Sample records for survival tree analysis

  1. Utility of tree crown condition indicators to predict tree survival using remeasured Forest Inventory and Analysis data

    Treesearch

    Randall S. Morin; Jim Steinman; KaDonna C. Randolph

    2012-01-01

    The condition of tree crowns is an important indicator of tree and forest health. Crown conditions have been evaluated during surveys of Forest Inventory and Analysis (FIA) Phase 3 (P3) plots since 1999. In this study, remeasured data from 39,357 trees in the northern United States were used to assess the probability of survival among various tree species using the...

  2. Modeling time-to-event (survival) data using classification tree analysis.

    PubMed

    Linden, Ariel; Yarnold, Paul R

    2017-12-01

    Time to the occurrence of an event is often studied in health research. Survival analysis differs from other designs in that follow-up times for individuals who do not experience the event by the end of the study (called censored) are accounted for in the analysis. Cox regression is the standard method for analysing censored data, but the assumptions required of these models are easily violated. In this paper, we introduce classification tree analysis (CTA) as a flexible alternative for modelling censored data. Classification tree analysis is a "decision-tree"-like classification model that provides parsimonious, transparent (ie, easy to visually display and interpret) decision rules that maximize predictive accuracy, derives exact P values via permutation tests, and evaluates model cross-generalizability. Using empirical data, we identify all statistically valid, reproducible, longitudinally consistent, and cross-generalizable CTA survival models and then compare their predictive accuracy to estimates derived via Cox regression and an unadjusted naïve model. Model performance is assessed using integrated Brier scores and a comparison between estimated survival curves. The Cox regression model best predicts average incidence of the outcome over time, whereas CTA survival models best predict either relatively high, or low, incidence of the outcome over time. Classification tree analysis survival models offer many advantages over Cox regression, such as explicit maximization of predictive accuracy, parsimony, statistical robustness, and transparency. Therefore, researchers interested in accurate prognoses and clear decision rules should consider developing models using the CTA-survival framework. © 2017 John Wiley & Sons, Ltd.

  3. A survival tree method for the analysis of discrete event times in clinical and epidemiological studies.

    PubMed

    Schmid, Matthias; Küchenhoff, Helmut; Hoerauf, Achim; Tutz, Gerhard

    2016-02-28

    Survival trees are a popular alternative to parametric survival modeling when there are interactions between the predictor variables or when the aim is to stratify patients into prognostic subgroups. A limitation of classical survival tree methodology is that most algorithms for tree construction are designed for continuous outcome variables. Hence, classical methods might not be appropriate if failure time data are measured on a discrete time scale (as is often the case in longitudinal studies where data are collected, e.g., quarterly or yearly). To address this issue, we develop a method for discrete survival tree construction. The proposed technique is based on the result that the likelihood of a discrete survival model is equivalent to the likelihood of a regression model for binary outcome data. Hence, we modify tree construction methods for binary outcomes such that they result in optimized partitions for the estimation of discrete hazard functions. By applying the proposed method to data from a randomized trial in patients with filarial lymphedema, we demonstrate how discrete survival trees can be used to identify clinically relevant patient groups with similar survival behavior. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Rethinking plant functional types in Earth System Models: pan-tropical analysis of tree survival across environmental gradients

    NASA Astrophysics Data System (ADS)

    Johnson, D. J.; Needham, J.; Xu, C.; Davies, S. J.; Bunyavejchewin, S.; Giardina, C. P.; Condit, R.; Cordell, S.; Litton, C. M.; Hubbell, S.; Kassim, A. R. B.; Shawn, L. K. Y.; Nasardin, M. B.; Ong, P.; Ostertag, R.; Sack, L.; Tan, S. K. S.; Yap, S.; McDowell, N. G.; McMahon, S.

    2016-12-01

    Terrestrial carbon cycling is a function of the growth and survival of trees. Current model representations of tree growth and survival at a global scale rely on coarse plant functional traits that are parameterized very generally. In view of the large biodiversity in the tropical forests, it is important that we account for the functional diversity in order to better predict tropical forest responses to future climate changes. Several next generation Earth System Models are moving towards a size-structured, trait-based approach to modelling vegetation globally, but the challenge of which and how many traits are necessary to capture forest complexity remains. Additionally, the challenge of collecting sufficient trait data to describe the vast species richness of tropical forests is enormous. We propose a more fundamental approach to these problems by characterizing forests by their patterns of survival. We expect our approach to distill real-world tree survival into a reasonable number of functional types. Using 10 large-area tropical forest plots that span geographic, edaphic and climatic gradients, we model tree survival as a function of tree size for hundreds of species. We found surprisingly few categories of size-survival functions emerge. This indicates some fundamental strategies at play across diverse forests to constrain the range of possible size-survival functions. Initial cluster analysis indicates that four to eight functional forms are necessary to describe variation in size-survival relations. Temporal variation in size-survival functions can be related to local environmental variation, allowing us to parameterize how demographically similar groups of species respond to perturbations in the ecosystem. We believe this methodology will yield a synthetic approach to classifying forest systems that will greatly reduce uncertainty and complexity in global vegetation models.

  5. Applying survival analysis to a large-scale forest inventory for assessment of tree mortality in Minnesota

    Treesearch

    C.W. Woodall; P.L. Grambsch; W. Thomas

    2005-01-01

    Tree mortality has traditionally been assessed in forest inventories through summaries of mortality by location, species, and causal agents. Although these methods have historically constituted the majority of tree mortality summarizations, they have had limited use in assessing mortality trends and dynamics. This study proposed a novel method of applying survival...

  6. Modeling the survival kinetics of Salmonella in tree nuts for use in risk assessment.

    PubMed

    Santillana Farakos, Sofia M; Pouillot, Régis; Anderson, Nathan; Johnson, Rhoma; Son, Insook; Van Doren, Jane

    2016-06-16

    Salmonella has been shown to survive in tree nuts over long periods of time. This survival capacity and its variability are key elements for risk assessment of Salmonella in tree nuts. The aim of this study was to develop a mathematical model to predict survival of Salmonella in tree nuts at ambient storage temperatures that considers variability and uncertainty separately and can easily be incorporated into a risk assessment model. Data on Salmonella survival on raw almonds, pecans, pistachios and walnuts were collected from the peer reviewed literature. The Weibull model was chosen as the baseline model and various fixed effect and mixed effect models were fit to the data. The best model identified through statistical analysis testing was then used to develop a hierarchical Bayesian model. Salmonella in tree nuts showed slow declines at temperatures ranging from 21°C to 24°C. A high degree of variability in survival was observed across tree nut studies reported in the literature. Statistical analysis results indicated that the best applicable model was a mixed effect model that included a fixed and random variation of δ per tree nut (which is the time it takes for the first log10 reduction) and a fixed variation of ρ per tree nut (parameter which defines the shape of the curve). Higher estimated survival rates (δ) were obtained for Salmonella on pistachios, followed in decreasing order by pecans, almonds and walnuts. The posterior distributions obtained from Bayesian inference were used to estimate the variability in the log10 decrease levels in survival for each tree nut, and the uncertainty of these estimates. These modeled uncertainty and variability distributions of the estimates can be used to obtain a complete exposure assessment of Salmonella in tree nuts when including time-temperature parameters for storage and consumption data. The statistical approach presented in this study may be applied to any studies that aim to develop predictive models to be implemented in a probabilistic exposure assessment or a quantitative microbial risk assessment. Published by Elsevier B.V.

  7. Association between split selection instability and predictive error in survival trees.

    PubMed

    Radespiel-Tröger, M; Gefeller, O; Rabenstein, T; Hothorn, T

    2006-01-01

    To evaluate split selection instability in six survival tree algorithms and its relationship with predictive error by means of a bootstrap study. We study the following algorithms: logrank statistic with multivariate p-value adjustment without pruning (LR), Kaplan-Meier distance of survival curves (KM), martingale residuals (MR), Poisson regression for censored data (PR), within-node impurity (WI), and exponential log-likelihood loss (XL). With the exception of LR, initial trees are pruned by using split-complexity, and final trees are selected by means of cross-validation. We employ a real dataset from a clinical study of patients with gallbladder stones. The predictive error is evaluated using the integrated Brier score for censored data. The relationship between split selection instability and predictive error is evaluated by means of box-percentile plots, covariate and cutpoint selection entropy, and cutpoint selection coefficients of variation, respectively, in the root node. We found a positive association between covariate selection instability and predictive error in the root node. LR yields the lowest predictive error, while KM and MR yield the highest predictive error. The predictive error of survival trees is related to split selection instability. Based on the low predictive error of LR, we recommend the use of this algorithm for the construction of survival trees. Unpruned survival trees with multivariate p-value adjustment can perform equally well compared to pruned trees. The analysis of split selection instability can be used to communicate the results of tree-based analyses to clinicians and to support the application of survival trees.

  8. Tree mortality in response to typhoon-induced floods and mudslides is determined by tree species, size, and position in a riparian Formosan gum forest in subtropical Taiwan.

    PubMed

    Tzeng, Hsy-Yu; Wang, Wei; Tseng, Yen-Hsueh; Chiu, Ching-An; Kuo, Chu-Chia; Tsai, Shang-Te

    2018-01-01

    Global warming-induced extreme climatic changes have increased the frequency of severe typhoons bringing heavy rains; this has considerably affected the stability of the forest ecosystems. Since the Taiwan 921 earthquake occurred in 21 September 1999, the mountain geology of the Island of Taiwan has become unstable and typhoon-induced floods and mudslides have changed the topography and geomorphology of the area; this has further affected the stability and functions of the riparian ecosystem. In this study, the vegetation of the unique Aowanda Formosan gum forest in Central Taiwan was monitored for 3 years after the occurrence of floods and mudslides during 2009-2011. Tree growth and survival, effects of floods and mudslides, and factors influencing tree survival were investigated. We hypothesized that (1) the effects of floods on the survival are significantly different for each tree species; (2) tree diameter at breast height (DBH) affects tree survival-i.e., the larger the DBH, the higher the survival rate; and (3) the relative position of trees affects tree survival after disturbances by floods and mudslides-the farther trees are from the river, the higher is their survival rate. Our results showed that after floods and mudslides, the lifespans of the major tree species varied significantly. Liquidambar formosana displayed the highest flood tolerance, and the trunks of Lagerstoemia subcostata began rooting after disturbances. Multiple regression analysis indicated that factors such as species, DBH, distance from sampled tree to the above boundary of sample plot (far from the riverbank), and distance from the upstream of the river affected the lifespans of trees; the three factors affected each tree species to different degrees. Furthermore, we showed that insect infestation had a critical role in determining tree survival rate. Our 3-year monitoring investigation revealed that severe typhoon-induced floods and mudslides disturbed the riparian vegetation in the Formosan gum forest, replacing the original vegetation and beginning secondary succession. Moreover, flooding provided new habitats for various plants to establish their progeny. By using our results, lifecycles of trees (including death) can be understood in detail, facilitating riparian vegetation engineering in forests severely disturbed by typhoon-induced floods and mudslides.

  9. Terminology and biology of fire scars in selected central hardwoods

    Treesearch

    Kevin T. Smith; Elaine Kennedy Sutherland

    2001-01-01

    Dendrochronological analysis of fire scars requires tree survival of fire exposure. Trees survive fire exposure by: (1) avoidance of injury through constitutive protection and (2) induced defense. Induced defenses include (a) compartmentalization processes that resist the spread of injury and infection and (b) closure processes that restore the continuity of the...

  10. Tree mortality in response to typhoon-induced floods and mudslides is determined by tree species, size, and position in a riparian Formosan gum forest in subtropical Taiwan

    PubMed Central

    Tzeng, Hsy-Yu; Wang, Wei; Tseng, Yen-Hsueh; Chiu, Ching-An; Kuo, Chu-Chia

    2018-01-01

    Global warming-induced extreme climatic changes have increased the frequency of severe typhoons bringing heavy rains; this has considerably affected the stability of the forest ecosystems. Since the Taiwan 921 earthquake occurred in 21 September 1999, the mountain geology of the Island of Taiwan has become unstable and typhoon-induced floods and mudslides have changed the topography and geomorphology of the area; this has further affected the stability and functions of the riparian ecosystem. In this study, the vegetation of the unique Aowanda Formosan gum forest in Central Taiwan was monitored for 3 years after the occurrence of floods and mudslides during 2009–2011. Tree growth and survival, effects of floods and mudslides, and factors influencing tree survival were investigated. We hypothesized that (1) the effects of floods on the survival are significantly different for each tree species; (2) tree diameter at breast height (DBH) affects tree survival–i.e., the larger the DBH, the higher the survival rate; and (3) the relative position of trees affects tree survival after disturbances by floods and mudslides–the farther trees are from the river, the higher is their survival rate. Our results showed that after floods and mudslides, the lifespans of the major tree species varied significantly. Liquidambar formosana displayed the highest flood tolerance, and the trunks of Lagerstoemia subcostata began rooting after disturbances. Multiple regression analysis indicated that factors such as species, DBH, distance from sampled tree to the above boundary of sample plot (far from the riverbank), and distance from the upstream of the river affected the lifespans of trees; the three factors affected each tree species to different degrees. Furthermore, we showed that insect infestation had a critical role in determining tree survival rate. Our 3-year monitoring investigation revealed that severe typhoon-induced floods and mudslides disturbed the riparian vegetation in the Formosan gum forest, replacing the original vegetation and beginning secondary succession. Moreover, flooding provided new habitats for various plants to establish their progeny. By using our results, lifecycles of trees (including death) can be understood in detail, facilitating riparian vegetation engineering in forests severely disturbed by typhoon-induced floods and mudslides. PMID:29304149

  11. Northern Mountain and Prairie Community Tree Guide

    Treesearch

    E.G. McPherson; J.R. Simpson; P.J. Peper; S.E. Maco; Q. Xiao; P.J. Hoefer

    2003-01-01

    This tree guide quantifies benefits and costs for typical large-, medium-, small-stature, deciduous trees, as well as a conifer. The analysis assumed that trees were planted in a residential yard site or a public (street/park) site, under a 40-year time frame, and having a 60% survival rate. Tree care costs were based on findings from a survey of municipal and...

  12. Selfing results in inbreeding depression of growth but not of gas exchange of surviving adult black spruce trees

    Treesearch

    Kurt Johnsen; John E. Major; Chris A. Maier

    2003-01-01

    Summary In most tree species, inbreeding greatly reduces seed production, seed viability, survival and growth. In a previous large-scale quantitative analysis of a black spruce (Picea mariana (Mill.) B.S.P.) diallel experiment, selfing had large deleterious effects on growth but no impact on stable carbon isotope discrimination (an...

  13. Mortality rates associated with crown health for eastern forest tree species

    Treesearch

    Randall S. Morin; KaDonna C. Randolph; Jim Steinman

    2015-01-01

    The condition of tree crowns is an important indicator of tree and forest health. Crown conditions have been evaluated during inventories of the US Forest Service Forest Inventory and Analysis (FIA) program since 1999. In this study, remeasured data from 55,013 trees on 2616 FIA plots in the eastern USA were used to assess the probability of survival among various tree...

  14. Dendrometric measurements reveal stages leading to tree mortality in a semiarid pine forest

    NASA Astrophysics Data System (ADS)

    Tatarinov, Fyodor; Preisler, Yakir; Klein, Tamir; Rotenberg, Eyal; Yakir, Dan

    2017-04-01

    Increasing frequency and intensity of climatic extreme events, such as droughts may lead to increasing vulnerability of forests, especially in semi-arid regions. In the spring of 2016 mortality was observed among trees used for sap flow (SF) and dendrometry measurements in the semi-arid Fluxnet pine forest site of Yatir in Israel (280mm annual mean precipitation). This was accompanied by bark-beetle attack, and with visual drying of needles starting in April 2016. Comparative analysis of dendrometry and sap flux (SF) measurements in 31 trees of which 7 died and 24 survived permitted identification of the stages leading to tree mortality. Distinction between dying and surviving trees was identified in the dendrometric measurements from Nov. 2015, about five months before visual mortality signs: First, clear decline in diameter (DBH) was observed in all dying trees, whereas DBH of living trees remained constant until the first rain in January 2016 followed by growth. Second, the diurnal patterns in DBH showed a gradual shift of the diurnal DBH maximum from noon-time to early morning from the summer of 2015 to the spring of 2016 in surviving trees, whereas in dying trees it remained stable around noontime. Third, the diurnal swelling/shrinkage dynamics, assumed to reflect water use and storage dynamics, showed clear decline in magnitude, down to near zero, in the dying trees while regular daily cycle continued in the surviving trees. In September 2015 Shoot measurements showed midnight minimum of leaf water potential, lower than in living trees (-4.5 vs. -3.6 MPa respectively). Sap flow measurements were not sufficiently sensitive during the non-active season (fall and early winter) and indicated changes only after the first rain in January 2016. At this time, SF showed dramatic increase in SF with typical midday maximum in the surviving trees, whereas in dying trees SF remained low and irregular. The results show that indicators of mortality can be detected at least 5 months before visual signs are observed, and demonstrate the interacting effects of carbon economy (growth) and tree water management (radial water movement and storage) on the development of mortality in Aleppo pine trees.

  15. Molecular Infectious Disease Epidemiology: Survival Analysis and Algorithms Linking Phylogenies to Transmission Trees

    PubMed Central

    Kenah, Eben; Britton, Tom; Halloran, M. Elizabeth; Longini, Ira M.

    2016-01-01

    Recent work has attempted to use whole-genome sequence data from pathogens to reconstruct the transmission trees linking infectors and infectees in outbreaks. However, transmission trees from one outbreak do not generalize to future outbreaks. Reconstruction of transmission trees is most useful to public health if it leads to generalizable scientific insights about disease transmission. In a survival analysis framework, estimation of transmission parameters is based on sums or averages over the possible transmission trees. A phylogeny can increase the precision of these estimates by providing partial information about who infected whom. The leaves of the phylogeny represent sampled pathogens, which have known hosts. The interior nodes represent common ancestors of sampled pathogens, which have unknown hosts. Starting from assumptions about disease biology and epidemiologic study design, we prove that there is a one-to-one correspondence between the possible assignments of interior node hosts and the transmission trees simultaneously consistent with the phylogeny and the epidemiologic data on person, place, and time. We develop algorithms to enumerate these transmission trees and show these can be used to calculate likelihoods that incorporate both epidemiologic data and a phylogeny. A simulation study confirms that this leads to more efficient estimates of hazard ratios for infectiousness and baseline hazards of infectious contact, and we use these methods to analyze data from a foot-and-mouth disease virus outbreak in the United Kingdom in 2001. These results demonstrate the importance of data on individuals who escape infection, which is often overlooked. The combination of survival analysis and algorithms linking phylogenies to transmission trees is a rigorous but flexible statistical foundation for molecular infectious disease epidemiology. PMID:27070316

  16. Local-scale drivers of tree survival in a temperate forest.

    PubMed

    Wang, Xugao; Comita, Liza S; Hao, Zhanqing; Davies, Stuart J; Ye, Ji; Lin, Fei; Yuan, Zuoqiang

    2012-01-01

    Tree survival plays a central role in forest ecosystems. Although many factors such as tree size, abiotic and biotic neighborhoods have been proposed as being important in explaining patterns of tree survival, their contributions are still subject to debate. We used generalized linear mixed models to examine the relative importance of tree size, local abiotic conditions and the density and identity of neighbors on tree survival in an old-growth temperate forest in northeastern China at three levels (community, guild and species). Tree size and both abiotic and biotic neighborhood variables influenced tree survival under current forest conditions, but their relative importance varied dramatically within and among the community, guild and species levels. Of the variables tested, tree size was typically the most important predictor of tree survival, followed by biotic and then abiotic variables. The effect of tree size on survival varied from strongly positive for small trees (1-20 cm dbh) and medium trees (20-40 cm dbh), to slightly negative for large trees (>40 cm dbh). Among the biotic factors, we found strong evidence for negative density and frequency dependence in this temperate forest, as indicated by negative effects of both total basal area of neighbors and the frequency of conspecific neighbors. Among the abiotic factors tested, soil nutrients tended to be more important in affecting tree survival than topographic variables. Abiotic factors generally influenced survival for species with relatively high abundance, for individuals in smaller size classes and for shade-tolerant species. Our study demonstrates that the relative importance of variables driving patterns of tree survival differs greatly among size classes, species guilds and abundance classes in temperate forest, which can further understanding of forest dynamics and offer important insights into forest management.

  17. Local-Scale Drivers of Tree Survival in a Temperate Forest

    PubMed Central

    Wang, Xugao; Comita, Liza S.; Hao, Zhanqing; Davies, Stuart J.; Ye, Ji; Lin, Fei; Yuan, Zuoqiang

    2012-01-01

    Tree survival plays a central role in forest ecosystems. Although many factors such as tree size, abiotic and biotic neighborhoods have been proposed as being important in explaining patterns of tree survival, their contributions are still subject to debate. We used generalized linear mixed models to examine the relative importance of tree size, local abiotic conditions and the density and identity of neighbors on tree survival in an old-growth temperate forest in northeastern China at three levels (community, guild and species). Tree size and both abiotic and biotic neighborhood variables influenced tree survival under current forest conditions, but their relative importance varied dramatically within and among the community, guild and species levels. Of the variables tested, tree size was typically the most important predictor of tree survival, followed by biotic and then abiotic variables. The effect of tree size on survival varied from strongly positive for small trees (1–20 cm dbh) and medium trees (20–40 cm dbh), to slightly negative for large trees (>40 cm dbh). Among the biotic factors, we found strong evidence for negative density and frequency dependence in this temperate forest, as indicated by negative effects of both total basal area of neighbors and the frequency of conspecific neighbors. Among the abiotic factors tested, soil nutrients tended to be more important in affecting tree survival than topographic variables. Abiotic factors generally influenced survival for species with relatively high abundance, for individuals in smaller size classes and for shade-tolerant species. Our study demonstrates that the relative importance of variables driving patterns of tree survival differs greatly among size classes, species guilds and abundance classes in temperate forest, which can further understanding of forest dynamics and offer important insights into forest management. PMID:22347996

  18. Bayesian Weibull tree models for survival analysis of clinico-genomic data

    PubMed Central

    Clarke, Jennifer; West, Mike

    2008-01-01

    An important goal of research involving gene expression data for outcome prediction is to establish the ability of genomic data to define clinically relevant risk factors. Recent studies have demonstrated that microarray data can successfully cluster patients into low- and high-risk categories. However, the need exists for models which examine how genomic predictors interact with existing clinical factors and provide personalized outcome predictions. We have developed clinico-genomic tree models for survival outcomes which use recursive partitioning to subdivide the current data set into homogeneous subgroups of patients, each with a specific Weibull survival distribution. These trees can provide personalized predictive distributions of the probability of survival for individuals of interest. Our strategy is to fit multiple models; within each model we adopt a prior on the Weibull scale parameter and update this prior via Empirical Bayes whenever the sample is split at a given node. The decision to split is based on a Bayes factor criterion. The resulting trees are weighted according to their relative likelihood values and predictions are made by averaging over models. In a pilot study of survival in advanced stage ovarian cancer we demonstrate that clinical and genomic data are complementary sources of information relevant to survival, and we use the exploratory nature of the trees to identify potential genomic biomarkers worthy of further study. PMID:18618012

  19. Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate.

    PubMed

    Neuner, Susanne; Albrecht, Axel; Cullmann, Dominik; Engels, Friedrich; Griess, Verena C; Hahn, W Andreas; Hanewinkel, Marc; Härtl, Fabian; Kölling, Christian; Staupendahl, Kai; Knoke, Thomas

    2015-02-01

    Shifts in tree species distributions caused by climatic change are expected to cause severe losses in the economic value of European forestland. However, this projection disregards potential adaptation options such as tree species conversion, shorter production periods, or establishment of mixed species forests. The effect of tree species mixture has, as yet, not been quantitatively investigated for its potential to mitigate future increases in production risks. For the first time, we use survival time analysis to assess the effects of climate, species mixture and soil condition on survival probabilities for Norway spruce and European beech. Accelerated Failure Time (AFT) models based on an extensive dataset of almost 65,000 trees from the European Forest Damage Survey (FDS)--part of the European-wide Level I monitoring network--predicted a 24% decrease in survival probability for Norway spruce in pure stands at age 120 when unfavorable changes in climate conditions were assumed. Increasing species admixture greatly reduced the negative effects of unfavorable climate conditions, resulting in a decline in survival probabilities of only 7%. We conclude that future studies of forest management under climate change as well as forest policy measures need to take this, as yet unconsidered, strongly advantageous effect of tree species mixture into account. © 2014 John Wiley & Sons Ltd.

  20. Factors affecting long-term mortality of residential shade trees: evidence from Sacramento, California

    Treesearch

    Yekang Ko; Jun-Hak Lee; E. Gregory McPherson; Lara A. Roman

    2015-01-01

    Urban tree survival is essential to sustain the ecosystem services of urban forests and monitoring is needed to accurately assess benefits. While some urban forestry studies have reported street tree survival, little is known about the factors influencing residential yard tree survival, especially over the long-term. We assessed residential shade tree survival in...

  1. Estimating the probability of survival of individual shortleaf pine (Pinus echinata mill.) trees

    Treesearch

    Sudip Shrestha; Thomas B. Lynch; Difei Zhang; James M. Guldin

    2012-01-01

    A survival model is needed in a forest growth system which predicts the survival of trees on individual basis or on a stand basis (Gertner, 1989). An individual-tree modeling approach is one of the better methods available for predicting growth and yield as it provides essential information about particular tree species; tree size, tree quality and tree present status...

  2. Midwest community tree guide: benefits, costs, and strategic planting

    Treesearch

    E. Gregory McPherson; James R. Simpson; Paula J. Peper; Scott E. Maco; Shelley L. Gardner; Shauna K. Cozad; Qingfu Xiao

    2006-01-01

    This report quantifies benefits and costs for typical small, medium, and large deciduous (losing their leaves every autumn) trees: crabapple, red oak, and hackberry (see "Common and Scientific Names" section). The analysis assumed that trees were planted in a residential yard or public site (streetside or park) with a 60 percent survival rate over a 40-year...

  3. Identification of subgroups by risk of graft failure after paediatric renal transplantation: application of survival tree models on the ESPN/ERA-EDTA Registry.

    PubMed

    Lofaro, Danilo; Jager, Kitty J; Abu-Hanna, Ameen; Groothoff, Jaap W; Arikoski, Pekka; Hoecker, Britta; Roussey-Kesler, Gwenaelle; Spasojević, Brankica; Verrina, Enrico; Schaefer, Franz; van Stralen, Karlijn J

    2016-02-01

    Identification of patient groups by risk of renal graft loss might be helpful for accurate patient counselling and clinical decision-making. Survival tree models are an alternative statistical approach to identify subgroups, offering cut-off points for covariates and an easy-to-interpret representation. Within the European Society of Pediatric Nephrology/European Renal Association-European Dialysis and Transplant Association (ESPN/ERA-EDTA) Registry data we identified paediatric patient groups with specific profiles for 5-year renal graft survival. Two analyses were performed, including (i) parameters known at time of transplantation and (ii) additional clinical measurements obtained early after transplantation. The identified subgroups were added as covariates in two survival models. The prognostic performance of the models was tested and compared with conventional Cox regression analyses. The first analysis included 5275 paediatric renal transplants. The best 5-year graft survival (90.4%) was found among patients who received a renal graft as a pre-emptive transplantation or after short-term dialysis (<45 days), whereas graft survival was poorest (51.7%) in adolescents transplanted after long-term dialysis (>2.2 years). The Cox model including both pre-transplant factors and tree subgroups had a significantly better predictive performance than conventional Cox regression (P < 0.001). In the analysis including clinical factors, graft survival ranged from 97.3% [younger patients with estimated glomerular filtration rate (eGFR) >30 mL/min/1.73 m(2) and dialysis <20 months] to 34.7% (adolescents with eGFR <60 mL/min/1.73 m(2) and dialysis >20 months). Also in this case combining tree findings and clinical factors improved the predictive performance as compared with conventional Cox model models (P < 0.0001). In conclusion, we demonstrated the tree model to be an accurate and attractive tool to predict graft failure for patients with specific characteristics. This may aid the evaluation of individual graft prognosis and thereby the design of measures to improve graft survival in the poor prognosis groups. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  4. Prognostic Factors and Decision Tree for Long-term Survival in Metastatic Uveal Melanoma.

    PubMed

    Lorenzo, Daniel; Ochoa, María; Piulats, Josep Maria; Gutiérrez, Cristina; Arias, Luis; Català, Jaum; Grau, María; Peñafiel, Judith; Cobos, Estefanía; Garcia-Bru, Pere; Rubio, Marcos Javier; Padrón-Pérez, Noel; Dias, Bruno; Pera, Joan; Caminal, Josep Maria

    2017-12-04

    The purpose of this study was to demonstrate the existence of a bimodal survival pattern in metastatic uveal melanoma. Secondary aims were to identify the characteristics and prognostic factors associated with long-term survival and to develop a clinical decision tree. The medical records of 99 metastatic uveal melanoma patients were retrospectively reviewed. Patients were classified as either short (≤ 12 months) or long-term survivors (> 12 months) based on a graphical interpretation of the survival curve after diagnosis of the first metastatic lesion. Ophthalmic and oncological characteristics were assessed in both groups. Of the 99 patients, 62 (62.6%) were classified as short-term survivors, and 37 (37.4%) as long-term survivors. The multivariate analysis identified the following predictors of long-term survival: age ≤ 65 years (p=0.012) and unaltered serum lactate dehydrogenase levels (p=0.018); additionally, the size (smaller vs. larger) of the largest liver metastasis showed a trend towards significance (p=0.063). Based on the variables significantly associated with long-term survival, we developed a decision tree to facilitate clinical decision-making. The findings of this study demonstrate the existence of a bimodal survival pattern in patients with metastatic uveal melanoma. The presence of certain clinical characteristics at diagnosis of distant disease is associated with long-term survival. A decision tree was developed to facilitate clinical decision-making and to counsel patients about the expected course of disease.

  5. Determinants of establishment survival for residential trees in Sacramento County, CA

    Treesearch

    Lara A. Roman; John J. Battles; Joe R. McBride

    2014-01-01

    Urban forests can provide ecosystem services that motivate tree planting campaigns, and tree survival is a key element of program success and projected benefits. We studied survival in a shade tree give-away program in Sacramento, CA, monitoring a cohort of young trees for five years on single-family residential properties. We used conditional inference trees to...

  6. Effects of growth rate, size, and light availability on tree survival across life stages: a demographic analysis accounting for missing values and small sample sizes.

    PubMed

    Moustakas, Aristides; Evans, Matthew R

    2015-02-28

    Plant survival is a key factor in forest dynamics and survival probabilities often vary across life stages. Studies specifically aimed at assessing tree survival are unusual and so data initially designed for other purposes often need to be used; such data are more likely to contain errors than data collected for this specific purpose. We investigate the survival rates of ten tree species in a dataset designed to monitor growth rates. As some individuals were not included in the census at some time points we use capture-mark-recapture methods both to allow us to account for missing individuals, and to estimate relocation probabilities. Growth rates, size, and light availability were included as covariates in the model predicting survival rates. The study demonstrates that tree mortality is best described as constant between years and size-dependent at early life stages and size independent at later life stages for most species of UK hardwood. We have demonstrated that even with a twenty-year dataset it is possible to discern variability both between individuals and between species. Our work illustrates the potential utility of the method applied here for calculating plant population dynamics parameters in time replicated datasets with small sample sizes and missing individuals without any loss of sample size, and including explanatory covariates.

  7. The application of data mining techniques to oral cancer prognosis.

    PubMed

    Tseng, Wan-Ting; Chiang, Wei-Fan; Liu, Shyun-Yeu; Roan, Jinsheng; Lin, Chun-Nan

    2015-05-01

    This study adopted an integrated procedure that combines the clustering and classification features of data mining technology to determine the differences between the symptoms shown in past cases where patients died from or survived oral cancer. Two data mining tools, namely decision tree and artificial neural network, were used to analyze the historical cases of oral cancer, and their performance was compared with that of logistic regression, the popular statistical analysis tool. Both decision tree and artificial neural network models showed superiority to the traditional statistical model. However, as to clinician, the trees created by the decision tree models are relatively easier to interpret compared to that of the artificial neural network models. Cluster analysis also discovers that those stage 4 patients whose also possess the following four characteristics are having an extremely low survival rate: pN is N2b, level of RLNM is level I-III, AJCC-T is T4, and cells mutate situation (G) is moderate.

  8. D.B.H. and Survival Analysis: A New Methodology for Assessing Forest Inventory Mortality

    Treesearch

    Christopher W. Woodall; Patricia L. Grambsch; William Thomas

    2005-01-01

    Tree mortality has typically been assessed in Forest Inventory and Analysis (FIA) studies through summaries of mortality by location, species, and causal agents. Although these methods have historically been used for most of FIA's tree mortality analyses, they are inadequate for robust assessment of mortality trends and dynamics. To offer a new method of analyzing...

  9. Long-term monitoring of Sacramento Shade program trees: tree survival, growth and energy-saving performance

    Treesearch

    Yekang Ko; Jun-Hak Lee; E. Gregory McPherson; Lara A. Roman

    2015-01-01

    Long-term survival and growth of urban forests are critical to achieve the targeted benefits of urban tree planting programs, such as building energy savings from tree shade. However, little is known about how trees perform in the long-term, especially in residential areas. Given this gap in the literature, we monitored 22-years of post-planting survival, growth, and...

  10. Twenty five years long survival analysis of an individual shortleaf pine trees

    Treesearch

    Pradip Saud; Thomas B. Lynch; James M. Guldin

    2016-01-01

    A semi parametric cox proportion hazard model is preferred when censored data and survival time information is available (Kleinbaum and Klein 1996; Alison 2010). Censored data are observations that have incomplete information related to survival time or event time of interest. In repeated forest measurements, usually observations are either right censored or...

  11. Individual-tree probability of survival model for the Northeastern United States

    Treesearch

    Richard M. Teck; Donald E. Hilt

    1990-01-01

    Describes a distance-independent individual-free probability of survival model for the Northeastern United States. Survival is predicted using a sixparameter logistic function with species-specific coefficients. Coefficients are presented for 28 species groups. The model accounts for variability in annual survival due to species, tree size, site quality, and the tree...

  12. Ortholog-based screening and identification of genes related to intracellular survival.

    PubMed

    Yang, Xiaowen; Wang, Jiawei; Bing, Guoxia; Bie, Pengfei; De, Yanyan; Lyu, Yanli; Wu, Qingmin

    2018-04-20

    Bioinformatics and comparative genomics analysis methods were used to predict unknown pathogen genes based on homology with identified or functionally clustered genes. In this study, the genes of common pathogens were analyzed to screen and identify genes associated with intracellular survival through sequence similarity, phylogenetic tree analysis and the λ-Red recombination system test method. The total 38,952 protein-coding genes of common pathogens were divided into 19,775 clusters. As demonstrated through a COG analysis, information storage and processing genes might play an important role intracellular survival. Only 19 clusters were present in facultative intracellular pathogens, and not all were present in extracellular pathogens. Construction of a phylogenetic tree selected 18 of these 19 clusters. Comparisons with the DEG database and previous research revealed that seven other clusters are considered essential gene clusters and that seven other clusters are associated with intracellular survival. Moreover, this study confirmed that clusters screened by orthologs with similar function could be replaced with an approved uvrY gene and its orthologs, and the results revealed that the usg gene is associated with intracellular survival. The study improves the current understanding of intracellular pathogens characteristics and allows further exploration of the intracellular survival-related gene modules in these pathogens. Copyright © 2018. Published by Elsevier B.V.

  13. Development of Longleaf Pine Seedlings Under Parent Trees

    Treesearch

    William D. Boyer

    1963-01-01

    In southwest Alabama, unburned seedlings under overstories ranging up to 90 square feet of basal area per acre survived as well as those with no tree competition. After 7 years, milacre stocking averaged 99 percent and survival 72 percent. Growth, but not survival, improved with distance from parent trees. Seedlings under tree crowns had less brown spot than those in...

  14. Ten-year results of a ponderosa pine progeny test in the Black Hills

    Treesearch

    Wayne D. Shepperd; Sue E. McElderry

    1986-01-01

    Ten-year survival and growth of seedlings from 77 parent trees from throughout the Black Hills were compared, using a cluster-analysis technique. Five clusters were identified that account for most of the variability in survival and growth of the open-pollinated families. One cluster, containing 6 families, exhibited exceptional survival and growth. Another, containing...

  15. Small clusters of fast-growing trees enhance forest structure on restored bottomland sites

    USGS Publications Warehouse

    Twedt, D.J.

    2006-01-01

    Despite the diversity of trees in bottomland forests, restoration on bottomland sites is often initiated by planting only a few species of slow-growing, hard mast?producing trees. Although successful at establishing trees, these young forests are slow to develop vertical structure, which is a key predictor of forest bird colonization. Furthermore, when natural seed sources are few, restored sites may be depauperate in woody species. To increase richness of woody species, maximum tree height, and total stem density, I supplemented traditional plantings on each of 40 bottomland restoration sites by planting 96 Eastern cottonwood (Populus deltoides) and American sycamore (Platanus occidentalis) in eight clusters of 12 trees. First year survival of cottonwood stem cuttings (25%) and sycamore seedlings (47%) was poor, but survival increased when afforded protection from competition with weeds. After five growing seasons, 165 of these 320 supplemental tree clusters had at least one surviving tree. Vegetation surrounding surviving clusters of supplemental trees harbored a greater number of woody species, increased stem density, and greater maximum tree height than was found on paired restoration sites without supplemental trees. These increases were primarily accounted for by the supplemental trees.

  16. Supplemental planting of early successional tree species during bottomland hardwood afforestation

    USGS Publications Warehouse

    Twedt, D.J.; Wilson, R.R.; Outcalt, Kenneth W.

    2002-01-01

    Reforestation of former bottom land hardwood forests that have been cleared for agriculture (i.e., afforestation) has historically emphasized planting heavy-seeded oaks (Quercus spp.) and pecans (Carya spp.). These species are slow to develop vertical forest structure. However, vertical forest structure is key to colonization of afforested sites by forest birds. Although early-successional tree species often enhance vertical structure, few of these species invade afforested sites that are distant from seed sources. Furthermore, many land mangers are reluctant to establish and maintain stands of fast-growing plantation trees. Therefore, on 40 afforested bottomland sites, we supplemented heavy-seeded seedlings with 8 patches of fast-growing trees: 4 patches of 12 eastern cottonwood (Populus deltoides) stem cuttings and 4 patches of 12 American sycamore (Platanus occidentalis) seedlings. To enhance survival and growth, tree patches were subjected to 4 weed control treatments: (1) physical weed barriers, (2) chemical herbicide, (3) both physical and chemical weed control, or (4) no weed control. Overall, first-year survival of cottonwood and sycamore was 25 percent and 47 percent, respectively. Second-year survival of extant trees was 52 percent for cottonwood and 77 percent for sycamore. Physical weed barriers increased survival of cottonwoods to 30 percent versus 18 percent survival with no weed control. Similarly, sycamore survival was increased from 49 percent without weed control to 64 percent with physical weed barriers. Chemical weed control adversely impacted sycamore and reduced survival to 35 percent. Tree heights did not differ between species or among weed control treatments. Girdling of trees by deer often destroyed saplings. Thus, little increase in vertical structure was detected between growing seasons. Application of fertilizer and protection via tree shelters did not improve survival or vertical development of sycamore or cottonwood.

  17. A stochastic multiple imputation algorithm for missing covariate data in tree-structured survival analysis.

    PubMed

    Wallace, Meredith L; Anderson, Stewart J; Mazumdar, Sati

    2010-12-20

    Missing covariate data present a challenge to tree-structured methodology due to the fact that a single tree model, as opposed to an estimated parameter value, may be desired for use in a clinical setting. To address this problem, we suggest a multiple imputation algorithm that adds draws of stochastic error to a tree-based single imputation method presented by Conversano and Siciliano (Technical Report, University of Naples, 2003). Unlike previously proposed techniques for accommodating missing covariate data in tree-structured analyses, our methodology allows the modeling of complex and nonlinear covariate structures while still resulting in a single tree model. We perform a simulation study to evaluate our stochastic multiple imputation algorithm when covariate data are missing at random and compare it to other currently used methods. Our algorithm is advantageous for identifying the true underlying covariate structure when complex data and larger percentages of missing covariate observations are present. It is competitive with other current methods with respect to prediction accuracy. To illustrate our algorithm, we create a tree-structured survival model for predicting time to treatment response in older, depressed adults. Copyright © 2010 John Wiley & Sons, Ltd.

  18. Weathering the storm: how lodgepole pine trees survive mountain pine beetle outbreaks.

    PubMed

    Erbilgin, Nadir; Cale, Jonathan A; Hussain, Altaf; Ishangulyyeva, Guncha; Klutsch, Jennifer G; Najar, Ahmed; Zhao, Shiyang

    2017-06-01

    Recent mountain pine beetle outbreaks in western North America killed millions of lodgepole pine trees, leaving few survivors. However, the mechanism underlying the ability of trees to survive bark beetle outbreaks is unknown, but likely involve phytochemicals such as monoterpenes and fatty acids that can drive beetle aggregation and colonization on their hosts. Thus, we conducted a field survey of beetle-resistant lodgepole pine (Pinus contorta) trees to retrospectively deduce whether these phytochemicals underlie their survival by comparing their chemistry to that of non-attacked trees in the same stands. We also compared beetle attack characteristics between resistant and beetle-killed trees. Beetle-killed trees had more beetle attacks and longer ovipositional galleries than resistant trees, which also lacked the larval establishment found in beetle-killed trees. Resistant trees contained high amounts of toxic and attraction-inhibitive compounds and low amounts of pheromone-precursor and synergist compounds. During beetle host aggregation and colonization, these compounds likely served three critical roles in tree survival. First, low amounts of pheromone-precursor (α-pinene) and synergist (mycrene, terpinolene) compounds reduced or prevented beetles from attracting conspecifics to residual trees. Second, high amounts of 4-allyanisole further inhibited beetle attraction to its pheromone. Finally, high amounts of toxic limonene, 3-carene, 4-allyanisole, α-linolenic acid, and linoleic acid inhibited beetle gallery establishment and oviposition. We conclude that the variation of chemotypic expression of local plant populations can have profound ecological consequences including survival during insect outbreaks.

  19. Enrolment Management in Graduate Business Programs: Predicting Student Retention

    ERIC Educational Resources Information Center

    Eshghi, Abdoloreza; Haughton, Dominique; Li, Mingfei; Senne, Linda; Skaletsky, Maria; Woolford, Sam

    2011-01-01

    The increasing competition for graduate students among business schools has resulted in a greater emphasis on graduate business student retention. In an effort to address this issue, the current article uses survival analysis, decision trees and TreeNet® to identify factors that can be used to identify students who are at risk of dropping out of a…

  20. Mortality predictions of fire-injured large Douglas-fir and ponderosa pine in Oregon and Washington, USA

    Treesearch

    Lisa M. Ganio; Robert A. Progar

    2017-01-01

    Wild and prescribed fire-induced injury to forest trees can produce immediate or delayed tree mortality but fire-injured trees can also survive. Land managers use logistic regression models that incorporate tree-injury variables to discriminate between fatally injured trees and those that will survive. We used data from 4024 ponderosa pine (Pinus ponderosa...

  1. Terpenoid Variations within and among Half-Sibling Avocado Trees, Persea americana Mill. (Lauraceae)

    PubMed Central

    Niogret, Jerome; Epsky, Nancy D.; Schnell, Raymond J.; Boza, Edward J.; Kendra, Paul E.; Heath, Robert R.

    2013-01-01

    Chemical analyses were conducted to determine the qualitative and quantitative differences in monoterpenes and sesquiterpenes in plant material from avocado trees, Persea americana Mill. (Lauraceae). The initial study analyzed plant material sampled from the trunk to the leaves through different branch diameters to quantify proximo-distal spatial differences within a tree. All trees were seedlings initiated from a single maternal tree. Two-way analysis of variance was conducted on 34 chemicals that comprised at least 3% of the total chemical content of at least one tree and/or location within a tree. There were significant interactions between genotype and location sampled for most chemicals. Parentage analysis using microsatellite molecular markers (SSR's) determined that the four trees had three fathers and that they represented two full-siblings and two half-sibling trees. Descriptive discriminant analysis found that both genotype and location within a tree could be separated based on chemical content, and that the chemical content from full-siblings tended to be more similar than chemical content from half-siblings. To further explore the relationship between genetic background and chemical content, samples were analyzed from leaf material from 20 trees that included two sets of full-sibling seedling trees, the maternal tree and the surviving paternal tree. Descriptive discriminant analysis found good separation between the two full-sibling groups, and that the separation was associated with chemistry of the parental trees. Six groups of chemicals were identified that explained the variation among the trees. We discuss the results in relation to the discrimination process used by wood-boring insects for site-selection on host trees, for tree selection among potential host trees, and the potential use of terpenoid chemical content in chemotaxonomy of avocado trees. PMID:24039994

  2. Terpenoid variations within and among half-sibling avocado trees, Persea americana Mill. (Lauraceae).

    PubMed

    Niogret, Jerome; Epsky, Nancy D; Schnell, Raymond J; Boza, Edward J; Kendra, Paul E; Heath, Robert R

    2013-01-01

    Chemical analyses were conducted to determine the qualitative and quantitative differences in monoterpenes and sesquiterpenes in plant material from avocado trees, Persea americana Mill. (Lauraceae). The initial study analyzed plant material sampled from the trunk to the leaves through different branch diameters to quantify proximo-distal spatial differences within a tree. All trees were seedlings initiated from a single maternal tree. Two-way analysis of variance was conducted on 34 chemicals that comprised at least 3% of the total chemical content of at least one tree and/or location within a tree. There were significant interactions between genotype and location sampled for most chemicals. Parentage analysis using microsatellite molecular markers (SSR's) determined that the four trees had three fathers and that they represented two full-siblings and two half-sibling trees. Descriptive discriminant analysis found that both genotype and location within a tree could be separated based on chemical content, and that the chemical content from full-siblings tended to be more similar than chemical content from half-siblings. To further explore the relationship between genetic background and chemical content, samples were analyzed from leaf material from 20 trees that included two sets of full-sibling seedling trees, the maternal tree and the surviving paternal tree. Descriptive discriminant analysis found good separation between the two full-sibling groups, and that the separation was associated with chemistry of the parental trees. Six groups of chemicals were identified that explained the variation among the trees. We discuss the results in relation to the discrimination process used by wood-boring insects for site-selection on host trees, for tree selection among potential host trees, and the potential use of terpenoid chemical content in chemotaxonomy of avocado trees.

  3. Delayed mortality of eastern hardwoods after prescribed fire

    Treesearch

    Daniel A. Yaussy; Thomas A. Waldrop

    2010-01-01

    The Southern Appalachian Mountain and the Ohio Hills sites of the National Fire and Fire Surrogate Study are located in hardwood dominated forests. Mortality of trees was anticipated the first year after burning but it continued for up to 4 years after burning, which was not expected. Survival analysis showed that the likelihood of mortality was related to prior tree...

  4. Tree survival and growth on fescue-covered spoil banks

    Treesearch

    William T. Plass

    1968-01-01

    In spoil-bank revegetation the emphasis today is on site protection. Quick cover crops overplanted to trees or shrubs are recommended on many sites. In this study we tried to determine how an established fescue cover affects tree survival and growth. We found the ground cover did not affect survival but did reduce the height growth of sycamore and sweetgum. It had...

  5. Pinyon and juniper encroachment into sagebrush ecosystems impacts distribution and survival of greater sage-grouse

    USGS Publications Warehouse

    Coates, Peter S.; Prochazka, Brian; Ricca, Mark; Gustafson, K. Ben; Ziegler, Pilar T.; Casazza, Michael L.

    2017-01-01

    In sagebrush (Artemisia spp.) ecosystems, encroachment of pinyon (Pinus spp.) and juniper (Juniperus spp.; hereafter, “pinyon-juniper”) trees has increased dramatically since European settlement. Understanding the impacts of this encroachment on behavioral decisions, distributions, and population dynamics of greater sage-grouse (Centrocercus urophasianus) and other sagebrush obligate species could help benefit sagebrush ecosystem management actions. We employed a novel two-stage Bayesian model that linked avoidance across different levels of pinyon-juniper cover to sage-grouse survival. Our analysis relied on extensive telemetry data collected across 6 yr and seven subpopulations within the Bi-State Distinct Population Segment (DPS), on the border of Nevada and California. The first model stage indicated avoidance behavior for all canopy cover classes on average, but individual grouse exhibited a high degree of heterogeneity in avoidance behavior of the lowest cover class (e.g., scattered isolated trees). The second stage modeled survival as a function of estimated avoidance parameters and indicated increased survival rates for individuals that exhibited avoidance of the lowest cover class. A post hoc frailty analysis revealed the greatest increase in hazard (i.e., mortality risk) occurred in areas with scattered isolated trees consisting of relatively high primary plant productivity. Collectively, these results provide clear evidence that local sage-grouse distributions and demographic rates are influenced by pinyon-juniper, especially in habitats with higher primary productivity but relatively low and seemingly benign tree cover. Such areas may function as ecological traps that convey attractive resources but adversely affect population vital rates. To increase sage-grouse survival, our model predictions support reducing actual pinyon-juniper cover as low as 1.5%, which is lower than the published target of 4.0%. These results may represent effects of pinyon-juniper cover in areas with similar ecological conditions to those of the Bi-State DPS, where populations occur at relatively high elevations and pinyon-juniper is abundant and widespread.

  6. Site Preparation For Intensively Cultured Hybrid Poplar Plantations

    Treesearch

    Edward Hansen; Daniel Netzer; W.J. Rietveld

    1984-01-01

    Five site preparation treatments consisting of combinations of tillage, contact herbicide (glyphosate), and pre-emergent herbicide (linuron) were tested for their effects on tree survival and growth. Treatments had little effect on tree survival, but effects on second-year-tree height were significant and additive -- i.e., tree height increased as the number of types...

  7. Decision tree analysis in subarachnoid hemorrhage: prediction of outcome parameters during the course of aneurysmal subarachnoid hemorrhage using decision tree analysis.

    PubMed

    Hostettler, Isabel Charlotte; Muroi, Carl; Richter, Johannes Konstantin; Schmid, Josef; Neidert, Marian Christoph; Seule, Martin; Boss, Oliver; Pangalu, Athina; Germans, Menno Robbert; Keller, Emanuela

    2018-01-19

    OBJECTIVE The aim of this study was to create prediction models for outcome parameters by decision tree analysis based on clinical and laboratory data in patients with aneurysmal subarachnoid hemorrhage (aSAH). METHODS The database consisted of clinical and laboratory parameters of 548 patients with aSAH who were admitted to the Neurocritical Care Unit, University Hospital Zurich. To examine the model performance, the cohort was randomly divided into a derivation cohort (60% [n = 329]; training data set) and a validation cohort (40% [n = 219]; test data set). The classification and regression tree prediction algorithm was applied to predict death, functional outcome, and ventriculoperitoneal (VP) shunt dependency. Chi-square automatic interaction detection was applied to predict delayed cerebral infarction on days 1, 3, and 7. RESULTS The overall mortality was 18.4%. The accuracy of the decision tree models was good for survival on day 1 and favorable functional outcome at all time points, with a difference between the training and test data sets of < 5%. Prediction accuracy for survival on day 1 was 75.2%. The most important differentiating factor was the interleukin-6 (IL-6) level on day 1. Favorable functional outcome, defined as Glasgow Outcome Scale scores of 4 and 5, was observed in 68.6% of patients. Favorable functional outcome at all time points had a prediction accuracy of 71.1% in the training data set, with procalcitonin on day 1 being the most important differentiating factor at all time points. A total of 148 patients (27%) developed VP shunt dependency. The most important differentiating factor was hyperglycemia on admission. CONCLUSIONS The multiple variable analysis capability of decision trees enables exploration of dependent variables in the context of multiple changing influences over the course of an illness. The decision tree currently generated increases awareness of the early systemic stress response, which is seemingly pertinent for prognostication.

  8. Tree shelters fail to enhance height growth of northern red oak in the upper peninsula of Michigan

    Treesearch

    Douglas O. Lantagne; Raymond Miller

    1997-01-01

    Tree shelters have been shown to be a questionable establishment practice in shelterwood stands. Experiences with low seedling survival and growth may be due to an apparent deficiency of light. In other situations, tree shelters have generally been found to be beneficial in enhancing survival and growth of hardwood plantings. This poster will describe the poor survival...

  9. Green Islands - nutrition not predation -an alternative hypothesis.

    PubMed

    White, T C R

    1985-10-01

    Mountain birch trees are said to survive as "green islands" around nests of red ants in Finnish Lapland because the ants kill larvae which would defoliate trees during outbreaks of the moth O. autumnata. An alternative hypothesis says that because the ants will concentrate soil nutrients (and possibly ameliorate soil moisture and temperature) in and around their nests, they provide a more favourable site for trees growing nearby. These trees are therefore less stressed and a poorer source of food for defoliators at times of outbreaks. Few if any young O. autumnata larvae survive on the trees which then survive in green islands around ant nests.

  10. Adult tree swallow survival on the polychlorinated biphenyl-contaminated Hudson River, New York, USA, between 2006 and 2010

    USGS Publications Warehouse

    Custer, Christine M.; Custer, Thomas W.; Hines, James E.

    2012-01-01

    The upper Hudson River basin in east central New York, USA, is highly contaminated, primarily with polychlorinated biphenyls (PCBs). Reduced adult survival has been documented in tree swallows (Tachycineta bicolor) at a similarly PCB-contaminated river system in western Massachusetts. The purpose of the present study was to assess whether adult survival of tree swallows was likewise affected in the Hudson River basin. Between 2006 and 2010, a total of 521 female tree swallows were banded, of which 148 were retrapped at least once. The authors used Program MARK and an information theoretic approach to test the hypothesis that PCB contamination reduced annual survival of female tree swallows. The model that best described the processes that generated the capture history data included covariate effects of year and female plumage coloration on survival but not PCB/river. Annual survival rates of brown-plumaged females (mostly one year old) were generally lower (mean phi = 0.39) than those of blue-plumaged females (mean phi = 0.50, one year or older). Poor early spring weather in 2007 was associated with reduced survival in both plumage-color groups compared to later years. Models with the effects of PCB exposure on survival (all ΔAICc values >5.0) received little support.

  11. Mapping the occurrence of tree damage in the forests of the northern United States

    Treesearch

    Randall S. Morin; Scott A. Pugh; Jim. Steinman

    2016-01-01

    The U.S. Forest Service Forest Inventory and Analysis Program uses visual inspections of trees from bottom to top to record damage that is likely to prevent survival, reduce growth, or hinder capability to produce marketable products. This report describes the types of damage and occurrence as measured across the 24-state northern region between 2009 and 2013....

  12. Effects of local biotic neighbors and habitat heterogeneity on tree and shrub seedling survival in an old-growth temperate forest.

    PubMed

    Bai, Xuejiao; Queenborough, Simon A; Wang, Xugao; Zhang, Jian; Li, Buhang; Yuan, Zuoqiang; Xing, Dingliang; Lin, Fei; Ye, Ji; Hao, Zhanqing

    2012-11-01

    Seedling dynamics play a crucial role in determining species distributions and coexistence. Exploring causes of variation in seedling dynamics can therefore provide key insights into the factors affecting these phenomena. We examined the relative importance of biotic neighborhood processes and habitat heterogeneity using survival data for 5,827 seedlings in 39 tree and shrub species over 2 years from an old-growth temperate forest in northeastern China. We found significant negative density-dependence effects on survival of tree seedlings, and limited effects of habitat heterogeneity (edaphic and topographic variables) on survival of shrub seedlings. The importance of negative density dependence on young tree seedling survival was replaced by habitat in tree seedlings ≥ 4 years old. As expected, negative density dependence was more apparent in gravity-dispersed species compared to wind-dispersed and animal-dispersed species. Moreover, we found that a community compensatory trend existed for trees. Therefore, although negative density dependence was not as pervasive as in other forest communities, it is an important mechanism for the maintenance of community diversity in this temperate forest. We conclude that both negative density dependence and habitat heterogeneity drive seedling survival, but their relative importance varies with seedling age classes and species traits.

  13. Intratumoral heterogeneity analysis reveals hidden associations between protein expression losses and patient survival in clear cell renal cell carcinoma

    PubMed Central

    Devarajan, Karthik; Parsons, Theodore; Wang, Qiong; O'Neill, Raymond; Solomides, Charalambos; Peiper, Stephen C.; Testa, Joseph R.; Uzzo, Robert; Yang, Haifeng

    2017-01-01

    Intratumoral heterogeneity (ITH) is a prominent feature of kidney cancer. It is not known whether it has utility in finding associations between protein expression and clinical parameters. We used ITH that is detected by immunohistochemistry (IHC) to aid the association analysis between the loss of SWI/SNF components and clinical parameters.160 ccRCC tumors (40 per tumor stage) were used to generate tissue microarray (TMA). Four foci from different regions of each tumor were selected. IHC was performed against PBRM1, ARID1A, SETD2, SMARCA4, and SMARCA2. Statistical analyses were performed to correlate biomarker losses with patho-clinical parameters. Categorical variables were compared between groups using Fisher's exact tests. Univariate and multivariable analyses were used to correlate biomarker changes and patient survivals. Multivariable analyses were performed by constructing decision trees using the classification and regression trees (CART) methodology. IHC detected widespread ITH in ccRCC tumors. The statistical analysis of the “Truncal loss” (root loss) found additional correlations between biomarker losses and tumor stages than the traditional “Loss in tumor (total)”. Losses of SMARCA4 or SMARCA2 significantly improved prognosis for overall survival (OS). Losses of PBRM1, ARID1A or SETD2 had the opposite effect. Thus “Truncal Loss” analysis revealed hidden links between protein losses and patient survival in ccRCC. PMID:28445125

  14. The influence of climatic variability on local population dynamics of Cercidium microphyllum (foothill paloverde)

    USGS Publications Warehouse

    Bowers, Janice E.; Turner, R.M.

    2002-01-01

    This study investigated correlations among climatic variability, population age structure, and seedling survival of a dominant Sonoran Desert tree, Cercidium microphyllum (foothill paloverde), at Tucson, Arizona, USA. A major goal was to determine whether wet years promote seedling establishment and thereby determine population structure. Plant age was estimated from basal circumference for a sample of 980 living and dead trees in twelve 0.5-ha plots. Ages ranged from 1 to 181 years. Age frequency distribution showed that the population is in decline. Most (51.2%) of the 814 living trees were 40-80 years old; only 6.5% were younger than 20 years. The average age of the 166 dead trees was 78 years. Fifty-nine percent of dead trees were aged 60-100 years. Survival of newly emerged seedlings was monitored for 7 years in a 557-m2 permanent plot. Mean survival in the 1st year of life was 1.7%. Only 2 of 1,008 seedlings lived longer than 1 year. Length of survival was not correlated with rainfall. Residual regeneration, an index of the difference between predicted and observed cohort size, showed that regeneration was high during the first half of the twentieth century and poor after the mid-1950s. Trends in regeneration did not reflect interannual variation in seasonal temperature or rain before 1950, that is, in the years before urban warming. Taken together, the seedling study and the regeneration analysis suggest that local population dynamics reflect biotic factors to such an extent that population age structure might not always be a reliable clue to past climatic influences.

  15. Individual traits as determinants of time to death under extreme drought in Pinus sylvestris L.

    PubMed

    Garcia-Forner, Núria; Sala, Anna; Biel, Carme; Savé, Robert; Martínez-Vilalta, Jordi

    2016-10-01

    Plants exhibit a variety of drought responses involving multiple interacting traits and processes, which makes predictions of drought survival challenging. Careful evaluation of responses within species, where individuals share broadly similar drought resistance strategies, can provide insight into the relative importance of different traits and processes. We subjected Pinus sylvestris L. saplings to extreme drought (no watering) leading to death in a greenhouse to (i) determine the relative effect of predisposing factors and responses to drought on survival time, (ii) identify and rank the importance of key predictors of time to death and (iii) compare individual characteristics of dead and surviving trees sampled concurrently. Time until death varied over 3 months among individual trees (from 29 to 147 days). Survival time was best predicted (higher explained variance and impact on the median survival time) by variables related to carbon uptake and carbon/water economy before and during drought. Trees with higher concentrations of monosaccharides before the beginning of the drought treatment and with higher assimilation rates prior to and during the treatment survived longer (median survival time increased 25-70 days), even at the expense of higher water loss. Dead trees exhibited less than half the amount of nonstructural carbohydrates (NSCs) in branches, stem and relative to surviving trees sampled concurrently. Overall, our results indicate that the maintenance of carbon assimilation to prevent acute depletion of NSC content above some critical level appears to be the main factor explaining survival time of P. sylvestris trees under extreme drought. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Survival of emerald ash borer in chips

    Treesearch

    Deborah G. McCullough; Therese M. Poland; David L. Cappaert

    2005-01-01

    The ability of emerald ash borer (EAB), Agrilus planipennis Fairmaire, to survive following chipping or grinding of infested ash trees remains a critical question for regulatory officials. In October 2002, we felled eight infested ash trees and sampled sections of the trunk and large branches from each tree to estimate EAB density.

  17. Bark flammability as a fire-response trait for subalpine trees

    PubMed Central

    Frejaville, Thibaut; Curt, Thomas; Carcaillet, Christopher

    2013-01-01

    Relationships between the flammability properties of a given plant and its chances of survival after a fire still remain unknown. We hypothesize that the bark flammability of a tree reduces the potential for tree survival following surface fires, and that if tree resistance to fire is provided by a thick insulating bark, the latter must be few flammable. We test, on subalpine tree species, the relationship between the flammability of bark and its insulating ability, identifies the biological traits that determine bark flammability, and assesses their relative susceptibility to surface fires from their bark properties. The experimental set of burning properties was analyzed by Principal Component Analysis to assess the bark flammability. Bark insulating ability was expressed by the critical time to cambium kill computed from bark thickness. Log-linear regressions indicated that bark flammability varies with the bark thickness and the density of wood under bark and that the most flammable barks have poor insulating ability. Susceptibility to surface fires increases from gymnosperm to angiosperm subalpine trees. The co-dominant subalpine species Larix decidua (Mill.) and Pinus cembra (L.) exhibit large differences in both flammability and insulating ability of the bark that should partly explain their contrasted responses to fires in the past. PMID:24324473

  18. Polymorphisms of LIG4, BTBD2, HMGA2, and RTEL1 Genes Involved in the Double-Strand Break Repair Pathway Predict Glioblastoma Survival

    PubMed Central

    Liu, Yanhong; Shete, Sanjay; Etzel, Carol J.; Scheurer, Michael; Alexiou, George; Armstrong, Georgina; Tsavachidis, Spyros; Liang, Fu-Wen; Gilbert, Mark; Aldape, Ken; Armstrong, Terri; Houlston, Richard; Hosking, Fay; Robertson, Lindsay; Xiao, Yuanyuan; Wiencke, John; Wrensch, Margaret; Andersson, Ulrika; Melin, Beatrice S.; Bondy, Melissa

    2010-01-01

    Purpose Glioblastoma (GBM) is the most common and aggressive type of glioma and has the poorest survival. However, a small percentage of patients with GBM survive well beyond the established median. Therefore, identifying the genetic variants that influence this small number of unusually long-term survivors may provide important insight into tumor biology and treatment. Patients and Methods Among 590 patients with primary GBM, we evaluated associations of survival with the 100 top-ranking glioma susceptibility single nucleotide polymorphisms from our previous genome-wide association study using Cox regression models. We also compared differences in genetic variation between short-term survivors (STS; ≤ 12 months) and long-term survivors (LTS; ≥ 36 months), and explored classification and regression tree analysis for survival data. We tested results using two independent series totaling 543 GBMs. Results We identified LIG4 rs7325927 and BTBD2 rs11670188 as predictors of STS in GBM and CCDC26 rs10464870 and rs891835, HMGA2 rs1563834, and RTEL1 rs2297440 as predictors of LTS. Further survival tree analysis revealed that patients ≥ 50 years old with LIG4 rs7325927 (V) had the worst survival (median survival time, 1.2 years) and exhibited the highest risk of death (hazard ratio, 17.53; 95% CI, 4.27 to 71.97) compared with younger patients with combined RTEL1 rs2297440 (V) and HMGA2 rs1563834 (V) genotypes (median survival time, 7.8 years). Conclusion Polymorphisms in the LIG4, BTBD2, HMGA2, and RTEL1 genes, which are involved in the double-strand break repair pathway, are associated with GBM survival. PMID:20368557

  19. Polymorphisms of LIG4, BTBD2, HMGA2, and RTEL1 genes involved in the double-strand break repair pathway predict glioblastoma survival.

    PubMed

    Liu, Yanhong; Shete, Sanjay; Etzel, Carol J; Scheurer, Michael; Alexiou, George; Armstrong, Georgina; Tsavachidis, Spyros; Liang, Fu-Wen; Gilbert, Mark; Aldape, Ken; Armstrong, Terri; Houlston, Richard; Hosking, Fay; Robertson, Lindsay; Xiao, Yuanyuan; Wiencke, John; Wrensch, Margaret; Andersson, Ulrika; Melin, Beatrice S; Bondy, Melissa

    2010-05-10

    Glioblastoma (GBM) is the most common and aggressive type of glioma and has the poorest survival. However, a small percentage of patients with GBM survive well beyond the established median. Therefore, identifying the genetic variants that influence this small number of unusually long-term survivors may provide important insight into tumor biology and treatment. Among 590 patients with primary GBM, we evaluated associations of survival with the 100 top-ranking glioma susceptibility single nucleotide polymorphisms from our previous genome-wide association study using Cox regression models. We also compared differences in genetic variation between short-term survivors (STS; or= 36 months), and explored classification and regression tree analysis for survival data. We tested results using two independent series totaling 543 GBMs. We identified LIG4 rs7325927 and BTBD2 rs11670188 as predictors of STS in GBM and CCDC26 rs10464870 and rs891835, HMGA2 rs1563834, and RTEL1 rs2297440 as predictors of LTS. Further survival tree analysis revealed that patients >or= 50 years old with LIG4 rs7325927 (V) had the worst survival (median survival time, 1.2 years) and exhibited the highest risk of death (hazard ratio, 17.53; 95% CI, 4.27 to 71.97) compared with younger patients with combined RTEL1 rs2297440 (V) and HMGA2 rs1563834 (V) genotypes (median survival time, 7.8 years). Polymorphisms in the LIG4, BTBD2, HMGA2, and RTEL1 genes, which are involved in the double-strand break repair pathway, are associated with GBM survival.

  20. Long-term benefits to the growth of ponderosa pines from controlling southwestern pine tip moth (Lepidoptera: Tortricidae) and weeds.

    PubMed

    Wagner, Michael R; Chen, Zhong

    2004-12-01

    The southwestern pine tip moth, Rhyacionia neomexicana (Dyar) (Lepidoptera: Tortricidae), is a native forest pest that attacks seedlings and saplings of ponderosa pine, Pinus ponderosa Dougl. ex Laws, in the southwestern United States. Repeated attacks can cause severe deformation of host trees and significant long-term growth loss. Alternatively, effective control of R. neomexicana, vegetative competition, or both in young pine plantations may increase survival and growth of trees for many years after treatments are applied. We test the null hypothesis that 4 yr of R. neomexicana and weed control with insecticide, weeding, and insecticide plus weeding would not have any residual effect on survival and growth of trees in ponderosa pine plantation in northern Arizona 14 yr post-treatment, when the trees were 18 yr old. Both insecticide and weeding treatment increased tree growth and reduced the incidence of southwestern pine tip moth damage compared with the control. However, weeding alone also significantly increased tree survival, whereas insecticide alone did not. The insecticide plus weeding treatment had the greatest tree growth and survival, and the lowest rate of tip moth damage. Based on these results, we rejected our null hypothesis and concluded that there were detectable increases in the survival and growth of ponderosa pines 14 yr after treatments applied to control R. neomexicana and weeds.

  1. A neighborhood analysis of the consequences of Quercus suber decline for regeneration dynamics in Mediterranean forests.

    PubMed

    Ibáñez, Beatriz; Gómez-Aparicio, Lorena; Stoll, Peter; Ávila, José M; Pérez-Ramos, Ignacio M; Marañón, Teodoro

    2015-01-01

    In forests, the vulnerable seedling stage is largely influenced by the canopy, which modifies the surrounding environment. Consequently, any alteration in the characteristics of the canopy, such as those promoted by forest dieback, might impact regeneration dynamics. Our work analyzes the interaction between canopy neighbors and seedlings in Mediterranean forests affected by the decline of their dominant species (Quercus suber). Our objective was to understand how the impacts of neighbor trees and shrubs on recruitment could affect future dynamics of these declining forests. Seeds of the three dominant tree species (Quercus suber, Olea europaea and Quercus canariensis) were sown in six sites during two consecutive years. Using a spatially-explicit, neighborhood approach we developed models that explained the observed spatial variation in seedling emergence, survival, growth and photochemical efficiency as a function of the size, identity, health, abundance and distribution of adult trees and shrubs in the neighborhood. We found strong neighborhood effects for all the performance estimators, particularly seedling emergence and survival. Tree neighbors positively affected emergence, independently of species identity or health. Alternatively, seedling survival was much lower in neighborhoods dominated by defoliated and dead Q. suber trees than in neighborhoods dominated by healthy trees. For the two oak species, these negative effects were consistent over the three years of the experimental seedlings. These results indicate that ongoing changes in species' relative abundance and canopy trees' health might alter the successional trajectories of Mediterranean oak-forests through neighbor-specific impacts on seedlings. The recruitment failure of dominant late-successional oaks in the gaps opened after Q. suber death would indirectly favor the establishment of other coexisting woody species, such as drought-tolerant shrubs. This could lead current forests to shift into open systems with lower tree cover. Adult canopy decline would therefore represent an additional factor threatening the recruitment of Quercus forests worldwide.

  2. Juniper seed sources in the Great Plains

    Treesearch

    Richard A. Cunningham; Rudy M. King

    2000-01-01

    At age 10, 100% of eastern redcedar ( L.) and Rocky Mountain juniper ( Sarg.) trees from several seed sources throughout the Great Plains had survived. Seed sources from southeastern Texas had the poorest survival. Eastern redcedar trees from Kansas seed sources grew tallest, and trees from Montana and southeastern Texas seed sources were the shortest. Rocky Mountain...

  3. Spatial aspects of tree mortality strongly differ between young and old-growth forests.

    PubMed

    Larson, Andrew J; Lutz, James A; Donato, Daniel C; Freund, James A; Swanson, Mark E; HilleRisLambers, Janneke; Sprugel, Douglas G; Franklin, Jerry F

    2015-11-01

    Rates and spatial patterns of tree mortality are predicted to change during forest structural development. In young forests, mortality should be primarily density dependent due to competition for light, leading to an increasingly spatially uniform pattern of surviving trees. In contrast, mortality in old-growth forests should be primarily caused by contagious and spatially autocorrelated agents (e.g., insects, wind), causing spatial aggregation of surviving trees to increase through time. We tested these predictions by contrasting a three-decade record of tree mortality from replicated mapped permanent plots located in young (< 60-year-old) and old-growth (> 300-year-old) Abies amabilis forests. Trees in young forests died at a rate of 4.42% per year, whereas trees in old-growth forests died at 0.60% per year. Tree mortality in young forests was significantly aggregated, strongly density dependent, and caused live tree patterns to become more uniform through time. Mortality in old-growth forests was spatially aggregated, but was density independent and did not change the spatial pattern of surviving trees. These results extend current theory by demonstrating that density-dependent competitive mortality leading to increasingly uniform tree spacing in young forests ultimately transitions late in succession to a more diverse tree mortality regime that maintains spatial heterogeneity through time.

  4. Seedling survival and growth of three forest tree species: The role of spatial heterogeneity

    Treesearch

    Brian Beckage; James S. Clark

    2003-01-01

    Spatial heterogeneity in microenvironments may provide unique regeneration niches for trees and may promote forest diversity. We examined how heterogeneity in understory cover, mineral nutrients, and moisture and their interactions with canopy gaps contribute to the coexistence of three common, co-occuring tree species. We measured survival and height growth of 1080...

  5. Five-year results of a ponderosa pine provenance study in the Black Hills

    Treesearch

    James L. Van Deusen

    1974-01-01

    Survival and height growth data were collected after five field growing seasons from ponderosa pine progeny representing 75 provenances of natural stands in the Great Plains and Northern Rockies. Results showed that trees from no other provenance survived significantly better or grew significantly taller than trees from the Black Hills. Trees from southern Colorado,...

  6. Emerald ash borer biocontrol in ash saplings: The potential for early stage recovery of North American ash trees

    Treesearch

    Jian J. Duan; Leah S. Bauer; Roy G. Van Driesche

    2017-01-01

    In many parts of North America, ash (Fraxinus) stands have been reduced by the emerald ash borer (Agrilus planipennis) invasion to a few surviving mature trees, saplings, basal sprouts, and seedlings. Without a soil seed bank for Fraxinus spp., tree recovery will require survival and maturation of these...

  7. Diameter Growth, Survival, and Volume Estimates for Missouri Trees

    Treesearch

    Stephen R. Shifley; W. Brad Smith

    1982-01-01

    Measurements of more than 20,000 Missouri trees were summarized by species and diameter class into tables of mean annual diameter growth, annual probability of survival, net cubic foot volume, and net board foot volume. In the absence of better forecasting techniques, this information can be utilized to project short-term changes for Missouri trees, inventory plots,...

  8. Survival results of a biomass planting in the Missouri River floodplain

    Treesearch

    W. D. ' Dusty' Walter; John P. Dwyer

    2003-01-01

    A factor essential to successful tree planting in unprotected floodplain environments is survival. Two-year survival results from tree planting in an unprotected floodplain adjacent to the Missouri River are presented. Species planted included silver maple, locally collected cottonwood, and a superior cottonwood selection from Westvaco Corporation. Two spacings, 4 x 4...

  9. Survival, mortality, and predators of red tree voles (Arborimus longicaudus)

    Treesearch

    James K. Swingle; Eric D. Forsman; Robert G. Anthony

    2010-01-01

    Although estimations of vital rates are important to understand population dynamics of small mammals, there is little information on survival rates and causes of mortality for many species. In 2002-2003, we estimated monthly and annual survival of 50 radiocollared red tree voles (Arborimus longicaudus) during a study of movements and diel activity...

  10. Size Matters a Lot: Drought-Affected Italian Oaks Are Smaller and Show Lower Growth Prior to Tree Death.

    PubMed

    Colangelo, Michele; Camarero, Jesús J; Borghetti, Marco; Gazol, Antonio; Gentilesca, Tiziana; Ripullone, Francesco

    2017-01-01

    Hydraulic theory suggests that tall trees are at greater risk of drought-triggered death caused by hydraulic failure than small trees. In addition the drop in growth, observed in several tree species prior to death, is often interpreted as an early-warning signal of impending death. We test these hypotheses by comparing size, growth, and wood-anatomy patterns of living and now-dead trees in two Italian oak forests showing recent mortality episodes. The mortality probability of trees is modeled as a function of recent growth and tree size. Drift-diffusion-jump (DDJ) metrics are used to detect early-warning signals. We found that the tallest trees of the anisohydric Italian oak better survived drought contrary to what was predicted by the theory. Dead trees were characterized by a lower height and radial-growth trend than living trees in both study sites. The growth reduction of now-dead trees started about 10 years prior to their death and after two severe spring droughts during the early 2000s. This critical transition in growth was detected by DDJ metrics in the most affected site. Dead trees were also more sensitive to drought stress in this site indicating different susceptibility to water shortage between trees. Dead trees did not form earlywood vessels with smaller lumen diameter than surviving trees but tended to form wider latewood vessels with a higher percentage of vessel area. Since living and dead trees showed similar competition we did not expect that moderate thinning and a reduction in tree density would increase the short-term survival probability of trees.

  11. Functional polymorphisms of circadian negative feedback regulation genes are associated with clinical outcome in hepatocellular carcinoma patients receiving radical resection.

    PubMed

    Zhang, Zhaohui; Ma, Fei; Zhou, Feng; Chen, Yibing; Wang, Xiaoyan; Zhang, Hongxin; Zhu, Yong; Bi, Jianwei; Zhang, Yiguan

    2014-12-01

    Previous studies have demonstrated that circadian negative feedback loop genes play an important role in the development and progression of many cancers. However, the associations between single-nucleotide polymorphisms (SNPs) in these genes and the clinical outcomes of hepatocellular carcinoma (HCC) after surgical resection have not been studied so far. Thirteen functional SNPs in circadian genes were genotyped using the Sequenom iPLEX genotyping system in a cohort of 489 Chinese HCC patients who received radical resection. Multivariate Cox proportional hazards model and Kaplan-Meier curve were used for the prognosis analysis. Cumulative effect analysis and survival tree analysis were used for the multiple SNPs analysis. Four individual SNPs, including rs3027178 in PER1, rs228669 and rs2640908 in PER3 and rs3809236 in CRY1, were significantly associated with overall survival (OS) of HCC patients, and three SNPs, including rs3027178 in PER1, rs228729 in PER3 and rs3809236 in CRY1, were significantly associated with recurrence-free survival (RFS). Moreover, we observed a cumulative effect of significant SNPs on OS and RFS (P for trend < 0.001 for both). Survival tree analysis indicated that wild genotype of rs228729 in PER3 was the primary risk factor contributing to HCC patients' RFS. Our study suggests that the polymorphisms in circadian negative feedback loop genes may serve as independent prognostic biomarkers in predicting clinical outcomes for HCC patients who received radical resection. Further studies with different ethnicities are needed to validate our findings and generalize its clinical utility.

  12. The effects of tree shelters on seedling survival and growth of two bottomland hardwood species: third-year results

    Treesearch

    H. Christoph Stuhlinger; Jeffery A. Earl; Rebecca A. Montgomery

    2010-01-01

    Tree shelters can aid hardwood seedling establishment by increasing early survival and growth. Tree shelters are translucent plastic tubes that act as mini-greenhouses by maintaining higher humidity environments around the seedlings (Minter and others 1992). Shelters can also protect seedlings from herbivory (Schweitzer and others 1999). Lower cost shelters may provide...

  13. Adjustments of individual-tree survival and diameter-growth equations to match whole-stand attributes

    Treesearch

    Quang V. Cao

    2010-01-01

    Individual-tree models are flexible and can perform well in predicting tree survival and diameter growth for a certain growing period. However, the resulting stand-level outputs often suffer from accumulation of errors and subsequently cannot compete with predictions from whole-stand models, especially when the projection period lengthens. Evaluated in this study were...

  14. Variability in urban soils influences the health and growth of native tree seedlings

    Treesearch

    Clara C. Pregitzer; Nancy F. Sonti; Richard A. Hallett

    2016-01-01

    Reforesting degraded urban landscapes is important due to the many benefits urban forests provide. Urban soils are highly variable, yet little is known about how this variability in urban soils influences tree seedling performance and survival. We conducted a greenhouse study to assess health, growth, and survival of four native tree species growing in native glacial...

  15. Size Matters a Lot: Drought-Affected Italian Oaks Are Smaller and Show Lower Growth Prior to Tree Death

    PubMed Central

    Colangelo, Michele; Camarero, Jesús J.; Borghetti, Marco; Gazol, Antonio; Gentilesca, Tiziana; Ripullone, Francesco

    2017-01-01

    Hydraulic theory suggests that tall trees are at greater risk of drought-triggered death caused by hydraulic failure than small trees. In addition the drop in growth, observed in several tree species prior to death, is often interpreted as an early-warning signal of impending death. We test these hypotheses by comparing size, growth, and wood-anatomy patterns of living and now-dead trees in two Italian oak forests showing recent mortality episodes. The mortality probability of trees is modeled as a function of recent growth and tree size. Drift-diffusion-jump (DDJ) metrics are used to detect early-warning signals. We found that the tallest trees of the anisohydric Italian oak better survived drought contrary to what was predicted by the theory. Dead trees were characterized by a lower height and radial-growth trend than living trees in both study sites. The growth reduction of now-dead trees started about 10 years prior to their death and after two severe spring droughts during the early 2000s. This critical transition in growth was detected by DDJ metrics in the most affected site. Dead trees were also more sensitive to drought stress in this site indicating different susceptibility to water shortage between trees. Dead trees did not form earlywood vessels with smaller lumen diameter than surviving trees but tended to form wider latewood vessels with a higher percentage of vessel area. Since living and dead trees showed similar competition we did not expect that moderate thinning and a reduction in tree density would increase the short-term survival probability of trees. PMID:28270816

  16. Survival, growth, and quality of residual trees following clearcutting in Allegheny hardwood forests

    Treesearch

    David A. Marquis

    1981-01-01

    A study of residual saplings and poles left after clearcutting indicates that sugar maple and beech are capable of surviving and gowing well after this type of drastic release. Epicormic branches developed on many trees, but those that were free of epicormics before cutting tended to remain free of them after exposure. Residual trees did not interfere with the...

  17. Habitat suitability and nest survival of white-headed woodpeckers in unburned forests of Oregon

    Treesearch

    Jeff P. Hollenbeck; Vicki Saab; Richard W. Frenzel

    2011-01-01

    We evaluated habitat suitability and nest survival of breeding white-headed woodpeckers (Picoides albolarvatus) in unburned forests of central Oregon, USA. Daily nest-survival rate was positively related to maximum daily temperature during the nest interval and to density of large-diameter trees surrounding the nest tree. We developed a niche-based habitat suitability...

  18. Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi.

    PubMed

    Liang, Minxia; Liu, Xubing; Gilbert, Gregory S; Zheng, Yi; Luo, Shan; Huang, Fengmin; Yu, Shixiao

    2016-12-01

    Negative density-dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant-soil feedbacks. In field censuses of six 1-ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant-soil feedbacks that contribute to community-level and population-level compensatory trends in seedling survival. © 2016 John Wiley & Sons Ltd/CNRS.

  19. Hydrological states and the resilience of deltaic forested wetlands

    NASA Astrophysics Data System (ADS)

    Keim, R.; Allen, S. T.

    2017-12-01

    The flooding regime constitutes a set of chronic disturbances that are largely responsible for ecosystem structure. However, disturbances do not always constitute stresses to plants that survive because of adaptations to flooded conditions. We examine baldcypress-water tupelo forested wetlands in the delta of the Mississippi River as a case study in mechanisms by which hydrologic change shapes wetland ecosystem change, supported by experimental evidence from remote sensing, tree-ring and other field studies, and meta-analysis across the literature. Decreased hydrologic variability caused by water control structures has reduced the frequency of flood events that increase growth of baldcypress and favor its establishment by reducing competition from other species. Hydrologic modifications that lead to semi-permanent, stagnant flooding constitute semi-permanent disturbance that prevents regeneration of any trees, reduces growth of established trees, and reduces stand density by causing mortality of some trees. However, baldcypress trees in low-density stands appear to be generally adapted for long-term survival in stagnant conditions. Thus, initial decreases in stand density after impoundment do not necessarily portend continued conversion away from forest because reduced inter-tree competition is a negative feedback on mortality. Overall, a natural hydrologic regime with high variability in riverine flooding favors denser stands with greater diversity of tree species, and the present, controlled hydrologic regime that has largely eliminated riverine flooding favors open stands. Sea-level rise will increase salinity that quickly leads to forest conversion to marsh, but will also increase stagnant, freshwater flooding further inland. These drivers of hydrologic change reduce carbon assimilation by forests, both by reduced stand-level productivity and decreased forested area.

  20. Evolutionary history and distance dependence control survival of dipterocarp seedlings.

    PubMed

    Bagchi, Robert; Press, Malcolm C; Scholes, Julie D

    2010-01-01

    One important hypothesis to explain tree-species coexistence in tropical forests suggests that increased attack by natural enemies near conspecific trees gives locally rare species a competitive advantage. Host ranges of natural enemies generally encompass several closely related plant taxa suggesting that seedlings should also do poorly around adults of closely related species. We investigated the effects of adult Parashorea malaanonan on seedling survival in a Bornean rain forest. Survival of P. malaanonan seedlings was highest at intermediate distances from parent trees while heterospecific seedlings were unaffected by distance. Leaf herbivores did not drive this relationship. Survival of seedlings was lowest for P. malaanonan, and increased with phylogenetic dissimilarity from this species, suggesting that survival of close relatives of common species is reduced. This study suggests that distance dependence contributes to species coexistence and highlights the need for further investigation into the role of shared plant enemies in community dynamics.

  1. Seeing the trees for the forest: Nitrogen deposition alters tree growth and survival across the northeastern U.S., responses vary by species.

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Canham, C. D.; Weathers, K. C.; Goodale, C. L.

    2008-12-01

    Assessments of regional forest carbon (C) balance have long speculated a role for atmospheric nitrogen (N) deposition. To date, however, evidence for an N effect has been restricted to plot-level fertilization and 15N experiments, biogeochemical modeling studies, and recent and controversial correlations between nitrogen deposition and C balance across 20 intensive C monitoring sites. These studies have yielded widely varying conclusions on the magnitude and even the direction of response (positive or negative effects on C storage). We assessed the effects of N deposition on forest growth and survival using forest inventory data from > 160,000 trees, spanning a 19-state region of the northeastern United States, and estimates of total (wet and plot-specific dry) inorganic N inputs (N deposition to the plots ranged from 3.2 to 11 kg N ha-1 y-1). The growth rates of 14 of the region's 24 most common tree species responded to N deposition. Nine species showed a monotonic increase in aboveground growth rates across the range of N deposition and some of these species experienced a doubling of growth rates. Four species showed humped-shaped responses. A single species, Pinus resinosa (red pine), showed a monotonic decline in growth across the range of deposition. Species responsiveness to N deposition increased with mean growth rate of the species. In the analysis of survival, 13 of the 24 species responded to N: eight species showed a monotonic decrease, 3 showed a monotonic increase and 1 showed a humped-shape response in survival. The stand-level analysis showed a distinctly humped-shaped relationship between N deposition and aboveground C increment, peaking at 6 kg N ha-1 yr-1, which can likely be explained by the distribution of species and their individual growth and mortality responses. Overall, our data suggest that moderate levels of N deposition have enhanced aboveground C accumulation in temperate forests of the northeastern U.S., but the shape and trajectory of the response is species-specific.

  2. Rumor Processes in Random Environment on and on Galton-Watson Trees

    NASA Astrophysics Data System (ADS)

    Bertacchi, Daniela; Zucca, Fabio

    2013-11-01

    The aim of this paper is to study rumor processes in random environment. In a rumor process a signal starts from the stations of a fixed vertex (the root) and travels on a graph from vertex to vertex. We consider two rumor processes. In the firework process each station, when reached by the signal, transmits it up to a random distance. In the reverse firework process, on the other hand, stations do not send any signal but they “listen” for it up to a random distance. The first random environment that we consider is the deterministic 1-dimensional tree with a random number of stations on each vertex; in this case the root is the origin of . We give conditions for the survival/extinction on almost every realization of the sequence of stations. Later on, we study the processes on Galton-Watson trees with random number of stations on each vertex. We show that if the probability of survival is positive, then there is survival on almost every realization of the infinite tree such that there is at least one station at the root. We characterize the survival of the process in some cases and we give sufficient conditions for survival/extinction.

  3. Influence of host tree condition on the performance of Tetropium fuscum (Coleoptera: Cerambycidae).

    PubMed

    Flaherty, Leah; Sweeney, Jon D; Pureswaran, Deepa; Quiring, Dan T

    2011-10-01

    Tetropium fuscum (F.) attacks weakened Norway spruce, Picea abies (L.) Karst., in its native Europe and may colonize healthy spruce in Nova Scotia, Canada. We used manipulative field experiments to evaluate: 1) the development of T. fuscum on apparently healthy red spruce (Picea rubens Sarg.) in Nova Scotia; 2) the influence of red spruce physiological condition (healthy, girdled or cut) on T. fuscum performance; and 3) the impact of natural enemies and competitors on T. fuscum performance when developing on trees of varying condition. Tetropium fuscum successfully developed on healthy red spruce. Survival was higher on healthy than on girdled or cut trees when larvae were exposed to natural enemies and competitors. The benefits of reduced competition and parasitism on healthy trees appeared to compensate for any reductions in nutritional quality, increase in host resistance, or both. In contrast, when T. fuscum were protected from natural enemies, apparent survival was highest on girdled trees. Tetropium fuscum development took longer on healthy than on cut or girdled trees, and emerged adults were largest on healthy trees. The disparities in adult sizes among the three treatments may mean that healthy trees are more nutritious. Alternatively, the differences may indicate that a greater amount of time was spent feeding in healthy than in girdled or cut trees. Tree condition appears to have a direct impact on the success of T. fuscum, influencing survival, development time, and adult size, and may mediate the impact of natural enemies and competitors, further affecting T. fuscum performance.

  4. Urban tree mortality: a primer on demographic approaches

    Treesearch

    Lara A. Roman; John J. Battles; Joe R. McBride

    2016-01-01

    Realizing the benefits of tree planting programs depends on tree survival. Projections of urban forest ecosystem services and cost-benefit analyses are sensitive to assumptions about tree mortality rates. Long-term mortality data are needed to improve the accuracy of these models and optimize the public investment in tree planting. With more accurate population...

  5. Keeping trees as assets

    Treesearch

    Kevin T. Smith

    2009-01-01

    Landscape trees have real value and contribute to making livable communities. Making the most of that value requires providing trees with the proper care and attention. As potentially large and long-lived organisms, trees benefit from commitment to regular care that respects the natural tree system. This system captures, transforms, and uses energy to survive, grow,...

  6. [Age structure and dynamics of Quercus wutaishanica population in Lingkong Mountain of Shanxi Province, China].

    PubMed

    Zhang, Jie; Shangguan, Tie-Liang; Duan, Yi-Hao; Guo, Wei; Liu, Wei-Hua; Guo, Dong-Gang

    2014-11-01

    Using the plant survivorship theory, the age structure, and the relationship between tree height and diameter (DBH) of Quercus wutaishanica population in Lingkong Mountain were analyzed, and the static life table was compiled and the survival curve plotted. The shuttle shape in age structure of Q. wutaishanica population suggested its temporal stability. The linear regression significantly fitted the positive correlation between tree height and DBH. The maximal life expectancy was observed among the trees beyond the age of the highest mortality and coincided with the lowest point of mortality density, suggesting the strong vitality of the seedlings and young trees that survived in the natural selection and intraspecific competition. The population stability of the Q. wutaishanica population was characterized by the Deevey-II of the survival curve. The dynamic pattern was characterized by the recession in the early phase, growth in the intermediate phase, and stability in the latter phase.

  7. Survival and Growth of Eastern Redcedar Seed Sources in Southwest Missouri

    Treesearch

    Kenneth W. Seidel; Richard F. Watt

    1969-01-01

    After five growing seasons on a southwest Missouri outplanting site, trees from a West Virginia eastern redcedar source had better survival, form, vigor, and height growth than trees from eight other sources tested. The local Missouri source, handicapped at planting by an unfavorable top:root ration, is now growing vigorously.

  8. A comparison of tree shelters and their effects on seedling survival and growth of two bottomland hardwood species: first-year results

    Treesearch

    H. Christoph Stuhlinger; Jeffrey A. Earl; Rebecca A. Montgomery; Buren B. DeFee

    2006-01-01

    Tree shelters can aid hardwood establishment by improving seedling survival and growth. Shelters are translucent plastic tubes that act as mini-greenhouses by maintaining a higher humidity environment. Can less-costly shelters achieve the same improved results as more expensive shelters?

  9. A survival model for individual shortleaf pine trees in even-aged natural stands

    Treesearch

    Thomas B. Lynch; Michael M. Huebschmann; Paul A. Murphy

    2000-01-01

    A model was developed that predicts the probability of survival for individual shortleaf pine (Pinus echinata Mill.) trees growing in even-aged natural stands. Data for model development were obtained from the first two measurements of permanently established plots located in naturally occurring shortleaf pine forests on the Ouachita and...

  10. Monitoring Million Trees LA: Tree performance during the early years and future benefits

    Treesearch

    E. Gregory McPherson

    2014-01-01

    Million Trees LA (MTLA) is one of several large-scale mayoral tree planting initiatives striving to create more livable cities through urban forestry. This study combined field sampling of tree survival and growth with numerical modeling of future benefits to assess performance of MTLA plantings. From 2006 to 2010 MTLA planted a diverse mix of 91,786 trees....

  11. Tree Data (TD)

    Treesearch

    Robert E. Keane

    2006-01-01

    The Tree Data (TD) methods are used to sample individual live and dead trees on a fixed-area plot to estimate tree density, size, and age class distributions before and after fire in order to assess tree survival and mortality rates. This method can also be used to sample individual shrubs if they are over 4.5 ft tall. When trees are larger than the user-specified...

  12. Survival and development of Lymantria monacha (Lepidoptera: Lymantriidae) on North American and introduced Eurasian tree species.

    PubMed

    Keena, M A

    2003-02-01

    Lymantria monacha (L.) (Lepidoptera: Lymantriidae), the nun moth, is a Eurasian pest of conifers that has potential for accidental introduction into North America. To project the potential host range of this insect if introduced into North America, survival and development of L. monacha on 26 North American and eight introduced Eurasian tree species were examined. Seven conifer species (Abies concolor, Picea abies, P. glauca, P. pungens, Pinus sylvestris with male cones, P. menziesii variety glance, and Tsuga canadensis) and six broadleaf species (Betula populifolia, Malus x domestica, Prunus serotiaa, Quercus lobata, Q. rubra, and Q. velutina) were suitable for L. monacha survival and development. Eleven of the host species tested were rated as intermediate in suitability, four conifer species (Larix occidentalis, P. nigra, P. ponderosa, P. strobus, and Pseudotsuga menziesii variety menziesii) and six broadleaf species (Carpinus caroliniana, Carya ovata, Fagus grandifolia, Populus grandidentata, Q. alba, and Tilia cordata) and the remaining 10 species tested were rated as poor (Acer rubrum, A. platanoidies, A. saccharum, F. americana, Juniperus virginiana, Larix kaempferi, Liriodendron tulipfera, Morus alba, P. taeda, and P. deltoides). The phenological state of the trees had a major impact on establishment, survival, and development of L. monacha on many of the tree species tested. Several of the deciduous tree species that are suitable for L. monacha also are suitable for L. dispar (L.) and L. mathura Moore. Establishment of L. monacha in North America would be catastrophic because of the large number of economically important tree species on which it can survive and develop, and the ability of mated females to fly and colonize new areas.

  13. Microsite and elevation zone effects on seed pilferage, germination, and seedling survival during early whitebark pine recruitment.

    PubMed

    Pansing, Elizabeth R; Tomback, Diana F; Wunder, Michael B; French, Joshua P; Wagner, Aaron C

    2017-11-01

    Tree recruitment is a spatially structured process that may undergo change over time because of variation in postdispersal processes. We examined seed pilferage, seed germination, and seedling survival in whitebark pine to determine whether 1) microsite type alters the initial spatial pattern of seed caches, 2) higher abiotic stress (i.e. higher elevations) exacerbates spatial distribution changes, and 3) these postdispersal processes are spatially clustered. At two study areas, we created a seed distribution pattern by burying seed caches in microsite types frequently used by whitebark pine's avian seed disperser (Clark's nutcracker) in upper subalpine forest and at treeline, the latter characterized by high abiotic environmental stress. We monitored caches for two years for pilferage, germination, and seedling survival. Odds of pilferage (both study areas), germination (northern study area), and survival (southern study area) were higher at treeline relative to subalpine forest. At the southern study area, we found higher odds of 1) pilferage near rocks and trees relative to no object in subalpine forest, 2) germination near rocks relative to trees within both elevation zones, and 3) seedling survival near rocks and trees relative to no object at treeline. No microsite effects were detected at the northern study area. Findings indicated that the microsite distribution of seed caches changes with seed/seedling stage. Higher odds of seedling survival near rocks and trees were observed at treeline, suggesting abiotic stress may limit safe site availability, thereby shifting the spatial distribution toward protective microsites. Higher odds of pilferage at treeline, however, suggest rodents may limit treeline recruitment. Further, odds of pilferage were higher near rocks and trees relative to no object in subalpine forest but did not differ among microsites at treeline, suggesting pilferage can modulate the spatial structure of regeneration, a finding supported by limited clustering of postdispersal processes.

  14. Woodland recovery following drought-induced tree mortality across an environmental stress gradient.

    PubMed

    Redmond, Miranda D; Cobb, Neil S; Clifford, Michael J; Barger, Nichole N

    2015-10-01

    Recent droughts and increasing temperatures have resulted in extensive tree mortality across the globe. Understanding the environmental controls on tree regeneration following these drought events will allow for better predictions of how these ecosystems may shift under a warmer, drier climate. Within the widely distributed piñon-juniper woodlands of the southwestern USA, a multiyear drought in 2002-2004 resulted in extensive adult piñon mortality and shifted adult woodland composition to a juniper-dominated, more savannah-type ecosystem. Here, we used pre- (1998-2001) and 10-year post- (2014) drought stand structure data of individually mapped trees at 42 sites to assess the effects of this drought on tree regeneration across a gradient of environmental stress. We found declines in piñon juvenile densities since the multiyear drought due to limited new recruitment and high (>50%) juvenile mortality. This is in contrast to juniper juvenile densities, which increased over this time period. Across the landscape, piñon recruitment was positively associated with live adult piñon densities and soil available water capacity, likely due to their respective effects on seed and water availability. Juvenile piñon survival was strongly facilitated by certain types of nurse trees and shrubs. These nurse plants also moderated the effects of environmental stress on piñon survival: Survival of interspace piñon juveniles was positively associated with soil available water capacity, whereas survival of nursed piñon juveniles was negatively associated with perennial grass cover. Thus, nurse plants had a greater facilitative effect on survival at sites with higher soil available water capacity and perennial grass cover. Notably, mean annual climatic water deficit and elevation were not associated with piñon recruitment or survival across the landscape. Our findings reveal a clear shift in successional trajectories toward a more juniper-dominated woodland and highlight the importance of incorporating biotic interactions and soil properties into species distribution modeling approaches. © 2015 John Wiley & Sons Ltd.

  15. A decision tree-based combination of ezrin-interacting proteins to estimate the prognostic risk of patients with esophageal squamous cell carcinoma.

    PubMed

    He, Jian-Zhong; Wu, Zhi-Yong; Wang, Shao-Hong; Ji, Xia; Yang, Cui-Xia; Xu, Xiu-E; Liao, Lian-Di; Wu, Jian-Yi; Li, En-Min; Zhang, Kai; Xu, Li-Yan

    2017-08-01

    Our previous studies have highlighted the importance of ezrin in esophageal squamous cell carcinoma (ESCC). Here our objective was to explore the clinical significance of ezrin-interacting proteins, which would provide a theoretical basis for understanding the function of ezrin and potential therapeutic targets for ESCC. We used affinity purification and mass spectrometry to identify PDIA3, CNPY2, and STMN1 as potential ezrin-interacting proteins. Confocal microscopy and coimmunoprecipitation analysis further confirmed the colocalization and interaction of ezrin with PDIA3, CNPY2, and STMN1. Tissue microarray data of ESCC samples (n=263) showed that the 5-year overall survival (OS) and disease-free survival (DFS) were significantly lower for the CNPY2 (OS, P=.003; DFS, P=.011) and STMN1 (OS, P=.010; DFS, P=.002) high-expression groups compared with the low-expression groups. By contrast, overexpression of PDIA3 was significantly correlated with favorable survival (OS, P<.001; DFS, P=.001). Cox regression demonstrated the prognostic value of PDIA3, CNPY2, and STMN1 in ESCC. Furthermore, decision tree analysis revealed that the resulting classifier of both ezrin and its interacting proteins could be used to better predict OS and DFS of patients with ESCC. In conclusion, a signature of ezrin-interacting proteins accurately predicts ESCC patient survival or tumor recurrence. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Evaluating realized seed dispersal across fragmented tropical landscapes: a two-fold approach using parentage analysis and the neighbourhood model.

    PubMed

    Ismail, Sascha A; Ghazoul, Jaboury; Ravikanth, Gudasalamani; Kushalappa, Cheppudira G; Uma Shaanker, Ramanan; Kettle, Chris J

    2017-05-01

    Despite the importance of seed dispersal for survival of plant species in fragmented landscapes, data on seed dispersal at landscape scales remain sparse. Effective seed dispersal among fragments determines recolonization and plant species persistence in such landscapes. We present the first large-scale (216-km 2 ) direct estimates of realized seed dispersal of a high-value timber tree (Dysoxylum malabaricum) across an agro-forest landscape in the Western Ghats, India. Based upon an exhaustive inventory of adult trees and a sample of 488 seedlings all genotyped at 10 microsatellite loci, we estimated realized seed dispersal using parentage analysis and the neighbourhood model. Our estimates found that most realized seed dispersal was within 200 m, which is insufficient to effectively bridge the distances between forest patches. We conclude that using mobility of putative animal dispersers can be misleading when estimating tropical tree species vulnerability to habitat fragmentation. This raises serious concerns about the potential of many tropical trees to recolonize isolated forest patches where high-value tree species have already been removed. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. Restoration of eroded soil in the Sonoran Desert with native leguminous trees using plant growth-promoting microorganisms and limited amounts of compost and water.

    PubMed

    Bashan, Yoav; Salazar, Bernardo G; Moreno, Manuel; Lopez, Blanca R; Linderman, Robert G

    2012-07-15

    Restoration of highly eroded desert land was attempted in the southern Sonoran Desert that had lost its natural capacity for self-revegetation. In six field experiments, the fields were planted with three native leguminous trees: mesquite amargo Prosopis articulata, and yellow and blue palo verde Parkinsonia microphylla and Parkinsonia florida. Restoration included inoculation with two of plant growth-promoting bacteria (PGPB; Azospirillum brasilense and Bacillus pumilus), native arbuscular mycorrhizal (AM) fungi, and small quantities of compost. Irrigation was applied, when necessary, to reach a rainy year (300 mm) of the area. The plots were maintained for 61 months. Survival of the trees was marginally affected by all supplements after 30 months, in the range of 60-90%. This variation depended on the plant species, where all young trees were established after 3 months. Plant density was a crucial variable and, in general, low plant density enhanced survival. High planting density was detrimental. Survival significantly declined in trees 61 months after planting. No general response of the trees to plant growth-promoting microorganisms and compost was found. Mesquite amargo and yellow palo verde responded well (height, number of branches, and diameter of the main stem) to inoculation with PGPB, AM fungi, and compost supplementation after three months of application. Fewer positive effects were recorded after 30 months. Blue palo verde did not respond to most treatments and had the lowest survival. Specific plant growth parameters were affected to varying degrees to inoculations or amendments, primarily depending on the tree species. Some combinations of tree/inoculant/amendment resulted in small negative effects or no response when measured after extended periods of time. Using native leguminous trees, this study demonstrated that restoration of severely eroded desert lands was possible. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Applications of ion chromatography to study pollution effects on forest trees

    Treesearch

    Walter C. Shortle; Rakesh Minocha

    1990-01-01

    Air pollution and acidic deposition can influence forest tree growth and survival by causing ionic imbalances in the rooting zone. Altered nutrient status suppresses tree growth and weakens its immune system. Internal infections spread more quickly in response to weakened tree defenses. As adverse conditions persist, many trees die and the survivors are less healthy....

  19. Protecting red oak seedlings with tree shelters in northwestern Pennsylvania

    Treesearch

    Russell S. Walters; Russell S. Walters

    1993-01-01

    Examines the growth and survival of planted and natural red oak seedlings and seedlings from planted acorns within translucent tan tree shelters, fences, and unprotected controls under a shelterwood seed-cut stand. Seedlings planted within tree shelters and fences were inside tree shelters. Natural seedlings grew very little and their height inside and outside of tree...

  20. Individual legacy trees influence vertebrate wildlife diversity in commercial forests

    Treesearch

    M.J. Mazurek; William J. Zielinski

    2007-01-01

    Old-growth forests provide important structural habitat elements for many species of wildlife. These forests, however, are rare where lands are managed for timber. In commercial forests, large and old trees sometimes exist only as widely-dispersed residual or legacy trees. Legacy trees are old trees that have been spared during harvest or have survived stand-replacing...

  1. Associating seasonal range characteristics with survival of female white-tailed deer

    USGS Publications Warehouse

    Klaver, R.W.; Jenks, J.A.; Deperno, C.S.; Griffin, S.L.

    2008-01-01

    Delineating populations is critical for understanding population dynamics and managing habitats. Our objective was to delineate subpopulations of migratory female white-tailed deer (Odocoileus virginianus) in the central Black Hills, South Dakota and Wyoming, USA, on summer and winter ranges. We used fuzzy classification to assign radiocollared deer to subpopulations based on spatial location, characterized subpopulations by trapping sites, and explored relationships among survival of subpopulations and habitat variables. In winter, Kaplan-Meier estimates for subpopulations indicated 2 groups: high (S = 0.991 ?? 0.005 [x- ?? SE]) and low (S = 0.968 ?? 0.007) weekly survivorship. Survivorship increased with basal area per hectare of trees, average diameter at breast height of trees, percent cover of slash, and total point-center quarter distance of trees. Cover of grass and forbs were less for the high survivorship than the lower survivorship group. In summer, deer were spaced apart with mixed associations among subpopulations. Habitat manipulations that promote or maintain large trees (i.e., basal area = 14.8 m2/ha and average dbh of trees = 8.3 cm) would seem to improve adult survival of deer in winter.

  2. Novel Hydraulic Vulnerability Proxies for a Boreal Conifer Species Reveal That Opportunists May Have Lower Survival Prospects under Extreme Climatic Events.

    PubMed

    Rosner, Sabine; Světlík, Jan; Andreassen, Kjell; Børja, Isabella; Dalsgaard, Lise; Evans, Robert; Luss, Saskia; Tveito, Ole E; Solberg, Svein

    2016-01-01

    Top dieback in 40-60 years old forest stands of Norway spruce [Picea abies (L.) Karst.] in southern Norway is supposed to be associated with climatic extremes. Our intention was to learn more about the processes related to top dieback and in particular about the plasticity of possible predisposing factors. We aimed at (i) developing proxies for P 50 based on anatomical data assessed by SilviScan technology and (ii) testing these proxies for their plasticity regarding climate, in order to (iii) analyze annual variations of hydraulic proxies of healthy looking trees and trees with top dieback upon their impact on tree survival. At two sites we selected 10 tree pairs, i.e., one healthy looking tree and one tree with visual signs of dieback such as dry tops, needle shortening and needle yellowing (n = 40 trees). Vulnerability to cavitation (P 50) of the main trunk was assessed in a selected sample set (n = 19) and we thereafter applied SilviScan technology to measure cell dimensions (lumen (b) and cell wall thickness (t)) in these specimen and in all 40 trees in tree rings formed between 1990 and 2010. In a first analysis step, we searched for anatomical proxies for P 50. The set of potential proxies included hydraulic lumen diameters and wall reinforcement parameters based on mean, radial, and tangential tracheid diameters. The conduit wall reinforcement based on tangential hydraulic lumen diameters ((t/b ht)(2)) was the best estimate for P 50. It was thus possible to relate climatic extremes to the potential vulnerability of single annual rings. Trees with top dieback had significantly lower (t/b ht)(2) and wider tangential (hydraulic) lumen diameters some years before a period of water deficit (2005-2006). Radial (hydraulic) lumen diameters showed however no significant differences between both tree groups. (t/b ht)(2) was influenced by annual climate variability; strongest correlations were found with precipitation in September of the previous growing season: high precipitation in previous September resulted in more vulnerable annual rings in the next season. The results are discussed with respect to an "opportunistic behavior" and genetic predisposition to drought sensitivity.

  3. Shrub and tree establishment on coal spoils in northern High Plains - USA

    Treesearch

    Ardell J. Bjugstad

    1984-01-01

    Trickle irrigation, during establishment, increased survival two fold for seven species of shrubs and trees planted on coal mine spoil in the semiarid area of northeastern Wyoming, USA. Increased survival of irrigated plants persisted for five years after initiation of this study, which included two growing and winter seasons after cessation of irrigation. Species...

  4. A survival model for individual shortleaf pine trees in even-aged natural stands

    Treesearch

    Thomas B. Lynch; Michael M. Huebschmann; Paul A. Murphy

    2000-01-01

    A model was developed that predicts the probability of survival for individual shortleaf pine (Pinus echinata Mill.) trees growing in even-aged natural stands. Data for model development were obtained from the first two measurements of permanently established plots located in naturally occurring shortleaf pine forests on the Ouachita and Ozark...

  5. Emerald ash borer biocontrol in ash saplings: the potential for early stage recovery of North American ash

    USDA-ARS?s Scientific Manuscript database

    In many parts of North America, ash stands have been reduced by the emerald ash borer (Agrilus planipennis) invasion to a few surviving mature trees and young basal sprouts, saplings, and seedlings. Without a seed bank, ash tree recovery will require survival and maturation of these younger cohorts...

  6. Stewardship matters: Case studies in establishment success of urban trees

    Treesearch

    Lara A. Roman; Lindsey A. Walker; Catherine M. Martineau; David J. Muffly; Susan A. MacQueen; Winnie Harris

    2015-01-01

    Urban tree planting initiatives aim to provide ecosystem services that materialize decades after planting, therefore understanding tree survival and growth is essential to evaluating planting program performance. Tree mortality is relatively high during the establishment phase, the first few years after planting. Qualitative assessments of programs with particularly...

  7. Growth of black walnut trees in eight midwestern states -- a provenance test.

    Treesearch

    Calvin F. Bey

    1973-01-01

    At age six, survival of black walnut trees was not related to latitude of source at six out of eight locations. Trees from as far as 200 miles south of the planting generally grew as large or larger than trees from local or northern sources.

  8. Ratios of colony mass to thermal conductance of tree and man-made nest enclosures of Apis mellifera: implications for survival, clustering, humidity regulation and Varroa destructor

    NASA Astrophysics Data System (ADS)

    Mitchell, Derek

    2016-05-01

    In the absence of human intervention, the honeybee ( Apis mellifera L.) usually constructs its nest in a tree within a tall, narrow, thick-walled cavity high above the ground (the enclosure); however, most research and apiculture is conducted in the thin-walled, squat wooden enclosures we know as hives. This experimental research, using various hives and thermal models of trees, has found that the heat transfer rate is approximately four to seven times greater in the hives in common use, compared to a typical tree enclosure in winter configuration. This gives a ratio of colony mass to lumped enclosure thermal conductance (MCR) of less than 0.8 kgW-1 K for wooden hives and greater than 5 kgW-1 K for tree enclosures. This result for tree enclosures implies higher levels of humidity in the nest, increased survival of smaller colonies and lower Varroa destructor breeding success. Many honeybee behaviours previously thought to be intrinsic may only be a coping mechanism for human intervention; for example, at an MCR of above 2 kgW-1 K, clustering in a tree enclosure may be an optional, rare, heat conservation behaviour for established colonies, rather than the compulsory, frequent, life-saving behaviour that is in the hives in common use. The implied improved survival in hives with thermal properties of tree nests may help to solve some of the problems honeybees are currently facing in apiculture.

  9. Resistance is not futile: The response of hardwoods to fire-caused wounding

    Treesearch

    Elaine Kennedy Sutherland; Kevin Smith

    2000-01-01

    Fires wound trees; but not all of them, and not always. Specific fire behavior and differences among tree species and individual trees produce variable patterns of wounding and wound response. Our work focuses on the relationships between fire behavior and tree biology to better understand how hardwood trees resist injury to the lower stem and either survive or succumb...

  10. Rise and shine: How do northwest trees know when winter is over?

    Treesearch

    Andrea Watts; Connie Harrington; Peter Gould

    2016-01-01

    Trees bursting forth with new leaves signal the arrival of spring. Budburst for most temperate tree species occurs after a tree has been exposed to a sufficient number of chilling and forcing hours over the winter. Waiting until these chilling and forcing hours have accumulated is a survival mechanism. If a tree bursts bud prematurely, delicate tissue may...

  11. An evaluation of trees and shrubs for planting surface-mine spoils

    Treesearch

    William T. Plass

    1975-01-01

    Fifty-five tree and shrub species were evaluated on two surface-mine sites in eastern Kentucky. After 4 years' growth, comparison of survival and growth was used to identify the promising species for planting on acid surface-mine spoils. Three species of birch and three Eleagnus species survived and grew well on a range of sites. Noncommercial...

  12. Survival and Development of Lymantria monacha (Lepidoptera: Lymantriidae) on North American and Introduced Eurasian Tree Species

    Treesearch

    M.A. Keena

    2003-01-01

    Lymantria monacha (L.) (Lepidoptera: Lymantriidae), the nun moth, is a Eurasian pest of conifers that has potential for accidental introduction into North America. To project the potential host range of this insect if introducedinto North America, survival and development of L. monacha on 26 North American and eight introduced Eurasian tree species were examined. Seven...

  13. Diameter growth, survival, and volume estimates for trees in Indiana and Illinois.

    Treesearch

    W. Brad Smith; Stephen R. Shifley

    1984-01-01

    Measurements of more that 15,000 Indiana and Illinois trees were summarized by species and diameter class into tables of mean annual diameter growth, annual probability of survival, net cubic foot volume, and net board foot volume. In the absence of better forecasting techniques, this information can be utilized to project short-term changes for Indiana and Illinois...

  14. Fire Effects in Blue Oak Woodland

    Treesearch

    Patricia K. Haggerty

    1991-01-01

    Mortality and resprouting of shrubs and trees were assessed in one recent fire and 11 older burns in blue oak woodland in the southern Sierra Nevada foothills. This poster reported results for blue oak. Survival following fire was high; with a 93 percent two year postfire survival rate after one intensively studied fire, despite a large number of trees with 100 percent...

  15. Impact of competitor species composition on predicting diameter growth and survival rates of Douglas-fir trees in southwestern Oregon

    USGS Publications Warehouse

    Bravo, Felipe; Hann, D.W.; Maguire, Douglas A.

    2001-01-01

    Mixed conifer and hardwood stands in southwestern Oregon were studied to explore the hypothesis that competition effects on individual-tree growth and survival will differ according to the species comprising the competition measure. Likewise, it was hypothesized that competition measures should extrapolate best if crown-based surrogates are given preference over diameter-based (basal area based) surrogates. Diameter growth and probability of survival were modeled for individual Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees growing in pure stands. Alternative models expressing one-sided and two-sided competition as a function of either basal area or crown structure were then applied to other plots in which Douglas-fir was mixed with other conifers and (or) hardwood species. Crown-based variables outperformed basal area based variables as surrogates for one-sided competition in both diameter growth and survival probability, regardless of species composition. In contrast, two-sided competition was best represented by total basal area of competing trees. Surrogates reflecting differences in crown morphology among species relate more closely to the mechanics of competition for light and, hence, facilitate extrapolation to species combinations for which no observations are available.

  16. Applying Data Mining Techniques to Extract Hidden Patterns about Breast Cancer Survival in an Iranian Cohort Study.

    PubMed

    Khalkhali, Hamid Reza; Lotfnezhad Afshar, Hadi; Esnaashari, Omid; Jabbari, Nasrollah

    2016-01-01

    Breast cancer survival has been analyzed by many standard data mining algorithms. A group of these algorithms belonged to the decision tree category. Ability of the decision tree algorithms in terms of visualizing and formulating of hidden patterns among study variables were main reasons to apply an algorithm from the decision tree category in the current study that has not studied already. The classification and regression trees (CART) was applied to a breast cancer database contained information on 569 patients in 2007-2010. The measurement of Gini impurity used for categorical target variables was utilized. The classification error that is a function of tree size was measured by 10-fold cross-validation experiments. The performance of created model was evaluated by the criteria as accuracy, sensitivity and specificity. The CART model produced a decision tree with 17 nodes, 9 of which were associated with a set of rules. The rules were meaningful clinically. They showed in the if-then format that Stage was the most important variable for predicting breast cancer survival. The scores of accuracy, sensitivity and specificity were: 80.3%, 93.5% and 53%, respectively. The current study model as the first one created by the CART was able to extract useful hidden rules from a relatively small size dataset.

  17. Growth-mortality relationships in piñon pine (Pinus edulis) during severe droughts of the past century: shifting processes in space and time.

    PubMed

    Macalady, Alison K; Bugmann, Harald

    2014-01-01

    The processes leading to drought-associated tree mortality are poorly understood, particularly long-term predisposing factors, memory effects, and variability in mortality processes and thresholds in space and time. We use tree rings from four sites to investigate Pinus edulis mortality during two drought periods in the southwestern USA. We draw on recent sampling and archived collections to (1) analyze P. edulis growth patterns and mortality during the 1950s and 2000s droughts; (2) determine the influence of climate and competition on growth in trees that died and survived; and (3) derive regression models of growth-mortality risk and evaluate their performance across space and time. Recent growth was 53% higher in surviving vs. dying trees, with some sites exhibiting decades-long growth divergences associated with previous drought. Differential growth response to climate partly explained growth differences between live and dead trees, with responses wet/cool conditions most influencing eventual tree status. Competition constrained tree growth, and reduced trees' ability to respond to favorable climate. The best predictors in growth-mortality models included long-term (15-30 year) average growth rate combined with a metric of growth variability and the number of abrupt growth increases over 15 and 10 years, respectively. The most parsimonious models had high discriminatory power (ROC>0.84) and correctly classified ∼ 70% of trees, suggesting that aspects of tree growth, especially over decades, can be powerful predictors of widespread drought-associated die-off. However, model discrimination varied across sites and drought events. Weaker growth-mortality relationships and higher growth at lower survival probabilities for some sites during the 2000s event suggest a shift in mortality processes from longer-term growth-related constraints to shorter-term processes, such as rapid metabolic decline even in vigorous trees due to acute drought stress, and/or increases in the attack rate of both chronically stressed and more vigorous trees by bark beetles.

  18. Growth and mortality of pin oak and pecan reforestation in a constructed wetland: analysis with management implications

    Treesearch

    D.E. Henderson; P. Botch; J. Cussimanio; D. Ryan; J. Kabrick; D. Dey

    2009-01-01

    Pin oak (Quercus palustris Muenchh.) and pecan (Carya illinoensis (Wangenh.) K. Koch) trees were planted on reforestation plots at Four Rivers Conservation Area in west-central Missouri. The study was conducted to determine survival and growth rates of the two species under different production methods and environmental variables....

  19. Architecture-led Requirements and Safety Analysis of an Aircraft Survivability Situational Awareness System

    DTIC Science & Technology

    2015-05-01

    quality attributes. Prioritization of the utility tree leafs driven by mission goals help the user ensure that critical requirements are well-specified...Methods: State of the Art and Future Directions”, ACM Computing Surveys. 1996. 10 Laitenberger, Oliver , “A Survey of Software Inspection Technologies, Handbook on Software Engineering and Knowledge Engineering”. 2002.

  20. Tree-regeneration and mortality patterns and hydrologic change in a forested karst wetland--Sinking Pond, Arnold Air Force Base, Tennessee

    USGS Publications Warehouse

    Wolfe, William J.; Evans, Jonathan P.; McCarthy, Sarah; Gain, W. Scott; Bryan, Bradley A.

    2004-01-01

    Multiple lines of evidence point to climate change as the driving factor suppressing tree regeneration since 1970 in Sinking Pond, a 35-hectare seasonally flooded karst depression located on Arnold Air Force Base near Manchester, Tennessee. Annual censuses of 162-193 seedling plots from 1997 through 2001 demonstrate that the critical stage for tree survival is the transition from seedling to sapling and that this transition is limited to shallow (less than 0.5 meters) ponding depths. Recruitment of saplings to the small adult class also was restricted to shallow areas. Analysis of the spatial and elevation distribution of tree-size classes in a representative 2.3-hectare area of Sinking Pond showed a general absence of overcup oak saplings and young adults in deep (ponding depth greater than 1 meter) and intermediate (ponding depth 0.5-1 meter) areas, even though overcup oak seedlings and mature trees are concentrated in these areas. Analysis of tree rings from 45 trees sampled in a 2.3-hectare spatial-analysis plot showed an even distribution of tree ages across ponding-depth classes from the 1800s through 1970, followed by complete suppression of recruitment in deep and intermediate areas after 1970. Trees younger than 30 years were spatially and vertically concentrated in a small area with shallow ponding depth, about 0.5 meter below the spillway elevation. Results of hydrologic modeling, based on rainfall and temperature records covering the period January 1854 through September 2002, show ponding durations after 1970 considerably longer than historical norms, across ponding-depth classes. This increase in ponding duration corresponds closely with similar increases documented in published analyses of streamflow and precipitation in the eastern United States and with the suppression of tree regeneration at ponding depths greater than 0.5 meter indicated by tree-ring analysis. Comparison of the simulated stage record for Sinking Pond with the ages and elevations of sampled trees shows that prolonged (200 days or more per year) inundation in more than 2 of the first 5 years after germination is inversely related to successful tree recruitment and that such inundation was rare before 1970 and common afterwards.

  1. Comparison of fall and spring planting on strip-mine spoils in the bituminous region of Pennsylvania

    Treesearch

    Grant Davis

    1973-01-01

    To evaluate fall versus spring planting of 10 coniferous tree species and 5 hardwood shrub species, experimental plantings were established over a 2-year period on 7 graded strip-mine spoils. In general, initial tree survival was better with spring planting than with fall planting, especially on the more acid sites. Shrubs survived well with both spring and fall...

  2. Adaptation to exploit nitrate in surface soils predisposes yellow-cedar to climate-induced decline while enhancing the survival of western redcedar: a new hypothesis

    Treesearch

    David V. D' Amore; Paul E. Hennon; Paul G. Schaberg; Gary J. Hawley

    2009-01-01

    Yellow-cedar (Chamaecyparis nootkatensis (D. Don) Spach) and western redcedar (Thuja plicata Donn), two valuable tree species of Pacific Northwest forests, are competitive in low productivity forests on wet, nearly saturated soils with low nitrogen (N) availability and turnover. We propose a mechanism where cedar trees survive in...

  3. Postfire survival and flushing in three Sierra Nevada conifers with high initial crown scorch

    Treesearch

    C. Hanson; M. North

    2009-01-01

    With growing debate over the impacts of post-fire salvage logging in conifer forests of the western USA, managers need accurate assessments of tree survival when significant proportions of the crown have been scorched. The accuracy of fire severity measurements will be affected if trees that initially appear to be fire-killed prove to be viable after longer observation...

  4. Returning fire to Ozark Highland forest ecosystems: Effects on advance regeneration

    Treesearch

    Daniel C. Dey; George Hartman

    2005-01-01

    In mature forests of the Ozark Highlands, MO, USA, we evaluated fire effects on the survival and growth of tree seedlings and saplings (i.e., advance regeneration), and used this information to develop species-specific models that predict the probability of survival based on initial tree size and number of times burned. A 1000 ha forest area was divided into five units...

  5. Effects of Ground Preparation on Planted Red Pine in Southwestern Wisconsin

    Treesearch

    M. Dean Knighton

    1972-01-01

    Red pine was planted in 1962 using five ground preparation methods and two classes of planting stock. After 9 years, 3-0 trees planted by a Lowther machine with scalpers and by hand in single plowed furrows had 37 percent more survival than trees hand planted in scalps. Planting method did not afect survival 2-1 transplants. Height growth for both classes of stock...

  6. Assessment of forest plantations from low altitude aerial photography. [North Carolina coastal plains

    NASA Technical Reports Server (NTRS)

    Nelson, H. A.

    1977-01-01

    Vertical color, and color-infrared, aerial photography obtained from altitudes between 183 m and 915 m provide a cost effective method of determining tree survival and height growth in pine plantations on the North Carolina Coastal Plain. All interpretations were performed by professional forestry personnel from the original 70 mm color transparencies. Prompt assessment of tree survival is necessary if failed spots are to be successfully replanted. Counts of living trees made after the third growing season, and sometimes only two growing seasons after planting, are accurate enough to permit planning of replanting operations without extensive ground surveys.

  7. Million Trees Los Angeles: Carbon dioxide sink or source?

    Treesearch

    E.G. McPherson; A. Kendall; S. Albers

    2015-01-01

    This study seeks to answer the question, 'Will the Million Trees LA (MTLA) programme be a CO2 sink or source?' Using surveys, interviews, field sampling and computer simulation of tree growth and survival over a 40-year period, we developed the first process-based life cycle inventory of CO2 for a large tree...

  8. Chapter 9 - Monitoring survival of fire-injured trees in Oregon and Washington (Project WC-F-08-03)

    Treesearch

    Robert A. Progar; Lisa Ganio; Lindsay Grayson; Sharon M. Hood

    2018-01-01

    Wild and prescribed fire injury to trees can produce mortality that is not immediately apparent, and environmental stress subsequent to a fire may also contribute to tree mortality in the years after a fire (Hood and Bentz 2007). In order to predict post-fire tree mortality from fire injury variables before tree mortality is clearly apparent, dozens of statistical...

  9. Growth-Mortality Relationships in Piñon Pine (Pinus edulis) during Severe Droughts of the Past Century: Shifting Processes in Space and Time

    PubMed Central

    Macalady, Alison K.; Bugmann, Harald

    2014-01-01

    The processes leading to drought-associated tree mortality are poorly understood, particularly long-term predisposing factors, memory effects, and variability in mortality processes and thresholds in space and time. We use tree rings from four sites to investigate Pinus edulis mortality during two drought periods in the southwestern USA. We draw on recent sampling and archived collections to (1) analyze P. edulis growth patterns and mortality during the 1950s and 2000s droughts; (2) determine the influence of climate and competition on growth in trees that died and survived; and (3) derive regression models of growth-mortality risk and evaluate their performance across space and time. Recent growth was 53% higher in surviving vs. dying trees, with some sites exhibiting decades-long growth divergences associated with previous drought. Differential growth response to climate partly explained growth differences between live and dead trees, with responses wet/cool conditions most influencing eventual tree status. Competition constrained tree growth, and reduced trees’ ability to respond to favorable climate. The best predictors in growth-mortality models included long-term (15–30 year) average growth rate combined with a metric of growth variability and the number of abrupt growth increases over 15 and 10 years, respectively. The most parsimonious models had high discriminatory power (ROC>0.84) and correctly classified ∼70% of trees, suggesting that aspects of tree growth, especially over decades, can be powerful predictors of widespread drought-associated die-off. However, model discrimination varied across sites and drought events. Weaker growth-mortality relationships and higher growth at lower survival probabilities for some sites during the 2000s event suggest a shift in mortality processes from longer-term growth-related constraints to shorter-term processes, such as rapid metabolic decline even in vigorous trees due to acute drought stress, and/or increases in the attack rate of both chronically stressed and more vigorous trees by bark beetles. PMID:24786646

  10. How eco-evolutionary principles can guide tree breeding and tree biotechnology for enhanced productivity.

    PubMed

    Franklin, Oskar; Palmroth, Sari; Näsholm, Torgny

    2014-11-01

    Tree breeding and biotechnology can enhance forest productivity and help alleviate the rising pressure on forests from climate change and human exploitation. While many physiological processes and genes are targeted in search of genetically improved tree productivity, an overarching principle to guide this search is missing. Here, we propose a method to identify the traits that can be modified to enhance productivity, based on the differences between trees shaped by natural selection and 'improved' trees with traits optimized for productivity. We developed a tractable model of plant growth and survival to explore such potential modifications under a range of environmental conditions, from non-water limited to severely drought-limited sites. We show how key traits are controlled by a trade-off between productivity and survival, and that productivity can be increased at the expense of long-term survival by reducing isohydric behavior (stomatal regulation of leaf water potential) and allocation to defense against pests compared with native trees. In contrast, at dry sites occupied by naturally drought-resistant trees, the model suggests a better strategy may be to select trees with slightly lower wood density than the native trees and to augment isohydric behavior and allocation to defense. Thus, which traits to modify, and in which direction, depend on the original tree species or genotype, the growth environment and wood-quality versus volume production preferences. In contrast to this need for customization of drought and pest resistances, consistent large gains in productivity for all genotypes can be obtained if root traits can be altered to reduce competition for water and nutrients. Our approach illustrates the potential of using eco-evolutionary theory and modeling to guide plant breeding and genetic technology in selecting target traits in the quest for higher forest productivity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Integrated Pest Management of Poplar Species

    Treesearch

    T. H. Filer; J. D. Solomon; D. T. Cooper; M. Hubbes

    1979-01-01

    Proper site selection, good site preparation, correct planting practices, and 1st-year cultivation directly and indirectly affect survival rate of trees. Losses from canker fungi are minimized by cultural practices that increase tree vigor--poor tree vigor means more cankers per acre and greater mortality.

  12. Adaptive and plastic responses of Quercus petraea populations to climate across Europe.

    PubMed

    Sáenz-Romero, Cuauhtémoc; Lamy, Jean-Baptiste; Ducousso, Alexis; Musch, Brigitte; Ehrenmann, François; Delzon, Sylvain; Cavers, Stephen; Chałupka, Władysław; Dağdaş, Said; Hansen, Jon Kehlet; Lee, Steve J; Liesebach, Mirko; Rau, Hans-Martin; Psomas, Achilleas; Schneck, Volker; Steiner, Wilfried; Zimmermann, Niklaus E; Kremer, Antoine

    2017-07-01

    How temperate forests will respond to climate change is uncertain; projections range from severe decline to increased growth. We conducted field tests of sessile oak (Quercus petraea), a widespread keystone European forest tree species, including more than 150 000 trees sourced from 116 geographically diverse populations. The tests were planted on 23 field sites in six European countries, in order to expose them to a wide range of climates, including sites reflecting future warmer and drier climates. By assessing tree height and survival, our objectives were twofold: (i) to identify the source of differential population responses to climate (genetic differentiation due to past divergent climatic selection vs. plastic responses to ongoing climate change) and (ii) to explore which climatic variables (temperature or precipitation) trigger the population responses. Tree growth and survival were modeled for contemporary climate and then projected using data from four regional climate models for years 2071-2100, using two greenhouse gas concentration trajectory scenarios each. Overall, results indicated a moderate response of tree height and survival to climate variation, with changes in dryness (either annual or during the growing season) explaining the major part of the response. While, on average, populations exhibited local adaptation, there was significant clinal population differentiation for height growth with winter temperature at the site of origin. The most moderate climate model (HIRHAM5-EC; rcp4.5) predicted minor decreases in height and survival, while the most extreme model (CCLM4-GEM2-ES; rcp8.5) predicted large decreases in survival and growth for southern and southeastern edge populations (Hungary and Turkey). Other nonmarginal populations with continental climates were predicted to be severely and negatively affected (Bercé, France), while populations at the contemporary northern limit (colder and humid maritime regions; Denmark and Norway) will probably not show large changes in growth and survival in response to climate change. © 2017 John Wiley & Sons Ltd.

  13. [Habitat factor analysis for Torreya grandis cv. Merrillii based on spatial information technology].

    PubMed

    Wang, Xiao-ming; Wang, Ke; Ao, Wei-jiu; Deng, Jin-song; Han, Ning; Zhu, Xiao-yun

    2008-11-01

    Torreya grandis cv. Merrillii, a tertiary survival plant, is a rare tree species of significant economic value and expands rapidly in China. Its special habitat factor analysis has the potential value to provide guide information for its planting, management, and sustainable development, because the suitable growth conditions for this tree species are special and strict. In this paper, the special habitat factors for T. grandis cv. Merrillii in its core region, i.e., in seven villages of Zhuji City, Zhejiang Province were analyzed with Principal Component Analysis (PCA) and a series of data, such as IKONOS image, Digital Elevation Model (DEM), and field survey data supported by the spatial information technology. The results showed that T. grandis cv. Merrillii exhibited high selectivity of environmental factors such as elevation, slope, and aspect. 96.22% of T. grandis cv. Merrillii trees were located at the elevation from 300 to 600 m, 97.52% of them were found to present on the areas whose slope was less than 300, and 74.43% of them distributed on sunny and half-sunny slopes. The results of PCA analysis indicated that the main environmental factors affecting the habitat of T. grandis cv. Merrillii were moisture, heat, and soil nutrients, and moisture might be one of the most important ecological factors for T. grandis cv. Merrillii due to the unique biological and ecological characteristics of the tree species.

  14. Southern Pine Beetle Survival In Trees Felled By the Cut and Top-Cut and Leave Method

    Treesearch

    J.D. Hodges; R.C. Thatcher

    1976-01-01

    When the cut & top-cut & leave method was used for control of the southern pine beetle in Central Louisiana, trees were felled into the open or into shade in September, June, July, December, and January. Survival was greatest in September, moderate in July, and relatively low in June, December, and January. The cut and top treatment resulted in lower beetle...

  15. Individual-tree basal area growth, survival, and total height models for upland hardwoods in the Boston Mountains of Arkansa

    Treesearch

    Paul A. Murphy; David L. Graney

    1988-01-01

    Models were developed for individual-tree basal area growth, survival, and total heights for different species of upland hardwoods in the Boston Mountains of north Arkansas. Data used were from 87 permanent plots located in an array of different sites and stand ages; the plots were thinned to different stocking levels and included unthinned controls. To test these...

  16. Appalachian Regional Reforestation Initiative (ARRI)

    EPA Pesticide Factsheets

    Presentation: ARRI’s goals: Plant more high-value hardwood trees, increase the survival rates and growth rates of planted trees, and expedite the establishment of forest habitat through natural succession

  17. Factors affecting the survival of ash (Fraxinus spp.) trees infested by emerald ash borer (Agrilus planipennis)

    Treesearch

    Kathleen S. Knight; John P. Brown; Robert P. Long

    2013-01-01

    Emerald ash borer (Agrilus planipennis) (EAB), an Asian woodboring beetle accidentally introduced in North America, has killed millions of ash (Fraxinus spp.) trees and is spreading rapidly. This study examined the effects of tree- and site-level factors on the mortality of ash trees in stands infested by EAB in OH, USA. Our data...

  18. Compartmentalization of decay in trees

    Treesearch

    Alex L. Shigo

    1985-01-01

    Trees have a spectacular survival record. Over a period of more than 400 million years they have evolved as the tallest, most massive and longest-lived organisms ever to inhabit the earth. Yet trees lack a means of defense that almost every animal has: trees cannot move away from destructive forces. Because they cannot move, all types of living and nonliving enemies—...

  19. Tree production in desert regions using effluent and water harvesting

    Treesearch

    Martin M. Karpiscak; Gerald J. Gottfried

    2000-01-01

    Treated municipal effluent combined with water harvesting can be used for land restoration and enhancing the growth of important riparian tree species. Paired studies in Arizona are assessing the potential of growing trees using mixtures of effluent and potable water. Trees are grown in the field and in containers. Initial results from the field show high survival for...

  20. Revegetating surface-mined lands with herbaceous and woody species together

    Treesearch

    Willis G. Vogel

    1980-01-01

    Herbaceous cover is required for erosion control on surface-mined lands even where forests are to be established. Where planted with trees, herbaceous species usually cause an increase in tree seedling mortality and retard tree growth, especially in the first few years after planting. Trees seem to be affected most by competition for moisture because their survival is...

  1. Importance of resin ducts in reducing ponderosa pine mortality from bark beetle attack.

    PubMed

    Kane, Jeffrey M; Kolb, Thomas E

    2010-11-01

    The relative importance of growth and defense to tree mortality during drought and bark beetle attacks is poorly understood. We addressed this issue by comparing growth and defense characteristics between 25 pairs of ponderosa pine (Pinus ponderosa) trees that survived and trees that died from drought-associated bark beetle attacks in forests of northern Arizona, USA. The three major findings of our research were: (1) xylem resin ducts in live trees were >10% larger (diameter), >25% denser (no. of resin ducts mm(-2)), and composed >50% more area per unit ring growth than dead trees; (2) measures of defense, such as resin duct production (no. of resin ducts year(-1)) and the proportion of xylem ring area to resin ducts, not growth, were the best model parameters of ponderosa pine mortality; and (3) most correlations between annual variation in growth and resin duct characteristics were positive suggesting that conditions conducive to growth also increase resin duct production. Our results suggest that trees that survive drought and subsequent bark beetle attacks invest more carbon in resin defense than trees that die, and that carbon allocation to resin ducts is a more important determinant of tree mortality than allocation to radial growth.

  2. Novel Hydraulic Vulnerability Proxies for a Boreal Conifer Species Reveal That Opportunists May Have Lower Survival Prospects under Extreme Climatic Events

    PubMed Central

    Rosner, Sabine; Světlík, Jan; Andreassen, Kjell; Børja, Isabella; Dalsgaard, Lise; Evans, Robert; Luss, Saskia; Tveito, Ole E.; Solberg, Svein

    2016-01-01

    Top dieback in 40–60 years old forest stands of Norway spruce [Picea abies (L.) Karst.] in southern Norway is supposed to be associated with climatic extremes. Our intention was to learn more about the processes related to top dieback and in particular about the plasticity of possible predisposing factors. We aimed at (i) developing proxies for P50 based on anatomical data assessed by SilviScan technology and (ii) testing these proxies for their plasticity regarding climate, in order to (iii) analyze annual variations of hydraulic proxies of healthy looking trees and trees with top dieback upon their impact on tree survival. At two sites we selected 10 tree pairs, i.e., one healthy looking tree and one tree with visual signs of dieback such as dry tops, needle shortening and needle yellowing (n = 40 trees). Vulnerability to cavitation (P50) of the main trunk was assessed in a selected sample set (n = 19) and we thereafter applied SilviScan technology to measure cell dimensions (lumen (b) and cell wall thickness (t)) in these specimen and in all 40 trees in tree rings formed between 1990 and 2010. In a first analysis step, we searched for anatomical proxies for P50. The set of potential proxies included hydraulic lumen diameters and wall reinforcement parameters based on mean, radial, and tangential tracheid diameters. The conduit wall reinforcement based on tangential hydraulic lumen diameters ((t/bht)2) was the best estimate for P50. It was thus possible to relate climatic extremes to the potential vulnerability of single annual rings. Trees with top dieback had significantly lower (t/bht)2 and wider tangential (hydraulic) lumen diameters some years before a period of water deficit (2005–2006). Radial (hydraulic) lumen diameters showed however no significant differences between both tree groups. (t/bht)2 was influenced by annual climate variability; strongest correlations were found with precipitation in September of the previous growing season: high precipitation in previous September resulted in more vulnerable annual rings in the next season. The results are discussed with respect to an “opportunistic behavior” and genetic predisposition to drought sensitivity. PMID:27375672

  3. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses

    PubMed Central

    Sevanto, Sanna; Mcdowell, Nate G; Dickman, L Turin; Pangle, Robert; Pockman, William T

    2014-01-01

    Despite decades of research on plant drought tolerance, the physiological mechanisms by which trees succumb to drought are still under debate. We report results from an experiment designed to separate and test the current leading hypotheses of tree mortality. We show that piñon pine (Pinus edulis) trees can die of both hydraulic failure and carbon starvation, and that during drought, the loss of conductivity and carbohydrate reserves can also co-occur. Hydraulic constraints on plant carbohydrate use determined survival time: turgor loss in the phloem limited access to carbohydrate reserves, but hydraulic control of respiration prolonged survival. Our data also demonstrate that hydraulic failure may be associated with loss of adequate tissue carbohydrate content required for osmoregulation, which then promotes failure to maintain hydraulic integrity. PMID:23730972

  4. Reclamation: what about trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolar, C.A.; Ashby, W.C.

    A five-year research programme was started in 1978 in the Botany Department of Southern Illinois University to evaluate the effect of reclamation practices on tree survival and growth. The project was initiated as a direct result of reports from Illinois and Indiana of tree-planting failures on mined lands reclaimed to current regulation standards.

  5. Geoecosystem-related dynamics of Acacia populations in the Israeli hyper-arid Arava Valley

    NASA Astrophysics Data System (ADS)

    Stavi, Ilan; Avni, Yoav; Yizhaq, Hezi; Bel, Golan; Ginat, Hanan

    2017-04-01

    Similar to other Middle-Eastern and North-African drylands, Acacia populations across the hyper-arid Arava Valley of Israel have experienced dramatic phonological changes during the last few decades. These changes have been expressed with high mortality rates and low recruitment rates. Species of the Acacia trees across the region include the A. pachyceras, A. raddiana, and A. tortilis. We studied the recruitment and decay rate of seedlings. Data obtained revealed that during a whole year after germination, overall survival rate of seedlings was 2%. Also, data showed that the main impediment to recruitment and survival of seedlings was insufficient access to soil-water, resulting in their mortality due to drying. Another, secondary impediment was imposed by erosional and depositional processes under heavy floods, resulting in the elimination or burial of seedlings. Modeling of results revealed that the drying of seedlings is defined with a constant mortality rate, which fits an exponential decay function. At the same time, seedling mortality due to fluvial processes is defined with a mortality rate that grows with time, which fits a Gaussian decay function. Also, we investigated the effect of latitude, basin size, and microhabitat on vitality of existing trees. Results showed negative effect of latitude on tree mortality, fitting with the generally greater precipitation rates in the northern- than in the southern- Arava Valley. At the same time, no effect on tree mortality was recorded for basin size, proposing that in such extreme drylands, runoff ratio becomes more non-linear with increasing watershed size because of the greater dominance of ephemeral stream transmission losses, as well as due to the partial storm area coverage. Nor did the location in microhabitat across the valley floor affect tree mortality rate, highlighting the bimodal effect of greater access to flood water, potentially increasing survivability of old trees, but at the same time, imposing risks for young trees. Additionally, we examined the impact of the type of channel's deposits on vitality and survivability of the Acacias. We found that compared to channels with a stony alluvium stratum, the mean tree density in channels incised in the red unit of the Early Pleistocene Zehiha Formation, characterized by hard layers of fine-grained reddish sediments, was 42% greater. Also, mean percentage of alive trees was significantly and 9% greater in these channels than that in the channels composed of stony alluvial stratum. The red unit was found to have a threefold greater available water capacity than that in the stony alluvium. It was concluded that once long-term droughts or climatic change occur in this hyper-arid region, the red unit deposit alleviates water stress for trees, increasing their vitality and survivability.

  6. Photoperiodic growth control in perennial trees.

    PubMed

    Azeez, Abdul; Sane, Aniruddha P

    2015-01-01

    Plants have to cope with changing seasons and adverse environmental conditions. Being sessile, plants have developed elaborate mechanisms for their survival that allow them to sense and adapt to the environment and reproduce successfully. A major adaptive trait for the survival of trees of temperate and boreal forests is the induction of growth cessation in anticipation of winters. In the last few years enormous progress has been made to elucidate the molecular mechanisms underlying SDs induced growth cessation in model perennial tree hybrid aspen (Populus tremula × P. tremuloides). In this review we discuss the molecular mechanism underlying photoperiodic control of growth cessation and adaptive responses.

  7. Dying piece by piece: carbohydrate dynamics in aspen seedlings under severe carbon stress and starvation

    NASA Astrophysics Data System (ADS)

    Wiley, Erin; Chow, Pak; Landhäusser, Simon

    2016-04-01

    Carbon stress and starvation remain poorly understood in trees, despite their potential role in mortality from a variety of agents. To explore the effects of carbon stress on nonstructural carbohydrate (NSC) dynamics and recovery potential and to examine the process of starvation, we grew aspen seedlings under one of three levels of shade: 40% (light shade), 8% (medium shade), and 4% (dark shade) of full sunlight. We then exposed seedlings to 24 hours darkness at either 20° or 28° C until trees had died. Periodically, seedlings were harvested for NSC analysis and to measure stem and root respiration. In addition, some seedlings were moved back into the light to determine if recovery was possible at certain points during starvation. Specifically, we sought to address the following questions: 1) Do NSC concentrations or mass influence tree survival under carbon stress? 2) At what carbohydrate levels do trees fail to recover and starve? 3) Does temperature affect the NSC level at which trees starve? Increasing shade reduced growth, but surprisingly did not reduce NSC levels, except in a portion of deep shade seedlings that experienced dieback. Once in darkness, leaves died first, with final NSC levels ranging from ~4% (Medium shade, 28 degrees) to 7.5% (Light shade). Stem death generally occurred gradually down the stem. Stem tissues retained ~1-2% NSC when dead. Recovery was still possible when only the upper half of the stem had died; at this point, seedlings had relatively high root NSC levels in their remaining roots (7-10%), with 1-3% starch. No trees recovered after the whole stem had died, at which point, some trees root systems were completely dead. However, most retained substantial amounts of live roots, averaging 5-6% NSC, with 0.25-1.5% starch. Despite the initially similar NSC concentrations, light shade seedlings took longer to reach half stem and whole stem death than seedlings from medium and dark shade. Longer survival times were associated with greater initial NSC pool sizes and lower mass-specific respiration rates. Higher temperatures reduced the time until tissue death and also tended to reduce NSC levels at death in some tissues. Survival time during starvation appeared to be controlled not only by the size of initial reserves, but by the rate of respiration. Relatively high leaf NSC levels of dead leaves observed during drought and during fall leaf abscission are within the range of leaf NSC levels of starved leaves seen here. Patterns of nonzero tissue NSC and the piecewise progression of mortality often observed in mature trees are not inconsistent with the process of carbon starvation, which may contribute to tree death by many causes.

  8. Tree colonization by the Asian longhorn beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae): effect of habitat and tree suitability.

    PubMed

    Faccoli, Massimo; Favaro, Riccardo; Concheri, Giuseppe; Squartini, Andrea; Battisti, Andrea

    2016-04-01

    Tree colonization and feeding activity of the invasive wood-borer Asian longhorn beetle (Anoplophora glabripennis), an Asian pest introduced into North America and Europe, was studied in a newly invaded area in Italy. The hypothesis being tested was that the reproductive success of the insect depend on habitat type and tree suitability. Adult beetles were caged on branches of host and nonhost species, in both urban and forest habitats. Two months later, number and size of feeding patches on plant tissues, eggs laid, and surviving larvae were assessed. Bark concentration of C and N was also measured from the same trees. Results indicated that the mean area of plant tissues consumed by adult feeding was significantly larger on trees growing in forest than in urban habitat, although within the same habitat there were no differences between susceptible and nonsusceptible trees. ALB tree colonization, in terms of number of eggs laid and young larvae survival, was not affected by habitat while it was higher on susceptible trees. Although trees growing in forests had a lower nitrogen concentration, they allowed colonization rates similar to those of trees growing in the urban habitat. Hence, the amount of carbon and nitrogen did not fully explain tree suitability or habitat selection. We suggest compensatory feeding as a potential mechanism that might explain this peculiar situation, as supported by a more intensive feeding activity recorded on trees in the forest. Suitability of different trees may be due to other factors, such as secondary chemical compounds. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  9. Growth and mortality of bigtooth aspen trees stressed by defoliation

    Treesearch

    Donald D. Davis; Timothy M. Frontz

    2003-01-01

    A survey conducted by the authors in 1993 in six stands within an area of declining aspen revealed that aspen mortality ranged from 25 to 67 percent per stand. Tree-ring analyses revealed that trees dead at time of sampling in 1993 had been growing slower in four of the six stands during the previous decade than were the surviving trees. However growth declines had...

  10. Sensitivity of woody carbon stocks to bark investment strategy in Neotropical savannas and forests

    NASA Astrophysics Data System (ADS)

    Trugman, Anna T.; Medvigy, David; Hoffmann, William A.; Pellegrini, Adam F. A.

    2018-01-01

    Fire frequencies are changing in Neotropical savannas and forests as a result of forest fragmentation and increasing drought. Such changes in fire regime and climate are hypothesized to destabilize tropical carbon storage, but there has been little consideration of the widespread variability in tree fire tolerance strategies. To test how aboveground carbon stocks change with fire frequency and composition of plants with different fire tolerance strategies, we update the Ecosystem Demography model 2 (ED2) with (i) a fire survivorship module based on tree bark thickness (a key fire-tolerance trait across woody plants in savannas and forests), and (ii) plant functional types representative of trees in the region. With these updates, the model is better able to predict how fire frequency affects population demography and aboveground woody carbon. Simulations illustrate that the high survival rate of thick-barked, large trees reduces carbon losses with increasing fire frequency, with high investment in bark being particularly important in reducing losses in the wettest sites. Additionally, in landscapes that frequently burn, bark investment can broaden the range of climate and fire conditions under which savannas occur by reducing the range of conditions leading to either complete tree loss or complete grass loss. These results highlight that tropical vegetation dynamics depend not only on rainfall and changing fire frequencies but also on tree fire survival strategy. Further, our results indicate that fire survival strategy is fundamentally important in regulating tree size demography in ecosystems exposed to fire, which increases the preservation of aboveground carbon stocks and the coexistence of different plant functional groups.

  11. Integrated assessment of the direct and indirect effects of resource gradients on tree species recruitment.

    PubMed

    Ibáñez, Inés; McCarthy-Neumann, Sarah

    2014-02-01

    Understanding the dynamics of tree establishment is critical to assess forests' composition, management practices, and current responses to global change. We carried out a field seedling transplant experiment to assess not only the direct effects of resources influencing recruitment of four tree species, but also their indirect and combined effects. Our analysis integrated first growing season demographic data together with estimates of mycorrhizal fungal colonization and resource availability (light, soil moisture, and soil nitrogen). Only by considering both the direct and indirect effects of resources we were able to account for most of the variability observed during seedling recruitment. Contrary to expectations, increasing light levels were not always beneficial for recruitment even in low light habitats, and soil moisture availability benefited seedling growth but not survival. In addition, mycorrhizal fungal colonization was not always favored by high light levels or by increasing soil moisture. Seedling survival for all species was lower in plots with higher arbuscular mycorrhizal fungi, while the association with ectomycorrhizal fungi varied from beneficial to detrimental. When integrating the direct, indirect, and interactive effects of resource availability and mycorrhizal fungal colonization on tree recruitment dynamics we found that species responded in a nonlinear fashion to increasing resource levels, and we also identified thresholds, i.e., shifts in the direction of the response, along the resource gradient. Our integrated assessment considerably outperformed a null model where only direct effects of resources were accounted for. These results illustrate how the combination of direct, indirect, and combined effects of driving variables better represents the complexity of the processes determining tree species recruitment than simple resource availability mechanisms.

  12. Predicting Douglas-fir's response to a warming climate

    Treesearch

    Andrea Watts; Sheel Bansal; Connie Harrington; Brad St. Clair

    2015-01-01

    Douglas-fir is an iconic tree in the Pacific Northwest. Although individual trees may appear to be identical, genetic differences within each tree have resulted from adaptation to the local environment. These genetic differences over time have resulted in differences among populations that are important to the species' survival and growth in changing climates....

  13. Survival of tree seedligns across space and time: estimates from long-term count data

    Treesearch

    Brian Beckage; Michael Lavina; James S. Clark

    2005-01-01

    Tree diversity in forests may be maintained by variability in seedling recruitment. Although forest ecologists have emphasized the importance of canopy gaps in generating spatial variability that might promote tree regeneration, the effects of canopy gaps on seedling recruitment may be offset by dense forest understories.Large annual...

  14. Phenolics and compartmentalization in the sapwood of broad-leaved trees

    Treesearch

    Kevin T. Smith

    1997-01-01

    Tree survival depends on the chemistry of phenolic compounds, a broad class of chemicals characterized by a hydroxylated benzene ring. In trees, phenolics occur frequently as polymers, acids, or glycosylated esters and perform diverse functions. For example, lignin, a phenylpropane heteropolymer, provides structural strength to wood. The induced production of phenols...

  15. Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest.

    PubMed

    Dobbertin, Matthias; Eilmann, Britta; Bleuler, Peter; Giuggiola, Arnaud; Graf Pannatier, Elisabeth; Landolt, Werner; Schleppi, Patrick; Rigling, Andreas

    2010-03-01

    In Valais, Switzerland, Scots pines (Pinus sylvestris L.) are declining, mainly following drought. To assess the impact of drought on tree growth and survival, an irrigation experiment was initiated in 2003 in a mature pine forest, approximately doubling the annual precipitation. Tree crown transparency (lack of foliage) and leaf area index (LAI) were annually assessed. Seven irrigated and six control trees were felled in 2006, and needles, stem discs and branches were taken for growth analysis. Irrigation in 2004 and 2005, both with below-average precipitation, increased needle size, area and mass, stem growth and, with a 1-year delay, shoot length. This led to a relative decrease in tree crown transparency (-14%) and to an increase in stand LAI (+20%). Irrigation increased needle length by 70%, shoot length by 100% and ring width by 120%, regardless of crown transparency. Crown transparency correlated positively with mean needle size, shoot length and ring width and negatively with specific leaf area. Trees with high crown transparency (low growth, short needles) experienced similar increases in needle mass and growth with irrigation than trees with low transparency (high growth, long needles), indicating that seemingly declining trees were able to 'recover' when water supply became sufficient. A simple drought index before and during the irrigation explained most of the variation found in the parameters for both irrigated and control trees.

  16. Living on next to nothing: tree seedlings can survive weeks with very low carbohydrate concentrations.

    PubMed

    Weber, Raphael; Schwendener, Andrea; Schmid, Sandra; Lambert, Savoyane; Wiley, Erin; Landhäusser, Simon M; Hartmann, Henrik; Hoch, Günter

    2018-04-01

    The usage of nonstructural carbohydrates (NSCs) to indicate carbon (C) limitation in trees requires knowledge of the minimum tissue NSC concentrations at lethal C starvation, and the NSC dynamics during and after severe C limitation. We completely darkened and subsequently released seedlings of two deciduous and two evergreen temperate tree species for varying periods. NSCs were measured in all major organs, allowing assessment of whole-seedling NSC balances. NSCs decreased fast in darkness, but seedlings survived species-specific whole-seedling starch concentrations as low as 0.4-0.8% per dry matter (DM), and sugar (sucrose, glucose and fructose) concentrations as low as 0.5-2.0% DM. After re-illumination, the refilling of NSC pools began within 3 wk, while the resumption of growth was delayed or restricted. All seedlings had died after 12 wk of darkness, and starch and sugar concentrations in most tissues were lower than 1% DM. We conclude that under the applied conditions, tree seedlings can survive several weeks with very low NSC reserves probably also using alternative C sources like lipids, proteins or hemicelluloses; lethal C starvation cannot be assumed, if NSC concentrations are higher than the minimum concentrations found in surviving seedlings; and NSC reformation after re-illumination occurs preferentially over growth. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  17. Interspecific variation in growth responses to tree size, competition and climate of western Canadian boreal mixed forests.

    PubMed

    Jiang, Xinyu; Huang, Jian-Guo; Cheng, Jiong; Dawson, Andria; Stadt, Kenneth J; Comeau, Philip G; Chen, Han Y H

    2018-08-01

    Tree growth of boreal forest plays an important role on global carbon (C) cycle, while tree growth in the western Canadian boreal mixed forests has been predicted to be negatively affected by regional drought. Individual tree growth can be controlled by many factors, such as competition, climate, tree size and age. However, information about contributions of different factors to tree growth is still limited in this region. In order to address this uncertainty, tree rings of two dominant tree species, trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench.) Voss), were sampled from boreal mixed forest stands distributed across Alberta, Canada. Tree growth rates over different time intervals (10years interval, 1998-2007; 20years interval, 1988-2007; 30years interval, 1978-2007) were calculated to study the effects of different factors (tree size, competition, climate, and age) on tree growth. Results indicated that tree growth of two species were both primarily affected by competition or tree size, while climatic indices showed less effects on tree growth. Growth of trembling aspen was significantly affected by inter- and intraspecific competition, while growth of white spruce was primarily influenced by tree size, followed by competition. Positive relationship was found between growth of white spruce and competition index of coniferous group, suggesting an intraspecific mutualism mechanism within coniferous group. Our results further suggested that competition driven succession was the primary process of forest composition shift in the western Canadian boreal mixed forest. Although drought stress increased tree mortality, decline of stem density under climate change released competition stress of surviving trees, which in turn sustained growth of surviving trees. Therefore, climatic indices showed fewer effects on growth of dominant tree species compared to other factors in our study. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Survival and growth of deep-planted, in-leaf grafts in a germplasm repository of canker-resistant butternut

    Treesearch

    J. W. Van Sambeek; Michael E. Ostry; James J. Zaczek

    2003-01-01

    Butternut (Juglans cinerea L.), highly valued for its timber and nuts, occurs as widely scattered trees or isolated stands throughout the Central Hardwood region (Rink 1990). The introduced fungus Sirococcus clavigignenti-juglandacearum has rapidly cankered, girdled, and killed most of the butternut trees; however, a few trees that...

  19. Projecting a Stand Table Through Time

    Treesearch

    Quang V. Cao; V. Clark Baldwin

    1999-01-01

    Stand tables provide number of trees per acre for each diameter class. This paper presents a general technique to predict a future stand table, based on the current stand table and future stand summary statistics such as trees and basal area per acre, and average diameter. The stand projection technique involves (a) predicting surviving trees for each class, and (b)...

  20. Survival and ecophysiology of tree seedlings during El Nino drought in a tropical moist forest in Panama

    Treesearch

    Betinna M.J. Engelbrecht; S. Joseph Wright; Diane De Steven

    2002-01-01

    In tropical forests, severe droughts caused by El Nino events may strongly influence the water relations of tree seedlings and thereby increase their mortality. Data on known-aged seedlings of three common shade-tolerant canopy tree species (Trichilia tuberculata, Tetragastris panamensis and Quararibea asterolepis) in a Panamanian...

  1. A comparison of tree shelters installed on green ash and cherrybark oak seedlings in Arkansas

    Treesearch

    H. Christoph Stuhlinger

    2013-01-01

    Tree shelters can aid hardwood seedling establishment by improving early seedling survival and growth. This study was established in Arkansas to compare three types of tree shelters installed on green ash (Fraxinus pennsylvanica Marsh.) and cherrybark oak (Quercus pagoda Raf.) seedlings. Seedlings planted in 4 feet tall Blue-X®,...

  2. Light environment under Rhododendron maximum thickets and estimated carbon gain of regenerating forest tree seedlings

    Treesearch

    T.T. Lei; E.T. Nilsen; S.W. Semones

    2006-01-01

    Canopy tree recruitment is inhibited by evergreen shrubs in many forests. In the southern Appalachian mountains of the USA, thickets of Rhododendron maximum L. restrict dominant canopy tree seedling survival and persistence. Using R. maximum as a model system, we examined available light under the thickets and the photosynthetic...

  3. Bugs and burns: effects of fire on ponderosa pine bark beetle (Project INT-F-07-02)

    Treesearch

    Thomas DeGomez; Thomas Kolb; Sabrina Kleinman; Kelly Williams

    2013-01-01

    Fire-damaged trees that otherwise would have survived can be killed by bark beetles (McCullough and others 1998, McHugh and others 2003). Wallin and others (2008) found that fire weakens a tree’s defense against bark beetles. An unacceptable level of tree mortality may occur after a controlled burn as a result of weakened tree defenses (Sullivan and others 2003)....

  4. Sparrow nest survival in relation to prescribed fire and woody plant invasion in a northern mixed-grass prairie

    USGS Publications Warehouse

    Murphy, Robert K.; Shaffer, Terry L.; Grant, Todd A.; Derrig, James L.; Rubin, Cory S.; Kerns, Courtney K.

    2017-01-01

    Prescribed fire is used to reverse invasion by woody vegetation on grasslands, but managers often are uncertain whether influences of shrub and tree reduction outweigh potential effects of fire on nest survival of grassland birds. During the 2001–2003 breeding seasons, we examined relationships of prescribed fire and woody vegetation to nest survival of clay-colored sparrow (Spizella pallida) and Savannah sparrow (Passerculus sandwichensis) in mixed-grass prairie at Des Lacs National Wildlife Refuge in northwestern North Dakota, USA. We assessed relationships of nest survival to 1) recent fire history, in terms of number of breeding seasons (2, 3, or 4–5) since the last prescribed fire, and 2) prevalence of trees and tall (>1.5 m) shrubs in the landscape and of low (≤1.5 m) shrubs within 5 m of nests. Nest survival of both species exhibited distinct patterns related to age of the nest and day of year, but bore no relationship to fire history. Survival of clay-colored sparrow nests declined as the amount of trees and tall shrubs within 100 m increased, but we found no relationship to suggest nest parasitism by brown-headed cowbirds (Molothrus ater) as an underlying mechanism. We found little evidence linking nest survival of Savannah sparrow to woody vegetation. Our results suggest that fire can be used to restore northern mixed-grass prairies without adversely affecting nest survival of ≥2 widespread passerine species. Survival of nests of clay-colored sparrow may increase when tall woody cover is reduced by fire. Our data lend support to the use of fire for reducing scattered patches of tall woody cover to enhance survival of nests of ≥1 grassland bird species in northern mixed-grass prairies, but further study is needed that incorporates experimental approaches and assessments of shorter term effects of fire on survival of nests of grassland passerines.

  5. Establishment of orchards with black polyethylene film mulching: effect on nematode and fungal pathogens, water conservation, and tree growth.

    PubMed

    Duncan, R A; Stapleton, J J; McKenry, M V

    1992-12-01

    Placement of a 3-m-wide, black, polyethylene film mulch down rows of peach (Prunus persica 'Red Haven' on 'Lovell' rootstock) and almond (Prunus dulcis 'Nonpareil' on 'Lovell') trees in the San Joaquin Valley of California resulted in irrigation water conservation of 75%, higher soil temperature in the surface 30 cm, a tendency toward greater root mass, elimination of weeds, and a greater abundance of Meloidogyne incognita second-stage juveniles in soil but reduced root galling when compared to the nonmulched control. Population levels of Pratylenchus hexincisus, a nematode found within tree roots, were reduced by mulching, as were those of Tylenchulus semipenetrans, which survived on old grape roots remaining from a previously planted vineyard, and Paratrichodorus minor, which probably fed on roots of various weed species growing in the nonmulched soil. Populations of Pythium ultimum were not significantly changed, probably also due to the biological refuge of the old grape roots and moderate soil heating level. Trunk diameters of peach trees were increased by mulching, but those of almond trees were reduced by the treatment. Leaf petiole analysis indicated that concentrations of mineral nutrients were inconsistent, except for a significant increase in Ca in both tree species.

  6. Factors driving mortality and growth at treeline: a 30-year experiment of 92 000 conifers.

    PubMed

    Barbeito, Ignacio; Dawes, Melissa A; Rixen, Christian; Senn, Josef; Bebi, Peter

    2012-02-01

    Understanding the interplay between environmental factors contributing to treeline formation and how these factors influence different life stages remains a major research challenge. We used an afforestation experiment including 92 000 trees to investigate the spatial and temporal dynamics of tree mortality and growth at treeline in the Swiss Alps. Seedlings of three high-elevation conifer species (Larix decidua, Pinus mugo ssp. uncinata, and Pinus cembra) were systematically planted along an altitudinal gradient at and above the current treeline (2075 to 2230 m above sea level [a.s.l.]) in 1975 and closely monitored during the following 30 years. We used decision-tree models and generalized additive models to identify patterns in mortality and growth along gradients in elevation, snow duration, wind speed, and solar radiation, and to quantify interactions between the different variables. For all three species, snowmelt date was always the most important environmental factor influencing mortality, and elevation was always the most important factor for growth over the entire period studied. Individuals of all species survived at the highest point of the afforestation for more than 30 years, although mortality was greater above 2160 m a.s.l., 50-100 m above the current treeline. Optimal conditions for height growth differed from those for survival in all three species: early snowmelt (ca. day of year 125-140 [where day 1 is 1 January]) yielded lowest mortality rates, but relatively later snowmelt (ca. day 145-150) yielded highest growth rates. Although snowmelt and elevation were important throughout all life stages of the trees, the importance of radiation decreased over time and that of wind speed increased. Our findings provide experimental evidence that tree survival and height growth require different environmental conditions and that even small changes in the duration of snow cover, in addition to changes in temperature, can strongly impact tree survival and growth patterns at treeline. Further, our results show that the relative importance of different environmental variables for tree seedlings changes during the juvenile phase as they grow taller.

  7. Demographic analysis of tree colonization in a 20-year-old right-of-way.

    PubMed

    Mercier, C; Brison, J; Bouchard, A

    2001-12-01

    Past tree colonization dynamics of a powerline-right-of-way (ROW) corridor in the Haut-Saint-Laurent region of Quebec was studied based on the present age distribution of its tree populations. This colonization study spans 20 years, from 1977 (ROW clearance) to 1996. The sampled quadrats were classified into six vegetation types. Tree colonization dynamics were interpreted in each type, and three distinct patterns were identified. (1) Communities adapted to acidic conditions were heavily colonized by Acer rubrum, at least for the last 12 years. (2) Communities adapted to mesic or to hydric conditions were more intensely colonized in the period 1985-1987 than in the following 9 years; this past success in tree colonization may have been caused by herbicide treatments, which could have facilitated tree establishment by damaging the herbaceous and shrub vegetation. (3) Cattail, vine-raspberry, and reed-dominated communities contained few tree individuals, with almost all trees establishing between 1979 and 1990; those three vegetation types appear as the most resistant to tree invasion in the ROW studied. This study supports the need for an integrated approach in ROW vegetation management, in which the selection of vegetation treatment methods would depend on the tree colonization dynamics in each vegetation type. Minimizing disturbances inflicted on ROW herbaceous and shrub covers should be the central strategy because disturbances jeopardize natural resistance to future tree invasion, except in communities adapted to acidic conditions where the existing vegetation does not prevent invasion by A. rubrum. Many trees are surviving the successive cutting operations by producing new sprouts each time, particularly in communities adapted to mesic and hydric conditions. In these cases, mechanical cutting should be replaced by a one-time stump-killing operation, to avoid repeated and unsuccessful treatments of the same individuals over time.

  8. Mechanisms of piñon pine mortality after severe drought: a retrospective study of mature trees.

    PubMed

    Gaylord, Monica L; Kolb, Thomas E; McDowell, Nate G

    2015-08-01

    Conifers have incurred high mortality during recent global-change-type drought(s) in the western USA. Mechanisms of drought-related tree mortality need to be resolved to support predictions of the impacts of future increases in aridity on vegetation. Hydraulic failure, carbon starvation and lethal biotic agents are three potentially interrelated mechanisms of tree mortality during drought. Our study compared a suite of measurements related to these mechanisms between 49 mature piñon pine (Pinus edulis Engelm.) trees that survived severe drought in 2002 (live trees) and 49 trees that died during the drought (dead trees) over three sites in Arizona and New Mexico. Results were consistent over all sites indicating common mortality mechanisms over a wide region rather than site-specific mechanisms. We found evidence for an interactive role of hydraulic failure, carbon starvation and biotic agents in tree death. For the decade prior to the mortality event, dead trees had twofold greater sapwood cavitation based on frequency of aspirated tracheid pits observed with scanning electron microscopy (SEM), smaller inter-tracheid pit diameter measured by SEM, greater diffusional constraints to photosynthesis based on higher wood δ(13)C, smaller xylem resin ducts, lower radial growth and more bark beetle (Coleoptera: Curculionidae) attacks than live trees. Results suggest that sapwood cavitation, low carbon assimilation and low resin defense predispose piñon pine trees to bark beetle attacks and mortality during severe drought. Our novel approach is an important step forward to yield new insights into how trees die via retrospective analysis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Fluvial islands: First stage of development from nonmigrating (forced) bars and woody-vegetation interactions

    NASA Astrophysics Data System (ADS)

    Wintenberger, Coraline L.; Rodrigues, Stéphane; Bréhéret, Jean-Gabriel; Villar, Marc

    2015-10-01

    Fluvial islands can develop from the channel bed by interactions between pioneer trees and bars. Although vegetation recruitment and survival is possible on all bar types, it is easier for trees to survive on nonmigrating bars developed from a change in channel geometry or to the presence of a steady perturbation. This field study details the first stages of development of a vegetated mid-channel, nonmigrating (or forced) bar and its evolution toward an island form. Over six years, analysis of bed topographical changes, vegetation density and roughness, scour and fill depths, sediment grain size and architecture, and excess bed shear stress highlighted a specific signature of trees on topography and grain size segregation. Two depositional processes combining the formation of obstacle marks and upstream-shifting deposition of sediments led to the vertical accretion of the vegetated bar. During the first stage of the bar accretion, bedload sediment supply coming from surrounding channels during floods was identified as a key process modulated by the presence of woody vegetation and a deflection effect induced by the preexisting topography. Grain size segregation between vegetated and bare areas was also highlighted and interpreted as an important process affecting the development of surrounding channels and the degree of disconnection (and hence the speed of development) of a growing island. The heterogeneity of bedload supply can explain why sediment deposition and density of trees are not strictly related. A general conceptual model detailing the first stages of evolution from a bar to an established island is proposed for relatively large lowland rivers.

  10. The Role of Forest Tent Caterpillar Defoliations and Partial Harvest in the Decline and Death of Sugar Maple

    PubMed Central

    Hartmann, Henrik; Messier, Christian

    2008-01-01

    Background and Aims Natural and anthropogenic disturbances can act as stresses on tree vigour. According to Manion's conceptual model of tree disease, the initial vigour of trees decreases as a result of predisposing factors that render these trees more vulnerable to severe inciting stresses, stresses that can then cause final vigour decline and subsequent tree death. This tree disease model was tested in sugar maple (Acer saccharum) by assessing the roles of natural and anthropogenic disturbances in tree decline and death. Methods Radial growth data from 377 sugar maple trees that had undergone both defoliations by insects and partial harvest were used to estimate longitudinal survival probabilities as a proxy for tree vigour. Radial growth rates and survival probabilities were compared among trees subjected to different levels of above- and below-ground disturbances, between periods of defoliation and harvest, and between live and dead trees. Key Results Manion's tree disease model correctly accounts for vigour decline and tree death in sugar maple; tree growth and vigour were negatively affected by a first defoliation, predisposing these trees to death later during the study period due to a second insect outbreak that initiated a final vigour decline. This decline was accelerated by the partial harvest disturbance in 1993. Even the most severe anthropogenic disturbances from partial harvest did not cause, unlike insect defoliation, any growth or vigour declines in live sugar maple. Conclusions Natural disturbances acted as predisposing and inciting stresses in tree sugar maple decline and death. Anthropogenic disturbances from a partial harvest at worst accelerated a decline in trees that were already weakened by predisposing and inciting stresses (i.e. repeated insect defoliations). Favourable climatic conditions just before and after the partial harvest may have alleviated possible negative effects on growth resulting from harvesting. PMID:18660493

  11. Climate and life-history evolution in evening primroses (Oenothera, Onagraceae): a phylogenetic comparative analysis.

    PubMed

    Evans, Margaret E K; Hearn, David J; Hahn, William J; Spangle, Jennifer M; Venable, D Lawrence

    2005-09-01

    Evolutionary ecologists have long sought to understand the conditions under which perennial (iteroparous) versus annual (semelparous) plant life histories are favored. We evaluated the idea that aridity and variation in the length of droughts should favor the evolution of an annual life history, both by decreasing adult survival and by increasing the potential for high seedling survival via reduced plant cover. We calculated phylogenetically independent contrasts of climate with respect to life history in a clade of winter-establishing evening primroses (sections Anogra and Kleinia; Oenothera; Onagraceae), which includes seven annuals, 12 perennials, and two variable taxa. Climate variables were quantified from long-term records at weather stations near collection localities. To explicitly account for phylogenetic uncertainty, contrasts were calculated on a random sample of phylogenetic trees from the posterior distribution of a Bayesian analysis of DNA sequence data. Statements of association are based on comparing the per-tree mean contrast, which has a null expectation of zero, to a set of per-tree mean contrasts calculated on the same trees, after randomizing the climate data. As predicted, increased annual aridity, increased annual potential evapotranspiration, and decreased annual precipitation were associated with transitions to the annual habit, but these trends were not significantly different from the null pattern. Transitions to the annual habit were not significantly associated with increases in one measure of aridity in summer nor with increased summer drought, but they were associated with significantly increased maximum summer temperatures. In winter, increased aridity and decreased precipitation were significantly associated with transitions to the annual habit. Changes in life history were not significantly associated with changes in the coefficient of variation of precipitation, either on an annual or seasonal (summer vs. winter) basis. Though we cannot attribute causality on the basis of a correlational, historical study, our results are consistent with the idea that increased heat and drought at certain times of the year favor the evolution of the annual habit. Increased heat in summer may cause adult survival to decline, while increased aridity and decreased precipitation in the season of seedling recruitment (winter) may favor a drought-avoiding, short-lived annual strategy. Not all of the predicted patterns were observed: the capability for drought-induced dormancy may preclude change in habit in response to summer drought in our study group.

  12. The effects of raking on sugar pine mortality following prescribed fire in Sequoia and Kings Canyon National Parks, California, USA

    USGS Publications Warehouse

    Nesmith, Jonathan C. B.; O'Hara, Kevin L.; van Mantgem, Phillip J.; de Valpine, Perry

    2010-01-01

    Prescribed fire is an important tool for fuel reduction, the control of competing vegetation, and forest restoration. The accumulated fuels associated with historical fire exclusion can cause undesirably high tree mortality rates following prescribed fires and wildfires. This is especially true for sugar pine (Pinus lambertiana Douglas), which is already negatively affected by the introduced pathogen white pine blister rust (Cronartium ribicola J.C. Fisch. ex Rabenh). We tested the efficacy of raking away fuels around the base of sugar pine to reduce mortality following prescribed fire in Sequoia and Kings Canyon national parks, California, USA. This study was conducted in three prescribed fires and included 457 trees, half of which had the fuels around their bases raked away to mineral soil to 0.5 m away from the stem. Fire effects were assessed and tree mortality was recorded for three years after prescribed fires. Overall, raking had no detectable effect on mortality: raked trees averaged 30% mortality compared to 36% for unraked trees. There was a significant effect, however, between the interaction of raking and average pre-treatment forest floor fuel depth: the predicted probability of survival of a 50 cm dbh tree was 0.94 vs. 0.96 when average pre-treatment fuel depth was 0 cm for a raked and unraked tree, respectively. When average pre-treatment forest floor fuel depth was 30 cm, the predicted probability of survival for a raked 50 cm dbh tree was 0.60 compared to only 0.07 for an unraked tree. Raking did not affect mortality when fire intensity, measured as percent crown volume scorched, was very low (0% scorch) or very high (>80% scorch), but the raking treatment significantly increased the proportion of trees that survived by 9.6% for trees that burned under moderate fire intensity (1% to 80% scorch). Raking significantly reduced the likelihood of bole charring and bark beetle activity three years post fire. Fuel depth and anticipated fire intensity need to be accounted for to maximize the effectiveness of the treatments. Raking is an important management option to reduce tree mortality from prescribed fire, but is most effective under specific fuel and burning conditions.

  13. Metagenomic Signatures of Bacterial Adaptation to Life in the Phyllosphere of a Salt-Secreting Desert Tree.

    PubMed

    Finkel, Omri M; Delmont, Tom O; Post, Anton F; Belkin, Shimshon

    2016-05-01

    The leaves of Tamarix aphylla, a globally distributed, salt-secreting desert tree, are dotted with alkaline droplets of high salinity. To successfully inhabit these organic carbon-rich droplets, bacteria need to be adapted to multiple stress factors, including high salinity, high alkalinity, high UV radiation, and periodic desiccation. To identify genes that are important for survival in this harsh habitat, microbial community DNA was extracted from the leaf surfaces of 10 Tamarix aphylla trees along a 350-km longitudinal gradient. Shotgun metagenomic sequencing, contig assembly, and binning yielded 17 genome bins, six of which were >80% complete. These genomic bins, representing three phyla (Proteobacteria,Bacteroidetes, and Firmicutes), were closely related to halophilic and alkaliphilic taxa isolated from aquatic and soil environments. Comparison of these genomic bins to the genomes of their closest relatives revealed functional traits characteristic of bacterial populations inhabiting the Tamarix phyllosphere, independent of their taxonomic affiliation. These functions, most notably light-sensing genes, are postulated to represent important adaptations toward colonization of this habitat. Plant leaves are an extensive and diverse microbial habitat, forming the main interface between solar energy and the terrestrial biosphere. There are hundreds of thousands of plant species in the world, exhibiting a wide range of morphologies, leaf surface chemistries, and ecological ranges. In order to understand the core adaptations of microorganisms to this habitat, it is important to diversify the type of leaves that are studied. This study provides an analysis of the genomic content of the most abundant bacterial inhabitants of the globally distributed, salt-secreting desert tree Tamarix aphylla Draft genomes of these bacteria were assembled, using the culture-independent technique of assembly and binning of metagenomic data. Analysis of the genomes reveals traits that are important for survival in this habitat, most notably, light-sensing and light utilization genes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Effects of seed predators of different body size on seed mortality in Bornean logged forest.

    PubMed

    Hautier, Yann; Saner, Philippe; Philipson, Christopher; Bagchi, Robert; Ong, Robert C; Hector, Andy

    2010-07-19

    The Janzen-Connell hypothesis proposes that seed and seedling enemies play a major role in maintaining high levels of tree diversity in tropical forests. However, human disturbance may alter guilds of seed predators including their body size distribution. These changes have the potential to affect seedling survival in logged forest and may alter forest composition and diversity. We manipulated seed density in plots beneath con- and heterospecific adult trees within a logged forest and excluded vertebrate predators of different body sizes using cages. We show that small and large-bodied predators differed in their effect on con- and heterospecific seedling mortality. In combination small and large-bodied predators dramatically decreased both con- and heterospecific seedling survival. In contrast, when larger-bodied predators were excluded small-bodied predators reduced conspecific seed survival leaving seeds coming from the distant tree of a different species. Our results suggest that seed survival is affected differently by vertebrate predators according to their body size. Therefore, changes in the body size structure of the seed predator community in logged forests may change patterns of seed mortality and potentially affect recruitment and community composition.

  15. Effects of Seed Predators of Different Body Size on Seed Mortality in Bornean Logged Forest

    PubMed Central

    Hautier, Yann; Saner, Philippe; Philipson, Christopher; Bagchi, Robert; Ong, Robert C.; Hector, Andy

    2010-01-01

    Background The Janzen-Connell hypothesis proposes that seed and seedling enemies play a major role in maintaining high levels of tree diversity in tropical forests. However, human disturbance may alter guilds of seed predators including their body size distribution. These changes have the potential to affect seedling survival in logged forest and may alter forest composition and diversity. Methodology/Principal Findings We manipulated seed density in plots beneath con- and heterospecific adult trees within a logged forest and excluded vertebrate predators of different body sizes using cages. We show that small and large-bodied predators differed in their effect on con- and heterospecific seedling mortality. In combination small and large-bodied predators dramatically decreased both con- and heterospecific seedling survival. In contrast, when larger-bodied predators were excluded small-bodied predators reduced conspecific seed survival leaving seeds coming from the distant tree of a different species. Conclusions/Significance Our results suggest that seed survival is affected differently by vertebrate predators according to their body size. Therefore, changes in the body size structure of the seed predator community in logged forests may change patterns of seed mortality and potentially affect recruitment and community composition. PMID:20657841

  16. Connections in wood and foliage

    Treesearch

    Kevin T. Smith

    2009-01-01

    Trees are networked systems that capture energy, move massive amounts of water and material, and provide the setting for human society and for the lives of many associated organisms. Tree survival depends on making and breaking the right connections within these networks.

  17. Impacts of sewage effluent on tree survival, water quality and nutrient removal in coastal plain swamps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuenzler, E.J.

    1987-09-01

    An investigation was conducted of the impacts of sprayed municipal sewage on swamp tree survival and the effects of the swamp system on nutrient concentrations below the outfalls on two streams on the coastal plain of North Carolina. Effluent was discharged to one swamp stream by aerial spraying and to the other stream by way of a small ditch. Ninety-eight percent of the trees struck directly by the spray were dead within 18 months of the date spraying began. Both swamp systems removed sufficient quantities of nitrogen and phosphorus within a few kilometers to account for virtually all of themore » sewage nutrient load to the swamps.« less

  18. Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer.

    PubMed

    Teste, François P; Simard, Suzanne W; Durall, Daniel M; Guy, Robert D; Jones, Melanie D; Schoonmaker, Amanda L

    2009-10-01

    Mycorrhizal networks (MNs) are fungal hyphae that connect roots of at least two plants. It has been suggested that these networks are ecologically relevant because they may facilitate interplant resource transfer and improve regeneration dynamics. This study investigated the effects of MNs on seedling survival, growth and physiological responses, interplant resource (carbon and nitrogen) transfer, and ectomycorrhizal (EM) fungal colonization of seedlings by trees in dry interior Douglas-fir (Pseudotsuga menziesii var. glauca) forests. On a large, recently harvested site that retained some older trees, we established 160 isolated plots containing pairs of older Douglas-fir "donor" trees and either manually sown seed or planted Douglas-fir "receiver" seedlings. Seed- and greenhouse-grown seedlings were sown and planted into four mesh treatments that served to restrict MN access (i.e., planted into mesh bags with 0.5-, 35-, 250-microm pores, or without mesh). Older trees were pulse labeled with carbon (13CO2) and nitrogen (15NH4(15)NO3) to quantify resource transfer. After two years, seedlings grown from seed in the field had the greatest survival and received the greatest amounts of transferred carbon (0.0063% of donor photo-assimilates) and nitrogen (0.0018%) where they were grown without mesh; however, planted seedlings were not affected by access to tree roots and hyphae. Size of "donor" trees was inversely related to the amount of carbon transferred to seedlings. The potential for MNs to form was high (based on high similarity of EM communities between hosts), and MN-mediated colonization appeared only to be important for seedlings grown from seed in the field. These results demonstrate that MNs and mycorrhizal roots of trees may be ecologically important for natural regeneration in dry forests, but it is still uncertain whether resource transfer is an important mechanism underlying seedling establishment.

  19. Relative importance of perch and facilitative effects on nucleation in tropical woodland in Malawi

    NASA Astrophysics Data System (ADS)

    Fujita, Tomohiro

    2016-01-01

    Individual trees in open vegetation such as woodlands can act as "nuclei" for the colonization of forest tree species, which consequently lead to the formation of forest patches. This phenomenon is known as nucleation. The mechanism of nucleation is generally attributed to two factors: trees provide perches for frugivores that increase seed deposition (perch effect), and tree crowns ameliorate environmental conditions, which improves seedling establishment (facilitative effect). Few studies have attempted to distinguish the relative importance of these two factors. In this study, I separated these two effects in a woodland in northern Malawi. I chose Ficus natalensis as a potential nuclei tree because large individuals of this species are commonly located at the center of forest patches within open woodland at the study site. I monitored several environmental variables, seedling survival, seedling composition, and seed rain at three microsites: under F. natalensis, under Brachystegia floribunda (a dominant woodland species), and in open sites. Both tree species provided similar favorable conditions for the establishment of forest species compared to open sites. Thus, the survival of forest tree seedlings under F. natalensis and B. floribunda was similar, and substantially higher than seedling survival in open sites. However, communities of naturally occurring seedlings differed significantly between F. natalensis and B. floribunda. These results indicate that the facilitative effect alone cannot explain the nucleation pattern. I attribute this result to the perch effect of F. natalensis because the forest seedling species recorded under F. natalensis reportedly have small, brightly colored diaspores, which are indicative of dispersal by birds. Seed deposition of forest species under F. natalensis was significantly higher than that under B. floribunda or in open sites. My findings reinforce the idea that trees will lead to nucleation when they enhance seed deposition and have a positive effect on the post-dispersal stage.

  20. Effects of increasing root carbon investment on the mortality and resprouting of Haloxylon ammodendron seedlings under drought.

    PubMed

    Zhang, Y; Xie, J-B; Li, Y

    2017-03-01

    Tree mortality induced by drought is one of the most complex processes in ecology. Although two mechanisms associated with water and carbon balance are proposed to explain tree mortality, outstanding problems still exist. Here, in order to test how the root system benefits survival and resprouting of Haloxylon ammodendron seedlings, we examined the various water- and carbon-related physiological indicators (shoot water potential, photosynthesis, dark respiration, hydraulic conductance and non-structural carbohydrates [NSC]) of H. ammodendron seedlings, which were grown in drought and control conditions throughout a grow season in greenhouse. The survival time of the seedling root system (died 70 days after drought) doubled the survival time of the shoot (died at 35 days). Difference in survival time between shoot and root resulted from sustained root respiration supported by increased NSC in roots under drought. Furthermore, investment into the root contributed to resprouting following drought. Based on these results, a death criterion is proposed for this species. The time sequence of major events indicated that drought shifted carbon allocation between shoot and root and altered the flux among different sinks (growth, respiration or storage). The interaction of water and carbon processes determined death or survival of droughted H. ammodendron seedlings. These findings revealed that the 'root protection' strategy is critical in determining survival and resprouting of this species, and provided insights into the effects of carbon and water dynamics on tree mortality. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Forecasting the forest and the trees: consequences of drought in competitive forests

    NASA Astrophysics Data System (ADS)

    Clark, J. S.

    2015-12-01

    Models that translate individual tree responses to distribution and abundance of competing populations are needed to understand forest vulnerability to drought. Currently, biodiversity predictions rely on one scale or the other, but do not combine them. Synthesis is accomplished here by modeling data together, each with their respective scale-dependent connections to the scale needed for prediction—landscape to regional biodiversity. The approach we summarize integrates three scales, i) individual growth, reproduction, and survival, ii) size-species structure of stands, and iii) regional forest biomass. Data include 24,347 USDA Forest Inventory and Analysis (FIA) plots and 135 Long-term Forest Demography plots. Climate, soil moisture, and competitive interactions are predictors. We infer and predict the four-dimensional size/species/space/time (SSST) structure of forests, where all demographic rates respond to winter temperature, growing season length, moisture deficits, local moisture status, and competition. Responses to soil moisture are highly non-linear and not strongly related to responses to climatic moisture deficits over time. In the Southeast the species that are most sensitive to drought on dry sites are not the same as those that are most sensitive on moist sites. Those that respond most to spatial moisture gradients are not the same as those that respond most to regional moisture deficits. There is little evidence of simple tradeoffs in responses. Direct responses to climate constrain the ranges of few tree species, north or south; there is little evidence that range limits are defined by fecundity or survival responses to climate. By contrast, recruitment and the interactions between competition and drought that affect growth and survival are predicted to limit ranges of many species. Taken together, results suggest a rich interaction involving demographic responses at all size classes to neighbors, landscape variation in moisture, and regional climate change.

  2. Dynamics of surviving ash (Fraxinus spp.) populations in areas long infested by emerald ash borer (Agrilus planipennis)

    Treesearch

    Kathleen S. Knight; Daniel Herms; Reid Plumb; Eileen Sawyer; Daniel Spalink; Elizabeth Pisarczyk; Bernadette Wiggin; Rachel Kappler; Emily Ziegler; Karen Menard

    2012-01-01

    Emerald ash borer (EAB) (Agrilus planipennis), an introduced wood-boring insect, has killed millions of ash (Fraxinus spp.) trees in the Midwest region of the United States and Canada. However, in some areas where EAB has caused almost complete mortality of mature ash trees, a small number of healthy ash trees intermingled with...

  3. Growth, survival, and competitive ability of chestnut (Castanea Mill.) seedlings planted across a gradient of light levels

    Treesearch

    Cornelia C. Pinchot; Scott E. Schlarbaum; Stacy L. Clark; Arnold M. Saxton; Ami M. Sharp; Callie J. Schweitzer; Frederick V. Hebard

    2017-01-01

    There has been an increased interest in tree breeding for resistance to exotic pests and pathogens, however relatively little research has focused on the reintroduction of these tree species. Understanding the durability of resistance in field settings and the field performance of improved trees is critical for successful species reintroduction. To evaluate methods for...

  4. Genetic Gains Through Testing and Crossing Longleaf Pine Plus Trees

    Treesearch

    Calvin F. Bey; E. Bayne Snyder

    1978-01-01

    A progeny test of 226 superior tree selections from nine geographic sources across the South confirmed earlier results that showed the Gulf Coast source superior in survival and growth. Family variation within a region was large and provided additional genetic gain. Control-pollinated tests of elite x elite trees yielded even more gains. Progeny of the elite x elite...

  5. Australian toon planted in Hawaii: tree quality, growth, and stocking

    Treesearch

    Herbert L. Wick; Robert E. Nelson; Libert K. Landgraf

    1971-01-01

    Tree quality and rates of growth and survival were higher in 5- to 8-year-old Australian toon (Toona australis) plantations on sites with deep soils, good drainage, and as or broken pahoehoe rock than in plantations on sites with poor drainage or unbroken pahoehoe rock. Stocking averaged 236 trees per acre. Spacing in initial plants should be about 6...

  6. Planted and natural tree seedling survival and density in three floodplain restorations on abandoned agricultural fields

    Treesearch

    Allen E. Plocher

    2003-01-01

    In three floodplain forest restorations, established in abandoned agricultural fields in Illinois, permanent plots were sampled for 3 years to determine survivorship and density of planted tree seedlings, and species composition and density of natural regeneration. Planted tree survivorship decreased over time at all sites and after 3 years ranged from 32 to 61 percent...

  7. Survival and sprouting responses of Chihuahua Pine after the Rodeo-Chediski Fire on the Mogollon Rim, Arizona

    Treesearch

    Kenneth H. Baumgartner; Peter Z. Fule

    2007-01-01

    Chihuahua pines (Pinus leiophylla Schiede and Deppe var. chihuahuana Engelmann) were surveyed on 11 study plots on the Mogollon Rim in east central Arizona to compare characteristics of trees that sprouted from the base or root collar after the Rodeo-Chediski fire with those of trees that did not sprout. The differences in trees...

  8. Yield Tables and Stand Structure for Unthinned Longleaf Pine Plantations in Louisiana and Texas

    Treesearch

    Richard E. Longrey; Robert L. Bailey

    1977-01-01

    A system of equations is developed to forecast number of trees per acre, basal area, and cubic foot yields in eight volume categories by l-inch diameter classes for several combinations of site index, age from planting, and either number of trees planted, number of trees surviving, or basal area at a given age.

  9. Grasses and browsers reinforce landscape heterogeneity by excluding trees from ecosystem hotspots.

    PubMed

    Porensky, Lauren M; Veblen, Kari E

    2012-03-01

    Spatial heterogeneity in woody cover affects biodiversity and ecosystem function, and may be particularly influential in savanna ecosystems. Browsing and interactions with herbaceous plants can create and maintain heterogeneity in woody cover, but the relative importance of these drivers remains unclear, especially when considered across multiple edaphic contexts. In African savannas, abandoned temporary livestock corrals (bomas) develop into long-term, nutrient-rich ecosystem hotspots with unique vegetation. In central Kenya, abandoned corral sites persist for decades as treeless 'glades' in a wooded matrix. Though glades are treeless, areas between adjacent glades have higher tree densities than the background savanna or areas near isolated glades. The mechanisms maintaining these distinctive woody cover patterns remain unclear. We asked whether browsing or interactions with herbaceous plants help to maintain landscape heterogeneity by differentially impacting young trees in different locations. We planted the mono-dominant tree species (Acacia drepanolobium) in four locations: inside glades, far from glades, at edges of isolated glades and at edges between adjacent glades. Within each location, we assessed the separate and combined effects of herbivore exclusion (caging) and herbaceous plant removal (clearing) on tree survival and growth. Both caging and clearing improved tree survival and growth inside glades. When herbaceous plants were removed, trees inside glades grew more than trees in other locations, suggesting that glade soils were favorable for tree growth. Different types of glade edges (isolated vs. non-isolated) did not have significantly different impacts on tree performance. This represents one of the first field-based experiments testing the separate and interactive effects of browsing, grass competition and edaphic context on savanna tree performance. Our findings suggest that, by excluding trees from otherwise favorable sites, both herbaceous plants and herbivores help to maintain functionally important landscape heterogeneity in African savannas.

  10. The Tunguska event in 1908: evidence from tree-ring anatomy.

    PubMed

    Vaganov, Evgenii A; Hughes, Malcolm K; Silkin, Pavel P; Nesvetailo, Valery D

    2004-01-01

    We analyzed tree rings in wood samples collected from some of the few surviving trees found close to the epicenter (within 4-5 km) of the Tunguska event that occurred on the last day of June 1908. Tree-ring growth shows a depression starting in the year after the event and continuing during a 4-5-year period. The most remarkable traces of the event were found in the rings' anatomical structure: (1) formation of "light" rings and a reduction of maximum density in 1908; (2) non-thickened tracheids (the cells that make up most of the wood volume) in the transition and latewood zones (the middle and last-formed parts of the ring, respectively); and (3) deformed tracheids, which are located on the 1908 annual ring outer boundary. In the majority of samples, normal earlywood and latewood tracheids were formed in all annual rings after 1908. The observed anomalies in wood anatomy suggest two main impacts of the Tunguska event on surviving trees--(1) defoliation and (2) direct mechanical stress on active xylem tissue. The mechanical stress needed to fell trees is less than the stress needed to cause the deformation of differentiating tracheids observed in trees close to the epicenter. In order to resolve this apparent contradiction, work is suggested on possible topographic modification of the overpressure experienced by these trees, as is an experimental test of the effects of such stresses on precisely analogous growing trees.

  11. How Much Water Trees Access and How It Determines Forest Response to Drought

    NASA Astrophysics Data System (ADS)

    Berdanier, A. B.; Clark, J. S.

    2015-12-01

    Forests are transformed by drought as water availability drops below levels where trees of different sizes and species can maintain productivity and survive. Physiological studies have provided detailed understanding of how species differences affect drought vulnerability but they offer almost no insights about the amount of water different trees can access beyond general statements about rooting depth. While canopy architecture provides strong evidence for light availability aboveground, belowground moisture availability remains essentially unknown. For example, do larger trees always have greater access to soil moisture? In temperate mixed forests, the ability to access a large soil moisture pool could minimize damage during drought events and facilitate post-drought recovery, potentially at the expense of neighboring trees. We show that the pool of accessible soil moisture can be estimated for trees with data on whole-plant transpiration and that this data can be used to predict water availability for forest stands. We estimate soil water availability with a Bayesian state-space model based on a simple water balance, where cumulative depressions in water use below potential transpiration indicate soil resource depletion. We compare trees of different sizes and species, extend these findings to the entire stand, and connect them to our recent research showing that tree survival after drought depends on post-drought growth recovery and local moisture availability. These results can be used to predict competitive abilities for soil water, understand ecohydrological variation within stands, and identify trees that are at risk of damage from future drought events.

  12. Estimating fire-caused mortality and injury in oak-hickory forests.

    Treesearch

    Robert M. Loomis

    1973-01-01

    Presents equations and graphs for predicting fire-caused tree mortality and equations for estimating basal wound dimensions for surviving trees. The methods apply to black oak, white oak, and some other species of the oak-hickory forest type.

  13. Survival and Height Growth of Tamarack Planted in Northern Wisconsin

    Treesearch

    Richard M. Jeffers

    1975-01-01

    Tamarack trees from certain seed sources survived and gew well when planted on good upland sites in northern Wisconsin. Tamarack appears to have potential for short rotation pulpwood production in the Lake States.

  14. Lesser prairie-chicken avoidance of trees in a grassland landscape

    USGS Publications Warehouse

    Lautenbach, Joseph M.; Plumb, Reid T.; Robinson, Samantha G.; Hagen, Christian A.; Haukos, David A.; Pitman, James C.

    2016-01-01

    Grasslands are among the most imperiled ecosystems in North America. Reasons that grasslands are threatened include conversion to row-crop agriculture, fragmentation, and changes in fire regimes. The reduction of fire processes in remaining prairies has resulted in tree encroachment and establishment in grasslands, further reducing grassland quantity and quality. Grassland birds have been experiencing precipitous population declines in recent decades, commensurate with landscape changes to grasslands. The lesser prairie-chicken (Tympanuchus pallidicinctus Ridgway) is a declining species of prairie grouse of conservation concern. We used second- and third-order habitat selection metrics to test if female lesser prairie-chickens avoid grasslands where trees were present. Our results indicated that female lesser prairie-chickens selected habitats avoiding the nearest trees by 283 m on average, nearly twice as far as would be expected at random. Lesser prairie-chickens were 40 times more likely to use habitats with tree densities of 0 trees ∙ ha− 1 than habitats with 5 trees ∙ ha− 1. Probability of use indicated that lesser prairie-chickens were 19 times more likely to use habitats 1000 m from the nearest tree when compared with using habitats 0 m from the nearest tree. Nest survival was not affected at densities < 2 trees ∙ ha− 1; however, we could not test if nest survival was affected at greater tree densities as no nests were detected at densities > 2 trees ∙ ha− 1. Avoidance of trees could be due to perceived increased predation risk, reduced habitat quality, or a combination of these potentially confounding factors. Preventing further establishment and expansion of trees in landscapes occupied by lesser prairie-chickens could contribute to the continued persistence of the species. Additionally, restoring grasslands through tree removal may facilitate conservation efforts for grassland species such as the lesser prairie-chicken by improving habitat quality and promoting expansion of occupied range.

  15. Isotope signals and anatomical features in tree rings suggest a role for hydraulic strategies in diffuse drought-induced die-back of Pinus nigra.

    PubMed

    Petrucco, Laura; Nardini, Andrea; von Arx, Georg; Saurer, Matthias; Cherubini, Paolo

    2017-04-01

    The 2003 and 2012 summer seasons were among the warmest and driest of the last 200 years over southeastern Europe, and in particular in the Karst region (northeastern Italy). Starting from winter-spring 2013, several black pines (Pinus nigra J.F. Arnold) suffered crown die-back. Declining trees occurred nearby individuals with no signs of die-back, raising hypotheses about the occurrence of individual-specific hydraulic strategies underlying different responses to extreme drought. We investigated possible processes driving black pine decline by dendrochronological and wood anatomical measurements, coupled with analysis of tree-ring carbon (δ13C) and oxygen (δ18O) isotopic composition in healthy trees (H) and trees suffering die-back (D). Die-back trees showed higher growth rates than H trees at the beginning of the last century, but suffered important growth reduction following the dry summers in 2003 and 2012. After the 2012 drought, D trees produced tracheids with larger diameter and greater vulnerability to implosion than H ones. Healthy trees had significantly higher wood δ13C than D trees, reflecting higher water-use efficiency for the surviving trees, i.e., less water transpired per unit carbon gain, which could be related to lower stomatal conductance and a more conservative use of water. Relatively high δ18O for D trees indicates that they were strongly dependent on shallow water sources, or that they sustained higher transpiration rates than H trees. Our results suggest that H trees adopted a more conservative water-use strategy under drought stress compared with D trees. We speculate that this diversity might have a genotypic basis, but other possible explanations, like different rooting depth, cannot be ruled out. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Carbon and oxygen isotope signatures in conifers from the Swiss National Park

    NASA Astrophysics Data System (ADS)

    Churakova (Sidorova), Olga; Saurer, Matthias; Siegwolf, Rolf; Bryukhanova, Marina; Bigler, Christof

    2015-04-01

    Our study investigates the physiological response and plasticity of trees under climatic changes for larch (Larix decidua) and mountain pine (Pinus mugo var. uncinata) in the Swiss National Park.This research was done in the context of investigation tree mortality and their potential to survive under the harsh mountainous conditions. For the stable isotope analysis we selected four mountain pine and four larch trees from each a south- and north-facing slope. Oxygen isotope ratios can give insight into water sources and evaporative processes. To understand the differential response of mountain pine and larch to short-term climatic changes we measured 18O/16O in water extracted from twigs and needles as well as soil samples for each species at both sites. The seasonal variabilities in 18O/16O needles and twigs of mountain pine and larch trees as well as soil samples were related to changes in climate conditions from end of May until middle of October. To reveal the main climatic factors driving tree growth of pine and larch trees in the long-term, tree-ring width chronologies were built and bulk 18O/16O, 13C/12C wood chronologies were analyzed and correlated with climatic parameters over the last 100 years. The results indicate a strong influence of spring and summer temperatures for larch trees, while variation of spring and summer precipitations is more relevant for mountain pine trees. This work is supported by the Swiss National Science Foundation, Marie-Heim Vögtlin Program PMPDP-2 145507

  17. Classification and regression tree (CART) analysis of endometrial carcinoma: Seeing the forest for the trees.

    PubMed

    Barlin, Joyce N; Zhou, Qin; St Clair, Caryn M; Iasonos, Alexia; Soslow, Robert A; Alektiar, Kaled M; Hensley, Martee L; Leitao, Mario M; Barakat, Richard R; Abu-Rustum, Nadeem R

    2013-09-01

    The objectives of the study are to evaluate which clinicopathologic factors influenced overall survival (OS) in endometrial carcinoma and to determine if the surgical effort to assess para-aortic (PA) lymph nodes (LNs) at initial staging surgery impacts OS. All patients diagnosed with endometrial cancer from 1/1993-12/2011 who had LNs excised were included. PALN assessment was defined by the identification of one or more PALNs on final pathology. A multivariate analysis was performed to assess the effect of PALNs on OS. A form of recursive partitioning called classification and regression tree (CART) analysis was implemented. Variables included: age, stage, tumor subtype, grade, myometrial invasion, total LNs removed, evaluation of PALNs, and adjuvant chemotherapy. The cohort included 1920 patients, with a median age of 62 years. The median number of LNs removed was 16 (range, 1-99). The removal of PALNs was not associated with OS (P=0.450). Using the CART hierarchically, stage I vs. stages II-IV and grades 1-2 vs. grade 3 emerged as predictors of OS. If the tree was allowed to grow, further branching was based on age and myometrial invasion. Total number of LNs removed and assessment of PALNs as defined in this study were not predictive of OS. This innovative CART analysis emphasized the importance of proper stage assignment and a binary grading system in impacting OS. Notably, the total number of LNs removed and specific evaluation of PALNs as defined in this study were not important predictors of OS. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Impact of wind-induced microsites and disturbance severity on tree regeneration patterns: Results from the first post-storm decade

    Treesearch

    Floor Vodde; Kalev Jogiste; Jeroen Engelhart; Lee E. Frelich; W. Keith Moser; Alan Sims; Marek Metslaid

    2015-01-01

    In two hemiboreal mixed spruce-hardwood forests in north-east Estonia, we studied (1) which factors affect tree regeneration survival and development during the first post-storm decade and (2) how these effects change in time. Regeneration height and mortality of the tree species black alder (Alnus glutinosa (L.) J. Gaertn.), birch (Betula pendula Roth., Betula...

  19. Adaptability of 14 tree species to two hydrol humic latosol soils in Hawaii.

    Treesearch

    Craig O. Whitesell; Jr. Myron O. Ishennrood

    1971-01-01

    Tree species capable of thriving on soils in high rainfall areas are needed in Hawaii for reforestation. The soils are highly leached and infertile.Two native and 12 introduced tree species were planted at two sites to determine adaptability. Survival, growth, vigor, and form were appraised 1 to 7 years after planting. Performance varied-both within and between species...

  20. Effects of predation and competitor interference on nesting success of house wrens and tree swallows

    Treesearch

    Deborah M. Finch

    1990-01-01

    I examined the relationships among brood survival in House Wrens (Troglodytes aedon) and Tree Swallows (Tachycineta bicolor) and rates of nest-box use, species interference, and nest predation. Tree Swallows nested in boxes in one of three woodlands occupied by House Wrens. Over a 4-year period, clutch mortality rates in swallows were significantly higher than those in...

  1. Tree mortality estimates and species distribution probabilities in southeastern United States forests

    Treesearch

    Martin A. Spetich; Zhaofei Fan; Zhen Sui; Michael Crosby; Hong S. He; Stephen R. Shifley; Theodor D. Leininger; W. Keith Moser

    2017-01-01

    Stresses to trees under a changing climate can lead to changes in forest tree survival, mortality and distribution.  For instance, a study examining the effects of human-induced climate change on forest biodiversity by Hansen and others (2001) predicted a 32% reduction in loblolly–shortleaf pine habitat across the eastern United States.  However, they also...

  2. Impacts of logging on density-dependent predation of dipterocarp seeds in a South East Asian rainforest.

    PubMed

    Bagchi, Robert; Philipson, Christopher D; Slade, Eleanor M; Hector, Andy; Phillips, Sam; Villanueva, Jerome F; Lewis, Owen T; Lyal, Christopher H C; Nilus, Reuben; Madran, Adzley; Scholes, Julie D; Press, Malcolm C

    2011-11-27

    Much of the forest remaining in South East Asia has been selectively logged. The processes promoting species coexistence may be the key to the recovery and maintenance of diversity in these forests. One such process is the Janzen-Connell mechanism, where specialized natural enemies such as seed predators maintain diversity by inhibiting regeneration near conspecifics. In Neotropical forests, anthropogenic disturbance can disrupt the Janzen-Connell mechanism, but similar data are unavailable for South East Asia. We investigated the effects of conspecific density (two spatial scales) and distance from fruiting trees on seed and seedling survival of the canopy tree Parashorea malaanonan in unlogged and logged forests in Sabah, Malaysia. The production of mature seeds was higher in unlogged forest, perhaps because high adult densities facilitate pollination or satiate pre-dispersal predators. In both forest types, post-dispersal survival was reduced by small-scale (1 m(2)) conspecific density, but not by proximity to the nearest fruiting tree. Large-scale conspecific density (seeds per fruiting tree) reduced predation, probably by satiating predators. Higher seed production in unlogged forest, in combination with slightly higher survival, meant that recruitment was almost entirely limited to unlogged forest. Thus, while logging might not affect the Janzen-Connell mechanism at this site, it may influence the recruitment of particular species.

  3. Performance of gypsy moth larvae on hosts from the Deep South: survival, development and host preferences

    Treesearch

    C. Wayne Berisford; Todd J. Lanigan; Michael E. Montgomery

    1991-01-01

    Survival, development time and pupal weights of gypsy moth, Lymantria dispar L., which had fed on southern tree hosts were determined. Five species of oaks, Quercus spp.; sweetgum, Liquidambar styracflua L.; and river birch, Betula nigra L., were found to be acceptable hosts. Survival and...

  4. Effects of open-field experimental warming on the growth of two-year-old Pinus densiflora and Abies holophylla seedlings

    NASA Astrophysics Data System (ADS)

    Han, S.; Son, Y.; Lee, S.; Jo, W.; Yoon, T.; Park, C.; Ko, S.; Kim, J.; Han, S.; Jung, Y.

    2012-12-01

    Temperature increase due to climate change is expected to affect tree growth and distribution [Way and Oren, 2010]. The responses of trees to warming vary with tree species, ontogenic stages, tree life forms, and biomes. Especially, seedling stage is a vulnerable period for tree survival and competition [Saxe et al., 2007] and thus research on effects of temperature increase on seedling stage is needed. We aimed to examine the responses of coniferous seedlings to future temperature increase by conducting an open-field warming experiment. An experimental warming set-up using infra-red heater was built in 2011 and the temperature in warming plots has been regulated to 3°C higher than that of control plots constantly. The seeds of Pinus densiflora and Abies holophylla were planted in each 1 m × 1 m plot (n=3) in April, 2012. Seedling growth, root collar diameter (RCD) and height of 45 individuals of each plot were measured in June and July, 2012. The survival rate of seedlings was also measured. Survival rate of P. densiflora was lower in warming plots (93.3%) than in control plots (100.0%, p<0.05) and that of A. holophylla was also decreased in warming plots (79.3%) than in control plots (97.0%, p<0.01). RCD and height of P. densiflora seedlings were not significantly different between control and warming plots, however, height of A. holophylla was significantly higher in warming plots in June and July (p<0.01). Comparatively, RCD of A. holophylla was only higher in control plots in June. While there is still a lack of case studies on the growth of seedlings under experimental warming, a few studies reported increased seedling growth [Yin et al., 2008] or and no difference [Han et al., 2009] in warming plots. Different responses of seedling growth between two species of the current study might be derived from species-specific acclimation to temperature increase and/or other limiting factors [Way and Oren, 2010]. This result is, to our knowledge, unprecedented and will contribute to the knowledge of species-specific growth response of tree species and to development of model predicting species distribution in future climate regime. Future work on physiological traits of seedlings and analysis on environmental factors will provide mechanism of seedling response to increased temperature. [This work was supported by 'Korea Forest Service (S111112L080110)'.

  5. Applying survival analysis to managed even-aged stands of ponderosa pine for assessment of tree mortality in the western United States

    Treesearch

    Fabian Uzoh; Sylvia R. Mori

    2012-01-01

    A critical component of a growth and yield simulator is an estimate of mortality rates. The mortality models presented here are developed from long-term permanent plots in provinces from throughout the geographic range of ponderosa pine in the United States extending from the Black Hills of South Dakota to the Pacific Coast. The study had two objectives: estimation of...

  6. Genome-wide identification of WRKY family genes in peach and analysis of WRKY expression during bud dormancy.

    PubMed

    Chen, Min; Tan, Qiuping; Sun, Mingyue; Li, Dongmei; Fu, Xiling; Chen, Xiude; Xiao, Wei; Li, Ling; Gao, Dongsheng

    2016-06-01

    Bud dormancy in deciduous fruit trees is an important adaptive mechanism for their survival in cold climates. The WRKY genes participate in several developmental and physiological processes, including dormancy. However, the dormancy mechanisms of WRKY genes have not been studied in detail. We conducted a genome-wide analysis and identified 58 WRKY genes in peach. These putative genes were located on all eight chromosomes. In bioinformatics analyses, we compared the sequences of WRKY genes from peach, rice, and Arabidopsis. In a cluster analysis, the gene sequences formed three groups, of which group II was further divided into five subgroups. Gene structure was highly conserved within each group, especially in groups IId and III. Gene expression analyses by qRT-PCR showed that WRKY genes showed different expression patterns in peach buds during dormancy. The mean expression levels of six WRKY genes (Prupe.6G286000, Prupe.1G393000, Prupe.1G114800, Prupe.1G071400, Prupe.2G185100, and Prupe.2G307400) increased during endodormancy and decreased during ecodormancy, indicating that these six WRKY genes may play a role in dormancy in a perennial fruit tree. This information will be useful for selecting fruit trees with desirable dormancy characteristics or for manipulating dormancy in genetic engineering programs.

  7. Tree-growth analyses to estimate tree species' drought tolerance.

    PubMed

    Eilmann, Britta; Rigling, Andreas

    2012-02-01

    Climate change is challenging forestry management and practices. Among other things, tree species with the ability to cope with more extreme climate conditions have to be identified. However, while environmental factors may severely limit tree growth or even cause tree death, assessing a tree species' potential for surviving future aggravated environmental conditions is rather demanding. The aim of this study was to find a tree-ring-based method suitable for identifying very drought-tolerant species, particularly potential substitute species for Scots pine (Pinus sylvestris L.) in Valais. In this inner-Alpine valley, Scots pine used to be the dominating species for dry forests, but today it suffers from high drought-induced mortality. We investigate the growth response of two native tree species, Scots pine and European larch (Larix decidua Mill.), and two non-native species, black pine (Pinus nigra Arnold) and Douglas fir (Pseudotsuga menziesii Mirb. var. menziesii), to drought. This involved analysing how the radial increment of these species responded to increasing water shortage (abandonment of irrigation) and to increasingly frequent drought years. Black pine and Douglas fir are able to cope with drought better than Scots pine and larch, as they show relatively high radial growth even after irrigation has been stopped and a plastic growth response to drought years. European larch does not seem to be able to cope with these dry conditions as it lacks the ability to recover from drought years. The analysis of trees' short-term response to extreme climate events seems to be the most promising and suitable method for detecting how tolerant a tree species is towards drought. However, combining all the methods used in this study provides a complete picture of how water shortage could limit species.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prentice, John K.; Gardner, David Randall

    A methodology was developed for computing the probability that the sensor dart for the 'Near Real-Time Site Characterization for Assured HDBT Defeat' Grand-Challenge LDRD project will survive deployment over a forested region. The probability can be decomposed into three approximately independent probabilities that account for forest coverage, branch density and the physics of an impact between the dart and a tree branch. The probability that a dart survives an impact with a tree branch was determined from the deflection induced by the impact. If a dart that was deflected so that it impacted the ground at an angle of attackmore » exceeding a user-specified, threshold value, the dart was assumed to not survive the impact with the branch; otherwise it was assumed to have survived. A computer code was developed for calculating dart angle of attack at impact with the ground and a Monte Carlo scheme was used to calculate the probability distribution of a sensor dart surviving an impact with a branch as a function of branch radius, length, and height from the ground. Both an early prototype design and the current dart design were used in these studies. As a general rule of thumb, it we observed that for reasonably generic trees and for a threshold angle of attack of 5{sup o} (which is conservative for dart survival), the probability of reaching the ground with an angle of attack less than the threshold is on the order of 30% for the prototype dart design and 60% for the current dart design, though these numbers should be treated with some caution.« less

  9. Tahitian tree snail mitochondrial clades survived recent mass extirpation.

    PubMed

    Lee, Taehwan; Burch, John B; Jung, Younghun; Coote, Trevor; Pearce-Kelly, Paul; O Foighil, Diarmaid

    2007-07-03

    Oceanic islands frequently support endemic faunal radiations that are highly vulnerable to introduced predators [1]. This vulnerability is epitomized by the rapid extinction in the wild of all but five of 61 described Society Islands partulid tree snails [2], following the deliberate introduction of an alien biological control agent: the carnivorous snail Euglandina rosea[3]. Tahiti's tree snail populations have been almost completely extirpated and three of the island's eight endemic Partula species are officially extinct, a fourth persisting only in captivity [2]. We report a molecular phylogenetic estimate of Tahitian Partula mitochondrial lineage survival calibrated with a 1970 reference museum collection that pre-dates the predator's 1974 introduction to the island [4]. Although severe winnowing of lineage diversity has occurred, none of the five primary Tahitian Partula clades present in the museum samples is extinct. Targeted conservation measures, especially of montane refuge populations, may yet preserve a representative sub-sample of Tahiti's endemic tree snail genetic diversity in the wild.

  10. Crop damage of Eriotheca gracilipes (Bombacaceae) by the Blue-Fronted Amazon (Amazona aestiva, Psittacidae), in the Brazilian Cerrado.

    PubMed

    Ragusa-Netto, J

    2014-11-01

    Seed predation has major effects on the reproductive success of individuals, spatial patterns of populations, genetic variability, interspecific interactions and ultimately in the diversity of tree communities. At a Brazilian savanna, I evaluated the proportional crop loss of Eriotheca gracilipes due the Blue-Fronted Amazon (Amazona aestiva) during a fruiting period. Also, I analyzed the relationship between proportional crop loss to Amazons and both fruit crop size and the distance from the nearest damaged conspecific. Trees produced from 1 to 109 fruits, so that Amazons foraged more often on trees bearing larger fruit crop size, while seldom visited less productive trees. Moreover, the relationship between fruit crop sizes and the number of depredated fruits was significant. However, when only damaged trees were assessed, I found a negative and significant relation between fruit crop size and proportional crop loss to Blue-Fronted Amazons. Taking into account this as a measure more directly related to the probability of seed survival, a negative density dependent effect emerged. Also, Amazons similarly damaged the fruit crops of either close or distant neighboring damaged trees. Hence, in spite of Blue-Fronted Amazons searched for E. gracilipes bearing large fruit crops, they were swamped due to the presence of more fruits than they could eat. Moderate seed predation by Blue-Fronted Amazons either at trees with large fruit crops or in areas where fruiting trees were aggregated implies in an enhanced probability of E. gracilipes seed survival and consequent regeneration success.

  11. Smart Extraction and Analysis System for Clinical Research.

    PubMed

    Afzal, Muhammad; Hussain, Maqbool; Khan, Wajahat Ali; Ali, Taqdir; Jamshed, Arif; Lee, Sungyoung

    2017-05-01

    With the increasing use of electronic health records (EHRs), there is a growing need to expand the utilization of EHR data to support clinical research. The key challenge in achieving this goal is the unavailability of smart systems and methods to overcome the issue of data preparation, structuring, and sharing for smooth clinical research. We developed a robust analysis system called the smart extraction and analysis system (SEAS) that consists of two subsystems: (1) the information extraction system (IES), for extracting information from clinical documents, and (2) the survival analysis system (SAS), for a descriptive and predictive analysis to compile the survival statistics and predict the future chance of survivability. The IES subsystem is based on a novel permutation-based pattern recognition method that extracts information from unstructured clinical documents. Similarly, the SAS subsystem is based on a classification and regression tree (CART)-based prediction model for survival analysis. SEAS is evaluated and validated on a real-world case study of head and neck cancer. The overall information extraction accuracy of the system for semistructured text is recorded at 99%, while that for unstructured text is 97%. Furthermore, the automated, unstructured information extraction has reduced the average time spent on manual data entry by 75%, without compromising the accuracy of the system. Moreover, around 88% of patients are found in a terminal or dead state for the highest clinical stage of disease (level IV). Similarly, there is an ∼36% probability of a patient being alive if at least one of the lifestyle risk factors was positive. We presented our work on the development of SEAS to replace costly and time-consuming manual methods with smart automatic extraction of information and survival prediction methods. SEAS has reduced the time and energy of human resources spent unnecessarily on manual tasks.

  12. Personalized Risk Prediction in Clinical Oncology Research: Applications and Practical Issues Using Survival Trees and Random Forests.

    PubMed

    Hu, Chen; Steingrimsson, Jon Arni

    2018-01-01

    A crucial component of making individualized treatment decisions is to accurately predict each patient's disease risk. In clinical oncology, disease risks are often measured through time-to-event data, such as overall survival and progression/recurrence-free survival, and are often subject to censoring. Risk prediction models based on recursive partitioning methods are becoming increasingly popular largely due to their ability to handle nonlinear relationships, higher-order interactions, and/or high-dimensional covariates. The most popular recursive partitioning methods are versions of the Classification and Regression Tree (CART) algorithm, which builds a simple interpretable tree structured model. With the aim of increasing prediction accuracy, the random forest algorithm averages multiple CART trees, creating a flexible risk prediction model. Risk prediction models used in clinical oncology commonly use both traditional demographic and tumor pathological factors as well as high-dimensional genetic markers and treatment parameters from multimodality treatments. In this article, we describe the most commonly used extensions of the CART and random forest algorithms to right-censored outcomes. We focus on how they differ from the methods for noncensored outcomes, and how the different splitting rules and methods for cost-complexity pruning impact these algorithms. We demonstrate these algorithms by analyzing a randomized Phase III clinical trial of breast cancer. We also conduct Monte Carlo simulations to compare the prediction accuracy of survival forests with more commonly used regression models under various scenarios. These simulation studies aim to evaluate how sensitive the prediction accuracy is to the underlying model specifications, the choice of tuning parameters, and the degrees of missing covariates.

  13. Higher survival drives the success of nitrogen-fixing trees through succession in Costa Rican rainforests.

    PubMed

    Menge, Duncan N L; Chazdon, Robin L

    2016-02-01

    Trees capable of symbiotic nitrogen (N) fixation ('N fixers') are abundant in many tropical forests. In temperate forests, it is well known that N fixers specialize in early-successional niches, but in tropical forests, successional trends of N-fixing species are poorly understood. We used a long-term census study (1997-2013) of regenerating lowland wet tropical forests in Costa Rica to document successional patterns of N fixers vs non-fixers, and used an individual-based model to determine the demographic drivers of these trends. N fixers increased in relative basal area during succession. In the youngest forests, N fixers grew 2.5 times faster, recruited at a similar rate and were 15 times less likely to die as non-fixers. As succession proceeded, the growth and survival disparities decreased, whereas N fixer recruitment decreased relative to non-fixers. According to our individual-based model, high survival was the dominant driver of the increase in basal area of N fixers. Our data suggest that N fixers are successful throughout secondary succession in tropical rainforests of north-east Costa Rica, and that attempts to understand this success should focus on tree survival. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  14. Mapping the Distribution of Sand Live Oak (Quercus geminata) and Determining Growth Responses to Hurricane Katrina (2005) on Cat Island, Mississippi

    NASA Astrophysics Data System (ADS)

    Funderburk, W.; Carter, G. A.; Harley, G. L.

    2013-12-01

    William R. Funderburk, Gregory A. Carter, Grant Harley Gulf Coast Geospatial Center, University of Southern Mississippi Department of Geography and Geology Stennis Space Center, MS 39529 U.S.A. william.funderburk@usm.edu The Mississippi-Alabama barrier islands serve to buffer mainland coastal areas from the impacts of hurricanes and other extreme weather events. On August 29, 2005, they were impacted heavily by the wind, waves, and storm surges of Hurricane Katrina. The purpose of this study is to determine the growth responses of Quercus geminata, a dominant tree species on Cat Island, MS, in relation to the impact of Hurricane Katrina. Remotely sensed data was utilized in conjunction with ground data to assess growth response post Hurricane Katrina. The main objectives of this study were: 1) determine growth response of Q. geminata through tree ring analysis; 2) understand how Q. geminata adapted to intense weather and climatic phenomena on Cat Island. The hypotheses tested were: 1) growth rates of Q. geminata on Cat Island were decreased by the impact of Hurricane Katrina 2) trees at higher elevations survived or recovered while trees at lower elevations did not recover or died. Decadal scale stability is required for forest stand development on siliciclastic barrier islands. Thus, monitoring the distribution of forest climax community species is key to understanding siliciclastic, subsiding, barrier island geomorphic processes and their relationships to successional patterns and growth rates. Preliminary results indicate that Q. geminata produces a faint growth ring, survive for at least two to three hundred years and is well-adapted to frequent salt water flooding. Cat Island: False color Image

  15. Functional traits enhance invasiveness of bamboos over co-occurring tree saplings in the semideciduous Atlantic Forest

    NASA Astrophysics Data System (ADS)

    Montti, Lía; Villagra, Mariana; Campanello, Paula I.; Gatti, M. Genoveva; Goldstein, Guillermo

    2014-01-01

    Many woody bamboo species are forest understory plants that become invasive after disturbance. They can grow rapidly forming a dense, nearly monospecific understory that inhibits tree regeneration. The principal aim of this study was to understand what functional traits of bamboos allow them to outcompete tree seedlings and saplings and become successful species in the semideciduous Atlantic Forests of northeastern Argentina. We studied leaf and whole-plant functional traits of two bamboo species of the genus Chusquea and five co-occurring saplings of common tree species growing under similar solar radiation and soil nutrient availabilities. Nutrient addition had no effect on bamboo or tree sapling survival and growth after two years. Tree species with high-light requirements had higher growth rates and developed relatively thin leaves with high photosynthetic capacity per unit leaf area and short leaf life-span when growing in gaps, but had lower survival rates in the understory. The opposite pattern was observed in shade-tolerant species that were able to survive in the understory but had lower photosynthetic capacity and growth than light-requiring species in gaps. Bamboos exhibited a high plasticity in functional traits and leaf characteristics that enabled them to grow rapidly in gaps (e.g., higher photosynthetic capacity per unit dry mass and clonal reproduction in gaps than in the understory) but at the same time to tolerate closed-canopy conditions (they had thinner leaves and a relatively longer leaf life-span in the understory compared to gaps). Photosynthetic capacity per unit dry mass was higher in bamboos than in trees. Bamboo plasticity in key functional traits, such as clonal reproduction at the plant level and leaves with a relatively low C cost and high photosynthesis rates, allows them to colonize disturbed forests with consequences at the community and ecosystem levels. Increasing disturbance in some forests worldwide will likely enhance bamboo invasion resulting in profound negative impacts on forest diversity, structure and function in the long term.

  16. Stand Dynamics in an Old-Growth Hardwood Forest in Southern Illinois, USA

    Treesearch

    James J. Zaczek; John W. Groninger; J. W. Van Sambeek

    2002-01-01

    Kaskaskia Woods, a 7.4-ha old-growth hardwood forest in southern Illinois, USA, has been managed as a natural area and protected from disturbance since 1933. In 1935, eight 0.1-ha plots were installed and all trees 4 cm dbh or larger were tagged and inventoried. Trees were remeasured for survival, ingrowth (new trees >4 cm), and diameter (dbh) in 1940, 1958, 1965,...

  17. Predicting climate change extirpation risk for central and southern Appalachian forest tree species

    Treesearch

    Kevin M. Potter; William W. Hargrove; Frank H. Koch

    2010-01-01

    Climate change will likely pose a severe threat to the viability of certain forest tree species, which will be forced either to adapt to new conditions or to shift to more favorable environments if they are to survive. Several forest tree species of the central and southern Appalachians may be at particular risk, since they occur in limited high-elevation ranges and/or...

  18. Survival of slash pine having fusiform rust disease varies with year of first stem infection and severity

    Treesearch

    R.C. Froelich; Ronald C. Schmidtling

    1998-01-01

    Probabilities of death of young slash pine infected by fusiform rust pathogen varied with timing and severity of infection. Trees in nine slash pine plantations varying widely in site quality and initial number of trees per acre had similar probabilities of death from rust. About 90 percent of trees with stem infections in the first three growing seasons died by age 15...

  19. Assessment of fire-damaged mesquite trees 8 years following an illegal burn

    Treesearch

    Gerald J. Gottfried; Peter F. Ffolliott; Pablo Garcia; Diego Valdez-Zamudio; Akram Al-Khouri

    2003-01-01

    Effects of an illegal burn on the Santa Rita Experimental Range on mesquite (Prosopis velutina) survival in the semidesert grass-shrub ecosystem was initially assessed in terms of firedamage classes 18 months after the fire and again 8 years after the burn. While many of the mesquite trees on the burned site were damaged by the fire, some of the trees appear to have...

  20. Survival and growth of seed trees 20 years after a natural regeneration cut in the piedmont of Georgia

    Treesearch

    Stephen R. Logan; M. Boyd Edwards; Barry D. Shiver

    2005-01-01

    An experiment was installed in 1982 to compare six methods of natural regeneration in the Piedmont of Georgia. These methods include (1) clearcut with seed in place; (2) clearcut with seed in place and preharvest burn; (3) seed tree; (4) seed tree with preharvest burn; (5) shelterwood; and (6) shelterwood with preharvest burn. Because of endangered species regulations...

  1. Fates of live trees retained in forest cutting units, western Cascade Range, Oregon.

    Treesearch

    P.E. Busby; P. Adler; T.L. Warren; F.J. Swanson

    2006-01-01

    To assess the fate of live trees retained in dispersed patterns across cutting units in the western Cascade Range of Oregon, we conducted repeat surveys (1993 and 2001) of sites cut as early as 1983. Our objectives in this study are to (1) survey survival and mortality of trees retained at the time of harvest, (2) describe temporal patterns of windthrow and other...

  2. Making the little things count: modeling the development of understory trees in complex stands

    Treesearch

    Peter J. Gould; Connie. Harrington

    2013-01-01

    Forest growth models are useful for asking “What if?” questions when evaluating silvicultural treatments intended to increase the complexity of future stands. What if we thinned to level A or B? How would it aff ect the growth rates of understory trees? How many trees would survive? To answer these types of questions, a growth model needs to...

  3. Planting and care of fine hardwood seedlings: Regenerating hardwoods in the Central Hardwoods Region: Soils

    Treesearch

    Felix Ponder, Jr.; Phillip E. Pope

    2003-01-01

    A large number of factors determine the successful establishment of trees. The site for a tree refers to where it grows, and includes living and nonliving factors that may have an impact on the tree's survival and growth. Site factors may be similar enough over a large area so as to be considered one site or different enough to be considered different sites....

  4. Growth, Thinning Treatments, and Soil Properties in a 10-Year-Old Cottonwood Plantation on a Clay Site

    Treesearch

    Roger M. Krinard; Harvey E. Kennedy

    1983-01-01

    Two of four Stoneville select cottonwood (Populus deltoides Bartr. ex Marsh.) clones planted at 12- by 12-foot spacing on old field clay soils had 80+ percent survival at age 5 and were subjected to three stocking levels. Plots were left unthinned (approximately 266 trees/acre) and thinned to half the number of trees (about 126 trees/acre) and to...

  5. Insect outbreak shifts the direction of selection from fast to slow growth rates in the long-lived conifer Pinus ponderosa.

    PubMed

    de la Mata, Raul; Hood, Sharon; Sala, Anna

    2017-07-11

    Long generation times limit species' rapid evolution to changing environments. Trees provide critical global ecosystem services, but are under increasing risk of mortality because of climate change-mediated disturbances, such as insect outbreaks. The extent to which disturbance changes the dynamics and strength of selection is unknown, but has important implications on the evolutionary potential of tree populations. Using a 40-y-old Pinus ponderosa genetic experiment, we provide rare evidence of context-dependent fluctuating selection on growth rates over time in a long-lived species. Fast growth was selected at juvenile stages, whereas slow growth was selected at mature stages under strong herbivory caused by a mountain pine beetle ( Dendroctonus ponderosae ) outbreak. Such opposing forces led to no net evolutionary response over time, thus providing a mechanism for the maintenance of genetic diversity on growth rates. Greater survival to mountain pine beetle attack in slow-growing families reflected, in part, a host-based life-history trade-off. Contrary to expectations, genetic effects on tree survival were greatest at the peak of the outbreak and pointed to complex defense responses. Our results suggest that selection forces in tree populations may be more relevant than previously thought, and have implications for tree population responses to future environments and for tree breeding programs.

  6. Survival and sanitation of dwarf mistletoe-infected ponderosa pine following prescribed underburning

    Treesearch

    David A. Conklin; Brian W. Geils

    2008-01-01

    We present results on survival of ponderosa pine and reduction in dwarf mistletoe (Arceuthobium) infection after six operational prescribed underburns in New Mexico. Survival 3 years postburn for 1,585 trees fit a logistic relationship with crown scorch, bole char, and mistletoe. The scorch effect was best represented by classes as <90, 90,...

  7. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings.

    PubMed

    Fonti, Patrick; von Arx, Georg; García-González, Ignacio; Eilmann, Britta; Sass-Klaassen, Ute; Gärtner, Holger; Eckstein, Dieter

    2010-01-01

    Variability in xylem anatomy is of interest to plant scientists because of the role water transport plays in plant performance and survival. Insights into plant adjustments to changing environmental conditions have mainly been obtained through structural and functional comparative studies between taxa or within taxa on contrasting sites or along environmental gradients. Yet, a gap exists regarding the study of hydraulic adjustments in response to environmental changes over the lifetimes of plants. In trees, dated tree-ring series are often exploited to reconstruct dynamics in ecological conditions, and recent work in which wood-anatomical variables have been used in dendrochronology has produced promising results. Environmental signals identified in water-conducting cells carry novel information reflecting changes in regional conditions and are mostly related to short, sub-annual intervals. Although the idea of investigating environmental signals through wood anatomical time series goes back to the 1960s, it is only recently that low-cost computerized image-analysis systems have enabled increased scientific output in this field. We believe that the study of tree-ring anatomy is emerging as a promising approach in tree biology and climate change research, particularly if complemented by physiological and ecological studies. This contribution presents the rationale, the potential, and the methodological challenges of this innovative approach.

  8. Establishment of trees and shrubs on lands disturbed by mining in the West

    Treesearch

    Ardell J. Bjugstad

    1984-01-01

    Increased research and development of cultural practices and species has assured success of establishment of trees and shrubs on lands disturbed by surface mining. Trickle irrigation and water harvesting techniques have increased survival of planted stock by 250 percent for some species.

  9. What determines tree mortality in dry environments? A multi-perspective approach.

    PubMed

    Dorman, Michael; Svoray, Tal; Perevolotsky, Avi; Moshe, Yitzhak; Sarris, Dimitrios

    2015-06-01

    Forest ecosystems function under increasing pressure due to global climate changes, while factors determining when and where mortality events will take place within the wider landscape are poorly understood. Observational studies are essential for documenting forest decline events, understanding their determinants, and developing sustainable management plans. A central obstacle towards achieving this goal is that mortality is often patchy across a range of spatial scales, and characterized by long-term temporal dynamics. Research must therefore integrate different methods, from several scientific disciplines, to capture as many relevant informative patterns as possible. We performed a landscape-scale assessment of mortality and its determinants in two representative Pinus halepensis planted forests from a dry environment (~300 mm), recently experiencing an unprecedented sequence of two severe drought periods. Three data sources were integrated to analyze the spatiotemporal variation in forest performance: (1) Normalized Difference Vegetation Index (NDVI) time-series, from 18 Landsat satellite images; (2) individual dead trees point-pattern, based on a high-resolution aerial photograph; and (3) Basal Area Increment (BAI) time-series, from dendrochronological sampling in three sites. Mortality risk was higher in older-aged sparse stands, on southern aspects, and on deeper soils. However, mortality was patchy across all spatial scales, and the locations of patches within "high-risk" areas could not be fully explained by the examined environmental factors. Moreover, the analysis of past forest performance based on NDVI and tree rings has indicated that the areas affected by each of the two recent droughts do not coincide. The association of mortality with lower tree densities did not support the notion that thinning semiarid forests will increase survival probability of the remaining trees when facing extreme drought. Unique information was obtained when merging dendrochronological and remotely sensed performance indicators, in contrast to potential bias when using a single approach. For example, dendrochronological data suggested highly resilient tree growth, since it was based only on the "surviving" portion of the population, thus failing to identify past demographic changes evident through remote sensing. We therefore suggest that evaluation of forest resilience should be based on several metrics, each suited for detecting transitions at a different level of organization.

  10. Indirect facilitation becomes stronger with seedling age in a degraded seasonally dry forest

    NASA Astrophysics Data System (ADS)

    Torres, Romina C.; Renison, Daniel

    2016-01-01

    In seasonally dry forests direct facilitation by woody species due to amelioration of harsh abiotic conditions could be important during germination and early establishment of tree seedlings, and under some species but not others. Recent research suggests that at later stages facilitation by woody species may be indirect due to protection of saplings from herbivores, implying that under absence of herbivores reforestation programs may plant saplings in unprotected open sites. We used the native tree Lithraea molleoides from central Argentina as a model species to test this hypothesis. We performed a seeding and planting experiment simulating early and late establishment respectively, which included 234 study plots situated in herbaceous, shrub and tree patches of differing species composition and under two herbivore treatments (grazed and ungrazed) and replicated at three sites. Seedling counts averaged 0.82% of the sown seeds after 6 months, were highest under shrubs and lowest in open patches, and were influenced by woody species composition only in tree patches (all P values < 0.05). At seedling stages we detected no influence of herbivory (P = 0.4) nor of indirect facilitation due to herbivory (herbivory × patch type P = 0.7). Survival of planted saplings was 53% after 3 years and over winter dieback affected 76% of the saplings. At sapling stages we found an increasing importance of indirect facilitation through protection from herbivores, as we recorded the highest sapling survival and growth at tree and shrub patches and the lowest in open patches (all P values < 0.001), and a negative effect of livestock (P < 0.001) mainly on the open patches (herbivory × patch type P = 0.07 and P = 0.001 for survival and growth, respectively). We found no significant influence of woody species composition on sapling survival and growth (all P values > 0.05). We conclude that direct facilitation is involved at all studied stages while indirect facilitation becomes increasingly important at the sapling stage.

  11. Do Native Insects and Associated Fungi Limit Non-Native Woodwasp, Sirex noctilio, Survival in a Newly Invaded Environment?

    PubMed Central

    Haavik, Laurel J.; Dodds, Kevin J.; Allison, Jeremy D.

    2015-01-01

    Sirex noctilio F. (Hymenoptera: Siricidae) is an introduced pest of pines (Pinus spp.) in several countries in the Southern Hemisphere. Although S. noctilio is established in North America (first discovered in 2004), it has not been a destructive pest there so far, where forest communities more closely resemble those in its native Eurasian range—where it is not a pest. To investigate the influence of the existing community of associated insects (competitors + natural enemies) and fungi (vectored by insects) on S. noctilio survival in North America, we examined stage-specific mortality factors and their relative importance, generating life tables drawn from experimentally-manipulated and natural cohorts of Sirex spp. (mostly S. noctilio, but some native S. nigricornis F.). For both natural and experimentally-manipulated cohorts, factors which acted during the earliest Sirex life stages, most likely tree resistance and/or competition among fungal associates, were paramount in dictating woodwasp survival. Experimentally-manipulated life tables revealed that protection from the community of associates resulted in a significantly, and substantially larger (>15x) S. noctilio F1 generation than exposure to it. Seventy percent of generation mortality in the exposed cohort was due to tree resistance or unknown causes early in larval development, which could have included competition among other bark- or wood-inhabiting insects and/or their fungal associates. Only 46% of generation mortality in the protected cohort was due to tree resistance and/or unknown causes. Parasitoids, particularly endoparasitoids (Ibalia spp.), showed limited ability to control S. noctilio, and reduced the experimentally-established cohort by only 11%, and natural cohorts an average of 3.4%. The relative importance of tree resistance vs. competition with bark- and wood-borers in reducing S. noctilio survival remains unclear. Tree resistance and/or competition likely contribute more than natural enemies in maintaining the S. noctilio population in North America below damaging levels. PMID:26447845

  12. Juggling carbon: allocation patterns of a dominant tree in a fire-prone savanna.

    PubMed

    Schutz, Alexander Ernest Noel; Bond, William J; Cramer, Michael D

    2009-05-01

    In frequently burnt mesic savannas, trees can get trapped into a cycle of surviving fire-induced stem death (i.e. topkill) by resprouting, only to be topkilled again a year or two later. The ability of savanna saplings to resprout repeatedly after fire is a key component of recent models of tree-grass coexistence in savannas. This study investigated the carbon allocation and biomass partitioning patterns that enable a dominant savanna tree, Acacia karroo, to survive frequent and repeated topkill. Root starch depletion and replenishment, foliage recovery and photosynthesis of burnt and unburnt plants were compared over the first year after a burn. The concentration of starch in the roots of the burnt plants (0.08 +/- 0.01 g g(-1)) was half that of the unburnt plant (0.16 +/- 0.01 g g(-1)) at the end of the first growing season after topkill. However, root starch reserves of the burnt plants were replenished over the dry season and matched that of unburnt plants within 1 year after topkill. The leaf area of resprouting plants recovered to match that of unburnt plants within 4-5 months after topkill. Shoot growth of resprouting plants was restricted to the first few months of the wet season, whereas photosynthetic rates remained high into the dry season, allowing replenishment of root starch reserves. (14)C labeling showed that reserves were initially utilized for shoot growth after topkill. The rapid foliage recovery and the replenishment of reserves within a single year after topkill implies that A. karroo is well adapted to survive recurrent topkill and is poised to take advantage of unusually long fire-free intervals to grow into adults. This paper provides some of the first empirical evidence to explain how savanna trees in frequently burnt savannas are able to withstand frequent burning as juveniles and survive to become adults.

  13. What can NSC tell us about tree drought mortality mechanism?: An meta-analysis of results from several experiments on southwest US species

    NASA Astrophysics Data System (ADS)

    Adams, H. D.; Dickman, L. T.; Sevanto, S.; McDowell, N. G.; Pockman, W.; Breshears, D. D.; Huxman, T. E.

    2012-12-01

    Widespread increases in tree mortality are now a well-documented global phenomenon that has been linked to drought, increased temperatures, and pest/pathogen outbreaks. Since forests play an important regulatory role in planetary carbon, water, and energy budgets, further widespread tree mortality could disrupt biosphere-atmosphere feedbacks with additional effects on climate. Despite these threats, few vegetation models exist that predict drought-induced tree mortality in response to climate due, in part, to uncertainty surrounding the physiological mechanism of mortality in trees. Several mechanisms for drought mortality have been proposed, relating to tree carbohydrate balance, xylem stress, and their interaction with each other and tree pests and pathogens. Carbon starvation could occur if stomatal closure in response to drought inhibits carbon assimilation and carbohydrate resources are depleted below a critical threshold for survival. Hydraulic failure could occur if excessive xylem tension during drought causes complete and irreversible cavitation and subsequent desiccation of the canopy. Here we present results from three recent experiments with trees from the southwest US, two conducted in the glasshouse with transplanted piñon pine, and one in the field with piñon pine and juniper, where non-structural carbohydrates (NSC) and hydraulic function were assessed during drought through mortality to distinguish the relative contribution of these mechanisms to mortality. In all three experiments, piñon leaf and twig NSC declined by ~30-40% from initial values to measurement at mortality and trees experienced some hydraulic failure. In the first glasshouse study the piñon leaf NSC decline of ~30%, was driven by a ~50% decline in sugar concentration despite a 100% increase in starch concentration. Surprisingly, in this experiment NSC did not decline faster for trees that died under elevated (+4.3°C) temperatures, although starch increased earlier in these trees. In the field experiment, juniper leaf and twig NSC did not decline as mortality approached, but was lower than non-drought controls. Hydraulic failure did not occur with mortality for juniper in the field experiment. In an additional treatment in the second glasshouse experiment, well-watered piñon pines that were shaded to prevent photosynthesis experienced a ~70% decline in leaf and twig NSC at mortality, without hydraulic failure. Considering the ~70% NSC reduction in this shaded treatment as a survival threshold, piñon pine in all three drought experiments appear to have died from a combination of carbon starvation and hydraulic failure, while juniper appears to have died from carbon starvation alone. These results demonstrate that proposed tree drought mortality mechanisms are often interrelated, but can act independently. Future models of tree drought mortality should include flexibility, predicting death from mechanisms acting either independently or in combination.

  14. Algorithm for protecting light-trees in survivable mesh wavelength-division-multiplexing networks

    NASA Astrophysics Data System (ADS)

    Luo, Hongbin; Li, Lemin; Yu, Hongfang

    2006-12-01

    Wavelength-division-multiplexing (WDM) technology is expected to facilitate bandwidth-intensive multicast applications such as high-definition television. A single fiber cut in a WDM mesh network, however, can disrupt the dissemination of information to several destinations on a light-tree based multicast session. Thus it is imperative to protect multicast sessions by reserving redundant resources. We propose a novel and efficient algorithm for protecting light-trees in survivable WDM mesh networks. The algorithm is called segment-based protection with sister node first (SSNF), whose basic idea is to protect a light-tree using a set of backup segments with a higher priority to protect the segments from a branch point to its children (sister nodes). The SSNF algorithm differs from the segment protection scheme proposed in the literature in how the segments are identified and protected. Our objective is to minimize the network resources used for protecting each primary light-tree such that the blocking probability can be minimized. To verify the effectiveness of the SSNF algorithm, we conduct extensive simulation experiments. The simulation results demonstrate that the SSNF algorithm outperforms existing algorithms for the same problem.

  15. Recent trends in the intrinsic water-use efficiency of ringless rainforest trees in Borneo.

    PubMed

    Loader, N J; Walsh, R P D; Robertson, I; Bidin, K; Ong, R C; Reynolds, G; McCarroll, D; Gagen, M; Young, G H F

    2011-11-27

    Stable carbon isotope (δ(13)C) series were developed from analysis of sequential radial wood increments from AD 1850 to AD 2009 for four mature primary rainforest trees from the Danum and Imbak areas of Sabah, Malaysia. The aseasonal equatorial climate meant that conventional dendrochronology was not possible as the tree species investigated do not exhibit clear annual rings or dateable growth bands. Chronology was established using radiocarbon dating to model age-growth relationships and date the carbon isotopic series from which the intrinsic water-use efficiency (IWUE) was calculated. The two Eusideroxylon zwageri trees from Imbak yielded ages of their pith/central wood (±1 sigma) of 670 ± 40 and 759 ± 40 years old; the less dense Shorea johorensis and Shorea superba trees at Danum yielded ages of 240 ± 40 and 330 ± 40 years, respectively. All trees studied exhibit an increase in the IWUE since AD 1960. This reflects, in part, a response of the forest to increasing atmospheric carbon dioxide concentration. Unlike studies of some northern European trees, no clear plateau in this response was observed. A change in the IWUE implies an associated modification of the local carbon and/or hydrological cycles. To resolve these uncertainties, a shift in emphasis away from high-resolution studies towards long, well-replicated time series is proposed to develop the environmental data essential for model evaluation. Identification of old (greater than 700 years) ringless trees demonstrates their potential in assessing the impacts of climatic and atmospheric change. It also shows the scientific and applied value of a conservation policy that ensures the survival of primary forest containing particularly old trees (as in Imbak Canyon and Danum).

  16. Recent trends in the intrinsic water-use efficiency of ringless rainforest trees in Borneo

    PubMed Central

    Loader, N. J.; Walsh, R. P. D.; Robertson, I.; Bidin, K.; Ong, R. C.; Reynolds, G.; McCarroll, D.; Gagen, M.; Young, G. H. F.

    2011-01-01

    Stable carbon isotope (δ13C) series were developed from analysis of sequential radial wood increments from AD 1850 to AD 2009 for four mature primary rainforest trees from the Danum and Imbak areas of Sabah, Malaysia. The aseasonal equatorial climate meant that conventional dendrochronology was not possible as the tree species investigated do not exhibit clear annual rings or dateable growth bands. Chronology was established using radiocarbon dating to model age–growth relationships and date the carbon isotopic series from which the intrinsic water-use efficiency (IWUE) was calculated. The two Eusideroxylon zwageri trees from Imbak yielded ages of their pith/central wood (±1 sigma) of 670 ± 40 and 759 ± 40 years old; the less dense Shorea johorensis and Shorea superba trees at Danum yielded ages of 240 ± 40 and 330 ± 40 years, respectively. All trees studied exhibit an increase in the IWUE since AD 1960. This reflects, in part, a response of the forest to increasing atmospheric carbon dioxide concentration. Unlike studies of some northern European trees, no clear plateau in this response was observed. A change in the IWUE implies an associated modification of the local carbon and/or hydrological cycles. To resolve these uncertainties, a shift in emphasis away from high-resolution studies towards long, well-replicated time series is proposed to develop the environmental data essential for model evaluation. Identification of old (greater than 700 years) ringless trees demonstrates their potential in assessing the impacts of climatic and atmospheric change. It also shows the scientific and applied value of a conservation policy that ensures the survival of primary forest containing particularly old trees (as in Imbak Canyon and Danum). PMID:22006972

  17. Effects of prescribed burning on ecophysiological, anatomical and stem hydraulic properties in Pinus pinea L.

    PubMed

    Battipaglia, Giovanna; Savi, Tadeja; Ascoli, Davide; Castagneri, Daniele; Esposito, Assunta; Mayr, Stefan; Nardini, Andrea

    2016-08-01

    Prescribed burning (PB) is a widespread management technique for wildfire hazard abatement. Understanding PB effects on tree ecophysiology is key to defining burn prescriptions aimed at reducing fire hazard in Mediterranean pine plantations, such as Pinus pinea L. stands. We assessed physiological responses of adult P. pinea trees to PB using a combination of dendroecological, anatomical, hydraulic and isotopic analyses. Tree-ring widths, xylem cell wall thickness, lumen area, hydraulic diameter and tree-ring δ(13)C and δ(18)O were measured in trees on burned and control sites. Vulnerability curves were elaborated to assess tree hydraulic efficiency or safety. Despite the relatively intense thermal treatment (the residence time of temperatures above 50 °C at the stem surface ranged between 242 and 2239 s), burned trees did not suffer mechanical damage to stems, nor significant reduction in radial growth. Moreover, the PB did not affect xylem structure and tree hydraulics. No variations in (13)C-derived water use efficiency were recorded. This confirmed the high resistance of P. pinea to surface fire at the stem base. However, burned trees showed consistently lower δ(18)O values in the PB year, as a likely consequence of reduced competition for water and nutrients due to the understory burning, which increased both photosynthetic activity and stomatal conductance. Our multi-approach analysis offers new perspectives on post-fire survival strategies of P. pinea in an environment where fires are predicted to increase in frequency and severity during the 21st century. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. A Climatic Classification for Citrus Winter Survival in China.

    NASA Astrophysics Data System (ADS)

    Shou, Bo Huang

    1991-05-01

    The citrus tree is susceptible to frost damage. Winter injury to citrus from freezing weather is the major meteorological problem in the northern pail of citrus growing regions in China. Based on meteorological data collected at 120 stations in southern China and on the extent of citrus freezing injury, five climatic regions for citrus winter survival in China were developed. They were: 1) no citrus tree injury. 2) light injury to mandarins (citrus reticulate) or moderate injury to oranges (citrus sinensis), 3) moderate injury to mandarins or heavy injury to oranges, 4) heavy injury to mandarins, and 5) impossible citrus tree growth. This citrus climatic classification was an attempt to provide guidelines for regulation of citrus production, to effectively utilize land and climatic resources, to chose suitable citrus varieties, and to develop methods to prevent injury by freezing.

  19. Using trees on reclaimed mined lands in southern Illinois

    Treesearch

    Jim Sandusky

    1980-01-01

    In southern Illinois Peabody Coal Company included reforestation as a part of its ten year plan for the reclamation of acid mine spoil. Hand planted trees had highest survival rates. The species that proved most successful were black locust, autumn olive, sweetgum, black alder, loblolly pine, and river birch.

  20. Survival and Early Growth of Selected Trees on Waste Water Application Sites

    Treesearch

    John H. Cooley

    1978-01-01

    The response of six tree species and three Populus hybrids to irrigation with oxidation pond effluent were compared. When weeds were intensively controlled, a P. deltoides x P. nigra cross responded best, but when weeds were less intensively controlled, P. canescens x P. tremuloides responded best.

  1. Black walnut tree growth in a mixed species, upland hardwood stand in southern Indiana

    Treesearch

    R.K. Myers; B.C. Fischer

    1991-01-01

    A study was initiated in 1971 on Purdue University woodlands in southern Indiana to monitor the growth of black walnut rages and survival in the absence of management, as well as establishing stand ante tree development data baselines prior to initiation of management activities.

  2. Its Seat Is in the Heart.

    ERIC Educational Resources Information Center

    Mesplay, Gail

    2001-01-01

    Presents several practical ideas for making peace a priority within the classroom. Shares stories of a high school and an elementary school where peace projects have flourished. The elementary project involved planting a tree germinated from a Japanese tree that had survived the atomic bomb. The high school project involved apprenticing teenagers…

  3. Urban tree influences on ultraviolet irradiance

    Treesearch

    Gordon M. Heisler; Richard H. Grant; Wei Gao

    2002-01-01

    Many of the effects of ultraviolet radiation (UVR) on people and their environment - damage to various materials, survival of insects and microbial pathogens, growth of vegetation, and adverse or beneficial effects on human health - are modified by the presence of trees. Human epidemiological investigations generally consider exposure as given by indices of UVR...

  4. Root production method system

    Treesearch

    Wayne Lovelace

    2002-01-01

    The RPM system (Root Production Method) is a multistep production system of container tree production that places primary emphasis on the root system because the root system ultimately determines the tree's survival and performance in its outplanted environment. This particular container production system has been developed to facilitate volume production, in a...

  5. Weed Control Trials in Cottonwood Plantations

    Treesearch

    R. M. Krinard

    1964-01-01

    Weed control in the first year is essential for establishing a cottonwood plantation, for the young trees can neither survive nor grow well if they must compete with other plants. Once the light and moisture conditions are established in its favor, cottonwood becomes the fastest growing tree in the South.

  6. Stripping of Acacia koa bark by rats on Hawaii and Maui

    Treesearch

    Paul G. Scowcroft; Howard F. Sakai

    1984-01-01

    Koa (Acacia koa) is the most valuable native timber species in Hawaii. Bark stripping of young trees by rats, a common but unstudied phenomenon, may affect survival, growth, and quality of koa. Up to 54% of the trees sampled in 4- to 6-year-old stands in the Laupahoehoe and Waiakea areas on Hawaii were wounded by rats; only 5% of trees sampled in a l-year-old stand on...

  7. Survivorship, development, and fecundity of buck moth (Lepidoptera: Saturniidae) on common tree species in the Gulf Coast urban forest

    Treesearch

    P. J. Martinat; J. D. Solomon; Theodor D. Leininger

    1996-01-01

    Hemileuca maia maia (Drury), the buck moth, is abundant in urban areas of the Gulf Coast region where it defoliates oaks. However, the extent to which the buck moth can survive on other tree species common in the southern urban forest has not been reported. In the laboratory, the authors studied the suitability and acceptability to larvae of 14 common tree species in...

  8. Impacts of logging on density-dependent predation of dipterocarp seeds in a South East Asian rainforest

    PubMed Central

    Bagchi, Robert; Philipson, Christopher D.; Slade, Eleanor M.; Hector, Andy; Phillips, Sam; Villanueva, Jerome F.; Lewis, Owen T.; Lyal, Christopher H. C.; Nilus, Reuben; Madran, Adzley; Scholes, Julie D.; Press, Malcolm C.

    2011-01-01

    Much of the forest remaining in South East Asia has been selectively logged. The processes promoting species coexistence may be the key to the recovery and maintenance of diversity in these forests. One such process is the Janzen–Connell mechanism, where specialized natural enemies such as seed predators maintain diversity by inhibiting regeneration near conspecifics. In Neotropical forests, anthropogenic disturbance can disrupt the Janzen–Connell mechanism, but similar data are unavailable for South East Asia. We investigated the effects of conspecific density (two spatial scales) and distance from fruiting trees on seed and seedling survival of the canopy tree Parashorea malaanonan in unlogged and logged forests in Sabah, Malaysia. The production of mature seeds was higher in unlogged forest, perhaps because high adult densities facilitate pollination or satiate pre-dispersal predators. In both forest types, post-dispersal survival was reduced by small-scale (1 m2) conspecific density, but not by proximity to the nearest fruiting tree. Large-scale conspecific density (seeds per fruiting tree) reduced predation, probably by satiating predators. Higher seed production in unlogged forest, in combination with slightly higher survival, meant that recruitment was almost entirely limited to unlogged forest. Thus, while logging might not affect the Janzen–Connell mechanism at this site, it may influence the recruitment of particular species. PMID:22006965

  9. Long-term effects of drought on tree-ring growth and carbon isotope variability in Scots pine in a dry environment.

    PubMed

    Timofeeva, Galina; Treydte, Kerstin; Bugmann, Harald; Rigling, Andreas; Schaub, Marcus; Siegwolf, Rolf; Saurer, Matthias

    2017-08-01

    Drought frequency is increasing in many parts of the world and may enhance tree decline and mortality. The underlying physiological mechanisms are poorly understood, however, particularly regarding chronic effects of long-term drought and the response to increasing temperature and vapor pressure deficit (VPD). We combined analyses of radial growth and stable carbon isotope ratios (δ13C) in tree rings in a mature Scots pine (Pinus sylvestris L.) forest over the 20th century to elucidate causes of tree mortality in one of the driest parts of the European Alps (Pfynwald, Switzerland). We further compared trees that have recently died with living trees in a 10-year irrigation experiment, where annual precipitation was doubled. We found a sustained growth increase and immediate depletion of δ13C values for irrigated trees, indicating higher stomatal conductance and thus indeed demonstrating that water is a key limiting factor for growth. Growth of the now-dead trees started declining in the mid-1980s, when both mean temperature and VPD increased strongly. But growth of these trees was reduced to some extent already several decades earlier, while intrinsic water-use efficiency derived from δ13C values was higher. This indicates a more conservative water-use strategy compared with surviving trees, possibly at the cost of low carbon uptake and long-term reduction of the needle mass. We observed reduced climatic sensitivity of raw tree-ring δ13C for the now-dead in contrast to surviving trees, indicating impaired stomatal regulation, although this difference between the tree groups was smaller after detrending the data. Higher autocorrelation and a lower inter-annual δ13C variability of the now-dead trees further indicates a strong dependence on (low) carbon reserves. We conclude that the recent increase in atmospheric moisture demand in combination with insufficient soil water supply was the main trigger for mortality of those trees that were weakened by long-term reduced carbon uptake. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Sleeping site selection by agile gibbons: the influence of tree stability, fruit availability and predation risk.

    PubMed

    Cheyne, Susan M; Höing, Andrea; Rinear, John; Sheeran, Lori K

    2012-01-01

    Primates spend a significant proportion of their lives at sleeping sites: the selection of a secure and stable sleeping tree can be crucial for individual survival and fitness. We measured key characteristics of all tree species in which agile gibbons slept, including exposure of the tree crown, root system, height, species and presence of food. Gibbons most frequently slept in Dipterocarpaceae and Fabaceae trees and preferentially chose trees taller than average, slept above the mean canopy height and showed a preference for liana-free trees. These choices could reflect avoidance of competition with other frugivores, but we argue these choices reflect gibbons prioritizing avoidance of predation. The results highlight that gibbons are actively selecting and rejecting sleeping trees based on several characteristics. The importance of the presence of large trees for food is noted and provides insight into gibbon antipredatory behaviour. Copyright © 2013 S. Karger AG, Basel.

  11. Long- and short-term flooding effects on survival and sink-source relationships of swamp-adapted tree species

    Treesearch

    M.N. Angelov; Shi-Jean S. Sung; R.L. Doong; W.R. Harms; Paul P. Kormanik; C.C. Black

    1995-01-01

    About 95% of swamp tupelo (Nyssa sylvatica var. biflora (Walt.) Sarg.) And sweetgum (Liquidambar styraciflua L.) seedlings survived continuous root flooding for more than two years, whereas none of the swamp chestnut oak (Quercus michauxii Nutt.) And cherrybark oak (Q. falcata var. pagodifolia Ell.) Seedlings survived one year of flooding.Flooding caused increases in...

  12. The effects of forest residual debris disposal on perennial grass emergence, growth, and survival in a ponderosa pine ecotone

    Treesearch

    Darin J. Law; Peter F. Kolb

    2007-01-01

    Soil surface conditions can have profound effects on plant seedling emergence and subsequent seedling survival. To test the hypothesis that different soil-surface treatments with logging residue affect range grass seedling emergence and survival, 6 alternative forest-residual treatments were established in the summer of 1998 following thinning of mature trees from...

  13. Heat transfer and vascular cambium necrosis in the boles of trees during surface fires

    Treesearch

    M. B. Dickinson

    2002-01-01

    Heat-transfer and cell-survival models are used to link surface fire behavior with vascular cambium necrosis from heating by flames. Vascular cambium cell survival was predicted with a numerical model based on the kinetics of protein denaturation and parameterized with data from the literature. Cell survival was predicted for vascular cambium temperature regimes...

  14. Species Trials at the Waiakea Arboretum, Hilo, Hawaii

    Treesearch

    George B. Richmond

    1963-01-01

    Survival counts were made of 84 exotic tree species planted during 1956-1960 in a cleared rain-forest area near Hilo, Hawaii. Growth measurements were recorded for 5- and 6-year-old plantings. Most species had good survival, but some failed entirely. Soil depth was found to have a strong influence on rate of growth, but not on survival. Several valuable timber species...

  15. Songbird nest survival is invariant to early-successional restoration treatments in a large river floodplain

    Treesearch

    Dirk E. Burhans; Brian G. Root; Terry L. Shaffer; Daniel C. Dey

    2010-01-01

    We monitored songbird nest survival in two reforesting, ∼50-ha former cropland sites along the Missouri River in central Missouri from 2001 to 2003. Sites were partitioned into three experimental units, each receiving one of three tree planting treatments. Nest densities varied among restoration treatments for four of five species, but overall nest survival...

  16. Localized spatial and temporal attack dynamics of the mountain pine beetle in lodgepole pine. Forest Service research paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentz, B.J.; Powell, J.A.; Logan, J.A.

    1996-12-01

    Colonization of a host tree by the mountain pine beetle (Dendroctonus ponderosae) involves chemical communication that enables a massive aggregation of beetles on a single resource, thereby ensuring host death and subsequent beetle population survival. Beetle populations have evolved a mechanism for termination of colonization on a lodgepole pine tree at optimal beetle densities, with a concomitant switch of attacks to nearby trees. Observations of the daily spatial and temporal attack process of mountain pine beetles (nonepidemic) attacking lodgepole pine suggest that beetles switch attacks to a new host tree before the original focus tree is fully colonized, and thatmore » verbenone, an antiaggregating pheromone, may be acting within a tree rather than between trees.« less

  17. Biophysical control of whole tree transpiration under an urban environment in Northern China

    NASA Astrophysics Data System (ADS)

    Chen, Lixin; Zhang, Zhiqiang; Li, Zhandong; Tang, Jianwu; Caldwell, Peter; Zhang, Wenjuan

    2011-05-01

    SummaryUrban reforestation in China has led to increasing debate about the impact of urban trees and forests on water resources. Although transpiration is the largest water flux leaving terrestrial ecosystems, little is known regarding whole tree transpiration in urban environments. In this study, we quantified urban tree transpiration at various temporal scales and examined the biophysical control of the transpiration pattern under different water conditions to understand how trees survive in an urban environment. Concurrent with microclimate and soil moisture measurements, transpiration from C edrus deodara(Roxb)Loud ., Zelkova schneideriana Hend.-Mazz., Euonymus bungeanus Maxim., and Metasequoia glyptostroboides Hu et cheng was measured over a 2-year period using thermal dissipation probe (TDP) techniques. The average monthly transpiration rates reached 12.78 ± 0.73 (S.E.) mm, 1.79 ± 0.16 mm, 10.18 ± 0.55 mm and 19.28 ± 2.24 mm for C. deodara, Z.schneideriana, E. bungeanus and M. glyptostroboides, respectively. Transpiration rates from M. glyptostroboides reported here may need further study as this species showed much higher sap flows and greater transpiration fluctuation under different environmental conditions than other species. Because of deep soil moisture supply, summer dry spells did not reduce transpiration rates even when tree transpiration exceeded rainfall. While vapor pressure deficit ( VPD) was the dominant environmental factor on transpiration, trees controlled canopy conductance effectively to limit transpiration in times of water stress. Our results provide evidence that urban trees could adopt strong physiological control over transpiration under high evaporative demands to avoid dehydration and can make use of water in deeper soil layers to survive summer dry spells. Moreover, urban trees have the ability to make the best use of precipitation when it is limited, and are sensitive to soil and air dryness.

  18. Survival of Seasonal Flooding in the Amazon by the Terrestrial Insect Conotrachelus dubiae O'Brien & Couturier (Coleoptera: Curculionidae), a Pest of the Camu-Camu Plant, Myrciaria dubia (Myrtaceae).

    PubMed

    Delgado, C; Couturier, G; Fine, P V A

    2014-08-01

    The weevil Conotrachelus dubiae O'Brien & Couturier (Coleoptera: Curculionidae) is a pest of an economically important Amazonian fruit tree Myrciaria dubia (Myrtaceae). This tree grows in seasonally flooded environments, and how weevil larvae survive flooding has not been studied. From December 2004 to May 2009, five experiments were conducted in natural conditions and in the laboratory, with the aim of understanding the mechanisms that allow the survival of C. dubiae larvae in seasonal floods in Amazonia. The larvae of C. dubiae were kept under water for over 93 days. Older instars exposed to periodic circulation of water survived better than younger instars in addition to all larvae that were kept continuously under uncirculated water. Individuals that were collected from plots of M. dubia located in flooded soils and non-flooded soils did not exhibit statistically significant differences in their levels of survival indicating that the variation in survival of flooding events is due to phenotypic plasticity of the species and not to local adaptation by the populations in different environments. We speculate that larvae can survive floods without major physiological changes as larvae appear to obtain oxygen from water by cutaneous diffusion, assisted by caudal movements.

  19. Can Tree Ring Analyses Predict Resilience of Black Spruce Forests to Fire in Interior Alaska?

    NASA Astrophysics Data System (ADS)

    Walker, X. J.; Johnstone, J. F.; Mack, M. C.

    2015-12-01

    Climate change has increased the occurrence, severity, and impact of disturbances on forested ecosystems worldwide. As such there is a growing need to identify factors that contribute to an ecosystem's ability to recover from disturbance, commonly referred to as ecosystem resilience. In trees, drought-induced growth declines may signal decreased ecosystem resilience if mature trees are able to survive in stressful environmental conditions that do not permit successful post-disturbance recruitment and survival. Here we explore links between ecosystem resilience and the growth-climate relationships of pre-fire trees, specifically drought stress signals, across topographic moisture gradients within the boreal forest. We sampled 72 recently (2004) burned black spruce stands within interior Alaska and found the proportion of black spruce relative to deciduous trees decreased post-fire, ranging from almost no change to a 90% decrease. The largest shifts in post-fire species composition occurred in sites where trees showed negative growth responses to warm spring temperatures, and shallow post-fire organic layer depths due to dry site conditions or high fire severity. These sites were generally located at warmer and drier landscape positions, suggesting they are less resilient to disturbance than sites at the wetter end of the gradient. Tree growth-climate responses can provide an estimate of stand environmental stress to ongoing climate change and as such are a valuable tool for predicting landscape variations in forest ecosystem resilience and forecasting future forest composition.

  20. Using tree recruitment patterns and fire history to guide restoration of an unlogged ponderosa pine/Douglas-fir landscape in the southern Rocky Mountains after a century of fire suppression

    Treesearch

    Merrill R. Kaufmann; Laurie S. Huckaby; Paula J. Fornwalt; Jason M. Stoker; William H. Romme

    2003-01-01

    Tree age and fire history were studied in an unlogged ponderosa pine/Douglas-fir (Pinus ponderosa/Pseudotsuga menziesii) landscape in the Colorado Front Range mountains. These data were analysed to understand tree survival during fire and post-fire recruitment patterns after fire, as a basis for understanding the characteristics of, and restoration needs for, an...

  1. Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect

    USGS Publications Warehouse

    McDowell, N.G.; Allen, Craig D.; Marshall, L.

    2010-01-01

    Drought- and insect-associated tree mortality at low-elevation ecotones is a widespread phenomenon but the underlying mechanisms are uncertain. Enhanced growth sensitivity to climate is widely observed among trees that die, indicating that a predisposing physiological mechanism(s) underlies tree mortality. We tested three, linked hypotheses regarding mortality using a ponderosa pine (Pinus ponderosa) elevation transect that experienced low-elevation mortality following prolonged drought. The hypotheses were: (1) mortality was associated with greater growth sensitivity to climate, (2) mortality was associated with greater sensitivity of gas exchange to climate, and (3) growth and gas exchange were correlated. Support for all three hypotheses would indicate that mortality results at least in part from gas exchange constraints. We assessed growth using basal area increment normalized by tree basal area [basal area increment (BAI)/basal area (BA)] to account for differences in tree size. Whole-crown gas exchange was indexed via estimates of the CO2 partial pressure difference between leaf and atmosphere (pa−pc) derived from tree ring carbon isotope ratios (δ13C), corrected for temporal trends in atmospheric CO2 and δ13C and elevation trends in pressure. Trees that survived the drought exhibited strong correlations among and between BAI, BAI/BA, pa−pc, and climate. In contrast, trees that died exhibited greater growth sensitivity to climate than trees that survived, no sensitivity of pa−pc to climate, and a steep relationship between pa−pc and BAI/BA. The pa−pc results are consistent with predictions from a theoretical hydraulic model, suggesting trees that died had a limited buffer between mean water availability during their lifespan and water availability during drought – i.e., chronic water stress. It appears that chronic water stress predisposed low-elevation trees to mortality during drought via constrained gas exchange. Continued intensification of drought in mid-latitude regions may drive increased mortality and ecotone shifts in temperate forests and woodlands.

  2. Insect outbreak shifts the direction of selection from fast to slow growth rates in the long-lived conifer Pinus ponderosa

    PubMed Central

    Sala, Anna

    2017-01-01

    Long generation times limit species’ rapid evolution to changing environments. Trees provide critical global ecosystem services, but are under increasing risk of mortality because of climate change-mediated disturbances, such as insect outbreaks. The extent to which disturbance changes the dynamics and strength of selection is unknown, but has important implications on the evolutionary potential of tree populations. Using a 40-y-old Pinus ponderosa genetic experiment, we provide rare evidence of context-dependent fluctuating selection on growth rates over time in a long-lived species. Fast growth was selected at juvenile stages, whereas slow growth was selected at mature stages under strong herbivory caused by a mountain pine beetle (Dendroctonus ponderosae) outbreak. Such opposing forces led to no net evolutionary response over time, thus providing a mechanism for the maintenance of genetic diversity on growth rates. Greater survival to mountain pine beetle attack in slow-growing families reflected, in part, a host-based life-history trade-off. Contrary to expectations, genetic effects on tree survival were greatest at the peak of the outbreak and pointed to complex defense responses. Our results suggest that selection forces in tree populations may be more relevant than previously thought, and have implications for tree population responses to future environments and for tree breeding programs. PMID:28652352

  3. Waterbird nest density and nest survival in rice fields of southwestern Louisiana

    USGS Publications Warehouse

    Pierluissi, S.; King, Sammy L.; Kaller, Michael D.

    2010-01-01

    Rice fields in southwestern Louisiana provide breeding habitat for several waterbird species; however, little is known about nest density, nest survival and the importance of landscape context of rice fields in determining breeding activity. In 2004, 42 rice fields were searched for nests, and 40 were searched in 2005. Land uses surrounding rice fields, including irrigation canals, trees, crawfish ponds, rice, fallow and soybean fields, were examined to determine influence on nest density and survival. Nest densities were 13.5-16.0 nests/km2 for Purple Gallinules (Porphyrio martinica), 3.0-13.7 nests/km2 for Fulvous Whistling Ducks (Dendrocygna bicolor), 2.6-2.8 nests/km2 for Common Moorhens (Gallinula chloropus), 0.3-0.92 nests/km2 for Least Bitterns (Ixobrychus exilisi) and 0-0.6 nests/km2 for Mottled Ducks (Anas fulvigula). Nest survival was 52-79% for Purple Gallinules and 39-43% for Fulvous Whistling Ducks. Apparent nest success of Common Moorhens was 73-75%, 83% for Least Bitterns and 33% for Mottled Ducks. Purple Gallinule and Common Moorhen nest densities were highest in fields with a larger proportion of irrigation canals surrounding rice fields. Purple Gallinule nest densities were greater in fields devoid of trees and landscapes dominated by rice fields and pasture, rather than landscapes containing soybean fields and residential areas. Fulvous Whistling Duck nest densities were higher in agriculturally-dominated landscapes with few trees.

  4. Ponderosa pine resin defenses and growth: Metrics matter

    Treesearch

    Sharon Hood; Anna Sala

    2015-01-01

    Bark beetles (Coleoptera: Curculionidae, Scolytinae) cause widespread tree mortality in coniferous forests worldwide. Constitutive and induced host defenses are important factors in an individual tree’s ability to survive an attack and in bottom-up regulation of bark beetle population dynamics, yet quantifying defense levels is often difficult. For example, in...

  5. The mountain pine beetle: causes and consequences of an unprecedented outbreak

    Treesearch

    Allan L. Carroll

    2011-01-01

    The mountain pine beetle (Dendroctonus ponderosae) is native to the pine forests of western North America where it normally exists at very low densities, infesting only weakened or damaged trees. Under conditions conducive to survival, populations may erupt and spread over extensive landscapes, killing large numbers of healthy trees.

  6. Macroanatomy of compartmentalization in fire scars of three western conifers

    Treesearch

    Kevin T. Smith; Elaine Sutherland; Estelle Arbellay; Markus Stoffel; Donald Falk

    2013-01-01

    Fire scars are visible evidence of compartmentalization and closure processes that contribute to tree survival after fire injury. Preliminary observations of dissected fire scars from trees injured within the last decade showed centripetal development of wound-initiated discoloration (WID) through 2-3 decades of former sapwood in Larix occidentalis and Pseudotsuga...

  7. Proposed seed collection zones for the central states

    Treesearch

    Gustaf A. Limstrom

    1963-01-01

    Seed collection zones have been established in several regions and countries to insure that the sources of seed used in tree planting are properly selected. Use of such zones has undoubtedly improved the survival and growth of trees in plantations and has also facilitated the establishment of specifications for seed procurement and seed certification.

  8. An Individual-Tree Growth and Yield Prediction System for Uneven-Aged Shortleaf Pine Stands

    Treesearch

    Michael M. Huebschmann; Lawrence R. Gering; Thomas B. Lynch; Onesphore Bitoki; Paul A. Murphy

    2000-01-01

    A system of equations modeling the growth and development of uneven-aged shortleaf pine (Pinus echinata Mill.) stands is described. The prediction system consists of two main components: (1) a distance-independent, individual-tree simulator containing equations that forecast ingrowth, basal-area growth, probability of survival, total and...

  9. Spacing and slash pine quality timber prodution

    Treesearch

    Frank A. Bennett

    1969-01-01

    Cubic volume production as related to spacing in planted slash pine (Pinus etliottii var. elliottii) is well understood. Yield increases as number of surviving trees per acre increases, although at a diminishing rate after a certain point. It is also well known that wider spacings, 200 to 400 trees per acre, are necessary for...

  10. Stump sprouting of Pacific yew.

    Treesearch

    Don Minore; Howard G. Weatherly

    1996-01-01

    Large numbers of Pacific yew (Taxus brevifolia Nutt.) trees have been cut to supply bark for taxol production, and replacement of those trees may depend on their ability to sprout from the stump. Stump characteristics were related to the initiation and survival of epicormic branches (sprouts) on 100 yew stumps in each of 11 recently harvested...

  11. Survival, frost susceptibility, growth, and disease resistance of corkbark and subalpine fir grown for landscape and Christmas trees

    USDA-ARS?s Scientific Manuscript database

    Trees from six corkbark fir (Abies lasiocarpa var. arizonica) and 10 subalpine fir (A. lasiocarpa var. lasiocarpa) seed sources were grown at the University of Idaho Sandpoint Research and Extension Center (SREC) and two commercial nurseries in Idaho and Oregon. Post transplant mortality was highest...

  12. Evaluation of two techniques for quantification of hyphal biomass

    Treesearch

    Meagan M. Hynes; Robert J. Zasoski; Caroline S. Bledsoe

    2008-01-01

    Currently, oak woodlands of Northern California and their associated mycorrhizal fungi are receiving more attention. In order to address the impact mycorrhizal fungal associations have on survival of various tree species in oak woodlands, we investigated the extramatrical fungal hyphae associated with several mature oak woodland tree species. Specifically our objective...

  13. Ten-Year Results of Tree Shelters on Survival and Growth of Planted Hardwoods

    Treesearch

    Felix, Jr. Ponder

    2003-01-01

    The performance of planted northern red oak (Quercus rubra, L.), black walnut (Juglans nigra L.), and green ash (Fraxinus pennsylvanica Marsh.), with and without tree shelters, was evaluated 10 yr after planting. Northern red oak was planted in three harvested forest openings, and black walnut and green ash were...

  14. Melatonin enhances the recovery of cryopreserved shoot tips of American elm (Ulmus Americana L.)

    USDA-ARS?s Scientific Manuscript database

    Climate change and the global migrations of people and goods have exposed trees to new diseases and abiotic challenges that threaten the survival of species. In vitro germplasm storage via cryopreservation is an effective tool to ensure conservation of tree species, but plant cells and tissues are e...

  15. Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea).

    PubMed Central

    Andersen, Liselotte W.; Fog, Kåre; Damgaard, Christian

    2004-01-01

    A genetic study of the European tree frog, Hyla arborea, in Denmark was undertaken to examine the population structure on mainland Jutland and the island of Lolland after a period of reduction in suitable habitat and population sizes. The two regions have experienced the same rate of habitat loss but fragmentation has been more severe on Lolland. Genetic variation based on 12 polymorphic DNA microsatellites was analysed in 494 tree frogs sampled from two ponds in Jutland and 10 ponds on Lolland. A significant overall deviation from Hardy-Weinberg expectations could be attributed to three ponds, all on Lolland. This was most probably caused by an inbreeding effect reducing fitness, which was supported by the observed significant negative correlation between larva survival and mean F(IS) value and mean individual inbreeding coefficient. A significant reduction in genetic variation (bottleneck) was detected in most of the ponds on Lolland. Population-structure analysis suggested the existence of at least 11 genetically different populations, corresponding to most of the sampled population units. The results indicated that the populations were unique genetic units and could be used to illustrate the migration pattern between newly established ponds arisen either by natural colonization of tree frogs or by artificial introduction. A high degree of pond fidelity in the tree frogs was suggested. A severe fragmentation process reducing population size and fitness within some of the populations probably caused the significant reduction in genetic variation of tree frog populations on Lolland. PMID:15306354

  16. The effects of tree species and site conditions on gypsy moth survival and growth in Michigan

    Treesearch

    John A. Witter; Michael E. Montgomery; Charley A. Chilcote; Jennifer L. Stoyenoff

    1991-01-01

    In 1987, we began a study to determine the relationships between gypsy moth growth and survival and forest site factors. The major objectives of this study were to determine the (1) relationships between gypsy moth survival and growth and different ecosystem conditions, (2) relationships among egg hatch, host phenology, and distribution of small larvae in the...

  17. Seed dispersal potential of Asian elephants

    NASA Astrophysics Data System (ADS)

    Harich, Franziska K.; Treydte, Anna C.; Ogutu, Joseph O.; Roberts, John E.; Savini, Chution; Bauer, Jan M.; Savini, Tommaso

    2016-11-01

    Elephants, the largest terrestrial mega-herbivores, play an important ecological role in maintaining forest ecosystem diversity. While several plant species strongly rely on African elephants (Loxodonta africana; L. cyclotis) as seed dispersers, little is known about the dispersal potential of Asian elephants (Elephas maximus). We examined the effects of elephant fruit consumption on potential seed dispersal using the example of a tree species with mega-faunal characteristics, Dillenia indica L., in Thailand. We conducted feeding trials with Asian elephants to quantify seed survival and gut passage times (GPT). In total, 1200 ingested and non-ingested control seeds were planted in soil and in elephant dung to quantify differences in germination rates in terms of GPT and dung treatment. We used survival analysis as a novel approach to account for the right-censored nature of the data obtained from germination experiments. The average seed survival rate was 79% and the mean GPT was 35 h. The minimum and maximum GPT were 20 h and 72 h, respectively. Ingested seeds were significantly more likely to germinate and to do so earlier than non-ingested control seeds (P = 0.0002). Seeds with the longest GPT displayed the highest germination success over time. Unexpectedly, seeds planted with dung had longer germination times than those planted without. We conclude that D. indica does not solely depend on but benefits from dispersal by elephants. The declining numbers of these mega-faunal seed dispersers might, therefore, have long-term negative consequences for the recruitment and dispersal dynamics of populations of certain tree species.

  18. The reproductive performance of the Mupli beetle, Luprops tristis , in relation to leaf age of the para rubber tree, Hevea brasiliensis

    PubMed Central

    Sabu, T. K.; Nirdev, P. M.; Aswathi, P.

    2014-01-01

    Abstract An analysis of host plant leaf age preferences and phenology studies led to the predictions that tender rubber plant leaves are essential for the completion of the life cycle of the Mupli beetle, Luprops tristis Fabricius (Coleoptera: Tenebrionidae) and that low tender leaf availability during the post-dormancy stage will limit the beetle population. Analyses of the effects of feeding the beetles leaves of various ages, nitrogen (N) content, and moisture content on fecundity and the duration of post-dormancy survival were carried out. The results showed that tender leaf availability during the post-dormancy phase of L. tristis is a critical factor that determines the survival of L. tristis adults and the subsequent generation. The control of powdery mildew ( Odium hevea ) disease-mediated premature leaf fall in rubber plantations may regulate the beetle population. A peak in fecundity during the early phase of post-dormancy is proposed as an adaptive mechanism of L. tristis to synchronize egg production and feeding with tender leaf availability in rubber plantations. Variations in nutrient levels and moisture content between deciduous rubber tree leaves of different ages are attributed to the leaf nutrient resorption mechanism of senescing leaves. These results established that tender leaves with high N and moisture levels are essential for post-dormancy survival and that N influences fecundity. The results of the experiments could aid decision making regarding the population management and control of L. tristis in rubber plantations. PMID:25373159

  19. Feedback-driven response to multidecadal climatic variability at an alpine treeline

    USGS Publications Warehouse

    Alftine, K.J.; Malanson, G.P.; Fagre, D.B.

    2003-01-01

    The Pacific Decadal Oscillation (PDO) has significant climatological and ecological effects in northwestern North America. Its possible effects and their modification by feedbacks are examined in the forest-tundra ecotone in Glacier National Park, Montana, USA. Tree ring samples were collected to estimate establishment dates in 10 quadrats. Age-diameter regressions were used to estimate the ages of uncored trees. The temporal pattern of establishment and survival was compared to the pattern of the PDO. A wave of establishment began in the mid-1940s, rose to a peak rate in the mid-1970s, and dropped precipitously beginning ca. 1980 to near zero for the 1990s. The period of establishment primarily coincided with the negative phase of the PDO, but the establishment and survival pattern is not correlated with the PDO index. The pattern indicates a period during which establishment was possible and was augmented by positive feedback from surviving trees. Snow may be the most important factor in the feedback, but studies indicate that its effects vary locally. Spatially differentiated analyses of decadal or longer periodicity may elucidate responses to climatic variation. ?? 2003 by V. H. Winston and Son, Inc. All rights reserved.

  20. Five-year measurements of Unit 3, Waiakea Arboretum, Hawaii

    Treesearch

    Stanley B. Carpenter; George B. Richmond

    1965-01-01

    Measurements were taken of 25 exotic tree species planted in 1959 in the Waiakea Arboretum near Hilo, Hawaii. After 5 years, some species show good survival and growth, but seven pines failed to survive. All plantings have suffered from shallow soil, and competition from wild vegetation.

  1. Changes in understory species occurrence of a secondary broadleaved forest after mass mortality of oak trees under deer foraging pressure

    PubMed Central

    2016-01-01

    The epidemic of mass mortality of oak trees by Japanese oak wilt has affected secondary deciduous broadleaved forests that have been used as coppices in Japan. The dieback of oak trees formed gaps in the crown that would be expected to enhance the regeneration of shade-intolerant pioneer species. However, foraging by sika deer Cervus nippon has also affected forest vegetation, and the compound effects of both on forest regeneration should be considered when they simultaneously occur. A field study was conducted in Kyôto City, Japan to investigate how these compound effects affected the vegetation of the understory layer of these forests. The presence/absence of seedlings and saplings was observed for 200 quadrats sized 5 m ×5 m for each species in 1992, before the mass mortality and deer encroachment, and in 2014 after these effects. A hierarchical Bayesian model was constructed to explain the occurrence, survival, and colonization of each species with their responses to the gaps that were created, expanded, or affected by the mass mortality of Quercus serrata trees. The species that occurred most frequently in 1992, Eurya japonica, Quercus glauca, and Cleyera japonica, also had the highest survival probabilities. Deer-unpalatable species such as Symplocos prunifolia and Triadica sebifera had higher colonization rates in the gaps, while the deer-palatable species Aucuba japonica had the smallest survival probability. The gaps thus promoted the colonization of deer-unpalatable plant species such as Symplocos prunifolia and Triadica sebifera. In the future, such deer-unpalatable species may dominate gaps that were created, expanded, or affected by the mass mortality of oak trees. PMID:28028480

  2. Changes in understory species occurrence of a secondary broadleaved forest after mass mortality of oak trees under deer foraging pressure.

    PubMed

    Itô, Hiroki

    2016-01-01

    The epidemic of mass mortality of oak trees by Japanese oak wilt has affected secondary deciduous broadleaved forests that have been used as coppices in Japan. The dieback of oak trees formed gaps in the crown that would be expected to enhance the regeneration of shade-intolerant pioneer species. However, foraging by sika deer Cervus nippon has also affected forest vegetation, and the compound effects of both on forest regeneration should be considered when they simultaneously occur. A field study was conducted in Kyôto City, Japan to investigate how these compound effects affected the vegetation of the understory layer of these forests. The presence/absence of seedlings and saplings was observed for 200 quadrats sized 5 m ×5 m for each species in 1992, before the mass mortality and deer encroachment, and in 2014 after these effects. A hierarchical Bayesian model was constructed to explain the occurrence, survival, and colonization of each species with their responses to the gaps that were created, expanded, or affected by the mass mortality of Quercus serrata trees. The species that occurred most frequently in 1992, Eurya japonica , Quercus glauca , and Cleyera japonica , also had the highest survival probabilities. Deer-unpalatable species such as Symplocos prunifolia and Triadica sebifera had higher colonization rates in the gaps, while the deer-palatable species Aucuba japonica had the smallest survival probability. The gaps thus promoted the colonization of deer-unpalatable plant species such as Symplocos prunifolia and Triadica sebifera . In the future, such deer-unpalatable species may dominate gaps that were created, expanded, or affected by the mass mortality of oak trees.

  3. Struggle in the flood: tree responses to flooding stress in four tropical floodplain systems

    PubMed Central

    Parolin, Pia; Wittmann, Florian

    2010-01-01

    Background and aims In the context of the 200th anniversary of Charles Darwin's birth in 1809, this study discusses the variation in structure and adaptation associated with survival and reproductive success in the face of environmental stresses in the trees of tropical floodplains. Scope We provide a comparative review on the responses to flooding stress in the trees of freshwater wetlands in tropical environments. The four large wetlands we evaluate are: (i) Central Amazonian floodplains in South America, (ii) the Okavango Delta in Africa, (iii) the Mekong floodplains of Asia and (iv) the floodplains of Northern Australia. They each have a predictable ‘flood pulse’. Although flooding height varies between the ecosystems, the annual pulse is a major driving force influencing all living organisms and a source of stress for which specialized adaptations for survival are required. Main points The need for trees to survive an annual flood pulse has given rise to a large variety of adaptations. However, phenological responses to the flood are similar in the four ecosystems. Deciduous and evergreen species respond with leaf shedding, although sap flow remains active for most of the year. Growth depends on adequate carbohydrate supply. Physiological adaptations (anaerobic metabolism, starch accumulation) are also required. Conclusions Data concerning the ecophysiology and adaptations of trees in floodplain forests worldwide are extremely scarce. For successful floodplain conservation, more information is needed, ideally through a globally co-ordinated study using reproducible comparative methods. In the light of climatic change, with increasing drought, decreased groundwater availability and flooding periodicities, this knowledge is needed ever more urgently to facilitate fast and appropriate management responses to large-scale environmental change. PMID:22476061

  4. Annual variation in seedfall, postdispersal predation, and recruitment of a neotropical tree

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schupp, E.W.

    1990-04-01

    Knowledge of the dynamics of seed production and seedling recruitment of individual tree species is crucial for a complete understanding of tropical forest dynamics, yet multiyear studies on the seed and young seedling stages of tropical trees are virtually nonexistent. In a 4-yr study of the understory tree Faramea occidentalis on Barro Colorado Island, Panama, the author quantified natural levels of viable seedfall, seedling emergence, and seedling establishment, and experimentally estimated postdispersal seed predation. The levels of viable seedfall, seed predation, seedling emergence, early seedling survival, and seedling recruitment all differed significantly among years. The proportion of fallen seeds destroyedmore » by predators before germination was not related to the quantity of F. occidentalis seedfall. Within a year, however, F. occidentalis seed predation appeared to be influenced by community-wide seedfall, with high predation rates during times of low seed abundance and very low predation during the late dry season peak in seedfall by the community. Most of the annual variation in recruitment can be explained by the combination of seedfall and seed predation; in 3 of the 4 yr seedling emergence could be predicted from a knowledge of viable seedfall and the probability of a seed surviving until the peak of germination. The 4th yr, however, demonstrated that environmental conditions provide a sporadic, though important, limitation to recruitment. In comparison to many tree species, early seedling survival was relatively high, as was the ratio of seedlings recruited per seed falling. The highly successful recruitment of F. occidentalis is associated with a high population density of both saplings and adults in the study area.« less

  5. Fire intensity impacts on post-fire temperate coniferous forest net primary productivity

    NASA Astrophysics Data System (ADS)

    Sparks, Aaron M.; Kolden, Crystal A.; Smith, Alistair M. S.; Boschetti, Luigi; Johnson, Daniel M.; Cochrane, Mark A.

    2018-02-01

    Fire is a dynamic ecological process in forests and impacts the carbon (C) cycle through direct combustion emissions, tree mortality, and by impairing the ability of surviving trees to sequester carbon. While studies on young trees have demonstrated that fire intensity is a determinant of post-fire net primary productivity, wildland fires on landscape to regional scales have largely been assumed to either cause tree mortality, or conversely, cause no physiological impact, ignoring the impacted but surviving trees. Our objective was to understand how fire intensity affects post-fire net primary productivity in conifer-dominated forested ecosystems on the spatial scale of large wildland fires. We examined the relationships between fire radiative power (FRP), its temporal integral (fire radiative energy - FRE), and net primary productivity (NPP) using 16 years of data from the MOderate Resolution Imaging Spectrometer (MODIS) for 15 large fires in western United States coniferous forests. The greatest NPP post-fire loss occurred 1 year post-fire and ranged from -67 to -312 g C m-2 yr-1 (-13 to -54 %) across all fires. Forests dominated by fire-resistant species (species that typically survive low-intensity fires) experienced the lowest relative NPP reductions compared to forests with less resistant species. Post-fire NPP in forests that were dominated by fire-susceptible species were not as sensitive to FRP or FRE, indicating that NPP in these forests may be reduced to similar levels regardless of fire intensity. Conversely, post-fire NPP in forests dominated by fire-resistant and mixed species decreased with increasing FRP or FRE. In some cases, this dose-response relationship persisted for more than a decade post-fire, highlighting a legacy effect of fire intensity on post-fire C dynamics in these forests.

  6. Factors Affecting Fish Production and Fishing Quality in New Reservoirs, with Guidance on Timber Clearing, Basin Preparation, and Filling.

    DTIC Science & Technology

    1981-08-01

    by Hall et al. (1946). Yeager (1949), who also conducted an extensive study of flooding effects on different species of trees , noted that virtually... species in Illinois, suggested setting a limit of 30 days’ inundation during spring and summer to ensure survival of all trees around reservoir margins...considered were tree species and size; submersion type (total, partial, or soil saturation); time of year (dormant or growing seasons); and duration of

  7. Effects of five mulch materials on microclimatic conditions affecting the establishment of vegetation on minesoil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, T.R.; Wittwer, R.F.

    1980-12-01

    The influence of five mulch materials (hardwood bark, hardwood bark with chicken manure, hardwood bark with composted sewage, pelletized grass by-products, and recycled magazine stock) on microclimate and their effect on the revegetation of mine spoils was evaluated. Four tree species (black walnut, Juglan nigra L., boxelder, Acer negundo L., Ohio buckeye, Aesculus glabra Willd., and eastern white pine, Pinus strobus L.) were spot-seeded and a forage mixture of tall fescue, Festuca arundinacea Schreb., orchard grass, Dactylis glomerata L., Dutch white clover, Trifolium repens L., and birdsfoot refoil, Lotus cornicalatans L. was broadcast as a cover. Minesoil temperature and moisture,more » germination, survival and height growth of trees, and percent cover by forages were variables measured. Chemical analysis for mineral content of the five mulch materials was obtained.« less

  8. Influence of soil pathogens on early regeneration success of tropical trees varies between forest edge and interior.

    PubMed

    Krishnadas, Meghna; Comita, Liza S

    2018-01-01

    Soil fungi are key mediators of negative density-dependent mortality in seeds and seedlings, and the ability to withstand pathogens in the shaded understory of closed-canopy forests could reinforce light gradient partitioning by tree species. For four species of tropical rainforest trees-two shade-tolerant and two shade-intolerant-we conducted a field experiment to examine the interactive effects of fungal pathogens, light, and seed density on germination and early seedling establishment. In a fully factorial design, seeds were sown into 1 m 2 plots containing soil collected from underneath conspecific adult trees, with plots assigned to forest edge (high light) or shaded understory, high or low density, and fungicide or no fungicide application. We monitored total seed germination and final seedling survival over 15 weeks. Shade-intolerant species were strongly constrained by light; their seedlings survived only at the edge. Fungicide application significantly improved seedling emergence and/or survival for three of the four focal species. There were no significant interactions between fungicide and seed density, suggesting that pathogen spread with increased aggregation of seeds and seedlings did not contribute to pathogen-mediated mortality. Two species experienced significant edge-fungicide interactions, but fungicide effects in edge vs. interior forest varied with species and recruitment stage. Our results suggest that changes to plant-pathogen interactions could affect plant recruitment in human-impacted forests subject to fragmentation and edge-effects.

  9. Crytometia Does Not Survive in the Upper Coastal Plain of Georgia

    Treesearch

    Timothy La Farge

    1980-01-01

    Nine seed sources of Ctyptomeriojaponicafrom the northern portion of its range in Japan were tested in the Upper Coastal Plain of central Georgia. Although these sources varied significantly in their rates of growth in the nursery, only 3 of 180 trees survived after 5 years in the field.

  10. A synthesis of radial growth patterns preceding tree mortality

    USGS Publications Warehouse

    Cailleret, Maxime; Jansen, Steven; Robert, Elisabeth M.R.; Desoto, Lucia; Aakala, Tuomas; Antos, Joseph A.; Beikircher, Barbara; Bigler, Christof; Bugmann, Harald; Caccianiga, Marco; Cada, Vojtech; Camarero, Jesus J.; Cherubini, Paolo; Cochard, Herve; Coyea, Marie R.; Cufar, Katarina; Das, Adrian J.; Davi, Hendrik; Delzon, Sylvain; Dorman, Michael; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J.; Hartmann, Henrik; Heres, Ana-Maria; Hultine, Kevin R.; Janda, Pavel; Kane, Jeffrey M.; Kharuk, Vyacheslav I.; Kitzberger, Thomas; Klein, Tamir; Kramer, Koen; Lens, Frederic; Levanic, Tom; Calderon, Juan C. Linares; Lloret, Francisco; Lobo-Do-Vale, Raquel; Lombardi, Fabio; Lopez Rodriguez, Rosana; Makinen, Harri; Mayr, Stefan; Meszaros, IIona; Metsaranta, Juha M.; Minunno, Francesco; Oberhuber, Walter; Papadopoulos, Andreas; Peltoniemi, Mikko; Petritan, Any M.; Rohner, Brigitte; Sanguesa-Barreda, Gabriel; Sarris, Dimitrios; Smith, Jeremy M.; Stan, Amanda B.; Sterck, Frank; Stojanovic, Dejan B.; Suarez, Maria L.; Svoboda, Miroslav; Tognetti, Roberto; Torres-Ruiz, Jose M.; Trotsiuk, Volodymyr; Villalba, Ricardo; Vodde, Floor; Westwood, Alana R.; Wyckoff, Peter H.; Zafirov, Nikolay; Martinez-Vilalta, Jordi

    2017-01-01

    Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1–100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or bark-beetle outbreaks.

  11. A synthesis of radial growth patterns preceding tree mortality.

    PubMed

    Cailleret, Maxime; Jansen, Steven; Robert, Elisabeth M R; Desoto, Lucía; Aakala, Tuomas; Antos, Joseph A; Beikircher, Barbara; Bigler, Christof; Bugmann, Harald; Caccianiga, Marco; Čada, Vojtěch; Camarero, Jesus J; Cherubini, Paolo; Cochard, Hervé; Coyea, Marie R; Čufar, Katarina; Das, Adrian J; Davi, Hendrik; Delzon, Sylvain; Dorman, Michael; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J; Hartmann, Henrik; Hereş, Ana-Maria; Hultine, Kevin R; Janda, Pavel; Kane, Jeffrey M; Kharuk, Vyacheslav I; Kitzberger, Thomas; Klein, Tamir; Kramer, Koen; Lens, Frederic; Levanic, Tom; Linares Calderon, Juan C; Lloret, Francisco; Lobo-Do-Vale, Raquel; Lombardi, Fabio; López Rodríguez, Rosana; Mäkinen, Harri; Mayr, Stefan; Mészáros, Ilona; Metsaranta, Juha M; Minunno, Francesco; Oberhuber, Walter; Papadopoulos, Andreas; Peltoniemi, Mikko; Petritan, Any M; Rohner, Brigitte; Sangüesa-Barreda, Gabriel; Sarris, Dimitrios; Smith, Jeremy M; Stan, Amanda B; Sterck, Frank; Stojanović, Dejan B; Suarez, Maria L; Svoboda, Miroslav; Tognetti, Roberto; Torres-Ruiz, José M; Trotsiuk, Volodymyr; Villalba, Ricardo; Vodde, Floor; Westwood, Alana R; Wyckoff, Peter H; Zafirov, Nikolay; Martínez-Vilalta, Jordi

    2017-04-01

    Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1-100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or bark-beetle outbreaks. © 2016 John Wiley & Sons Ltd.

  12. Why Be a Shrub? A Basic Model and Hypotheses for the Adaptive Values of a Common Growth Form

    PubMed Central

    Götmark, Frank; Götmark, Elin; Jensen, Anna M.

    2016-01-01

    Shrubs are multi-stemmed short woody plants, more widespread than trees, important in many ecosystems, neglected in ecology compared to herbs and trees, but currently in focus due to their global expansion. We present a novel model based on scaling relationships and four hypotheses to explain the adaptive significance of shrubs, including a review of the literature with a test of one hypothesis. Our model describes advantages for a small shrub compared to a small tree with the same above-ground woody volume, based on larger cross-sectional stem area, larger area of photosynthetic tissue in bark and stem, larger vascular cambium area, larger epidermis (bark) area, and larger area for sprouting, and faster production of twigs and canopy. These components form our Hypothesis 1 that predicts higher growth rate for a small shrub than a small tree. This prediction was supported by available relevant empirical studies (14 publications). Further, a shrub will produce seeds faster than a tree (Hypothesis 2), multiple stems in shrubs insure future survival and growth if one or more stems die (Hypothesis 3), and three structural traits of short shrub stems improve survival compared to tall tree stems (Hypothesis 4)—all hypotheses have some empirical support. Multi-stemmed trees may be distinguished from shrubs by more upright stems, reducing bending moment. Improved understanding of shrubs can clarify their recent expansion on savannas, grasslands, and alpine heaths. More experiments and other empirical studies, followed by more elaborate models, are needed to understand why the shrub growth form is successful in many habitats. PMID:27507981

  13. Effects of herbivory and patch size on tree seedling survivorship in a fog-dependent coastal rainforest in semiarid Chile.

    PubMed

    del-Val, Ek; Armesto, Juan J; Barbosa, Olga; Marquet, Pablo A

    2007-09-01

    The landscape (matrix) surrounding habitat fragments critically affects the biodiversity of those fragments due to biotic interchange and physical effects. However, to date, there have been only a limited number of studies on plant-animal interactions in fragmented landscapes, particularly on how tree seedling herbivory is affected by fragmentation. We have examined this question in a fog-dependent mosaic of rainforest fragments located on coastal mountaintops of semiarid Chile (30 degrees S), where the effects of the surrounding semiarid matrix and forest patch size (0.1-22 ha) on tree seedling survival were simultaneously addressed. The rainforest is strongly dominated by the endemic evergreen tree species Aextoxicon punctatum (Olivillo, approx. 80% of basal area). To assess the magnitudes and causes of Olivillo seedling mortality, we set up a field experiment where 512 tree seedlings of known age were transplanted into four forest fragments of different sizes in four 1.5 x 3-m plots per patch; one-half of each plot was fenced off with chicken wire to exclude small mammals. The plots were monitored for 22 months. Overall, 50% of the plants died during the experiment. The exclusion of small mammals from the plots increased seedling survival by 25%, with the effect being greater in smaller patches where matrix-dwelling herbivores are more abundant. This experiment highlights the important role of the surrounding matrix in affecting the persistence of trees in forest fragments. Because herbivores from the matrix cause greater tree seedling mortality in small patches, their effects must be taken into account in forest conservation-restoration plans.

  14. Macroanatomy and compartmentalization of recent fire scars in three North American conifers

    Treesearch

    Kevin T. Smith; Estelle Arbellay; Donald A. Falk; Elaine Kennedy Sutherland

    2016-01-01

    Fire scars are initiated by cambial necrosis caused by localized lethal heating of the tree stem. Scars develop as part of the linked survival processes of compartmentalization and wound closure. The position of scars within dated tree ring series is the basis for dendrochronological reconstruction of fire history. Macroanatomical features were described for western...

  15. Factors Affecting Survival of Longleaf Pine Seedlings

    Treesearch

    John S. Kush; Ralph S. Meldahl; William D. Boyer

    2004-01-01

    Longleaf pine may be managed most efficiently in large even-aged stands. Past research has shown that the effect of trees surrounding the openings (gaps) or the use of fire is a complicating factor, especially with small openings. Longleaf seedlings are considered more susceptible to fire under and nearer to standing trees, and seedling size, kind of fire, soil type,...

  16. Annual Tree Growth Predictions From Periodic Measurements

    Treesearch

    Quang V. Cao

    2004-01-01

    Data from annual measurements of a loblolly pine (Pinus taeda L.) plantation were available for this study. Regression techniques were employed to model annual changes of individual trees in terms of diameters, heights, and survival probabilities. Subsets of the data that include measurements every 2, 3, 4, 5, and 6 years were used to fit the same...

  17. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO2 concentration

    Treesearch

    J.-C. Domec; K. Schafer; R. Oren; H. Kim; H. McCarthy

    2010-01-01

    Anatomical and physiological acclimation to water stress of the tree hydraulic system involves trade-offs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth.

  18. Resistance of eastern hardwood stems to fire injury and damage

    Treesearch

    Kevin T. Smith; Elaine Kennedy Sutherland

    2006-01-01

    This paper reviews the protective features and defensive responses of eastern hardwood species exposed to fire. Trees survive fire through protective features such as thick bark and the induced defenses of compartmentalization. Dissection of trees exposed to prescribed fire in an oak forest in southern Ohio highlights the need to distinguish between bark scorch, stem...

  19. Tree Seedlings Establishment Across a Hydrologic Gradient in a Bottomland Restoration

    Treesearch

    Randall K. Kolka; Carl C. Trettin; E.A. Nelson; W.H. Conner

    1998-01-01

    Seedling establishment and survival on the Savannah River Site in South Carolina is being monitored as part of the Pen Branch Bottomland Restoration Project. Bottomland tree species were planted from 1993-1995 across a hydrologic gradient which encompasses the drier upper floodplain corridor, the lower floodplain corridor and the continuously inundated delta. Twelve...

  20. Facilitating gene conservation with existing common gardens

    Treesearch

    S. Fei; K. Woeste

    2017-01-01

    Species and populations of forest trees stressed by a rapidly changing climate must adjust or they will not survive. Loss of species and populations could occur if they lack the genetic variability to adapt, the capacity to migrate to suitable habitats, or the ability to adjust to new environments through phenotypic plasticity. Fortunately, many forest tree provenance...

  1. Delayed conifer tree mortality following fire in California

    Treesearch

    Sharon M. Hood; Sheri L. Smith; Daniel R. Cluck

    2007-01-01

    Fire injury was characterized and survival monitored for 5,246 trees from five wildfires in California that occurred between 1999 and 2002. Logistic regression models for predicting the probability of mortality were developed for incense-cedar, Jeffrey pine, ponderosa pine, red fir and white fir. Two-year post-fire preliminary models were developed for incense-cedar,...

  2. How climatic conditions, site, and soil characteristics affect tree growth and critical loads of nitrogen for northeastern tree species

    Treesearch

    Molly J. Robin-Abbott; Linda H. Pardo

    2017-01-01

    Forest health is affected by multiple factors, including topography, climate, and soil characteristics, as well as pests, pathogens, competitive interactions, and anthropogenic deposition. Species within a stand may respond differently to site factors depending on their physiological requirements for growth, survival, and regeneration. We determined optimal ranges of...

  3. Ties that bind: Pacific Northwest truffles, trees, and animals in symbiosis

    Treesearch

    Marie Oliver; Randy Molina; Jane E.  Smith

    2009-01-01

    Soil organisms play essential roles in forest health, and truffle fungi are one of the more fascinating groups of these important organisms. After 40 years of specimen collection and study, scientists with Pacific Northwest Research Station have published a report documenting how truffle fungi affect tree survival and growth, perform valuable functions in nutrient...

  4. Sugar maple provenance study: West Virginia outplanting - 10-year results

    Treesearch

    G. W. Wendel; W. J. Gabriel

    1980-01-01

    After 10 years, survival of sugar maple (Acer saccharum Marsh.) provenances outplanted in West Virginia did not differ significantly. Total height, height growth and dbh measurements were significantly different among provenances. Fifty percent of the trees had major forks below 9.0 feet. Thirty-eight percent of the trees had no forks but 71 percent...

  5. Planning the future's forests with assisted migration [Chapter 8

    Treesearch

    Mary I. Williams; R. Kasten Dumroese

    2016-01-01

    If the climate changes faster than the adaptation or migration capability of plants (Zhu et al. 2012; Gray and Hamann 2013), foresters and other land managers will face an overwhelming challenge. Growing trees that survive may become more important than growing perfectly formed trees (Hebda 2008) and may require selection of adapted plant materials and/or assisting the...

  6. Advance regeneration in the Inland West: Considerations for individual tree and forest health

    Treesearch

    Dennis E. Ferguson

    1994-01-01

    Advance conifer regeneration readily survives release from overstory competition in the Inland West, but foresters are concerned about the ability of released trees to attain normal growth rates. There are also concerns about forest health issues associated with managing advance regeneration. The best pre-release predictors of post-release growth response are pre-...

  7. An Individual-Tree Growth and Yield Prediction System for Even-Aged Natural Shortleaf Pine Forests

    Treesearch

    Thomas B. Lynch; Kenneth L. Hitch; Michael M. Huebschmann; Paul A. Murphy

    1999-01-01

    The development of a system of equations that model the growth and development of even-aged natural shortleaf (Pinus echinata Mill.) pine forests is described. The growth prediction system is a distance-independent individual-tree simulator containing equations that predict basal-area growth, survival, total and merchantable heights, and total and...

  8. Nurse plants, tree saplings and grazing pressure: changes in facilitation along a biotic environmental gradient.

    PubMed

    Smit, Christian; Vandenberghe, Charlotte; den Ouden, Jan; Müller-Schärer, Heinz

    2007-05-01

    Current conceptual models predict that an increase in stress shifts interactions between plants from competitive to facilitative; hence, facilitation is expected to gain in ecological importance with increasing stress. Little is known about how facilitative interactions between plants change with increasing biotic stress, such as that incurred by consumer pressure or herbivory (i.e. disturbance sensu Grime). In grazed ecosystems, the presence of unpalatable plants is reported to protect tree saplings against cattle grazing and enhance tree establishment. In accordance with current conceptual facilitation-stress models, we hypothesised a positive relationship between facilitation and grazing pressure. We tested this hypothesis in a field experiment in which tree saplings of four different species (deciduous Fagus sylvatica, Acer pseudoplatanus and coniferous Abies alba, Picea abies) were planted either inside or outside of the canopy of the spiny nurse shrub Rosa rubiginosa in enclosures differing in grazing pressure (low and high) and in exclosures. During one grazing season we followed the survival of the different tree saplings and the level of browsing on these; we also estimated browsing damage to the nurse shrubs. Shrub damage was highest at the higher grazing pressure. Correspondingly, browsing increased and survival decreased in saplings located inside the canopy of the shrubs at the high grazing pressure compared to the low grazing pressure. Saplings of both deciduous species showed a higher survival than the evergreens, while sapling browsing did not differ between species. The relative facilitation of sapling browsing and sapling survival - i.e. the difference between saplings inside and outside the shrub canopy - decreased at high grazing pressure as the facilitative species became less protective. Interestingly, these findings do not agree with current conceptual facilitation-stress models predicting increasing facilitation with abiotic stress. We used our results to design a conceptual model of facilitation along a biotic environmental gradient. Empirical studies are needed to test the applicability of this model. In conclusion, we suggest that current conceptual facilitation models should at least consider the possibility of decreasing facilitation at high levels of stress.

  9. Biological legacies buffer local species extinction after logging

    PubMed Central

    Rudolphi, Jörgen; Jönsson, Mari T; Gustafsson, Lena

    2014-01-01

    Clearcutting has been identified as a main threat to forest biodiversity. In the last few decades, alternatives to clearcutting have gained much interest. Living and dead trees are often retained after harvest to serve as structural legacies to mitigate negative effects of forestry. However, this practice is widely employed without information from systematic before–after control-impact studies to assess the processes involved in species responses after clearcutting with retention. We performed a large-scale survey of the occurrence of logging-sensitive and red-listed bryophytes and lichens before and after clearcutting with the retention approach. A methodology was adopted that, for the first time in studies on retention approaches, enabled monitoring of location-specific substrates. We used uncut stands as controls to assess the variables affecting the survival of species after a major disturbance. In total, 12 bryophyte species and 27 lichen species were analysed. All were classified as sensitive to logging, and most species are also currently red-listed. We found that living and dead trees retained after final harvest acted as refugia in which logging-sensitive species were able to survive for 3 to 7 years after logging. Depending on type of retention and organism group, between 35% and 92% of the species occurrences persisted on retained structures. Most species observed outside retention trees or patches disappeared. Larger pre-harvest population sizes of bryophytes on dead wood increased the survival probability of the species and hence buffered the negative effects of logging. Synthesis and applications. Careful spatial planning of retention structures is required to fully embrace the habitats of logging-sensitive species. Bryophytes and lichens persisted to a higher degree in retention patches compared to solitary trees or in the clearcut area. Retaining groups of trees in logged areas will help to sustain populations of species over the clearcut phase. When possible, old logs should be moved into retention patches to provide a more beneficial environment for dead wood-dependent species. Our study also highlights the need for more before–after control-impact studies of retention forestry to explore factors influencing the survival of species after logging. PMID:25653456

  10. Biological legacies buffer local species extinction after logging.

    PubMed

    Rudolphi, Jörgen; Jönsson, Mari T; Gustafsson, Lena; Bugmann, H

    2014-02-01

    Clearcutting has been identified as a main threat to forest biodiversity. In the last few decades, alternatives to clearcutting have gained much interest. Living and dead trees are often retained after harvest to serve as structural legacies to mitigate negative effects of forestry. However, this practice is widely employed without information from systematic before-after control-impact studies to assess the processes involved in species responses after clearcutting with retention. We performed a large-scale survey of the occurrence of logging-sensitive and red-listed bryophytes and lichens before and after clearcutting with the retention approach. A methodology was adopted that, for the first time in studies on retention approaches, enabled monitoring of location-specific substrates. We used uncut stands as controls to assess the variables affecting the survival of species after a major disturbance. In total, 12 bryophyte species and 27 lichen species were analysed. All were classified as sensitive to logging, and most species are also currently red-listed. We found that living and dead trees retained after final harvest acted as refugia in which logging-sensitive species were able to survive for 3 to 7 years after logging. Depending on type of retention and organism group, between 35% and 92% of the species occurrences persisted on retained structures. Most species observed outside retention trees or patches disappeared. Larger pre-harvest population sizes of bryophytes on dead wood increased the survival probability of the species and hence buffered the negative effects of logging. Synthesis and applications . Careful spatial planning of retention structures is required to fully embrace the habitats of logging-sensitive species. Bryophytes and lichens persisted to a higher degree in retention patches compared to solitary trees or in the clearcut area. Retaining groups of trees in logged areas will help to sustain populations of species over the clearcut phase. When possible, old logs should be moved into retention patches to provide a more beneficial environment for dead wood-dependent species. Our study also highlights the need for more before-after control-impact studies of retention forestry to explore factors influencing the survival of species after logging.

  11. The effects of drought-induced mortality on the response of surviving trees in piñon-juniper woodlands

    NASA Astrophysics Data System (ADS)

    Huang, C. W.; Pockman, W.; Litvak, M. E.

    2017-12-01

    lthough it is well-established that land cover change influences water and carbon cycles across different spatiotemporal scales, the impact of climate-driven mortality events on site energy and water balance and subsequently on vegetation dynamics is more variable among studies. In semi-arid ecosystems globally, mortality events following severe drought are increasingly common. We used long-term observations (i.e., from 2009 to present) in two piñon-juniper (i.e., Pinus edulis and Juniperus monosperma) woodlands located at central New Mexico USA to explore the consequence of mortality events in such water-stressed environments. We compared a pinon-juniper woodland site where girdling was used to mimic mortality of adult pinon (PJG) with a nearby untreated woodland site (PJC). Our primary goal is to disentangle the reduction in water loss via biological pathway (i.e., leaf and sapwood area) introduced by girdling manipulation from other effects contributing to the response of surviving trees such as modifications in surface reflectivity (i.e., albedo and emissivity) and surface roughness impacting the partitioning between components in both energy and water balance at canopy level. To achieve this goal, we directly measured sap flux, environmental factors and ecosystem-atmosphere exchange of carbon, water and energy fluxes using eddy-covariance systems at both sites. We found that 1) for each component of the energy balance the difference between PJC and PJG was surprisingly negligible such that the canopy-level surface temperature (i.e., both radiometric and aerodynamic temperature) remains nearly identical for the two sites; 2) the surface reflectivity and roughness are mainly dominated by the soil surface especially when the foliage coverage in semi-arid regions is small; 3) the increase in soil evaporation after girdling manipulation outcompetes the surviving trees for the use of water in the soil. These results suggest that the so-called `water release hypothesis' may not occur in such water-stressed environments and the surviving trees may become less resilient to further drought conditions mainly due to the reduction in the soil water availability. Keywords: drought resilience, tree mortality, partitioning in energy and water balance, water release hypothesis

  12. Leaf-on canopy closure in broadleaf deciduous forests predicted during winter

    USGS Publications Warehouse

    Twedt, Daniel J.; Ayala, Andrea J.; Shickel, Madeline R.

    2015-01-01

    Forest canopy influences light transmittance, which in turn affects tree regeneration and survival, thereby having an impact on forest composition and habitat conditions for wildlife. Because leaf area is the primary impediment to light penetration, quantitative estimates of canopy closure are normally made during summer. Studies of forest structure and wildlife habitat that occur during winter, when deciduous trees have shed their leaves, may inaccurately estimate canopy closure. We estimated percent canopy closure during both summer (leaf-on) and winter (leaf-off) in broadleaf deciduous forests in Mississippi and Louisiana using gap light analysis of hemispherical photographs that were obtained during repeat visits to the same locations within bottomland and mesic upland hardwood forests and hardwood plantation forests. We used mixed-model linear regression to predict leaf-on canopy closure from measurements of leaf-off canopy closure, basal area, stem density, and tree height. Competing predictive models all included leaf-off canopy closure (relative importance = 0.93), whereas basal area and stem density, more traditional predictors of canopy closure, had relative model importance of ≤ 0.51.

  13. Drought-associated tree mortality: Global patterns and insights from tree-ring studies in the southwestern U.S.A

    NASA Astrophysics Data System (ADS)

    Macalady, Alison Kelly

    Forests play an important role in the earth system, regulating climate, maintaining biodiversity, and provisioning human communities with water, food and fuel. Interactions between climate and forest dynamics are not well constrained, and high uncertainty characterizes projections of global warming impacts on forests and associated ecosystem services. Recently observed tree mortality and forest die-off forewarn an acceleration of forest change with rising temperature and increased drought. However, the processes leading to tree death during drought are poorly understood, limiting our ability to anticipate future forest dynamics. The objective of this dissertation was to improve understanding of drought-associated tree mortality through literature synthesis and tree-ring studies on trees that survived and died during droughts in the southwestern USA. Specifically, this dissertation 1) documented global tree mortality patterns and identified emerging trends and research gaps; 2) quantified relationships between growth, climate, competition and mortality of pinon pine during droughts in New Mexico; 3) investigated tree defense anatomy as a potentially key element in pinon avoidance of death; and, 4) characterized the climate sensitivity of pinon resin ducts in order to gain insight into potential trends in tree defenses with climate variability and change. There has been an increase in studies reporting tree mortality linked to drought, heat, and the associated activity of insects and pathogens. Cases span the forested continents and occurred in water, light and temperature-limited forests. We hypothesized that increased tree mortality may be an emerging global phenomenon related to rising temperatures and drought (Appendix A). Recent radial growth was 53% higher on average in pinon that survived versus died during two episodes of drought-associated mortality, and statistical models of mortality risk based on average growth, growth variability, and abrupt growth changes correctly classified the status of ˜70% of trees. Climate responses and competitive interactions partly explained growth differences between dying and surviving trees, with muted response to wet/cool conditions and enhanced sensitivity to competition from congeners linked to growth patterns associated with death. Discrimination and validation of models of mortality risk varied widely across sites and drought events, indicating shifting growth-mortality relationships and differences in mortality processes across space and time (Appendix B). Pre-formed defense anatomy is strongly associated with pinon survivorship over a range of sites and stand conditions. Models of mortality risk that account for both growth and resin duct attributes had ≈10 19 more support than models that contained only growth. The greatest improvement in classification was among trees from the 2000s drought, suggesting an enhanced role for tree defense allocation and/or bark beetle activity during recent warm versus historic cool drought. Accounting for defense characteristics and growth-defense allocation is likely to be important for improving representation of drought-associated mortality (Appendix C). Pinon resin duct chronologies contain climate responses that are coherent and distinct from those of radial growth. Growth responds positively and strongly to previous fall and current winter precipitation, and negatively to late spring and early summer temperature. A relatively equal positive resin duct response to winter precipitation and positive response to mid-to-late summer drought suggests that changes in climate will affect tree defense anatomy in complex ways, with the outcome determined by seasonal changes in precipitation and temperature (Appendix D).

  14. Tree Death Study's Climate Change Connections

    ScienceCinema

    McDowell, Nate

    2018-05-11

    What are the exact physiological mechanisms that lead to tree death during prolonged drought and rising temperatures? These are the questions that scientists are trying to answer at a Los Alamos National Laboratory research project called SUMO. SUMO stands for SUrvival/MOrtality study; it's a plot of land on the Lab's southern border that features 18 climate controlled tree study chambers and a large drought structure that limits rain and snowfall. Scientists are taking a wide variety of measurements over a long period of time to determine what happens during drought and warming, and what the connections and feedback loops might be between tree death and climate change.

  15. Effect of chipping on emergence of the redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae) and recovery of the laurel wilt pathogen from infested wood chips.

    PubMed

    Spence, D J; Smith, J A; Ploetz, R; Hulcr, J; Stelinski, L L

    2013-10-01

    Significant mortality ofredbay trees (Persea borbonia (L.) Spreng.) in the southeastern United States has been caused by Raffaelea lauricola, T.C. Harr., Fraedrich, & Aghayeva (Harrington et al. 2008), a fungal symbiont of the exotic redbay ambrosia beetle, Xyleborus glabratus, Eichhoff (Fraedrich et al. 2008). This pathogen causes laurel wilt, which is an irreversible disease that can kill mature trees within a few weeks in summer. R. lauricola has been shown to be lethal to most native species of Lauraceae and cultivated avocado (Persea americana Mill.) in the southeastern United States. In this study, we examined the survival of X. glabratus and R. lauricola in wood chips made from infested trees by using a standard tree chipper over a 10-wk period. After 2 wk, 14 X. glabratus were recovered from wood chips, whereas 339 X. glabratus emerged from nonchipped bolts. R. lauricola was not found 2 d postchipping from wood chips, indicating that the pathogen is not likely to survive for long inside wood chips. In contrast, R. lauricola persisted in dead, standing redbay trees for 14 mo. With large volumes of wood, the potential for infested logs to be moved between states or across U.S. borders is significant. Results demonstrated that chipping wood from laurel wilt-killed trees can significantly reduce the number of X. glabratus and limit the persistence of R. lauricola, which is important for sanitation strategies aimed at limiting the spread of this disease.

  16. Averaged 30 year climate change projections mask opportunities for species establishment

    USGS Publications Warehouse

    Serra-Diaz, Josep M.; Franklin, Janet; Sweet, Lynn C.; McCullough, Ian M.; Syphard, Alexandra D.; Regan, Helen M.; Flint, Lorraine E.; Flint, Alan L.; Dingman, John; Moritz, Max A.; Redmond, Kelly T.; Hannah, Lee; Davis, Frank W.

    2016-01-01

    Survival of early life stages is key for population expansion into new locations and for persistence of current populations (Grubb 1977, Harper 1977). Relative to adults, these early life stages are very sensitive to climate fl uctuations (Ropert-Coudert et al. 2015), which often drive episodic or ‘event-limited’ regeneration (e.g. pulses) in long-lived plant species (Jackson et al. 2009). Th us, it is diffi cult to mechanistically associate 30-yr climate norms to dynamic processes involved in species range shifts (e.g. seedling survival). What are the consequences of temporal aggregation for estimating areas of potential establishment? We modeled seedling survival for three widespread tree species in California, USA ( Quercus douglasii, Q. kelloggii , Pinus sabiniana ) by coupling a large-scale, multi-year common garden experiment to high-resolution downscaled grids of climatic water defi cit and air temperature (Flint and Flint 2012, Supplementary material Appendix 1). We projected seedling survival for nine climate change projections in two mountain landscapes spanning wide elevation and moisture gradients. We compared areas with windows of opportunity for seedling survival – defi ned as three consecutive years of seedling survival in our species, a period selected based on studies of tree niche ontogeny (Supplementary material Appendix 1) – to areas of 30-yr averaged estimates of seedling survival. We found that temporal aggregation greatly underestimated the potential for species establishment (e.g. seedling survival) under climate change scenarios.

  17. Trait-mediated assembly processes predict successional changes in community diversity of tropical forests.

    PubMed

    Lasky, Jesse R; Uriarte, María; Boukili, Vanessa K; Chazdon, Robin L

    2014-04-15

    Interspecific differences in relative fitness can cause local dominance by a single species. However, stabilizing interspecific niche differences can promote local diversity. Understanding these mechanisms requires that we simultaneously quantify their effects on demography and link these effects to community dynamics. Successional forests are ideal systems for testing assembly theory because they exhibit rapid community assembly. Here, we leverage functional trait and long-term demographic data to build spatially explicit models of successional community dynamics of lowland rainforests in Costa Rica. First, we ask what the effects and relative importance of four trait-mediated community assembly processes are on tree survival, a major component of fitness. We model trait correlations with relative fitness differences that are both density-independent and -dependent in addition to trait correlations with stabilizing niche differences. Second, we ask how the relative importance of these trait-mediated processes relates to successional changes in functional diversity. Tree dynamics were more strongly influenced by trait-related interspecific variation in average survival than trait-related responses to neighbors, with wood specific gravity (WSG) positively correlated with greater survival. Our findings also suggest that competition was mediated by stabilizing niche differences associated with specific leaf area (SLA) and leaf dry matter content (LDMC). These drivers of individual-level survival were reflected in successional shifts to higher SLA and LDMC diversity but lower WSG diversity. Our study makes significant advances to identifying the links between individual tree performance, species functional traits, and mechanisms of tropical forest succession.

  18. Growing with dinosaurs: natural products from the Cretaceous relict Metasequoia glyptostroboides Hu & Cheng-a molecular reservoir from the ancient world with potential in modern medicine.

    PubMed

    Juvik, Ole Johan; Nguyen, Xuan Hong Thy; Andersen, Heidi Lie; Fossen, Torgils

    2016-01-01

    After the sensational rediscovery of living exemplars of the Cretaceous relict Metasequoia glyptostroboides -a tree previously known exclusively from fossils from various locations in the northern hemisphere, there has been an increasing interest in discovery of novel natural products from this unique plant source. This article includes the first complete compilation of natural products reported from M. glyptostroboides during the entire period in which the tree has been investigated (1954-2014) with main focus on the compounds specific to this plant source. Studies on the biological activity of pure compounds and extracts derived from M. glyptostroboides are reviewed for the first time. The unique potential of M. glyptostroboides as a source of bioactive constituents is founded on the fact that the tree seems to have survived unchanged since the Cretaceous era. Since then, its molecular defense system has resisted the attacks of millions of generations of pathogens. In line with this, some recent landmarks in Metasequoia paleobotany are covered. Initial spectral analysis of recently discovered intact 53 million year old wood and amber of Metasequoia strongly indicate that the tree has remained unchanged for millions of years at the molecular level.

  19. Functional Trait Trade-Offs for the Tropical Montane Rain Forest Species Responding to Light from Simulating Experiments

    PubMed Central

    Mao, Peili; Zang, Runguo; Shao, Hongbo; Yu, Junbao

    2014-01-01

    Differences among tropical tree species in survival and growth to light play a key role in plant competition and community composition. Two canopy species with contrasting functional traits dominating early and late successional stages, respectively, in a tropical montane rain forest of Hainan Island, China, were selected in a pot experiment under 4 levels of light intensity (full, 50%, 30%, and 10%) in order to explore the adaptive strategies of tropical trees to light conditions. Under each light intensity level, the pioneer species, Endospermum chinense (Euphorbiaceae), had higher relative growth rate (RGR), stem mass ratio (SMR), specific leaf area (SLA), and morphological plasticity while the shade tolerant climax species, Parakmeria lotungensis (Magnoliaceae), had higher root mass ratio (RMR) and leaf mass ratio (LMR). RGR of both species was positively related to SMR and SLA under each light level but was negatively correlated with RMR under lower light (30% and 10% full light). The climax species increased its survival by a conservative resource use strategy through increasing leaf defense and root biomass investment at the expense of growth rate in low light. In contrast, the pioneer increased its growth by an exploitative resource use strategy through increasing leaf photosynthetic capacity and stem biomass investment at the expense of survival under low light. There was a trade-off between growth and survival for species under different light conditions. Our study suggests that tree species in the tropical rainforest adopt different strategies in stands of different successional stages. Species in the earlier successional stages have functional traits more advantageous to grow faster in the high light conditions, whereas species in the late successional stages have traits more favorable to survive in the low light conditions. PMID:25019095

  20. A novel survivable architecture for hybrid WDM/TDM passive optical networks

    NASA Astrophysics Data System (ADS)

    Qiu, Yang; Chan, Chun-Kit

    2014-02-01

    A novel tree-ring survivable architecture, which consists of an organization of a wavelength-division-multiplexing (WDM) tree from optical line terminal (OLT) to remote nodes (RNs) and a time division multiplexing (TDM) ring in each RN, is proposed for hybrid WDM/TDM passive optical networks. By utilizing the cyclic property of arrayed waveguide gratings (AWGs) and the single-ring topology among a group of optical network units (ONUs) in the remote node, not only the feeder and distribution fibers, but also any fiber failures in the RN rings are protected simultaneously. Five-Gbit/s transmissions under both normal working and protection modes were experimentally demonstrated and a traffic restoration time was successfully measured.

  1. Urban warming trumps natural enemy regulation of herbivorous pests.

    PubMed

    Dale, Adam G; Frank, Steven D

    Trees provide ecosystem services that counter negative effects of urban habitats on human and environmental health. Unfortunately, herbivorous arthropod pests are often more abundant on urban than rural trees, reducing tree growth, survival, and ecosystem services. Previous research where vegetation complexity was reduced has attributed elevated urban pest abundance to decreased regulation by natural enemies. However, reducing vegetation complexity, particularly the density of overstory trees, also makes cities hotter than natural habitats. We ask how urban habitat characteristics influence an abiotic factor, temperature, and a biotic factor, natural enemy abundance, in regulating the abundance of an urban forest pest, the gloomy scale, (Melanaspis tenebricosa). We used a map of surface temperature to select red maple trees (Acer rubrum) at warmer and cooler sites in Raleigh, North Carolina, USA. We quantified habitat complexity by measuring impervious surface cover, local vegetation structural complexity, and landscape scale vegetation cover around each tree. Using path analysis, we determined that impervious surface (the most important habitat variable) increased scale insect abundance by increasing tree canopy temperature, rather than by reducing natural enemy abundance or percent parasitism. As a mechanism for this response, we found that increasing temperature significantly increases scale insect fecundity and contributes to greater population increase. Specifically, adult female M. tenebricosa egg sets increased by approximately 14 eggs for every 1°C increase in temperature. Climate change models predict that the global climate will increase by 2–3°C in the next 50–100 years, which we found would increase scale insect abundance by three orders of magnitude. This result supports predictions that urban and natural forests will face greater herbivory in the future, and suggests that a primary cause could be direct, positive effects of warming on herbivore fitness rather than altered trophic interactions.

  2. Quantifying flooding effects on hardwood seedling survival and growth for bottomland restoration

    Treesearch

    John M. Kabrick; Daniel C. Dey; J.W. Van Sambeek; Mark V. Coggeshall; Douglass F. Jacobs

    2012-01-01

    Growing interest worldwide in bottomland hardwood restoration necessitates improved ecological understanding of flooding effects on forest tree seedlings using methodology that accurately reflects field conditions. We examined hardwood seedling survival and growth in an outdoor laboratory where the timing, depth, duration, and flow rate of flood water can be carefully...

  3. Inhibition of seedling survival under Rhodendron maximum (Ericaceae): could allelopathy be a cause?

    Treesearch

    Erik T. Nilsen; John F. Walker; Orson K. Miller; Shawn W. Semones; Thomas T. Lei; Barton D. Clinton

    1999-01-01

    In the Southern Appalachian Mountains a subcanopy species, Rhododendron maximum, inhibits the establishment and survival of canopy tree seedlings. One of the mechanisms by which seedlings could be inhibited is an allelopathic effect of decomposing litter or leachate from the canopy of R. maximum (R.m.) on seed germination, root...

  4. A Survival Model for Shortleaf Pine Tress Growing in Uneven-Aged Stands

    Treesearch

    Thomas B. Lynch; Lawrence R. Gering; Michael M. Huebschmann; Paul A. Murphy

    1999-01-01

    A survival model for shortleaf pine (Pinus echinata Mill.) trees growing in uneven-aged stands was developed using data from permanently established plots maintained by an industrial forestry company in western Arkansas. Parameters were fitted to a logistic regression model with a Bernoulli dependent variable in which "0" represented...

  5. Conifer seedling survival under closed-canopy and manzanita patches in the Sierra Nevada

    Treesearch

    A. Plamboeck; M. North; T. Dawson

    2008-01-01

    After a century of fire suppression, prescribed fire and mechanical thinning are widely used to restore mixed-conifer forests in California’s Sierra Nevada, yet after these treatments, trees sometimes fail to regenerate on many sites, for several possible reasons. Notably, competition between shrubs and tree seedlings for scarce water during prolonged summer dry...

  6. Using bark char codes to predict post-fire cambium mortality

    Treesearch

    Sharon M. Hood; Danny R. Cluck; Sheri L. Smith; Kevin C. Ryan

    2008-01-01

    Cambium injury is an important factor in post-fire tree survival. Measurements that quantify the degree of bark charring on tree stems after fire are often used as surrogates for direct cambium injury because they are relatively easy to assign and are non-destructive. However, bark char codes based on these measurements have been inadequately tested to determine how...

  7. Response of Eucalyptus species to frost damage at the Redwood Experimental Forest

    Treesearch

    Danny G. Heavilin

    1978-01-01

    In 1961 a feasibility study was done to determine if certain Eucalyptus species could be grown along the California North Coast for timber or ornamental purposes. Of the 207 trees, representing 31 species, planted on the Redwood Experimental Forest, only 12 trees in 5 species were recorded in the 1976 survival examination. The single most damaging factor was frost....

  8. Survival and growth of thirteen tree species in coastal Oregon.

    Treesearch

    James T. Krygier

    1958-01-01

    Extraordinary growth of introduced tree species—such as Monterey and other pines in Australia, New Zealand, and South Africa, and Sitka spruce, Douglas-fir, and grand fir in Great Britain—has lent impetus to tests of exotic species. Planting of most exotics in the United States has generally met with poor success. Yet there is always speculation that...

  9. The rise of the mediocre forest: why chronically stressed trees may better survive extreme episodic climate variability

    Treesearch

    Steven G. McNulty; Johnny L. Boggs; Ge Sun

    2014-01-01

    Anthropogenic climate change is a relatively new phenomenon, largely occurring over the past 150 years, and much of the discussion on climate change impacts to forests has focused on long-term shifts in temperature and precipitation. However, individual trees respond to the much shorter impacts of climate variability. Historically, fast growing, fully canopied, non-...

  10. Exploiting water versus tolerating drought: water-use strategies of trees in a secondary successional tropical dry forest

    Treesearch

    Fernando Pineda-García; Horacio Paz; Frederick C. Meinzer; Guillermo Angeles; Guillermo Goldstein

    2015-01-01

    In seasonal plant communities where water availability changes dramatically both between and within seasons, understanding the mechanisms that enable plants to exploit water pulses and to survive drought periods is crucial. By measuring rates of physiological processes, we examined the trade-off between water exploitation and drought tolerance among seedlings of trees...

  11. Invasion by a N2-fixing tree alters function and structure in wet lowland forests of Hawaii

    Treesearch

    R. Flint Hughes; Julie S. Denslow

    2005-01-01

    Invasive species pose major threats to the integrity and functioning of ecosystems. When such species alter ecosystem processes, they have the potential to change the environmental context in which other species survive and reproduce and may also facilitate the invasion of additional species. We describe impacts of an invasive N2-fixing tree, ...

  12. Botanical and ecological basis for the resilience of Antillean dry forests

    Treesearch

    A.E. Lugo; E. Medina; J. Carlos Trejo Torres; E. Helmer

    2006-01-01

    Dry forest environments limit the number of species that can survive there. Antillean dry forests have low floristic diversity and stature, high density of small and medium-sized trees, and are among the least conserved of the tropical forests. Their canopies are smooth with no emergent trees and have high species dominance. Antillean dry forests occur mostly on...

  13. Twenty-year-old results from a bottomland oak species comparison trial in western Kentucky

    Treesearch

    Randall J. Rousseau

    2008-01-01

    A 20-year-old trial of five bottomland oak species (cherrybark, Nuttall, pin, water, and willow oaks) located in western Kentucky showed little difference in survival and growth but considerable difference in form characteristics. Mortality was highest between ages 1 and 3 years during plantation establishment until tree-to-tree competition began increasing between the...

  14. Mitigating old tree mortality in long-unburned, fire-dependent forests: a synthesis

    Treesearch

    Sharon M. Hood

    2010-01-01

    This report synthesizes the literature and current state of knowledge pertaining to reintroducing fire in stands where it has been excluded for long periods and the impact of these introductory fires on overstory tree injury and mortality. Only forested ecosystems in the United States that are adapted to survive frequent fire are included. Treatment options that...

  15. A method for assessing the silvicultural effects of releasing young trees from competition.

    Treesearch

    P.W. Owsten; M. Greenup; V.A. Davis

    1986-01-01

    Systematic, long-term measurements of the survival and growth effects of releasing crop trees from competing vegetation are important for evaluating vegetation management treatments in forest plantations. This report details field-tested procedures for use in any type of release treatment—mechanical, manual, biological, or chemical. The basic concept is to delineate...

  16. Overstory treatment and planting season affect survival of replacement tree species in emerald ash borer threatened Fraxinus nigra forests in Minnesota, USA

    Treesearch

    Christopher E. Looney; Anthony W. D' Amato; Brian J. Palik; Robert A. Slesak

    2015-01-01

    Fraxinus nigra Marsh. (black ash) wetland forests in northern Minnesota, USA, are threatened by the invasive insect, emerald ash borer (Agrilus planipennis Fairmaire (EAB)). A potential management option is promoting regeneration of tree species that are not EAB hosts to maintain ecosystem functions. Using an operational-scale...

  17. Stand basal-area and tree-diameter growth in red spruce-fir forests in Maine, 1960-80

    Treesearch

    S.J. Zarnoch; D.A. Gansner; D.S. Powell; T.A. Birch; T.A. Birch

    1990-01-01

    Stand basal-area change and individual surviving red spruce d.b.h. growth from 1960 to 1980 were analyzed for red spruce-fir stands in Maine. Regression modeling was used to relate these measures of growth to stand and tree conditions and to compare growth throughout the period. Results indicate a decline in growth.

  18. Results of tree and shrub plantings on low pH strip-mine banks

    Treesearch

    Walter H. Davidson

    1979-01-01

    Test plantings were established to evaluate the survival and growth of trees and shrubs on 10 acid strip mines in the bituminous region of Pennsylvania. Included in the test were five species of European alder, four birch species, black locust, sycamore, Scotch pine, autumn olive, sawtooth oak, bristly locust, and Japanese fleeceflower. After 11 years, data showed that...

  19. Fire effects on tree overstories in the oak savannas of the Southwestern Borderlands Region

    Treesearch

    Peter F. Ffolliott; Gerald J. Gottfried; Cody L. Stropki; Hui Chen; Daniel G. Neary

    2011-01-01

    Effects of cool-season and warm-season prescribed burning treatments and a wildfire on tree overstories in oak savannas on the Cascabel Watersheds of the Southwestern Borderlands Region are reported in this paper. Information on the initial survival, levels of crown damage, species compositions and densities, annual growth rates, and basal sprouting following these...

  20. Forest futures in the Anthropocene: Can trees and humans survive together?

    Treesearch

    David Bengston; Michael J. Dockry

    2014-01-01

    Foresters and futurists share a long-range perspective. The lengthy growing cycle of trees has compelled foresters to plan decades and even hundreds of years ahead, in contrast to the short-term view of most fields. The interconnected nature of forest ecosystems has also given foresters—like futurists—a systems perspective. As the American naturalist...

  1. Comparison of solid-phase cytometry and the plate count method for the evaluation of the survival of bacteria in pharmaceutical oils.

    PubMed

    De Prijck, K; Peeters, E; Nelis, H J

    2008-12-01

    To compare the survival of four bacterial strains (Escherichia coli, Proteus mirabilis, Staphylococcus aureus, Pseudomonas aeruginosa) in pharmaceutical oils, including jojoba oil/tea tree oil, carbol oil, jojoba oil and sesame oil. Oils were spiked with the test bacteria in a concentration of 10(4) CFU ml(-1). Bacteria were extracted from oils with phosphate-buffered saline containing 0.5% Tween 20. Aliquots of the pooled water layers were analysed by solid-phase cytometry and plate counting. Plate counts dropped to zero for all test strains exposed for 24 h to three of the four oils. In contrast, significant numbers of viable cells were still detected by SPC, except in the jojoba oil/tea tree oil mixture and partly in sesame oil. Exposure of bacteria for 24 h to the two oils containing an antimicrobial led to a loss of their culturability but not necessarily of their viability. The antibacterial activity of the jojoba oil/tea tree oil mixture supersedes that of carbol oil. These in vitro data suggest that the jojoba oil/tea tree oil mixture more than carbol oil inhibits bacterial proliferation when used for intermittent self-catherization.

  2. Metabolomic comparative analysis of the phloem sap of curry leaf tree (Bergera koenegii), orange jasmine (Murraya paniculata), and Valencia sweet orange (Citrus sinensis) supports their differential responses to Huanglongbing.

    PubMed

    Killiny, Nabil

    2016-11-01

    Orange jasmine, Murraya paniculata and curry leaf tree, Bergera koenegii are alternative hosts for Diaphorina citri, the vector of Candidatus Liberibacter asiaticus (CLas), the pathogen of huanglongbing (HLB) in citrus. D. citri feeds on the phloem sap where CLas grows. It has been shown that orange jasmine was a better host than curry leaf tree to D. citri. In addition, CLas can infect orange jasmine but not curry leaf tree. Here, we compared the phloem sap composition of these 2 plants to the main host, Valencia sweet orange, Citrus sinensis. Phloem sap was analyzed by gas chromatography-mass spectrometry after trimethylsilyl derivatization. Orange jasmine was the highest in proteinogenic, non-proteinogenic amino acids, organic acids, as well as total metabolites. Valencia was the highest in mono- and disaccharides, and sugar alcohols. Curry leaf tree was the lowest in most of the metabolites as well as total metabolites. Interestingly, malic acid was high in Valencia and orange jasmine but was not detected in the curry leaf. On the other hand, tartaric acid which can prevent the formation of malic acid in Krebs cycle was high in curry leaf. The nutrient inadequacy of the phloem sap in curry leaf tree, especially the amino acids could be the reason behind the longer life cycle and the low survival of D. citri and the limitation of CLas growth on this host. Information obtained from this study may help in cultivation of CLas and development of artificial diet for rearing of D. citri.

  3. Pennsylvanian tropical rain forests responded to glacial-interglacial rhythms

    NASA Astrophysics Data System (ADS)

    Falcon-Lang, Howard J.

    2004-08-01

    Pennsylvanian tropical rain forests flourished during an icehouse climate mode. Although it is well established that Milankovitch-band glacial-interglacial rhythms caused marked synchronous changes in Pennsylvanian tropical climate and sea level, little is known of vegetation response to orbital forcing. This knowledge gap has now been addressed through sequence- stratigraphic analysis of megafloral and palynofloral assemblages within the Westphalian D Cantabrian Sydney Mines Formation of eastern Canada. This succession was deposited in a low- accommodation setting where sequences can be attributed confidently to glacio-eustasy. Results show that long-lived, low-diversity peat mires dominated by lycopsids were initiated during deglaciation events, but were mostly drowned by rising sea level at maximum interglacial conditions. Only upland coniferopsid forests survived flooding without significant disturbance. Mid- to late interglacial phases witnessed delta-plain progradation and establishment of high-diversity, mineral-substrate rain forests containing lycopsids, sphenopsids, pteridosperms, cordaites, and tree ferns. Renewed glaciation resulted in sea-level fall, paleovalley incision, and the onset of climatic aridity. Glacial vegetation was dominated by cordaites, pteridosperms, and tree ferns; hydrophilic lycopsids and sphenopsids survived in paleovalley refugia. Findings clearly demonstrate the dynamic nature of Pennsylvanian tropical ecosystems and are timely given current debates about the impact of Quaternary glacial-interglacial rhythms on the biogeography of tropical rain forest.

  4. In vitro and in vivo killing of ocular Demodex by tea tree oil

    PubMed Central

    Gao, Y-Y; Di Pascuale, M A; Li, W; Baradaran-Rafii, A; Elizondo, A; Kuo, C-L; Raju, V K; Tseng, S C G

    2005-01-01

    Aims: To compare the in vitro killing effect of different agents on Demodex and to report the in vivo killing effect of tea tree oil (TTO) on ocular Demodex. Methods: Survival time of Demodex was measured under the microscope. Sampling and counting of Demodex was performed by a modified method. Results: Demodex folliculorum survived for more than 150 minutes in 10% povidone-iodine, 75% alcohol, 50% baby shampoo, and 4% pilocarpine. However, the survival time was significantly shortened to within 15 minutes in 100% alcohol, 100% TTO, 100% caraway oil, or 100% dill weed oil. TTO’s in vitro killing effect was dose dependent. Lid scrub with 50% TTO, but not with 50% baby shampoo, can further stimulate Demodex to move out to the skin. The Demodex count did not reach zero in any of the seven patients receiving daily lid scrub with baby shampoo for 40–350 days. In contrast, the Demodex count dropped to zero in seven of nine patients receiving TTO scrub in 4 weeks without recurrence. Conclusions: Demodex is resistant to a wide range of antiseptic solutions. Weekly lid scrub with 50% TTO and daily lid scrub with tea tree shampoo is effective in eradicating ocular Demodex. PMID:16234455

  5. Minesoil grading and ripping affect black walnut growth and survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josiah, S.J.

    In 1980 and 1981, the Botany Department of Southern Illinois University and Sahara Coal Company, Inc. of Harrisburg, Illinois established a series of experimental tree plantings, including black walnut, on a variety of minesoils to explore the effects of different intensities of grading on tree growth. Subsequent walnut stem and root growth were examined during 1985 on five different mine sites: unmined former agricultural land, graded minespoil, replaced (with pan scrapers) topsoil over graded spoil, ripped-graded spoil, and ungraded spoil. Soil bulk density, resistance to penetration, and spoil/soil fertility levels were also measured. The most vigorous trees were found onmore » sites having the lowest soil bulk density and soil strength and lacking horizontal barriers to root growth - the ungraded and ripped sites. Topsoiled sites had the poorest growth and survival, and the greatest stem dieback of any site measured, probably attributable to the confinement of root growth to the upper 15 cm of friable soil above the severely compacted zone. The overall results indicate that most of the minesoil construction techniques examined in this study, which are representative of techniques commonly used in the midwestern US, cause severe minesoil compaction and do not create the proper soil conditions necessary for the survival and vigorous growth of black walnut. Ripping compacted spoil in this and other studies proved to be very effective in alleviating the negative impacts of minesoil compaction. When planning surface mine reclamation activities, ripping should be considered as a possible ameliorative technique when compaction of mined lands is unavoidable and trees are the desired vegetative cover. 4 figures.« less

  6. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions

    PubMed Central

    Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y.

    2016-01-01

    On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia. In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics. PMID:27402618

  7. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions.

    PubMed

    Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y

    2016-01-01

    On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  8. Recent tree die-off has little effect on streamflow in contrast to expected increases from historical studies

    NASA Astrophysics Data System (ADS)

    Biederman, Joel A.; Somor, Andrew J.; Harpold, Adrian A.; Gutmann, Ethan D.; Breshears, David D.; Troch, Peter A.; Gochis, David J.; Scott, Russell L.; Meddens, Arjan J. H.; Brooks, Paul D.

    2015-12-01

    Recent bark beetle epidemics have caused regional-scale tree mortality in many snowmelt-dominated headwater catchments of western North America. Initial expectations of increased streamflow have not been supported by observations, and the basin-scale response of annual streamflow is largely unknown. Here we quantified annual streamflow responses during the decade following tree die-off in eight infested catchments in the Colorado River headwaters and one nearby control catchment. We employed three alternative empirical methods: (i) double-mass comparison between impacted and control catchments, (ii) runoff ratio comparison before and after die-off, and (iii) time-trend analysis using climate-driven linear models. In contrast to streamflow increases predicted by historical paired catchment studies and recent modeling, we did not detect streamflow changes in most basins following die-off, while one basin consistently showed decreased streamflow. The three analysis methods produced generally consistent results, with time-trend analysis showing precipitation was the strongest predictor of streamflow variability (R2 = 74-96%). Time-trend analysis revealed post-die-off streamflow decreased in three catchments by 11-29%, with no change in the other five catchments. Although counter to initial expectations, these results are consistent with increased transpiration by surviving vegetation and the growing body of literature documenting increased snow sublimation and evaporation from the subcanopy following die-off in water-limited, snow-dominated forests. The observations presented here challenge the widespread expectation that streamflow will increase following beetle-induced forest die-off and highlight the need to better understand the processes driving hydrologic response to forest disturbance.

  9. Tree rings provide early warning signals of jack pine mortality across a moisture gradient in the southern boreal forest

    NASA Astrophysics Data System (ADS)

    Mamet, S. D.; Chun, K. P.; Metsaranta, J. M.; Barr, A. G.; Johnstone, J. F.

    2015-08-01

    Recent declines in productivity and tree survival have been widely observed in boreal forests. We used early warning signals (EWS) in tree ring data to anticipate premature mortality in jack pine (Pinus banksiana)—an extensive and dominant species occurring across the moisture-limited southern boreal forest in North America. We sampled tree rings from 113 living and 84 dead trees in three soil moisture regimes (subxeric, submesic, subhygric) in central Saskatchewan, Canada. We reconstructed annual increments of tree basal area to investigate (1) whether we could detect EWS related to mortality of individual trees, and (2) how water availability and tree growth history may explain the mortality warning signs. EWS were evident as punctuated changes in growth patterns prior to transition to an alternative state of reduced growth before dying. This transition was likely triggered by a combination of severe drought and insect outbreak. Higher moisture availability associated with a soil moisture gradient did not appear to reduce tree sensitivity to stress-induced mortality. Our results suggest tree rings offer considerable potential for detecting critical transitions in tree growth, which are linked to premature mortality.

  10. Effects of tannin source and concentration from tree leaves on two species of tadpoles.

    PubMed

    Earl, Julia E; Semlitsch, Raymond D

    2015-01-01

    Vegetation in and around freshwater ecosystems can affect aquatic organisms through the production of secondary compounds, which are retained in leaves after senescence and are biologically active. Tannins can be toxic to tadpoles, but the plant source of tannins and tannin concentration have been confounded in experimental designs in previous studies. To examine the effects of the concentration and source of tannins (tree species), we examined the effects of 4 factors on tadpole survival, growth, and development: tannin source (red oak [Quercus rubra], white oak [Quercus alba], or sugar maple [Acer saccharum]); tannin concentration (including a control); diet protein level; and tadpole species (American toad [Anaxyrus americanus] and spring peepers [Pseudacris crucifer]). Tannin source and concentration affected spring peeper survival, but American toads had uniformly high survival. Spring peepers had a lower survival rate in high tannin concentrations of oak leachate but a high survival rate in both concentrations of sugar maple leachate. These differences in survival did not correspond with changes in dissolved oxygen, and no effect of dietary protein level on tadpole performance was observed. The presence of plant leachate resulted in increased tadpole growth in both species, but the mechanism for this finding is unclear. The results of the present study show that tannin concentration and source are important factors for tadpole performance, adding further evidence that plant chemistry can affect aquatic organisms. © 2014 SETAC.

  11. Adaptability of black walnut, black cherry, and Northern red oak to Northern California

    Treesearch

    Philip M. McDonald

    1987-01-01

    When planted in sheltered sites in northern California, only 49% of black walnut (Juglans nigra L.) and 58% of black cherry (Prunus serotina Ehrh.) survived for 15 years, and 20% of northern red oak (Quercus rubra L.) survived for 10 years. The black walnut trees averaged 0.6 inches diameter at breast...

  12. Effects of elevated CO2 and shade on the decomposition of senesced tree foliage: impacts on the growth and survival of treehole mosquitoes

    Treesearch

    R. Malcolm Strand; Daniel A. Herms; Michael G. Kaufman; Mark E. Kubiske; William J. Mattson; Edward D. Walker; Kurt S. Pregitzer; Richard W. Merritt

    1996-01-01

    We tested the hypothesis that growth, survival, and reproductive capacity of treehole mosquitoes can be affected by alterations of forest sunlight and CO2 levels. Larval Aedes triseriatus were fed naturally senesced , abscised foliage from red oak (Quercus rubra) and paper birch (Betula papyrifera...

  13. Single-tree harvesting reduces survival and growth of oak stump sprouts in the Missouri Ozark Highlands

    Treesearch

    Daniel C. Dey; Randy G. Jensen; Michael J. Wallendorf

    2008-01-01

    Regeneration and recruitment into the overstory is critical to the success of using uneven-aged systems to sustain oak forests. We evaluated survival and growth of white oak (Quercus alba L.), black oak (Q. velutina Lam.), and scarlet oak (Q. coccinea Muenchh.) stump sprouts 10 years after harvesting Ozark...

  14. Modeling nest survival of cavity-nesting birds in relation to postfire salvage logging

    Treesearch

    Vicki Saab; Robin E. Russell; Jay Rotella; Jonathan G. Dudley

    2011-01-01

    Salvage logging practices in recently burned forests often have direct effects on species associated with dead trees, particularly cavity-nesting birds. As such, evaluation of postfire management practices on nest survival rates of cavity nesters is necessary for determining conservation strategies. We monitored 1,797 nests of 6 cavity-nesting bird species: Lewis'...

  15. Effects of cutting date, outdoor storage conditions, and splitting on survival of Agrilus planipennis (Coleoptera: Buprestidae) in firewood logs

    Treesearch

    Toby R. Petrice; Robert A. Haack

    2006-01-01

    The emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) is an exotic pest of ash (Fraxinus spp.) in North America. We conducted studies in Michigan to evaluate how different tree cutting dates, outdoor storage conditions, and splitting affected A. planipennis survival in firewood logs. In...

  16. Elytroderm disease in young, planted Jeffrey pine, South Lake Tahoe, California

    Treesearch

    Robert F. Scharpf; Robert V. Bega

    1988-01-01

    Little is known about Elytrodema disease (Elytroderma deformans [Weir] Darker) in seedlings or very young trees. Of 100, 2-0 Jeffrey pine (Pinus jeffreyi Grev. & Balf.) seedlings planted in the Taylor Creek area of South Lake Tahoe, about half survived from 1973 to 1987. During this period about two thirds of the surviving...

  17. Survival and five-year growth in Unit 4, Waiakea Arboretum, Hawaii

    Treesearch

    Stanley B. Carpenter

    1965-01-01

    Of the nine introduced tree species planted in Unit 4 in 1960, one pine species has failed completely. A slash pine planting on pahoehoe lava shows good survival and growth. And a karri eucalyptus reached a height of 58 feet in 5 years. Competition from wild vegetation was the main cause of mortality.

  18. Effects of Temperature on Anoplophora glabripennis (Coleoptera: Cerambycidae) Adult Survival, Reproduction, and Egg Hatch

    Treesearch

    Melody A. Keena

    2006-01-01

    Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae) is a recently introduced non-native invasive species in North America that has the potential to destroy several tree species in urban and forest habitats. Adult survival, reproduction, and egg hatch of A. glabripennis from two populations (Ravenswood, Chicago, IL, and Bayside, Queens, NY) were evaluated...

  19. Virginia Pine (Pinus virginiana Mill.) Provenanve and Progeny Performance in Oklahoma

    Treesearch

    C.G. Tauer; Syeyd Rashid Hussain Shah; Ronald C. Schmidtling

    1998-01-01

    One hundred and twenty-three open-pollinated families from 38 stands of Virginia pine were tested in Oklahoma. Height and survival data at age 5 for two Christmas tree plantations and at age 5 and 7 for two progenytest plantations were analyzed In the Christmas tree tests, four stands from North Carolina, three from Tennessee, and one each from Alabama, Kentucky, South...

  20. Survival, growth and reproduction by big-leaf mahogany (Swietenia macrophylla) in open clearing vs. forested conditions in Brazil

    Treesearch

    James Grogan; Mark Schulze; Jurandir Galvao

    2010-01-01

    Big-leaf mahogany (Swietenia macrophylla) trees are often retained in agricultural fields and pastures for seed and timber production after selective logging and forest clearing in the Brazilian Amazon. At a forest management site in southeast Para´, we censused trees growing scattered across a large open clearing after forest removal and in heavily disturbed forest...

  1. Evaluating Tree Protection Devices: Effects on Growth and Survival–First-Year Results

    Treesearch

    L. R. Costello; R. H. Schmidt; Gregory A. Giusti

    1991-01-01

    The protection of seedlings from animal browsing is critical for the survival and growth of many tree species. This is particularly true in wildland areas and arid areas (McAuliffe, 1986), and oftentimes in urban areas. A variety of techniques and devices have been used to protect seedlings, from using straw stubble to milk cartons to plastic or metal screens. Recently...

  2. Tree Survival and Growth Following Ice Storm Injury

    Treesearch

    Walter C. Shortle; Kevin T. Smith; Kenneth R. Dudzik

    2003-01-01

    Nearly 25 million acres of forest from northwestern New York and southern Quebec to the south-central Maine coast were coated with ice from a 3-day storm in early January 1998. This storm was unusual in its size and the duration of icing. Trees throughout the region were injured as branches and stems broke and forks split under the weight of the ice. These injuries...

  3. Tree survival 15 years after the ice storm of January 1998

    Treesearch

    Walter C. Shortle; Kevin T. Smith; Kenneth R. Dudzik

    2014-01-01

    The regional ice storm of early January 1998 was a widespread disturbance for millions of acres of forest in northeastern New York, northern New England, and southern Quebec. Tree crowns were partially or totally lost as stems snapped and branches broke with the weight of the deposited ice. We tracked the effect of crown injury on a large sample of northern hardwood...

  4. Early growth tolerances of grasses, shrubs, and trees to boron in tunnel spoil

    Treesearch

    Parker F. Pratt; Eamor C. Nord; Francis L. Bair

    1971-01-01

    The effects of boron and salts in spoil material on survival and growth of 44 grass, shrub, and tree species were tested under greenhouse conditions. The spoil used was from the Angeles Tunnel of the California Aqueduct's West Branch now being built. Several species within each plant group apparently can tolerate boron, but field tests will be needed before most...

  5. Growth of larval agrilus planipennis (Coleoptera: Buprestidae) and fitness of tetrastichus planipennisi (Hymenoptera: Eulophidae) in blue ash (Fraxinus quadrangulata) and green ash (F. pennsylvanica)

    USDA-ARS?s Scientific Manuscript database

    Emerald ash borer (EAB) (Agrilus planipennis) is a primary pest of North American ash (Fraxinus spp.) trees. Blue ash (F. quadrangulata) is more resistant than other North American ash and able to survive EAB infestation. This tree may affect EAB larvae and T. planipennisi. We compared the capacity ...

  6. Species selection trials and silvicultural techniques for the restoration of bottomland hardwood forests - a 10 year review

    Treesearch

    Kenneth W. McLeod; Michael R. Reed; Barbara P. Moyer; Thomas G. Ciravolo

    2006-01-01

    From 1992 to 1994, species trials were initiated in the Fourmile Branch delta to investigate the best methods of re-establishing tree species in a severely disturbed, thermally affected stream delta. Treatments examined included planting stock type, habitat, tree shelters, root pruning, and competition controls. Survival of most species, as determined in 1994 or 1996...

  7. Palms, peccaries and perturbations: widespread effects of small-scale disturbance in tropical forests

    PubMed Central

    2012-01-01

    Background Disturbance is an important process structuring ecosystems worldwide and has long been thought to be a significant driver of diversity and dynamics. In forests, most studies of disturbance have focused on large-scale disturbance such as hurricanes or tree-falls. However, smaller sub-canopy disturbances could also have significant impacts on community structure. One such sub-canopy disturbance in tropical forests is abscising leaves of large arborescent palm (Arececeae) trees. These leaves can weigh up to 15 kg and cause physical damage and mortality to juvenile plants. Previous studies examining this question suffered from the use of static data at small spatial scales. Here we use data from a large permanent forest plot combined with dynamic data on the survival and growth of > 66,000 individuals over a seven-year period to address whether falling palm fronds do impact neighboring seedling and sapling communities, or whether there is an interaction between the palms and peccaries rooting for fallen palm fruit in the same area as falling leaves. We tested the wider generalisation of these hypotheses by comparing seedling and sapling survival under fruiting and non-fruiting trees in another family, the Myristicaceae. Results We found a spatially-restricted but significant effect of large arborescent fruiting palms on the spatial structure, population dynamics and species diversity of neighbouring sapling and seedling communities. However, these effects were not found around slightly smaller non-fruiting palm trees, suggesting it is seed predators such as peccaries rather than falling leaves that impact on the communities around palm trees. Conversely, this hypothesis was not supported in data from other edible species, such as those in the family Myristicaceae. Conclusions Given the abundance of arborescent palm trees in Amazonian forests, it is reasonable to conclude that their presence does have a significant, if spatially-restricted, impact on juvenile plants, most likely on the survival and growth of seedlings and saplings damaged by foraging peccaries. Given the abundance of fruit produced by each palm, the widespread effects of these small-scale disturbances appear, over long time-scales, to cause directional changes in community structure at larger scales. PMID:22429883

  8. Palms, peccaries and perturbations: widespread effects of small-scale disturbance in tropical forests.

    PubMed

    Queenborough, Simon A; Metz, Margaret R; Wiegand, Thorsten; Valencia, Renato

    2012-03-19

    Disturbance is an important process structuring ecosystems worldwide and has long been thought to be a significant driver of diversity and dynamics. In forests, most studies of disturbance have focused on large-scale disturbance such as hurricanes or tree-falls. However, smaller sub-canopy disturbances could also have significant impacts on community structure. One such sub-canopy disturbance in tropical forests is abscising leaves of large arborescent palm (Arececeae) trees. These leaves can weigh up to 15 kg and cause physical damage and mortality to juvenile plants. Previous studies examining this question suffered from the use of static data at small spatial scales. Here we use data from a large permanent forest plot combined with dynamic data on the survival and growth of > 66,000 individuals over a seven-year period to address whether falling palm fronds do impact neighboring seedling and sapling communities, or whether there is an interaction between the palms and peccaries rooting for fallen palm fruit in the same area as falling leaves. We tested the wider generalisation of these hypotheses by comparing seedling and sapling survival under fruiting and non-fruiting trees in another family, the Myristicaceae. We found a spatially-restricted but significant effect of large arborescent fruiting palms on the spatial structure, population dynamics and species diversity of neighbouring sapling and seedling communities. However, these effects were not found around slightly smaller non-fruiting palm trees, suggesting it is seed predators such as peccaries rather than falling leaves that impact on the communities around palm trees. Conversely, this hypothesis was not supported in data from other edible species, such as those in the family Myristicaceae. Given the abundance of arborescent palm trees in Amazonian forests, it is reasonable to conclude that their presence does have a significant, if spatially-restricted, impact on juvenile plants, most likely on the survival and growth of seedlings and saplings damaged by foraging peccaries. Given the abundance of fruit produced by each palm, the widespread effects of these small-scale disturbances appear, over long time-scales, to cause directional changes in community structure at larger scales.

  9. Circulating Tumor Cell Counts Are Prognostic of Overall Survival in SWOG S0421: A Phase III Trial of Docetaxel With or Without Atrasentan for Metastatic Castration-Resistant Prostate Cancer

    PubMed Central

    Goldkorn, Amir; Ely, Benjamin; Quinn, David I.; Tangen, Catherine M.; Fink, Louis M.; Xu, Tong; Twardowski, Przemyslaw; Van Veldhuizen, Peter J.; Agarwal, Neeraj; Carducci, Michael A.; Monk, J. Paul; Datar, Ram H.; Garzotto, Mark; Mack, Philip C.; Lara, Primo; Higano, Celestia S.; Hussain, Maha; Thompson, Ian Murchie; Cote, Richard J.; Vogelzang, Nicholas J.

    2014-01-01

    Purpose Circulating tumor cell (CTC) enumeration has not been prospectively validated in standard first-line docetaxel treatment for metastatic castration-resistant prostate cancer. We assessed the prognostic value of CTCs for overall survival (OS) and disease response in S0421, a phase III trial of docetaxel plus prednisone with or without atrasentan. Patients and Methods CTCs were enumerated at baseline (day 0) and before cycle two (day 21) using CellSearch. Baseline counts and changes in counts from day 0 to 21 were evaluated for association with OS, prostate-specific antigen (PSA), and RECIST response using Cox regression as well as receiver operator characteristic (ROC) curves, integrated discrimination improvement (IDI) analysis, and regression trees. Results Median day-0 CTC count was five cells per 7.5 mL, and CTCs < versus ≥ five per 7.5 mL were significantly associated with baseline PSA, bone pain, liver disease, hemoglobin, alkaline phosphatase, and subsequent PSA and RECIST response. Median OS was 26 months for < five versus 13 months for ≥ five CTCs per 7.5 mL at day 0 (hazard ratio [HR], 2.74 [adjusting for covariates]). ROC curves had higher areas under the curve for day-0 CTCs than for PSA, and IDI analysis showed that adding day-0 CTCs to baseline PSA and other covariates increased predictive accuracy for survival by 8% to 10%. Regression trees yielded new prognostic subgroups, and rising CTC count from day 0 to 21 was associated with shorter OS (HR, 2.55). Conclusion These data validate the prognostic utility of CTC enumeration in a large docetaxel-based prospective cohort. Baseline CTC counts were prognostic, and rising CTCs at 3 weeks heralded significantly worse OS, potentially serving as an early metric to help redirect and optimize therapy in this clinical setting. PMID:24616308

  10. Circulating tumor cell counts are prognostic of overall survival in SWOG S0421: a phase III trial of docetaxel with or without atrasentan for metastatic castration-resistant prostate cancer.

    PubMed

    Goldkorn, Amir; Ely, Benjamin; Quinn, David I; Tangen, Catherine M; Fink, Louis M; Xu, Tong; Twardowski, Przemyslaw; Van Veldhuizen, Peter J; Agarwal, Neeraj; Carducci, Michael A; Monk, J Paul; Datar, Ram H; Garzotto, Mark; Mack, Philip C; Lara, Primo; Higano, Celestia S; Hussain, Maha; Thompson, Ian Murchie; Cote, Richard J; Vogelzang, Nicholas J

    2014-04-10

    Circulating tumor cell (CTC) enumeration has not been prospectively validated in standard first-line docetaxel treatment for metastatic castration-resistant prostate cancer. We assessed the prognostic value of CTCs for overall survival (OS) and disease response in S0421, a phase III trial of docetaxel plus prednisone with or without atrasentan. CTCs were enumerated at baseline (day 0) and before cycle two (day 21) using CellSearch. Baseline counts and changes in counts from day 0 to 21 were evaluated for association with OS, prostate-specific antigen (PSA), and RECIST response using Cox regression as well as receiver operator characteristic (ROC) curves, integrated discrimination improvement (IDI) analysis, and regression trees. Median day-0 CTC count was five cells per 7.5 mL, and CTCs < versus ≥ five per 7.5 mL were significantly associated with baseline PSA, bone pain, liver disease, hemoglobin, alkaline phosphatase, and subsequent PSA and RECIST response. Median OS was 26 months for < five versus 13 months for ≥ five CTCs per 7.5 mL at day 0 (hazard ratio [HR], 2.74 [adjusting for covariates]). ROC curves had higher areas under the curve for day-0 CTCs than for PSA, and IDI analysis showed that adding day-0 CTCs to baseline PSA and other covariates increased predictive accuracy for survival by 8% to 10%. Regression trees yielded new prognostic subgroups, and rising CTC count from day 0 to 21 was associated with shorter OS (HR, 2.55). These data validate the prognostic utility of CTC enumeration in a large docetaxel-based prospective cohort. Baseline CTC counts were prognostic, and rising CTCs at 3 weeks heralded significantly worse OS, potentially serving as an early metric to help redirect and optimize therapy in this clinical setting.

  11. A casualty of climate change? Loss of freshwater forest islands on Florida's Gulf Coast.

    PubMed

    Langston, Amy K; Kaplan, David A; Putz, Francis E

    2017-12-01

    Sea level rise elicits short- and long-term changes in coastal plant communities by altering the physical conditions that affect ecosystem processes and species distributions. While the effects of sea level rise on salt marshes and mangroves are well studied, we focus on its effects on coastal islands of freshwater forest in Florida's Big Bend region, extending a dataset initiated in 1992. In 2014-2015, we evaluated tree survival, regeneration, and understory composition in 13 previously established plots located along a tidal creek; 10 plots are on forest islands surrounded by salt marsh, and three are in continuous forest. Earlier studies found that salt stress from increased tidal flooding prevented tree regeneration in frequently flooded forest islands. Between 1992 and 2014, tidal flooding of forest islands increased by 22%-117%, corresponding with declines in tree species richness, regeneration, and survival of the dominant tree species, Sabal palmetto (cabbage palm) and Juniperus virginiana (southern red cedar). Rates of S. palmetto and J. virginiana mortality increased nonlinearly over time on the six most frequently flooded islands, while salt marsh herbs and shrubs replaced forest understory vegetation along a tidal flooding gradient. Frequencies of tidal flooding, rates of tree mortality, and understory composition in continuous forest stands remained relatively stable, but tree regeneration substantially declined. Long-term trends identified in this study demonstrate the effect of sea level rise on spatial and temporal community reassembly trajectories that are dynamically re-shaping the unique coastal landscape of the Big Bend. © 2017 John Wiley & Sons Ltd.

  12. Tree regeneration following drought- and insect-induced mortality in piñon-juniper woodlands.

    PubMed

    Redmond, Miranda D; Barger, Nichole N

    2013-10-01

    Widespread piñon (Pinus edulis) mortality occurred across the southwestern USA during 2002-2003 in response to drought and bark beetle infestations. Given the recent mortality and changes in regional climate over the past several decades, there is a keen interest in post-mortality regeneration dynamics in piñon-juniper woodlands. Here, we examined piñon and Utah juniper (Juniperus osteosperma) recruitment at 30 sites across southwestern Colorado, USA that spanned a gradient of adult piñon mortality levels (10-100%) to understand current regeneration dynamics. Piñon and juniper recruitment was greater at sites with more tree and shrub cover. Piñon recruitment was more strongly facilitated than juniper recruitment by trees and shrubs. New (post-mortality) piñon recruitment was negatively affected by recent mortality. However, mortality had no effect on piñon advanced regeneration (juveniles established pre-mortality) and did not shift juvenile piñon dominance. Our results highlight the importance of shrubs and juniper trees for the facilitation of piñon establishment and survival. Regardless of adult piñon mortality levels, areas with low tree and shrub cover may become increasingly juniper dominated as a result of the few suitable microsites for piñon establishment and survival. In areas with high piñon mortality and high tree and shrub cover, our results suggest that piñon is regenerating via advanced regeneration. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  13. How low can you go? Assessing minimum concentrations of NSC in carbon limited tree saplings

    NASA Astrophysics Data System (ADS)

    Hoch, Guenter; Hartmann, Henrik; Schwendener, Andrea

    2016-04-01

    Tissue concentrations of non-structural carbohydrates (NSC) are frequently used to determine the carbon balance of plants. Over the last years, an increasing number of studies have inferred carbon starvation in trees under environmental stress like drought from low tissue NSC concentrations. However, such inferences are limited by the fact that minimum concentrations of NSC required for survival are not known. So far, it was hypothesized that even under lethal carbon starvation, starch and low molecular sugar concentrations cannot be completely depleted and that minimum NSC concentrations at death vary across tissues and species. Here we present results of an experiment that aimed to determine minimum NSC concentrations in different tissues of saplings of two broad-leaved tree species (Acer pseudoplatanus and Quercus petratea) exposed to lethal carbon starvation via continuous darkening. In addition, we investigated recovery rates of NSC concentrations in saplings that had been darkened for different periods of time and were then re-exposed to light. Both species survived continuous darkening for about 12 weeks (confirmed by testing the ability to re-sprout after darkness). In all investigated tissues, starch concentrations declined close to zero within three to six weeks of darkness. Low molecular sugars also decreased strongly within the first weeks of darkness, but seemed to stabilize at low concentrations of 0.5 to 2 % dry matter (depending on tissue and species) almost until death. NSC concentrations recovered surprisingly fast in saplings that were re-exposed to light. After 3 weeks of continuous darkness, tissue NSC concentrations recovered within 6 weeks to levels of unshaded control saplings in all tissues and in both species. To our knowledge, this study represents the first experimental attempt to quantify minimum tissue NSC concentrations at lethal carbon starvation. Most importantly, our results suggest that carbon-starved tree saplings are able to survive several weeks without starch reserves and with extremely low sugar concentrations in all organs. Although it remains to be tested whether our findings are also valid for mature trees, these results show that NSC pools in trees are very sensitive to carbon limitation and that lethal carbon starvation is preceded by a significant (almost complete) depletion of starch and sugars in all tree organs.

  14. Effects of hydrolyzable and condensed tannin on growth and development of two species of polyphagous lepidoptera: Spodoptera eridania and Callosamia promethea.

    PubMed

    Manuwoto, Svafrida; Scriber, J Mark

    1986-05-01

    The effects of tannins on survival, growth, and digestion were compared in two polyphagous species of Lepidoptera (one, the southern armyworm, a forb-feeder; and the other, the promethea silkmoth, a tree-feeder). Two different types of tannins (hydrolyzable and condensed) were incorporated into artificial basal diets in order to determine whether or not differential survival and growth would result between the forb feeder, which normally does not encounter tannins in its natural diet, and the tree-feeder, whose host species include many tanniniferous plants from several different families.Neonate larvae of the forb-feeding armyworms exhibited significantly suppressed 10-day growth rates at all tannin concentrations tested (0.5, 1.0, 1.5, 2.0, 2.5, and 3.0% of wet weight) for both the hydrolyzable and the condensed tannin compared to the control diet, however no dose-effect was detectable. In contrast, there were no detectable differences in neonate survival or growth through the first 10 days for the tree-feeding promethea silkmoth larvae fed diets with either tannic acid or quebracho tree condensed tannin.In order to determine the physiological mechanisms of action of these tannins against armyworms, we conducted detailed physiological bioassays of biomass and nitrogen utilization by penultimate instar larvae. Standard gravimetric feeding studies with both tannic acid and the quebracho tree condensed tannin demonstrated that reduced relative growth rates (RGR's) of Spodoptera eridania Cram. were due to the suppressed relative consumption rates (RCR's) and decreased conversion efficiencies (ECD's) rather than due to digestibility-reduction (as reflected by approximate digestibility, AD). As with the neonate larval growth rate suppression, there were no detectable dose responses at the different concentrations of tannic acid (0.25, 0.50, 0.75, 1.00, 2.50, and 5.0 percent) and condensed tannins from quebracho (0.25, 0.50, 0.75, 1.0, and 2.5 percent) in our penultimate instar studies.

  15. The Role of Population Origin and Microenvironment in Seedling Emergence and Early Survival in Mediterranean Maritime Pine (Pinus pinaster Aiton)

    PubMed Central

    Vizcaíno-Palomar, Natalia; Revuelta-Eugercios, Bárbara; Zavala, Miguel A.; Alía, Ricardo; González-Martínez, Santiago C.

    2014-01-01

    Understanding tree recruitment is needed to forecast future forest distribution. Many studies have reported the relevant ecological factors that affect recruitment success in trees, but the potential for genetic-based differences in recruitment has often been neglected. In this study, we established a semi-natural reciprocal sowing experiment to test for local adaptation and microenvironment effects (evaluated here by canopy cover) in the emergence and early survival of maritime pine (Pinus pinaster Aiton), an emblematic Mediterranean forest tree. A novel application of molecular markers was also developed to test for family selection and, thus, for potential genetic change over generations. Overall, we did not find evidence to support local adaptation at the recruitment stage in our semi-natural experiment. Moreover, only weak family selection (if any) was found, suggesting that in stressful environments with low survival, stochastic processes and among-year climate variability may drive recruitment. Nevertheless, our study revealed that, at early stages of recruitment, microenvironments may favor the population with the best adapted life strategy, irrespectively of its (local or non-local) origin. We also found that emergence time is a key factor for seedling survival in stressful Mediterranean environments. Our study highlights the complexity of the factors influencing the early stages of establishment of maritime pine and provides insights into possible management actions aimed at environmental change impact mitigation. In particular, we found that the high stochasticity of the recruitment process in stressful environments and the differences in population-specific adaptive strategies may difficult assisted migration schemes. PMID:25286410

  16. The role of population origin and microenvironment in seedling emergence and early survival in Mediterranean maritime pine (Pinus pinaster Aiton).

    PubMed

    Vizcaíno-Palomar, Natalia; Revuelta-Eugercios, Bárbara; Zavala, Miguel A; Alía, Ricardo; González-Martínez, Santiago C

    2014-01-01

    Understanding tree recruitment is needed to forecast future forest distribution. Many studies have reported the relevant ecological factors that affect recruitment success in trees, but the potential for genetic-based differences in recruitment has often been neglected. In this study, we established a semi-natural reciprocal sowing experiment to test for local adaptation and microenvironment effects (evaluated here by canopy cover) in the emergence and early survival of maritime pine (Pinus pinaster Aiton), an emblematic Mediterranean forest tree. A novel application of molecular markers was also developed to test for family selection and, thus, for potential genetic change over generations. Overall, we did not find evidence to support local adaptation at the recruitment stage in our semi-natural experiment. Moreover, only weak family selection (if any) was found, suggesting that in stressful environments with low survival, stochastic processes and among-year climate variability may drive recruitment. Nevertheless, our study revealed that, at early stages of recruitment, microenvironments may favor the population with the best adapted life strategy, irrespectively of its (local or non-local) origin. We also found that emergence time is a key factor for seedling survival in stressful Mediterranean environments. Our study highlights the complexity of the factors influencing the early stages of establishment of maritime pine and provides insights into possible management actions aimed at environmental change impact mitigation. In particular, we found that the high stochasticity of the recruitment process in stressful environments and the differences in population-specific adaptive strategies may difficult assisted migration schemes.

  17. Host preference and host colonization of the Asian long-horned beetle, Anoplophora glabripennis (Coleoptera Cerambycidae), in Southern Europe.

    PubMed

    Faccoli, M; Favaro, R

    2016-06-01

    The Asian long-horned beetle (ALB), Anoplophora glabripennis (Motschulsky), is a highly polyphagous invasive pest with a broad range of host species, but showing relevant differences between infestation areas. Host preference and host colonization (female fecundity, egg and larval survival) were assessed in a population in Northern Italy by choice and no-choice experiments conducted in both field and laboratory conditions. During 5 years of field observations, ALB was found to infest seven genera of trees: Acer, Aesculus, Betula, Populus, Prunus, Salix and Ulmus. However, Acer, Betula, Ulmus and Salix resulted to be the preferred hosts corresponding to 97.5% (1112) of the 1140 infested trees. In both laboratory and field trials carried out on these four host genera, no-choice experiments recorded the highest host colonization of A. glabripennis on Acer trees, with the highest number of laid eggs and the lowest egg and larval mortality. Ulmus and Salix showed a lower number of laid eggs during laboratory choice test, but egg and larval mortality had mean values similar to Acer. On the contrary, despite the high number of Betula trees felled during the eradication plan carried out in the infestation area, this tree species showed the lowest beetle suitability in terms of number of laid eggs and insect survival. An overestimation of the number of infested Betula occurring during the tree survey may explain the discordance between high number of infested Betula and low beetle suitability. Instead, the large number of infested Acer recorded in the field was probably due to the high abundance of these trees occurring in parks and gardens within the infestation area and to the low adult dispersal of A. glabripennis. Overall, results from this study confirm that host species affects both beetle colonization and breeding performance. The study shows ALB host preference and host suitability varying between tree species, suggesting an ALB acceptance even of sub-optimal hosts.

  18. Environmental safety to decomposer invertebrates of azadirachtin (neem) as a systemic insecticide in trees to control emerald ash borer.

    PubMed

    Kreutzweiser, David; Thompson, Dean; Grimalt, Susana; Chartrand, Derek; Good, Kevin; Scarr, Taylor

    2011-09-01

    The non-target effects of an azadirachtin-based systemic insecticide used for control of wood-boring insect pests in trees were assessed on litter-dwelling earthworms, leaf-shredding aquatic insects, and microbial communities in terrestrial and aquatic microcosms. The insecticide was injected into the trunks of ash trees at a rate of 0.2 gazadirachtin cm(-1) tree diameter in early summer. At the time of senescence, foliar concentrations in most (65%) leaves where at or below detection (<0.01 mg kg(-1) total azadirachtin) and the average concentration among leaves overall at senescence was 0.19 mg kg(-1). Leaves from the azadirachtin-treated trees at senescence were added to microcosms and responses by test organisms were compared to those in microcosms containing leaves from non-treated ash trees (controls). No significant reductions were detected among earthworm survival, leaf consumption rates, growth rates, or cocoon production, aquatic insect survival and leaf consumption rates, and among terrestrial and aquatic microbial decomposition of leaf material in comparison to controls. In a further set of microcosm tests containing leaves from intentional high-dose trees, the only significant, adverse effect detected was a reduction in microbial decomposition of leaf material, and only at the highest test concentration (∼6 mg kg(-1)). Results indicated no significant adverse effects on litter-dwelling earthworms or leaf-shredding aquatic insects at concentrations up to at least 30 × the expected field concentrations at operational rates, and at 6 × expected field concentrations for adverse effects on microbial decomposition. We conclude that when azadirachtin is used as a systemic insecticide in trees for control of insect pests such as the invasive wood-boring beetle, emerald ash borer, resultant foliar concentrations in senescent leaf material are likely to pose little risk of harm to decomposer invertebrates. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  19. How to catch the patch? A dendrometer study of the radial increment through successive cambia in the mangrove Avicennia

    PubMed Central

    Robert, Elisabeth M. R.; Jambia, Abudhabi H.; Schmitz, Nele; De Ryck, Dennis J. R.; De Mey, Johan; Kairo, James G.; Dahdouh-Guebas, Farid; Beeckman, Hans; Koedam, Nico

    2014-01-01

    Background and Aims Successive vascular cambia are involved in the secondary growth of at least 200 woody species from >30 plant families. In the mangrove Avicennia these successive cambia are organized in patches, creating stems with non-concentric xylem tissue surrounded by internal phloem tissue. Little is known about radial growth and tree stem dynamics in trees with this type of anatomy. This study aims to (1) clarify the process of secondary growth of Avicennia trees by studying its patchiness; and (2) study the radial increment of Avicennia stems, both temporary and permanent, in relation to local climatic and environmental conditions. A test is made of the hypothesis that patchy radial growth and stem dynamics enable Avicennia trees to better survive conditions of extreme physiological drought. Methods Stem variations were monitored by automatic point dendrometers at four different positions around and along the stem of two Avicennia marina trees in the mangrove forest of Gazi Bay (Kenya) during 1 year. Key Results Patchiness was found in the radial growth and shrinkage and swelling patterns of Avicennia stems. It was, however, potentially rather than systematically present, i.e. stems reacted either concentrically or patchily to environment triggers, and it was fresh water availability and not tidal inundation that affected radial increment. Conclusions It is concluded that the ability to develop successive cambia in a patchy way enables Avicennia trees to adapt to changes in the prevailing environmental conditions, enhancing its survival in the highly dynamic mangrove environment. Limited water could be used in a more directive way, investing all the attainable resources in only some locations of the tree stem so that at least at these locations there is enough water to, for example, overcome vessel embolisms or create new cells. As these locations change with time, the overall functioning of the tree can be maintained. PMID:24510216

  20. Effects of herbivory and flooding on reforestation of baldcypress (Taxodium distichum [L.]) saplings planted in Caddo Lake, Texas

    USGS Publications Warehouse

    Keeland, Bobby D.; Dale, Rassa O.; Darville, Roy; McCoy, John W.

    2011-01-01

    The effects of herbivory and flooding were examined on survival and growth of planted baldcypress (Taxodium distichum (L.) Rich.) saplings at three sites in Caddo Lake, TX, over a 4-yr period. There were two flood regimes (shallow periodic and deep continuous), where half of the saplings in each flood regime were protected by tree shelters to prevent herbivory. By the end of the first year, over 80% of saplings survived with half of saplings classified as healthy. By the end of the fourth year, only half of the saplings were alive and one-third were healthy. At all three sites, the combination of no protection and continuous flooding resulted in a significant number of missing saplings. Likewise, most unprotected saplings in periodic flooding were missing by the end of the study. Saplings clipped by herbivores showed about 50% chance of recovery, but many of the sprouts were of poor quality. Protected saplings in tree shelters achieved significantly greater survival and height growth.

  1. Clinical risk stratification in patients with surgically resectable micropapillary bladder cancer.

    PubMed

    Fernández, Mario I; Williams, Stephen B; Willis, Daniel L; Slack, Rebecca S; Dickstein, Rian J; Parikh, Sahil; Chiong, Edmund; Siefker-Radtke, Arlene O; Guo, Charles C; Czerniak, Bogdan A; McConkey, David J; Shah, Jay B; Pisters, Louis L; Grossman, H Barton; Dinney, Colin P N; Kamat, Ashish M

    2017-05-01

    To analyse survival in patients with clinically localised, surgically resectable micropapillary bladder cancer (MPBC) undergoing radical cystectomy (RC) with and without neoadjuvant chemotherapy (NAC) and develop risk strata based on outcome data. A review of our database identified 103 patients with surgically resectable (≤cT4acN0 cM0) MPBC who underwent RC. Survival estimates were calculated using Kaplan-Meier method and compared using log-rank tests. Classification and regression tree (CART) analysis was performed to identify risk groups for survival. For the entire cohort, estimated 5-year overall survival and disease-specific survival (DSS) rates were 52% and 58%, respectively. CART analysis identified three risk subgroups: low-risk: cT1, no hydronephrosis; high-risk: ≥cT2, no hydronephrosis; and highest-risk: cTany with tumour-associated hydronephrosis. The 5-year DSS for the low-, high-, and highest-risk groups were 92%, 51%, and 17%, respectively (P < 0.001). Patients down-staged at RC

  2. Tree traits and canopy closure data from an experiment with 34 planted species native to Sabah, Borneo

    PubMed Central

    Gustafsson, Malin; Gustafsson, Lena; Alloysius, David; Falck, Jan; Yap, Sauwai; Karlsson, Anders; Ilstedt, Ulrik

    2016-01-01

    The data presented in this paper is supporting the research article “Life history traits predict the response to increased light among 33 tropical rainforest tree species” [3]. We show basic growth and survival data collected over the 6 years duration of the experiment, as well as data from traits inventories covering 12 tree traits collected prior to and after a canopy reduction treatment in 2013. Further, we also include canopy closure and forest light environment data from measurements with hemispherical photographs before and after the treatment. PMID:26900591

  3. Biogeochemical processes on tree islands in the greater everglades: Initiating a new paradigm

    USGS Publications Warehouse

    Wetzel, P.R.; Sklar, Fred H.; Coronado, C.A.; Troxler, T.G.; Krupa, S.L.; Sullivan, P.L.; Ewe, S.; Price, R.M.; Newman, S.; Orem, W.H.

    2011-01-01

    Scientists' understanding of the role of tree islands in the Everglades has evolved from a plant community of minor biogeochemical importance to a plant community recognized as the driving force for localized phosphorus accumulation within the landscape. Results from this review suggest that tree transpiration, nutrient infiltration from the soil surface, and groundwater flow create a soil zone of confluence where nutrients and salts accumulate under the head of a tree island during dry periods. Results also suggest accumulated salts and nutrients are flushed downstream by regional water flows during wet periods. That trees modulate their environment to create biogeochemical hot spots and strong nutrient gradients is a significant ecological paradigm shift in the understanding of the biogeochemical processes in the Everglades. In terms of island sustainability, this new paradigm suggests the need for distinct dry-wet cycles as well as a hydrologic regime that supports tree survival. Restoration of historic tree islands needs further investigation but the creation of functional tree islands is promising. Copyright ?? 2011 Taylor & Francis Group, LLC.

  4. Identification of high versus lower risk clinical subgroups in a group of adult patients with supratentorial anaplastic astrocytomas.

    PubMed

    Decaestecker, C; Salmon, I; Camby, I; Dewitte, O; Pasteels, J L; Brotchi, J; Van Ham, P; Kiss, R

    1995-05-01

    The present work investigates whether computer-assisted techniques can contribute any significant information to the characterization of astrocytic tumor aggressiveness. Two complementary computer-assisted methods were used. The first method made use of the digital image analysis of Feulgen-stained nuclei, making it possible to compute 15 morphonuclear and 8 nuclear DNA content-related (ploidy level) parameters. The second method enabled the most discriminatory parameters to be determined. This second method is the Decision Tree technique, which forms part of the Supervised Learning Algorithms. These two techniques were applied to a series of 250 supratentorial astrocytic tumors of the adult. This series included 39 low-grade (astrocytomas, AST) and 211 high-grade (47 anaplastic astrocytomas, ANA, and 164 glioblastomas, GBM) astrocytic tumors. The results show that some AST, ANA and GBM did not fit within simple logical rules. These "complex" cases were labeled NC-AST, NC-ANA and NC-GBM because they were "non-classical" (NC) with respect to their cytological features. An analysis of survival data revealed that the patients with NC-GBM had the same survival period as patients with GBM. In sharp contrast, patients with ANA survived significantly longer than patients with NC-ANA. In fact, the patients with ANA had the same survival period as patients who died from AST, while the patients with NC-ANA had a survival period similar to those with GBM. All these data show that the computer-assisted techniques used in this study can actually provide the pathologist with significant information on the characterization of astrocytic tumor aggressiveness.

  5. Scale-dependence of desease impacts on quaking aspen (Populus tremuloides) mortality risk in the southwestern U.S.

    Treesearch

    David M. Bell; John B. Bradford; William K. Lauenroth

    2015-01-01

    Depending on how disease impacts tree exposure to risk, both the prevalence of disease and disease effects on survival may contribute to patterns of mortality risk across a species’ range. Disease may accelerate tree species’ declines in response to global change factors, such as drought, biotic interactions, such as competition, or functional traits, such as allometry...

  6. Fall rates of prescribed fire-killed ponderosa pine. Forest Service research paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, M.G.

    1996-05-01

    Fall rates of prescribed fire-killed ponderosa pine were evaluated relative to tree and fire damage characteristics. High crown scorch and short survival time after fire injury were factors leading to a high probability of early tree fall. The role of chemical defense mechanisms is discussed. Results apply to prescribed-fire injured, second-growth ponderosa pine less than 16 inches diameter at breast height.

  7. Seasonal carbohydrate dynamics and growth in Douglas-fir trees experiencing chronic, fungal-mediated reduction in functional leaf area

    Treesearch

    B. J. Saffell; F. C. Meinzer; D. R. Woodruff; D. C. Shaw; S. L. Voelker; B. Lachenbruch; K. Falk

    2014-01-01

    Stored non-structural carbohydrates (NSCs) could play an important role in tree survival in the face of a changing climate and associated stress-related mortality. We explored the effects of the stomata-blocking and defoliating fungal disease called Swiss needle cast on Douglas-fir carbohydrate reserves and growth to evaluate the extent to which NSCs can be mobilized...

  8. Mixed-severity fire fosters heterogeneous spatial patterns of conifer regeneration in a dry conifer forest

    Treesearch

    Sparkle L. Malone; Paula J. Fornwalt; Mike A. Battaglia; Marin E. Chambers; Jose M. Iniguez; Carolyn H. Sieg

    2018-01-01

    We examined spatial patterns of post-fire regenerating conifers in a Colorado, USA, dry conifer forest 11-12 years following the reintroduction of mixed-severity fire. We mapped and measured all post-fire regenerating conifers, as well as all other post-fire regenerating trees and all residual (i.e., surviving) trees, in three 4-ha plots following the 2002 Hayman Fire...

  9. Overstory cohort survival in an Appalachian hardwood deferment cutting: 35-year results

    Treesearch

    John P. Brown; Melissa A. Thomas-Van Gundy; Thomas M. Schuler

    2018-01-01

    Deferment cutting is a two-aged regeneration method in which the majority of the stand is harvested and a dispersed component of overstory trees—approximately 15–20% of the basal area – is retained for at least onehalf rotation and up one full rotation for reasons other than regeneration. Careful consideration of residual trees, in both characteristics and harvesting,...

  10. Survival of oak root systems following frill girdle herbicide treatment for oak wilt control

    Treesearch

    Johann N. Bruhn; James J., Jr. Wetteroff; Linda Haugen

    2003-01-01

    Mechanical separation of root systems is widely used to prevent tree-to-tree vascular spread of oak wilt disease. A safe effective herbicide treatment would be valuable for this purpose in hilly, rocky, or urban settings. Three treatments were frill-girdle applied: 1) water, 2) undilutetd Garlon 3A (trichlopyr), or 3) half-strength aqueous Garlon 3A plus 24 ml per L...

  11. A Matrix Transition Model for an Uneven-Aged, Oak-Hickory Forest in the Missouri Ozark Highlands

    Treesearch

    James R. Lootens; David R. Larsen; Edward F. Loewenstein

    1999-01-01

    We present a matrix growth model for an uneven-aged, oak-hickory forest in the Ozark Highlands of Missouri. The model was developed to predict ingrowth, growth of surviving trees, and mortality by diameter class for a five-year period. Tree removal from management activities is accounted for in the model. We evaluated a progression of models from a static, fixed-...

  12. A matrix transition model for an uneven-aged, oak-hickory forest in the Missouri ozark highlands

    Treesearch

    James R. Lootens; David R. Larsen; Edward F. Loewenstein

    1999-01-01

    We presented a matrix growth model for an uneven-aged, oak-hickory forest in the Ozark Highlands of Missouri. The model was developed to predict ingrowth, growth of surviving trees, and mortality by diameter class for a five-year period. Tree removal from management activities is accounted for in the model. We evaluated a progression of models from a static, fixed...

  13. Forest research notes, Pacific Northwest Forest Experiment Station, No. 04, June 27, 1930.

    Treesearch

    1930-01-01

    Some definite figures on the survival and seed production of seed trees left on national forest timber sales in the Douglas fir region are now available for six representative areas where approximately two trees were left per acre. The studies mere made by men in charge of timber sales on the national forests under the direction of the Experiment Station, and have now...

  14. Survival, growth, and juvenile-mature correlations in a West Virginia sugar maple provenance test 25 years after establishment

    Treesearch

    Thomas M. Schuler

    1994-01-01

    Survival, total height, diameter at breast height (d.b.h.), and stem quality of sugar maple trees of different provenances were compared 25 years after establishment in north-central West Virginia. Provenances were from Michigan, Minnesota, West Virginia, Massachusetts, New Hampshire, Vermont, Maine, and Quebec, Canada. There were significant differences between...

  15. Hardwood vigor and survival following applications of imazapyr in mid-rotation pine plantations

    Treesearch

    Prabudhda Dahal Dahal; Hal O. Liechty; Bryan Rupar; Conner Fristoe; Eric Heitzman

    2006-01-01

    Tree vigor, live crown ratios, dieback, and survival of hardwood competition were monitored for 2 years following a fall application (16 ounces per acre) of imazapyr on 4 stands of loblolly pine (Pinus taeda L.) in the Gulf Coastal Plain of Louisiana and Arkansas. Assessments during the first growing season following application indicated that 87 to...

  16. Survival and Growth of Individual Trees in Mixed-species Plantations of Bottomland Hardwoods on 2 Mississippi Delta Soil Types

    Treesearch

    Jefferey C. Goelz

    2001-01-01

    Water oak (Quercus nigra L.[Fagaceae]), Nuttall oak (Q. nuttallii Palmer), and green ash (Fraxinus pennsylvanica Marsh. [Oleaceae]) were planted in mixtures at 2 spacings, 1.8 and 2.7m (6 and 9 ft) triangular spacing, on 2 contrasting soil types: Sharkey and Dundee. Survival was high for green ash and...

  17. Grass or fern competition reduce growth and survival of planted tree seedlings

    Treesearch

    Larry H. McCormick; Todd W. Bowersox

    1997-01-01

    Bareroot seedlings of northern red oak, white ash, yellow-poplar and white pine were planted into herbaceous communities at three forested sites in central Pennsylvania that were clearcut 0 to 1 year earlier. Seedlings were grown 4 years in the presence and absence of either an established grass or hay-scented fern community. Survival and height growth were measured...

  18. Phenology, seed dispersal and difficulties in natural recruitment of the canopy tree Pachira quinata (Malvaceae).

    PubMed

    Castellanos, Maria Clara; Stevenson, Pablo R

    2011-06-01

    Life history and recruitment information of tropical trees in natural populations is scarce even for important commercial species. This study focused on a widely exploited Neotropical canopy species, Pachira quinata (Malvaceae), at the southernmost, wettest limit of its natural distribution, in the Colombian Amazonia. We studied phenological patterns, seed production and natural densities; assessed the importance of seed dispersal and density-dependent effects on recruitment, using field experiments. At this seasonal forest P. quinata was overrepresented by large adult trees and had very low recruitment caused by the combination of low fruit production, high seed predation and very high seedling mortality under continuous canopies mostly due to damping off pathogens. There was no evidence of negative distance or density effects on recruitment, but a clear requirement of canopy gaps for seedling survival and growth, where pathogen incidence was drastically reduced. In spite of the strong dependence on light for survival of seedlings, seeds germinated readily in the dark. At the study site, the population of P. quinata appeared to be declining, likely because recruitment depended on the rare combination of large gap formation with the presence of reproductive trees nearby. The recruitment biology of this species makes it very vulnerable to any type of logging in natural populations.

  19. Metabolomic comparative analysis of the phloem sap of curry leaf tree (Bergera koenegii), orange jasmine (Murraya paniculata), and Valencia sweet orange (Citrus sinensis) supports their differential responses to Huanglongbing

    PubMed Central

    Killiny, Nabil

    2016-01-01

    ABSTRACT Orange jasmine, Murraya paniculata and curry leaf tree, Bergera koenegii are alternative hosts for Diaphorina citri, the vector of Candidatus Liberibacter asiaticus (CLas), the pathogen of huanglongbing (HLB) in citrus. D. citri feeds on the phloem sap where CLas grows. It has been shown that orange jasmine was a better host than curry leaf tree to D. citri. In addition, CLas can infect orange jasmine but not curry leaf tree. Here, we compared the phloem sap composition of these 2 plants to the main host, Valencia sweet orange, Citrus sinensis. Phloem sap was analyzed by gas chromatography-mass spectrometry after trimethylsilyl derivatization. Orange jasmine was the highest in proteinogenic, non-proteinogenic amino acids, organic acids, as well as total metabolites. Valencia was the highest in mono- and disaccharides, and sugar alcohols. Curry leaf tree was the lowest in most of the metabolites as well as total metabolites. Interestingly, malic acid was high in Valencia and orange jasmine but was not detected in the curry leaf. On the other hand, tartaric acid which can prevent the formation of malic acid in Krebs cycle was high in curry leaf. The nutrient inadequacy of the phloem sap in curry leaf tree, especially the amino acids could be the reason behind the longer life cycle and the low survival of D. citri and the limitation of CLas growth on this host. Information obtained from this study may help in cultivation of CLas and development of artificial diet for rearing of D. citri. PMID:27763819

  20. Tree range expansion may be enhanced by escape from negative plant-soil feedbacks.

    PubMed

    McCarthy-Neumann, Sarah; Ibáñez, Inés

    2012-12-01

    Many plant species are expected to shift their distributional ranges in response to global warming. As they arrive at new sites, migrant plant species may be released from their natural soil pathogens and/or deprived of key symbiotic organisms. Under such scenarios plant-soil feedbacks (PSF) will likely have an impact on plant species' ability to establish in new areas. In this study we evaluated the role that PSF may play on the migratory potential of dominant temperate tree species at the northern limit of their distributional range in the Great Lakes region of North America. To test their ability to expand their current range, we assessed seedling establishment, i.e., survival, of local and potential migrant tree species in a field transplant experiment. To test for the presence and strength of PSF, we also assessed seedling survival during establishment in a greenhouse experiment, where the potential migrant species were grown in soils collected within and beyond their distributional ranges. The combination of experiments provided us with a comprehensive understanding of the role of PSF in seedling establishment in new areas. In the field, we found that survival for most migrant species was similar to those of the local community, ensuring that these species could establish in areas beyond their current range. In the greenhouse, we found that the majority of species experienced strong negative conspecific feedbacks mediated by soil biota, but these responses occurred for most species only in low light conditions. Lastly, our combined results indicate that migrant tree species can colonize and may even have enhanced short-term recruitment beyond their ranges due to a lack of conspecific adults (and the resulting negative PSF from these adults).

  1. Dense understory dwarf bamboo alters the retention of canopy tree seeds

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Zhang, Tengda; Guo, Qinxue; Tao, Jianping

    2016-05-01

    Tree seed retention is thought to be an important factor in the process of forest community regeneration. Although dense understory dwarf bamboo has been considered to have serious negative effects on the regeneration of forest community species, little attention has been paid to the relationship between dwarf bamboo and seed retention. In a field experiment we manipulated the density of Fargesia decurvata, a common understory dwarf bamboo, to investigate the retention of seeds from five canopy tree species in an evergreen and deciduous broad-leaved mixed forest in Jinfoshan National Nature Reserve, SW China. We found that the median survival time and retention ratio of seeds increased with the increase in bamboo density. Fauna discriminately altered seed retention in bamboo groves of different densities. Arthropods reduced seed survival the most, and seeds removed decreased with increasing bamboo density. Birds removed or ate more seeds in groves of medium bamboo density and consumed fewer seeds in dense or sparse bamboo habitats. Rodents removed a greater number of large and highly profitable seeds in dense bamboo groves but more small and thin-husked seeds in sparse bamboo groves. Seed characteristics, including seed size, seed mass and seed profitability, were important factors affecting seed retention. The results suggested that dense understory dwarf bamboo not only increased seeds concealment and reduced the probability and speed of seed removal but also influenced the trade-off between predation and risk of animal predatory strategies, thereby impacting the quantity and composition of surviving seeds. Our results also indicated that dense understory dwarf bamboo and various seed characteristics can provide good opportunities for seed storage and seed germination and has a potential positive effect on canopy tree regeneration.

  2. Suitability of multipurpose trees, shrubs and grasses to rehabilitate gullies in the sub-humid tropics

    NASA Astrophysics Data System (ADS)

    Talema, Ayalew; Muys, Bart; Poesen, Jean; Padro, Roc; Dibaba, Hirko; Diels, Jan

    2017-04-01

    Vegetation plays a vital role for sustainable rehabilitation of degraded lands. However, the selection of suitable and effective plant species remains a long-lasting challenge in most parts of the sub-humid tropics. To address this challenge 18 multipurpose plant species (6 trees, 3 shrubs and 9 grasses), preselected from the regional species pool in Southwest Ethiopia were planted in severely degraded gullies and monitored from July 2011 to June 2014. The experiment had a split-plot design with farmyard manure (FYM) application, as main plot and plant species as sub-plot factors repeated in three blocks. The study revealed that grasses were the most successful to rehabilitate the gully within the monitoring period, compared to trees and shrubs. The survival rate of the four most successful grass species, Chrysopogon zizanioides, Pennisetum macrourum, Pennisetum polystachion and Pennisetum purpureum ranged from 61 to 90% with FYM application and from 20 to 85% without FYM, while most of the well-known indigenous and exotic trees and shrubs failed to survive. For the grass Pennisetum purpureum, shoot height, shoot and root dry biomass increased by 300%, 342% and 578% respectively due to FYM application, with a remarkably higher response to FYM compared to all the other studied species. The overall results demonstrate that severely degraded lands can be effectively restored by using early successional species such as locally adapted and selected grasses before the plantation of trees and shrubs.

  3. Habitat suitability and nest survival of white-headed woodpeckers in unburned forests of Oregon

    USGS Publications Warehouse

    Hollenbeck, Jeff P.; Saab, Victoria A.; Frenzel, Richard W.

    2011-01-01

    We evaluated habitat suitability and nest survival of breeding white-headed woodpeckers (Picoides albolarvatus) in unburned forests of central Oregon, USA. Daily nest-survival rate was positively related to maximum daily temperature during the nest interval and to density of large-diameter trees surrounding the nest tree. We developed a niche-based habitat suitability model (partitioned Mahalanobis distance) for nesting white-headed woodpeckers using remotely sensed data. Along with low elevation, high density of large trees, and low slope, our habitat suitability model suggested that interspersion–juxtaposition of low- and high-canopy cover ponderosa pine (Pinus ponderosa) patches was important for nest-site suitability. Cross-validation suggested the model performed adequately for management planning at a scale >1 ha. Evaluation of mapped habitat suitability index (HSI) suggested that the maximum predictive gain (HSI = 0.36), where the number of nest locations are maximized in the smallest proportion of the modeled landscape, provided an objective initial threshold for identification of suitable habitat. However, managers can choose the threshold HSI most appropriate for their purposes (e.g., locating regions of low–moderate suitability that have potential for habitat restoration). Consequently, our habitat suitability model may be useful for managing dry coniferous forests for white-headed woodpeckers in central Oregon; however, model validation is necessary before our model could be applied to other locations.

  4. Effects of seedling size, El Niño drought, seedling density, and distance to nearest conspecific adult on 6-year survival of Ocotea whitei seedlings in Panamá.

    PubMed

    Gilbert, Gregory S; Harms, Kyle E; Hamill, David N; Hubbell, Stephen P

    2001-05-01

    We present an analysis of the long-term survival of two cohorts of seedlings of the tropical canopy tree Ocotea whitei (Lauraceae) on a 1-ha plot of mature, lowland moist forest on Barro Colorado Island, Panamá. In 1980, we counted an even-aged cohort of seedlings that germinated in 1979, then measured and tagged survivors in 1981. We also measured and tagged a second, smaller cohort of seedlings that germinated in 1981. We followed the subsequent survival of all seedlings through 1985. Seedling mortality was phenotypically, temporally, and spatially non-random. Important correlates of non-random mortality included: (1) seedling size and age, (2) an El Niño drought, and (3) biotic neighborhood. Larger and older seedlings survived better than smaller and younger seedlings, respectively, and the El Niño-related drought of 1982-1983 was associated with elevated mortality rates. Seedling density, which was strongly correlated with the proximity to the nearest conspecific adult, increased mortality. The observed mortality patterns suggest that processes consistent with the Janzen-Connell hypothesis operate during the recruitment phase of O. whitei population dynamics. However, the processes causing the observed density- and distance-dependent mortality may vary with factors such as total seed number, seedling size, and climatic variation, making it difficult to determine whether time-integrated seedling-to-adult spacing mechanisms other than self-thinning operate on a given plant population. After 6 years in the hectare studied, survivors remained densest and most numerous underneath the adult trees. We conclude that only long-term demographic data, collected at a variety of scales on a variety of species, will ultimately answer the question: do Janzen-Connell effects contribute substantially to structuring tropical forests?

  5. Prediction of lung cancer patient survival via supervised machine learning classification techniques.

    PubMed

    Lynch, Chip M; Abdollahi, Behnaz; Fuqua, Joshua D; de Carlo, Alexandra R; Bartholomai, James A; Balgemann, Rayeanne N; van Berkel, Victor H; Frieboes, Hermann B

    2017-12-01

    Outcomes for cancer patients have been previously estimated by applying various machine learning techniques to large datasets such as the Surveillance, Epidemiology, and End Results (SEER) program database. In particular for lung cancer, it is not well understood which types of techniques would yield more predictive information, and which data attributes should be used in order to determine this information. In this study, a number of supervised learning techniques is applied to the SEER database to classify lung cancer patients in terms of survival, including linear regression, Decision Trees, Gradient Boosting Machines (GBM), Support Vector Machines (SVM), and a custom ensemble. Key data attributes in applying these methods include tumor grade, tumor size, gender, age, stage, and number of primaries, with the goal to enable comparison of predictive power between the various methods The prediction is treated like a continuous target, rather than a classification into categories, as a first step towards improving survival prediction. The results show that the predicted values agree with actual values for low to moderate survival times, which constitute the majority of the data. The best performing technique was the custom ensemble with a Root Mean Square Error (RMSE) value of 15.05. The most influential model within the custom ensemble was GBM, while Decision Trees may be inapplicable as it had too few discrete outputs. The results further show that among the five individual models generated, the most accurate was GBM with an RMSE value of 15.32. Although SVM underperformed with an RMSE value of 15.82, statistical analysis singles the SVM as the only model that generated a distinctive output. The results of the models are consistent with a classical Cox proportional hazards model used as a reference technique. We conclude that application of these supervised learning techniques to lung cancer data in the SEER database may be of use to estimate patient survival time with the ultimate goal to inform patient care decisions, and that the performance of these techniques with this particular dataset may be on par with that of classical methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Adult tree swallow (Tachycineta bicolor) survival on the polychlorinated biphenyl-contaminated Housatonic River, Massachusetts, USA

    USGS Publications Warehouse

    Custer, Christine M.; Custer, T.W.; Hines, J.E.; Nichols, J.D.; Dummer, P.M.

    2007-01-01

    Tree swallows (Tachycineta bicolor) were captured and banded at six sites that differed in polychlorinated biphenyl (PCB) contamination levels in the Housatonic River watershed, western Massachusetts, USA, from 2000 through 2004 to test the prediction that apparent survival rates of females in more contaminated areas were lower than those from less contaminated areas. We also tested whether plumage coloration affected over-winter survival and whether concentrations of PCBs in eggs differed between birds that did and that did not return the following year. Apparent survival rates were calculated using mark?recapture methods and compared using Akaike's Information Criterion. Model-adjusted survival rates ranged from 0.365 to 0.467 for PCB-contaminated females and between 0.404 and 0.476 for reference females. Models with either survival or capture probability modeled as functions of treatment (degree of PCB contamination), year, and age received some support. The model-averaged parameter estimate reflecting a treatment effect for high-PCB birds was negative ( = -0.046, SE() = 0.0939). Fifty-four percent of the total model weights involved models in which survival was a function of PCB treatment. Eggs were collected for contaminant analyses from a random sample of females that did and that did not return the following year. Concentrations of total PCBs were the same or higher in the eggs of females that returned compared to the eggs of those that did not return at both the highly and the moderately contaminated PCB sites. This may have resulted from higher-quality females with higher lipid reserves being more likely than lower-quality females to return the following year. Percentage lipid was positively correlated with total PCBs in eggs. Survival rates were similar among swallows with brown versus blue plumage.

  7. Whitebark pine facilitation at treeline: potential interactions for disruption by an invasive pathogen.

    PubMed

    Tomback, Diana F; Blakeslee, Sarah C; Wagner, Aaron C; Wunder, Michael B; Resler, Lynn M; Pyatt, Jill C; Diaz, Soledad

    2016-08-01

    In stressful environments, facilitation often aids plant establishment, but invasive plant pathogens may potentially disrupt these interactions. In many treeline communities in the northern Rocky Mountains of the U.S. and Canada, Pinus albicaulis, a stress-tolerant pine, initiates tree islands at higher frequencies than other conifers - that is, leads to leeward tree establishment more frequently. The facilitation provided by a solitary (isolated) P. albicaulis leading to tree island initiation may be important for different life-history stages for leeward conifers, but it is not known which life-history stages are influenced and protection provided. However, P. albicaulis mortality from the non-native pathogen Cronartium ribicola potentially disrupts these facilitative interactions, reducing tree island initiation. In two Rocky Mountain eastern slope study areas, we experimentally examined fundamental plant-plant interactions which might facilitate tree island formation: the protection offered by P. albicaulis to leeward seed and seedling life-history stages, and to leeward krummholz conifers. In the latter case, we simulated mortality from C. ribicola for windward P. albicaulis to determine whether loss of P. albicaulis from C. ribicola impacts leeward conifers. Relative to other common solitary conifers at treeline, solitary P. albicaulis had higher abundance. More seeds germinated in leeward rock microsites than in conifer or exposed microsites, but the odds of cotyledon seedling survival during the growing season were highest in P. albicaulis microsites. Planted seedling survival was low among all microsites examined. Simulating death of windward P. albicaulis by C. ribicola reduced shoot growth of leeward trees. Loss of P. albicaulis to exotic disease may limit facilitation interactions and conifer community development at treeline and potentially impede upward movement as climate warms.

  8. Host range of the emerald ash borer (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae) in North America: results of multiple-choice field experiments.

    PubMed

    Anulewicz, Andrea C; McCullough, Deborah G; Cappaert, David L; Poland, Therese M

    2008-02-01

    Emerald ash borer (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae), an invasive phloem-feeding pest, was identified as the cause of widespread ash (Fraxinus) mortality in southeast Michigan and Windsor, Ontario, Canada, in 2002. A. planipennis reportedly colonizes other genera in its native range in Asia, including Ulmus L., Juglans L., and Pterocarya Kunth. Attacks on nonash species have not been observed in North America to date, but there is concern that other genera could be colonized. From 2003 to 2005, we assessed adult A. planipennis landing rates, oviposition, and larval development on North American ash species and congeners of its reported hosts in Asia in multiple-choice field studies conducted at several southeast Michigan sites. Nonash species evaluated included American elm (U. americana L.), hackberry (Celtis occidentalis L.), black walnut (J. nigra L.), shagbark hickory [Carya ovata (Mill.) K.Koch], and Japanese tree lilac (Syringa reticulata Bl.). In studies with freshly cut logs, adult beetles occasionally landed on nonash logs but generally laid fewer eggs than on ash logs. Larvae fed and developed normally on ash logs, which were often heavily infested. No larvae were able to survive, grow, or develop on any nonash logs, although failed first-instar galleries occurred on some walnut logs. High densities of larvae developed on live green ash and white ash nursery trees, but there was no evidence of larval survival or development on Japanese tree lilac and black walnut trees in the same plantation. We felled, debarked, and intensively examined >28 m2 of phloem area on nine American elm trees growing in contact with or adjacent to heavily infested ash trees. We found no sign of A. planipennis feeding on any elm.

  9. Comparison of multilocus sequence typing and pulsed-field gel electrophoresis for Salmonella spp. identification in surface water

    NASA Astrophysics Data System (ADS)

    Kuo, Chun Wei; Hao Huang, Kuan; Hsu, Bing Mu; Tsai, Hsien Lung; Tseng, Shao Feng; Kao, Po Min; Shen, Shu Min; Chou Chiu, Yi; Chen, Jung Sheng

    2013-04-01

    Salmonella is one of the most important pathogens of waterborne diseases with outbreaks from contaminated water reported worldwide. In addition, Salmonella spp. can survive for long periods in aquatic environments. To realize genotypes and serovars of Salmonella in aquatic environments, we isolated the Salmonella strains by selective culture plates to identify the serovars of Salmonella by serological assay, and identify the genotypes by Multilocus sequence typing (MLST) based on the sequence data from University College Cork (UCC), respectively. The results show that 36 stream water samples (30.1%) and 18 drinking water samples (23.3%) were confirmed the existence of Salmonella using culture method combined PCR specific invA gene amplification. In this study, 24 cultured isolates of Salmonella from water samples were classified to fifteen Salmonella enterica serovars. In addition, we construct phylogenetic analysis using phylogenetic tree and Minimum spanning tree (MST) method to analyze the relationship of clinical, environmental, and geographical data. Phylogenetic tree showed that four main clusters and our strains can be distributed in all. The genotypes of isolates from stream water are more biodiversity while comparing the Salmonella strains genotypes from drinking water sources. According to MST data, we can found the positive correlation between serovars and genotypes of Salmonella. Previous studies revealed that the result of Pulsed field gel electrophoresis (PFGE) method can predict the serovars of Salmonella strain. Hence, we used the MLST data combined phylogenetic analysis to identify the serovars of Salmonella strain and achieved effectiveness. While using the geographical data combined phylogenetic analysis, the result showed that the dominant strains were existed in whole stream area in rainy season. Keywords: Salmonella spp., MLST, phylogenetic analysis, PFGE

  10. Poplar trees reconfigure the transcriptome and metabolome in response to drought in a genotype- and time-of-day-dependent manner.

    PubMed

    Hamanishi, Erin T; Barchet, Genoa L H; Dauwe, Rebecca; Mansfield, Shawn D; Campbell, Malcolm M

    2015-04-21

    Drought has a major impact on tree growth and survival. Understanding tree responses to this stress can have important application in both conservation of forest health, and in production forestry. Trees of the genus Populus provide an excellent opportunity to explore the mechanistic underpinnings of forest tree drought responses, given the growing molecular resources that are available for this taxon. Here, foliar tissue of six water-deficit stressed P. balsamifera genotypes was analysed for variation in the metabolome in response to drought and time of day by using an untargeted metabolite profiling technique, gas chromatography/mass-spectrometry (GC/MS). Significant variation in the metabolome was observed in response the imposition of water-deficit stress. Notably, organic acid intermediates such as succinic and malic acid had lower concentrations in leaves exposed to drought, whereas galactinol and raffinose were found in increased concentrations. A number of metabolites with significant difference in accumulation under water-deficit conditions exhibited intraspecific variation in metabolite accumulation. Large magnitude fold-change accumulation was observed in three of the six genotypes. In order to understand the interaction between the transcriptome and metabolome, an integrated analysis of the drought-responsive transcriptome and the metabolome was performed. One P. balsamifera genotype, AP-1006, demonstrated a lack of congruence between the magnitude of the drought transcriptome response and the magnitude of the metabolome response. More specifically, metabolite profiles in AP-1006 demonstrated the smallest changes in response to water-deficit conditions. Pathway analysis of the transcriptome and metabolome revealed specific genotypic responses with respect to primary sugar accumulation, citric acid metabolism, and raffinose family oligosaccharide biosynthesis. The intraspecific variation in the molecular strategies that underpin the responses to drought among genotypes may have an important role in the maintenance of forest health and productivity.

  11. Phylogenetic Properties of RNA Viruses

    PubMed Central

    Pompei, Simone; Loreto, Vittorio; Tria, Francesca

    2012-01-01

    A new word, phylodynamics, was coined to emphasize the interconnection between phylogenetic properties, as observed for instance in a phylogenetic tree, and the epidemic dynamics of viruses, where selection, mediated by the host immune response, and transmission play a crucial role. The challenges faced when investigating the evolution of RNA viruses call for a virtuous loop of data collection, data analysis and modeling. This already resulted both in the collection of massive sequences databases and in the formulation of hypotheses on the main mechanisms driving qualitative differences observed in the (reconstructed) evolutionary patterns of different RNA viruses. Qualitatively, it has been observed that selection driven by the host immune response induces an uneven survival ability among co-existing strains. As a consequence, the imbalance level of the phylogenetic tree is manifestly more pronounced if compared to the case when the interaction with the host immune system does not play a central role in the evolutive dynamics. While many imbalance metrics have been introduced, reliable methods to discriminate in a quantitative way different level of imbalance are still lacking. In our work, we reconstruct and analyze the phylogenetic trees of six RNA viruses, with a special emphasis on the human Influenza A virus, due to its relevance for vaccine preparation as well as for the theoretical challenges it poses due to its peculiar evolutionary dynamics. We focus in particular on topological properties. We point out the limitation featured by standard imbalance metrics, and we introduce a new methodology with which we assign the correct imbalance level of the phylogenetic trees, in agreement with the phylodynamics of the viruses. Our thorough quantitative analysis allows for a deeper understanding of the evolutionary dynamics of the considered RNA viruses, which is crucial in order to provide a valuable framework for a quantitative assessment of theoretical predictions. PMID:23028645

  12. Boron accumulation and tolerance of hybrid poplars grown on a B-laden mixed paper mill waste landfill.

    PubMed

    Rees, Rainer; Robinson, Brett H; Rog, Christopher J; Papritz, Andreas; Schulin, Rainer

    2013-03-01

    Paper mill wastes are a mixture of by-products from pulp production and on-site energy production, consisting of paper mill sludge, ash and cinders. Landfilling of these highly boron (B) and heavy metal laden waste products carries environmental risks. Poplars have been successfully employed in the phytomanagement and hydraulic control of B contaminated sites. Here, we assess the performance of hybrid poplars on a paper-mill waste landfill, investigate the accumulation of B by the trees and explore the relationship between local-scale root growth and substrate properties. Leaf and root tissue samples were collected on three plots and analyzed for their chemical properties and root traits. Additionally, we sampled four soil cores in the vicinity of each of the trees and determined chemical and physical properties. Using a principal component analysis followed by a cluster analysis, we identified three substrate types. This method delineated the soil effects on tree survival and growth, although correlations with individual soil element concentrations were weak. Despite signs of B toxicity in some leaves, B was not the key limiting factor for poplar growth. Instead, Ca deficiency caused by a Mg:Ca imbalance was the primary reason for the poor performance of some trees. Root growth was not limited by toxicity effects of soil contaminants. Our results show that hybrid poplars perform well under the harsh growing conditions on a multi-contaminated, B-laden substrate in a hemiboreal climate. Exploiting the differences in the performance of the four clones in relation to the soil types, could increase the success of revegetation on this and other landfills. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. LDFT-based watermarking resilient to local desynchronization attacks.

    PubMed

    Tian, Huawei; Zhao, Yao; Ni, Rongrong; Qin, Lunming; Li, Xuelong

    2013-12-01

    Up to now, a watermarking scheme that is robust against desynchronization attacks (DAs) is still a grand challenge. Most image watermarking resynchronization schemes in literature can survive individual global DAs (e.g., rotation, scaling, translation, and other affine transforms), but few are resilient to challenging cropping and local DAs. The main reason is that robust features for watermark synchronization are only globally invariable rather than locally invariable. In this paper, we present a blind image watermarking resynchronization scheme against local transform attacks. First, we propose a new feature transform named local daisy feature transform (LDFT), which is not only globally but also locally invariable. Then, the binary space partitioning (BSP) tree is used to partition the geometrically invariant LDFT space. In the BSP tree, the location of each pixel is fixed under global transform, local transform, and cropping. Lastly, the watermarking sequence is embedded bit by bit into each leaf node of the BSP tree by using the logarithmic quantization index modulation watermarking embedding method. Simulation results show that the proposed watermarking scheme can survive numerous kinds of distortions, including common image-processing attacks, local and global DAs, and noninvertible cropping.

  14. Phytoremediation of a petroleum-hydrocarbon contaminated shallow aquifer in Elizabeth City, North Carolina, USA

    USGS Publications Warehouse

    Nichols, Elizabeth Guthrie; Cook, Rachel L.; Landmeyer, James E.; Atkinson, Brad; Malone, Donald R.; Shaw, George; Woods, Leilani

    2014-01-01

    A former bulk fuel terminal in North Carolina is a groundwater phytoremediation demonstration site where 3,250 hybrid poplars, willows, and pine trees were planted from 2006 to 2008 over approximately 579,000 L of residual gasoline, diesel, and jet fuel. Since 2011, the groundwater altitude is lower in the area with trees than outside the planted area. Soil-gas analyses showed a 95 percent mass loss for total petroleum hydrocarbons (TPH) and a 99 percent mass loss for benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX and methyl tert-butyl ether concentrations have decreased in groundwater. Interpolations of free-phase, fuel product gauging data show reduced thicknesses across the site and pooling of fuel product where poplar biomass is greatest. Isolated clusters of tree mortalities have persisted in areas with high TPH and BTEX mass. Toxicity assays showed impaired water use for willows and poplars exposed to the site's fuel product, but Populus survival was higher than the willows or pines on-site, even in a noncontaminated control area. All four Populus clones survived well at the site.

  15. Moorean tree snail survival revisited: a multi-island genealogical perspective.

    PubMed

    Lee, Taehwan; Burch, John B; Coote, Trevor; Pearce-Kelly, Paul; Hickman, Carole; Meyer, Jean-Yves; O Foighil, Diarmaid

    2009-08-18

    The mass extirpation of the island of Moorea's endemic partulid tree snail fauna, following the deliberate introduction of the alien predator Euglandina rosea, represents one of the highest profile conservation crises of the past thirty years. All of the island's partulids were thought to be extirpated by 1987, with five species persisting in zoos, but intensive field surveys have recently detected a number of surviving wild populations. We report here a mitochondrial (mt) phylogenetic estimate of Moorean partulid wild and captive lineage survival calibrated with a reference museum collection that pre-dates the predator's introduction and that also includes a parallel dataset from the neighboring island of Tahiti. Although severe winnowing of Moorea's mt lineage diversity has occurred, seven of eight (six Partula; two Samoana) partulid tip clades remain extant. The extinct mt clade occurred predominantly in the P. suturalis species complex and it represented a major component of Moorea's endemic partulid treespace. Extant Moorean mt clades exhibited a complex spectrum of persistence on Moorea, in captivity, and (in the form of five phylogenetically distinct sister lineages) on Tahiti. Most notably, three Partula taxa, bearing two multi-island mt lineages, have survived decades of E. rosea predation on Moorea (P. taeniata) and in the valleys of Tahiti (P. hyalina and P. clara). Their differential persistence was correlated with intrinsic attributes, such as taxonomy and mt lineages, rather than with their respective within-island distribution patterns. Conservation efforts directed toward Moorean and Tahitian partulids have typically operated within a single island frame of reference, but our discovery of robust genealogical ties among survivors on both islands implies that a multi-island perspective is required. Understanding what genetic and/or ecological factors have enabled Partula taeniata, P. hyalina and P. clara to differentially survive long-term direct exposure to the predator may provide important clues toward developing a viable long term conservation plan for Society Island partulid tree snails.

  16. A novel method of comparing mating success and survival reveals similar sexual and viability selection for mobility traits in female tree crickets.

    PubMed

    Ercit, K; Gwynne, D T

    2016-06-01

    The relationship between sexual and viability selection in females is necessarily different than that in males, as investment in sexual traits potentially comes at the expense of both fecundity and survival. Accordingly, females do not usually invest in sexually selected traits. However, direct benefits obtained from mating, such as nuptial gifts, may encourage competition among females and subsidize investment into sexually selected traits. We compared sexual and viability selection on female tree crickets Oecanthus nigricornis, a species where females mate frequently to obtain nuptial gifts and sexual selection on females is likely. If male choice determines female mating success in this species, we expect sexual selection for fecundity traits, as males of many species prefer more fecund females. Alternatively, intrasexual scramble or combat competition on females may select for larger jumping legs or wider heads (respectively). We estimated mating success in wild caught crickets using microsatellite analysis of stored sperm and estimated relative viability by comparing surviving female O. nigricornis to those captured by a common wasp predator. In support of the scramble competition hypothesis, we found sexual selection for females with larger hind legs and narrower heads. We also found stabilizing viability selection for intermediate head width and hind leg size. As predicted, traits under viability and sexual selection were very similar, and the direction of that selection was not opposing. However, because the shape of sexual and viability selection differs, these episodes of selection may favour slightly different trait sizes. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  17. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics

    PubMed Central

    Ramya, T. N. C.; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions. PMID:27258038

  18. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics.

    PubMed

    Khatri, Indu; Sharma, Shailza; Ramya, T N C; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions.

  19. The population ecology of two tropical trees, Brachychiton diversifolius (Malvaceae) and Bombax ceiba (Bombaceae), harvested by Indigenous woodcarvers in Arnhem Land, Australia.

    PubMed

    Koenig, Jennifer; Griffiths, Anthony

    2012-10-01

    We describe the population ecology of two tropical deciduous trees, Bombax ceiba leiocarpum A. Robyns and Brachychiton diversifolius R. Br., which are in high demand for Indigenous sculpture production in Arnhem Land, Australia. We monitored tagged populations of both species at two locations for 2 years to examine their reproduction, growth, and survival rates and their response to harvest. Both species have similar life histories: they reproduce during the dry season (June-November) producing a high seed load, seed predation was high, seeds did not survive in the soil past the following wet season to form a seed bank, and germination rates were low and variable for both species. Average annual circumference growth rates were 1.07 cm year(-1) for B. ceiba and 0.98 cm year(-1) for B. diversifolius, with most of the growth occurring during the early wet season. Most (65-88 %) of the harvested B. ceiba and B. diversifolius stems coppiced. Coppice and stem size class were the main factors influencing tree growth rates with coppice stems growing up to six times faster than similar sized non-coppice stems. The survival of B. ceiba and B. diversifolius stems was size class dependent and affected by local site factors (e.g. fire and other disturbances) so that the smaller size classes had a low probability of survival. Given the resprouting potential of both species, their wild harvest is likely to have only minimal local impact on wild populations. However, further population modelling is required to determine whether the small and disjunct B. ceiba populations can sustain harvesting at current levels.

  20. Genetic variation of drought tolerance in Pinus pinaster at three hierarchical levels: a comparison of induced osmotic stress and field testing.

    PubMed

    Gaspar, Maria João; Velasco, Tania; Feito, Isabel; Alía, Ricardo; Majada, Juan

    2013-01-01

    Understanding the survival capacity of forest trees to periods of severe water stress could improve knowledge of the adaptive potential of different species under future climatic scenarios. In long lived organisms, like forest trees, the combination of induced osmotic stress treatments and field testing can elucidate the role of drought tolerance during the early stages of establishment, the most critical in the life of the species. We performed a Polyethylene glycol-osmotic induced stress experiment and evaluated two common garden experiments (xeric and mesic sites) to test for survival and growth of a wide range clonal collection of Maritime pine. This study demonstrates the importance of additive vs non additive effects for drought tolerance traits in Pinus pinaster, and shows differences in parameters determining the adaptive trajectories of populations and family and clones within populations. The results show that osmotic adjustment plays an important role in population variation, while biomass allocation and hydric content greatly influence survival at population level. Survival in the induced osmotic stress experiment presented significant correlations with survival in the xeric site, and height growth at the mesic site, at population level, indicating constraints of adaptation for those traits, while at the within population level no significant correlation existed. These results demonstrate that population differentiation and within population genetic variation for drought tolerance follow different patterns.

  1. Genetic Variation of Drought Tolerance in Pinus pinaster at Three Hierarchical Levels: A Comparison of Induced Osmotic Stress and Field Testing

    PubMed Central

    Gaspar, Maria João; Velasco, Tania; Feito, Isabel; Alía, Ricardo; Majada, Juan

    2013-01-01

    Understanding the survival capacity of forest trees to periods of severe water stress could improve knowledge of the adaptive potential of different species under future climatic scenarios. In long lived organisms, like forest trees, the combination of induced osmotic stress treatments and field testing can elucidate the role of drought tolerance during the early stages of establishment, the most critical in the life of the species. We performed a Polyethylene glycol-osmotic induced stress experiment and evaluated two common garden experiments (xeric and mesic sites) to test for survival and growth of a wide range clonal collection of Maritime pine. This study demonstrates the importance of additive vs non additive effects for drought tolerance traits in Pinus pinaster, and shows differences in parameters determining the adaptive trajectories of populations and family and clones within populations. The results show that osmotic adjustment plays an important role in population variation, while biomass allocation and hydric content greatly influence survival at population level. Survival in the induced osmotic stress experiment presented significant correlations with survival in the xeric site, and height growth at the mesic site, at population level, indicating constraints of adaptation for those traits, while at the within population level no significant correlation existed. These results demonstrate that population differentiation and within population genetic variation for drought tolerance follow different patterns. PMID:24223885

  2. Village agroforestry systems and tree-use practices: A case study in Sri Lanka. Multipurpose tree species network research series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wickramasinghe, A.

    1992-01-01

    Village agroforestry systems in Sri Lanka have evolved through farmers' efforts to meet their survival needs. The paper examines farmers' land-use systems and their perceptions of the role of trees in the villages of Bambarabedda and Madugalla in central Sri Lanka. The benefits of village agroforestry are diverse food, fuelwood, fodder, timber, and mulch, but food products are of outstanding importance. The ability of Artocarpus heterophyllus (the jackfruit tree) and Cocos nucifera (coconut) to ensure food security during the dry season and provide traditional foods throughout the year, as well as to grow in limited space, make them popular cropsmore » in the two study villages. The study recommends that further research precede the formulation of agricultural interventions and that efforts to promote improved tree varieties recognize farmers' practices and expressed needs.« less

  3. Survival and growth of restored Piedmont riparian forests as affected by site preparation, planting stock, and planting aids

    Treesearch

    Chelsea M. Curtis; W. Michael Aust; John R. Seiler; Brian D. Strahm

    2015-01-01

    Forest mitigation sites may have poor survival and growth of planted trees due to poor drainage, compacted soils, and lack of microtopography. The effects of five replications of five forestry mechanical site preparation techniques (Flat, Rip, Bed, Pit, and Mound), four regeneration sources (Direct seed, Bare root, Tubelings, and Gallon), and three planting aids (None...

  4. Phytophthora ramorum does not cause physiologically significant systemic injury to California bay laurel, its primary reservoir host

    Treesearch

    M. V. DiLeo; R. M. Bostock; D.M. Rizzo

    2009-01-01

    California bay laurel trees (Umbellularia californica) play a crucial role in the reproduction and survival of Phytophthora ramorum in coastal California forests by supporting sporulation during the rainy season and by providing a means for the pathogen to survive the dry, Mediterranean summer. While bay laurel is thus critical to the epidemiology of sudden oak death...

  5. Survival and growth of planted northern red oak in northern West Virginia

    Treesearch

    Charles A. McNeel; David M. Hix; Edwin C. Townsend

    1993-01-01

    The survival and growth of northern red oak (Quercus rubra L.) seedlings planted beneath a shelterwood in northern West Virginia were evaluated one year after planting. The use of 1.5 m (5 ft) tall TUBEX tree shelters on planted seedlings was also examined. The study was conducted on both excellent and good sites (site indices of 27 m (89 ft) and 22...

  6. Eighteen-year response of slash pine to wet-weather harvesting and site preparation on a poorly drained silt loam soil in Louisiana

    Treesearch

    D. Andrew Scott; Allan E. Tiarks

    2006-01-01

    Physical disturbances to soil resulting from forest management operations may reduce tree survival and growth, but responses are soil-, species-, and disturbance-specific. We studied wet-weather harvesting, shearing, root-raking, disking, and phosphorus fertilization on a poorly drained flatwoods site in Louisiana. Slash pine survival was improved by wet-weather...

  7. Tree-ring isotopes reveal drought sensitivity in trees killed by spruce beetle outbreaks in south-central Alaska.

    PubMed

    Csank, Adam Z; Miller, Amy E; Sherriff, Rosemary L; Berg, Edward E; Welker, Jeffrey M

    2016-10-01

    Increasing temperatures have resulted in reduced growth and increased tree mortality across large areas of western North American forests. We use tree-ring isotope chronologies (δ 13 C and δ 18 O) from live and dead trees from four locations in south-central Alaska, USA, to test whether white spruce trees killed by recent spruce beetle (Dendroctonus rufipennis Kirby) outbreaks showed evidence of drought stress prior to death. Trees that were killed were more sensitive to spring/summer temperature and/or precipitation than trees that survived. At two of our sites, we found greater correlations between the δ 13 C and δ 18 O chronologies and spring/summer temperatures in dead trees than in live trees, suggesting that trees that are more sensitive to temperature-induced drought stress are more likely to be killed. At one site, the difference between δ 13 C in live and dead trees was related to winter/spring precipitation, with dead trees showing stronger correlations between δ 13 C and precipitation, again suggesting increased water stress in dead trees. At all sites where δ 18 O was measured, δ 18 O chronologies showed the greatest difference in climate response between live and dead groups, with δ 18 O in live trees correlating more strongly with late winter precipitation than dead trees. Our results indicate that sites where trees are already sensitive to warm or dry early growing-season conditions experienced the most beetle-kill, which has important implications for forecasting future mortality events in Alaska. © 2016 by the Ecological Society of America.

  8. Using tree recruitment patterns and fire history to guide restoration of an unlogged ponderosa pine/Douglas‐fir landscape in the southern Rocky Mountains after a century of fire suppression

    USGS Publications Warehouse

    Kaufmann, M.R.; Huckaby, L.S.; Fornwalt, P.J.; Stoker, J.M.; Romme, W.H.

    2003-01-01

    Tree age and fire history were studied in an unlogged ponderosa pine/Douglas‐fir ( Pinus ponderosa/Pseudotsuga menziesii ) landscape in the Colorado Front Range mountains. These data were analysed to understand tree survival during fire and post‐fire recruitment patterns after fire, as a basis for understanding the characteristics of, and restoration needs for, an ecologically sustainable landscape. Comparisons of two independent tree age data sets indicated that sampling what subjectively appear to be the five oldest trees in a forest polygon could identify the oldest tree. Comparisons of the ages of the oldest trees in each data set with maps of fire history suggested that delays in establishment of trees, after stand‐replacing fire, ranged from a few years to more than a century. These data indicate that variable fire severity, including patches of stand replacement, and variable temporal patterns of tree recruitment into openings after fire were major causes of spatial heterogeneity of patch structure in the landscape. These effects suggest that restoring current dense and homogeneous ponderosa pine forests to an ecologically sustainable and dynamic condition should reflect the roles of fires and variable patterns of tree recruitment in regulating landscape structure.

  9. Rapid decay of tree-community composition in Amazonian forest fragments

    PubMed Central

    Laurance, William F.; Nascimento, Henrique E. M.; Laurance, Susan G.; Andrade, Ana; Ribeiro, José E. L. S.; Giraldo, Juan Pablo; Lovejoy, Thomas E.; Condit, Richard; Chave, Jerome; Harms, Kyle E.; D'Angelo, Sammya

    2006-01-01

    Forest fragmentation is considered a greater threat to vertebrates than to tree communities because individual trees are typically long-lived and require only small areas for survival. Here we show that forest fragmentation provokes surprisingly rapid and profound alterations in Amazonian tree-community composition. Results were derived from a 22-year study of exceptionally diverse tree communities in 40 1-ha plots in fragmented and intact forests, which were sampled repeatedly before and after fragment isolation. Within these plots, trajectories of change in abundance were assessed for 267 genera and 1,162 tree species. Abrupt shifts in floristic composition were driven by sharply accelerated tree mortality and recruitment within ≈100 m of fragment margins, causing rapid species turnover and population declines or local extinctions of many large-seeded, slow-growing, and old-growth taxa; a striking increase in a smaller set of disturbance-adapted and abiotically dispersed species; and significant shifts in tree size distributions. Even among old-growth trees, species composition in fragments is being restructured substantially, with subcanopy species that rely on animal seed-dispersers and have obligate outbreeding being the most strongly disadvantaged. These diverse changes in tree communities are likely to have wide-ranging impacts on forest architecture, canopy-gap dynamics, plant–animal interactions, and forest carbon storage. PMID:17148598

  10. Physiological limitation at alpine treeline: relationships of threshold responses of conifers to their establishment patterns

    NASA Astrophysics Data System (ADS)

    Germino, M. J.; Lazarus, B.; Castanha, C.; Moyes, A. B.; Kueppers, L. M.

    2014-12-01

    An understanding of physiological limitations to tree establishment at alpine treeline form the basis for predicting how this climate-driven boundary will respond to climate shifts. Most research on this topic has focused on limitations related to carbon balance and growth of trees. Carbon balance could limit survival and establishment primarily through slow-acting, chronic means. We asked whether tree survival and thus establishment patterns reflect control by chronic effects in comparison to acute, threshold responses, such as survival of frost events. Seedling survivorship patterns were compared to thresholds in freezing (temperature causing leaf freezing, or freezing point, FP; and physiological response to freezing) and water status (turgor loss point, TLP; and related physiological adjustments). Subject seedlings were from forest, treeline, and alpine sites in the Alpine Treeline Warming Experiment in Colorado, and included limber and lodgepole pine (a low-elevation species), and Engelmann Spruce. Preliminary results show survival increases with seedling age, but the only corresponding increase in stress acclimation was photosynthetic resistance to freezing and TLP, not FP. Differences in survivorship among the species were not consistent with variation in FP but they generally agreed with variation in photosynthetic resistance to deep freezing and to early-season drought avoidance. Mortality of limber pine increased 35% when minimum temperatures decreased below -9C, which compares with FPs of >-8.6C, and about 1/3 of its mortality occurred during cold/wet events, particularly in the alpine. The other major correlate of mortality is midsummer drying events, as previously reported. Also in limber pine, the TLP for year-old seedlings (-2.5 MPa) corresponded with seasonal-drought mortality. In summary, we show several examples of correspondence in physiological thresholds to mortality events within a species, although the relationships are not strong. Across species, photosynthetic resistance to freezing and early-season drought avoidance related well to mortality patterns. These results are generally more supportive of the role of chronic rather than acute climate effects in broad patterns of tree seedling establishment at treeline.

  11. Retention of stored water enables tropical tree saplings to survive extreme drought conditions.

    PubMed

    Wolfe, Brett T

    2017-04-01

    Trees generally maintain a small safety margin between the stem water potential (Ψstem) reached during seasonal droughts and the Ψstem associated with their mortality. This pattern may indicate that species face similar mortality risk during extreme droughts. However, if tree species vary in their ability to regulate Ψstem, then safety margins would poorly predict drought mortality. To explore variation among species in Ψstem regulation, I subjected potted saplings of six tropical tree species to extreme drought and compared their responses with well-watered plants and pretreatment reference plants. In the drought treatment, soil water potential reached <-10 MPa, yet three species, Bursera simaruba (L.) Sarg., Cavanillesia platanifolia (Bonpl.) Kunth and Cedrela odorata L. had 100% survival and maintained Ψstem near -1 MPa (i.e., desiccation-avoiding species). Three other species, Cojoba rufescens (Benth.) Britton and Rose, Genipa americana L. and Hymenaea courbaril L. had 50%, 0% and 25% survival, respectively, and survivors had Ψstem <-6 MPa (i.e., desiccation-susceptible species). The desiccation-avoiding species had lower relative water content (RWC) in all organs and tissues (root, stem, bark and xylem) in the drought treatment than in the reference plants (means 72.0-90.4% vs 86.9-97.9%), but the survivors of the desiccation-susceptible C. rufescens had much lower RWC in the drought treatment (44.5-72.1%). Among the reference plants, the desiccation-avoiding species had lower tissue density, leaf-mass fraction and lateral-root surface area (LRA) than the desiccation-susceptible species. Additionally, C. platanifolia and C. odorata had reduced LRA in the drought treatment, which may slow water loss into dry soil. Together, these results suggest that the ability to regulate Ψstem during extreme drought is associated with functional traits that favor retention of stored water and that safety margins during seasonal drought poorly predict survival during extreme drought. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Solution of the Generalized Noah's Ark Problem.

    PubMed

    Billionnet, Alain

    2013-01-01

    The phylogenetic diversity (PD) of a set of species is a measure of the evolutionary distance among the species in the collection, based on a phylogenetic tree. Such a tree is composed of a root, internal nodes, and leaves that correspond to the set of taxa under study. With each edge of the tree is associated a non-negative branch length (evolutionary distance). If a particular survival probability is associated with each taxon, the PD measure becomes the expected PD measure. In the Noah's Ark Problem (NAP) introduced by Weitzman (1998), these survival probabilities can be increased at some cost. The problem is to determine how best to allocate a limited amount of resources to maximize the expected PD of the considered species. It is easy to formulate the NAP as a (difficult) nonlinear 0-1 programming problem. The aim of this article is to show that a general version of the NAP (GNAP) can be solved simply and efficiently with any set of edge weights and any set of survival probabilities by using standard mixed-integer linear programming software. The crucial point to move from a nonlinear program in binary variables to a mixed-integer linear program, is to approximate the logarithmic function by the lower envelope of a set of tangents to the curve. Solving the obtained mixed-integer linear program provides not only a near-optimal solution but also an upper bound on the value of the optimal solution. We also applied this approach to a generalization of the nature reserve problem (GNRP) that consists of selecting a set of regions to be conserved so that the expected PD of the set of species present in these regions is maximized. In this case, the survival probabilities of different taxa are not independent of each other. Computational results are presented to illustrate potentialities of the approach. Near-optimal solutions with hypothetical phylogenetic trees comprising about 4000 taxa are obtained in a few seconds or minutes of computing time for the GNAP, and in about 30 min for the GNRP. In all the cases the average guarantee varies from 0% to 1.20%.

  13. Growth of four tropical tree species in petroleum-contaminated soil and effects of crude oil contamination.

    PubMed

    Pérez-Hernández, I; Ochoa-Gaona, S; Adams, R H; Rivera-Cruz, M C; Pérez-Hernández, V; Jarquín-Sánchez, A; Geissen, V; Martínez-Zurimendi, P

    2017-01-01

    Under greenhouse conditions, we evaluated establishment of four tree species and their capacity to degrade crude oil recently incorporated into the soil; the species were as follows: Cedrela odorata (tropical cedar), Haematoxylum campechianum (tinto bush), Swietenia macrophylla (mahogany), and Tabebuia rosea (macuilis). Three-month-old plants were planted in soil with three treatments of heavy petroleum and a control (C0 0 mg kg -1 ; C1 18,000 mg kg -1 ; C2 31,700 mg kg -1 ; C3 47,100 mg kg -1 ) with four repetitions per treatment and species; the experiment was carried out for 245 days. Height and biomass of all species significantly diminished as petroleum concentration increased, although plant survival was not affected. The quantity of colony-forming units (CFU) of rhizospheric bacteria varied among tree species and treatments; petroleum stimulated bacterial CFU for S. macrophylla. The number of fungi CFU for S. macrophylla and T. rosea was significantly greater in C0 than in soil with petroleum, but among species and among different concentrations, no significant differences were found. The greatest percentage of total petroleum hydrocarbon (TPH) degradation was found in C1 for soil without plants (45 %). Differences from the remaining treatments (petroleum concentrations in soil and plant species) were not significant (P < 0.05). Among all trees, H. campechianum had the greatest TPH degradation (32.5 % in C2). T. rosea (C1) and H. campechianum (C2) resulted in petroleum degradation at levels ranging from 20.5 to 32.5 %. On the basis of this experiment, the tree species used did not improve TPH degradation. However, all of them showed high rates of survival and vigor. So, as tree species provide goods and services, experiments with inoculation of hydrocarbonclastic microorganisms, addition of fertilizers, and mixture of tree and grasses are recommended.

  14. [The Application of the Fault Tree Analysis Method in Medical Equipment Maintenance].

    PubMed

    Liu, Hongbin

    2015-11-01

    In this paper, the traditional fault tree analysis method is presented, detailed instructions for its application characteristics in medical instrument maintenance is made. It is made significant changes when the traditional fault tree analysis method is introduced into the medical instrument maintenance: gave up the logic symbolic, logic analysis and calculation, gave up its complicated programs, and only keep its image and practical fault tree diagram, and the fault tree diagram there are also differences: the fault tree is no longer a logical tree but the thinking tree in troubleshooting, the definition of the fault tree's nodes is different, the composition of the fault tree's branches is also different.

  15. Multiplying Forest Garden Systems with biochar based organic fertilization for high carbon accumulation, improved water storage, nutrient cycling, and increased food diversity and farm productivity

    NASA Astrophysics Data System (ADS)

    Schmidt, Hans-Peter; Pandit, Bishnu Hari; Lucht, Wolfgang; Gerten, Dieter; Kammann, Claudia

    2017-04-01

    On abandoned, erosion prone terraces in the middle hills of Nepal, 86 participating farmer families planted >25,000 mixed trees in 2015/16. Since it was convincingly demonstrated by more than 20 field trials in this region that this was the most plant-growth promoting method, all trees were planted with farmer-made organic biochar-based fertilizer. Planting pits were mulched with rice straw and were pipe irrigated from newly established water retention ponds during the 7 months of the dry season. A peer control system of farmer triads ensured an efficient maintenance of the plantations. Tree survival rate was above 80% after one year compared to below 50% on average for countrywide forestation projects over the last 30 years. In between the young Cinnamon, Moringa, Mulberry, Lemon, Michelia, Paulownia, nut and other trees, other secondary crops were cultivated such as ginger, turmeric, black beans, onions, lentils, all with organic biochar-based fertilizer and mulching. The objective of this forest garden project was to establish robust social-agronomic systems that can be multiplied from village to village for increasing soil fertility, protecting abandoned terraces from erosion, replenishing natural water resources, generating a stable income with climate-smart agriculture, as well as capturing and sequestering atmospheric carbon. The initial financing of the set-up of the forest garden systems (tree nursery, plantation, preparation of organic biochar based fertilizer, mulching materials, building of irrigation pits and pipe irrigation system, and general maintenance) was covered by carbon credits paid in advance by the international community in the form of a monthly carbon compensation subscription. All planted trees are GIS inventoried and the yearly biomass carbon uptake will be calculated as an average value of the first ten years of tree growth. The 25,000 mixed trees accumulated the equivalent of 350 t CO2 per year (10 years total C-accumulation divided by 10 years). Besides covering the set-up costs, farmers received and continue to receive carbon payments for each survived tree during the first three years. Based on a voluntary carbon credit price of 35 USD per t CO2, the annual income of the farmers increase by 6 to 13% depending on their poverty level. After this initial period of three years, the income from tree crops (fruits, nuts, medicine, essential oil, silk, perfume, honey, timber, animal fodder) exceeds by far the (catalyzer) carbon credits (average crop income for the 25,000 trees including secondary mixed cropping > 150,000 USD). The trees will accumulate carbon for 15 to 75 years depending on the tree species. While trunk wood will be used for construction timber and thus continue to sequester carbon for probably 50 years. While part of the wood will be used for cooking, at least 50% of the tree biomass will be pyrolyzed to biochar to produce organic biochar-based fertilizers and for using the pyrolysis heat for the production of essential oil, pasteurization and fruit or tea leaves drying. Compared to the barren terraces, sparsely covered with grasses and prone to erosion, the forest garden system with organic biochar-based fertilizer, continuous soil cover, mulching, leaf litter fall, root growth and root exudates, rotating cover crops and animal pasture, soil organic carbon (SOC) is expected to increase annually. Therefore, for each participating farmer at least one land spot is GIS marked for soil organic carbon analysis to be executed every five years and to calculate and certify soil organic carbon increases for additional or bonus carbon credits. In our presentation we will show and document the establishment of the forest garden systems, and discuss the link between local carbon sequestration and global carbon markets, the carbon calculation and certification procedures, and the challenge for multiplying such systems inter-regional and internationally.

  16. Prediction of Mortality in Patients with Isolated Traumatic Subarachnoid Hemorrhage Using a Decision Tree Classifier: A Retrospective Analysis Based on a Trauma Registry System.

    PubMed

    Rau, Cheng-Shyuan; Wu, Shao-Chun; Chien, Peng-Chen; Kuo, Pao-Jen; Chen, Yi-Chun; Hsieh, Hsiao-Yun; Hsieh, Ching-Hua

    2017-11-22

    Background: In contrast to patients with traumatic subarachnoid hemorrhage (tSAH) in the presence of other types of intracranial hemorrhage, the prognosis of patients with isolated tSAH is good. The incidence of mortality in these patients ranges from 0-2.5%. However, few data or predictive models are available for the identification of patients with a high mortality risk. In this study, we aimed to construct a model for mortality prediction using a decision tree (DT) algorithm, along with data obtained from a population-based trauma registry, in a Level 1 trauma center. Methods: Five hundred and forty-five patients with isolated tSAH, including 533 patients who survived and 12 who died, between January 2009 and December 2016, were allocated to training ( n = 377) or test ( n = 168) sets. Using the data on demographics and injury characteristics, as well as laboratory data of the patients, classification and regression tree (CART) analysis was performed based on the Gini impurity index, using the rpart function in the rpart package in R. Results: In this established DT model, three nodes (head Abbreviated Injury Scale (AIS) score ≤4, creatinine (Cr) <1.4 mg/dL, and age <76 years) were identified as important determinative variables in the prediction of mortality. Of the patients with isolated tSAH, 60% of those with a head AIS >4 died, as did the 57% of those with an AIS score ≤4, but Cr ≥1.4 and age ≥76 years. All patients who did not meet the above-mentioned criteria survived. With all the variables in the model, the DT achieved an accuracy of 97.9% (sensitivity of 90.9% and specificity of 98.1%) and 97.7% (sensitivity of 100% and specificity of 97.7%), for the training set and test set, respectively. Conclusions: The study established a DT model with three nodes (head AIS score ≤4, Cr <1.4, and age <76 years) to predict fatal outcomes in patients with isolated tSAH. The proposed decision-making algorithm may help identify patients with a high risk of mortality.

  17. The use of compost in afforestation of Mediterranean areas: Effects on soil properties and young tree seedlings.

    PubMed

    Larchevêque, Marie; Ballini, Christine; Korboulewsky, Nathalie; Montès, Nicolas

    2006-10-01

    In Mediterranean frequently burnt areas, fire and erosion result in the decrease of soil fertility, so afforestation is a major concern. We carried out an in situ experiment of compost amendment to improve survival and growth of planted tree seedlings. One-year-tree seedlings of native species (Quercus ilex, Pinus halepensis and Pinus pinea) were planted on a frequently burnt calcareous site. Three rates of fresh co-composted sewage sludge and greenwastes (control without compost, 20 and 40 kg m(-2) of compost) were incorporated into the soil at each seedling stem. Changes of soil properties and tree development were studied during 3 years (2001-2003) and 2 years (2002-2003) respectively. The compost improved survival of Quercus ilex and Pinus pinea seedlings in severe drought conditions, but had no effect on Pinus halepensis. For all species seedling length and radial growth and NPK nutrition were increased for both rates of amendment. Amendment improved soil fertility, but available P concentration increased 13 fold in the neighbouring soil of seedlings amended at the maximal rate compared to control. However, amendment did not significantly increase concentrations of Cd, Cr, Ni and Pb in soils or tree seedlings. It increased Cu and Zn total and available concentrations in soils, while foliar Cu and Zn concentrations in the seedlings remained similar in all plots. Compost can efficiently help afforestation of dry soils with low organic matter content. However, sewage sludge concentrations in P, and to a lesser extent in Cu and Zn, limit rates of application that can be applied without environmental hazard.

  18. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level

    PubMed Central

    Einzmann, Helena J. R.; Beyschlag, Joachim; Hofhansl, Florian; Wanek, Wolfgang; Zotz, Gerhard

    2015-01-01

    The processes that govern diverse tropical plant communities have rarely been studied in life forms other than trees. Structurally dependent vascular epiphytes, a major part of tropical biodiversity, grow in a three-dimensional matrix defined by their hosts, but trees differ in their architecture, bark structure/chemistry and leaf phenology. We hypothesized that the resulting seasonal differences in microclimatic conditions in evergreen vs. deciduous trees would affect epiphytes at different levels, from organ physiology to community structure. We studied the influence of tree leaf phenology on vascular epiphytes on the Island of Barro Colorado, Panama. Five tree species were selected, which were deciduous, semi-deciduous or evergreen. The crowns of drought-deciduous trees, characterized by sunnier and drier microclimates, hosted fewer individuals and less diverse epiphyte assemblages. Differences were also observed at a functional level, e.g. epiphyte assemblages in deciduous trees had larger proportions of Crassulacean acid metabolism species and individuals. At the population level a drier microclimate was associated with lower individual growth and survival in a xerophytic fern. Some species also showed, as expected, lower specific leaf area and higher δ13C values when growing in deciduous trees compared with evergreen trees. As hypothesized, host tree leaf phenology influences vascular epiphytes at different levels. Our results suggest a cascading effect of tree composition and associated differences in tree phenology on the diversity and functioning of epiphyte communities in tropical lowland forests. PMID:25392188

  19. Co-occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought.

    PubMed

    Johnson, Daniel M; Domec, Jean-Christophe; Carter Berry, Z; Schwantes, Amanda M; McCulloh, Katherine A; Woodruff, David R; Wayne Polley, H; Wortemann, Remí; Swenson, Jennifer J; Scott Mackay, D; McDowell, Nate G; Jackson, Robert B

    2018-03-01

    From 2011 to 2013, Texas experienced its worst drought in recorded history. This event provided a unique natural experiment to assess species-specific responses to extreme drought and mortality of four co-occurring woody species: Quercus fusiformis, Diospyros texana, Prosopis glandulosa, and Juniperus ashei. We examined hypothesized mechanisms that could promote these species' diverse mortality patterns using postdrought measurements on surviving trees coupled to retrospective process modelling. The species exhibited a wide range of gas exchange responses, hydraulic strategies, and mortality rates. Multiple proposed indices of mortality mechanisms were inconsistent with the observed mortality patterns across species, including measures of the degree of iso/anisohydry, photosynthesis, carbohydrate depletion, and hydraulic safety margins. Large losses of spring and summer whole-tree conductance (driven by belowground losses of conductance) and shallower rooting depths were associated with species that exhibited greater mortality. Based on this retrospective analysis, we suggest that species more vulnerable to drought were more likely to have succumbed to hydraulic failure belowground. © 2018 John Wiley & Sons Ltd.

  20. Application of random survival forests in understanding the determinants of under-five child mortality in Uganda in the presence of covariates that satisfy the proportional and non-proportional hazards assumption.

    PubMed

    Nasejje, Justine B; Mwambi, Henry

    2017-09-07

    Uganda just like any other Sub-Saharan African country, has a high under-five child mortality rate. To inform policy on intervention strategies, sound statistical methods are required to critically identify factors strongly associated with under-five child mortality rates. The Cox proportional hazards model has been a common choice in analysing data to understand factors strongly associated with high child mortality rates taking age as the time-to-event variable. However, due to its restrictive proportional hazards (PH) assumption, some covariates of interest which do not satisfy the assumption are often excluded in the analysis to avoid mis-specifying the model. Otherwise using covariates that clearly violate the assumption would mean invalid results. Survival trees and random survival forests are increasingly becoming popular in analysing survival data particularly in the case of large survey data and could be attractive alternatives to models with the restrictive PH assumption. In this article, we adopt random survival forests which have never been used in understanding factors affecting under-five child mortality rates in Uganda using Demographic and Health Survey data. Thus the first part of the analysis is based on the use of the classical Cox PH model and the second part of the analysis is based on the use of random survival forests in the presence of covariates that do not necessarily satisfy the PH assumption. Random survival forests and the Cox proportional hazards model agree that the sex of the household head, sex of the child, number of births in the past 1 year are strongly associated to under-five child mortality in Uganda given all the three covariates satisfy the PH assumption. Random survival forests further demonstrated that covariates that were originally excluded from the earlier analysis due to violation of the PH assumption were important in explaining under-five child mortality rates. These covariates include the number of children under the age of five in a household, number of births in the past 5 years, wealth index, total number of children ever born and the child's birth order. The results further indicated that the predictive performance for random survival forests built using covariates including those that violate the PH assumption was higher than that for random survival forests built using only covariates that satisfy the PH assumption. Random survival forests are appealing methods in analysing public health data to understand factors strongly associated with under-five child mortality rates especially in the presence of covariates that violate the proportional hazards assumption.

  1. The Sooner the Better? How Symptom Interval Correlates With Outcome in Children and Adolescents With Solid Tumors: Regression Tree Analysis of the Findings of a Prospective Study.

    PubMed

    Ferrari, Andrea; Lo Vullo, Salvatore; Giardiello, Daniele; Veneroni, Laura; Magni, Chiara; Clerici, Carlo Alfredo; Chiaravalli, Stefano; Casanova, Michela; Luksch, Roberto; Terenziani, Monica; Spreafico, Filippo; Meazza, Cristina; Catania, Serena; Schiavello, Elisabetta; Biassoni, Veronica; Podda, Marta; Bergamaschi, Luca; Puma, Nadia; Massimino, Maura; Mariani, Luigi

    2016-03-01

    The potential impact of diagnostic delays on patients' outcomes is a debated issue in pediatric oncology and discordant results have been published so far. We attempted to tackle this issue by analyzing a prospective series of 351 consecutive children and adolescents with solid malignancies using innovative statistical tools. To address the nonlinear complexity of the association between symptom interval and overall survival (OS), a regression tree algorithm was constructed with sequential binary splitting rules and used to identify homogeneous patient groups vis-à-vis functional relationship between diagnostic delay and OS. Three different groups were identified: group A, with localized disease and good prognosis (5-year OS 85.4%); group B, with locally or regionally advanced, or metastatic disease and intermediate prognosis (5-year OS 72.9%), including neuroblastoma, Wilms tumor, non-rhabdomyosarcoma soft tissue sarcoma, and germ cell tumor; and group C, with locally or regionally advanced, or metastatic disease and poor prognosis (5-year OS 45%), including brain tumors, rhabdomyosarcoma, and bone sarcoma. The functional relationship between symptom interval and mortality risk differed between the three subgroups, there being no association in group A (hazard ratio [HR]: 0.96), a positive linear association in group B (HR: 1.48), and a negative linear association in group C (HR: 0.61). Our analysis suggests that at least a subset of patients can benefit from an earlier diagnosis in terms of survival. For others, intrinsic aggressiveness may mask the potential effect of diagnostic delays. Based on these findings, early diagnosis should remain a goal for pediatric cancer patients. © 2015 Wiley Periodicals, Inc.

  2. The economic effect of extracorporeal membrane oxygenation to support adults with severe respiratory failure in Brazil: a hypothetical analysis

    PubMed Central

    Park, Marcelo; Mendes, Pedro Vitale; Zampieri, Fernando Godinho; Azevedo, Luciano Cesar Pontes; Costa, Eduardo Leite Vieira; Antoniali, Fernando; Ribeiro, Gustavo Calado de Aguiar; Caneo, Luiz Fernando; da Cruz Neto, Luiz Monteiro; Carvalho, Carlos Roberto Ribeiro; Trindade, Evelinda Marramon

    2014-01-01

    Objective To analyze the cost-utility of using extracorporeal oxygenation for patients with severe acute respiratory distress syndrome in Brazil. Methods A decision tree was constructed using databases from previously published studies. Costs were taken from the average price paid by the Brazilian Unified Health System (Sistema Único de Saúde; SUS) over three months in 2011. Using the data of 10,000,000 simulated patients with predetermined outcomes and costs, an analysis was performed of the ratio between cost increase and years of life gained, adjusted for quality (cost-utility), with survival rates of 40 and 60% for patients using extracorporeal membrane oxygenation. Results The decision tree resulted in 16 outcomes with different life support techniques. With survival rates of 40 and 60%, respectively, the increased costs were R$=-301.00/-14.00, with a cost of R$=-30,913.00/-1,752.00 paid per six-month quality-adjusted life-year gained and R$=-2,386.00/-90.00 per quality-adjusted life-year gained until the end of life, when all patients with severe ARDS were analyzed. Analyzing only patients with severe hypoxemia (i.e., a ratio of partial oxygen pressure in the blood to the fraction of inspired oxygen <100mmHg), the increased cost was R$=-5,714.00/272.00, with a cost per six-month quality-adjusted life-year gained of R$=-9,521.00/293.00 and a cost of R$=-280.00/7.00 per quality-adjusted life-year gained. Conclusion The cost-utility ratio associated with the use of extracorporeal membrane oxygenation in Brazil is potentially acceptable according to this hypothetical study. PMID:25295819

  3. Larval Survival and Growth of Emerald Ash Borer (Coleoptera: Buprestidae) on White Ash and White Fringetree Saplings Under Well-Watered and Water-Deficit Conditions.

    PubMed

    Rutledge, Claire E; Arango-Velez, Adriana

    2017-04-01

    Emerald ash borer (Agrilus planipennis Fairmaire) was recently found on a novel host in North America, white fringetree (Chionanthus virginicus L.) (Oleaceae). In this study, we artificially infested 4-yr-old, naïve white fringetree and white ash (Fraxinus americana L.) saplings under well-watered and water-deficit conditions with emerald ash borer eggs. We used physiological and phenotypical approaches to investigate both plant response to emerald ash borer and insect development at 21, 36, and 61 d postinfestation. Photosynthesis was reduced in both tree species by larval feeding, but not by water deficits. Emerald ash borer larvae established and survived successfully on white ash. Both establishment and survival were lower on white fringetree than on white ash. Larvae were larger, and had reached higher instars at all three time points on white ash than on white fringetrees. Larvae grew faster in white ash under water-deficit conditions; however, water-deficit conditions negatively impacted survival of larvae at 61 d postinfestation in white fringetrees, although head size did not differ among surviving larvae. White ash showed higher callus formation in well-watered trees, but no impact on larval survival was observed. In white fringetree, callus formation was not affected by water treatment, and was inversely related to larval survival. The higher rate of mortality and slow growth rate of larvae in white fringetree as compared to white ash suggest that populations of emerald ash borer may be sustained by white fringetree, but may grow more slowly than in white ash. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Fiber, food, fuel, and fungal symbionts.

    PubMed

    Ruehle, J L; Marx, D H

    1979-10-26

    Virtually all plants of economic importance form mycorrhizae. These absorbing organs of higher plants result from a symbiotic union of beneficial soil fungi and feeder roots. In forestry, the manipulation of fungal symbionts ecologically adapted to the planting site can increase survival and growth of forest trees, particularly on adverse sites. Vesicular-arbuscular mycorrhizae, which occur not only on many trees but also on most cultivated crops, are undoubtedly more important to world food crops. Imperatives for mycorrhizal research in forestry and agriculture are (i) the development of mass inoculum of mycorrhizal fungi, (ii) the interdisciplinary coordination with soil management, plant breeding, cultivation practices, and pest control to ensure maximum survival and development of fungal symbionts in the soil, and (iii) the institution of nursery and field tests to determine the circumstances in which mycorrhizae benefit plant growth in forestry and agri-ecosystems.

  5. Overwintering biology and limits of cold tolerance in larvae of pistachio twig borer, Kermania pistaciella.

    PubMed

    Mollaei, M; Izadi, H; Šimek, P; Koštál, V

    2016-08-01

    Pistachio twig borer, Kermania pistaciella is an important pest of pistachio trees. It has an univoltine life-cycle and its larvae tunnel and feed inside pistachio twigs for almost 10 months each year. The last larval instars overwinter inside the twigs. Survival/mortality associated with low temperatures during overwintering stage is currently unknown. We found that overwintering larvae of the Rafsanjan (Iran) population of K. pistaciella rely on maintaining a stably high supercooling capacity throughout the cold season. Their supercooling points (SCPs) ranged between -19.4 and -22.7°C from October to February. Larvae were able to survive 24 h exposures to -15°C anytime during the cold season. During December and January, larvae were undergoing quiescence type of dormancy caused probably by low ambient temperatures and/or changes in host tree physiology (tree dormancy). Larvae attain highest cold tolerance (high survival at -20°C) during dormancy, which offers them sufficient protection against geographically and ecologically relevant cold spells. High cold tolerance during dormancy was not associated with accumulation of any low-molecular mass cryoprotective substances. The SCP sets the limit of cold tolerance in pistachio twig borer, meaning that high mortality of overwintering populations can be expected only in the regions or years where or when the temperatures fall below the average larval SCP (i.e., below -20°C). Partial mortality can be expected also when temperatures repeatedly drop close to the SCP on a diurnal basis.

  6. How does synchrony with host plant affect the performance of an outbreaking insect defoliator?

    PubMed

    Fuentealba, Alvaro; Pureswaran, Deepa; Bauce, Éric; Despland, Emma

    2017-08-01

    Phenological mismatch has been proposed as a key mechanism by which climate change can increase the severity of insect outbreaks. Spruce budworm (Choristoneura fumiferana) is a serious defoliator of North American conifers that feeds on buds in the early spring. Black spruce (Picea mariana) has traditionally been considered a poor-quality host plant since its buds open later than those of the preferred host, balsam fir (Abies balsamea). We hypothesize that advancing black spruce budbreak phenology under a warmer climate would improve its phenological synchrony with budworm and hence increase both its suitability as a host plant and resulting defoliation damage. We evaluated the relationship between tree phenology and both budworm performance and tree defoliation by placing seven cohorts of budworm larvae on black spruce and balsam fir branches at different lags with tree budburst. Our results show that on both host plants, spruce budworm survival and pupal mass decrease sharply when budbreak occurs prior to larval emergence. By contrast, emergence before budbreak decreases survival, but does not negatively impact growth or reproductive output. We also document phytochemical changes that occur as needles mature and define a window of opportunity for the budworm. Finally, larvae that emerged in synchrony with budbreak had the greatest defoliating effect on black spruce. Our results suggest that in the event of advanced black spruce phenology due to climate warming, this host species will support better budworm survival and suffer increased defoliation.

  7. Paludification and forest retreat in northern oceanic environments.

    PubMed

    Crawford, R M M; Jeffree, C E; Rees, W G

    2003-01-01

    Examination of temperature variations over the past century for Europe and the Arctic from northern Norway to Siberia suggests that variations in the North Atlantic Oscillation are associated with an increase in oceanicity in certain maritime regions. A southward depression of the tree line in favour of wet heaths, bogs and wetland tundra communities is also observed in northern oceanic environments. The physiological basis for this change in ecological succession from forest to bog is discussed in relation to the long-term effects of flooding on tree survival. The heightened values currently detected in the North Atlantic Oscillation Index, together with rising winter temperatures, and increased rainfall in many areas in northern Europe, presents an increasing risk of paludification with adverse consequences for forest regeneration, particularly in areas with oceanic climates. Climatic warming in oceanic areas may increase the area covered by bogs and, contrary to general expectations, lead to a retreat rather than an advance in the northern limit of the boreal forest. High water-table levels are not automatically detrimental to forest survival as can be seen in swamp, bottom land and mangrove forests. Consequently, the inhibitory effects of flooding on tree survival and regeneration in northern regions should not be uncritically accepted as merely due to high water levels. Evidence is discussed which suggests that physiological and ecological factors may interact to inhibit forest regeneration in habitats where there is a risk of prolonged winter-flooding combined with warmer winters and cool moist summers.

  8. The Crescent Bypass: A Riparian Restoration Project on the Kings River (Fresno County)

    Treesearch

    Jonathan A. Oldham; Bradley E. Valentine

    1989-01-01

    The Kings River Conservation District planted over 1200 plants of 19 riparian species in the first of two phases of a riparian revegetation project in the San Joaquin Valley. To date, tree survival rates vary from 17 to 96 percent among species, with an overall rate of 62 percent. Shrub survival averages 57 percent and ranges from 23 to 73 percent. Factors affecting...

  9. Allocation strategies of savanna and forest tree seedlings in response to fire and shading: outcomes of a field experiment

    NASA Astrophysics Data System (ADS)

    Gignoux, Jacques; Konaté, Souleymane; Lahoreau, Gaëlle; Le Roux, Xavier; Simioni, Guillaume

    2016-12-01

    The forest-savanna ecotone may be very sharp in fire-prone areas. Fire and competition for light play key roles in its maintenance, as forest and savanna tree seedlings are quickly excluded from the other ecosystem. We hypothesized a tradeoff between seedling traits linked to fire resistance and to competition for light to explain these exclusions. We compared growth- and survival-related traits of two savanna and two forest species in response to shading and fire in a field experiment. To interpret the results, we decomposed our broad hypothesis into elementary tradeoffs linked to three constraints, biomass allocation, plant architecture, and shade tolerance, that characterize both savanna and adjacent forest ecosystems. All seedlings reached similar biomasses, but forest seedlings grew taller. Savanna seedlings better survived fire after topkill and required ten times less biomass than forest seedlings to survive. Finally, only savanna seedlings responded to shading. Although results were consistent with the classification of our species as mostly adapted to shade tolerance, competition for light in the open, and fire tolerance, they raised new questions: how could savanna seedlings survive better with a 10-times lower biomass than forest seedlings? Is their shade intolerance sufficient to exclude them from forest understory?

  10. Desert wildfire and severe drought diminish survivorship of the long-lived Joshua Tree (Yucca brevifolia; Agavaceae)

    USGS Publications Warehouse

    DeFalco, L.A.; Esque, T.C.; Scoles-Sciulla, S. J.; Rodgers, J.

    2010-01-01

    Extreme climate events are transforming plant communities in the desert Southwest of the United States. Abundant precipitation in 1998 associated with El Ni??o Southern Oscillation (ENSO) stimulated exceptional alien annual plant production in the Mojave Desert that fueled wildfires in 1999. Exacerbated by protracted drought, 80% of the burned Yucca brevifolia, a long-lived arborescent monocot, and 26% of unburned plants died at Joshua Tree National Park by 2004. Many burned plants < 1 m tall died immediately, and survival of all but the tallest, oldest plants declined to the same low level by 2004. Postfire sprouting prolonged survival, but only at the wetter, high-elevation sites. During succeeding dry years, herbaceous plants were scarce, and individuals of Thomomys bottae (pocket gopher) gnawed the periderm and hollowed stems of Y. brevifolia causing many of them to topple. Thomomys bottae damage reduced plant survivorship at low-elevation, unburned sites and diminished survival of burned plants in all but the driest site, which already had low survival. Accentuated ENSO episodes and more frequent wildfires are expected for the desert Southwest and will likely shift Y. brevifolia population structure toward tall, old adults with fewer opportunities for plant recruitment, thus imperiling the persistence of this unique plant community.

  11. Ensemble survival tree models to reveal pairwise interactions of variables with time-to-events outcomes in low-dimensional setting

    PubMed Central

    Dazard, Jean-Eudes; Ishwaran, Hemant; Mehlotra, Rajeev; Weinberg, Aaron; Zimmerman, Peter

    2018-01-01

    Unraveling interactions among variables such as genetic, clinical, demographic and environmental factors is essential to understand the development of common and complex diseases. To increase the power to detect such variables interactions associated with clinical time-to-events outcomes, we borrowed established concepts from random survival forest (RSF) models. We introduce a novel RSF-based pairwise interaction estimator and derive a randomization method with bootstrap confidence intervals for inferring interaction significance. Using various linear and nonlinear time-to-events survival models in simulation studies, we first show the efficiency of our approach: true pairwise interaction-effects between variables are uncovered, while they may not be accompanied with their corresponding main-effects, and may not be detected by standard semi-parametric regression modeling and test statistics used in survival analysis. Moreover, using a RSF-based cross-validation scheme for generating prediction estimators, we show that informative predictors may be inferred. We applied our approach to an HIV cohort study recording key host gene polymorphisms and their association with HIV change of tropism or AIDS progression. Altogether, this shows how linear or nonlinear pairwise statistical interactions of variables may be efficiently detected with a predictive value in observational studies with time-to-event outcomes. PMID:29453930

  12. Ensemble survival tree models to reveal pairwise interactions of variables with time-to-events outcomes in low-dimensional setting.

    PubMed

    Dazard, Jean-Eudes; Ishwaran, Hemant; Mehlotra, Rajeev; Weinberg, Aaron; Zimmerman, Peter

    2018-02-17

    Unraveling interactions among variables such as genetic, clinical, demographic and environmental factors is essential to understand the development of common and complex diseases. To increase the power to detect such variables interactions associated with clinical time-to-events outcomes, we borrowed established concepts from random survival forest (RSF) models. We introduce a novel RSF-based pairwise interaction estimator and derive a randomization method with bootstrap confidence intervals for inferring interaction significance. Using various linear and nonlinear time-to-events survival models in simulation studies, we first show the efficiency of our approach: true pairwise interaction-effects between variables are uncovered, while they may not be accompanied with their corresponding main-effects, and may not be detected by standard semi-parametric regression modeling and test statistics used in survival analysis. Moreover, using a RSF-based cross-validation scheme for generating prediction estimators, we show that informative predictors may be inferred. We applied our approach to an HIV cohort study recording key host gene polymorphisms and their association with HIV change of tropism or AIDS progression. Altogether, this shows how linear or nonlinear pairwise statistical interactions of variables may be efficiently detected with a predictive value in observational studies with time-to-event outcomes.

  13. Tree recruitment and survival in rivers: Influence of hydrological process

    USGS Publications Warehouse

    Dorava, J.M.; Milner, A.M.

    2000-01-01

    The findings of a 14-year study of tree reproduction and survival in the Platte River, Nebraska, are presented. The study was initiated in 1985 to determine the causes and remedies of woodland expansion and channel narrowing, which have reduced potential roosting habitat for migratory avifauna such as the whooping crane and sandhill crane. A total of 296 relocatable sites, constituting some 600 plots with Populus and Salix seedlings, was selected and sampled within two reaches near Shelton and Odessa, Nebraska. The fate of some 37 000 tree seedlings was monitored within the plot network. Tree recruitment is controlled largely by stream flow in June. Populus and Salix produce large numbers of seedlings in the river bed in most years, indicating the potential for high rates of woodland expansion. On average, in only 1 year in 7 is stream flow in June high enough to preclude Populus and Salix recruitment. Seedling mortality is dominated by two environmental factors: summer stream flow pulses from thunderstorms, which erode or bury new germinants, and river bed restructuring by moving ice in winter. A third factor, seedling mortality by desiccation during summer droughts, does occur but at a low frequency. Plots of seedlings had extremely low survival rates over the course of the study. Forty-two per cent of the plots lost all seedlings by the first remeasurement (July to September), 36% by the second measurement (May), and 10% by the third remeasurement (July). Thus nearly 90% of the plots had lost all tree seedlings by the end of the first year. These results explain why the Platte River has come into dynamic equilibrium with respect to the balance between active channel and woodland area. Low rates of new woodland expansion are counterbalanced by erosion of established woodland. The demographic approach to studying ecohydrology can be adapted to monitor the effectiveness of prescribed flows as insurance against future narrowing. Flows prescribed at key times to raise seedling mortality rates are recommended to maintain or widen channels, rather than mechanical clearing of established woodland. Copyright ?? 2000 John Wiley & Sons, Ltd.

  14. Tree recruitment and survival in rivers: influence of hydrological processes

    NASA Astrophysics Data System (ADS)

    Carter Johnson, W.

    2000-10-01

    The findings of a 14-year study of tree reproduction and survival in the Platte River, Nebraska, are presented. The study was initiated in 1985 to determine the causes and remedies of woodland expansion and channel narrowing, which have reduced potential roosting habitat for migratory avifauna such as the whooping crane and sandhill crane.A total of 296 relocatable sites, constituting some 600 plots with Populus and Salix seedlings, was selected and sampled within two reaches near Shelton and Odessa, Nebraska. The fate of some 37 000 tree seedlings was monitored within the plot network.Tree recruitment is controlled largely by stream flow in June. Populus and Salix produce large numbers of seedlings in the river bed in most years, indicating the potential for high rates of woodland expansion. On average, in only 1 year in 7 is stream flow in June high enough to preclude Populus and Salix recruitment.Seedling mortality is dominated by two environmental factors: summer stream flow pulses from thunderstorms, which erode or bury new germinants, and river bed restructuring by moving ice in winter. A third factor, seedling mortality by desiccation during summer droughts, does occur but at a low frequency.Plots of seedlings had extremely low survival rates over the course of the study. Forty-two per cent of the plots lost all seedlings by the first remeasurement (July to September), 36% by the second measurement (May), and 10% by the third remeasurement (July). Thus nearly 90% of the plots had lost all tree seedlings by the end of the first year.

  15. Inhibition of seedling survival under Rhododendron maximum (Ericaceae): could allelopathy be a cause?

    PubMed

    Nilsen, E T; Walker, J F; Miller, O K; Semones, S W; Lei, T T; Clinton, B D

    1999-11-01

    In the southern Appalachian mountains a subcanopy species, Rhododendron maximum, inhibits the establishment and survival of canopy tree seedlings. One of the mechanisms by which seedlings could be inhibited is an allelopathic effect of decomposing litter or leachate from the canopy of R. maximum (R.m.) on seed germination, root elongation, or mycorrhizal colonization. The potential for allelopathy by R.m. was tested with two bioassay species (lettuce and cress), with seeds from four native tree species, and with three ectomycorrhizal fungi. Inhibitory influences of throughfall, fresh litter, and decomposed litter (organic layer) from forest with R.m. (+R.m. sites) were compared to similar extractions made from forest without R.m. (-R.m. sites). Throughfall and leachates of the organic layer from both +R.m. and -R.m. sites stimulated germination of the bioassay species above that of the distilled water control, to a similar extent. There was an inhibitory effect of leachates of litter from +R.m. sites on seed germination and root elongation rate of both bioassay species compared with that of litter from -R.m. sites. Native tree seed stratified in forest floor material from both forest types had a slightly higher seed germination rate compared with the control. A 2-yr study of seed germination and seedling mortality of two tree species, Quercus rubra and Prunus serotina, in field plots showed no significant influence of litter or organic layer from either forest type. Incorporating R.m. leaf material into the growth medium in vitro depressed growth of one ectomycorrhizal species but did not affect two other species. Leaf material from other deciduous tree species depressed ectomycorrhizal growth to a similar or greater extent as leaf material from R.m. In conclusion, R.m. litter can have an allelopathic effect on seed germination and root elongation of bioassay species as well as some ectomycorrhizal species. However, this allelopathic affect is not manifest in field sites and is not likely to be an important cause for the inhibition of seedling survival within thickets of R.m.

  16. Seasonal water stress tolerance and habitat associations within four neotropical tree genera.

    PubMed

    Baraloto, Christopher; Morneau, François; Bonal, Damien; Blanc, Lilian; Ferry, Bruno

    2007-02-01

    We investigated the relationship between habitat association and physiological performance in four congeneric species pairs exhibiting contrasting distributions between seasonally flooded and terra firme habitats in lowland tropical rain forests of French Guiana, including Virola and Iryanthera (Myristicaceae), Symphonia (Clusiaceae), and Eperua (Caesalpiniaceae). We analyzed 10-year data sets of mapped and measured saplings (stems >150 cm in height and <10 cm diameter at breast height [dbh]) and trees (stems > or =10 cm dbh) across 37.5 ha of permanent plots covering a 300-ha zone, within which seasonally flooded areas (where the water table never descends below 1 m) have been mapped. Additionally, we tested the response of growth, survival, and leaf functional traits of these species to drought and flood stress in a controlled experiment. We tested for habitat preference using a modification of the torus translation method. Strong contrasting associations of the species pairs of Iryanthera, Virola, and Symphonia were observed at the sapling stage, and these associations strengthened for the tree stage. Neither species of Eperua was significantly associated with flooded habitats at the sapling stage, but E. falcata was significantly and positively associated with flooded forests at the tree stage, and trees of E. grandiflora were found almost exclusively in nonflooded habitats. Differential performance provided limited explanatory support for the observed habitat associations, with only congeners of Iryanthera exhibiting divergent sapling survival and tree growth. Seedlings of species associated with flooded forest tended to have higher photosynthetic capacity than their congeners at field capacity. In addition, they tended to have the largest reductions in leaf gas exchange and growth rate in response to experimental drought stress and the least reductions in response to experimental inundation. The corroboration of habitat association with differences in functional traits and, to a lesser extent, measures of performance provides an explanation for the regional coexistence of these species pairs. We suggest that specialization to seasonally flooded habitats may explain patterns of adaptive radiation in many tropical tree genera and thereby provide a substantial contribution to regional tree diversity.

  17. Pre and post PET-CT impact on oesophageal cancer management: a retrospective analysis.

    NASA Astrophysics Data System (ADS)

    Azmi, NA; Razak, HRA; Vinjamuri, S.

    2017-05-01

    Assessment of the retrospective cancer incidence, prevalence and crude survival rates of oesophageal cancer to allow comparison between pre and post PET-CT introduction are part of 4 phase cost effectiveness research. It will provide baseline data for to assess PET or PET-CT cost effective potential for staging. A total of 849 patient’s data received from NWCIS databases with various stages of oesophageal cancer between 2001 and 2008. The fundamental activities are retrospective analysis of patient data. In most cases where appropriate, results are presented with 95 percent confidence intervals (CI). Variances between patient groups and variables are assessed using chi-square test. In cases where it deems vital, multiple logistic regression are used to modify for potential confounder such as age and sex. All p-values are two-sided and any value lower than 0.05 were considered to suggest a statistically significant result. Retrospective analysis were categorised into two categories, patients from 2001-2003 considered as pre PET and post PET for 2004-2008. This categorisation allows better comparison of patients’ survival trend to be made between both groups. Rates are presented in percentages and being grouped by tumour characteristics and other variables associated with demographic profile, diagnosis, staging and treatment. Results allowed comparison of oesophageal cancer trends between the pre and post PET-CT introduction such as changes in incidence rate or changes in survival. These data were used to normalise the decision tree model so that cost-effectiveness analysis can be performed across the whole population.

  18. Use and Selection of Sleeping Sites by Proboscis Monkeys, Nasalislarvatus, along the Kinabatangan River, Sabah, Malaysia.

    PubMed

    Thiry, Valentine; Stark, Danica J; Goossens, Benoît; Slachmuylder, Jean-Louis; Vercauteren Drubbel, Régine; Vercauteren, Martine

    2016-01-01

    The choice of a sleeping site is crucial for primates and may influence their survival. In this study, we investigated several tree characteristics influencing the sleeping site selection by proboscis monkeys (Nasalis larvatus) along Kinabatangan River, in Sabah, Malaysia. We identified 81 sleeping trees used by one-male and all-male social groups from November 2011 to January 2012. We recorded 15 variables for each tree. Within sleeping sites, sleeping trees were taller, had a larger trunk, with larger and higher first branches than surrounding trees. The crown contained more mature leaves, ripe and unripe fruits but had vines less often than surrounding trees. In addition, in this study, we also focused on a larger scale, considering sleeping and non-sleeping sites. Multivariate analyses highlighted a combination of 6 variables that revealed the significance of sleeping trees as well as surrounding trees in the selection process. During our boat surveys, we observed that adult females and young individuals stayed higher in the canopy than adult males. This pattern may be driven by their increased vulnerability to predation. Finally, we suggest that the selection of particular sleeping tree features (i.e. tall, high first branch) by proboscis monkeys is mostly influenced by antipredation strategies. © 2016 S. Karger AG, Basel.

  19. Seedling transplants reveal species-specific responses of high-elevation tropical treeline trees to climate change.

    PubMed

    Rehm, Evan M; Feeley, Kenneth J

    2016-08-01

    The elevations at which tropical treelines occur are believed to represent the point where low mean temperatures limit the growth of upright woody trees. Consequently, tropical treelines are predicted to shift to higher elevations with global warming. However, treelines throughout the tropics have remained stationary despite increasing global mean temperatures. The goal of the study reported here was to build a more comprehensive understanding of the effects of mean temperature, low-temperature extremes, shading, and their interactions on seedling survival at tropical treelines. We conducted a seedling transplant study using three dominant canopy-forming treeline species in the southern tropical Andes. We found species-specific differences and contrasting responses in seedling survival to changes in mean temperature. The most abundant naturally occurring species at the seedling stage outside the treeline, Weinmannia fagaroides, showed a negative relationship between the survival of transplanted seedlings and mean temperature, the opposite of a priori expectations. Conversely, Clethra cuneata showed increased survival at higher mean temperatures, but survival also increased with higher absolute low temperatures and the presence of shade. Finally, the survival of Gynoxys nitida seedlings was insensitive to temperature but increased under shade. These findings show that multiple factors can determine the upper distributional limit of species forming the current tropical treeline. As such, predictions of future local and regional tropical treeline shifts may need to consider several factors beyond changes in mean temperature. If the treeline remains stationary and cloud forests are unable to expand into higher elevations, there may be severe species loss in this biodiversity hotspot.

  20. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem.

    PubMed

    Seely, Brad; Welham, Clive; Scoullar, Kim

    2015-01-01

    Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine) for established stands due to increased moisture stress mortality.

  1. Seabird nutrient subsidies benefit non-nitrogen fixing trees and alter species composition in South American coastal dry forests.

    PubMed

    Havik, Gilles; Catenazzi, Alessandro; Holmgren, Milena

    2014-01-01

    Marine-derived nutrients can increase primary productivity and change species composition of terrestrial plant communities in coastal and riverine ecosystems. We hypothesized that sea nutrient subsidies have a positive effect on nitrogen assimilation and seedling survival of non-nitrogen fixing species, increasing the relative abundance of non-nitrogen fixing species close to seashore. Moreover, we proposed that herbivores can alter the effects of nutrient supplementation by preferentially feeding on high nutrient plants. We studied the effects of nutrient fertilization by seabird guano on tree recruitment and how these effects can be modulated by herbivorous lizards in the coastal dry forests of northwestern Peru. We combined field studies, experiments and stable isotope analysis to study the response of the two most common tree species in these forests, the nitrogen-fixing Prosopis pallida and the non-nitrogen-fixing Capparis scabrida. We did not find differences in herbivore pressure along the sea-inland gradient. We found that the non-nitrogen fixing C. scabrida assimilates marine-derived nitrogen and is more abundant than P. pallida closer to guano-rich soil. We conclude that the input of marine-derived nitrogen through guano deposited by seabirds feeding in the Pacific Ocean affects the two dominant tree species of the coastal dry forests of northern Peru in contrasting ways. The non-nitrogen fixing species, C. scabrida may benefit from sea nutrient subsidies by incorporating guano-derived nitrogen into its foliar tissues, whereas P. pallida, capable of atmospheric fixation, does not.

  2. Seabird Nutrient Subsidies Benefit Non-Nitrogen Fixing Trees and Alter Species Composition in South American Coastal Dry Forests

    PubMed Central

    Havik, Gilles; Catenazzi, Alessandro; Holmgren, Milena

    2014-01-01

    Marine-derived nutrients can increase primary productivity and change species composition of terrestrial plant communities in coastal and riverine ecosystems. We hypothesized that sea nutrient subsidies have a positive effect on nitrogen assimilation and seedling survival of non-nitrogen fixing species, increasing the relative abundance of non-nitrogen fixing species close to seashore. Moreover, we proposed that herbivores can alter the effects of nutrient supplementation by preferentially feeding on high nutrient plants. We studied the effects of nutrient fertilization by seabird guano on tree recruitment and how these effects can be modulated by herbivorous lizards in the coastal dry forests of northwestern Peru. We combined field studies, experiments and stable isotope analysis to study the response of the two most common tree species in these forests, the nitrogen-fixing Prosopis pallida and the non-nitrogen-fixing Capparis scabrida. We did not find differences in herbivore pressure along the sea-inland gradient. We found that the non-nitrogen fixing C. scabrida assimilates marine-derived nitrogen and is more abundant than P. pallida closer to guano-rich soil. We conclude that the input of marine-derived nitrogen through guano deposited by seabirds feeding in the Pacific Ocean affects the two dominant tree species of the coastal dry forests of northern Peru in contrasting ways. The non-nitrogen fixing species, C. scabrida may benefit from sea nutrient subsidies by incorporating guano-derived nitrogen into its foliar tissues, whereas P. pallida, capable of atmospheric fixation, does not. PMID:24466065

  3. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem

    PubMed Central

    Seely, Brad; Welham, Clive; Scoullar, Kim

    2015-01-01

    Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine) for established stands due to increased moisture stress mortality. PMID:26267446

  4. Savanna chimpanzee (Pan troglodytes verus) nesting ecology at Bagnomba (Kedougou, Senegal).

    PubMed

    Badji, L; Ndiaye, P I; Lindshield, S M; Ba, C T; Pruetz, J D

    2018-05-01

    We studied the nesting behavior of the critically endangered West African chimpanzee (Pan troglodytes verus). We assumed that the nesting data stemmed from a single, unhabituated community at the Bagnomba hill site in the savanna-woodlands of southeastern Senegal. The aim of this study was to examine chimpanzees' nesting habits in terms of the tree species utilized and sleeping nest heights. We recorded a total of 550 chimpanzee nests at Bagnomba between January 2015 and December 2015. The chimpanzees here made nests in particular tree species more often than others. The majority of nests (63%) were in two tree species: Diospyros mespiliformis and Pterocarpus erinaceus. The average height of nesting trees was 10.54 m (SD 3.91, range, 0.0-29.0 m) and average nest height was 7.90 m (SD 3.62, range, 0.0-25.0 m). The result of a linear regression analysis (r = 0.7874; n = 550; p < 0.05) is consistent with a preference for nesting at a particular height. Bagnomba chimpanzees rarely made ground nests (0.36% of nests), but the presence of any ground nesting was unexpected, given that at least one leopard (Panthera pardus) also occupied the hill. This knowledge will enable stakeholders involved in the protection of chimpanzees specifically and of biodiversity in general to better understand chimpanzee ecology and inform a conservation action plan in Senegal where the survival of this species is threatened.

  5. Application Research of Fault Tree Analysis in Grid Communication System Corrective Maintenance

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Yang, Zhenwei; Kang, Mei

    2018-01-01

    This paper attempts to apply the fault tree analysis method to the corrective maintenance field of grid communication system. Through the establishment of the fault tree model of typical system and the engineering experience, the fault tree analysis theory is used to analyze the fault tree model, which contains the field of structural function, probability importance and so on. The results show that the fault tree analysis can realize fast positioning and well repairing of the system. Meanwhile, it finds that the analysis method of fault tree has some guiding significance to the reliability researching and upgrading f the system.

  6. Identification of genes differentially expressed during interaction of Mexican lime tree infected with "Candidatus Phytoplasma aurantifolia"

    PubMed Central

    2011-01-01

    Background "Candidatus Phytoplasma aurantifolia", is the causative agent of witches' broom disease in Mexican lime trees (Citrus aurantifolia L.), and is responsible for major losses of Mexican lime trees in Southern Iran and Oman. The pathogen is strictly biotrophic, and thus is completely dependent on living host cells for its survival. The molecular basis of compatibility and disease development in this system is poorly understood. Therefore, we have applied a cDNA- amplified fragment length polymorphism (AFLP) approach to analyze gene expression in Mexican lime trees infected by "Ca. Phytoplasma aurantifolia". Results We carried out cDNA-AFLP analysis on grafted infected Mexican lime trees of the susceptible cultivar at the representative symptoms stage. Selective amplifications with 43 primer combinations allowed the visualisation of 55 transcript-derived fragments that were expressed differentially between infected and non-infected leaves. We sequenced 51 fragments, 36 of which were identified as lime tree transcripts after homology searching. Of the 36 genes, 70.5% were down-regulated during infection and could be classified into various functional groups. We showed that Mexican lime tree genes that were homologous to known resistance genes tended to be repressed in response to infection. These included the genes for modifier of snc1 and autophagy protein 5. Furthermore, down-regulation of genes involved in metabolism, transcription, transport and cytoskeleton was observed, which included the genes for formin, importin β 3, transducin, L-asparaginase, glycerophosphoryl diester phosphodiesterase, and RNA polymerase β. In contrast, genes that encoded a proline-rich protein, ubiquitin-protein ligase, phosphatidyl glycerol specific phospholipase C-like, and serine/threonine-protein kinase were up-regulated during the infection. Conclusion The present study identifies a number of candidate genes that might be involved in the interaction of Mexican lime trees with "Candidatus Phytoplasma aurantifolia". These results should help to elucidate the molecular basis of the infection process and to identify genes that could be targeted to increase plant resistance and inhibit the growth and reproduction of the pathogen. PMID:21194490

  7. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming.

    PubMed

    Sterck, Frank; Anten, Niels P R; Schieving, Feike; Zuidema, Pieter A

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and - the notoriously unknown - physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35°C) and ambient CO2 concentrations (390-800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.

  8. Sapflow and water use of freshwater wetland trees exposed to saltwater incursion in a tidally influenced South Carolina watershed

    USGS Publications Warehouse

    Krauss, K.W.; Duberstein, J.A.

    2010-01-01

    Sea-level rise and anthropogenic activity promote salinity incursion into many tidal freshwater forested wetlands. Interestingly, individual trees can persist for decades after salt impact. To understand why, we documented sapflow (Js), reduction in Js with sapwood depth, and water use (F) of baldcypress (Taxodium distichum (L.) Rich.) trees undergoing exposure to salinity. The mean Js of individual trees was reduced by 2.8 g H2O??m-2??s-1 (or by 18%) in the outer sapwood on a saline site versus a freshwater site; however, the smallest trees, present only on the saline site, also registered the lowest Js. Hence, tree size significantly influenced the overall site effect on Js. Trees undergoing perennial exposure to salt used greater relative amounts of water in outer sapwood than in inner sapwood depths, which identifies a potentially different strategy for baldcypress trees coping with saline site conditions over decades. Overall, individual trees used 100 kg H2O??day-1 on a site that remained relatively fresh versus 23.9 kg H2O??day-1 on the saline site. We surmise that perennial salinization of coastal freshwater forests forces shifts in individual-tree osmotic balance and water-use strategy to extend survival time on suboptimal sites, which further influences growth and morphology.

  9. Do isolated gallery-forest trees facilitate recruitment of forest seedlings and saplings in savannna?

    NASA Astrophysics Data System (ADS)

    Azihou, Akomian Fortuné; Glèlè Kakaï, Romain; Sinsin, Brice

    2013-11-01

    Facilitation is an ecological process that allows some species to establish in environments they can hardly afford in the absence of the process. This study investigated if the subcanopy of gallery-forest trees isolated in savanna is suitable for the early recruitment of forest woody species. We measured tree crown area as well as the density of seedlings and saplings of gallery-forest tree species beneath isolated trees and in the savanna matrix along 50 transects of 5-km long and 600 m wide located along four gallery forests. We then tested the nurse-plant effect and Janzen-Connell hypothesis beneath isolated trees. We also examined the relationships between the crown area and the density of seedlings and saplings. Among the eight identified tree species isolated in savanna, only Daniellia oliveri and Khaya senegalensis showed nurse-plant effect and promoted a significant, yet low early recruitment with a seedling-to-sapling survival of 0.044 and 0.578, respectively. The suitability of the subcanopy of isolated trees decreased with the recruitment progression and Janzen-Connell effects were absent. Seedlings had neutral association with the crown area of isolated trees which shifted to positive at the sapling stage. The species of the isolated tree and the crown area explained less than 20% of total variance, indicating that other predictive factors are important in explaining the nurse-plant effect observed in this study.

  10. Genetic connectivity of the moth pollinated tree Glionnetia sericea in a highly fragmented habitat.

    PubMed

    Finger, Aline; Kaiser-Bunbury, Christopher N; Kettle, Chris J; Valentin, Terence; Ghazoul, Jaboury

    2014-01-01

    Long-distance gene flow is thought to be one prerequisite for the persistence of plant species in fragmented environments. Human influences have led to severe fragmentation of native habitats in the Seychelles islands, with many species surviving only in small and isolated populations. The endangered Seychelles endemic tree Glionnetia sericea is restricted to altitudes between 450 m and 900 m where the native forest vegetation has been largely lost and replaced with exotic invasives over the last 200 years. This study explores the genetic and ecological consequences of population fragmentation in this species by analysing patterns of genetic diversity in a sample of adults, juveniles and seeds, and by using controlled pollination experiments. Our results show no decrease in genetic diversity and no increase in genetic structuring from adult to juvenile cohorts. Despite significant inbreeding in some populations, there is no evidence of higher inbreeding in juvenile cohorts relative to adults. A Bayesian structure analysis and a tentative paternity analysis indicate extensive historical and contemporary gene flow among remnant populations. Pollination experiments and a paternity analysis show that Glionnetia sericea is self-compatible. Nevertheless, outcrossing is present with 7% of mating events resulting from pollen transfer between populations. Artificial pollination provided no evidence for pollen limitation in isolated populations. The highly mobile and specialized hawkmoth pollinators (Agrius convolvuli and Cenophodes tamsi; Sphingidae) appear to promote extensive gene flow, thus mitigating the potential negative ecological and genetic effects of habitat fragmentation in this species. We conclude that contemporary gene flow is sufficient to maintain genetic connectivity in this rare and restricted Seychelles endemic, in contrast to other island endemic tree species with limited contemporary gene flow.

  11. Genetic Connectivity of the Moth Pollinated Tree Glionnetia sericea in a Highly Fragmented Habitat

    PubMed Central

    Finger, Aline; Valentin, Terence; Ghazoul, Jaboury

    2014-01-01

    Long-distance gene flow is thought to be one prerequisite for the persistence of plant species in fragmented environments. Human influences have led to severe fragmentation of native habitats in the Seychelles islands, with many species surviving only in small and isolated populations. The endangered Seychelles endemic tree Glionnetia sericea is restricted to altitudes between 450 m and 900 m where the native forest vegetation has been largely lost and replaced with exotic invasives over the last 200 years. This study explores the genetic and ecological consequences of population fragmentation in this species by analysing patterns of genetic diversity in a sample of adults, juveniles and seeds, and by using controlled pollination experiments. Our results show no decrease in genetic diversity and no increase in genetic structuring from adult to juvenile cohorts. Despite significant inbreeding in some populations, there is no evidence of higher inbreeding in juvenile cohorts relative to adults. A Bayesian structure analysis and a tentative paternity analysis indicate extensive historical and contemporary gene flow among remnant populations. Pollination experiments and a paternity analysis show that Glionnetia sericea is self-compatible. Nevertheless, outcrossing is present with 7% of mating events resulting from pollen transfer between populations. Artificial pollination provided no evidence for pollen limitation in isolated populations. The highly mobile and specialized hawkmoth pollinators (Agrius convolvuli and Cenophodes tamsi; Sphingidae) appear to promote extensive gene flow, thus mitigating the potential negative ecological and genetic effects of habitat fragmentation in this species. We conclude that contemporary gene flow is sufficient to maintain genetic connectivity in this rare and restricted Seychelles endemic, in contrast to other island endemic tree species with limited contemporary gene flow. PMID:25347541

  12. The accuracy of matrix population model projections for coniferous trees in the Sierra Nevada, California

    USGS Publications Warehouse

    van Mantgem, P.J.; Stephenson, N.L.

    2005-01-01

    1 We assess the use of simple, size-based matrix population models for projecting population trends for six coniferous tree species in the Sierra Nevada, California. We used demographic data from 16 673 trees in 15 permanent plots to create 17 separate time-invariant, density-independent population projection models, and determined differences between trends projected from initial surveys with a 5-year interval and observed data during two subsequent 5-year time steps. 2 We detected departures from the assumptions of the matrix modelling approach in terms of strong growth autocorrelations. We also found evidence of observation errors for measurements of tree growth and, to a more limited degree, recruitment. Loglinear analysis provided evidence of significant temporal variation in demographic rates for only two of the 17 populations. 3 Total population sizes were strongly predicted by model projections, although population dynamics were dominated by carryover from the previous 5-year time step (i.e. there were few cases of recruitment or death). Fractional changes to overall population sizes were less well predicted. Compared with a null model and a simple demographic model lacking size structure, matrix model projections were better able to predict total population sizes, although the differences were not statistically significant. Matrix model projections were also able to predict short-term rates of survival, growth and recruitment. Mortality frequencies were not well predicted. 4 Our results suggest that simple size-structured models can accurately project future short-term changes for some tree populations. However, not all populations were well predicted and these simple models would probably become more inaccurate over longer projection intervals. The predictive ability of these models would also be limited by disturbance or other events that destabilize demographic rates. ?? 2005 British Ecological Society.

  13. Elevation of B-Type Natriuretic Peptide at Discharge is Associated With 2-Year Mortality After Transcatheter Aortic Valve Replacement in Patients With Severe Aortic Stenosis: Insights From a Multicenter Prospective OCEAN-TAVI (Optimized Transcatheter Valvular Intervention-Transcatheter Aortic Valve Implantation) Registry.

    PubMed

    Mizutani, Kazuki; Hara, Masahiko; Iwata, Shinichi; Murakami, Takashi; Shibata, Toshihiko; Yoshiyama, Minoru; Naganuma, Toru; Yamanaka, Futoshi; Higashimori, Akihiro; Tada, Norio; Takagi, Kensuke; Araki, Motoharu; Ueno, Hiroshi; Tabata, Minoru; Shirai, Shinichi; Watanabe, Yusuke; Yamamoto, Masanori; Hayashida, Kentaro

    2017-07-14

    In this study, we sought to investigate the 2-year prognostic impact of B-type natriuretic peptide (BNP) levels at discharge, following transcatheter aortic valve replacement. We enrolled 1094 consecutive patients who underwent transcatheter aortic valve replacement between 2013 and 2016. Study patients were stratified into 2 groups according to survival classification and regression tree analysis (high versus low BNP groups). We evaluated the impact of high BNP on 2-year mortality compared with that of low BNP using a multivariable Cox model, and assessed whether this stratification would improve predictive accuracy for determining 2-year mortality by assessing time-dependent net reclassification improvement and integrated discrimination improvement. The median age of patients was 85 years (quartile 82-88), and 29.2% of the study population were men. The median Society of Thoracic Surgeons score was 6.8 (4.7-9.5), and BNP at discharge was 186 (93-378) pg/mL. All-cause mortality following discharge was 7.9% (95% CI, 5.8-9.9%) at 1 year and 15.4% (95% CI, 11.6-19.0%) at 2 years. The survival classification and regression tree analysis revealed that the discriminating BNP level to discern 2-year mortality was 202 pg/mL, and that elevated BNP had a statistically significant impact on outcomes, with an adjusted hazard ratio of 2.28 (1.36-3.82, P =0.002). The time-dependent net reclassification improvement ( P =0.047) and integrated discrimination improvement ( P =0.029) analysis revealed that the incorporation of BNP stratification with other clinical variables significantly improved predictive accuracy for 2-year mortality. Elevation of BNP at discharge is associated with 2-year mortality after transcatheter aortic valve replacement. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  14. Decision analysis with cumulative prospect theory.

    PubMed

    Bayoumi, A M; Redelmeier, D A

    2000-01-01

    Individuals sometimes express preferences that do not follow expected utility theory. Cumulative prospect theory adjusts for some phenomena by using decision weights rather than probabilities when analyzing a decision tree. The authors examined how probability transformations from cumulative prospect theory might alter a decision analysis of a prophylactic therapy in AIDS, eliciting utilities from patients with HIV infection (n = 75) and calculating expected outcomes using an established Markov model. They next focused on transformations of three sets of probabilities: 1) the probabilities used in calculating standard-gamble utility scores; 2) the probabilities of being in discrete Markov states; 3) the probabilities of transitioning between Markov states. The same prophylaxis strategy yielded the highest quality-adjusted survival under all transformations. For the average patient, prophylaxis appeared relatively less advantageous when standard-gamble utilities were transformed. Prophylaxis appeared relatively more advantageous when state probabilities were transformed and relatively less advantageous when transition probabilities were transformed. Transforming standard-gamble and transition probabilities simultaneously decreased the gain from prophylaxis by almost half. Sensitivity analysis indicated that even near-linear probability weighting transformations could substantially alter quality-adjusted survival estimates. The magnitude of benefit estimated in a decision-analytic model can change significantly after using cumulative prospect theory. Incorporating cumulative prospect theory into decision analysis can provide a form of sensitivity analysis and may help describe when people deviate from expected utility theory.

  15. Impacts of savanna trees on forage quality for a large African herbivore

    PubMed Central

    De Kroon, Hans; Prins, Herbert H. T.

    2008-01-01

    Recently, cover of large trees in African savannas has rapidly declined due to elephant pressure, frequent fires and charcoal production. The reduction in large trees could have consequences for large herbivores through a change in forage quality. In Tarangire National Park, in Northern Tanzania, we studied the impact of large savanna trees on forage quality for wildebeest by collecting samples of dominant grass species in open grassland and under and around large Acacia tortilis trees. Grasses growing under trees had a much higher forage quality than grasses from the open field indicated by a more favourable leaf/stem ratio and higher protein and lower fibre concentrations. Analysing the grass leaf data with a linear programming model indicated that large savanna trees could be essential for the survival of wildebeest, the dominant herbivore in Tarangire. Due to the high fibre content and low nutrient and protein concentrations of grasses from the open field, maximum fibre intake is reached before nutrient requirements are satisfied. All requirements can only be satisfied by combining forage from open grassland with either forage from under or around tree canopies. Forage quality was also higher around dead trees than in the open field. So forage quality does not reduce immediately after trees die which explains why negative effects of reduced tree numbers probably go initially unnoticed. In conclusion our results suggest that continued destruction of large trees could affect future numbers of large herbivores in African savannas and better protection of large trees is probably necessary to sustain high animal densities in these ecosystems. PMID:18309522

  16. Negative Density Dependence Regulates Two Tree Species at Later Life Stage in a Temperate Forest

    PubMed Central

    Piao, Tiefeng; Chun, Jung Hwa; Yang, Hee Moon; Cheon, Kwangil

    2014-01-01

    Numerous studies have demonstrated that tree survival is influenced by negative density dependence (NDD) and differences among species in shade tolerance could enhance coexistence via resource partitioning, but it is still unclear how NDD affects tree species with different shade-tolerance guilds at later life stages. In this study, we analyzed the spatial patterns for trees with dbh (diameter at breast height) ≥2 cm using the pair-correlation g(r) function to test for NDD in a temperate forest in South Korea after removing the effects of habitat heterogeneity. The analyses were implemented for the most abundant shade-tolerant (Chamaecyparis obtusa) and shade-intolerant (Quercus serrata) species. We found NDD existed for both species at later life stages. We also found Quercus serrata experienced greater NDD compared with Chamaecyparis obtusa. This study indicates that NDD regulates the two abundant tree species at later life stages and it is important to consider variation in species' shade tolerance in NDD study. PMID:25058660

  17. Flowering phenology and its implications for management of big-leaf mahogany Swietenia macrophylla in Brazilian Amazonia.

    PubMed

    Grogan, James; Loveless, Marilyn D

    2013-11-01

    Flowering phenology is a crucial determinant of reproductive success and offspring genetic diversity in plants. We measure the flowering phenology of big-leaf mahogany (Swietenia macrophylla, Meliaceae), a widely distributed neotropical tree, and explore how disturbance from logging impacts its reproductive biology. We use a crown scoring system to estimate the timing and duration of population-level flowering at three forest sites in the Brazilian Amazon over a five-year period. We combine this information with data on population structure and spatial distribution to consider the implications of logging for population flowering patterns and reproductive success. Mahogany trees as small as 14 cm diam flowered, but only trees > 30 cm diam flowered annually or supra-annually. Mean observed flowering periods by focal trees ranged from 18-34 d, and trees flowered sequentially during 3-4 mo beginning in the dry season. Focal trees demonstrated significant interannual correlation in flowering order. Estimated population-level flowering schedules resembled that of the focal trees, with temporal isolation between early and late flowering trees. At the principal study site, conventional logging practices eliminated 87% of mahogany trees > 30 cm diam and an estimated 94% of annual pre-logging floral effort. Consistent interannual patterns of sequential flowering among trees create incompletely isolated subpopulations, constraining pollen flow. After harvests, surviving subcommercial trees will have fewer, more distant, and smaller potential partners, with probable consequences for post-logging regeneration. These results have important implications for the sustainability of harvesting systems for tropical timber species.

  18. Epigenetic modifications in KDM lysine demethylases associate with survival of early-stage NSCLC.

    PubMed

    Wei, Yongyue; Liang, Junya; Zhang, Ruyang; Guo, Yichen; Shen, Sipeng; Su, Li; Lin, Xihong; Moran, Sebastian; Helland, Åslaug; Bjaanæs, Maria M; Karlsson, Anna; Planck, Maria; Esteller, Manel; Fleischer, Thomas; Staaf, Johan; Zhao, Yang; Chen, Feng; Christiani, David C

    2018-01-01

    KDM lysine demethylase family members are related to lung cancer clinical outcomes and are potential biomarkers for chemotherapeutics. However, little is known about epigenetic alterations in KDM genes and their roles in lung cancer survival. Tumor tissue samples of 1230 early-stage non-small cell lung cancer (NSCLC) patients were collected from the five independent cohorts. The 393 methylation sites in KDM genes were extracted from epigenome-wide datasets and analyzed by weighted random forest (Ranger) in discovery phase and validation dataset, respectively. The variable importance scores (VIS) for the sites in top 5% of both discovery and validation sets were carried forward for Cox regression to further evaluate the association with patient's overall survival. TCGA transcriptomic data were used to evaluate the correlation with the corresponding DNA methylation. DNA methylation at sites cg11637544 in KDM2A and cg26662347 in KDM1A were in the top 5% of VIS in both discovery phase and validation for squamous cell carcinomas (SCC), which were also significantly associated with SCC survival ( HR cg11637544  = 1.32, 95%CI, 1.16-1.50, P  = 1.1 × 10 -4 ; HR cg26662347  = 1.88, 95%CI, 1.37-2.60, P  = 3.7 × 10 -3 ), and correlated with corresponding gene expression (cg11637544 for KDM2A , P  = 1.3 × 10 -10 ; cg26662347 for KDM1A P  = 1.5 × 10 -5 ). In addition, by using flexible criteria for Ranger analysis followed by survival classification tree analysis, we identified four clusters for adenocarcinomas and five clusters for squamous cell carcinomas which showed a considerable difference of clinical outcomes with statistical significance. These findings highlight the association between somatic DNA methylation in KDM genes and early-stage NSCLC patient survival, which may reveal potential epigenetic therapeutic targets.

  19. Contribution of a phytotoxic compound to the allelopathy of Ginkgo biloba.

    PubMed

    Kato-Noguchi, Hisashi; Takeshita, Sayaka

    2013-11-01

    Ginkgo (Ginkgo biloba L.) has not changed over 121 million years. There may be unknown special strategy for the survival. Gingko litter inhibited the growth of weed species ryegrass (Lolium multiflorum L.). The inhibition was greater with the litter of the close position than that of the far position from the gingko tree. A phytotoxic substance, 2-hydroxy-6-(10-hydroxypentadec-11-enyl)benzoic acid (HHPEBA) was isolated in the litter. HHPEBA concentration was greater in the litter of the close position than that of the far position from the tree. HHPEBA inhibited the ryegrass growth at concentrations greater than 3 μM. HHPEBA was estimated to be able to cause 47-62% of the observed growth inhibition of ryegrass by the gingko litter. Therefore, HHPEBA may contribute to the inhibitory effect caused by ginkgo litter and may provide a competitive advantage for gingko to survive through the growth inhibition of the neighboring plants.

  20. Pruning a minimum spanning tree

    NASA Astrophysics Data System (ADS)

    Sandoval, Leonidas

    2012-04-01

    This work employs various techniques in order to filter random noise from the information provided by minimum spanning trees obtained from the correlation matrices of international stock market indices prior to and during times of crisis. The first technique establishes a threshold above which connections are considered affected by noise, based on the study of random networks with the same probability density distribution of the original data. The second technique is to judge the strength of a connection by its survival rate, which is the amount of time a connection between two stock market indices endures. The idea is that true connections will survive for longer periods of time, and that random connections will not. That information is then combined with the information obtained from the first technique in order to create a smaller network, in which most of the connections are either strong or enduring in time.

  1. Strategies for sustainable woodland on contaminated soils.

    PubMed

    Dickinson, N M

    2000-07-01

    Extensive in situ reclamation treatment technologies are appropriate for a large proportion of contaminated land in place of total removal or complete containment of soil. In this paper, initial results are presented of site descriptions, tree survival and metal uptake patterns from two field planting trials on a highly industrially contaminated site adjacent to a metal refinery and on old sanitary landfill sites. Survival rate was high in both trials but factors besides heavy metals were particularly significant. Uptake patterns of metals into foliage and woody tissues were variable, with substantial uptake in some species and clones supporting the findings of earlier pot experiments. It is argued that there is sufficient evidence to consider the use of trees in reclamation as part of a realistic, integrated, low-cost, ecologically-sound and sustainable reclamation strategy for contaminated land. This is an opportunity to bring a large number of brownfield sites into productive use, which otherwise would be prohibitively expensive to restore.

  2. Tree mortality from a short-duration freezing event and global-change-type drought in a Southwestern piñon-juniper woodland, USA

    PubMed Central

    2014-01-01

    This study documents tree mortality in Big Bend National Park in Texas in response to the most acute one-year drought on record, which occurred following a five-day winter freeze. I estimated changes in forest stand structure and species composition due to freezing and drought in the Chisos Mountains of Big Bend National Park using permanent monitoring plot data. The drought killed over half (63%) of the sampled trees over the entire elevation gradient. Significant mortality occurred in trees up to 20 cm diameter (P < 0.05). Pinus cembroides Zucc. experienced the highest seedling and tree mortality (P < 0.0001) (55% of piñon pines died), and over five times as many standing dead pines were observed in 2012 than in 2009. Juniperus deppeana vonSteudal and Quercus emoryi Leibmann also experienced significant declines in tree density (P < 0.02) (30.9% and 20.7%, respectively). Subsequent droughts under climate change will likely cause even greater damage to trees that survived this record drought, especially if such events follow freezes. The results from this study highlight the vulnerability of trees in the Southwest to climatic change and that future shifts in forest structure can have large-scale community consequences. PMID:24949231

  3. Cryptic herbivores mediate the strength and form of ungulate impacts on a long-lived savanna tree.

    PubMed

    Maclean, Janet E; Goheen, Jacob R; Doak, Daniel F; Palmer, Todd M; Young, Truman P

    2011-08-01

    Plant populations are regulated by a diverse array of herbivores that impose demographic filters throughout their life cycle. Few studies, however, simultaneously quantify the impacts of multiple herbivore guilds on the lifetime performance or population growth rate of plants. In African savannas, large ungulates (such as elephants) are widely regarded as important drivers of woody plant population dynamics, while the potential impacts of smaller, more cryptic herbivores (such as rodents) have largely been ignored. We combined a large-scale ungulate exclusion experiment with a five-year manipulation of rodent densities to quantify the impacts of three herbivore guilds (wild ungulates, domestic cattle, and rodents) on all life stages of a widespread savanna tree. We utilized demographic modeling to reveal the overall role of each guild in regulating tree population dynamics, and to elucidate the importance of different demographic hurdles in driving population growth under contrasting consumer communities. We found that wild ungulates dramatically reduced population growth, shifting the population trajectory from increase to decline, but that the mechanisms driving these effects were strongly mediated by rodents. The impact of wild ungulates on population growth was predominantly driven by their negative effect on tree reproduction when rodents were excluded, and on adult tree survival when rodents were present. By limiting seedling survival, rodents also reduced population growth; however, this effect was strongly dampened where wild ungulates were present. We suggest that these complex interactions between disparate consumer guilds can have important consequences for the population demography of long-lived species, and that the effects of a single consumer group are often likely to vary dramatically depending on the larger community in which interactions are embedded.

  4. Impact of hypothermia on implementation of CPAP for neonatal respiratory distress syndrome in a low-resource setting.

    PubMed

    Carns, Jennifer; Kawaza, Kondwani; Quinn, M K; Miao, Yinsen; Guerra, Rudy; Molyneux, Elizabeth; Oden, Maria; Richards-Kortum, Rebecca

    2018-01-01

    Neonatal hypothermia is widely associated with increased risks of morbidity and mortality, but remains a pervasive global problem. No studies have examined the impact of hypothermia on outcomes for preterm infants treated with CPAP for respiratory distress syndrome (RDS). This retrospective analysis assessed the impact of hypothermia on outcomes of 65 neonates diagnosed with RDS and treated with either nasal oxygen (N = 17) or CPAP (N = 48) in a low-resource setting. A classification tree approach was used to develop a model predicting survival for subjects diagnosed with RDS. Survival to discharge was accurately predicted based on three variables: mean temperature, treatment modality, and mean respiratory rate. None of the 23 neonates with a mean temperature during treatment below 35.8°C survived to discharge, regardless of treatment modality. Among neonates with a mean temperature exceeding 35.8°C, the survival rate was 100% for the 31 neonates treated with CPAP and 36.4% for the 11 neonates treated with nasal oxygen (p<0.001). For neonates treated with CPAP, outcomes were poor if more than 50% of measured temperatures indicated hypothermia (5.6% survival). In contrast, all 30 neonates treated with CPAP and with more than 50% of temperature measurements above 35.8°C survived to discharge, regardless of initial temperature. The results of our study suggest that successful implementation of CPAP to treat RDS in low-resource settings will require aggressive action to prevent persistent hypothermia. However, our results show that even babies who are initially cold can do well on CPAP with proper management of hypothermia.

  5. Economic Analysis of Neoadjuvant Chemotherapy Versus Primary Debulking Surgery for Advanced Epithelial Ovarian Cancer Using an Aggressive Surgical Paradigm.

    PubMed

    Cole, Ashley L; Barber, Emma L; Gogate, Anagha; Tran, Arthur-Quan; Wheeler, Stephanie B

    2018-04-21

    Neoadjuvant chemotherapy (NACT) versus primary debulking surgery (PDS) for advanced epithelial ovarian cancer (AEOC) remains controversial in the United States. Generalizability of existing trial results has been criticized because of less aggressive debulking procedures than commonly used in the United States. As a result, economic evaluations using input data from these trials may not accurately reflect costs and outcomes associated with more aggressive primary surgery. Using data from an ongoing trial performing aggressive debulking, we investigated the cost-effectiveness and cost-utility of NACT versus PDS for AEOC. A decision tree model was constructed to estimate differences in short-term outcomes and costs for a hypothetical cohort of 15,000 AEOC patients (US annual incidence of AEOC) treated with NACT versus PDS over a 1-year time horizon from a Medicare payer perspective. Outcomes included costs per cancer-related death averted, life-years and quality-adjusted life-years (QALYs) gained. Base-case probabilities, costs, and utilities were based on the Surgical Complications Related to Primary or Interval Debulking in Ovarian Neoplasms trial. Base-case analyses assumed equivalent survival; threshold analysis estimated the maximum survival difference that would result in NACT being cost-effective at $50,000/QALY and $100,000/QALY willingness-to-pay thresholds. Probabilistic sensitivity analysis was used to characterize model uncertainty. Compared with PDS, NACT was associated with $142 million in cost savings, 1098 fewer cancer-related deaths, and 1355 life-years and 1715 QALYs gained, making it the dominant treatment strategy for all outcomes. In sensitivity analysis, NACT remained dominant in 99.3% of simulations. Neoadjuvant chemotherapy remained cost-effective at $50,000/QALY and $100,000/QALY willingness-to-pay thresholds if survival differences were less than 2.7 and 1.4 months, respectively. In the short term, NACT is cost-saving with improved outcomes. However, if PDS provides a longer-term survival advantage, it may be cost-effective. Research is needed on the role of patient preferences in tradeoffs between survival and quality of life.

  6. Survival strategies in semi-arid climate for isohydric and anisohydric species

    NASA Astrophysics Data System (ADS)

    Guerin, M. F.; Gentine, P.; Uriarte, M.

    2013-12-01

    The understanding of survival strategies in dry land remains a challenging problem aiming at the interrelationship between local hydrology, plant physiology and climate. Carbon starvation and hydraulic failure are thought to be the two main factors leading to drought-induced mortality beside biotic perturbation. In order to better comprehend mortality the understanding of abiotic mechanisms triggering mortality is being studied in a tractable model for soil-plant-atmosphere continuum emphasizing the role of soil hydraulic properties, photosynthesis, embolism, leaf-gas exchange and climate. In particular the role of the frequency vs. the intensity of droughts is highlighted within such model. The analysis of the model included a differentiation between isohydric and anisohydric tree regulation and is supported by an extensive dataset of Pinion and Juniper growing in a semi-arid ecosystem. An objective of reduced number of parameters was approached with allometric equations to characterize tree's main traits and their hydraulic controls. Leaf area, sapwood area and tree's height are used to derive capacitance, conductance and photosynthetic abilities of the plant. A parameter sensitivity is performed highlighting the role of root:shoot ratio, rooting depth, photosynthetic capacity, quantum efficiency, and most importantly water use efficiency. Analytic development emphasizes two regimes of transpiration/photosynthesis denoted as stage-I (no embolism) and stage-II (embolism dominated) in analogy with stage I-stage II treminology for evaporation (Phillip,1957). Anisohydric species tend to remain in stage-I during which they still can assimilate carbon at full potential thus avoiding carbon starvation. Isohydric species tend to remain longer in stage-II. The effects of drought intensity/frequency on those 2 stages are described. Figure: sensitivity of Piñons stage 1 (top left), stage 2 (top right), and total cavitation duration (sum of stage 1 and stage 2 - bottom left) and time to carbon starvation (defined as 0-crossover of NSC content - bottom right) to Leaf Area Index (LAI) and root:shoot area.

  7. Machine learning models in breast cancer survival prediction.

    PubMed

    Montazeri, Mitra; Montazeri, Mohadeseh; Montazeri, Mahdieh; Beigzadeh, Amin

    2016-01-01

    Breast cancer is one of the most common cancers with a high mortality rate among women. With the early diagnosis of breast cancer survival will increase from 56% to more than 86%. Therefore, an accurate and reliable system is necessary for the early diagnosis of this cancer. The proposed model is the combination of rules and different machine learning techniques. Machine learning models can help physicians to reduce the number of false decisions. They try to exploit patterns and relationships among a large number of cases and predict the outcome of a disease using historical cases stored in datasets. The objective of this study is to propose a rule-based classification method with machine learning techniques for the prediction of different types of Breast cancer survival. We use a dataset with eight attributes that include the records of 900 patients in which 876 patients (97.3%) and 24 (2.7%) patients were females and males respectively. Naive Bayes (NB), Trees Random Forest (TRF), 1-Nearest Neighbor (1NN), AdaBoost (AD), Support Vector Machine (SVM), RBF Network (RBFN), and Multilayer Perceptron (MLP) machine learning techniques with 10-cross fold technique were used with the proposed model for the prediction of breast cancer survival. The performance of machine learning techniques were evaluated with accuracy, precision, sensitivity, specificity, and area under ROC curve. Out of 900 patients, 803 patients and 97 patients were alive and dead, respectively. In this study, Trees Random Forest (TRF) technique showed better results in comparison to other techniques (NB, 1NN, AD, SVM and RBFN, MLP). The accuracy, sensitivity and the area under ROC curve of TRF are 96%, 96%, 93%, respectively. However, 1NN machine learning technique provided poor performance (accuracy 91%, sensitivity 91% and area under ROC curve 78%). This study demonstrates that Trees Random Forest model (TRF) which is a rule-based classification model was the best model with the highest level of accuracy. Therefore, this model is recommended as a useful tool for breast cancer survival prediction as well as medical decision making.

  8. Contrasting patterns of survival and dispersal in multiple habitats reveal an ecological trap in a food-caching bird.

    PubMed

    Norris, D Ryan; Flockhart, D T Tyler; Strickland, Dan

    2013-11-01

    A comprehensive understanding of how natural and anthropogenic variation in habitat influences populations requires long-term information on how such variation affects survival and dispersal throughout the annual cycle. Gray jays Perisoreus canadensis are widespread boreal resident passerines that use cached food to survive over the winter and to begin breeding during the late winter. Using multistate capture-recapture analysis, we examined apparent survival and dispersal in relation to habitat quality in a gray jay population over 34 years (1977-2010). Prior evidence suggests that natural variation in habitat quality is driven by the proportion of conifers on territories because of their superior ability to preserve cached food. Although neither adults (>1 year) nor juveniles (<1 year) had higher survival rates on high-conifer territories, both age classes were less likely to leave high-conifer territories and, when they did move, were more likely to disperse to high-conifer territories. In contrast, survival rates were lower on territories that were adjacent to a major highway compared to territories that did not border the highway but there was no evidence for directional dispersal towards or away from highway territories. Our results support the notion that natural variation in habitat quality is driven by the proportion of coniferous trees on territories and provide the first evidence that high-mortality highway habitats can act as an equal-preference ecological trap for birds. Reproductive success, as shown in a previous study, but not survival, is sensitive to natural variation in habitat quality, suggesting that gray jays, despite living in harsh winter conditions, likely favor the allocation of limited resources towards self-maintenance over reproduction.

  9. Retention of seed trees fails to lifeboat ectomycorrhizal fungal diversity in harvested Scots pine forests.

    PubMed

    Varenius, Kerstin; Lindahl, Björn D; Dahlberg, Anders

    2017-09-01

    Fennoscandian forestry has in the past decades changed from natural regeneration of forests towards replantation of clear-cuts, which negatively impacts ectomycorrhizal fungal (EMF) diversity. Retention of trees during harvesting enables EMF survival, and we therefore expected EMF communities to be more similar to those in old natural stands after forest regeneration using seed trees compared to full clear-cutting and replanting. We sequenced fungal internal transcribed spacer 2 (ITS2) amplicons to assess EMF communities in 10- to 60-year-old Scots pine stands regenerated either using seed trees or through replanting of clear-cuts with old natural stands as reference. We also investigated local EMF communities around retained old trees. We found that retention of seed trees failed to mitigate the impact of harvesting on EMF community composition and diversity. With increasing stand age, EMF communities became increasingly similar to those in old natural stands and permanently retained trees maintained EMF locally. From our observations, we conclude that EMF communities, at least common species, post-harvest are more influenced by environmental filtering, resulting from environmental changes induced by harvest, than by the continuity of trees. These results suggest that retention of intact forest patches is a more efficient way to conserve EMF diversity than retaining dispersed single trees. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Soil-borne pathogens restrict the recruitment of a subtropical tree: a distance-dependent effect.

    PubMed

    Xu, Meng; Wang, Yongfan; Liu, Yu; Zhang, Zhiming; Yu, Shixiao

    2015-03-01

    The Janzen-Connell hypothesis suggests that density- and/or distance-dependent juvenile mortality driven by host-specific natural enemies can explain high species diversity in tropical forests. However, such density and distance effects may not occur simultaneously and may not be driven by the same mechanism. Also, reports of attempts to identify and quantify the differences between these processes in tropical forests are scarce. In a primary subtropical forest in China, we (1) experimentally examined the relative influence of the distance to parent trees vs. conspecific seedling density on mortality patterns in Engelhardia fenzelii, (2) tested the role of soil-borne pathogens in driving density- or distance-dependent processes that cause seedling mortality, and (3) inspected the susceptibilities of different tree species to soil biota of E. fenzelii and the effects of soil biota from different tree species on E. fenzelii. The results from these field experiments showed that distance- rather than density-dependent processes driven by soil pathogens strongly affect the seedling survival of this species in its first year. We also observed increased survival of a fungicide treatment for E. fenzelii seedlings in the parent soil but not for the seedlings of the other three species in the E. fenzelii parent soil, or for E. fenzelii seedlings in the parent soil of three other species. This study illustrates how the distance-dependent pattern of seedling recruitment for this species is driven by soil pathogens, a mechanism that likely restricts the dominance of this abundant species.

  11. Spatial variation in breeding habitat selection by Cerulean Warblers (Setophaga cerulea) throughout the Appalachian Mountains

    USGS Publications Warehouse

    Boves, Than J.; Buehler, David A.; Sheehan, James; Wood, Petra Bohall; Rodewald, Amanda D.; Larkin, Jeffrey L.; Keyser, Patrick D.; Newell, Felicity L.; Evans, Andrea; George, Gregory A.; Wigley, T.B.

    2013-01-01

    Studies of habitat selection are often of limited utility because they focus on small geographic areas, fail to examine behavior at multiple scales, or lack an assessment of the fitness consequences of habitat decisions. These limitations can hamper the identification of successful site-specific management strategies, which are urgently needed for severely declining species like Cerulean Warblers (Setophaga cerulea). We assessed how breeding habitat decisions made by Cerulean Warblers at multiple scales, and the subsequent effects of these decisions on nest survival, varied across the Appalachian Mountains. Selection for structural habitat features varied substantially among areas, particularly at the territory scale. Males within the least-forested landscapes selected microhabitat features that reflected more closed-canopy forest conditions, whereas males in highly forested landscapes favored features associated with canopy disturbance. Selection of nest-patch and nest-site attributes by females was more consistent across areas, with females selecting for increased tree size and understory cover and decreased basal area and midstory cover. Floristic preferences were similar across study areas: White Oak (Quercus alba), Cucumber-tree (Magnolia acuminata), and Sugar Maple (Acer saccharum) were preferred as nest trees, whereas red oak species (subgenus Erythrobalanus) and Red Maple (A. rubrum) were avoided. The habitat features that were related to nest survival also varied among study areas, and preferred features were negatively associated with nest survival at one area. Thus, our results indicate that large-scale spatial heterogeneity may influence local habitat-selection behavior and that it may be necessary to articulate site-specific management strategies for Cerulean Warblers.

  12. Impacts of Bokashi on survival and growth rates of Pinus pseudostrobus in community reforestation projects.

    PubMed

    Jaramillo-López, P F; Ramírez, M I; Pérez-Salicrup, D R

    2015-03-01

    Community-based small-scale reforestation practices have been proposed as an alternative to low-efficiency massive reforestations conducted by external agents. These latter conventional reforestations are often carried out in soils that have been seriously degraded and this has indirectly contributed to the introduction of non-native species and/or acceptance of very low seedling survival rates. Bokashi is a fermented soil organic amendment that can be made from almost any available agricultural byproduct, and its beneficial effects in agriculture have been reported in various contexts. Here, we report the results of a community-based small-scale experimental reforestation where the provenance of pine seedlings (local and commercial) and the use of Bokashi as a soil amendment were evaluated. Bokashi was prepared locally by members of a small rural community in central Mexico. Almost two years after the establishment of the trial, survival rates for the unamended and amended local trees were 97-100% while survival of the commercial trees from unamended and amended treatments were 87-93%. Consistently through time, local and commercial seedlings planted in Bokashi-amended soils were significantly taller (x̅ = 152 cm) than those planted in unamended soils (̅x = 86 cm). An unplanned infection by Cronartium quercuum in the first year of the experiment was considered as a covariable. Infected seedlings showed malformations but this did not affect survival and growth rates. Bokashi amendment seems as an inexpensive, locally viable technology to increase seedling survival and growth and to help recover deforested areas where soils have been degraded. This allows local stakeholders to see more rapid results while helping them to maintain their interest in conservation activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Phenology as used for studies on sustainable management in tree-line areas

    NASA Astrophysics Data System (ADS)

    Wielgolaski, Frans Emil

    2014-05-01

    Tree-line ecosystems are heavily impacted by changes in climate and land use, resulting in land abandonment and reforestation of formerly treeless areas, often with strong consequences for the society. An ongoing EU COST Action (SENSFOR, 21 countries) aims at integrating scientific results and methods related to biodiversity conservation and sustainable management of natural resources by such changes, and plan also to develop strategies for preserving ecosystem services, in sensitive mountain areas in Europe. In this work phenology is important as a good indicator on changes in the climate by using data e.g. on timing of bud break in spring at woody plants. The Action assesses the extent of contemporary and future environmental changes in European tree-line areas, and will estimate their resilience to changes, e.g. the survival of germinating new plant species at increased tree-line elevation.

  14. Effects of extreme heat and drought on trees: what do we know and what do we need to know?

    NASA Astrophysics Data System (ADS)

    Teskey, R. O.

    2017-12-01

    It is almost certain that trees will experience heat waves and droughts during their lifetime. In response, they have acquired many adaptations to survive these periods of intense stress. For example, recently we have investigated the surprising role that stomata play in maintaining leaf function at very high temperatures by opening widely to cool the leaf even when photosynthesis is zero. This process and its trade-offs, as well as many other physiological and morphological responses to high temperatures, will be discussed. The current state of knowledge of the mechanisms trees use to cope with extreme drought, including leaf shedding, hydraulic architecture, carbohydrate storage, and changes in wood anatomy will be discussed. Examples of how the interactions between drought and heat affect trees also will be provided. Finally, an assessment of knowledge gaps and recommendations for future research will be provided.

  15. Dynamics of Tree Species Diversity in Unlogged and Selectively Logged Malaysian Forests.

    PubMed

    Shima, Ken; Yamada, Toshihiro; Okuda, Toshinori; Fletcher, Christine; Kassim, Abdul Rahman

    2018-01-18

    Selective logging that is commonly conducted in tropical forests may change tree species diversity. In rarely disturbed tropical forests, locally rare species exhibit higher survival rates. If this non-random process occurs in a logged forest, the forest will rapidly recover its tree species diversity. Here we determined whether a forest in the Pasoh Forest Reserve, Malaysia, which was selectively logged 40 years ago, recovered its original species diversity (species richness and composition). To explore this, we compared the dynamics of secies diversity between unlogged forest plot (18.6 ha) and logged forest plot (5.4 ha). We found that 40 years are not sufficient to recover species diversity after logging. Unlike unlogged forests, tree deaths and recruitments did not contribute to increased diversity in the selectively logged forests. Our results predict that selectively logged forests require a longer time at least than our observing period (40 years) to regain their diversity.

  16. Gap-based silviculture in a sierran mixed-conifer forest: effects of gap size on early survival and 7-year seedling growth

    Treesearch

    Robert A. York; John J. Battles; Robert C. Heald

    2007-01-01

    Experimental canopy gaps ranging in size from 0.1 to 1.0 ha (0.25 to 2.5 acres) were created in a mature mixed conifer forest at Blodgett Forest Research Station, California. Following gap creation, six species were planted in a wagon-wheel design and assessed for survival after two growing seasons. Study trees were measured after seven years to describe the effect of...

  17. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    PubMed Central

    Sterck, Frank; Anten, Niels P. R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25–35°C) and ambient CO2 concentrations (390–800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10–20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change. PMID:27242814

  18. Unravelling the limits to tree height: a major role for water and nutrient trade-offs.

    PubMed

    Cramer, Michael D

    2012-05-01

    Competition for light has driven forest trees to grow exceedingly tall, but the lack of a single universal limit to tree height indicates multiple interacting environmental limitations. Because soil nutrient availability is determined by both nutrient concentrations and soil water, water and nutrient availabilities may interact in determining realised nutrient availability and consequently tree height. In SW Australia, which is characterised by nutrient impoverished soils that support some of the world's tallest forests, total [P] and water availability were independently correlated with tree height (r = 0.42 and 0.39, respectively). However, interactions between water availability and each of total [P], pH and [Mg] contributed to a multiple linear regression model of tree height (r = 0.72). A boosted regression tree model showed that maximum tree height was correlated with water availability (24%), followed by soil properties including total P (11%), Mg (10%) and total N (9%), amongst others, and that there was an interaction between water availability and total [P] in determining maximum tree height. These interactions indicated a trade-off between water and P availability in determining maximum tree height in SW Australia. This is enabled by a species assemblage capable of growing tall and surviving (some) disturbances. The mechanism for this trade-off is suggested to be through water enabling mass-flow and diffusive mobility of P, particularly of relatively mobile organic P, although water interactions with microbial activity could also play a role.

  19. Tree-space statistics and approximations for large-scale analysis of anatomical trees.

    PubMed

    Feragen, Aasa; Owen, Megan; Petersen, Jens; Wille, Mathilde M W; Thomsen, Laura H; Dirksen, Asger; de Bruijne, Marleen

    2013-01-01

    Statistical analysis of anatomical trees is hard to perform due to differences in the topological structure of the trees. In this paper we define statistical properties of leaf-labeled anatomical trees with geometric edge attributes by considering the anatomical trees as points in the geometric space of leaf-labeled trees. This tree-space is a geodesic metric space where any two trees are connected by a unique shortest path, which corresponds to a tree deformation. However, tree-space is not a manifold, and the usual strategy of performing statistical analysis in a tangent space and projecting onto tree-space is not available. Using tree-space and its shortest paths, a variety of statistical properties, such as mean, principal component, hypothesis testing and linear discriminant analysis can be defined. For some of these properties it is still an open problem how to compute them; others (like the mean) can be computed, but efficient alternatives are helpful in speeding up algorithms that use means iteratively, like hypothesis testing. In this paper, we take advantage of a very large dataset (N = 8016) to obtain computable approximations, under the assumption that the data trees parametrize the relevant parts of tree-space well. Using the developed approximate statistics, we illustrate how the structure and geometry of airway trees vary across a population and show that airway trees with Chronic Obstructive Pulmonary Disease come from a different distribution in tree-space than healthy ones. Software is available from http://image.diku.dk/aasa/software.php.

  20. Integrated Approach To Design And Analysis Of Systems

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, F. A.; Iverson, David L.

    1993-01-01

    Object-oriented fault-tree representation unifies evaluation of reliability and diagnosis of faults. Programming/fault tree described more fully in "Object-Oriented Algorithm For Evaluation Of Fault Trees" (ARC-12731). Augmented fault tree object contains more information than fault tree object used in quantitative analysis of reliability. Additional information needed to diagnose faults in system represented by fault tree.

Top