack array. The short range interactions resulting from surrounding microcracks closet to the main crack tip are investigated. The effects of microcrack density parameter are also explored in the present study. The validity of the present model is demonstrated by comparing its statistical output with the Neville distribution function, which gives correct fits to sets of experimental data from multi-phase solids.

  11. Wavefront sensing and adaptive control in phased array of fiber collimators

    NASA Astrophysics Data System (ADS)

    Lachinova, Svetlana L.; Vorontsov, Mikhail A.

    2011-03-01

    A new wavefront control approach for mitigation of atmospheric turbulence-induced wavefront phase aberrations in coherent fiber-array-based laser beam projection systems is introduced and analyzed. This approach is based on integration of wavefront sensing capabilities directly into the fiber-array transmitter aperture. In the coherent fiber array considered, we assume that each fiber collimator (subaperture) of the array is capable of precompensation of local (onsubaperture) wavefront phase tip and tilt aberrations using controllable rapid displacement of the tip of the delivery fiber at the collimating lens focal plane. In the technique proposed, this tip and tilt phase aberration control is based on maximization of the optical power received through the same fiber collimator using the stochastic parallel gradient descent (SPGD) technique. The coordinates of the fiber tip after the local tip and tilt aberrations are mitigated correspond to the coordinates of the focal-spot centroid of the optical wave backscattered off the target. Similar to a conventional Shack-Hartmann wavefront sensor, phase function over the entire fiber-array aperture can then be retrieved using the coordinates obtained. The piston phases that are required for coherent combining (phase locking) of the outgoing beams at the target plane can be further calculated from the reconstructed wavefront phase. Results of analysis and numerical simulations are presented. Performance of adaptive precompensation of phase aberrations in this laser beam projection system type is compared for various system configurations characterized by the number of fiber collimators and atmospheric turbulence conditions. The wavefront control concept presented can be effectively applied for long-range laser beam projection scenarios for which the time delay related with the double-pass laser beam propagation to the target and back is compared or even exceeds the characteristic time of the atmospheric turbulence change - scenarios when conventional target-in-the-loop phase-locking techniques fail.

  12. Post-coronagraphic tip-tilt sensing for vortex phase masks: The QACITS technique

    NASA Astrophysics Data System (ADS)

    Huby, E.; Baudoz, P.; Mawet, D.; Absil, O.

    2015-12-01

    Context. Small inner working angle coronagraphs, such as the vortex phase mask, are essential to exploit the full potential of ground-based telescopes in the context of exoplanet detection and characterization. However, the drawback of this attractive feature is a high sensitivity to pointing errors, which degrades the performance of the coronagraph. Aims: We propose a tip-tilt retrieval technique based on the analysis of the final coronagraphic image, hereafter called Quadrant Analysis of Coronagraphic Images for Tip-tilt Sensing (QACITS). Methods: Under the assumption of small phase aberrations, we show that the behavior of the vortex phase mask can be simply described from the entrance pupil to the Lyot stop plane with Zernike polynomials. This convenient formalism is used to establish the theoretical basis of the QACITS technique. We performed simulations to demonstrate the validity and limits of the technique, including the case of a centrally obstructed pupil. Results: The QACITS technique principle is validated with experimental results in the case of an unobstructed circular aperture, as well as simulations in presence of a central obstruction. The typical configuration of the Keck telescope (24% central obstruction) has been simulated with additional high order aberrations. In these conditions, our simulations show that the QACITS technique is still adapted to centrally obstructed pupils and performs tip-tilt retrieval with a precision of 5 × 10-2λ/D when wavefront errors amount to λ/ 14 rms and 10-2λ/D for λ/ 70 rms errors (with λ the wavelength and D the pupil diameter). Conclusions: We have developed and demonstrated a tip-tilt sensing technique for vortex coronagraphs. The implementation of the QACITS technique is based on the analysis of the scientific image and does not require any modification of the original setup. Current facilities equipped with a vortex phase mask can thus directly benefit from this technique to improve the contrast performance close to the axis.

  13. Preliminary study on magnetic tracking-based planar shape sensing and navigation for flexible surgical robots in transoral surgery: methods and phantom experiments.

    PubMed

    Song, Shuang; Zhang, Changchun; Liu, Li; Meng, Max Q-H

    2018-02-01

    Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation. We use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved. Using the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is [Formula: see text] mm, while the maximum error is 3.2 mm. The proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method.

  14. Characterization of closely related delta-TIP genes encoding aquaporins which are differentially expressed in sunflower roots upon water deprivation through exposure to air.

    PubMed

    Sarda, X; Tousch, D; Ferrare, K; Cellier, F; Alcon, C; Dupuis, J M; Casse, F; Lamaze, T

    1999-05-01

    We isolated five sunflower (Helianthus annuus) cDNAs belonging to the TIP (tonoplast intrinsic protein) family. SunRb7 and Sun gammaTIP (partial sequence) are homologous to tobacco TobRb7 and Arabidopsis gamma-TIP, respectively. SunTIP7, 18 and 20 (SunTIPs) are closely related and homologous to Arabidopsis delta-TIP (SunTIP7 and 20 have already been presented in Sarda et al., Plant J. 12 (1997) 1103-1111). As was previously shown for SunTIP7 and 20, expression of SunTIP18 and SunRb7 in Xenopus oocytes caused an increase in osmotic water permeability demonstrating that they are aquaporins. In roots, in situ hybridization revealed that SunTIP7 and 18 mRNAs accumulate in phloem tissues. The expression of TIP-like genes was studied in roots during 24 h water deprivation through exposure to air. During the course of the treatment, each SunTIP gene displayed an individual response: SunTIP7 transcript abundance increased, SunTIP18 decreased whereas that of SunTIP20 was transitorily enhanced. By contrast, SunRb7 and Sun gammaTIP mRNA levels did not fluctuate. Due to the changes in their transcript levels, it is proposed that SUNTIP aquaporins encoded by delta-TIP-like genes play a role in the sunflower response to drought.

  15. A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex.

    PubMed

    Hwang, Jae-Ung; Vernoud, Vanessa; Szumlanski, Amy; Nielsen, Erik; Yang, Zhenbiao

    2008-12-23

    Highly elongated eukaryotic cells (e.g., neuronal axons, fungal hyphae, and pollen tubes) are generated through continuous apically restricted growth (tip growth), which universally requires tip-localized Rho GTPases. We used the oscillating pollen tube as a model system to determine the function and regulation of Rho GTPases in tip growth. Our previous work showed that the spatiotemporal dynamics of the apical cap of the activated Rho-like GTPase from Plant 1 (ROP1) are critical for tip growth in pollen tubes. However, the underlying mechanism for the generation and maintenance of this dynamic apical cap is poorly understood. A screen for mutations that enhance ROP1-overexpression-induced depolarization of pollen-tube growth identified REN1 (ROP1 enhancer 1) in Arabidopsis, whose null mutations turn elongated pollen tubes into bulbous cells. REN1 encodes a novel Rho GTPase-activating protein (RhoGAP) required for restricting the ROP1 activity to the pollen-tube tip. REN1 was localized to exocytic vesicles accumulated in the pollen-tube apex, as well as to the apical plasma membrane at the site of ROP1 activation. The apical localization of REN1 and its function in controlling growth polarity was compromised by disruption of ROP1-dependent F-actin and vesicular trafficking, which indicates that REN1 targeting and function is regulated by ROP1 downstream signaling. Our findings suggest that the REN1 RhoGAP controls a negative-feedback-based global inhibition of ROP1. This function provides a critical self-organizing mechanism, by which ROP signaling is spatially limited to the growth site and temporally oscillates during continuous tip growth. Similar spatiotemporal control of Rho GTPase signaling may also play an important role in cell-polarity control in other systems, including tip growth in fungi and cell movement in animals.

  16. Interferometer-Controlled Optical Tweezers Constructed for Nanotechnology and Biotechnology

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2002-01-01

    A new method to control microparticles was developed in-house at the NASA Glenn Research Center in support of the nanotechnology project under NASA's Aerospace Propulsion and Power Base Research Program. A prototype interferometer-controlled optical tweezers was constructed to manipulate scanning probe microscope (SPM) tips. A laser beam passed through a Mach-Zehnder interferometer, and a microscope objective then produced an optical trap from the coaxial beams. The trap levitated and generated the coarse motion of a 10-mm polystyrene sphere used to simulate a SPM tip. The interference between the beams provided fine control of the forces and moments on the sphere. The interferometer included a piezoelectric-scanned mirror to modulate the interference pattern. The 10-mm sphere was observed to oscillate about 1 mm as the mirror and fringe pattern oscillated. The prototype tweezers proved the feasibility of constructing a more sophisticated interferometer tweezers to hold and manipulate SPM tips. The SPM tips are intended to interrogate and manipulate nanostructures. A more powerful laser will be used to generate multiple traps to hold nanostructures and SPM tips. The vibrating mirror in the interferometer will be replaced with a spatial light modulator. The modulator will allow the optical phase distribution in one leg of the interferometer to be programmed independently at 640 by 480 points for detailed control of the forces and moments. The interference patterns will be monitored to measure the motion of the SPM tips. Neuralnetwork technology will provide fast analysis of the interference patterns for diagnostic purposes and for local or remote feedback control of the tips. This effort also requires theoretical and modeling support in the form of scattering calculations for twin coherent beams from nonspherical particles.

  17. Accuracy of Intravenous Electrocardiography Confirmation of Peripherally Inserted Central Catheter for Parenteral Nutrition.

    PubMed

    Mundi, Manpreet S; Edakkanambeth Varayil, Jithinraj; McMahon, Megan T; Okano, Akiko; Vallumsetla, Nishanth; Bonnes, Sara L; Andrews, James C; Hurt, Ryan T

    2016-04-01

    Parenteral nutrition (PN) is a life-saving therapy for patients with intestinal failure. Safe delivery of hyperosmotic solution requires a central venous catheter (CVC) with tip in the lower superior vena cava (SVC) or at the SVC-right atrium (RA) junction. To reduce cost and delay in use of CVC, new techniques such as intravascular electrocardiogram (ECG) are being used for tip confirmation in place of chest x-ray (CXR). The present study assessed for accuracy of ECG confirmation in home PN (HPN). Records for all patients consulted for HPN from December 17, 2014, to June 16, 2015, were reviewed for patient demographics, diagnosis leading to HPN initiation, and ECG and CXR confirmation. CXRs were subsequently reviewed by a radiologist to reassess location of the CVC tip and identify those that should be adjusted. Seventy-three patients were eligible, and after assessment for research authorization and postplacement CXR, 17 patients (30% male) with an age of 54 ± 14 years were reviewed. In all patients, postplacement intravascular ECG reading stated tip in the SVC. However, based on CXR, the location of the catheter tip was satisfactory (low SVC or SVC-RA junction) in 10 of 17 patients (59%). Due to the high osmolality of PN, CVC tip location is of paramount importance. After radiology review of CXR, we noted that 7 of 17 (41%) peripherally inserted central catheter lines were in an unsatisfactory position despite ECG confirmation. With current data available, intravenous ECG confirmation should not be used as the sole source of tip confirmation in patients receiving HPN. © 2016 American Society for Parenteral and Enteral Nutrition.

  18. Multipurpose fiber-optic sensor with sloped tip

    NASA Astrophysics Data System (ADS)

    Melnik, Ivan S.; Krivokhizha, A. M.; Ptashnik, O. V.

    1991-08-01

    Fiber-optic sensors C FOS) are wi. del y used for rioncontact measurements due to their simplicity, small size, insensitivity to I nfl uence of el ectromagneti C fiel ds , hi gh metrol ogi cal characteristics, etc. The operation principle of FOS with intensity modul ati on techni que I s based on the photodetector regi strati on of 1ight , reflected from the control 1 ed surface E I ) . The i ntensi ty of detected 1 1 ght depends on th FOS' s di stance from the control 1 ed surface, its form and inclination to sensor's axis, FOS shift speed, etc. So they can be consider multipurpose. We are devel opi ng FOS wi th i ntensi ty modul ati on techni que wi th traight tips as well as with sloped tips. In FOS with sloped tips the light ring spot is appearing on the controlled surface due to the effect of symmetry. We use thi s phenomena to empl oy refl ected 1 i ght more efficiently and to increase the FOS characteristics. Tak i ng I nto account the fact that pr obl ems of cal cul aWl on of fibers with sloped tip were not analyzed in details earlier-, in particular, only the case of light distribution of parallel beams runni ng was consi dered E 2) we wi I 1 conduct a consi stent cal cul ati on of bounds of i rradi ance fi ci d , created by a fi ber wi th sl oped tip, esti mate I i ght di stri buti on I n a 1 1 ght spot , and determi. ne characteristics of the FOS with sloped tip.

  19. Potential energy landscape of TIP4P/2005 water

    NASA Astrophysics Data System (ADS)

    Handle, Philip H.; Sciortino, Francesco

    2018-04-01

    We report a numerical study of the statistical properties of the potential energy landscape of TIP4P/2005, one of the most accurate rigid water models. We show that, in the region where equilibrated configurations can be generated, a Gaussian landscape description is able to properly describe the model properties. We also find that the volume dependence of the landscape properties is consistent with the existence of a locus of density maxima in the phase diagram. The landscape-based equation of state accurately reproduces the TIP4P/2005 pressure-vs-volume curves, providing a sound extrapolation of the free-energy at low T. A positive-pressure liquid-liquid critical point is predicted by the resulting free-energy.

  20. An on-line calibration technique for improved blade by blade tip clearance measurement

    NASA Astrophysics Data System (ADS)

    Sheard, A. G.; Westerman, G. C.; Killeen, B.

    A description of a capacitance-based tip clearance measurement system which integrates a novel technique for calibrating the capacitance probe in situ is presented. The on-line calibration system allows the capacitance probe to be calibrated immediately prior to use, providing substantial operational advantages and maximizing measurement accuracy. The possible error sources when it is used in service are considered, and laboratory studies of performance to ascertain their magnitude are discussed. The 1.2-mm diameter FM capacitance probe is demonstrated to be insensitive to variations in blade tip thickness from 1.25 to 1.45 mm. Over typical compressor blading the probe's range was four times the variation in blade to blade clearance encountered in engine run components.

Top