Leaf gas films, underwater photosynthesis and plant species distributions in a flood gradient.
Winkel, Anders; Visser, Eric J W; Colmer, Timothy D; Brodersen, Klaus P; Voesenek, Laurentius A C J; Sand-Jensen, Kaj; Pedersen, Ole
2016-07-01
Traits for survival during flooding of terrestrial plants include stimulation or inhibition of shoot elongation, aerenchyma formation and efficient gas exchange. Leaf gas films form on superhydrophobic cuticles during submergence and enhance underwater gas exchange. The main hypothesis tested was that the presence of leaf gas films influences the distribution of plant species along a natural flood gradient. We conducted laboratory experiments and field observations on species distributed along a natural flood gradient. We measured presence or absence of leaf gas films and specific leaf area of 95 species. We also measured, gas film retention time during submergence and underwater net photosynthesis and dark respiration of 25 target species. The presence of a leaf gas film was inversely correlated to flood frequency and duration and reached a maximum value of 80% of the species in the rarely flooded locations. This relationship was primarily driven by grasses that all, independently of their field location along the flood gradient, possess gas films when submerged. Although the present study and earlier experiments have shown that leaf gas films enhance gas exchange of submerged plants, the ability of species to form leaf gas films did not show the hypothesized relationship with species composition along the flood gradient. © 2016 John Wiley & Sons Ltd.
Intraspecific variation in the response of Taxodium distichum seedlings to salinity
Allen, J.A.; Chambers, J.L.; McKinney, D.
1994-01-01
Seedlings of 15 open-pollinated families of baldcypress (Taxodium distichum) were tested for their tolerance to combined salinty and flooding stress. Ten of the families were from coastal locations in Louisiana or Alabama, USA, that were slightly brackish. The other families were from locations not affected by saltwater intrusion. Five salinity levels were investigated--0,2,4,6, and 8 g -1 artificial seawater -- all with flooding to approximately 5 cm above the soil surface. Survival, height growth, leaf area and total biomass all declined with increasing salinity. Significant variation was found among salinity levels, families, and salinity x family interactions for leaf area and total biomass. Two tolerance indices were also developed to compare family response with salinity. In general, families from brackish sources had greater total biomass, leaf area, and tolerance index values than families from freshwater sources at the higher slainity levels. A selection and breeding program designed to develop moderately salt-tolerant baldcypress seedlings for use in wetland restoration projects and other applications appears to be well-justified.
Krauss, Ken W.; Twilley, Robert R.; Doyle, Thomas W.; Gardiner, Emile S.
2006-01-01
We determined how different hydroperiods affected leaf gas exchange characteristics of greenhouse-grown seedlings (2002) and saplings (2003) of the mangrove species Avicennia germinans (L.) Stearn., Laguncularia racemosa (L.) Gaertn. f., and Rhizophora mangle L. Hydroperiod treatments included no flooding (unflooded), intermittent flooding (intermittent), and permanent flooding (flooded). Plants in the intermittent treatment were measured under both flooded and drained states and compared separately. In the greenhouse study, plants of all species maintained different leaf areas in the contrasting hydroperiods during both years. Assimilation–light response curves indicated that the different hydroperiods had little effect on leaf gas exchange characteristics in either seedlings or saplings. However, short-term intermittent flooding for between 6 and 22 days caused a 20% reduction in maximum leaf-level carbon assimilation rate, a 51% lower light requirement to attain 50% of maximum assimilation, and a 38% higher demand from dark respiration. Although interspecific differences were evident for nearly all measured parameters in both years, there was little consistency in ranking of the interspecific responses. Species by hydroperiod interactions were significant only for sapling leaf area. In a field study, R. mangle saplings along the Shark River in the Everglades National Park either demonstrated no significant effect or slight enhancement of carbon assimilation and water-use efficiency while flooded. We obtained little evidence that contrasting hydroperiods affect leaf gas exchange characteristics of mangrove seedlings or saplings over long time intervals; however, intermittent flooding may cause short-term depressions in leaf gas exchange. The resilience of mangrove systems to flooding, as demonstrated in the permanently flooded treatments, will likely promote photosynthetic and morphological adjustment to slight hydroperiod shifts in many settings..
Struggle in the flood: tree responses to flooding stress in four tropical floodplain systems
Parolin, Pia; Wittmann, Florian
2010-01-01
Background and aims In the context of the 200th anniversary of Charles Darwin's birth in 1809, this study discusses the variation in structure and adaptation associated with survival and reproductive success in the face of environmental stresses in the trees of tropical floodplains. Scope We provide a comparative review on the responses to flooding stress in the trees of freshwater wetlands in tropical environments. The four large wetlands we evaluate are: (i) Central Amazonian floodplains in South America, (ii) the Okavango Delta in Africa, (iii) the Mekong floodplains of Asia and (iv) the floodplains of Northern Australia. They each have a predictable ‘flood pulse’. Although flooding height varies between the ecosystems, the annual pulse is a major driving force influencing all living organisms and a source of stress for which specialized adaptations for survival are required. Main points The need for trees to survive an annual flood pulse has given rise to a large variety of adaptations. However, phenological responses to the flood are similar in the four ecosystems. Deciduous and evergreen species respond with leaf shedding, although sap flow remains active for most of the year. Growth depends on adequate carbohydrate supply. Physiological adaptations (anaerobic metabolism, starch accumulation) are also required. Conclusions Data concerning the ecophysiology and adaptations of trees in floodplain forests worldwide are extremely scarce. For successful floodplain conservation, more information is needed, ideally through a globally co-ordinated study using reproducible comparative methods. In the light of climatic change, with increasing drought, decreased groundwater availability and flooding periodicities, this knowledge is needed ever more urgently to facilitate fast and appropriate management responses to large-scale environmental change. PMID:22476061
Rezende, Renan de Souza; Gonçalves Júnior, José Francisco; Lopes, Aline; Piedade, Maria Teresa Fernandez; Cavalcante, Heloide de Lima; Hamada, Neusa
2017-01-01
Climate change may affect the chemical composition of riparian leaf litter and, aquatic organisms and, consequently, leaf breakdown. We evaluated the effects of different scenarios combining increased temperature and carbon dioxide (CO2) on leaf detritus of Hevea spruceana (Benth) Müll. and decomposers (insect shredders and microorganisms). We hypothesized that simulated climate change (warming and elevated CO2) would: i) decrease leaf-litter quality, ii) decrease survival and leaf breakdown by shredders, and iii) increase microbial leaf breakdown and fungal biomass. We performed the experiment in four microcosm chambers that simulated air temperature and CO2 changes in relation to a real-time control tracking current conditions in Manaus, Amazonas, Brazil. The experiment lasted seven days. During the experiment mean air temperature and CO2 concentration ranged from 26.96 ± 0.98ºC and 537.86 ± 18.36 ppmv in the control to 31.75 ± 0.50ºC and 1636.96 ± 17.99 ppmv in the extreme chamber, respectively. However, phosphorus concentration in the leaf litter decreased with warming and elevated CO2. Leaf quality (percentage of carbon, nitrogen, phosphorus, cellulose and lignin) was not influenced by soil flooding. Fungal biomass and microbial leaf breakdown were positively influenced by temperature and CO2 increase and reached their highest values in the intermediate condition. Both total and shredder leaf breakdown, and shredder survival rate were similar among all climatic conditions. Thus, low leaf-litter quality due to climate change and higher leaf breakdown under intermediate conditions may indicate an increase of riparian metabolism due to temperature and CO2 increase, highlighting the risk (e.g., decreased productivity) of global warming for tropical streams. PMID:29190723
Seasonal water stress tolerance and habitat associations within four neotropical tree genera.
Baraloto, Christopher; Morneau, François; Bonal, Damien; Blanc, Lilian; Ferry, Bruno
2007-02-01
We investigated the relationship between habitat association and physiological performance in four congeneric species pairs exhibiting contrasting distributions between seasonally flooded and terra firme habitats in lowland tropical rain forests of French Guiana, including Virola and Iryanthera (Myristicaceae), Symphonia (Clusiaceae), and Eperua (Caesalpiniaceae). We analyzed 10-year data sets of mapped and measured saplings (stems >150 cm in height and <10 cm diameter at breast height [dbh]) and trees (stems > or =10 cm dbh) across 37.5 ha of permanent plots covering a 300-ha zone, within which seasonally flooded areas (where the water table never descends below 1 m) have been mapped. Additionally, we tested the response of growth, survival, and leaf functional traits of these species to drought and flood stress in a controlled experiment. We tested for habitat preference using a modification of the torus translation method. Strong contrasting associations of the species pairs of Iryanthera, Virola, and Symphonia were observed at the sapling stage, and these associations strengthened for the tree stage. Neither species of Eperua was significantly associated with flooded habitats at the sapling stage, but E. falcata was significantly and positively associated with flooded forests at the tree stage, and trees of E. grandiflora were found almost exclusively in nonflooded habitats. Differential performance provided limited explanatory support for the observed habitat associations, with only congeners of Iryanthera exhibiting divergent sapling survival and tree growth. Seedlings of species associated with flooded forest tended to have higher photosynthetic capacity than their congeners at field capacity. In addition, they tended to have the largest reductions in leaf gas exchange and growth rate in response to experimental drought stress and the least reductions in response to experimental inundation. The corroboration of habitat association with differences in functional traits and, to a lesser extent, measures of performance provides an explanation for the regional coexistence of these species pairs. We suggest that specialization to seasonally flooded habitats may explain patterns of adaptive radiation in many tropical tree genera and thereby provide a substantial contribution to regional tree diversity.
Teakle, Natasha Lea; Colmer, Timothy David; Pedersen, Ole
2014-10-01
A combination of flooding and salinity is detrimental to most plants. We studied tolerance of complete submergence in saline water for Melilotus siculus, an annual legume with superhydrophobic leaf surfaces that retain gas films when under water. M. siculus survived complete submergence of 1 week at low salinity (up to 50 mol m(-3) NaCl), but did not recover following de-submergence from 100 mol m(-3) NaCl. The leaf gas films protected against direct salt ingress into the leaves when submerged in saline water, enabling underwater photosynthesis even after 3 d of complete submergence. By contrast, leaves with the gas films experimentally removed suffered from substantial Na(+) and Cl(-) intrusion and lost the capacity for underwater photosynthesis. Similarly, plants in saline water and without gas films lost more K(+) than those with intact gas films. This study has demonstrated that leaf gas films reduce Na(+) and Cl(-) ingress into leaves when submerged by saline water - the thin gas layer physically separates the floodwater from the leaf surface. This feature aids survival of plants exposed to short-term saline submergence, as well as the previously recognized beneficial effects of gas exchange under water. © 2014 John Wiley & Sons Ltd.
Organ-specific proteomics of soybean seedlings under flooding and drought stresses.
Wang, Xin; Khodadadi, Ehsaneh; Fakheri, Baratali; Komatsu, Setsuko
2017-06-06
Organ-specific analyses enrich the understanding of plant growth and development under abiotic stresses. To elucidate the cellular responses in soybean seedlings exposed to flooding and drought stresses, organ-specific analysis was performed using a gel-free/label-free proteomic technique. Physiological analysis indicated that enzyme activities of alcohol dehydrogenase and delta-1-pyrroline-5-carboxylate synthase were markedly increased in leaf and root of plants treated with 6days of flooding and drought stresses, respectively. Proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic acid cycle were predominately affected in leaf, hypocotyl, and root in response to flooding and drought. Notably, the tricarboxylic acid cycle was suppressed in leaf and root under both stresses. Moreover, 17 proteins, including beta-glucosidase 31 and beta-amylase 5, were identified in soybean seedlings under both stresses. The protein abundances of beta-glucosidase 31 and beta-amylase 5 were increased in leaf and root under both stresses. Additionally, the gene expression of beta-amylase 5 was upregulated in leaf exposed to the flooding and drought, and the expression level was highly correlated with the protein abundance. These results suggest that beta-amylase 5 may be involved in carbohydrate mobilization to provide energy to the leaf of soybean seedlings exposed to flooding and drought. This study examined the effects of flooding and drought on soybean seedlings in different organs using a gel-free/label-free proteomic approach. Physiological responses indicated that enzyme activities of alcohol dehydrogenase and delta-1-pyrroline-5-carboxylate synthase were increased in leaf and root of soybean seedlings exposed to flooding and drought for 6days. Functional analysis of acquired protein profiles exhibited that proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic acid cycle were predominated affected in leaf, hypocotyl, and root under both stresses. Moreover, the tricarboxylic acid cycle was suppressed in leaf and root of stressed soybean seedlings. Additionally, increased protein abundance of beta-amylase 5 was consistent with upregulated gene expression in the leaf under both stresses, suggesting that carbohydrate metabolism might be governed in response to flooding and drought of soybean seedlings. Copyright © 2017 Elsevier B.V. All rights reserved.
Khatoon, Amana; Rehman, Shafiq; Hiraga, Susumu; Makino, Takahiro; Komatsu, Setsuko
2012-10-22
Flooding is one of the severe environmental factors which impair growth and yield in soybean plant. To investigate the organ specific response mechanism of soybean under flooding stress, changes in protein species were analyzed using a proteomics approach. Two-day-old soybeans were subjected to flooding for 5 days. Proteins were extracted from root, hypocotyl and leaf, and separated by two-dimensional polyacrylamide gel electrophoresis. In root, hypocotyl and leaf, 51, 66 and 51 protein species were significantly changed, respectively, under flooding stress. In root, metabolism related proteins were increased; however these proteins were decreased in hypocotyl and leaf. In all 3 organs, cytoplasm localized proteins were decreased, and leaf chloroplastic proteins were also decreased. Isoflavone reductase was commonly decreased at protein level in all 3 organs; however, mRNA of isoflavone reductase gene was up-regulated in leaf under flooding stress. Biophoton emission was increased in all 3 organs under flooding stress. The up-regulation of isoflavone reductase gene at transcript level; while decreased abundance at protein level indicated that flooding stress affected the mRNA translation to proteins. These results suggest that concurrence in expression of isoflavone reductase gene at mRNA and protein level along with imbalance in other disease/defense and metabolism related proteins might lead to impaired growth of root, hypocotyl and leaf of soybean seedlings under flooding stress. Copyright © 2012 Elsevier B.V. All rights reserved.
How do riparian woody seedlings survive seasonal drought?
Stella, John C; Battles, John J
2010-11-01
In semi-arid regions, a major population limitation for riparian trees is seedling desiccation during the dry season that follows annual spring floods. We investigated the stress response of first-year pioneer riparian seedlings to experimental water table declines (0, 1 and 3 cm day(-1)), focusing on the three dominant cottonwood and willows (family Salicaceae) in California's San Joaquin Basin. We analyzed growth and belowground allocation response to water stress, and used logistic regression to determine if these traits had an influence on individual survival. The models indicate that high root growth (>3 mm day(-1)) and low shoot:root ratios (<1.5 g g(-1)) strongly predicted survival, but there was no evidence that plants increased belowground allocation in response to drawdown. Leaf δ(13)C values shifted most for the best-surviving species (net change of +3.5 per mil from -30.0 ± 0.3 control values for Goodding's willow, Salix gooddingii), implying an important role of increased water-use efficiency for surviving water stress. Both S. gooddingii and sandbar willow (S. exigua) reduced leaf size from controls, whereas Fremont cottonwood (Populus fremontii) sustained a 29% reduction in specific leaf area (from 13.4 to 9.6 m(2) kg(-1)). The functional responses exhibited by Goodding's willow, the more drought-tolerant species, may play a role in its greater relative abundance in dry regions such as the San Joaquin Basin. This study highlights the potential for a shift in riparian forest composition. Under a future drier climate regime or under reduced regulated river flows, our results suggest that willow establishment will be favored over cottonwood.
Elder, John F.; Cairns, Duncan J.
1982-01-01
Measurements of litter fall (leaves and other particulate organic material) and leaf decomposition were made on the bottom-land hardwood swamp of the Apalachicola River flood plain in 1979-80. Litter fall was collected monthly from nets located in 16 study plots. The plots represented five forest types in the swamp and levee areas of the Apalachicola River flood plain. Forty-three species of trees, vines, and other plants contributed to the total litter fall, but more than 90 percent of the leaf material originated from 12 species. Nonleaf material made up 42 percent of the total litter fall. Average litter fall was determined to be 800 grams per square meter per year, resulting in an annual deposition of 3.6 ? 105 metric tons of organic material in the 454-square-kilometer flood plain. The levee communities have less tree biomass but greater tree diversity than do swamp communities. The levee vegetation, containing less tree biomass, produces slightly more litter fall per unit of ground surface area than does the swamp vegetation. The swamps are dominated by three genera: tupelo (Nyssa), cypress (Taxodium) and ash (Fraxinus). These genera account for more than 50 percent of the total leaf fall in the flood plain, but they are the least productive, on a weight-perbiomass basis, of any of the 12 major leaf producers. Decomposition rates of leaves from five common floodplain tree species were measured using a standard leaf-bag technique. Leaf decomposition was highly species dependent. Tupelo (Nyssa spp.) and sweetgum (Liquidambar styraciflua) leaves decomposed completely in 6 months when flooded by river water. Leaves of baldcypress (Taxodium distichum) and diamond-leaf oak (Quercus laurifolia) were much more resistant. Water hickory (Carya aquatica) leaves showed intermediate decomposition rates. Decomposition of all species was greatly reduced in dry environments. Carbon and biomass loss rates from the leaves were nearly linear over a 6-month period, but nitrogen and phosphorus leaching was nearly complete within 1 month. Much of the organic substance may be recycled in the forest ecosystem, but annual flooding of the river provides an important mechanism for mobilization of the litter-fall products.
An expanded model: flood-inundation maps for the Leaf River at Hattiesburg, Mississippi, 2013
Storm, John B.
2014-01-01
Digital flood-inundation maps for a 6.8-mile reach of the Leaf River at Hattiesburg, Mississippi (Miss.), were created by the U.S. Geological Survey (USGS) in cooperation with the City of Hattiesburg, City of Petal, Forrest County, Mississippi Emergency Management Agency, Mississippi Department of Homeland Security, and the Emergency Management District. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Leaf River at Hattiesburg, Miss. (station no. 02473000). Current conditions for estimating near-real-time areas of inundation by use of USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relations at the Leaf River at Hattiesburg, Miss. streamgage (02473000) and documented high-water marks from recent and historical floods. The hydraulic model was then used to determine 13 water-surface profiles for flood stages at 1.0-foot intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM, derived from light detection and ranging (lidar) data having a 0.6-foot vertical and 9.84-foot horizontal resolution) in order to delineate the area flooded at each water level. Development of the estimated flood inundation maps as described in this report update previously published inundation estimates by including reaches of the Bouie and Leaf Rivers above their confluence. The availability of these maps along with Internet information regarding current stage from USGS streamgages and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post flood recovery efforts.
Rauf, Mamoona; Arif, Muhammad; Fisahn, Joachim; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd
2013-01-01
In rosette plants, root flooding (waterlogging) triggers rapid upward (hyponastic) leaf movement representing an important architectural stress response that critically determines plant performance in natural habitats. The directional growth is based on localized longitudinal cell expansion at the lower (abaxial) side of the leaf petiole and involves the volatile phytohormone ethylene (ET). We report the existence of a transcriptional core unit underlying directional petiole growth in Arabidopsis thaliana, governed by the NAC transcription factor SPEEDY HYPONASTIC GROWTH (SHYG). Overexpression of SHYG in transgenic Arabidopsis thaliana enhances waterlogging-triggered hyponastic leaf movement and cell expansion in abaxial cells of the basal petiole region, while both responses are largely diminished in shyg knockout mutants. Expression of several EXPANSIN and XYLOGLUCAN ENDOTRANSGLYCOSYLASE/HYDROLASE genes encoding cell wall–loosening proteins was enhanced in SHYG overexpressors but lowered in shyg. We identified ACC OXIDASE5 (ACO5), encoding a key enzyme of ET biosynthesis, as a direct transcriptional output gene of SHYG and found a significantly reduced leaf movement in response to root flooding in aco5 T-DNA insertion mutants. Expression of SHYG in shoot tissue is triggered by root flooding and treatment with ET, constituting an intrinsic ET-SHYG-ACO5 activator loop for rapid petiole cell expansion upon waterlogging. PMID:24363315
Rauf, Mamoona; Arif, Muhammad; Fisahn, Joachim; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd
2013-12-01
In rosette plants, root flooding (waterlogging) triggers rapid upward (hyponastic) leaf movement representing an important architectural stress response that critically determines plant performance in natural habitats. The directional growth is based on localized longitudinal cell expansion at the lower (abaxial) side of the leaf petiole and involves the volatile phytohormone ethylene (ET). We report the existence of a transcriptional core unit underlying directional petiole growth in Arabidopsis thaliana, governed by the NAC transcription factor speedy hyponastic growth (SHYG). Overexpression of SHYG in transgenic Arabidopsis thaliana enhances waterlogging-triggered hyponastic leaf movement and cell expansion in abaxial cells of the basal petiole region, while both responses are largely diminished in shyg knockout mutants. Expression of several expansin and xyloglucan endotransglycosylase/hydrolase genes encoding cell wall-loosening proteins was enhanced in SHYG overexpressors but lowered in shyg. We identified ACC oxidase5 (ACO5), encoding a key enzyme of ET biosynthesis, as a direct transcriptional output gene of SHYG and found a significantly reduced leaf movement in response to root flooding in aco5 T-DNA insertion mutants. Expression of SHYG in shoot tissue is triggered by root flooding and treatment with ET, constituting an intrinsic ET-SHYG-ACO5 activator loop for rapid petiole cell expansion upon waterlogging.
Kato, Yoichiro; Okami, Midori
2011-09-01
Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. 'Aerobic rice culture' aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant-water relationships and stomatal conductance in aerobic culture. Root system development, stomatal conductance (g(s)) and leaf water potential (Ψ(leaf)) were monitored in a high-yielding rice cultivar ('Takanari') under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> -10 kPa) and mildly dry (> -30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; K(pa)) was measured under flooded and aerobic conditions. Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72-85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower K(pa) than plants grown under flooded conditions. Ψ(leaf) was always significantly lower in aerobic culture than in flooded culture, while g(s) was unchanged when the soil moisture was at around field capacity. g(s) was inevitably reduced when the soil water potential at 20-cm depth reached -20 kPa. Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψ(leaf). Ψ(leaf) may reduce even if K(pa) is not significantly changed, but the lower Ψ(leaf) would certainly occur in case K(pa) reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep rooting.
Flood-inundation maps for the Leaf River at Hattiesburg, Mississippi
Storm, John B.
2012-01-01
Digital flood-inundation maps for a 1.7-mile reach of the Leaf River were developed by the U.S. Geological Survey (USGS) in cooperation with the City of Hattiesburg, City of Petal, Forrest County, Mississippi Emergency Management Agency, Mississippi Department of Homeland Security, and the Emergency Management District. The Leaf River study reach extends from just upstream of the U.S. Highway 11 crossing to just downstream of East Hardy/South Main Street and separates the cities of Hattiesburg and Petal, Mississippi. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water-surface elevations (stages) at the USGS streamgage at Leaf River at Hattiesburg, Mississippi (02473000). Current conditions at the USGS streamgage may be obtained through the National Water Information System Web site at http://waterdata.usgs.gov/ms/nwis/uv/?site_no=02473000&PARAmeter_cd=00065,00060. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often collocated at USGS streamgages. The forecasted peak-stage information, available on the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relations at the Leaf River at Hattiesburg, Mississippi, streamgage and documented high-water marks from recent and historical floods. The hydraulic model was then used to determine 13 water-surface profiles for flood stages at 1.0-foot intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water-surface elevation at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model [derived from Light Detection and Ranging (LiDAR) data having a 0.6-foot vertical accuracy and 9.84-foot horizontal resolution] in order to delineate the area flooded at each 1-foot increment of stream stage. The availability of these maps, when combined with real-time stage information from USGS streamgages and forecasted stream stage from the NWS, provides emergency management personnel and residents with critical information during flood-response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.
Bertolde, Fabiana Zanelato; De Almeida, Alex-Alan Furtado; Corrêa, Ronan Xavier; Gomes, Fábio Pinto; Gaiotto, Fernanda Amato; Baligar, Virupax C; Loguercio, Leandro Lopes
2010-01-01
In soil, anoxia conditions generated by waterlogging induce changes in genetic, morphological and physiological processes, altering the growth and development of plants. Mass propagation of cacao (Theobroma cacao L.) plantlets (clones) is affected by waterlogging caused by heavy rains and irrigation methods used to induce rooting. An experiment was undertaken to assess the effects of a 45-day flooding (anoxia) on physiological and morphological traits of 35 elite cacao genotypes, aiming at potentially identifying those with greater tolerance to flooding of the growth substrate. Eighteen fluorochrome-labeled microsatellite (SSR) primer pairs were used to assess genetic variability among clones, with 248 alleles being amplified and used to calculate similarity coefficients. The resulting dendrogram indicated the presence of four major groups, in which two represented 60% and 31% of the genotypes tested. A general trend toward high levels of heterozygosity was also found for physiological and morphological traits. The survival index (IS) for flood tolerance observed varied from 30 to 96%. Clones TSA-654, TSA-656, TSA-792, CA-1.4, CEPEC-2009 and PH-17 showed an IS value above 94%, whereas CEPEC-2010, CEPEC-2002, CA-7.1 and VB-903 clones were those mostly affected by waterlogging, with IS value below 56%. All genotypes displayed lenticel and adventitious root formation in response to waterlogging, although with different intensities. To determine whether patterns of physiological response could be associated with tolerance to anoxia, a similarity-grouping analysis was performed using the ratio between waterlogged and control values obtained for a series of physiological variables assessed. No specific pattern of physiological and morphological responses to waterlogging was strictly associated with survival of plantlets. However, results revealed by the dendrogram suggest that absence of leaf chlorosis may be a proper trait to indicate cacao clones with higher survival rates under flooding conditions. Consequences of these findings are discussed in the context of developing improved strategies for mass production of clones from elite cacao genotypes.
Izzo, Thiago J; Fernandez Piedade, Maria Teresa; Dáttilo, Wesley
2018-06-07
Even when adapted to flooding environments, the spatial distribution, growing strategies and anti-herbivore defences of plants face stressful conditions. Here we describe the effects of flooding on carbon allocation on growth, domatia and leaf production, and the herbivory on the myrmecophyte domatia-bearing Tococa coronata Benth. (Melastomataceae) growing along river banks in the Amazon region. In an area of 80 000 m2 of riparian forest along the Juruena River we actively searched for individuals of T. coronata. In each plant we evaluated the size of the plant when producing the first domatium and determined its best predictor: (1) plant total height; (2) size of plants above flood level; or (3) length of time each plant spent underwater. We also compared the herbivory, internode elongation, foliar asymmetry and specific leaf weight between T. coronata individuals growing above and below the maximum flooding level. The distance to the river and the height of the first domatium produced were compared between T. coronata and its sympatric congener, T. bulifera. We found that T. coronata invests in rapid growth in the early ontogenetic stages through an elongation of internodes rather than in constitutive anti-herbivore defences to leaves or domatia to exceed the maximum flooding level. Consequently, its leaf herbivory was higher when compared with those produced above the flooding level. Individuals with leaves above flood levels produce coriaceous leaves and ant-domatias. Thus, flooding seems to trigger changes in growth strategies of the species. Furthermore, T. coronata occurs within the flood level, whereas its congener T. bullifera invariably occurs at sites unreachable by floods. Even in conditions of high stress, T. coronata presents both physiological and adaptive strategies that allow for colonization and establishment within flooded regions. These mechanisms involve an extreme trade-off of postponing adult plant characteristics to rapid growth to escape flooding while minimizing carbon allocation to defence.
Parolin, Pia
2009-01-01
Background In Amazonian floodplain forests, >1000 tree species grow in an environment subject to extended annual submergence which can last up to 9 months each year. Water depth can reach 10 m, fully submerging young and also adult trees, most of which reproduce during the flood season. Complete submergence occurs regularly at the seedling or sapling stage for many species that colonize low-lying positions in the flooding gradient. Here hypoxic conditions prevail close to the water surface in moving water, while anaerobic conditions are common in stagnant pools. Light intensities in the floodwater are very low. Questions and Aims Despite a lack of both oxygen and light imposed by submergence for several months, most leafed seedlings survive. Furthermore, underwater growth has also been observed in several species in the field and under experimental conditions. The present article assesses how these remarkable plants react to submergence and discusses physiological mechanisms and anatomical adaptations that may explain their success. PMID:19001429
Hong, Ming; Guo, Quan-Shu; Nie, Bi-Hong; Kang, Yi; Pei, Shun-Xiang; Jin, Jiang-Qun; Wang, Xiang-Fu
2011-11-01
This paper studied the population density, morphological characteristics, and biomass and its allocation of Cynodon dactylon at different altitudinal sections of the hydro-fluctuation belt in Three Gorges Reservoir area, based on located observations. At the three altitudinal sections, the population density of C. dactylon was in the order of shallow water section (165-170 m elevation) > non-flooded section (above 172 m elevation) > deep water section (145-150 m elevation), the root diameter and root length were in the order of deep water section > shallow water section > non-flooded section, the total biomass, root biomass, stem biomass, leaf biomass, and stem biomass allocation ratio were in the order of the shallow water section > non-flooded section > deep water section, and the root biomass allocation ratio, leaf biomass allocation ratio, and underground biomass/aboveground biomass were in the order of deep water section > shallow water section > non-flooded section. The unique adaption strategies of C. dactylon to the flooding-drying habitat change in the shallow water section were the accelerated elongation growth and the increased stem biomass allocation, those in the deep water section were the increased node number of primary and secondary branches, increased number of the branches, and increased leaf biomass allocation, whereas the common strategies in the shallow and deep water sections were the accelerated root growth and the increased tillering and underground biomass allocation for preparing nutrition and energy for the rapid growth in terrestrial environment.
Delgado, C; Couturier, G; Fine, P V A
2014-08-01
The weevil Conotrachelus dubiae O'Brien & Couturier (Coleoptera: Curculionidae) is a pest of an economically important Amazonian fruit tree Myrciaria dubia (Myrtaceae). This tree grows in seasonally flooded environments, and how weevil larvae survive flooding has not been studied. From December 2004 to May 2009, five experiments were conducted in natural conditions and in the laboratory, with the aim of understanding the mechanisms that allow the survival of C. dubiae larvae in seasonal floods in Amazonia. The larvae of C. dubiae were kept under water for over 93 days. Older instars exposed to periodic circulation of water survived better than younger instars in addition to all larvae that were kept continuously under uncirculated water. Individuals that were collected from plots of M. dubia located in flooded soils and non-flooded soils did not exhibit statistically significant differences in their levels of survival indicating that the variation in survival of flooding events is due to phenotypic plasticity of the species and not to local adaptation by the populations in different environments. We speculate that larvae can survive floods without major physiological changes as larvae appear to obtain oxygen from water by cutaneous diffusion, assisted by caudal movements.
B. R. Lockhart; E. S. Gardiner; T. D. Leininger; M. S. Devall; A. D. Wilson; K. F. Connor; P. B. Hamel; N. M. Schiff
2017-01-01
Physiological responses to light availability and soil flooding on Lindera melissifolia (Walt.) Blume were studied. Shrubswere grown under 70, 37 or 5% of full sunlight with either 0, 45, or 90 d of soil flooding. We measured leaf photosyntheticrate (PN) to test the hypothesis that soil flooding reduces PN in L. melissifolia following shrub...
M.N. Angelov; Shi-Jean S. Sung; R.L. Doong; W.R. Harms; Paul P. Kormanik; C.C. Black
1995-01-01
About 95% of swamp tupelo (Nyssa sylvatica var. biflora (Walt.) Sarg.) And sweetgum (Liquidambar styraciflua L.) seedlings survived continuous root flooding for more than two years, whereas none of the swamp chestnut oak (Quercus michauxii Nutt.) And cherrybark oak (Q. falcata var. pagodifolia Ell.) Seedlings survived one year of flooding.Flooding caused increases in...
Cardona-Olarte, Pablo; Krauss, Ken W.; Twilley, Robert R.
2013-01-01
Rhizophora mangle and Laguncularia racemosa co-occur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1) were simulated over 10 months. Assimilation (A), stomatal conductance (gw), intercellular CO2 concentration (Ci), instantaneous photosynthetic water use efficiency (PWUE), and photosynthetic nitrogen use efficiency (PNUE) were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and stomatal conductance and gw, accordingly, had greater intercellular CO2 (calculated) during measurements. Both species maintained similar capacities for assimilation at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.
Flood flows, leaf breakdown, and plant-available nitrogen on a dryland river floodplain
Andersen, Douglas C.; Nelson, S. Mark; Binkley, Dan
2003-01-01
We tested the hypothesis that decomposition in flood-inundated patches of riparian tree leaf litter results in higher plant-available nitrogen in underlying, nutrient-poor alluvium. We used leafpacks (n = 56) containing cottonwood (Populus deltoides ssp. wislizenii) leaf litter to mimic natural accumulations of leaves in an experiment conducted on the Yampa River floodplain in semi-arid northwestern Colorado, USA. One-half of the leafpacks were set on the sandy alluvial surface, and one-half were buried 5 cm below the surface. The presence of NO3− and NH4+ presumed to result from a leafpack's submergence during the predictable spring flood pulse was assessed using an ion-exchange resin bag (IER) placed beneath each leafpack and at control locations. Leafpacks and IERs were collected one week after flood peak (71 days total exposure) at half the stations; the remainder were collected three weeks later (93 days exposure). A multi-peaked spring flood with above-average maximum discharge inundated leafpacks for total time periods ranging from 133 to 577 hours. Litter lost from 43 to 68 percent of its initial organic matter (OM) content. Organic matter loss increased with total time inundated and total time of exposure on the floodplain. Burial retarded OM loss if the total time inundated was relatively long, and substrate texture (sand vs. silt) affected OM loss in a complex manner through interactions with total time inundated and total time of exposure. No pulse of N attributable to leaf breakdown was detected in the IERs, and leafpack litter showed no net change in the mass of nitrogen present. Patterns of leafpack and IER nitrogen levels suggested that litter removed N from floodwater and thereby reduced N availability in underlying sediment. Immobilization of floodwater-N by litter and N mineralization outside the flood period may be important components of N flux in semi-arid and arid floodplain environments.
River flood seasonality in the Northeast United States and trends in annual timing
NASA Astrophysics Data System (ADS)
Collins, M. J.
2017-12-01
The New England and Mid-Atlantic regions of the Northeast United States have experienced climate-associated increases in both the magnitude and frequency of floods. However, a detailed understanding of flood seasonality across these regions, and how flood seasonality may have changed over the instrumental record, has not been established. The annual timing of river floods reflects the flood-generating mechanisms operating in a basin and many aquatic and riparian organisms are adapted to flood seasonality, as are human uses of river channels and floodplains. Changes in flood seasonality may indicate changes in flood-generating mechanisms, and their interactions, with important implications for habitats, floodplain infrastructure, and human communities. For example, changes in spring or fall flood timing may negatively or positively affect a vulnerable life stage for a migratory fish (e.g., egg setting) depending on whether floods occur more frequently before or after the life history event. In this study I apply an objective, probabilistic method for identifying flood seasons at a monthly resolution for 90 climate-sensitive watersheds in New England and the Mid-Atlantic (Hydrologic Unit Codes 01 and 02). Historical trends in flood timing during the year are also investigated. The analyses are based on partial duration flood series that are an average of 85 years long. The seasonality of flooding in these regions, and any historical changes, are considered in the context of other ongoing or expected phenological changes in the Northeast U.S. environment that affect flood generation—e.g., the timing of leaf-off/leaf-out for deciduous plants. How these factors interact will affect whether and how flood magnitudes and frequencies change in the future and associated impacts.
Owens, Carrie B; Su, Nan-Yao; Husseneder, Claudia; Riegel, Claudia; Brown, Kenneth S
2012-04-01
Levee breaches because of Hurricane Katrina in 2005 inundated 80% of the city of New Orleans, LA. Formosan subterranean termites were observed actively foraging within in-ground monitoring stations within months after this period of flooding. It was unknown if the activity could be attributed to preexisting colonies that survived inundation or to other colonies surviving flooding by being located at higher elevations readily invading these territories. Genotypic profiles of 17 termite colonies collected from eight inundated locations before flooding were compared with termite colonies after flooding from the same locations to determine Formosan subterranean termite survival after sustained flooding. Results indicate that 14 colonies were able to survive inundation for extended periods.
Pedersen, Ole; Rich, Sarah Meghan; Colmer, Timothy David
2009-04-01
When completely submerged, the leaves of some species retain a surface gas film. Leaf gas films on submerged plants have recently been termed 'plant plastrons', analogous with the plastrons of aquatic insects. In aquatic insects, surface gas layers (i.e. plastrons) enlarge the gas-water interface to promote O₂ uptake when under water; however, the function of leaf gas films has rarely been considered. The present study demonstrates that gas films on leaves of completely submerged rice facilitate entry of O₂ from floodwaters when in darkness and CO₂ entry when in light. O₂ microprofiles showed that the improved gas exchange was not caused by differences in diffusive boundary layers adjacent to submerged leaves with or without gas films; instead, reduced resistance to gas exchange was probably due to the enlarged water-gas interface (cf. aquatic insects). When gas films were removed artificially, underwater net photosynthesis declined to only 20% of the rate with gas films present, such that, after 7 days of complete submergence, tissue sugar levels declined, and both shoot and root growth were reduced. Internal aeration of roots in anoxic medium, when shoots were in aerobic floodwater in darkness or when in light, was improved considerably when leaf gas films were present. Thus, leaf gas films contribute to the submergence tolerance of rice, in addition to those traits already recognized, such as the shoot-elongation response, aerenchyma and metabolic adjustments to O₂ deficiency and oxidative stress. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.
Mattew A. Neatrour; Jackson R. Webster; Ernest F. Benfield
2004-01-01
We investigated the etfect of a flood on particulate organic matter (POM) dynamics in the floodplain and active channel of the Little Tennessee River In western North Carolina We measured litterfall, leaf breakdown, and floodplain litter (before and after the flood) at 12 sites Annual litterfall (256-562 g m-2 y-1 ) was...
Microwave Backscatter and Attenuation Dependence of Leaf Area Index for Flooded Rice Fields
NASA Technical Reports Server (NTRS)
Durden, Stephen L.; Morrissey, Leslie A.; Livingston, Gerald P.
1995-01-01
Wetlands are important for their role in global climate as a source of methane and other reduced trace gases. As part of an effort to determine whether radar is suitable for wetland vegetation monitoring, we have studied the dependence of microwave backscatter and attenuation on leaf area index (LAI) for flooded rice fields. We find that the radar return from a flooded rice field does show dependence on LAI. In particular, the C-band VV cross section per unit area decreases with increasing LAI. A simple model for scattering from rice fields is derived and fit to the observed HH and VV data. The model fit provides insight into the relation of backscatter to LAI and is also used to calculate the canopy path attenuation as a function of LAI.
Ayi, Qiaoli; Zeng, Bo; Liu, Jianhui; Li, Siqi; van Bodegom, Peter M.; Cornelissen, Johannes H. C.
2016-01-01
Background and Aims Flooding imposes stress upon terrestrial plants because it results in oxygen deficiency, which is considered a major problem for submerged plants. A common response of terrestrial plants to flooding is the formation of aquatic adventitious roots. Some studies have shown that adventitious roots on submerged plants are capable of absorbing water and nutrients. However, there is no experimental evidence for the possible oxygen uptake function of adventitious roots or for how important this function might be for the survival of plants during prolonged submergence. This study aims to investigate whether adventitious roots absorb oxygen from the water column, and whether this new function is beneficial to the survival of completely submerged plants. Methods Taking Alternanthera philoxeroides (Mart.) Griseb. as a representative species, the profiling of the underwater oxygen gradient towards living and dead adventitious roots on completely submerged plants was conducted, the oxygen concentration in stem nodes with and without adventitious roots was measured, and the growth, survival and non-structural carbohydrate content of completely submerged plants with and without adventitious roots was investigated. Key Results Oxygen profiles in the water column of adventitious roots showed that adventitious roots absorbed oxygen from water. It is found that the oxygen concentration in stem nodes having adventitious roots was higher than that in stem nodes without adventitious roots, which implies that the oxygen absorbed by adventitious roots from water was subsequently transported from the roots to other plant tissues. Compared with plants whose adventitious roots had been pruned, those with intact adventitious roots had slower leaf shedding, slower plant mass reduction, more efficient carbohydrate economy and prolonged survival when completely submerged. Conclusions The adventitious roots of A. philoxeroides formed upon submergence can absorb oxygen from ambient water, thereby alleviating the adverse effects of oxygen deficiency, enabling efficient utilization of carbohydrates and delaying the death of completely submerged plants. PMID:27063366
Productivity responses of Acer rubrum and Taxodium distichum seedlings to elevated CO2 and flooding
Vann, C.D.; Megonigal, J.P.
2002-01-01
Elevated levels of atmospheric CO2 are expected to increase photosynthetic rates of C3 tree species, but it is uncertain whether this will result in an increase in wetland seedling productivity. Separate short-term experiments (12 and 17 weeks) were performed on two wetland tree species, Taxodium distichum and Acer rubrum, to determine if elevated CO2 would influence the biomass responses of seedlings to flooding. T. distichum were grown in replicate glasshouses (n = 2) at CO2 concentrations of 350 or 700 ppm, and A. rubrum were grown in growth chambers at CO2 concentrations of 422 or 722 ppm. Both species were grown from seed. The elevated CO2 treatment was crossed with two water table treatments, flooded and non-flooded. Elevated CO2 increased leaf-level photosynthesis, whole-plant photosynthesis, and trunk diameter of T. distichum in both flooding treatments, but did not increase biomass of T. distichum or A. rubrum. Flooding severely reduced biomass, height, and leaf area of both T. distichum and A. rubrum. Our results suggest that the absence of a CO2-induced increase in growth may have been due to an O2 limitation on root production even though there was a relatively deep (??? 10 cm) aerobic soil surface in the non-flooded treatment. ?? 2001 Elsevier Science Ltd. All rights reserved.
Tzeng, Hsy-Yu; Wang, Wei; Tseng, Yen-Hsueh; Chiu, Ching-An; Kuo, Chu-Chia; Tsai, Shang-Te
2018-01-01
Global warming-induced extreme climatic changes have increased the frequency of severe typhoons bringing heavy rains; this has considerably affected the stability of the forest ecosystems. Since the Taiwan 921 earthquake occurred in 21 September 1999, the mountain geology of the Island of Taiwan has become unstable and typhoon-induced floods and mudslides have changed the topography and geomorphology of the area; this has further affected the stability and functions of the riparian ecosystem. In this study, the vegetation of the unique Aowanda Formosan gum forest in Central Taiwan was monitored for 3 years after the occurrence of floods and mudslides during 2009-2011. Tree growth and survival, effects of floods and mudslides, and factors influencing tree survival were investigated. We hypothesized that (1) the effects of floods on the survival are significantly different for each tree species; (2) tree diameter at breast height (DBH) affects tree survival-i.e., the larger the DBH, the higher the survival rate; and (3) the relative position of trees affects tree survival after disturbances by floods and mudslides-the farther trees are from the river, the higher is their survival rate. Our results showed that after floods and mudslides, the lifespans of the major tree species varied significantly. Liquidambar formosana displayed the highest flood tolerance, and the trunks of Lagerstoemia subcostata began rooting after disturbances. Multiple regression analysis indicated that factors such as species, DBH, distance from sampled tree to the above boundary of sample plot (far from the riverbank), and distance from the upstream of the river affected the lifespans of trees; the three factors affected each tree species to different degrees. Furthermore, we showed that insect infestation had a critical role in determining tree survival rate. Our 3-year monitoring investigation revealed that severe typhoon-induced floods and mudslides disturbed the riparian vegetation in the Formosan gum forest, replacing the original vegetation and beginning secondary succession. Moreover, flooding provided new habitats for various plants to establish their progeny. By using our results, lifecycles of trees (including death) can be understood in detail, facilitating riparian vegetation engineering in forests severely disturbed by typhoon-induced floods and mudslides.
Liu, Heming; Shen, Guochun; Ma, Zunping; Yang, Qingsong; Xia, Jianyang; Fang, Xiaofeng; Wang, Xihua
2016-01-01
Conspecific adults have strong negative effect on the survival of nearby early-stage seedlings and thus can promote species coexistence by providing space for the regeneration of heterospecifics. The leaf litter fall from the conspecific adults, and it could mediate this conspecific negative adult effect. However, field evidence for such effect of conspecific leaf litter remains absent. In this study, we used generalized linear mixed models to assess the effects of conspecific leaf litter on the early-stage seedling survival of four dominant species (Machilus leptophylla, Litsea elongate, Acer pubinerve and Distylium myricoides) in early-stage seedlings in a subtropical evergreen broad-leaved forest in eastern China. Our results consistently showed that the conspecific leaf litter of three species negatively affected the seedling survival. Meanwhile, the traditional conspecific adult neighborhood indices failed to detect this negative conspecific adult effect. Our study revealed that the accumulation of conspecific leaf litter around adults can largely reduce the survival rate of nearby seedlings. Ignoring it could result in underestimation of the importance of negative density dependence and negative species interactions in the natural forest communities. PMID:27886275
Liu, Heming; Shen, Guochun; Ma, Zunping; Yang, Qingsong; Xia, Jianyang; Fang, Xiaofeng; Wang, Xihua
2016-11-25
Conspecific adults have strong negative effect on the survival of nearby early-stage seedlings and thus can promote species coexistence by providing space for the regeneration of heterospecifics. The leaf litter fall from the conspecific adults, and it could mediate this conspecific negative adult effect. However, field evidence for such effect of conspecific leaf litter remains absent. In this study, we used generalized linear mixed models to assess the effects of conspecific leaf litter on the early-stage seedling survival of four dominant species (Machilus leptophylla, Litsea elongate, Acer pubinerve and Distylium myricoides) in early-stage seedlings in a subtropical evergreen broad-leaved forest in eastern China. Our results consistently showed that the conspecific leaf litter of three species negatively affected the seedling survival. Meanwhile, the traditional conspecific adult neighborhood indices failed to detect this negative conspecific adult effect. Our study revealed that the accumulation of conspecific leaf litter around adults can largely reduce the survival rate of nearby seedlings. Ignoring it could result in underestimation of the importance of negative density dependence and negative species interactions in the natural forest communities.
A perspective on underwater photosynthesis in submerged terrestrial wetland plants
Colmer, Timothy D.; Winkel, Anders; Pedersen, Ole
2011-01-01
Background and aims Wetland plants inhabit flood-prone areas and therefore can experience episodes of complete submergence. Submergence impedes exchange of O2 and CO2 between leaves and the environment, and light availability is also reduced. The present review examines limitations to underwater net photosynthesis (PN) by terrestrial (i.e. usually emergent) wetland plants, as compared with submerged aquatic plants, with focus on leaf traits for enhanced CO2 acquisition. Scope Floodwaters are variable in dissolved O2, CO2, light and temperature, and these parameters influence underwater PN and the growth and survival of submerged plants. Aquatic species possess morphological and anatomical leaf traits that reduce diffusion limitations to CO2 uptake and thus aid PN under water. Many aquatic plants also have carbon-concentrating mechanisms to increase CO2 at Rubisco. Terrestrial wetland plants generally lack the numerous beneficial leaf traits possessed by aquatic plants, so submergence markedly reduces PN. Some terrestrial species, however, produce new leaves with a thinner cuticle and higher specific leaf area, whereas others have leaves with hydrophobic surfaces so that gas films are retained when submerged; both improve CO2 entry. Conclusions Submergence inhibits PN by terrestrial wetland plants, but less so in species that produce new leaves under water or in those with leaf gas films. Leaves with a thinner cuticle, or those with gas films, have improved gas diffusion with floodwaters, so that underwater PN is enhanced. Underwater PN provides sugars and O2 to submerged plants. Floodwaters often contain dissolved CO2 above levels in equilibrium with air, enabling at least some PN by terrestrial species when submerged, although rates remain well below those in air. PMID:22476500
Riparian plant community responses to increased flooding: a meta-analysis.
Garssen, Annemarie G; Baattrup-Pedersen, Annette; Voesenek, Laurentius A C J; Verhoeven, Jos T A; Soons, Merel B
2015-08-01
A future higher risk of severe flooding of streams and rivers has been projected to change riparian plant community composition and species richness, but the extent and direction of the expected change remain uncertain. We conducted a meta-analysis to synthesize globally available experimental evidence and assess the effects of increased flooding on (1) riparian adult plant and seedling survival, (2) riparian plant biomass and (3) riparian plant species composition and richness. We evaluated which plant traits are of key importance for the response of riparian plant species to flooding. We identified and analysed 53 papers from ISI Web of Knowledge which presented quantitative experimental results on flooding treatments and corresponding control situations. Our meta-analysis demonstrated how longer duration of flooding, greater depth of flooding and, particularly, their combination reduce seedling survival of most riparian species. Plant height above water level, ability to elongate shoots and plasticity in root porosity were decisive for adult plant survival and growth during longer periods of flooding. Both 'quiescence' and 'escape' proved to be successful strategies promoting riparian plant survival, which was reflected in the wide variation in survival (full range between 0 and 100%) under fully submerged conditions, while plants that protrude above the water level (>20 cm) almost all survive. Our survey confirmed that the projected increase in the duration and depth of flooding periods is sufficient to result in species shifts. These shifts may lead to increased or decreased riparian species richness depending on the nutrient, climatic and hydrological status of the catchment. Species richness was generally reduced at flooded sites in nutrient-rich catchments and sites that previously experienced relatively stable hydrographs (e.g. rain-fed lowland streams). Species richness usually increased at sites in desert and semi-arid climate regions (e.g. intermittent streams). © 2015 John The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Tissiani, A S O; Sousa, W O; Santos, G B; Ide, S; Battirola, L; Marques, M I
2015-11-01
Here we examine assemblage structure of coprophagous Scarabaeidae (dung beetles) in the Pantanal of the state of Mato Grosso with respect to flooding regimes, soil texture, leaf litter volume and tree dominance in native and exotic pastures. Samples were collected along 30 transects of 250 m in length in a 5×5 km grid (25 km2). Five pitfalls baited with human feces were placed in each transect. A total of 1692 individuals in 19 species were captured, the majority in the subfamily Scarabaeinae and Aphodiinae. Assemblages were influenced by the duration of flooding and leaf litter volume. None of the other habitat variables was correlated with species richness. Cultivated pastures with exotic grasses were unimportant for composition of the assemblages of beetles. These results indicate that duration of flooding is the most important regulating force in this community.
Winkel, Anders; Colmer, Timothy D; Ismail, Abdelbagi M; Pedersen, Ole
2013-03-01
Flash floods can submerge paddy field rice (Oryza sativa), with adverse effects on internal aeration, sugar status and survival. Here, we investigated the in situ aeration of roots of rice during complete submergence, and elucidated how underwater photosynthesis and floodwater pO(2) influence root aeration in anoxic soil. In the field, root pO(2) was measured using microelectrodes during 2 d of complete submergence. Leaf gas films that formed on the superhydrophobic leaves were left intact, or experimentally removed, to elucidate their effect on internal aeration. In darkness, root pO(2) declined to very low concentrations (0.24 kPa) and was strongly correlated with floodwater pO(2). In light, root pO(2) was high (14 kPa) and primarily a function of the incident light determining the rates of underwater net photosynthesis. Plants with intact leaf gas films maintained higher underwater net photosynthesis relative to plants without gas films when the submerged shoots were in light. During complete submergence, internal aeration of rice in the field relies on underwater photosynthesis during the day and entry of O(2) from the floodwater during the night. Leaf gas films enhance photosynthesis during submergence leading to improved O(2) production and sugar status, and therefore contribute to the submergence tolerance of rice. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Yin, Xiaojian; Nishimura, Minoru; Hajika, Makita; Komatsu, Setsuko
2016-06-03
Flooding negatively affects the growth of soybean, and several flooding-specific stress responses have been identified; however, the mechanisms underlying flooding tolerance in soybean remain unclear. To explore the initial flooding tolerance mechanisms in soybean, flooding-tolerant mutant and abscisic acid (ABA)-treated plants were analyzed. In the mutant and ABA-treated soybeans, 146 proteins were commonly changed at the initial flooding stress. Among the identified proteins, protein synthesis-related proteins, including nascent polypeptide-associated complex and chaperonin 20, and RNA regulation-related proteins were increased in abundance both at protein and mRNA expression. However, these proteins identified at the initial flooding stress were not significantly changed during survival stages under continuous flooding. Cluster analysis indicated that glycolysis- and cell wall-related proteins, such as enolase and polygalacturonase inhibiting protein, were increased in abundance during survival stages. Furthermore, lignification of root tissue was improved even under flooding stress. Taken together, these results suggest that protein synthesis- and RNA regulation-related proteins play a key role in triggering tolerance to the initial flooding stress in soybean. Furthermore, the integrity of cell wall and balance of glycolysis might be important factors for promoting tolerance of soybean root to flooding stress during survival stages.
Tzeng, Hsy-Yu; Wang, Wei; Tseng, Yen-Hsueh; Chiu, Ching-An; Kuo, Chu-Chia
2018-01-01
Global warming-induced extreme climatic changes have increased the frequency of severe typhoons bringing heavy rains; this has considerably affected the stability of the forest ecosystems. Since the Taiwan 921 earthquake occurred in 21 September 1999, the mountain geology of the Island of Taiwan has become unstable and typhoon-induced floods and mudslides have changed the topography and geomorphology of the area; this has further affected the stability and functions of the riparian ecosystem. In this study, the vegetation of the unique Aowanda Formosan gum forest in Central Taiwan was monitored for 3 years after the occurrence of floods and mudslides during 2009–2011. Tree growth and survival, effects of floods and mudslides, and factors influencing tree survival were investigated. We hypothesized that (1) the effects of floods on the survival are significantly different for each tree species; (2) tree diameter at breast height (DBH) affects tree survival–i.e., the larger the DBH, the higher the survival rate; and (3) the relative position of trees affects tree survival after disturbances by floods and mudslides–the farther trees are from the river, the higher is their survival rate. Our results showed that after floods and mudslides, the lifespans of the major tree species varied significantly. Liquidambar formosana displayed the highest flood tolerance, and the trunks of Lagerstoemia subcostata began rooting after disturbances. Multiple regression analysis indicated that factors such as species, DBH, distance from sampled tree to the above boundary of sample plot (far from the riverbank), and distance from the upstream of the river affected the lifespans of trees; the three factors affected each tree species to different degrees. Furthermore, we showed that insect infestation had a critical role in determining tree survival rate. Our 3-year monitoring investigation revealed that severe typhoon-induced floods and mudslides disturbed the riparian vegetation in the Formosan gum forest, replacing the original vegetation and beginning secondary succession. Moreover, flooding provided new habitats for various plants to establish their progeny. By using our results, lifecycles of trees (including death) can be understood in detail, facilitating riparian vegetation engineering in forests severely disturbed by typhoon-induced floods and mudslides. PMID:29304149
Leaf gas films contribute to rice (Oryza sativa) submergence tolerance during saline floods.
Herzog, Max; Konnerup, Dennis; Pedersen, Ole; Winkel, Anders; Colmer, Timothy David
2018-05-01
Floods and salinization of agricultural land adversely impact global rice production. We investigated whether gas films on leaves of submerged rice delay salt entry during saline submergence. Two-week-old plants with leaf gas films (+GF) or with gas films experimentally removed (-GF) were submerged in artificial floodwater with 0 or 50 mm NaCl for up to 16 d. Gas films were present >9 d on GF plants after which gas films were diminished. Tissue ion analysis (Na + , Cl - and K + ) showed that gas films caused some delay of Na + entry, as leaf Na + concentration was 36-42% higher in -GF leaves than +GF leaves on days 1-5. However, significant net uptakes of Na + and Cl - , and K + net loss, occurred despite the presence of gas films, indicating the likely presence of some leaf-to-floodwater contact, so that the gas layer must not have completely separated the leaf surfaces from the water. Natural loss and removal of gas films resulted in severe declines in growth, underwater photosynthesis, chlorophyll a and tissue porosity. Submergence was more detrimental to leaf P N and growth than the additional effect of 50 mm NaCl, as salt did not significantly affect underwater P N at 200 μm CO 2 nor growth. © 2016 John Wiley & Sons Ltd.
Quantifying flooding effects on hardwood seedling survival and growth for bottomland restoration
John M. Kabrick; Daniel C. Dey; J.W. Van Sambeek; Mark V. Coggeshall; Douglass F. Jacobs
2012-01-01
Growing interest worldwide in bottomland hardwood restoration necessitates improved ecological understanding of flooding effects on forest tree seedlings using methodology that accurately reflects field conditions. We examined hardwood seedling survival and growth in an outdoor laboratory where the timing, depth, duration, and flow rate of flood water can be carefully...
USDA-ARS?s Scientific Manuscript database
Soybean is the second largest crop in the US. Its yield directly impacts US agricultural economics. Drought and flooding are two major causes for soybean yield loss. To better understand their underlying molecular regulatory mechanisms, we sequenced the transcriptomes of soybean grown in drought a...
Flood regime and leaf fall determine soil inorganic nitrogen dynamics in semiarid riparian forests.
Shah, J J Follstad; Dahm, C N
2008-04-01
Flow regulation has reduced the exchange of water, energy, and materials between rivers and floodplains, caused declines in native plant populations, and advanced the spread of nonnative plants. Naturalized flow regimes are regarded as a means to restore degraded riparian areas. We examined the effects of flood regime (short [SIFI] vs. long [LIFI] inter-flood interval) on plant community and soil inorganic nitrogen (N) dynamics in riparian forests dominated by native Populus deltoides var. wislizenii Eckenwalder (Rio Grande cottonwood) and nonnative Tamarix chinensis Lour. (salt cedar) along the regulated middle Rio Grande of New Mexico. The frequency of inundation (every 2-3 years) at SIFI sites better reflected inundation patterns prior to the closure of an upstream dam relative to the frequency of inundation at LIFI sites (> or =10 years). Riparian inundation at SIFI sites varied from 7 to 45 days during the study period (April 2001-July 2004). SIFI vs. LIFI sites had higher soil moisture but greater groundwater table elevation fluctuation in response to flooding and drought. Rates of net N mineralization were consistently higher at LIFI vs. SIFI sites, and soil inorganic N concentrations were greatest at sites with elevated leaf-litter production. Sites with stable depth to ground water (approximately 1.5 m) supported the greatest leaf-litter production. Reduced leaf production at P. deltoides SIFI sites was attributed to drought-induced recession of ground water and prolonged inundation. We recommend that natural resource managers and restoration practitioners (1) utilize naturalized flows that help maintain riparian groundwater elevations between 1 and 3 m in reaches with mature P. deltoides or where P. deltoides revegetation is desired, (2) identify areas that naturally undergo long periods of inundation and consider restoring these areas to seasonal wetlands, and (3) use native xeric-adapted riparian plants to revegetate LIFI and SIFI sites where groundwater elevations commonly drop below 3 m.
Keeland, Bobby D.; Dale, Rassa O.; Darville, Roy; McCoy, John W.
2011-01-01
The effects of herbivory and flooding were examined on survival and growth of planted baldcypress (Taxodium distichum (L.) Rich.) saplings at three sites in Caddo Lake, TX, over a 4-yr period. There were two flood regimes (shallow periodic and deep continuous), where half of the saplings in each flood regime were protected by tree shelters to prevent herbivory. By the end of the first year, over 80% of saplings survived with half of saplings classified as healthy. By the end of the fourth year, only half of the saplings were alive and one-third were healthy. At all three sites, the combination of no protection and continuous flooding resulted in a significant number of missing saplings. Likewise, most unprotected saplings in periodic flooding were missing by the end of the study. Saplings clipped by herbivores showed about 50% chance of recovery, but many of the sprouts were of poor quality. Protected saplings in tree shelters achieved significantly greater survival and height growth.
Korman, Josh; Melis, Ted; Kennedy, Theodore A.
2012-01-01
Closure of Glen Canyon Dam reduced sand supply to the Colorado River in Grand Canyon National Park by about 94% while its operation has also eroded the park's sandbar habitats. Three controlled floods released from the dam since 1995 suggest that sandbars might be rebuilt and maintained, but only if repeated floods are timed to follow tributary sand deliveries below the dam. Monitoring data show that sandbars are dynamic and that their erosion after bar building is positively related with mean daily discharge and negatively related with tributary sand production after controlled floods. The March 2008 flood affected non-native rainbow trout abundance in the Lees Ferry tailwater, which supports a blue ribbon fishery. Downstream trout dispersal from the tailwater results in negative competitive interactions and predation on endangered humpback chub. Early survival rates of age-0 trout increased more than fourfold following the 2008 flood, and twofold in 2009, relative to prior years (2006-2007). Hatch-date analysis indicated that early survival rates were much higher for cohorts that emerged about 2 months after the 2008 flood relative to cohorts that emerged earlier that year. The 2009 survival data suggest that tailwater habitat improvements persisted for at least a year, but apparently decreased in 2010. Increased early survival rates for trout coincided with the increased availability of higher quality drifting food items after the 2008 flood owing to an increase in midges and black flies, preferred food items of rainbow trout. Repeated floods from the dam might sustainably rebuild and maintain sandbars if released when new tributary sand is available below the tailwater. Spring flooding might also sustain increased trout abundance and benefit the tailwater fishery, but also be a potential risk to humpback chub in Grand Canyon.
Else, Mark A; Taylor, June M; Atkinson, Christopher J
2006-01-01
In flooded soils, the rapid effects of decreasing oxygen availability on root metabolic activity are likely to generate many potential chemical signals that may impact on stomatal apertures. Detached leaf transpiration tests showed that filtered xylem sap, collected at realistic flow rates from plants flooded for 2 h and 4 h, contained one or more factors that reduced stomatal apertures. The closure could not be attributed to increased root output of the glucose ester of abscisic acid (ABA-GE), since concentrations and deliveries of ABA conjugates were unaffected by soil flooding. Although xylem sap collected from the shoot base of detopped flooded plants became more alkaline within 2 h of flooding, this rapid pH change of 0.5 units did not alter partitioning of root-sourced ABA sufficiently to prompt a transient increase in xylem ABA delivery. More shoot-sourced ABA was detected in the xylem when excised petiole sections were perfused with pH 7 buffer, compared with pH 6 buffer. Sap collected from the fifth oldest leaf of "intact" well-drained plants and plants flooded for 3 h was more alkaline, by approximately 0.4 pH units, than sap collected from the shoot base. Accordingly, xylem [ABA] was increased 2-fold in sap collected from the fifth oldest petiole compared with the shoot base of flooded plants. However, water loss from transpiring, detached leaves was not reduced when the pH of the feeding solution containing 3-h-flooded [ABA] was increased from 6.7 to 7.1 Thus, the extent of the pH-mediated, shoot-sourced ABA redistribution was not sufficient to raise xylem [ABA] to physiologically active levels. Using a detached epidermis bioassay, significant non-ABA anti-transpirant activity was also detected in xylem sap collected at intervals during the first 24 h of soil flooding.
21-Year Growth and Development of Baldcypress Planted on a Flood-Prone Site
Roger M. Krinard; Robert L. Johnson
1976-01-01
Baldcypress is a good species to plant on sites where prolonged flooding is common and few other species can survive. When planted on a site where flooding had repeatedly killed cottonwood plantations, cypress survival at age 21 averaged about 41 percent; average diameter was about 6.1 inches. Some of the cypress was suppressed by other hardwoods such as ash and...
Leaf Optical Properties in Higher Plants: Linking Spectral Characteristics with Plant Stress
NASA Technical Reports Server (NTRS)
Carter, Gregory A.; Knapp, Alan K.
1999-01-01
A number of studies have addressed responses of leaf spectral reflectance, transmittance, or absorptance to physiological stress. Stressors included dehydration, ozone, herbicides, disease, insufficient mycorrhizae and N fertilization, flooding and insects. Species included conifers, grasses, and broadleaved trees. Increased reflectance with maximum responses near 700 nm wavelength occurred in all cases. Varying the chlorophyll content in leaves or pigment extracts can simulate this effect. Thus, common optical responses to stress result from decreases in leaf chlorophyll contents or the capacity of chloroplasts to absorb light. Leaf optic can be quite sensitive to any stressor that alters soil-plant-atmosphere processes.
46 CFR 170.110 - Stability booklet.
Code of Federal Regulations, 2012 CFR
2012-10-01
... calculations done including assumptions. (11) General precautions for preventing unintentional flooding. (12) A... require cross-flooding for survival and information concerning the use of any special cross-flooding...
46 CFR 170.110 - Stability booklet.
Code of Federal Regulations, 2013 CFR
2013-10-01
... calculations done including assumptions. (11) General precautions for preventing unintentional flooding. (12) A... require cross-flooding for survival and information concerning the use of any special cross-flooding...
46 CFR 170.110 - Stability booklet.
Code of Federal Regulations, 2014 CFR
2014-10-01
... calculations done including assumptions. (11) General precautions for preventing unintentional flooding. (12) A... require cross-flooding for survival and information concerning the use of any special cross-flooding...
46 CFR 170.110 - Stability booklet.
Code of Federal Regulations, 2011 CFR
2011-10-01
... calculations done including assumptions. (11) General precautions for preventing unintentional flooding. (12) A... require cross-flooding for survival and information concerning the use of any special cross-flooding...
Opeña, Jhoana L; Chauhan, Bhagirath S; Baltazar, Aurora M
2014-01-01
Echinochloa glabrescens is a C4 grass weed that is very competitive with rice when left uncontrolled. The competitive ability of weeds is intensified in direct-seeded rice production systems. A better understanding is needed of factors affecting weed seed germination, which can be used as a component of integrated weed management in direct-seeded rice. This study was conducted to determine the effects of temperature, light, salt and osmotic stress, burial depth, crop residue, time and depth of flooding, and herbicide application on the emergence, survival, and growth of two populations [Nueva Ecija (NE) and Los Baños (IR)] of E. glabrescens. Seeds from both populations germinated at all temperatures. The NE population had a higher germination rate (88%) from light stimulation than did the IR population (34%). The salt concentration and osmotic potential required to inhibit 50% of germination were 313 mM and -0.24 MPa, respectively, for the NE population and 254 mM and -0.33 MPa, respectively, for the IR population. Emergence in the NE population was totally inhibited at 4-cm burial depth in the soil, whereas that of the IR population was inhibited at 8 cm. Compared with zero residue, the addition of 5 t ha(-1) of rice residue reduced emergence in the NE and IR populations by 38% and 9%, respectively. Early flooding (within 2 days after sowing) at 2-cm depth reduced shoot growth by 50% compared with non-flooded conditions. Pretilachlor applied at 0.075 kg ai ha(-1) followed by shallow flooding (2-cm depth) reduced seedling emergence by 94-96% compared with the nontreated flooded treatment. Application of postemergence herbicides at 4-leaf stage provided 85-100% control in both populations. Results suggest that integration of different strategies may enable sustainable management of this weed and of weeds with similar germination responses.
Opeña, Jhoana L.; Chauhan, Bhagirath S.; Baltazar, Aurora M.
2014-01-01
Echinochloa glabrescens is a C4 grass weed that is very competitive with rice when left uncontrolled. The competitive ability of weeds is intensified in direct-seeded rice production systems. A better understanding is needed of factors affecting weed seed germination, which can be used as a component of integrated weed management in direct-seeded rice. This study was conducted to determine the effects of temperature, light, salt and osmotic stress, burial depth, crop residue, time and depth of flooding, and herbicide application on the emergence, survival, and growth of two populations [Nueva Ecija (NE) and Los Baños (IR)] of E. glabrescens. Seeds from both populations germinated at all temperatures. The NE population had a higher germination rate (88%) from light stimulation than did the IR population (34%). The salt concentration and osmotic potential required to inhibit 50% of germination were 313 mM and −0.24 MPa, respectively, for the NE population and 254 mM and −0.33 MPa, respectively, for the IR population. Emergence in the NE population was totally inhibited at 4-cm burial depth in the soil, whereas that of the IR population was inhibited at 8 cm. Compared with zero residue, the addition of 5 t ha−1 of rice residue reduced emergence in the NE and IR populations by 38% and 9%, respectively. Early flooding (within 2 days after sowing) at 2-cm depth reduced shoot growth by 50% compared with non-flooded conditions. Pretilachlor applied at 0.075 kg ai ha−1 followed by shallow flooding (2-cm depth) reduced seedling emergence by 94−96% compared with the nontreated flooded treatment. Application of postemergence herbicides at 4-leaf stage provided 85−100% control in both populations. Results suggest that integration of different strategies may enable sustainable management of this weed and of weeds with similar germination responses. PMID:24642568
Effects of flooding regime and seedling treatment on early survival and growth of nuttall oak
Burkett, V.R.; Draugelis-Dale, R.O.; Williams, H.M.; Schoenholtz, S.H.
2005-01-01
Effects of flooding on survival and growth of three different types of Nuttall oak (Quercus texana Buckl.) seedlings were observed at the end of third and fifth growing seasons at Yazoo National Wildlife Refuge, Mississippi, U.S.A. Three types of seedlings were planted in January 1995 in a split-plot design, with four replications at each of two elevations on floodprone, former cropland in Sharkey clay soil. The lower of the two planting elevations was inundated for 21 days during the first growing season, whereas the higher elevation did not flood during the 5-year period of this study. The three types of 1-0 seedlings were bareroot seedlings, seedlings grown in containers (3.8 ?? 21a??cm plastic seedling cones), and container-grown seedlings inoculated with vegetative mycelia of Pisolithus tinctorius (Pers.) Coker. Survival of all the three seedling types was greatest at the lower, intermittently flooded elevation, indicating that drought and related effects on plant competition were more limiting to seedling survival than flooding. At the lower elevation, survival of mycorrhizal-inoculated container seedlings was greater than that of noninoculated container seedlings. Survival among bareroot seedlings and inoculated container seedlings was not significantly different at either elevation. At the higher, nonflooded elevation, however, bareroot seedling survival was greater than the survival of container seedlings without inoculation. Differences were significant among the inoculated and the noninoculated container seedlings, with higher survival of inoculated seedlings at both elevations, though differences were only significant in year 3. At the end of the fifth year, height of bareroot seedlings was significantly greater than the heights of both types of container-grown seedlings at both planting elevations. Because seedlings grown in the plastic seedlings cones did not survive better than the bareroot seedlings at either planting elevation, the bareroot stock appear to be the economically superior choice for regeneration in Sharkey soil.
McBain, M C; Warland, J S; McBride, R A; Wagner-Riddle, C
2004-12-01
The purpose of this study was to determine whether or not young hybrid poplar (Populus deltoides x Populus nigra) could transport landfill biogas internally from the root zone to the atmosphere, thereby acting as conduits for landfill gas release. Fluxes of methane (CH4) and nitrous oxide (N2O) from the seedlings to the atmosphere were measured under controlled conditions using dynamic flux chambers and a tunable diode laser trace gas analyser (TDLTGA). Nitrous oxide was emitted from the seedlings, but only when extremely high soil N2O concentrations were applied to the root zone. In contrast, no detectable emissions of CH4 were measured in a similar experimental trial. Visible plant morphological responses, characteristic of flood-tolerant trees attempting to cope with the negative effects of soil hypoxia, were observed during the CH4 experiments. Leaf chlorosis, leaf abscission and adventitious roots were all visible plant responses. In addition, seedling survival was observed to be highest in the biogas 'hot spot' areas of a local municipal solid waste landfill involved in this study. Based on the available literature, these observations suggest that CH4 can be transported internally by Populus deltoides x Populus nigra seedlings in trace amounts, although future research is required to fully test this hypothesis.
46 CFR 172.245 - Survival conditions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... conditions. A vessel is presumed to survive assumed damage if it meets the following conditions in the final..., and trim must be below the lower edge of an opening through which progressive flooding may take place... inches (50 mm) when the vessel is in the equilibrium position. (e) Progressive flooding. In the design...
46 CFR 172.245 - Survival conditions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... conditions. A vessel is presumed to survive assumed damage if it meets the following conditions in the final..., and trim must be below the lower edge of an opening through which progressive flooding may take place... inches (50 mm) when the vessel is in the equilibrium position. (e) Progressive flooding. In the design...
46 CFR 172.245 - Survival conditions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... conditions. A vessel is presumed to survive assumed damage if it meets the following conditions in the final..., and trim must be below the lower edge of an opening through which progressive flooding may take place... inches (50 mm) when the vessel is in the equilibrium position. (e) Progressive flooding. In the design...
46 CFR 28.580 - Unintentional flooding.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Unintentional flooding. 28.580 Section 28.580 Shipping... INDUSTRY VESSELS Stability § 28.580 Unintentional flooding. (a) Applicability. Except for an open boat that... survive the assumed damage and unintentional flooding described in paragraphs (d) and (e) of this section...
46 CFR 28.580 - Unintentional flooding.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Unintentional flooding. 28.580 Section 28.580 Shipping... INDUSTRY VESSELS Stability § 28.580 Unintentional flooding. (a) Applicability. Except for an open boat that... survive the assumed damage and unintentional flooding described in paragraphs (d) and (e) of this section...
46 CFR 28.580 - Unintentional flooding.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Unintentional flooding. 28.580 Section 28.580 Shipping... INDUSTRY VESSELS Stability § 28.580 Unintentional flooding. (a) Applicability. Except for an open boat that... survive the assumed damage and unintentional flooding described in paragraphs (d) and (e) of this section...
46 CFR 28.580 - Unintentional flooding.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Unintentional flooding. 28.580 Section 28.580 Shipping... INDUSTRY VESSELS Stability § 28.580 Unintentional flooding. (a) Applicability. Except for an open boat that... survive the assumed damage and unintentional flooding described in paragraphs (d) and (e) of this section...
NASA Astrophysics Data System (ADS)
Viglione, A.; Di Baldassarre, G.; Brandimarte, L.; Kuil, L.; Carr, G.; Salinas, J.; Scolobig, A.
2013-12-01
The risk coping culture of a community plays a major role in decision making in urban flood plains. While flood awareness is not necessarily linked to being prepared to face flooding at an individual level, the connection at the community level seems to be stronger through creating policy and initiating protection works. In this work we analyse, in a conceptual way, the interplay of community risk coping culture, flooding damage and economic growth. We particularly focus on three aspects: (i) collective memory, i.e., the capacity of the community to keep the awareness of flooding high; (ii) risk-taking attitude, i.e., the amount of risk a community is collectively willing to expose themselves to; and (iii) trust of people in risk protection measures. We use a dynamic model that represents the feedbacks between the hydrological and social system components. The model results indicate that, on one hand, by under perceiving the risk of flooding (because of short collective memory and too much trust in flood protection structures) in combination with a high risk-attitude, community survival is severely limited because of destruction caused by flooding. On the other hand, high perceived risk (long memory and lack of trust in flood protection structures) relative to the actual risk leads to lost economic opportunities and recession. There are many optimal scenarios for survival and economic growth, but greater certainty of survival plus economic growth can be achieved by ensuring community has accurate risk perception (memory neither too long nor too short and trust in flood protection neither too great nor too low) combined with a low to moderate risk-taking attitude. Interestingly, the model gives rise to situations in which the development of the community in the floodplain is path dependent, i.e., the history of flooding may lead to its growth or recession. Schematic of human adjustments to flooding: (a) settling away from the river; (b) raising levees/dikes.
Saenz, Daniel; Fucik, Erin M; Kwiatkowski, Matthew A
2013-01-01
Changes in climate and the introduction of invasive species are two major stressors to amphibians, although little is known about the interaction between these two factors with regard to impacts on amphibians. We focused our study on an invasive tree species, the Chinese tallow (Triadica sebifera), that annually sheds its leaves and produces leaf litter that is known to negatively impact aquatic amphibian survival. The purpose of our research was to determine whether the timing of leaf fall from Chinese tallow and the timing of amphibian breeding (determined by weather) influence survival of amphibian larvae. We simulated a range of winter weather scenarios, ranging from cold to warm, by altering the relative timing of when leaf litter and amphibian larvae were introduced into aquatic mesocosms. Our results indicate that amphibian larvae survival was greatly affected by the length of time Chinese tallow leaf litter decomposes in water prior to the introduction of the larvae. Larvae in treatments simulating warm winters (early amphibian breeding) were introduced to the mesocosms early in the aquatic decomposition process of the leaf litter and had significantly lower survival compared with cold winters (late amphibian breeding), likely due to significantly lower dissolved oxygen levels. Shifts to earlier breeding phenology, linked to warming climate, have already been observed in many amphibian taxa, and with most climate models predicting a significant warming trend over the next century, the trend toward earlier breeding should continue if not increase. Our results strongly suggest that a warming climate can interact with the effects of invasive plant species, in ways we have not previously considered, to reduce the survival of an already declining group of organisms. PMID:24363907
Saenz, Daniel; Fucik, Erin M; Kwiatkowski, Matthew A
2013-11-01
Changes in climate and the introduction of invasive species are two major stressors to amphibians, although little is known about the interaction between these two factors with regard to impacts on amphibians. We focused our study on an invasive tree species, the Chinese tallow (Triadica sebifera), that annually sheds its leaves and produces leaf litter that is known to negatively impact aquatic amphibian survival. The purpose of our research was to determine whether the timing of leaf fall from Chinese tallow and the timing of amphibian breeding (determined by weather) influence survival of amphibian larvae. We simulated a range of winter weather scenarios, ranging from cold to warm, by altering the relative timing of when leaf litter and amphibian larvae were introduced into aquatic mesocosms. Our results indicate that amphibian larvae survival was greatly affected by the length of time Chinese tallow leaf litter decomposes in water prior to the introduction of the larvae. Larvae in treatments simulating warm winters (early amphibian breeding) were introduced to the mesocosms early in the aquatic decomposition process of the leaf litter and had significantly lower survival compared with cold winters (late amphibian breeding), likely due to significantly lower dissolved oxygen levels. Shifts to earlier breeding phenology, linked to warming climate, have already been observed in many amphibian taxa, and with most climate models predicting a significant warming trend over the next century, the trend toward earlier breeding should continue if not increase. Our results strongly suggest that a warming climate can interact with the effects of invasive plant species, in ways we have not previously considered, to reduce the survival of an already declining group of organisms.
Fichtner, E J; Lynch, S C; Rizzo, D M
2009-05-01
Because the role of soil inoculum of Phytophthora ramorum in the sudden oak death disease cycle is not well understood, this work addresses survival, chlamydospore production, pathogen suppression, and splash dispersal of the pathogen in infested forest soils. Colonized rhododendron and bay laurel leaf disks were placed in mesh sachets before transfer to the field in January 2005 and 2006. Sachets were placed under tanoak, bay laurel, and redwood at three vertical locations: leaf litter surface, litter-soil interface, and below the soil surface. Sachets were retrieved after 4, 8, 20, and 49 weeks. Pathogen survival was higher in rhododendron leaf tissue than in bay tissue, with >80% survival observed in rhododendron tissue after 49 weeks in the field. Chlamydospore production was determined by clearing infected tissue in KOH. Moist redwood-associated soils suppressed chlamydospore production. Rain events splashed inoculum as high as 30 cm from the soil surface, inciting aerial infection of bay laurel and tanoak. Leaf litter may provide an incomplete barrier to splash dispersal. This 2-year study illustrates annual P. ramorum survival in soil and the suppressive nature of redwood-associated soils to chlamydospore production. Infested soil may serve as primary inoculum for foliar infections by splash dispersal during rain events.
James Grogana; Mark S. Ashtona; Galv& atilde; Jurandir oc
2003-01-01
Adult populations of big-leaf mahogany (Swietenia macrophylla) occur in aggregations along seasonal streams in transitional evergreen forests of southeast Pará, Brazil. To test whether variable seedling survival and growth across topography may underlie this observed distribution pattern, we planted nursery-grown seedlings in the...
Argus, R E; Colmer, T D; Grierson, P F
2015-06-01
We investigated physiological and morphological responses to flooding and recovery in Eucalyptus camaldulensis subsp. refulgens, a riparian tree species from a dryland region prone to intense episodic floods. Seedlings in soil flooded for 88 d produced extensive adventitious roots, displayed stem hypertrophy (stem diameter increased by 93%) and increased root porosity owing to aerenchyma formation. Net photosynthesis (Pn) and stomatal conductance (gs) were maintained for at least 2 weeks of soil flooding, contrasting with previous studies of other subspecies of E. camaldulensis. Gradual declines followed in both gs (30% less than controls) and Pn (19% less). Total leaf soluble sugars did not differ between flooded and control plants. Root mass did not recover 32 d after flooding ceased, but gs was not lower than controls, suggesting the root system was able to functionally compensate. However, the limited root growth during recovery after flooding was surprising given the importance of extensive root systems in dryland environments. We conclude that early flood tolerance could be an adaptation to capitalize on scarce water resources in a water-limited environment. Overall, our findings highlight the need to assess flooding responses in relation to a species' fitness for particular flood regimes or ecological niches. © 2014 John Wiley & Sons Ltd.
Effects of soil conditions on survival and growth of black willow cuttings.
Schaff, Steven D; Pezeshki, S Reza; Shields, F Douglas
2003-06-01
Current streambank restoration efforts focus on providing bank stability, enhancing water quality, and improving woody habitat using native vegetation rather than traditional engineering techniques. However, in most cases harsh site conditions limit restoration success. A two-year field study was conducted at Twentymile Creek, in northern Mississippi, investigating edaphic factors governing the survival of black willow (Salix nigra) cuttings used for streambank restoration. Low height growth, above-ground biomass production, and average leaf area were observed in willow cuttings grown in plots subjected to moisture deficits. However, sediment texture emerged as the dominant factor determining willow post growth, health, and survival. Shoot biomass, leaf biomass, and total above-ground biomass were 15-, 10-, and 14-fold greater for large willow cuttings (posts) grown in plots with sandy sediments relative to those grown in plots with similar moisture and soil redox potential but with silt and clay sediments. Average leaf size, average leaf mass and specific leaf area were all lower in fine textured plots. Under moisture conditions present at our sites, coarse-grained sediment (sand) was more conducive to willow growth, biomass production, and survival than were fine-grained sediments (silt/clay). Our results strongly suggest that soil texture and moisture conditions can determine restoration success. Therefore, it is critical that site conditions are factored into the selection of project locations prior to the initiation of willow planting restoration projects.
Andersen, D.C.; Nelson, S.M.
2006-01-01
Patterns and processes involved in litter breakdown on desert river floodplains are not well understood. We used leafpacks containing Fremont cottonwood (Populus deltoides subsp. wislizenii) leaf litter to investigate the roles of weather and microclimate, flooding (immersion), and macroinvertebrates on litter organic matter (OM) and nitrogen (N) loss on a floodplain in a cool-temperate semi-arid environment (Yampa River, northwestern Colorado, USA). Total mass of N in fresh autumn litter fell by ∼20% over winter and spring, but in most cases there was no further N loss prior to termination of the study after 653 days exposure, including up to 20 days immersion during the spring flood pulse. Final OM mass was 10–40% of initial values. The pattern of OM and N losses suggested most N would be released outside the flood season, when retention within the floodplain would be likely. The exclusion of macroinvertebrates modestly reduced the rate of OM loss (by about 10%) but had no effect on N dynamics over nine months. Immersion in floodwater accelerated OM loss, but modest variation in litter quality did not affect the breakdown rate. These results are consistent with the concept that decomposition on desert floodplains progresses much as does litter processing in desert uplands, but with periodic bouts of processing typical of aquatic environments when litter is inundated by floodwaters. The strong dependence of litter breakdown rate on weather and floods means that climate change or river flow management can easily disrupt floodplain nutrient dynamics.
Krauss, K.W.; Doyle, T.W.; Howard, R.J.
2009-01-01
Plant populations may adapt to environmental conditions over time by developing genetically based morphological or physiological characteristics. For tidal freshwater forested wetlands, we hypothesized that the conditions under which trees developed led to ecotypic difference in response of progeny to hydroperiod. Specifically, we looked for evidence of ecotypic adaptation for tidal flooding at different salinity regimes using growth and ecophysiological characteristics of two tidal and two non-tidal source collections of baldcypress (Taxodium distichum (L.) L.C. Rich) from the southeastern United States. Saplings were subjected to treatments of hydrology (permanent versus tidal flooding) and salinity (0 versus ???2 g l-1) for two and a half growing seasons in a greenhouse environment. Saplings from tidal sources maintained 21-41% lower overall growth and biomass accumulation than saplings from non-tidal sources, while saplings from non-tidal sources maintained 14-19% lower overall rates of net photosynthetic assimilation, leaf transpiration, and stomatal conductance than saplings from tidal sources. However, we found no evidence for growth or physiological enhancement of saplings from tidal sources to tide, or of saplings from non-tidal sources to no tide. All saplings growing under permanent flooding exhibited reduced growth and leaf gas exchange regardless of source, with little evidence for consistent salinity effects across hydroperiods. While we reject our original hypothesis, we suggest that adaptations of coastal baldcypress to broad (rather than narrow) environmental conditions may promote ecophysiological and growth enhancements under a range of global-change-induced stressors, perhaps reflecting a natural resilience to environmental change while precluding adaptations for specific flood regimes.
Ebba K. Peterson; Niklaus J. Grünwald; Jennifer L. ParkeSoil
2017-01-01
Soilborne inoculum (infested leaf debris which has become incorporated into the soil) may be an important contributor to the persistence of the sudden oak death pathogen Phytophthora ramorum in recurrently positive nurseries. To initiate new epidemics, soilborne inoculum must not only be able to survive over time, but also be capable of...
Sloey, Taylor M; Howard, Rebecca J.; Hester, Mark W.
2016-01-01
For wetland restoration success to be maximized, restoration managers need better information regarding how the frequency, depth, and duration of flooding affect soil chemistry and the survival, growth, and morphology of targeted plant species. In a greenhouse study we investigated the impact of four different flooding durations (0 %, 40 %, 60 %, and 100 %) on soil physicochemistry and the responses of seedlings and adults of two species of emergent wetland macrophytes commonly used in restoration efforts (Schoenoplectus acutus and Schoenoplectus californicus). The longest flooding duration, which created more reducing soil conditions, resulted in significantly reduced survival of S. acutus adults (34 ± 21 % survival) and complete mortality of seedlings of both species. Schoenoplectus californicus adults exhibited higher flooding tolerance, showing little impact of flooding on morphology and physiology. A companion field study indicated that S. californicus maintained stem strength regardless of flooding duration or depth, supporting the greenhouse study results. This information serves to improve our understanding of the ecological differences between these species as well as provide restoration managers with better guidelines for targeted elevation and hydrologic regimes for these species in order to enhance the success of restoration plantings and better predict restoration site development.
Allen, J.A.; Chambers, J.L.; Pezeshki, S.R.
1997-01-01
Growth and physiological responses of 15 open-pollinated families of baldcypress (Taxodium distichum var. distichum) subjected to flooding with saline water were evaluated in this study. Ten of the families were from coastal sites in Louisiana and Alabama, USA that have elevated levels of soil-water salinity. The other five families were from inland, freshwater sites in Louisiana. Seedlings from all families tolerated flooding with water of low (2 g l-1) salinity. Differences in biomass among families became most apparent at the highest salinity levels (6 and 8 g l-1). Overall, increasing salinity reduced leaf biomass more than root biomass, which in turn was reduced more than stem biomass. A subset of seedlings from the main greenhouse experiment was periodically placed indoors under artificial light, and measurements were made of gas exchange and leaf water potential. Also, tissue concentrations of Cl-, Na+, K+, and Ca2+ were determined at the end of the greenhouse experiment. Significant intraspecific variation was found for nearly all the physiological parameters evaluated, but only leaf concentrations of Na+ and Cl- were correlated with an index of family-level differences in salt tolerance.
Flood tolerance of oak seedlings from bottomland and upland sites
Michael P. Walsh; Jerry Van Sambeek; Mark Coggeshall; David Gwaze
2009-01-01
Artificial regeneration of oak species in floodplains presents numerous challenges because of the seasonal flooding associated with these areas. Utilizing not only flood-tolerant oak species, but also flood tolerant seed sources of the oak species, may serve to enhance seedling survival and growth rates. Despite the importance of these factors to hardwood forest...
Sabu, T. K.; Nirdev, P. M.; Aswathi, P.
2014-01-01
Abstract An analysis of host plant leaf age preferences and phenology studies led to the predictions that tender rubber plant leaves are essential for the completion of the life cycle of the Mupli beetle, Luprops tristis Fabricius (Coleoptera: Tenebrionidae) and that low tender leaf availability during the post-dormancy stage will limit the beetle population. Analyses of the effects of feeding the beetles leaves of various ages, nitrogen (N) content, and moisture content on fecundity and the duration of post-dormancy survival were carried out. The results showed that tender leaf availability during the post-dormancy phase of L. tristis is a critical factor that determines the survival of L. tristis adults and the subsequent generation. The control of powdery mildew ( Odium hevea ) disease-mediated premature leaf fall in rubber plantations may regulate the beetle population. A peak in fecundity during the early phase of post-dormancy is proposed as an adaptive mechanism of L. tristis to synchronize egg production and feeding with tender leaf availability in rubber plantations. Variations in nutrient levels and moisture content between deciduous rubber tree leaves of different ages are attributed to the leaf nutrient resorption mechanism of senescing leaves. These results established that tender leaves with high N and moisture levels are essential for post-dormancy survival and that N influences fecundity. The results of the experiments could aid decision making regarding the population management and control of L. tristis in rubber plantations. PMID:25373159
Plants are less negatively affected by flooding when growing in species-rich plant communities.
Wright, Alexandra J; de Kroon, Hans; Visser, Eric J W; Buchmann, Tina; Ebeling, Anne; Eisenhauer, Nico; Fischer, Christine; Hildebrandt, Anke; Ravenek, Janneke; Roscher, Christiane; Weigelt, Alexandra; Weisser, Wolfgang; Voesenek, Laurentius A C J; Mommer, Liesje
2017-01-01
Flooding is expected to increase in frequency and severity in the future. The ecological consequences of flooding are the combined result of species-specific plant traits and ecological context. However, the majority of past flooding research has focused on individual model species under highly controlled conditions. An early summer flooding event in a grassland biodiversity experiment in Jena, Germany, provided the opportunity to assess flooding responses of 60 grassland species in monocultures and 16-species mixtures. We examined plant biomass, species-specific traits (plant height, specific leaf area (SLA), root aerenchyma, starch content) and soil porosity. We found that, on average, plant species were less negatively affected by the flood when grown in higher-diversity plots in July 2013. By September 2013, grasses were unaffected by the flood regardless of plant diversity, and legumes were severely negatively affected regardless of plant diversity. Plants with greater SLA and more root aerenchyma performed better in September. Soil porosity was higher in higher-diversity plots and had a positive effect on plant performance. As floods become more frequent and severe in the future, growing flood-sensitive plants in higher-diversity communities and in soil with greater soil aeration may attenuate the most negative effects of flooding. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Liu, Zebin; Cheng, Ruimei; Xiao, Wenfa; Guo, Quanshui; Wang, Na
2014-01-01
Distylium chinense is an evergreen shrub used for the vegetation recovery of floodplain and riparian areas in Three Gorges Reservoir Region. To clarify the morphological and physiological responses and tolerance of Distylium chinense to off-season flooding, a simulation flooding experiment was conducted during autumn and winter. Results indicated that the survival rate of seedlings was 100%, and that plant height and stem diameter were not significantly affected by flooding. Adventitious roots and hypertrophic lenticels were observed in flooded seedlings after 30 days of flooding. Flooding significantly reduced the plant biomass of roots, net photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (Tr), maximum photochemical efficiency (Fv/Fm), photochemical quenching (qP), and electron transport rate (ETR) in leaves, and also affected the allocation and transport of carbohydrate and nutrients. However, D. chinense was able to maintain stable levels of Pn, Fv/Fm, qP, ETR, and nutrient content (N and P) in leaves and to store a certain amount of carbohydrate in roots over prolonged durations of flooding. Based on these results, we conclude that there is a high flooding tolerance in D. chinense, and the high survival rate of D. chinense may be attributable to a combination of morphological and physiological responses to flooding.
Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus.
Arbona, Vicent; Hossain, Zahed; López-Climent, María F; Pérez-Clemente, Rosa M; Gómez-Cadenas, Aurelio
2008-04-01
Soil flooding constitutes a seasonal factor that negatively affects plant performance and crop yields. In this work, the relationship between oxidative damage and flooding sensitivity was addressed in three citrus genotypes with different abilities to tolerate waterlogging. We examined leaf visible damage, oxidative damage in terms of malondialdehyde (MDA) concentration, leaf proline concentration, leaf and root ascorbate and glutathione contents and the antioxidant enzyme activities superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), catalase (EC 1.11.1.6) and glutathione reductase (EC 1.8.1.7). No differences in the extent of oxidative damage relative to controls were found among genotypes. However, a different ability to delay the apparition of oxidative damage was associated to a higher tolerance to waterlogging. This ability was linked to an enhanced activated oxygen species' scavenging capacity in terms of an increased antioxidant enzyme activity and higher content in polar antioxidant compounds. Therefore, the existence of a direct relationship between stress sensitivity and the early accumulation of MDA is proposed. In addition, data indicate that the protective role of proline has to be considered minimal as its accumulation was inversely correlated with tolerance to the stress. The positive antioxidant response in Carrizo citrange (Poncirus trifoliata L. Raf. x Citrus sinensis L. Osb.) and Citrumelo CPB 4475 (Poncirus trifoliata L. Raf. x Citrus paradisi L. Macf.) might be responsible for a higher tolerance to flooding stress, whereas in Cleopatra mandarin (Citrus reshni Hort. Ex Tan.), the early accumulation of MDA seems to be associated to an impaired ability for H2O2 scavenging.
Ebba K. Peterson; Niklaus J. Grünwald; Jennifer L. Parke
2017-01-01
Soilborne inoculum (infested leaf debris which has become incorporated into the soil) may be an important contributor to the persistence of the sudden oak death pathogen Phytophthora ramorum in recurrently positive nurseries. To initiate new epidemics, soilborne inoculum must not only be able to survive over time, but also be capable of producing...
Growth of Newly Planted Water Tupelo Seedlings After Flooding and Siltation
H. E. Kennedy
1970-01-01
In central Mississippi, outplanted water tupelo seedlings survived and grew well after shallow flooding (up to 8 cm) from late February through June 1. Submersion of the seedlings, flooding until late in the growing season, reflooding, and moderate siltation reduced growth. Flooding caused changes in certain soil properties, but these changes did not seem to be the...
Effects of a flooding event on a threatened black bear population in Louisiana
O'Connell-Goode, Kaitlin C.; Lowe, Carrie L.; Clark, Joseph D.
2014-01-01
The Louisiana black bear, Ursus americanus luteolus, is listed as threatened under the Endangered Species Act as a result of habitat loss and human-related mortality. Information on population-level responses of large mammals to flooding events is scarce, and we had a unique opportunity to evaluate the viability of the Upper Atchafalaya River Basin (UARB) black bear population before and after a significant flooding event. We began collecting black bear hair samples in 2007 for a DNA mark-recapture study to estimate abundance (N) and apparent survival (φ). In 2011, the Morganza Spillway was opened to divert floodwaters from the Mississippi River through the UARB, inundating > 50% of our study area, potentially impacting recovery of this important bear population. To evaluate the effects of this flooding event on bear population dynamics, we used a robust design multistate model to estimate changes in transition rates from the flooded area to non-flooded area (ψF→NF) before (2007–2010), during (2010–2011) and after (2011–2012) the flood. Average N across all years of study was 63.2 (SE = 5.2), excluding the year of the flooding event. Estimates of ψF→NF increased from 0.014 (SE = 0.010; meaning that 1.4% of the bears moved from the flooded area to non-flooded areas) before flooding to 0.113 (SE = 0.045) during the flood year, and then decreased to 0.028 (SE= 0.035) after the flood. Although we demonstrated a flood effect on transition rates as hypothesized, the effect was small (88.7% of the bears remained in the flooded area during flooding) and φ was unchanged, suggesting that the 2011 flooding event had minimal impact on survival and site fidelity.
46 CFR 170.110 - Stability booklet.
Code of Federal Regulations, 2010 CFR
2010-10-01
... unintentional flooding. (12) A table of contents and index for the booklet. (13) Each ship condition which, if damage occurs, may require cross-flooding for survival and information concerning the use of any special cross-flooding fittings. (14) The amount and location of fixed ballast. (15) Any other necessary...
Effect of depth of flooding on the rice water weevil, Lissorhoptrus oryzophilus, and yield of rice.
Tindall, Kelly V; Bernhardt, John L; Stout, Michael J; Beighley, Donn H
2013-01-01
The rice water weevil, Lissorhoptrus oryzophilus (Kuschel) (Coleoptera: Curculionidae), is a semi-aquatic pest of rice and is the most destructive insect pest of rice in the United States. Adults oviposit after floods are established, and greenhouse studies have shown that plants exposed to deep floods have more eggs oviposited in leaf sheaths than plants exposed to a shallow flood. Experiments were conducted in three mid-southern states in the USA to determine if the depth of flooding would impact numbers of L. oryzophilus on rice plants under field conditions. Rice was flooded at depths of approximately 5 or 10 cm in Arkansas in 2007 and 2008 and Louisiana in 2008, and at depths between 0-20 cm in Missouri in 2008. Plants were sampled three and four weeks after floods were established in all locations, and also two weeks after flood in Missouri. On all sampling dates in four experiments over two years and at three field sites, fewer L. oryzophilus larvae were collected from rice in shallow-flooded plots than from deep-flooded plots. The number of L. oryzophilus was reduced by as much as 27% in shallow-flooded plots. However, the reduction in insect numbers did not translate to a significant increase in rice yield. We discuss how shallow floods could be used as a component of an integrated pest management program for L. oryzophilus.
Effect of Depth of Flooding on the Rice Water Weevil, Lissorhoptrus oryzophilus, and Yield of Rice
Tindall, Kelly V.; Bernhardt, John L.; Stout, Michael J.; Beighley, Donn H.
2013-01-01
The rice water weevil, Lissorhoptrus oryzophilus (Kuschel) (Coleoptera: Curculionidae), is a semi-aquatic pest of rice and is the most destructive insect pest of rice in the United States. Adults oviposit after floods are established, and greenhouse studies have shown that plants exposed to deep floods have more eggs oviposited in leaf sheaths than plants exposed to a shallow flood. Experiments were conducted in three mid-southern states in the USA to determine if the depth of flooding would impact numbers of L. oryzophilus on rice plants under field conditions. Rice was flooded at depths of approximately 5 or 10 cm in Arkansas in 2007 and 2008 and Louisiana in 2008, and at depths between 0–20 cm in Missouri in 2008. Plants were sampled three and four weeks after floods were established in all locations, and also two weeks after flood in Missouri. On all sampling dates in four experiments over two years and at three field sites, fewer L. oryzophilus larvae were collected from rice in shallow-flooded plots than from deep-flooded plots. The number of L. oryzophilus was reduced by as much as 27% in shallow-flooded plots. However, the reduction in insect numbers did not translate to a significant increase in rice yield. We discuss how shallow floods could be used as a component of an integrated pest management program for L. oryzophilus. PMID:23906324
High Survival of Lasius niger during Summer Flooding in a European Grassland
Hertzog, Lionel R.; Ebeling, Anne; Meyer, Sebastian T.; Eisenhauer, Nico; Fischer, Christine; Hildebrandt, Anke; Wagg, Cameron; Weisser, Wolfgang W.
2016-01-01
Climate change is projected to increase the frequency of extreme events, such as flooding and droughts, which are anticipated to have negative effects on the biodiversity of primary producers and consequently the associated consumer communities. Here we assessed the effects of an extreme early summer flooding event in 2013 on ant colonies along an experimental gradient of plant species richness in a temperate grassland. We tested the effects of flood duration, plant species richness, plant cover, soil temperature, and soil porosity on ant occurrence and abundance. We found that the ant community was dominated by Lasius niger, whose presence and abundance after the flood was not significantly affected by any of the tested variables, including plant species richness. We found the same level of occupation by L. niger at the field site after the flood (surveyed in 2013) as before the flood (surveyed in 2006). Thus, there were no negative effects of the flood on the presence of L. niger in the plots. We can exclude recolonisation as a possible explanation of ant presence in the field site due to the short time period between the end of the flood and survey as well as to the absence of a spatial pattern in the occupancy data. Thus, the omnipresence of this dominant ant species 1 month after the flood indicates that the colonies were able to survive a 3-week summer flood. The observed ant species proved to be flood resistant despite experiencing such extreme climatic events very rarely. PMID:27851761
High Survival of Lasius niger during Summer Flooding in a European Grassland.
Hertzog, Lionel R; Ebeling, Anne; Meyer, Sebastian T; Eisenhauer, Nico; Fischer, Christine; Hildebrandt, Anke; Wagg, Cameron; Weisser, Wolfgang W
2016-01-01
Climate change is projected to increase the frequency of extreme events, such as flooding and droughts, which are anticipated to have negative effects on the biodiversity of primary producers and consequently the associated consumer communities. Here we assessed the effects of an extreme early summer flooding event in 2013 on ant colonies along an experimental gradient of plant species richness in a temperate grassland. We tested the effects of flood duration, plant species richness, plant cover, soil temperature, and soil porosity on ant occurrence and abundance. We found that the ant community was dominated by Lasius niger, whose presence and abundance after the flood was not significantly affected by any of the tested variables, including plant species richness. We found the same level of occupation by L. niger at the field site after the flood (surveyed in 2013) as before the flood (surveyed in 2006). Thus, there were no negative effects of the flood on the presence of L. niger in the plots. We can exclude recolonisation as a possible explanation of ant presence in the field site due to the short time period between the end of the flood and survey as well as to the absence of a spatial pattern in the occupancy data. Thus, the omnipresence of this dominant ant species 1 month after the flood indicates that the colonies were able to survive a 3-week summer flood. The observed ant species proved to be flood resistant despite experiencing such extreme climatic events very rarely.
Tierney, J T; Sullivan, R; Larkin, E P
1977-01-01
Land disposal of sewage sludge and effluent is becoming a common practice in the United States. The fertilizer content and humus value of such wastes are useful for agricultural purposes, and the recycling of sewage onto the land eliminates many of our stream pollution problems. The potential exists for crops grown in such irrigated soil to be contaminated by viruses that may be present in the sewage. Studies were initiated to determine viral persistence in soil and on crops grown under natural conditions in field plots that had been flooded to a depth of 1 inch (2.54 cm) with poliovirus 1-inoculated sewage wastes. Lettuce and radishes were planted in sludge- or effluent-flooded soil. In one study, the vegetables were planted 1 day before flooding, and in another they were planted 3 days after the plots were flooded. Survival of poliovirus 1 in soil irrigated with inoculated sewage sludge and effluent was determined during two summer growing seasons and one winter period. The longest period of survival was during the winter, when virus was detected after 96 days. During the summer, the longest survival period was 11 days. Poliovirus 1 was recovered from the mature vegetables 23 days after flooding of the plots had ceased. Lettuce and radishes are usually harvested 3 to 4 weeks after planting. PMID:189685
Novel Prunus rootstock somaclonal variants with divergent ability to tolerate waterlogging.
Pistelli, Laura; Iacona, Calogero; Miano, Dario; Cirilli, Marco; Colao, Maria Chiara; Mensuali-Sodi, Anna; Muleo, Rosario
2012-03-01
Plants require access to free water for nutrient uptake, but excess water surrounding the roots can be injurious or even lethal because it blocks the transfer of free oxygen between the soil and the atmosphere. Genetic improvement efforts in this study were focused on the increased tolerance in roots to waterlogging. Among a pool of clones generated in vitro from leaf explants of rootstock Mr.S.2/5 of Prunus cerasifera L., the S.4 clone was flood tolerant whereas the S.1 clone was sensitive. The S.4 clone formed adventitious roots on exposure to flooding. Moreover, the chlorophyll content and mitochondrial activity in the leaf and root, soluble sugar content, alcohol dehydrogenase activity and ethylene content were different between the clones. The sorbitol transporter gene (SOT1) was up-regulated during hypoxia, the alcohol dehydrogenase genes (ADH1 and ADH3) were up-regulated in the leaves and down-regulated in the roots of the S.4 clone during hypoxia, and the 1-aminocyclopropane-1-oxidase gene (ACO1) was up-regulated in the leaves and roots of the S.4 clone during hypoxia and down-regulated in the wild-type roots. In addition, in the S.4 root, hypoxia induced significant down-regulation of a glycosyltransferase-like gene (GTL), which has a yet-undefined role. Although the relevant variation in the S.4 genome has yet to be determined, genetic alteration clearly conferred a flooding-tolerant phenotype. The isolation of novel somaclonals with the same genomic background but with divergent tolerance to flooding may offer new insights in the elucidation of the genetic machinery of resistance to flooding and aid in the selection of new Prunus rootstocks to be used in various adverse environments.
Flooding, Beavers, and Hardwood Seedling Survival
Roger M. Krinard; Robert L. Johnson
1981-01-01
Plantings were made for three successive years on clay-capped soils in the Mississippi River batture, the first year without flooding, and the second and third years with flooding. Species planted, but not in all years, were eastern cottonwood (Populus deltoides Bartr. ex Marsh.), sycamore (Platanus occidentalis L.), green ash (...
46 CFR 172.195 - Survival conditions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... assumed damage if it meets the following conditions in the final stage of flooding: (a) Final waterline... of an opening through which progressive flooding may take place, such as an air pipe, or an opening... least 3.94 inches (10 cm). (3) Each submerged opening must be weathertight. (d) Progressive flooding. If...
46 CFR 172.195 - Survival conditions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... assumed damage if it meets the following conditions in the final stage of flooding: (a) Final waterline... of an opening through which progressive flooding may take place, such as an air pipe, or an opening... least 3.94 inches (10 cm). (3) Each submerged opening must be weathertight. (d) Progressive flooding. If...
46 CFR 172.195 - Survival conditions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... assumed damage if it meets the following conditions in the final stage of flooding: (a) Final waterline... of an opening through which progressive flooding may take place, such as an air pipe, or an opening... least 3.94 inches (10 cm). (3) Each submerged opening must be weathertight. (d) Progressive flooding. If...
Christopher M. Kaelke; Jeffery O. Dawson
2003-01-01
To better understand how late-season flooding affects survival, growth, N accretion, and N partitioning in silver maple, we subjected 1-year-old seedlings to continuous (July-November), summer (July-September), and fall (September-November) root-flooding regimes outdoors in plastic tanks. Only root growth was affected by flooding as root biomass measured in September...
Yang, Fan; Wang, Yong; Chan, Zhulong
2014-01-01
The establishment of riparian protection forests in the Three Gorges Reservoir (TGR) is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ). Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides) and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora) might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress and recover well, and be used as candidate for the construction of riparian protection forests in the TGR WLFZ. PMID:25265326
Yang, Fan; Wang, Yong; Chan, Zhulong
2014-01-01
The establishment of riparian protection forests in the Three Gorges Reservoir (TGR) is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ). Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides) and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora) might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress and recover well, and be used as candidate for the construction of riparian protection forests in the TGR WLFZ.
Deer predation on leaf miners via leaf abscission
NASA Astrophysics Data System (ADS)
Yamazaki, Kazuo; Sugiura, Shinji
2008-03-01
The evergreen oak Quercus gilva Blume sheds leaves containing mines of the leaf miner Stigmella sp. (Lepidoptera: Nepticulidae) earlier than leaves with no mines in early spring in Nara, central Japan. The eclosion rates of the leaf miner in abscised and retained leaves were compared in the laboratory to clarify the effects of leaf abscission on leaf miner survival in the absence of deer. The leaf miner eclosed successfully from both fallen leaves and leaves retained on trees. However, sika deer ( Cervus nippon centralis Kishida) feed on the fallen mined leaves. Field observations showed that deer consume many fallen leaves under Q. gilva trees, suggesting considerable mortality of leaf miners due to deer predation via leaf abscission. This is a previously unreported relationship between a leaf miner and a mammalian herbivore via leaf abscission.
Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants.
Engelbrecht, Bettina M J; Kursar, Thomas A
2003-08-01
Quantifying plant drought resistance is important for understanding plant species' association to microhabitats with different soil moisture availability and their distribution along rainfall gradients, as well as for understanding the role of underlying morphological and physiological mechanisms. The effect of dry season drought on survival and leaf-area change of first year seedlings of 28 species of co-occurring woody tropical plants was experimentally quantified in the understory of a tropical moist forest. The seedlings were subjected to a drought or an irrigation treatment in the forest for 22 weeks during the dry season. Drought decreased survival and growth (assessed as leaf-area change) in almost all of the species. Both survival and leaf-area change in the dry treatment ranged fairly evenly from 0% to about 100% of that in the irrigated treatment. In 43% of the species the difference between treatments in survival was not significant even after 22 weeks. In contrast, only three species showed no significant effect of drought on leaf-area change. The effects of drought on species' survival and growth were not correlated with each other, reflecting different strategies in response to drought. Seedling size at the onset of the dry season had no significant effect on species' drought response. Our study is the first to comparatively assess seedling drought resistance in the habitat for a large number of tropical species, and underlines the importance of drought for plant population dynamics in tropical forests.
Effects of river flow regime on cottonwood leaf litter dynamics in semi-arid northwestern Colorado
Andersen, D.C.; Nelson, S.M.
2003-01-01
We compared production and breakdown of Fremont cottonwood (Populus deltoides wislizenii) leaf litter at matched floodplain sites on the regulated Green River and unregulated Yampa River in semi-arid northwestern Colorado. Litter production under trees was similar at sites in 1999 (250 g/m2, oven-dry) but lower in 2000 (215 and 130 g/m2), a drought year that also featured an outbreak of defoliating beetles at the Yampa River site. Our production values were similar to the few others reported for riparian forests within semi-arid or arid areas. Leaf litter in portions of the floodplain not inundated during the spring flood lost organic matter at the same rate as leaves placed in upland sites in 1998 and 2000: 35 to 50% of organic matter during an approximately 160-day spring and summer period. Inundated litter lost 55 to 90% of its organic matter during the same period. Organic matter loss from inundated leaves increased with duration of inundation and with deposition of fine sediment. Pooled across locations, leafpack data suggested that nitrogen concentration (mg N/kg organic matter) increased until about 65% of the initial organic matter was lost. This increase likely reflected the buildup of microbial decomposer populations. The role of insects and other macroinvertebrates in litter breakdown apparently was minor at both sites. Large spatial and temporal variation in litter dynamics in aridland floodplain settings is ensured by microtopographic variation in the alluvial surface coupled with year-to-year variation associated with most natural flood regimes. Factors reducing flood flow frequency or magnitude will reduce overall breakdown rates on the floodplain towards those found in drier upland environments.
Ethylene--and oxygen signalling--drive plant survival during flooding.
Voesenek, L A C J; Sasidharan, R
2013-05-01
Flooding is a widely occurring environmental stress both for natural and cultivated plant species. The primary problems associated with flooding arise due to restricted gas diffusion underwater. This hampers gas exchange needed for the critical processes of photosynthesis and respiration. Plant acclimation to flooding includes the adaptation of a suite of traits that helps alleviate or avoid these stressful conditions and improves or restores exchange of O2 and CO2 . The manifestation of these traits is, however, reliant on the timely perception of signals that convey the underwater status. Flooding-associated reduced gas diffusion imposes a drastic change in the internal gas composition within submerged plant organs. One of the earliest changes is an increase in the levels of the gaseous plant hormone ethylene. Depending on the species, organ, flooding conditions and time of the day, plants will also subsequently experience a reduction in oxygen levels. This review provides a comprehensive overview on the roles of ethylene and oxygen as critical signals of flooding stress. It includes a discussion of the dynamics of these gases in plants when underwater, their interaction, current knowledge of their perception mechanisms and the resulting downstream changes that mediate important acclimative processes that allow endurance and survival under flooded conditions. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Underwater photosynthesis of submerged plants - recent advances and methods.
Pedersen, Ole; Colmer, Timothy D; Sand-Jensen, Kaj
2013-01-01
We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence.
Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods
Pedersen, Ole; Colmer, Timothy D.; Sand-Jensen, Kaj
2013-01-01
We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence. PMID:23734154
Autumnal leaf senescence in Miscanthus × giganteus and leaf [N] differ by stand age
Boersma, Nicholas N.; Dohleman, Frank G.; Miguez, Fernando E.; Heaton, Emily A.
2015-01-01
Poor first winter survival in Miscanthus × giganteus has been anecdotally attributed to incomplete first autumn senescence, but these assessments never paired first-year with older M. × giganteus in side-by-side trials to separate the effect of weather from stand age. Here CO2 assimilation rate (A), photosystem II efficiency (ΦPSII), and leaf N concentration ([N]) were used to directly compare senescence in first, second, and third-year stands of M. × giganteus. Three M. × giganteus fields were planted with eight plots, one field each in 2009, 2010, and 2011. To quantify autumnal leaf senescence of plants within each stand age, photosynthetic and leaf [N] measurements were made twice weekly from early September until a killing frost. Following chilling events (daily temperature averages below 10 °C), photosynthetic rates in first year plants rebounded to a greater degree than those in second- and third-year plants. By the end of the growing season, first-year M. × giganteus had A and ΦPSII rates up to 4 times greater than third-year M. × giganteus, while leaf [N] was up to 2.4 times greater. The increased photosynthetic capability and leaf N status in first-year M. × giganteus suggests that the photosynthetic apparatus was not dismantled before a killing frost, thus potentially limiting nutrient translocation, and may explain why young M. × giganteus stands do not survive winter when older stands do. Because previous senescence research has primarily focused on annual or woody species, our results suggest that M. × giganteus may be an interesting herbaceous perennial system to investigate the interactive effects of plant ageing and nutrient status on senescence and may highlight management strategies that could potentially increase winter survival rates in first-year stands. PMID:25873682
Daily survival rate and habitat characteristics of nests of Wilson's Plover
Zinsser, Elizabeth; Sanders, Felicia J.; Gerard, Patrick D.; Jodice, Patrick G.R.
2017-01-01
We assessed habitat characteristics and measured daily survival rate of 72 nests of Charadrius wilsonia (Wilson's Plover) during 2012 and 2013 on South Island and Sand Island on the central coast of South Carolina. At both study areas, nest sites were located at slightly higher elevations (i.e., small platforms of sand) relative to randomly selected nearby unused sites, and nests at each study area also appeared to be situated to enhance crypsis and/or vigilance. Daily survival rate (DSR) of nests ranged from 0.969 to 0.988 among study sites and years, and the probability of nest survival ranged from 0.405 to 0.764. Flooding and predation were the most common causes of nest failure at both sites. At South Island, DSR was most strongly related to maximum tide height, which suggests that flooding and overwash may be common causes of nest loss for Wilson's Plovers at these study sites. The difference in model results between the 2 nearby study sites may be partially due to more-frequent flooding at Sand Island because of some underlying yet unmeasured physiographic feature. Remaining data gaps for the species include regional assessments of nest and chick survival and habitat requirements during chick rearing.
Camargo, M; Giarrizzo, T; Jesus, A J S
2015-08-01
The assumption for this study was that litterfall in floodplain environments of the middle Xingu river follows a pattern of seasonal variation. According to this view, litterfall production (total and fractions) was estimated in four alluvial rainforest sites on the middle Xingu River over an annual cycle, and examined the effect of seasonal flooding cycle. The sites included two marginal flooded forests of insular lakes (Ilha Grande and Pimentel) and two flooded forests on the banks of the Xingu itself (Boa Esperança and Arroz Cru). Total litterfall correlated with rainfall and river levels, but whereas the leaf and fruit fractions followed this general pattern, the flower fraction presented an inverse pattern, peaking in the dry season. The litterfall patterns recorded in the present study were consistent with those recorded at other Amazonian sites, and in some other tropical ecosystems.
VALLADARES, FERNANDO; HERNÁNDEZ, LIBERTAD G.; DOBARRO, IKER; GARCÍA‐PÉREZ, CRISTINA; SANZ, RUBÉN; PUGNAIRE, FRANCISCO I.
2003-01-01
Different plant species and organs within a plant differ in their plastic response to light. These responses influence their performance and survival in relation to the light environment, which may range from full sunlight to deep shade. Plasticity, especially with regard to physiological features, is linked to a greater capacity to exploit high light and is usually low in shade‐tolerant species. Among photosynthetic organs, green stems, which represent a large fraction of the total photosynthetic area of certain species, are hypothesized to be less capable of adjustment to light than leaves, because of biomechanical and hydraulic constraints. The response to light by leaves and stems of six species of leguminous, green‐stemmed shrubs from dry and high‐light environments was studied by growing seedlings in three light environments: deep shade, moderate shade and sun (3, 30 and 100 % of full sunlight, respectively). Survival in deep shade ranged from 2 % in Retama sphaerocarpa to 74 % in Ulex europaeus. Survival was maximal at moderate shade in all species, ranging from 80 to 98 %. The six species differed significantly in their ratio of leaf to total photosynthetic area, which influenced their light response. Survival in deep shade increased significantly with increasing ratio of leaf to total photosynthetic area, and decreased with increasing plasticity in net photosynthesis and dark respiration. Responses to light differed between stems and leaves within each species. Mean phenotypic plasticity for the variables leaf or stem specific mass, chlorophyll content, chlorophyll a/b ratio, and carotenoid to chlorophyll ratio of leaves, was inversely related to that of stems. Although mean plasticity of stems increased with the ratio of leaf to total photosynthetic area, the mean plasticity of leaves decreased. Shrubs with green stems and a low ratio of leaf to total photosynthetic area are expected to be restricted to well‐lit habitats, at least during the seedling stage, owing to their inefficient light capture and the low plasticity of their stems. PMID:12646502
Hurricane coastal flood analysis using multispectral spectral images
NASA Astrophysics Data System (ADS)
Ogashawara, I.; Ferreira, C.; Curtarelli, M. P.
2013-12-01
Flooding is one of the main hazards caused by extreme events such as hurricanes and tropical storms. Therefore, flood maps are a crucial tool to support policy makers, environmental managers and other government agencies for emergency management, disaster recovery and risk reduction planning. However traditional flood mapping methods rely heavily on the interpolation of hydrodynamic models results, and most recently, the extensive collection of field data. These methods are time-consuming, labor intensive, and costly. Efficient and fast response alternative methods should be developed in order to improve flood mapping, and remote sensing has been proved as a valuable tool for this application. Our goal in this paper is to introduce a novel technique based on spectral analysis in order to aggregate knowledge and information to map coastal flood areas. For this purpose we used the Normalized Diference Water Index (NDWI) which was derived from two the medium resolution LANDSAT/TM 5 surface reflectance product from the LANDSAT climate data record (CDR). This product is generated from specialized software called Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS). We used the surface reflectance products acquired before and after the passage of Hurricane Ike for East Texas in September of 2008. We used as end member a classification of estimated flooded area based on the United States Geological Survey (USGS) mobile storm surge network that was deployed for Hurricane Ike. We used a dataset which consisted of 59 water levels recording stations. The estimated flooded area was delineated interpolating the maximum surge in each location using a spline with barriers method with high tension and a 30 meter Digital Elevation Model (DEM) from the National Elevation Dataset (NED). Our results showed that, in the flooded area, the NDWI values decreased after the hurricane landfall on average from 0.38 to 0.18 and the median value decreased from 0.36 to 0.2. However for the non-flooded area the NDWI increased after the hurricane landfall. The average value varied from 0.15 to 0.43 and the median value from 0.13 to 0.43. These results demonstrate that these differences can be explored for the mapping of flood areas. As NDWI was developed to quantify the amount of water in the leaf of the plants, the increase of the value is expected within the amount of water that the leaf will absorb. However in flooded areas the amount of water is so high that it is possible that the reflectance follows the water spectral behavior absorbing more than reflecting in the Near Infrared region. Thus, remote sensing techniques showed to be powerful tools since they could characterize flooded areas. However further studies are needed, applying and validating these techniques for other regions and different storms. Optical remote sensing is promising for many applications, since it will be an open door to studies of spatial and temporal analysis of the flood impacts mainly in areas with remote access and with a lack of in situ data.
Growth response of speckled alder and willow to depth of flooding
M. Dean Knighton
1981-01-01
Growth and survival of speckled alder and willow were determined for two growing seasons with continuous flooding at different depths. Growth was at least four times greater when the water table was below the root crown than when it was 15 cm above. Mortality increased with flooding depth and as greatest for alder.
Drier Forest Composition Associated with Hydrologic Change in the Apalachicola River, Florida
Darst, Melanie R.; Light, Helen M.
2008-01-01
Forests of the Apalachicola River floodplain had shorter flood durations, were drier in composition, and had 17 percent fewer trees in 2004 than in 1976. The change to drier forest composition is expected to continue for at least 80 more years. Floodplain drying was caused by large declines in river levels resulting from erosion of the river channel after 1954 and from decreased flows in spring and summer months since the 1970s. Water-level declines have been greatest at low and medium flows, which are the most common flows (occurring about 80 percent of the time). Water levels have remained relatively unchanged during large floods which continue to occur about three times per decade. A study conducted by the U.S. Geological Survey compared temporal changes in hydrologic conditions, forest composition, forest characteristics, and individual species of trees, as well as estimated the potential for change in composition of floodplain forests in the nontidal reach of the Apalachicola River. The study was conducted with the cooperation of the Florida Department of Environmental Protection and the Northwest Florida Water Management District. Forest composition and field observations from studies conducted in 1976-1984 (termed '1976 data') were used as baseline data for comparison with data from plots sampled in 2004-2006 ('2004 data'). Flood durations were shorter in all periods subsequent to 1923-1976. The periods of record used to calculate flood durations for forest data were subsets of the complete record available (1923-2004). At sampled plots in all forest types and reaches combined, flood durations changed an average of more than 70 percent toward the baseline flood duration of the next drier forest type. For all forest types, changes in flood durations toward the next drier type were greatest in the upper reach (95.9 percent) and least in the lower reach (42.0 percent). All forests are expected to be 38.2 percent drier in species composition by 2085, the year when the median age of surviving 2004 subcanopy trees will reach the median age (99 years) of the 2004 large canopy trees. The change will be greatest for forests in the upper reach (45.0 percent). Forest composition changes from pre-1954 to 2085 were calculated using Floodplain Indices from 1976 and 2004 tree-size classes and replicate plots. Species composition in high bottomland hardwood forests is expected to continue to change, and some low bottomland hardwood forests are expected to become high bottomland hardwood forests. Organisms associated with floodplain forests will be affected by the changes in tree species, which will alter the timing of leaf-out, fruiting, and leaf-drop, the types of fruit and debris produced, and soil chemistry. Swamps will contain more bottomland hardwood species, but will also have an overall loss of tree density. The density of trees in swamps significantly decreased by 37 percent from 1976 to 2004. Of the estimated 4.3 million (17 percent) fewer trees that existed in the nontidal floodplain in 2004 than in 1976, 3.3 million trees belonged to four swamp species: popash, Ogeechee tupelo, water tupelo, and bald cypress. Water tupelo, the most important tree in the nontidal floodplain in terms of basal area and density, has declined in number of trees by nearly 20 percent since 1976. Ogeechee tupelo, the species valuable to the tupelo honey industry, has declined in number of trees by at least 44 percent. Greater hydrologic variability in recent years may be the reason swamps have had a large decrease in tree density. Drier conditions are detrimental for the growth of swamp species, and periodic large floods kill invading bottomland hardwood trees. The loss of canopy density in swamps may result in the swamp floor being exposed to more light with an increase in the amount of ground cover present, which in turn, would reduce tree replacement. The microclimate of the swamp floor would become wa
Jackson, D Michael; Johnson, A W; Stephenson, M G
2002-12-01
Levels of pyridine alkaloids were measured in 18 tobacco, Nicotiana tabacum L., entries from three parental isolines ('NC 95', 'SC 58', and 'Coker 139'), grown at Tifton, GA, Florence, SC, and Oxford, NC, in 1991. Levels of alkaloids in bud leaves (first fully unfolded leaf below the apical leaf bud) were negatively correlated to natural infestation ratings of tobacco budworm larvae, Heliothis virescens (F.), 7 wk after transplanting. For artificially infested bud leaves at Oxford, there was a significant negative correlation between levels of total alkaloids and larval weights after 1 wk of feeding. In 1992, four entries from the 'NC 95' isoline were grown at Oxford, and samples for alkaloid analyses were taken every 2 wk at several leaf positions on each plant. During weeks 4, 8, 12, and 16, second instar tobacco budworms were caged on individual, intact leaves inside perforated plastic bags in the field. The survival and development of tobacco budworm larvae after 1 wk were negatively correlated with levels of alkaloids at the various leaf positions. Larvae survived better and grew faster on the bud leaves of each entry where alkaloid levels were lower than they did on leaves further down the stalk where alkaloid levels were higher. More larvae survived on the lower leaves of the low alkaloid lines than on the lower leaves of the high alkaloid lines. Even moderate increases in pyridine alkaloids had negative effects on tobacco budworm survival and development. Nicotine constituted >97% of the pyridine alkaloids in the 'NC95' isoline each year.
Donovan, Michael P.; Wilf, Peter; Labandeira, Conrad C.; Johnson, Kirk R.; Peppe, Daniel J.
2014-01-01
Plant and associated insect-damage diversity in the western U.S.A. decreased significantly at the Cretaceous-Paleogene (K-Pg) boundary and remained low until the late Paleocene. However, the Mexican Hat locality (ca. 65 Ma) in southeastern Montana, with a typical, low-diversity flora, uniquely exhibits high damage diversity on nearly all its host plants, when compared to all known local and regional early Paleocene sites. The same plant species show minimal damage elsewhere during the early Paleocene. We asked whether the high insect damage diversity at Mexican Hat was more likely related to the survival of Cretaceous insects from refugia or to an influx of novel Paleocene taxa. We compared damage on 1073 leaf fossils from Mexican Hat to over 9000 terminal Cretaceous leaf fossils from the Hell Creek Formation of nearby southwestern North Dakota and to over 9000 Paleocene leaf fossils from the Fort Union Formation in North Dakota, Montana, and Wyoming. We described the entire insect-feeding ichnofauna at Mexican Hat and focused our analysis on leaf mines because they are typically host-specialized and preserve a number of diagnostic morphological characters. Nine mine damage types attributable to three of the four orders of leaf-mining insects are found at Mexican Hat, six of them so far unique to the site. We found no evidence linking any of the diverse Hell Creek mines with those found at Mexican Hat, nor for the survival of any Cretaceous leaf miners over the K-Pg boundary regionally, even on well-sampled, surviving plant families. Overall, our results strongly relate the high damage diversity on the depauperate Mexican Hat flora to an influx of novel insect herbivores during the early Paleocene, possibly caused by a transient warming event and range expansion, and indicate drastic extinction rather than survivorship of Cretaceous insect taxa from refugia. PMID:25058404
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Joseph, M., Jr.; Jones, Robert, H.
2003-01-01
Riley, J.M. Jr., and R.H.Jones. 2003. Factors limiting regeneration of Quercus alba and Cornus florida in formerly cultivated coastal plain sites, South Carolina. For. Ecol., and Mgt. 177:571-586. To determine the extent that resources, conditions, and herbivoryy limit regeneration of Quercus alba L. and Cornus florida L. in formerly cultivated coastal plain uplands, we planted seedlings of the two species in two pine and one pine-hardwood forest understory and three adjacent clearcuts. Soil carbon and moisture, available nitrogen and phosphorous, and gap light index (GLI) were measured next to each seedling. Over two growing seasons, stem and leaf herbivory weremore » estimated and survival was recorded. At the end of 2 years, all surviving stems were harvested to determine total leaf area and 2-year biomass growth. Survival to the end of the study was not significantly different between clearcuts and understories. However, clearcuts led to significantly greater biomass growth and leaf area for both Q. alba and C. florida. Soil moisture and available nutrients were also greater in the clearcuts. Using separate multiple linear (growth) or logistic (survival) regressions for each combination of three sites, two cutting treatments and two species, we found that soil moisture significantly affected survival in 12.5% and biomass growth in 8.3% of the regressions. Light availability significantly impacted biomass growth in 16.7% of the regressions. Stem and leaf herbivory had very little impact on survival (8.3%), but when combined, these two factors significantly impacted leaf area or biomass growth in 33.3% of the regressions. Seedling responses were highly variable, and no regression model accounted for more that 70.0% of this variation. In our study, stand-scalevariation in seedling responses (especially the difference between clearcut and understory) was much greater than within-stand variation. Of the within stand factors measured, herbivory was clearly the most important. To establish these species in mesic upland coastal plain sites, we recommend planting immediately after clearcutting.« less
Nondestructive estimation of leaf area for pondberry
Brian Roy Lockhart; Emile S. Gardiner; Theran P. Stautz; Theodore D. Leininger; Paul B. Hamel; Kristina F. Connor; Nathan M. Schiff; A. Dan Wilson; Margaret S. Devall
2007-01-01
Pondberry (Lindera melissifolia [Walt.] Blume) is a federally listed endangered shrub found as isolated populations in seasonally flooded forests across the Southeastern United States. Because this shrub is rare, it has received little research attention, and basic knowledge of its ecology and physiology is lacking. To facilitate future ecological...
46 CFR 171.080 - Damage stability standards for vessels with Type I or Type II subdivision.
Code of Federal Regulations, 2014 CFR
2014-10-01
... following conditions in the final stage of flooding: (1) On a vessel required to survive assumed damage with... in the final stage of flooding and to meet the conditions set forth in paragraphs (f) (8) and (9) of this section in each intermediate stage of flooding. For the purposes of establishing boundaries to...
46 CFR 171.080 - Damage stability standards for vessels with Type I or Type II subdivision.
Code of Federal Regulations, 2012 CFR
2012-10-01
... following conditions in the final stage of flooding: (1) On a vessel required to survive assumed damage with... in the final stage of flooding and to meet the conditions set forth in paragraphs (f) (8) and (9) of this section in each intermediate stage of flooding. For the purposes of establishing boundaries to...
46 CFR 171.080 - Damage stability standards for vessels with Type I or Type II subdivision.
Code of Federal Regulations, 2013 CFR
2013-10-01
... following conditions in the final stage of flooding: (1) On a vessel required to survive assumed damage with... in the final stage of flooding and to meet the conditions set forth in paragraphs (f) (8) and (9) of this section in each intermediate stage of flooding. For the purposes of establishing boundaries to...
Flood Plain Topography Affects Establishment Success of Direct-Seeded Bottomland Oaks
Emile S. Gardiner; John D. Hodges; T. Conner Fristoe
2004-01-01
Five bottomland oak species were direct seeded along a topographical gradient in a flood plain to determine if environmental factors related to relative position in the flood plain influenced seedling establishment and survival. Two years after installation of the plantation, seedling establishment rates ranged from 12±1.6 (mean ± standard error) percent for overcup...
Leaf Epidermis of the Rheophyte Dyckia brevifolia Baker (Bromeliaceae)
Lobo, Ghislaine Maria; de Souza, Thaysi Ventura; Voltolini, Caroline Heinig; Reis, Ademir
2013-01-01
Some species of Dyckia Schult. f., including Dyckia brevifolia Baker, are rheophytes that live in the fast-moving water currents of streams and rivers which are subject to frequent flooding, but also period of low water. This study aimed to analyze the leaf epidermis of D. brevifolia in the context of epidermal adaptation to this aquatic plant's rheophytic habitat. The epidermis is uniseriate, and the cuticle is thickened. The inner periclinal and anticlinal walls of the epidermal cells are thickened and lignified. Stomata are tetracytic, located in the depressions in relation to the surrounding epidermal cells, and covered by peltate trichomes. While the epidermal characteristics of D. brevifolia are similar to those of Bromeliaceae species, this species has made particular adaptations of leaf epidermis in response to its rheophytic environment. PMID:23864825
Effects of soil cadmium on growth of bald cypress seedlings under flooded and non-flooded conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredenberg, S.C.; Neufeld, H.S.
1995-06-01
Cypress swamps are occasionally used for tertiary waste water treatment. The sewage input to these ecosystems often contains high amounts of cadmium. To date, there have been no studies of the potential effects of cadmium on the growth of the dominant trees in these swamps, the bald cypress (Taxodium distichum (L.) Rich. var. distichum). Seedlings were grown for 16 weeks in organic soils amended with 0, 40, 80, and 120 ppm Cd (mg Cd/Kg soil dry weight) under both flooded and non-flooded conditions. Near the end of the growth period, leaf gas exchange was measured using a Li-Cor portable system.more » At the conclusion of the experiment, seedlings were harvested and separated into leaves, stems, branches and roots and dried at 65 C. Cadmium had no significant effects on any measured parameter. Flooding did Increase stem diameter, while decreasing height and biomass, but it had no effect on tolerance to Cd. Flooding reduced total biomass by 35%, mainly due to greatly reduced root growth (66% reduction). Cypress trees were probably protected from the toxic effects of Cd by the binding of this heavy metal to organic compounds in the soil.« less
Red maple (Acer rubrum) leaf toxicosis in horses: a retrospective study of 32 cases.
Alward, Ashley; Corriher, Candice A; Barton, Michelle H; Sellon, Debra C; Blikslager, Anthony T; Jones, Samuel L
2006-01-01
Ingestion of wilted red maple leaves by horses can result in severe hemolytic anemia and methemoglobinemia. Little is known about what factors influence the outcome of red maple leaf toxicosis in horses. Our hypothesis was that physical examination findings, clinicopathologic variables or therapeutic modalities may predict outcome in horses with red maple leaf toxicity. Horses with red maple leaf toxicosis presented to referral hospitals in the southeast region of the United States. A multi-institutional retrospective study was designed to identify factors that predict mortality in horses with red maple toxicosis. Thirty-two horses with red maple toxicosis were identified, 19 of which died. Twenty-nine horses presented with anemia and 24 had clinicopathologic evidence of systemic inflammation. Renal insufficiency was identified in 12/30 (41%) horses. Laminitis (9/28) and colic (13/30) also were identified in horses with red maple toxicosis, but development of these 2 conditions did not have a negative effect on short-term survival. Horses with red maple toxicosis that survived to discharge were likely to have developed pyrexia during hospitalization (P = .030). Horses that were treated with a corticosteroid had a significantly increased likelihood of death (P = .045). There was no significant relationship between initial serum hemoglobin concentration, methemoglobin concentration, or percentage methemoglobin and mortality in this horse series. This study suggests that information obtained on initial examination cannot be used to accurately predict survival in horses with red maple toxicosis, but horses that receive corticosteroids are unlikely to survive.
Mao, Peili; Zang, Runguo; Shao, Hongbo; Yu, Junbao
2014-01-01
Differences among tropical tree species in survival and growth to light play a key role in plant competition and community composition. Two canopy species with contrasting functional traits dominating early and late successional stages, respectively, in a tropical montane rain forest of Hainan Island, China, were selected in a pot experiment under 4 levels of light intensity (full, 50%, 30%, and 10%) in order to explore the adaptive strategies of tropical trees to light conditions. Under each light intensity level, the pioneer species, Endospermum chinense (Euphorbiaceae), had higher relative growth rate (RGR), stem mass ratio (SMR), specific leaf area (SLA), and morphological plasticity while the shade tolerant climax species, Parakmeria lotungensis (Magnoliaceae), had higher root mass ratio (RMR) and leaf mass ratio (LMR). RGR of both species was positively related to SMR and SLA under each light level but was negatively correlated with RMR under lower light (30% and 10% full light). The climax species increased its survival by a conservative resource use strategy through increasing leaf defense and root biomass investment at the expense of growth rate in low light. In contrast, the pioneer increased its growth by an exploitative resource use strategy through increasing leaf photosynthetic capacity and stem biomass investment at the expense of survival under low light. There was a trade-off between growth and survival for species under different light conditions. Our study suggests that tree species in the tropical rainforest adopt different strategies in stands of different successional stages. Species in the earlier successional stages have functional traits more advantageous to grow faster in the high light conditions, whereas species in the late successional stages have traits more favorable to survive in the low light conditions. PMID:25019095
Evaluating the flood tolerance of bottomland hardwood artificial reproduction
John M. Kabrick; Daniel C. Dey; Jonathan R. Motsinger
2007-01-01
We experimentally compared the survival and growth after flooding of six bottomland species: eastern cottonwood (cuttings) (Populus deltoides Bartr. Ex Marsh.), pin oak (Quercus palustris Muenchh.), swamp white oak (Q. bicolor Willd.), bur oak (Q. macrocarpa Michx.), black walnut (...
Mano, Y; Omori, F
2013-10-01
Nicaraguan teosinte (Zea nicaraguensis), a species found in frequently flooded areas, provides useful germplasm for breeding flooding-tolerant maize (Z. mays subsp. mays). The objective of this study was to select flooding-tolerant lines using a library of introgression lines (ILs), each containing a chromosome segment from Z. nicaraguensis in the maize inbred line Mi29. To produce the ILs, a single F1 plant derived from a cross between maize Mi29 and Z. nicaraguensis was backcrossed to Mi29 three times, self-pollinated four times and genotyped using simple sequence repeat markers. Flooding tolerance was evaluated at the seedling stage under reducing soil conditions. By backcrossing and selfing, a series of 45 ILs were developed covering nearly the entire maize genome. Five flooding-tolerant lines were identified from among the ILs by evaluating leaf injury. Among these, line IL#18, containing a Z. nicaraguensis chromosome segment on the long arm of chromosome 4, showed the greatest tolerance to flooding, suggesting the presence of a major quantitative trait locus (QTL) in that region. The presence of the QTL was verified by examining flooding tolerance in a population segregating for the candidate region of chromosome 4. There was no significant relationship between the capacity to form constitutive aerenchyma and flooding tolerance in the ILs, indicating the presence of other factors related to flooding tolerance under reducing soil conditions. A flooding-tolerant genotype, IL#18, was identified; this genotype should be useful for maize breeding. In addition, because the chromosome segments of Z. nicaraguensis in the ILs cover nearly the entire genome and Z. nicaraguensis possesses several unique traits related to flooding tolerance, the ILs should be valuable material for additional QTL detection and the development of flooding-tolerant maize lines.
NASA Astrophysics Data System (ADS)
Kesselmeier, J.
2012-12-01
Volatile organic compound (VOC) emissions are affected by a variety of biotic and abiotic factors such as light intensity, temperature, CO2 and drought. Another factor usually overlooked but very important for the tropical rainforest in Amazonia is regular flooding. According to recent estimates, the total Amazonian floodplain area easily ranges up to 700,000 km^2, including whitewater river floodplains (várzea) blackwater regions (igapó) and further clearwater regions. Regarding the total Amazonian wetlands the area sums up to more than 2.000.000 km^2, i.e. 30% of Amazonia. To survive the flooding periods causing anoxic conditions for the root system of up to several months, vegetation has developed several morphological, anatomical and physiological strategies. One is to switch over the root metabolism to fermentation, thus producing ethanol as one of the main products. Ethanol is a toxic metabolite which is transported into the leaves by the transpiration stream. From there it can either be directly emitted into the atmosphere, or can be re-metabolized to acetaldehyde and/or acetate. All of these compounds are volatile enough to be partly released into the atmosphere. We observed emissions of ethanol, acetaldehyde and acetic acid under root anoxia. Furthermore, plant stress induced by flooding also affected leaf primary physiological processes as well as other VOC emissions such as the release of isoprenoids and other volatiles. For example, Hevea spruceana could be identified as a monoterpene emitting tree species behaving differently upon anoxia depending on the origin, with increasing emissions of the species from igapó and decreasing with the corresponding species from várzea. Contrasting such short term inundations, studies of VOC emissions under long term conditions (2-3 months) did not confirm the ethanol/acetaldehyde emissions, whereas emissions of other VOC species decreased considerably. These results demonstrate that the transfer of our knowledge based on short-term experiments is risky being transferred to an ecotype which is governed under natural conditions by long term flooding. Furthermore, contrasting such experiments with usually young trees (saplings or a few years old) nothing is known about the emission behavior of adult trees under field conditions.
NASA Astrophysics Data System (ADS)
Leonard, N. E.
2005-05-01
As wetlands are invaded by Chinese tallow trees (Triadica sebifera), native trees are displaced and detrital inputs to amphibian breeding ponds are altered. I used a mesocosm experiment to examine the effect of Chinese tallow leaf litter on the survival to, size at, and time to metamorphosis of amphibian larvae. Fifty 1000-L cattle watering tanks were treated with 1500 g dry weight of one of five leaf litter treatments: Chinese tallow, laurel oak (Quercus laurifolia), water tupelo (Nyssa aquatica), slash pine (Pinus elliottii), or a 3:1:1:1 mixture. Each tank received 45 tadpoles of Pseudacris feriarum, Bufo terrestris, and Hyla cinerea in sequence according to their natural breeding phonologies. Every Pseudacris feriarum and Bufo terrestris tadpole exposed to Chinese tallow died prior to metamorphosis. Hyla cinerea survival in tanks with tallow-only was significantly lower than that observed for all other leaf treatments. Hyla cinerea tadpoles from tallow-only and mixed-leaf treatments were larger at metamorphosis and transformed faster than those in tanks with native leaves only. These results suggest that Chinese tallow leaf litter may negatively affect tadpoles of early breeding frogs and that Chinese tallow invasion may change the structure of amphibian communities in temporary ponds.
Effect of advance seedling size and vigor on survival after clearcutting
David A. Marquis
1982-01-01
In several separate experiments, it was found that survival of advance seedlings after clearcutting in Allegheny hardwood stands is a function of initial seedling size-larger seedlings survive best. Age, number of leaves, and leaf size also were important determinants of survival. In Allegheny hardwood stands, where advance regeneration is typically less than 1 foot in...
Huber, Heidrun; Jacobs, Elke; Visser, Eric J. W.
2009-01-01
Background and Aims Soil flooding leads to low soil oxygen concentrations and thereby negatively affects plant growth. Differences in flooding tolerance have been explained by the variation among species in the extent to which traits related to acclimation were expressed. However, our knowledge of variation within natural species (i.e. among individual genotypes) in traits related to flooding tolerance is very limited. Such data could tell us on which traits selection might have taken place, and will take place in future. The aim of the present study was to show that variation in flooding-tolerance-related traits is present among genotypes of the same species, and that both the constitutive variation and the plastic variation in flooding-induced changes in trait expression affect the performance of genotypes during soil flooding. Methods Clones of Trifolium repens originating from a river foreland were subjected to either drained, control conditions or to soil flooding. Constitutive expression of morphological traits was recorded on control plants, and flooding-induced changes in expression were compared with these constitutive expression levels. Moreover, the effect of both constitutive and flooding-induced trait expression on plant performance was determined. Key Results Constitutive and plastic variation of several morphological traits significantly affected plant performance. Even relatively small increases in root porosity and petiole length contributed to better performance during soil flooding. High specific leaf area, by contrast, was negatively correlated with performance during flooding. Conclusions The data show that different genotypes responded differently to soil flooding, which could be linked to variation in morphological trait expression. As flooded and drained conditions exerted different selection pressures on trait expression, the optimal value for constitutive and plastic traits will depend on the frequency and duration of flooding. These data will help us understanding the mechanisms affecting short- and long-term dynamics in flooding-prone ecosystems. PMID:18713824
Quantifying invertebrate resistance to floods: a global-scale meta-analysis.
McMullen, Laura E; Lytle, David A
2012-12-01
Floods are a key component of the ecology and management of riverine ecosystems around the globe, but it is not clear whether floods have predictable effects on organisms that can allow us to generalize across regions and continents. To address this, we conducted a global-scale meta-analysis to investigate effects of natural and managed floods on invertebrate resistance, the ability of invertebrates to survive flood events. We considered 994 studies for inclusion in the analysis, and after evaluation based on a priori criteria, narrowed our analysis to 41 studies spanning six of the seven continents. We used the natural-log-ratio of invertebrate abundance before and within 10 days after flood events because this measure of effect size can be directly converted to estimates of percent survival. We conducted categorical and continuous analyses that examined the contribution of environmental and study design variables to effect size heterogeneity, and examined differences in effect size among taxonomic groups. We found that invertebrate abundance was lowered by at least one-half after flood events. While natural vs. managed floods were similar in their effect, effect size differed among habitat and substrate types, with pools, sand, and boulders experiencing the strongest effect. Although sample sizes were not sufficient to examine all taxonomic groups, floods had a significant, negative effect on densities of Coleoptera, Eumalacostraca, Annelida, Ephemeroptera, Diptera, Plecoptera, and Trichoptera. Results from this study provide guidance for river flow regime prescriptions that will be applicable across continents and climate types, as well as baseline expectations for future empirical studies of freshwater disturbance.
3. VIEW OF THE NORTH FACADE, LOOKING SOUTH. NOTE THE ...
3. VIEW OF THE NORTH FACADE, LOOKING SOUTH. NOTE THE OPENINGS FOR THE THREE VERTICAL FOUR-LIGHT WINDOWS ARE COVERED BY PLYWOOD. ALSO NOTE THE LEAF MOTIFS ABOVE THE WINDOWS. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA
46 CFR 172.150 - Survival conditions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Subchapter O of This Chapter § 172.150 Survival conditions. A tankship is presumed to survive assumed damage...) Each submerged opening must be weathertight. (d) Progressive flooding. Pipes, ducts or tunnels within the assumed extent of damage must be either— (1) Equipped with arrangements such as stop check valves...
46 CFR 172.150 - Survival conditions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Subchapter O of This Chapter § 172.150 Survival conditions. A tankship is presumed to survive assumed damage...) Each submerged opening must be weathertight. (d) Progressive flooding. Pipes, ducts or tunnels within the assumed extent of damage must be either— (1) Equipped with arrangements such as stop check valves...
46 CFR 172.150 - Survival conditions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Subchapter O of This Chapter § 172.150 Survival conditions. A tankship is presumed to survive assumed damage...) Each submerged opening must be weathertight. (d) Progressive flooding. Pipes, ducts or tunnels within the assumed extent of damage must be either— (1) Equipped with arrangements such as stop check valves...
Flooding effects on stand development in cypress-tupelo
Richard F. Keim; Thomas J. Dean; Jim L. Chambers
2013-01-01
The effects of inundation on growth of cypress (Taxodium spp.) and tupelo (Nyssa spp.) trees have been extensively researched, but conclusions are often complicated by attendant effects on stand development. Flooding affects development of cypress-tupelo stands by limiting seedling germination and survival, truncating species...
Herrera, A
2013-01-01
This review summarizes the research on physiological responses to flooding of trees in the seasonal black-water wetland of the Mapire River in Venezuela. Inter-annual variability was found during 8 years of sampling, in spite of which a general picture emerged of increased stomatal conductance (gs) and photosynthetic rate (PN) during the flooded period to values as high as or higher than in plants in drained wet soil. Models explaining the initial inhibitory responses and the acclimation to flooding are proposed. In the inhibitory phase of flooding, hypoxia generated by flooding causes a decrease in root water absorption and stomatal closure. An increase with flooding in xylem water potential (ψ) suggests that flooding does not cause water deficit. The PN decreases due to changes in relative stomatal and non-stomatal limitations to photosynthesis; an increase in the latter is due to reduced chlorophyll and total soluble protein content. Total non-structural carbohydrates (TNC) accumulate in leaves but their content begins to decrease during the acclimatized phase at full flooding, coinciding with the resumption of high gs and PN. The reversal of the diminution in gs is associated, in some but not all species, to the growth of adventitious roots. The occurrence of morpho-anatomical and biochemical adaptations which improve oxygen supply would cause the acclimation, including increased water absorption by the roots, increased rubisco and chlorophyll contents and ultimately increased PN. Therefore, trees would perform as if flooding did not signify a stress to their physiology.
Jean-Christophe Domec; Daniel M. Johnson
2012-01-01
Due to the diurnal and seasonal fluctuations in leaf-to-air vapor pressure deficit (D), one of the key regulatory roles played by stomata is to limit transpiration-induced leaf water deficit. Different types of plants are known to vary in the sensitivity of stomatal conductance (gs) to D with important consequences for their survival and growth. Plants that minimize...
Resistance mechanisms in Pieris taxa (Ericaceae) to Stephanitis takeyai (Hemiptera: Tingidae).
Nair, Shakunthala; Braman, S Kristine; Knauft, D A
2012-10-01
This study examines some of the potential mechanisms of resistance in selected Pieris (Ericaceae) taxa to the Andromeda lace bug, Stephanitis takeyai Drake and Maa, based on differences in resistance to lace bug feeding, and the possible role of leaf parameters such as leaf wax, toughness, nutrient composition, and stomatal characters in plant resistance. Experiments with extracts of leaf-surface lipids revealed that Pieris leaf wax did not have a role in resistance to lace bug feeding. Leaf wax extracts from a resistant species P. phillyreifolia (Hook.) DC. applied to leaves of a susceptible cultivar P. japonica (Thunb.) D.Don ex G.Don 'Temple Bells' did not affect feeding, oviposition, or survival of S. takeyai; and neither the extracts from Temple Bells induce susceptibility in P. phillyreifolia. Leaf penetrometer measurements indicated that significantly higher force was required to puncture P. phillyreifolia leaves, which also had higher fiber, lignin, and cellulose, and lower leaf moisture contents. Ultrastructural examination of leaves of Pieris taxa revealed significant differences in the number and size of stomata. P. phillyreifolia leaves had the highest number of stomata per unit area but these were the smallest in size, whereas P. japonica (Thunb.) D.Don ex G.Don Temple Bells leaves had the fewest and largest stomata. Resistance in Pieris taxa to S. takeyai may be attributed to a combination of different factors including leaf toughness, moisture, and stomatal characters. The type of resistance may be described as antixenosis combined with antibiosis, because reduced adult survival and reproduction were observed on the taxa resistant to lace bug feeding.
Endophytic colonization of date palm (Phoenix dactylifera L.) leaves by entomopathogenic fungi.
Gómez-Vidal, S; Lopez-Llorca, L V; Jansson, H -B; Salinas, J
2006-01-01
Light and scanning electron microscopy together with fungal isolation techniques were used to detect entomopathogenic fungi within young and adult date palm (Phoenix dactylifera) petioles and to assess fungal survival in leaf tissues. The entomopathogenic fungi Beauveria bassiana, Lecanicillium dimorphum and Lecanicillium c.f. psalliotae survived inside leaf tissues at least 30 days after inoculation. Entomopathogenic fungi colonized inoculated petioles endophytically and were recovered up to 3cm from the inoculation site. Fungi were detected inside the parenchyma and sparsely within vascular tissue using microscopy techniques. Our results show that the entomopathogenic fungi used in this study survived and colonized date palm tissues in bioassays both under laboratory and field experimental conditions with no evidence of significant damage.
Rank, Nathan Egan
1994-04-01
Several species of willow leaf beetles use hostplant salicin to produce a defensive secretion that consists of salicylaldehyde. Generalist arthropod predators such as ants, ladybird beetles, and spiders are repelled by this secretion. The beetle larvae produce very little secretion when they feed on willows that lack salicylates, and salicin-using beetles prefer salicylate-rich willows over salicylate-poor ones. This preference may exist because the larvae are better defended against natural enemies on salicylate-rich willows. If this is true, the larvae should survive longer on those willows in nature. However, this prediction has not been tested. I determined the larval growth and survival of Chrysomela aeneicollis (Coleoptera: Chrysomelidae) on five willow species (Salix boothi, S. drummondiana, S. geyeriana, S. lutea, and S. orestera). These species differed in their salicylate chemistries and in leaf toughness but not in water content. The water content varied among the individual plants. Larval growth of C. aeneicollis did not differ among the five species in the laboratory, but it varied among the individual plants and it was related to the water content. In the field, C. aeneicollis larvae developed equally rapidly on the salicylate-poor S. lutea and on the salicylate-rich S. orestera. Larval survival was greater on S. orestera than on S. lutea in one year (1986), but there was no difference between them during three succeeding years. In another survivorship experiment, larval survival was low on the medium-salicylate S. geyeriana, but high on the salicylate-poor S. boothi and on S. orestera. Larval survival in the field was related to the larval growth and water content that had been previously measured in the laboratory. These results showed that the predicted relationship between the host plant chemistry and larval survival did not usually exist for C. aeneicollis. One possible reason for this was that the most important natural enemies were specialist predators that were unaffected by the host-derived defensive secretion. One specialist predator, Symmorphus cristatus (Hymenoptera: Eumenidae), probably caused much of the mortality observed in this study. I discuss the importance of other specialist predators to salicin-using leaf beetles.
Leaf tissue assay for lepidopteran pests of Bt cotton
USDA-ARS?s Scientific Manuscript database
Laboratory measurements of susceptibility to Bt toxins can be a poor indicator of the ability of an insect to survive on transgenic crops. We investigated the potential of using cotton leaf tissue for evaluating heliothine susceptibilities to two dual-gene Bt cottons. A preliminary study was conduct...
NASA Astrophysics Data System (ADS)
Wintenberger, C. L.; Rodrigues, S.; Bréhéret, J. G.; Juge, P.; Villar, M.
2014-12-01
Riparian vegetation is a key factor of the morphological evolution of river. In Europe, riparian Salicaceae is declining following the loss of potential recruitment areas associated with river management. As an exception for lowland rivers, the Loire River (France) shows, in its middle reaches, an efficient sexual regeneration of Populus nigra and Salix alba on bare sediments deposited during flood events. In the literature, the influence of hydrological patterns as a key factor of the seedlings survival is well documented. Some studies focused on seedlings ability to withstand flood constraints and detailed the effect of duration and intensity of floods but few studies characterized precisely the processes applied on seedlings. As a working hypothesis, we consider that three types of flood stresses can induce mortality of seedlings: (i) uprooting by drag applied on the seedlings without sediment erosion, (ii) erosion of the recruited areas and (iii) burying. The distinction of these three processes allows identifying the importance of survival factors due to a strong sediment dynamics (e.g. erosion height > root height) or to the anchorage and resprouting ability. The main issues are: what are the governing processes (type and intensity) determining survival or death of seedlings and which factor (fluvial dynamics vs. own characteristics of seedlings) controls their survival? In-situ measurements were performed on a forced alluvial bar (20.000 m2) to detail the bar dynamics (bathymetry, topography, scour/fill processes, grain size surveys, flow velocity) and to survey the associated recruitment. On 48 plots (1.410 m2) the density, height and species (P. nigra and S. alba) were surveyed the year of recruitment (after dry period) and the next year after flood period. We highlight the following phases of processes during floods. The erosion of substrate dominates at the beginning of the rising limb. The erosion or uprooting processes depend of the balance between available bed shear stress and sediment size. Then the deposit occurs on the back of the bar before the peak discharge and protects them against uprooting by burying during the higher energy of flow. At the end of the falling limb, sediments are reworked, decreasing the burying height of seedlings and allowing possible uprooting (drag) or erosion of sediments.
Delgado, Esteban; Azcón-Bieto, Joaquim; Aranda, Xavier; Palazón, Javier; Medrano, Hipólito
1992-01-01
Four self-pollinated, doubled-haploid tobacco, (Nicotiana tabacum L.) lines (SP422, SP432, SP435, and SP451), selected as haploids by survival in a low CO2 atmosphere, and the parental cv Wisconsin-38 were grown from seed in a growth room kept at high CO2 levels (600-700 parts per million). The selected plants were much larger (especially SP422, SP432, and SP451) than Wisconsin-38 nine weeks after planting. The specific leaf dry weight and the carbon (but not nitrogen and sulfur) content per unit area were also higher in the selected plants. However, the chlorophyll, carotenoid, and alkaloid contents and the chlorophyll a/b ratio varied little. The net CO2 assimilation rate per unit area measured in the growth room at high CO2 was not higher in the selected plants. The CO2 assimilation rate versus intercellular CO2 curve and the CO2 compensation point showed no substantial differences among the different lines, even though these plants were selected for survival under CO2 compensation point conditions. Adult leaf respiration rates were similar when expressed per unit area but were lower in the selected lines when expressed per unit dry weight. Leaf respiration rates were negatively correlated with specific leaf dry weight and with the carbon content per unit area and were positively correlated with nitrogen and sulfur content of the dry matter. The alternative pathway was not involved in respiration in the dark in these leaves. The better carbon economy of tobacco lines selected for low CO2 survival was not apparently related to an improvement of photosynthesis rate but could be related, at least partially, to a significantly reduced respiration (mainly cytochrome pathway) rate per unit carbon. ImagesFigure 1 PMID:16668769
Summer survival of Phytophthora ramorum in forest soils
Elizabeth J. Fichtner; Shannon C. Lynch; David M. Rizzo
2006-01-01
Recovery of Phytophthora ramorum from soils throughout Sudden Oak Death-affected regions of California illustrates that soil serves as an inoculum reservoir for the pathogen, but the potential for survival in soils throughout the summer is largely unknown. In this study we assess pathogen survival in infected leaf tissue in the upper soil profile in...
Long-term reactions of plants and macroinvertebrates to extreme floods in floodplain grasslands.
Ilg, Christiane; Dziock, Frank; Foeckler, Francis; Follner, Klaus; Gerisch, Michael; Glaeser, Judith; Rink, Anke; Schanowski, Arno; Scholz, Mathias; Deichner, Oskar; Henle, Klaus
2008-09-01
Extreme summertime flood events are expected to become more frequent in European rivers due to climate change. In temperate areas, where winter floods are common, extreme floods occurring in summer, a period of high physiological activity, may seriously impact floodplain ecosystems. Here we report on the effects of the 2002 extreme summer flood on flora and fauna of the riverine grasslands of the Middle Elbe (Germany), comparing pre- and post-flooding data collected by identical methods. Plants, mollusks, and carabid beetles differed considerably in their response in terms of abundance and diversity. Plants and mollusks, displaying morphological and behavioral adaptations to flooding, showed higher survival rates than the carabid beetles, the adaptation strategies of which were mainly linked to life history. Our results illustrate the complexity of responses of floodplain organisms to extreme flood events. They demonstrate that the efficiency of resistance and resilience strategies is widely dependent on the mode of adaptation.
USDA-ARS?s Scientific Manuscript database
Underground monitoring stations were active with Formosan subterranean termites, Coptotermes formosanus Shiraki, less than a month after the flood waters receded from an urban park, City Park, New Orleans, Louisiana. This study examines whether the presence of galleries in soil or wood increases su...
Korman, Josh; Kaplinski, Matthew; Melis, Theodore S.
2011-01-01
Hourly fluctuations in flow from Glen Canyon Dam were increased in an attempt to limit the population of nonnative rainbow trout Oncorhynchus mykiss in the Colorado River, Arizona, due to concerns about negative effects of nonnative trout on endangered native fishes. Controlled floods have also been conducted to enhance native fish habitat. We estimated that rainbow trout incubation mortality rates resulting from greater fluctuations in flow were 23-49% (2003 and 2004) compared with 5-11% under normal flow fluctuations (2006-2010). Effects of this mortality were apparent in redd excavations but were not seen in hatch date distributions or in the abundance of the age-0 population. Multiple lines of evidence indicated that a controlled flood in March 2008, which was intended to enhance native fish habitat, resulted in a large increase in early survival rates of age-0 rainbow trout. Age-0 abundance in July 2008 was over fourfold higher than expected given the number of viable eggs that produced these fish. A hatch date analysis indicated that early survival rates were much higher for cohorts that hatched about 1 month after the controlled flood (~April 15) relative to those that hatched before this date. The cohorts that were fertilized after the flood were not exposed to high flows and emerged into better-quality habitat with elevated food availability. Interannual differences in age-0 rainbow trout growth based on otolith microstructure supported this hypothesis. It is likely that strong compensation in survival rates shortly after emergence mitigated the impact of incubation losses caused by increases in flow fluctuations. Control of nonnative fish populations will be most effective when additional mortality is applied to older life stages after the majority of density-dependent mortality has occurred. Our study highlights the need to rigorously assess instream flow decisions through the evaluation of population-level responses.
Mano, Y.; Omori, F.
2013-01-01
Background and Aims Nicaraguan teosinte (Zea nicaraguensis), a species found in frequently flooded areas, provides useful germplasm for breeding flooding-tolerant maize (Z. mays subsp. mays). The objective of this study was to select flooding-tolerant lines using a library of introgression lines (ILs), each containing a chromosome segment from Z. nicaraguensis in the maize inbred line Mi29. Methods To produce the ILs, a single F1 plant derived from a cross between maize Mi29 and Z. nicaraguensis was backcrossed to Mi29 three times, self-pollinated four times and genotyped using simple sequence repeat markers. Flooding tolerance was evaluated at the seedling stage under reducing soil conditions. Key Results By backcrossing and selfing, a series of 45 ILs were developed covering nearly the entire maize genome. Five flooding-tolerant lines were identified from among the ILs by evaluating leaf injury. Among these, line IL#18, containing a Z. nicaraguensis chromosome segment on the long arm of chromosome 4, showed the greatest tolerance to flooding, suggesting the presence of a major quantitative trait locus (QTL) in that region. The presence of the QTL was verified by examining flooding tolerance in a population segregating for the candidate region of chromosome 4. There was no significant relationship between the capacity to form constitutive aerenchyma and flooding tolerance in the ILs, indicating the presence of other factors related to flooding tolerance under reducing soil conditions. Conclusions A flooding-tolerant genotype, IL#18, was identified; this genotype should be useful for maize breeding. In addition, because the chromosome segments of Z. nicaraguensis in the ILs cover nearly the entire genome and Z. nicaraguensis possesses several unique traits related to flooding tolerance, the ILs should be valuable material for additional QTL detection and the development of flooding-tolerant maize lines. PMID:23877074
Detection of Chemicals Inhibiting Photorespiratory Senescence in a Large Scale Survival Chamber
Manning, David T.; Campbell, Andrew J.; Chen, Tsong Meng; Tolbert, N. E.; Smith, E. Wayne
1984-01-01
A large scale survival chamber was developed as a screen for detecting chemical treatments that extend the survival time of illuminated soybean seedlings at CO2 concentrations below the compensation point. In theory, extended survival should indicate potential for improved crop performance via decreased photorespiration and increased photosynthetic efficiency. An automated control system regulated CO2 concentrations, temperature and plant watering during a continuous CO2-removal photoperiod of 72 hours. An endogenously controlled circadian rhythm of net photosynthesis occurred throughout the continuous light treatment. Spray applications of 3.49 millimolar 2-(4-chlorophenoxy)-2-methylpropanoic acid (CPMP) significantly decreased leaf chlorophyll loss, compared with the control, after 72 hours of subcompensation-point stress. Treatment with CPMP also consistently increased leaf chlorophyll per unit area under nonstress greenhouse conditions. These effects may be due to increases in specific leaf weight produced by CPMP although the compound did not consistently act as a height retardant. The compound, 3-butyl-2-hydroxy-4H-pyrido[1,2-a]pyrimidin-4-one (BHPP), inhibited senescence under low CO2 conditions but did not decrease leaf light transmission at ambient CO2 levels. The cytokinin N6-benzyladenine (BA) retarded low CO2 stress senescence although greening effects were not observed. Neither 2-hydroxy-3-butynoic acid (HBA) nor its butyl ester, inhibitors of glycolate oxidase, influenced low CO2 survival. Cyclohexanecarboxylic acid (CHCA) and sodium naphthenate had no effect upon subcompensation-point senescence. Antisenescence effects of CPMP, BHPP, and BA do not appear to be directly attributable to effects upon the competing carbon paths of photosynthesis and photorespiration. Protection against low CO2 stress and increased chlorophyll synthesis under nonstress conditions may represent separate effects upon plastids by some of the compounds. This screen will identify compounds which inhibit photorespiratory senescence without decreasing the CO2 compensation point. Images Fig. 1 PMID:16663949
Gatti, M Genoveva; Campanello, Paula I; Villagra, Mariana; Montti, Lía; Goldstein, Guillermo
2014-06-01
Physiological characteristics of saplings can be considered one of the most basic constraints on species distribution. The shade-tolerant arborescent palm Euterpe edulis Mart. is endemic to the Atlantic Forest of Argentina, Brazil and Paraguay. At a local scale, saplings of this species growing in native forests are absent in gaps. We tested the hypothesis whether sensitivity to photoinhibition or hydraulic architecture constrains the distribution of E. edulis saplings in sun-exposed forest environments. Using shade houses and field studies, we evaluated growth, survival, hydraulic traits and the susceptibility of Photosystem II to photoinhibition in E. edulis saplings under different growth irradiances. Survival rates in exposed sites in the field were very low (a median of 7%). All saplings exhibited photoinhibition when exposed to high radiation levels, but acclimation to a high radiation environment increased the rate of recovery. Petiole hydraulic conductivity was similar across treatments regardless of whether it was expressed per petiole cross-sectional area or per leaf area. At the plant level, investment in conductive tissues relative to leaf area (Huber values) increased with increasing irradiance. Under high irradiance conditions, plants experienced leaf water potentials close to the turgor-loss point, and leaf hydraulic conductance decreased by 79% relative to its maximum value. Euterpe edulis saplings were able to adjust their photosynthetic traits to different irradiance conditions, whereas hydraulic characteristics at the leaf level did not change across irradiance treatments. Our results indicate that uncoupling between water demand and supply to leaves apparently associated with high resistances to water flow at leaf insertion points, in addition to small stems with low water storage capacity, weak stomatal control and high vulnerability of leaves to hydraulic dysfunction, are the main ecophysiological constraints that prevent the growth and survival of E. edulis saplings in gaps in the native forest where native lianas and bamboos show aggressive growth. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sibbernsen, Erik; Mott, Keith A
2010-07-01
Flooding the intercellular air spaces of leaves with water was shown to cause rapid closure of stomata in Tradescantia pallida, Lactuca serriola, Helianthus annuus, and Oenothera caespitosa. The response occurred when water was injected into the intercellular spaces, vacuum infiltrated into the intercellular spaces, or forced into the intercellular spaces by pressurizing the xylem. Injecting 50 mm KCl or silicone oil into the intercellular spaces also caused stomata to close, but the response was slower than with distilled water. Epidermis-mesophyll grafts for T. pallida were created by placing the epidermis of one leaf onto the exposed mesophyll of another leaf. Stomata in these grafts opened under light but closed rapidly when water was allowed to wick between epidermis and the mesophyll. When epidermis-mesophyll grafts were constructed with a thin hydrophobic filter between the mesophyll and epidermis stomata responded normally to light and CO(2). These data, when taken together, suggest that the effect of water on stomata is caused partly by dilution of K(+) in the guard cell and partly by the existence of a vapor-phase signal that originates in the mesophyll and causes stomata to open in the light.
Effects of prolonged storage on survival and growth of outplanted bottomland oaks
David C. Mercker; David S. Buckley; John P. Conn
2011-01-01
A prominent difficulty during bottomland hardwood afforestation is that sites are often flooded during the preferred months of planting (January-March), which results in delayed planting (April-June) and reduced survival. We monitored growth and survival of oak seedlings planted in 11 different months (February through December) after varying periods of humidified cold...
Survival of Xanthomonas fragariae on common materials found in strawberry nurseries
USDA-ARS?s Scientific Manuscript database
Xanthomonas fragariae causes strawberry angular leaf spot, an important disease in strawberry nursery production. To identify potential inoculum sources, the ability of X. fragariae to survive was examined on 10 common materials typically associated with strawberry nurseries (cardboard, glass, latex...
Su, An-Yu; Niu, Shu-Qi; Liu, Yuan-Zheng; He, Ao-Lei; Zhao, Qi; Li, Meng-Fei; Han, Qing-Qing; Ali Khan, Sardar
2017-01-01
Water retaining agent (WRA) is widely used for soil erosion control and agricultural water saving. Here, we evaluated the effects of the combination of beneficial soil bacterium Bacillus amyloliquefaciens strain GB03 and WRA (the compound is super absorbent hydrogels) on drought tolerance of perennial ryegrass (Lolium perenne L.). Seedlings were subjected to natural drought for maximum 20 days by stopping watering and then rewatered for seven days. Plant survival rate, biomass, photosynthesis, water status and leaf cell membrane integrity were measured. The results showed that under severe drought stress (20-day natural drought), compared to control, GB03, WRA and GB03+WRA all significantly improved shoot fresh weight, dry weight, relative water content (RWC) and chlorophyll content and decreased leaf relative electric conductivity (REC) and leaf malondialdehyde (MDA) content; GB03+WRA significantly enhanced chlorophyll content compared to control and other two treatments. Seven days after rewatering, GB03, WRA and GB03+WRA all significantly enhanced plant survival rate, biomass, RWC and maintained chlorophyll content compared to control; GB03+WRA significantly enhanced plant survival rate, biomass and chlorophyll content compared to control and other two treatments. The results established that GB03 together with water retaining agent promotes ryegrass growth under drought conditions by improving survival rate and maintaining chlorophyll content. PMID:29232909
Su, An-Yu; Niu, Shu-Qi; Liu, Yuan-Zheng; He, Ao-Lei; Zhao, Qi; Paré, Paul W; Li, Meng-Fei; Han, Qing-Qing; Ali Khan, Sardar; Zhang, Jin-Lin
2017-12-11
Water retaining agent (WRA) is widely used for soil erosion control and agricultural water saving. Here, we evaluated the effects of the combination of beneficial soil bacterium Bacillus amyloliquefaciens strain GB03 and WRA (the compound is super absorbent hydrogels) on drought tolerance of perennial ryegrass ( Lolium perenne L.). Seedlings were subjected to natural drought for maximum 20 days by stopping watering and then rewatered for seven days. Plant survival rate, biomass, photosynthesis, water status and leaf cell membrane integrity were measured. The results showed that under severe drought stress (20-day natural drought), compared to control, GB03, WRA and GB03+WRA all significantly improved shoot fresh weight, dry weight, relative water content (RWC) and chlorophyll content and decreased leaf relative electric conductivity (REC) and leaf malondialdehyde (MDA) content; GB03+WRA significantly enhanced chlorophyll content compared to control and other two treatments. Seven days after rewatering, GB03, WRA and GB03+WRA all significantly enhanced plant survival rate, biomass, RWC and maintained chlorophyll content compared to control; GB03+WRA significantly enhanced plant survival rate, biomass and chlorophyll content compared to control and other two treatments. The results established that GB03 together with water retaining agent promotes ryegrass growth under drought conditions by improving survival rate and maintaining chlorophyll content.
Hydrological states and the resilience of deltaic forested wetlands
NASA Astrophysics Data System (ADS)
Keim, R.; Allen, S. T.
2017-12-01
The flooding regime constitutes a set of chronic disturbances that are largely responsible for ecosystem structure. However, disturbances do not always constitute stresses to plants that survive because of adaptations to flooded conditions. We examine baldcypress-water tupelo forested wetlands in the delta of the Mississippi River as a case study in mechanisms by which hydrologic change shapes wetland ecosystem change, supported by experimental evidence from remote sensing, tree-ring and other field studies, and meta-analysis across the literature. Decreased hydrologic variability caused by water control structures has reduced the frequency of flood events that increase growth of baldcypress and favor its establishment by reducing competition from other species. Hydrologic modifications that lead to semi-permanent, stagnant flooding constitute semi-permanent disturbance that prevents regeneration of any trees, reduces growth of established trees, and reduces stand density by causing mortality of some trees. However, baldcypress trees in low-density stands appear to be generally adapted for long-term survival in stagnant conditions. Thus, initial decreases in stand density after impoundment do not necessarily portend continued conversion away from forest because reduced inter-tree competition is a negative feedback on mortality. Overall, a natural hydrologic regime with high variability in riverine flooding favors denser stands with greater diversity of tree species, and the present, controlled hydrologic regime that has largely eliminated riverine flooding favors open stands. Sea-level rise will increase salinity that quickly leads to forest conversion to marsh, but will also increase stagnant, freshwater flooding further inland. These drivers of hydrologic change reduce carbon assimilation by forests, both by reduced stand-level productivity and decreased forested area.
JO, JEONG-RANG; PARK, JU SUNG; PARK, YU-KYOUNG; CHAE, YOUNG ZOO; LEE, GYU-HEE; PARK, GY-YOUNG; JANG, BYEONG-CHURL
2012-01-01
The leaf of Pinus (P.) densiflora, a pine tree widely distributed in Asian countries, has been used as a traditional medicine. In the present study, we investigated the anticancer activity of essential oil, extracted by steam distillation, from the leaf of P. densiflora in YD-8 human oral squamous cell carcinoma (OSCC) cells. Treatment of YD-8 cells with P. densiflora leaf essential oil (PLEO) at 60 μg/ml for 8 h strongly inhibited proliferation and survival and induced apoptosis. Notably, treatment with PLEO led to generation of ROS, activation of caspase-9, PARP cleavage, down-regulation of Bcl-2, and phosphorylation of ERK-1/2 and JNK-1/2 in YD-8 cells. Treatment with PLEO, however, did not affect the expression of Bax, XIAP and GRP78. Importantly, pharmacological inhibition studies demonstrated that treatment with vitamin E (an anti-oxidant) or z-VAD-fmk (a pan-caspase inhibitor), but not with PD98059 (an ERK-1/2 inhibitor) or SP600125 (a JNK-1/2 inhibitor), strongly suppressed PLEO-induced apoptosis in YD-8 cells and reduction of their survival. Vitamin E treatment further blocked activation of caspase-9 and Bcl-2 down-regulation induced by PLEO. Thus, these results demonstrate firstly that PLEO has anti-proliferative, anti-survival and pro-apoptotic effects on YD-8 cells and the effects are largely due to the ROS-dependent activation of caspases. PMID:22086183
Jo, Jeong-Rang; Park, Ju Sung; Park, Yu-Kyoung; Chae, Young Zoo; Lee, Gyu-Hee; Park, Gy-Young; Jang, Byeong-Churl
2012-04-01
The leaf of Pinus (P.) densiflora, a pine tree widely distributed in Asian countries, has been used as a traditional medicine. In the present study, we investigated the anticancer activity of essential oil, extracted by steam distillation, from the leaf of P. densiflora in YD-8 human oral squamous cell carcinoma (OSCC) cells. Treatment of YD-8 cells with P. densiflora leaf essential oil (PLEO) at 60 µg/ml for 8 h strongly inhibited proliferation and survival and induced apoptosis. Notably, treatment with PLEO led to generation of ROS, activation of caspase-9, PARP cleavage, down-regulation of Bcl-2, and phosphorylation of ERK-1/2 and JNK-1/2 in YD-8 cells. Treatment with PLEO, however, did not affect the expression of Bax, XIAP and GRP78. Importantly, pharmaco-logical inhibition studies demonstrated that treatment with vitamin E (an anti-oxidant) or z-VAD-fmk (a pan-caspase inhibitor), but not with PD98059 (an ERK-1/2 inhibitor) or SP600125 (a JNK-1/2 inhibitor), strongly suppressed PLEO-induced apoptosis in YD-8 cells and reduction of their survival. Vitamin E treatment further blocked activation of caspase-9 and Bcl-2 down-regulation induced by PLEO. Thus, these results demonstrate firstly that PLEO has anti-proliferative, anti-survival and pro-apoptotic effects on YD-8 cells and the effects are largely due to the ROS-dependent activation of caspases.
Ayano, Madoka; Kani, Takahiro; Kojima, Mikiko; Sakakibara, Hitoshi; Kitaoka, Takuya; Kuroha, Takeshi; Angeles-Shim, Rosalyn B; Kitano, Hidemi; Nagai, Keisuke; Ashikari, Motoyuki
2014-01-01
Under flooded conditions, the leaves and internodes of deepwater rice can elongate above the water surface to capture oxygen and prevent drowning. Our previous studies showed that three major quantitative trait loci (QTL) regulate deepwater-dependent internode elongation in deepwater rice. In this study, we investigated the age-dependent internode elongation in deepwater rice. We also investigated the relationship between deepwater-dependent internode elongation and the phytohormone gibberellin (GA) by physiological and genetic approach using a QTL pyramiding line (NIL-1 + 3 + 12). Deepwater rice did not show internode elongation before the sixth leaf stage under deepwater condition. Additionally, deepwater-dependent internode elongation occurred on the sixth and seventh internodes during the sixth leaf stage. These results indicate that deepwater rice could not start internode elongation until the sixth leaf stage. Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) method for the phytohormone contents showed a deepwater-dependent GA1 and GA4 accumulation in deepwater rice. Additionally, a GA inhibitor abolished deepwater-dependent internode elongation in deepwater rice. On the contrary, GA feeding mimicked internode elongation under ordinary growth conditions. However, mutations in GA biosynthesis and signal transduction genes blocked deepwater-dependent internode elongation. These data suggested that GA biosynthesis and signal transduction are essential for deepwater-dependent internode elongation in deepwater rice. Deepwater rice obtained the ability for rapid internode elongation to avoid drowning and adapt to flooded condition. How does it regulate internode elongation? Using both physiological and genetic approach, this paper shows that the plant hormone, gibberellin (GA) regulates internode elongation. PMID:24891164
Xue, Wei; Nay-Htoon, Bhone; Lindner, Steve; Dubbert, Maren; Otieno, Dennis; Ko, Jonghan; Werner, Christiane; Tenhunen, John
2016-04-01
Leaf intrinsic water use efficiency (WUEi) coupling maximum assimilation rate (Amax) and transpirable water lost via stomatal conductance (gsc) has been gaining increasing concern in sustainable crop production. Factors that influence leaf Amax and WUEi in rice (Oryza sativa L. cv Unkang) at flooding and rainfed conditions were evaluated. Positive correlations for leaf nitrogen content (Nm) and maximum carboxylation rate (Vcmax), for nitrogen allocation in Rubisco enzymes and mesophyll conductance (gm) were evident independent of cropping cultures. Rainfed rice exhibited enriched canopy leaf average Nm resulting in higher Amax, partially supporting improved leaf WUEi. Maximum WUEi (up to 0.14 μmol mmol(-1)) recorded in rainfed rice under drought conditions resulted from increasing gm/gsc ratio while at cost of significant decline in Amax due to hydraulically constrained gsc. Amax sensitivity related to gsc which was regulated by plant hydraulic conductance. WUEi was tightly correlated to Vcmax/gsc and gm/gsc ratios across the paddy and rainfed not to light environment, morphological and physiological traits, highlighting enhance capacity of Nm accumulation in rainfed rice with gsc at moderately high level similar to paddy rice facilitate optimization in Amax and WUEi while, is challenged by drought-vulnerable plant hydraulic conductance. Copyright © 2016 Elsevier GmbH. All rights reserved.
Silvicultural systems for bottomland hardwoods
Robert L. Johnson
1989-01-01
Bottomland hardwood forests normally regenerate with species found in the overstory. These species reflect the timing, duration, depth of water, and nature of the sediment in past flooding. The longer water stands during the growing season and the deeper the sediment, the fewer the species that are able to survive. Flooding patterns often change over the life of a...
Okishio, Takuma; Sasayama, Daisuke; Hirano, Tatsuya; Akimoto, Masahiro; Itoh, Kazuyuki; Azuma, Tetsushi
2014-09-01
In Asian cultivated rice (Oryza sativa), distinct mechanisms to survive flooding are activated in two groups of varieties. Submergence-tolerant rice varieties possessing the SUBMERGENCE1A (SUB1A) gene display reduced growth during flash floods at the seedling stage and resume growth after the flood recedes, whereas deepwater rice varieties possessing the SNORKEL1 (SK1) and SNORKEL2 (SK2) genes display enhanced growth based on internodal elongation during prolonged submergence at the mature stage. In this study, we investigated the occurrence of these growth responses to submergence in the wild rice species Oryza grandiglumis, which is native to the Amazon floodplains. When subjected to gradual submergence, adult plants of O. grandiglumis accessions showed enhanced internodal elongation with rising water level and their growth response closely resembled that of deepwater varieties of O. sativa with high floating capacity. On the other hand, when subjected to complete submergence, seedlings of O. grandiglumis accessions displayed reduced shoot growth and resumed normal growth after desubmergence, similar to the response of submergence-tolerant varieties of O. sativa. Neither SUB1A nor the SK genes were detected in the O. grandiglumis accessions. These results indicate that the O. grandiglumis accessions are capable of adapting successfully to flooding by activating two contrasting mechanisms as the situation demands and that each mechanism of adaptation to flooding is not mediated by SUB1A or the SK genes.
Yasmeen, Farhat; Raja, Naveed Iqbal; Mustafa, Ghazala; Sakata, Katsumi; Komatsu, Setsuko
2016-06-30
Aluminum oxide nanoparticles (Al2O3 NPs) are used in various commercial and agricultural products. Soybean exhibits severe reduction in growth under flooding condition. To examine the effects of Al2O3 NPs on the recovery of soybean from flooding, proteomic analysis was performed. Survival percentage and weight/length of root including hypocotyl were improved after 2 and 4days of flooding with 50ppm Al2O3 NPs leading to recovery as compared to flooding. A total of 211 common proteins were changed in abundance during the recovery period after treatment without or with Al2O3 NPs. These proteins were related to protein synthesis, stress, cell wall, and signaling. Among the identified stress-related proteins, S-adenosyl-l-methionine dependent methyltransferases were recovered from flooding with Al2O3 NPs. Hierarchical clustering divided the identified proteins into three clusters. Cluster II exhibited the greatest change in proteins related to protein synthesis, transport, and development during the recovery from flooding with Al2O3 NPs. However, activity of enolase remained unchanged during flooding leading to subsequent recovery with Al2O3 NPs. These results suggest that S-adenosyl-l-methionine dependent methyltransferases and enolase might be involved in mediating recovery responses by Al2O3 NPs. This study highlighted the role of Al2O3 NPs in recovery of soybean seedlings from flooding stress using gel-free proteomic technique. The key findings of this study are as follows: (i) survival percentage was enhanced at 50ppm Al2O3 NPs during the recovery stage; (ii) seedling weight and weight/length of root including hypocotyl improved at 50ppm Al2O3 NPs during the period of recovery; (iii) protein synthesis and stress related proteins were increased on recovery after flooding without or with Al2O3 NPs; (iv) the abundance of S-adenosyl-l-methionine dependent methyltransferases recovered from flooding with Al2O3 NPs; (v) glycolysis related proteins amplified under flooding with Al2O3 NPs; (vi) enolase enzyme remained unchanged during flooding leading to subsequent recovery from flooding with Al2O3 NPs. Collectively, these results suggest that S-adenosyl-l-methionine dependent methyltransferases and enolase are involved in response to flooding with Al2O3 NPs and might be helpful in recovery from flooding stress. Copyright © 2016 Elsevier B.V. All rights reserved.
Nanjo, Yohei; Jang, Hee-Young; Kim, Hong-Sig; Hiraga, Susumu; Woo, Sun-Hee; Komatsu, Setsuko
2014-10-01
Flooding of fields due to heavy and/or continuous rainfall influences soybean production. To identify soybean varieties with flooding tolerance at the seedling emergence stage, 128 soybean varieties were evaluated using a flooding tolerance index, which is based on plant survival rates, the lack of apparent damage and lateral root development, and post-flooding radicle elongation rate. The soybean varieties were ranked according to their flooding tolerance index, and it was found that the tolerance levels of soybean varieties exhibit a continuum of differences between varieties. Subsequently, tolerant, moderately tolerant and sensitive varieties were selected and subjected to comparative proteomic analysis to clarify the tolerance mechanism. Proteomic analysis of the radicles, combined with correlation analysis, showed that the ratios of RNA binding/processing related proteins and flooding stress indicator proteins were significantly correlated with flooding tolerance index. The RNA binding/processing related proteins were positively correlated in untreated soybeans, whereas flooding stress indicator proteins were negatively correlated in flooded soybeans. These results suggest that flooding tolerance is regulated by mechanisms through multiple factors and is associated with abundance levels of the identified proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rodrigues, Cleiton G; Krüger, Alexandra P; Barbosa, Wagner F; Guedes, Raul Narciso C
2016-04-11
The ongoing concern about bee decline has largely focused on honey bees and neonicotinoid insecticides, while native pollinators such as Neotropical stingless bees and agrochemicals such as other insecticide groups, pesticides in general, and fertilizers-especially leaf fertilizers-remain neglected as potential contributors to pollination decline. In an effort to explore this knowledge gap, we assessed the lethal and sublethal behavioral impact of heavy metal-containing leaf fertilizers in a native pollinator of ecological importance in the Neotropics: the stingless beeFriesella schrottkyi(Friese). Two leaf fertilizers-copper sulfate (24% Cu) and a micronutrient mix (Arrank L: 5% S, 5% Zn, 3% Mn, 0.6% Cu, 0.5% B, and 0.06% Mo)-were used in oral and contact exposure bioassays. The biopesticide spinosad and water were used as positive and negative controls, respectively. Copper sulfate compromised the survival of stingless bee workers, particularly with oral exposure, although less than spinosad under contact exposure. Sublethal exposure to both leaf fertilizers at their field rates also caused significant effects in exposed workers. Copper sulfate enhanced flight take-off on stingless bee workers, unlike workers exposed to the micronutrient mix. There was no significant effect of leaf fertilizers on the overall activity and walking behavior of worker bees. No significant effect was observed for the respiration rate of worker bees under contact exposure, but workers orally exposed to the micronutrient mix exhibited a reduced respiration rate. Therefore, leaf fertilizers do affectF. schrottkyi, what may also occur with other stingless bees, potentially compromising their pollination activity deserving attention. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Cooper, D.J.; Andersen, D.C.
2012-01-01
Dam releases used to create downstream flows that mimic historic floods in timing, peak magnitude and recession rate are touted as key tools for restoring riparian vegetation on large regulated rivers. We analysed a flood on the 5th-order Green River below Flaming Gorge Dam, Colorado, in a broad alluvial valley where Fremont cottonwood riparian forests have senesced and little recruitment has occurred since dam completion in 1962. The stable post dam flow regime triggered the development of novel riparian communities with dense herbaceous plant cover. We monitored cottonwood recruitment on landforms inundated by a managed flood equal in magnitude and timing to the average pre-dam flood. To understand the potential for using managed floods as a riparian restoration tool, we implemented a controlled and replicated experiment to test the effects of artificially modified ground layer vegetation on cottonwood seedling establishment. Treatments to remove herbaceous vegetation and create bare ground included herbicide application (H), ploughing (P), and herbicide plus ploughing (H+P). Treatment improved seedling establishment. Initial seedling densities on treated areas were as much as 1200% higher than on neighbouring control (C) areas, but varied over three orders of magnitude among the five locations where manipulations were replicated. Only two replicates showed the expected seedling density rank of (H+P)>P>H>C. Few seedlings established in control plots and none survived 1 year. Seedling density was strongly affected by seed rain density. Herbivory affected growth and survivorship of recruits, and few survived nine growing seasons. Our results suggest that the novel plant communities are ecologically and geomorphically resistant to change. Managed flooding alone, using flows equal to the pre-dam mean annual peak flood, is an ineffective riparian restoration tool where such ecosystem states are present and floods cannot create new habitat for seedling establishment. This problem significantly limits long-term river and riparian management options. ?? 2010 John Wiley & Sons, Ltd.
James Grogana; R. Matthew Landisc; Mark S. Ashtona; Jurandir Galva˜od
2005-01-01
Big-leaf mahogany (Swietenia macrophylla) is a valuable neotropical timber species whose seedling survival and growth dynamics in natural forests are poorly understood. To document regeneration dynamics of mahogany in seasonal transitional evergreen forests of southeast Pará, Brazil, we followed naturally established seedlings in the forest understory...
Ishikawa, Masaya; Oda, Asuka; Fukami, Reiko; Kuriyama, Akira
2014-01-01
Wintering Sasa senanensis, dwarf bamboo, is known to employ deep supercooling as the mechanism of cold hardiness in most of its tissues from leaves to rhizomes. The breakdown of supercooling in leaf blades has been shown to proceed in a random and scattered manner with a small piece of tissue surrounded by longitudinal and transverse veins serving as the unit of freezing. The unique cold hardiness mechanism of this plant was further characterized using current year leaf blades. Cold hardiness levels (LT20: the lethal temperature at which 20% of the leaf blades are injured) seasonally increased from August (-11°C) to December (-20°C). This coincided with the increases in supercooling capability of the leaf blades as expressed by the initiation temperature of low temperature exotherms (LTE) detected in differential thermal analyses (DTA). When leaf blades were stored at -5°C for 1-14 days, there was no nucleation of the supercooled tissue units either in summer or winter. However, only summer leaf blades suffered significant injury after prolonged supercooling of the tissue units. This may be a novel type of low temperature-induced injury in supercooled state at subfreezing temperatures. When winter leaf blades were maintained at the threshold temperature (-20°C), a longer storage period (1-7 days) increased lethal freezing of the supercooled tissue units. Within a wintering shoot, the second or third leaf blade from the top was most cold hardy and leaf blades at lower positions tended to suffer more injury due to lethal freezing of the supercooled units. LTE were shifted to higher temperatures (2-5°C) after a lethal freeze-thaw cycle. The results demonstrate that the tissue unit compartmentalized with longitudinal and transverse veins serves as the unit of supercooling and temperature- and time-dependent freezing of the units is lethal both in laboratory freeze tests and in the field. To establish such supercooling in the unit, structural ice barriers such as development of sclerenchyma and biochemical mechanisms to increase the stability of supercooling are considered important. These mechanisms are discussed in regard to ecological and physiological significance in winter survival.
NASA Astrophysics Data System (ADS)
Wang, Chen; Wang, Qiao; Meire, Dieter; Ma, Wandong; Wu, Chuanqing; Meng, Zhen; Van de Koppel, Johan; Troch, Peter; Verhoeven, Ronny; De Mulder, Tom; Temmerman, Stijn
2016-07-01
It is important to understand the mechanisms of vegetation establishment on bare substrate in a disturbance-driven ecosystem because of many valuable ecosystem services. This study tested for empirical indications of local alternative stable states controlled by biogeomorphic feedbacks using flume experiments with alfalfa: (1) single flood experiments different in flood intensity and plant growth, (2) long-term evolution experiments with repeated flooding and seeding. We observed: (1) a combination of thresholds in plant growth and flooding magnitude for upgrowing seedlings to survive; (2) bimodality in vegetation biomass after floods indicating the existence of two alternative states, either densely vegetated or bare; (3) facilitation of vegetation establishment by the spatial pattern formation of channels and sand bars. In conclusion, empirical indicators were demonstrated for local alternative stable states in a disturbance-driven ecosystem associated with biogeomorphic feedbacks, which could contribute to the protection and restoration of vegetation in such ecosystems.
Lipidomics of tobacco leaf and cigarette smoke.
Dunkle, Melissa N; Yoshimura, Yuta; T Kindt, Ruben; Ortiz, Alexia; Masugi, Eri; Mitsui, Kazuhisa; David, Frank; Sandra, Pat; Sandra, Koen
2016-03-25
Detailed lipidomics experiments were performed on the extracts of cured tobacco leaf and of cigarette smoke condensate (CSC) using high-resolution liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-Q-TOF MS). Following automated solid-phase extraction (SPE) fractionation of the lipid extracts, over 350 lipids could be annotated. From a large-scale study on 22 different leaf samples, it was determined that differentiation based on curing type was possible for both the tobacco leaf and the CSC extracts. Lipids responsible for the classification were identified and the findings were correlated to proteomics data acquired from the same tobacco leaf samples. Prediction models were constructed based on the lipid profiles observed in the 22 leaf samples and successfully allowed for curing type classification of new tobacco leaves. A comparison of the leaf and CSC data provided insight into the lipidome changes that occur during the smoking process. It was determined that lipids which survive the smoking process retain the same curing type trends in both the tobacco leaf and CSC data. Copyright © 2015 Elsevier B.V. All rights reserved.
Yin, Xiaojian; Hiraga, Susumu; Hajika, Makita; Nishimura, Minoru; Komatsu, Setsuko
2017-03-01
Soybean is highly sensitive to flooding stress and exhibits markedly reduced plant growth and grain yield under flooding conditions. To explore the mechanisms underlying initial flooding tolerance in soybean, RNA sequencing-based transcriptomic analysis was performed using a flooding-tolerant line and ABA-treated soybean. A total of 31 genes included 12 genes that exhibited similar temporal patterns were commonly changed in these plant groups in response to flooding and they were mainly involved in RNA regulation and protein metabolism. The mRNA expression of matrix metalloproteinase, glucose-6-phosphate isomerase, ATPase family AAA domain-containing protein 1, and cytochrome P450 77A1 was up-regulated in wild-type soybean under flooding conditions; however, no changes were detected in the flooding-tolerant line or ABA-treated soybean. The mRNA expression of cytochrome P450 77A1 was specifically up-regulated in root tips by flooding stress, but returned to the level found in control plants following treatment with the P450 inhibitor uniconazole. The survival ratio and root fresh weight of plants were markedly improved by 3-h uniconazole treatment under flooding stress. Taken together, these results suggest that cytochrome P450 77A1 is suppressed by uniconazole treatment and that this inhibition may enhance soybean tolerance to flooding stress.
Growth and physiological responses of isohydric and anisohydric poplars to drought
Attia, Ziv; Domec, Jean-Christophe; Oren, Ram; ...
2015-05-07
Understanding how different plants prioritize carbon gain and drought vulnerability under a variable water supply is important for predicting which trees will maximize woody biomass production under different environmental conditions. Here, Populus balsamifera (BS, isohydric genotype), P. simonii (SI, previously uncharacterized stomatal behaviour), and their cross, P. balsamifera x simonii (BSxSI, anisohydric genotype) were studied to assess the physiological basis for biomass accumulation and water-use efficiency across a range of water availabilities. Under ample water, whole plant stomatal conductance (g s), transpiration (E), and growth rates were higher in anisohydric genotypes (SI and BSxSI) than in isohydric poplars (BS). Undermore » drought, all genotypes regulated the leaf to stem water potential gradient via changes in gs, synchronizing leaf hydraulic conductance (K leaf) and E: isohydric plants reduced K leaf, g s, and E, whereas anisohydric genotypes maintained high K leaf and E, which reduced both leaf and stem water potentials. Nevertheless, SI poplars reduced their plant hydraulic conductance (K plant) during water stress and, unlike, BSxSI plants, recovered rapidly from drought. Low gs of the isohydric BS under drought reduced CO 2 assimilation rates and biomass potential under moderate water stress. While anisohydric genotypes had the fastest growth under ample water and higher photosynthetic rates under increasing water stress, isohydric poplars had higher water-use efficiency. Overall, the results indicate three strategies for how closely related biomass species deal with water stress: survival-isohydric (BS), sensitive-anisohydric (BSxSI), and resilience-anisohydric (SI). Lastly, we discuss implications for woody biomass growth, water-use efficiency, and survival under variable environmental conditions.« less
Influence of flooding, freezing, and American beaver herbivory on survival of planted oak seedlings
Johnathan T. Reeves; Andrew W. Ezell; John D. Hodges; Emily B. Schultz; Andrew B. Self
2016-01-01
Good seedlings, proper planting, and competition control normally result in successful hardwood planting. However, other factors can have serious impact on planting success, such as the impact of flooding, freezing, and the American beaver (Castor canadensis). In 2014, three planting stocks of Nuttall oak (Quercus nuttallii) and Shumard oak (
NASA Technical Reports Server (NTRS)
Carter, Gregory A.; Knapp, Alan K.
2000-01-01
A number of studies have linked responses in leaf spectral reflectance, transmittance or absorptance to physiological stress. A variety of stressors including dehydration, flooding,freezing, ozone, herbicides, competition, disease, insects and deficiencies in ectomycorrhizal development and N fertilization have been imposed on species ranging from grasses to conifers and deciduous trees. In this cases, the maximum difference in reflectance within the 400 - 850 nm wavelength range between control and stressed states occurred as a reflectance increase at wavelength near 700 nm. In studies that included transmittance and absorptance as well as reflectance, maximum differences occurred as increases and decreases, respectively, near 700 nm. This common optical response to stress could be simulated closely by varying the chlorophyll concentrations in senescent leaves of five species. The optical response to stress near 700 nm, as well as corresponding changes in reflectance that occur in the green-yellow spectrum, can be explained by the general tendency of stress to reduce leaf chlorophyll concentration.
2013-01-01
Background Fewer than 6% patients with adenocarcinoma of the pancreas live up to five years after diagnosis. Chemotherapy is currently the standard treatment, however, these tumors often develop drug resistance over time. Agents for increasing the cytotoxic effects of chemotherapy or reducing the cancer cells’ chemo-resistance to the drugs are required to improve treatment outcome. Nuclear factor kappa B (NF-kB), a pro-inflammatory transcription factor, reportedly plays a significant role in the resistance of pancreatic cancer cells to apoptosis-based chemotherapy. This study investigated the effect of aqueous Moringa Oleifera leaf extract on cultured human pancreatic cancer cells - Panc-1, p34, and COLO 357, and whether it can potentiates the effect of cisplatin chemotherapy on these cells. Methods The effect of Moringa Oleifera leaf extract alone and in combination with cisplatin on the survival of cultured human pancreatic cancer cells was evaluated by XTT-based colorimetric assay. The distribution of Panc-1 cells in the cell cycle following treatment with Moringa leaf extract was evaluated by flow cytometry, and evaluations of protein levels were via immunoblotting. Data of cell survival following combined treatments were analyzed with Calcusyn software. Results Moringa Oleifera leaf extract inhibited the growth of all pancreatic cell lines tested. This effect was significant in all cells following exposure to ≥0.75 mg/ml of the extract. Exposure of Panc-1 cells to Moringa leaf extract induced an elevation in the sub-G1 cell population of the cell-cycle, and reduced the expression of p65, p-IkBα and IkBα proteins in crude cell extracts. Lastly, Moringa Oleifera leaf extract synergistically enhanced the cytotoxic effect of cisplatin on Panc-1 cells. Conclusion Moringa Oleifera leaf extract inhibits the growth of pancreatic cancer cells, the cells NF-κB signaling pathway, and increases the efficacy of chemotherapy in human pancreatic cancer cells. PMID:23957955
Berkovich, Liron; Earon, Gideon; Ron, Ilan; Rimmon, Adam; Vexler, Akiva; Lev-Ari, Shahar
2013-08-19
Fewer than 6% patients with adenocarcinoma of the pancreas live up to five years after diagnosis. Chemotherapy is currently the standard treatment, however, these tumors often develop drug resistance over time. Agents for increasing the cytotoxic effects of chemotherapy or reducing the cancer cells' chemo-resistance to the drugs are required to improve treatment outcome. Nuclear factor kappa B (NF-kB), a pro-inflammatory transcription factor, reportedly plays a significant role in the resistance of pancreatic cancer cells to apoptosis-based chemotherapy. This study investigated the effect of aqueous Moringa Oleifera leaf extract on cultured human pancreatic cancer cells - Panc-1, p34, and COLO 357, and whether it can potentiates the effect of cisplatin chemotherapy on these cells. The effect of Moringa Oleifera leaf extract alone and in combination with cisplatin on the survival of cultured human pancreatic cancer cells was evaluated by XTT-based colorimetric assay. The distribution of Panc-1 cells in the cell cycle following treatment with Moringa leaf extract was evaluated by flow cytometry, and evaluations of protein levels were via immunoblotting. Data of cell survival following combined treatments were analyzed with Calcusyn software. Moringa Oleifera leaf extract inhibited the growth of all pancreatic cell lines tested. This effect was significant in all cells following exposure to ≥0.75 mg/ml of the extract. Exposure of Panc-1 cells to Moringa leaf extract induced an elevation in the sub-G1 cell population of the cell-cycle, and reduced the expression of p65, p-IkBα and IkBα proteins in crude cell extracts. Lastly, Moringa Oleifera leaf extract synergistically enhanced the cytotoxic effect of cisplatin on Panc-1 cells. Moringa Oleifera leaf extract inhibits the growth of pancreatic cancer cells, the cells NF-κB signaling pathway, and increases the efficacy of chemotherapy in human pancreatic cancer cells.
Variable response of three Trifolium repens ecotypes to soil flooding by seawater.
White, Anissia C; Colmer, Timothy D; Cawthray, Greg R; Hanley, Mick E
2014-08-01
Despite concerns about the impact of rising sea levels and storm surge events on coastal ecosystems, there is remarkably little information on the response of terrestrial coastal plant species to seawater inundation. The aim of this study was to elucidate responses of a glycophyte (white clover, Trifolium repens) to short-duration soil flooding by seawater and recovery following leaching of salts. Using plants cultivated from parent ecotypes collected from a natural soil salinity gradient, the impact of short-duration seawater soil flooding (8 or 24 h) on short-term changes in leaf salt ion and organic solute concentrations was examined, together with longer term impacts on plant growth (stolon elongation) and flowering. There was substantial Cl(-) and Na(+) accumulation in leaves, especially for plants subjected to 24 h soil flooding with seawater, but no consistent variation linked to parent plant provenance. Proline and sucrose concentrations also increased in plants following seawater flooding of the soil. Plant growth and flowering were reduced by longer soil immersion times (seawater flooding followed by drainage and freshwater inputs), but plants originating from more saline soil responded less negatively than those from lower salinity soil. The accumulation of proline and sucrose indicates a potential for solute accumulation as a response to the osmotic imbalance caused by salt ions, while variation in growth and flowering responses between ecotypes points to a natural adaptive capacity for tolerance of short-duration seawater soil flooding in T. repens. Consequently, it is suggested that selection for tolerant ecotypes is possible should the predicted increase in frequency of storm surge flooding events occur. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Doody, Tanya M.; Colloff, Matthew J.; Davies, Micah; Koul, Vijay; Benyon, Richard G.; Nagler, Pamela L.
2015-01-01
Water resource development and drought have altered river flow regimes, increasing average flood return intervals across floodplains in the Murray-Darling Basin, Australia, causing health declines in riparian river red gum (Eucalyptus camaldulensis) forests and woodlands. Environmental flow allocations helped to alleviate water stress during the recent Millennium Drought (1997–2010), however, quantification of the flood frequency required to support healthy E. camaldulensis communities is still needed. We quantified water requirements of E. camaldulensis for two years across a flood gradient (trees inundated at frequencies of 1:2, 1:5 and 1:10 years) at Yanga National Park, New South Wales to help inform management decision-making and design of environmental flows. Sap flow, evaporative losses and soil moisture measurements were used to determine transpiration, evapotranspiration and plant-available soil water before and after flooding. A formula was developed using plant-available soil water post-flooding and average annual rainfall, to estimate maintenance time of soil water reserves in each flood frequency zone. Results indicated that soil water reserves could sustain 1:2 and 1:5 trees for 15 months and six years, respectively. Trees regulated their transpiration rates, allowing them to persist within their flood frequency zone, and showed reduction in active sapwood area and transpiration rates when flood frequencies exceeded 1:2 years. A leaf area index of 0.5 was identified as a potential threshold indicator of severe drought stress. Our results suggest environmental water managers may have greater flexibility to adaptively manage floodplains in order to sustain E. camaldulensis forests and woodlands than has been appreciated hitherto.
Abou Jaoudé, R; de Dato, G; Palmegiani, M; De Angelis, P
2013-01-01
In Mediterranean coastal areas, changes in precipitation patterns and seawater levels are leading to increased frequency of flooding and to salinization of estuaries and freshwater systems. Tamarix spp. are often the only woody species growing in such environments. These species are known for their tolerance to moderate salinity; however, contrasting information exists regarding their tolerance to flooding, and the combination of the two stresses has never been studied in Tamarix spp. Here, we analyse the photosynthetic responses of T. africana Poiret to temporary flooding (45 days) with fresh or saline water (200 mm) in two Italian provenances (Simeto and Baratz). The measurements were conducted before and after the onset of flooding, to test the possible cumulative effects of the treatments and effects on twig aging, and to analyse the responses of twigs formed during the experimental period. Full tolerance was evident in T. africana with respect to flooding with fresh water, which did not affect photosynthetic performances in either provenance. Saline flooding was differently tolerated by the two provenances. Moreover, salinity tolerance differently affected the two twig generations. In particular, a reduction in net assimilation rate (-48.8%) was only observed in Baratz twigs formed during the experimental period, compared to pre-existing twigs. This reduction was a consequence of non-stomatal limitations (maximum carboxylation rate and electron transport), probably as a result of higher Na transport to the twigs, coupled with reduced Na storage in the roots. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caulfield, F.; Bunce, J.A.
1994-08-01
Beet armyworm, Spodoptera exigua (Huebner), larvae were placed on sugarbeet (Beta vulgaris L.) and pigweed (Amaranthus hybridus L.) plants in outdoor chambers in which the plants were growing at either the ambient ([approximately] 350 [mu]l liter[sup [minus]1]) or ambient plus 350 [mu]l liter[sup [minus]1] ([approximately] 700 [mu]l liter[sup [minus]1]) carbon dioxide concentration. A series of experiments was performed to determine if larvae reduced plant growth differently at the two carbon dioxide concentrations in either species and if the insect growth or survival differed with carbon dioxide concentration. Leaf nitrogen, water, starch, and soluble carbohydrate contents were measured to assess carbonmore » dioxide concentration effects on leaf quality. Insect feeding significantly reduced plant growth in sugarbeet plants at 350 [mu]l liter[sup [minus]1] but not at 700 [mu]l liter[sup [minus]1] nor in pigweed at either carbon dioxide concentration. Larval survival was greater on sugarbeet plants at the elevated carbon dioxide concentration. Increased survival occurred only if the insects were at the elevated carbon dioxide concentration and consumed leaf material grown at the elevated concentration. Leaf quality was only marginally affected by growth at elevated carbon dioxide concentration in these experiments. The results indicate that in designing experiments to predict effects of elevated atmospheric carbon dioxide concentrations on plant-insect interactions, both plants and insects should be exposed to the experimental carbon dioxide concentrations, as well as to as realistic environmental conditions as possible.« less
James Grogan; Mark Schulze; Jurandir Galvao
2010-01-01
Big-leaf mahogany (Swietenia macrophylla) trees are often retained in agricultural fields and pastures for seed and timber production after selective logging and forest clearing in the Brazilian Amazon. At a forest management site in southeast Para´, we censused trees growing scattered across a large open clearing after forest removal and in heavily disturbed forest...
``Sleeping with the enemy''—predator-induced diapause in a mite
NASA Astrophysics Data System (ADS)
Kroon, Annemarie; Veenendaal, René L.; Bruin, Jan; Egas, Martijn; Sabelis, Maurice W.
2008-12-01
Diapause in arthropods is a physiological state of dormancy that is generally thought to promote survival during harsh seasons and dispersal, but it may also serve to avoid predation in space and time. Here, we show that predation-related odours induce diapause in female adult spider mites. We argue that this response allows them to move into an area where they are free of enemies, yet forced to survive without food. Spider mites are specialised leaf feeders, but—in late summer—they experience severe predation on leaves. Hence, they face a dilemma: to stay on the leaf and risk being eaten or to move away from the leaf and risk death from starvation and thirst. Female two-spotted spider mites solve this dilemma by dramatically changing their physiology when exposed to predation-associated cues. This allows them to disperse away from leaves and to survive in winter refuges in the bark of trees or in the soil. We conclude that the mere presence of predation-associated cues causes some herbivorous mites to seek refuge, thereby retarding the growth rate of the population as a whole: a trait-mediated indirect effect that may have consequences for the stability of predator prey systems and for ecosystem structure.
Wetland hydrology and tree distribution of the Apalachicola River flood plain, Florida
Leitman, H.M.; Sohm, J.E.; Franklin, M.A.
1982-01-01
The Apalachicola River is part of a 50,800-square-kilometer drainage basin in northwest Florida, Alabama, and Georgia. The river is formed by the confluence of the Chattahoochee and Flint Rivers at Jim Woodruff Dam and flows 171 kilometers to Apalachicola Bay in the Gulf of Mexico. Its flood plain supports 450 square kilometers of bottom-land hardwood and tupelco-cypress forests. The most common trees, constituting 62 percent of the total basal area, were five wet-site species; water tupelo, Ogeeche tupelo, baldcypress, Carolina ash, and swamp tupelo. Other common species were sweetgum, overcup oak, planertree, green ash, water hickory, sugarberry, and diamond-leaf oak. Five forest types were defined based on species predominance by basal area. Biomass increased downstream and was greatest in forests growing on permanently saturated soils. Water and tree relations varied with river location because range in water-level fluctuation and topographic relief in the flood plain diminished downstream. Heights of natural riverbank levees and size and distribution of breaks in levees had a major controlling effect on flood-plain hydrology. Depth of water, duration of inundation and saturation, and river location, but not water velocity, were very highly correlated with forest types. (USGS)
A casualty of climate change? Loss of freshwater forest islands on Florida's Gulf Coast.
Langston, Amy K; Kaplan, David A; Putz, Francis E
2017-12-01
Sea level rise elicits short- and long-term changes in coastal plant communities by altering the physical conditions that affect ecosystem processes and species distributions. While the effects of sea level rise on salt marshes and mangroves are well studied, we focus on its effects on coastal islands of freshwater forest in Florida's Big Bend region, extending a dataset initiated in 1992. In 2014-2015, we evaluated tree survival, regeneration, and understory composition in 13 previously established plots located along a tidal creek; 10 plots are on forest islands surrounded by salt marsh, and three are in continuous forest. Earlier studies found that salt stress from increased tidal flooding prevented tree regeneration in frequently flooded forest islands. Between 1992 and 2014, tidal flooding of forest islands increased by 22%-117%, corresponding with declines in tree species richness, regeneration, and survival of the dominant tree species, Sabal palmetto (cabbage palm) and Juniperus virginiana (southern red cedar). Rates of S. palmetto and J. virginiana mortality increased nonlinearly over time on the six most frequently flooded islands, while salt marsh herbs and shrubs replaced forest understory vegetation along a tidal flooding gradient. Frequencies of tidal flooding, rates of tree mortality, and understory composition in continuous forest stands remained relatively stable, but tree regeneration substantially declined. Long-term trends identified in this study demonstrate the effect of sea level rise on spatial and temporal community reassembly trajectories that are dynamically re-shaping the unique coastal landscape of the Big Bend. © 2017 John Wiley & Sons Ltd.
Sibbernsen, Erik; Mott, Keith A.
2010-01-01
Flooding the intercellular air spaces of leaves with water was shown to cause rapid closure of stomata in Tradescantia pallida, Lactuca serriola, Helianthus annuus, and Oenothera caespitosa. The response occurred when water was injected into the intercellular spaces, vacuum infiltrated into the intercellular spaces, or forced into the intercellular spaces by pressurizing the xylem. Injecting 50 mm KCl or silicone oil into the intercellular spaces also caused stomata to close, but the response was slower than with distilled water. Epidermis-mesophyll grafts for T. pallida were created by placing the epidermis of one leaf onto the exposed mesophyll of another leaf. Stomata in these grafts opened under light but closed rapidly when water was allowed to wick between epidermis and the mesophyll. When epidermis-mesophyll grafts were constructed with a thin hydrophobic filter between the mesophyll and epidermis stomata responded normally to light and CO2. These data, when taken together, suggest that the effect of water on stomata is caused partly by dilution of K+ in the guard cell and partly by the existence of a vapor-phase signal that originates in the mesophyll and causes stomata to open in the light. PMID:20472750
Davis, J. Brian; Vilella, Francisco; Lancaster, Joseph D.; Lopez-Flores, Marisel; Kaminski, Richard M.; Cruz-Burgos, José A.
2017-01-01
Duckling survival is an important influence on recruitment in several North American Anas species. White-cheeked Pintail (Anas bahamensis) breeding in Puerto Rico encounter a variety of wetland types that may influence duckling survival. We monitored fates of 92 radio-tagged ducklings in 31 broods in 5 wetland habitat types at Humacao Nature Reserve in southeastern Puerto Rico from 2000 to 2002. Wetlands included 2 separate coastal lagoon complexes, mangrove forest, and managed and unmanaged wetland impoundments containing herbaceous vegetation. We used known-fate models to estimate daily and interval survival rates of ducklings and broods. We conducted conservative and liberal analyses of survival because of uncertain fates of 36 ducklings. In the conservative analysis, the most parsimonious model for duckling survival contained wetland type and a positive influence of daily precipitation. In the liberal analysis, duckling survival also varied among wetlands, was positively influenced by daily precipitation, but negatively influenced by hatch date. Brood survival was also positively influenced by precipitation and female body mass. Managed wetland impoundments and shallowly flooded lagoon habitats containing ferns, interspersed cattail (Typha dominguensis), and other herbaceous cover promoted up to 3 times higher survival of ducklings over the course of a 30-day duckling period than we found in mangroves, more deeply flooded lagoons with predominately restricted shoreline cover, or unmanaged impoundments overgrown with vegetation. Broad confidence intervals for survival estimates among wetlands preclude unequivocal interpretation, but our results suggest that White-cheeked Pintail ducklings survive poorly in mangroves but benefit from appropriate management.
Heimann, David C.; Mettler-Cherry, Paige A.
2004-01-01
A study was conducted by the U.S. Geological Survey in cooperation with the Missouri Department of Conservation at the Four Rivers Conservation Area (west-central Missouri), between January 2001 and March 2004, to examine the relations between environmental factors (hydrology, soils, elevation, and landform type) and the spatial distribution of vegetation in remnant and constructed riparian wetlands. Vegetation characterization included species composition of ground, understory, and overstory layers in selected landforms of a remnant bottomland hardwood ecosystem, monitoring survival and growth of reforestation plots in leveed and partially leveed constructed wetlands, and determining gradients in colonization of herbaceous vegetation in a constructed wetland. Similar environmental factors accounted for variation in the distribution of ground, understory, and overstory vegetation in the remnant bottomland forest plots. The primary measured determining factors in the distribution of vegetation in the ground layer were elevation, soil texture (clay and silt content), flooding inundation duration, and ponding duration, while the distribution of vegetation in the understory layer was described by elevation, soil texture (clay, silt, and sand content), total flooding and ponding inundation duration, and distance from the Marmaton or Little Osage River. The primary measured determining factors in the distribution of overstory vegetation in Unit 1 were elevation, soil texture (clay, silt, and sand content), total flooding and ponding inundation duration, ponding duration, and to some extent, flooding inundation duration. Overall, the composition and structure of the remnant bottomland forest is indicative of a healthy, relatively undisturbed flood plain forest. Dominant species have a distribution of individuals that shows regeneration of these species with significant recruitment in the smaller size classes. The bottomland forest is an area whose overall hydrology has not been significantly altered; however, portions of the area have suffered from hydrologic alteration by a drainage ditch that is resulting in the displacement of swamp and marsh species by colonizing shrub and tree species. This area likely will continue to develop into an immature flood plain forest under the current (2004) hydrologic regime. Reforestation plots in constructed wetlands consisted of sampling survival and growth of multiple tree species (Quercus palustris, pin oak; Carya illinoiensis, pecan) established under several production methods and planted at multiple elevations. Comparison of survival between tree species and production types showed no significant differences for all comparisons. Survival was high for both species and all production types, with the highest mortality seen in the mounded root production method (RPM?) Quercus palustris (pin oak, 6.9 percent), while direct seeded Quercus palustris at middle elevation and bare root Quercus palustris seedlings at the low elevation plots had 100 percent survival. Measures of growth (diameter and height) were assessed among species, production types, and elevation by analyzing relative growth. The greatest rate of tree diameter (72.3 percent) and height (65.3 percent) growth was observed for direct seeded Quercus palustris trees planted at a middle elevation site. Natural colonized vegetation data were collected at multiple elevations within an abandoned cropland area of a constructed wetland. The primary measured determining factors in the distribution of herbaceous vegetation in this area were elevation, ponding duration, and soil texture. Richness, evenness, and diversity were all significantly greater in the highest elevation plots as a result of more recent disturbance in this area. While flood frequency and duration define the delivery mechanism for inundation on the flood plain, it is the duration of ponding and amount of 'topographic capture' of these floodwaters in fluvial lan
NASA Astrophysics Data System (ADS)
Montti, Lía; Villagra, Mariana; Campanello, Paula I.; Gatti, M. Genoveva; Goldstein, Guillermo
2014-01-01
Many woody bamboo species are forest understory plants that become invasive after disturbance. They can grow rapidly forming a dense, nearly monospecific understory that inhibits tree regeneration. The principal aim of this study was to understand what functional traits of bamboos allow them to outcompete tree seedlings and saplings and become successful species in the semideciduous Atlantic Forests of northeastern Argentina. We studied leaf and whole-plant functional traits of two bamboo species of the genus Chusquea and five co-occurring saplings of common tree species growing under similar solar radiation and soil nutrient availabilities. Nutrient addition had no effect on bamboo or tree sapling survival and growth after two years. Tree species with high-light requirements had higher growth rates and developed relatively thin leaves with high photosynthetic capacity per unit leaf area and short leaf life-span when growing in gaps, but had lower survival rates in the understory. The opposite pattern was observed in shade-tolerant species that were able to survive in the understory but had lower photosynthetic capacity and growth than light-requiring species in gaps. Bamboos exhibited a high plasticity in functional traits and leaf characteristics that enabled them to grow rapidly in gaps (e.g., higher photosynthetic capacity per unit dry mass and clonal reproduction in gaps than in the understory) but at the same time to tolerate closed-canopy conditions (they had thinner leaves and a relatively longer leaf life-span in the understory compared to gaps). Photosynthetic capacity per unit dry mass was higher in bamboos than in trees. Bamboo plasticity in key functional traits, such as clonal reproduction at the plant level and leaves with a relatively low C cost and high photosynthesis rates, allows them to colonize disturbed forests with consequences at the community and ecosystem levels. Increasing disturbance in some forests worldwide will likely enhance bamboo invasion resulting in profound negative impacts on forest diversity, structure and function in the long term.
Soil treatments for the potential elimination of Phytophthora ramorum in ornamental nursery beds
L. E. Yakabe; J. D. MacDonald
2010-01-01
Ramorum leaf blight, caused by Phytophthora ramorum, has reemerged at several California nurseries after removal of infested material. In many cases, reemergence was not associated with reintroduction of the pathogen and may be attributed to inoculum surviving in soil beds because P. ramorum propagules can survive for over a...
USDA-ARS?s Scientific Manuscript database
Introduction: Escherichia coli O157:H7 outbreaks of infections associated with the consumption of fresh produce have increased in recent years. Bacterial cell surface appendages such as curli and the spinach leaf structure topography influence pathogen attachment and subsequent survival on spinach ...
USDA-ARS?s Scientific Manuscript database
Variegated Epipremnum aureum ‘Marble Queen’ plant has white (VMW) and green (VMG) sectors within the same leaf. The white sector cells containing undifferentiated chloroplasts are viable, but the underlying mechanism for their survival is not clear. Because phytohormones are important for plant grow...
Krauss, Ken W.; McKee, Karen L.; Hester, Mark W.
2014-01-01
Mangroves are expanding into warm temperate-zone salt marsh communities in several locations globally. Although scientists have discovered that expansion might have modest effects on ecosystem functioning, water use characteristics have not been assessed relative to this transition. We measured early growing season sapflow (Js) and leaf transpiration (Tr) in Avicennia germinans at a latitudinal limit along the northern Gulf of Mexico (Louisiana, United States) under both flooded and drained states and used these data to scale vegetation water use responses in comparison with Spartina alterniflora. We discovered strong convergence when using either Js or Tr for determining individual tree water use, indicating tight connection between transpiration and xylem water movement in small Avicennia trees. When Tr data were combined with leaf area indices for the region with the use of three separate approaches, we determined that Avicennia stands use approximately 1·0–1·3 mm d–1 less water than Spartina marsh. Differences were only significant with the use of two of the three approaches, but are suggestive of net conservation of water as Avicennia expands into Spartina marshes at this location. Average Js for Avicennia trees was not influenced by flooding, but maximum Js was greater when sites were flooded. Avicennia and Spartina closest to open water (shoreline) used more water than interior locations of the same assemblages by an average of 1·3 mm d−1. Lower water use by Avicennia may indicate a greater overall resilience to drought relative to Spartina, such that aperiodic drought may interact with warmer winter temperatures to facilitate expansion of Avicennia in some years.
Parent, Boris; Suard, Benoît; Serraj, Rachid; Tardieu, François
2010-08-01
Rice is known to be sensitive to soil water deficit and evaporative demand, with a greatest sensitivity of lowland-adapted genotypes. We have analysed the responses of plant water relations and of leaf elongation rate (LER) to soil water status and evaporative demand in seven rice genotypes belonging to different species, subspecies, either upland- or lowland-adapted. In the considered range of soil water potential (0 to -0.6 MPa), stomatal conductance was controlled in such a way that the daytime leaf water potential was similar in well-watered, droughted or flooded conditions (isohydric behaviour). A low sensitivity of LER to evaporative demand was observed in the same three conditions, with small differences between genotypes and lower sensitivity than in maize. The sensitivity of LER to soil water deficit was similar to that of maize. A tendency towards lower sensitivities was observed in upland than lowland genotypes but with smaller differences than expected. We conclude that leaf water status and leaf elongation of rice are not particularly sensitive to water deficit. The main origin of drought sensitivity in rice may be its poor root system, whose effect was alleviated in the study presented here by growing plants in pots whose soil was entirely colonized by roots of all genotypes.
Leaf-on canopy closure in broadleaf deciduous forests predicted during winter
Twedt, Daniel J.; Ayala, Andrea J.; Shickel, Madeline R.
2015-01-01
Forest canopy influences light transmittance, which in turn affects tree regeneration and survival, thereby having an impact on forest composition and habitat conditions for wildlife. Because leaf area is the primary impediment to light penetration, quantitative estimates of canopy closure are normally made during summer. Studies of forest structure and wildlife habitat that occur during winter, when deciduous trees have shed their leaves, may inaccurately estimate canopy closure. We estimated percent canopy closure during both summer (leaf-on) and winter (leaf-off) in broadleaf deciduous forests in Mississippi and Louisiana using gap light analysis of hemispherical photographs that were obtained during repeat visits to the same locations within bottomland and mesic upland hardwood forests and hardwood plantation forests. We used mixed-model linear regression to predict leaf-on canopy closure from measurements of leaf-off canopy closure, basal area, stem density, and tree height. Competing predictive models all included leaf-off canopy closure (relative importance = 0.93), whereas basal area and stem density, more traditional predictors of canopy closure, had relative model importance of ≤ 0.51.
Effects of salinity and flooding on seedlings of cabbage palm (Sabal palmetto).
Perry, L; Williams, K
1996-03-01
Sabal palmetto (Walt.) Lodd. ex Schultes (cabbage palm) dominates the coastal limit of many forests in North Florida and Georgia, United States. Changes in saltwater flooding due to sea level rise have been credicted with pushing the coastal limit of cabbage palms inland, eliminating regeneration before causing death of mature trees. Localized freshwater discharge along the coast causes different forest stands to experience tidal flooding with waters that differ in salinity. To elucidate the effect of such variation on regeneration failure under tidal flooding, we examined relative effects of flooding and salinity on the performance of cabbage palm seedlings. We examined the relationship between seedling establishment and degree of tidal inundation in the field, compared the ability of seedlings to withstand tidal flooding at two coastal sites that differed in tidal water salinity, and investigated the physiological responses of cabbage palm seedlings to salinity and flooding in a factorial greenhouse experiment. Seedling survival was inversely correlated with depth and frequency of tidal flooding. Survival of seedlings at a coastal site flooded by waters low in salinity [c. 3 parts per thousand (ppt)] was greater than that at a site flooded by waters higher in salinity (up to 23 ppt). Greenhouse experiments revealed that leaves of seedlings in pots flushed twice daily with salt solutions of 0 ppt and 8 ppt exhibited little difference in midmorning net CO 2 assimilation rates; those flushed with solutions of 15 ppt and 22 ppt, in contrast, had such low rates that they could not be detected. Net CO 2 assimilation rates also declined with increasing salinity for seedlings in pots that were continuously inundated. Continuous root zone inundation appeared to ameliorate effects of salinity on photosynthesis, presumably due to increased salt concentrations and possibly water deficits in periodically flushed pots. Such problems associated with periodic flushing by salt water may play a role in the mortality of cabbage palm seedlings in the field. The salinity range in which plant performance plummeted in the greenhouse was consistent with the salinity difference found between our two coastal study sites, suggesting that variation in tidal water salinity along the coast plays an important role in the ability of cabbage palm seedlings to withstand tidal flooding.
James Grogan; Stephen B. Jennings; R. Matthew Landis; Mark Schulze; Anadilza M.V. Baima; do Carmo A. Lopes J.; Julian M. Norghauer; L. Rog& eacute Oliveira; rio; Frank Pantoja; Diane Pinto; Jose Natalino M. Silva; Edson Vidal; Barbara L. Zimmerman
2008-01-01
The sustainability of current harvest practices for high-value Meliaceae can be assessed by quantifying logging intensity and projecting growth and survival by post-logging populations over anticipated intervals between harvests. From 100%-area inventories of big-leaf mahogany (Swietenia macrophylla) covering 204 ha or more at eight logged and unlogged forest sites...
The case for delaying planting of bottomland oaks: an example involving Nuttall oaks
David C. Mercker; David S. Buckley; John P. Conn
2013-01-01
A prominent difficulty during bottomland hardwood afforestation in the southeastern United States is that sites are often flooded during the preferred months of planting (January - March), which results in delayed planting (April - June) and reduced survival. We monitored growth and survival of Nuttall oak (Quercus texana Buckley) seedlings planted...
Zhang, Yong-Jiang; Bucci, Sandra J; Arias, Nadia S; Scholz, Fabian G; Hao, Guang-You; Cao, Kun-Fang; Goldstein, Guillermo
2016-08-01
Freezing resistance through avoidance or tolerance of extracellular ice nucleation is important for plant survival in habitats with frequent subzero temperatures. However, the role of cell walls in leaf freezing resistance and the coordination between leaf and stem physiological processes under subzero temperatures are not well understood. We studied leaf and stem responses to freezing temperatures, leaf and stem supercooling, leaf bulk elastic modulus and stem xylem vessel size of six Patagonian shrub species from two sites (plateau and low elevation sites) with different elevation and minimum temperatures. Ice seeding was initiated in the stem and quickly spread to leaves, but two species from the plateau site had barriers against rapid spread of ice. Shrubs with xylem vessels smaller in diameter had greater stem supercooling capacity, i.e., ice nucleated at lower subzero temperatures. Only one species with the lowest ice nucleation temperature among all species studied exhibited freezing avoidance by substantial supercooling, while the rest were able to tolerate extracellular freezing from -11.3 to -20 °C. Leaves of species with more rigid cell walls (higher bulk elastic modulus) could survive freezing to lower subzero temperatures, suggesting that rigid cell walls potentially reduce the degree of physical injury to cell membranes during the extracellular freezing and/or thaw processes. In conclusion, our results reveal the temporal-spatial ice spreading pattern (from stem to leaves) in Patagonian shrubs, and indicate the role of xylem vessel size in determining supercooling capacity and the role of cell wall elasticity in determining leaf tolerance of extracellular ice formation. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hydrology, phenology and the USA National Phenology Network
Kish, George R.
2010-01-01
Phenology is the study of seasonally-recurring biological events (such as leaf-out, fruit production, and animal reproduction and migration) and how these events are influenced by environmental change. Phenological changes are some of the most sensitive biological indicators of climate change, and also affect nearly all aspects of ecosystem function. Spatially extensive patterns of phenological observations have been closely linked with climate variability. Phenology and hydrology are closely linked and affect one another across a variety of scales, from leaf intercellular spaces to the troposphere, and over periods of seconds to centuries. Ecosystem life cycles and diversity are also influenced by hydrologic processes such as floods and droughts. Therefore, understanding the relationships between hydrology and phenology is increasingly important in understanding how climate change affects biological and physical systems.
Pruvost, Olivier; Savelon, Caroline; Boyer, Claudine; Chiroleu, Frédéric; Gagnevin, Lionel; Jacques, Marie-Agnès
2009-07-01
Epiphytic survival of several Xanthomonas pathovars has been reported, but most studies failed to determine whether such populations were resident epiphytes, resulting from latent infections, or casual epiphytes. This study aimed at understanding the nature of Xanthomonas citri pv. mangiferaeindicae populations associated with asymptomatic leaves. When spray-inoculated on mango leaves cv. Maison Rouge, the pathogen multiplied markedly in association with juvenile leaves, but was most often detected as low population sizes (<1 x 10(3) cfu g(-1)) in association with mature leaves. Our results suggest a very low biological significance of biofilm-associated populations of X. citri pv. mangiferaeindicae, while saprophytic microbiota associated with mango leaves survived frequently as biofilms. A chloroform vapor-based disinfestation assay which kills cells specifically located on the leaf surface and not those located within the leaf mesophyll was developed. When applied to spray-inoculated leaves maintained under controlled environmental conditions, 155 out of the 168 analyzed datasets collected over three assessment dates for seven bacterial strains representative of the genetic diversity of the pathogen failed to demonstrate a significant X. citri pv. mangiferaeindicae population decrease on chloroform treated leaves up to 13 days after inoculation. We conclude that an efficient survival of X. citri pv. mangiferaeindicae present on mango leaf surfaces following a limited dissemination event is largely dependent on the availability of juvenile plant tissues. The bacterium gains access to protected sites (e.g., mesophyll) through stomata where it becomes endophytic and eventually causes disease. Chloroform vapor-based disinfestation assays should be useful for further studies aiming at evaluating survival sites of bacteria associated with the phyllosphere.
Day, Richard H.; Doyle, T.W.; Draugelis-Dale, R. O.
2006-01-01
The large river swamps of Louisiana have complex topography and hydrology, characterized by black willow (Salix nigra) dominance on accreting alluvial sediments and vast areas of baldcypress (Taxodium distichum) deepwater swamps with highly organic substrates. Seedling survival of these two wetland tree species is influenced by their growth rate in relation to the height and duration of annual flooding in riverine environments. This study examines the interactive effects of substrate, hydroperiod, and nutrients on growth rates of black willow and baldcypress seedlings. In a greenhouse experiment with a split-split-plot design, 1-year seedlings of black willow and baldcypress were subjected to two nutrient treatments (unfertilized versus fertilized), two hydroperiods (continuously flooded versus twice daily flooding/draining), and two substrates (sand versus commercial peat mix). Response variables included height, diameter, lateral branch count, biomass, and root:stem ratio. Black willow growth in height and diameter, as well as all biomass components, were significantly greater in peat substrate than in sand. Black willow showed a significant hydroperiod-nutrient interaction wherein fertilizer increased stem and root biomass under drained conditions, but flooded plants did not respond to fertilization. Baldcypress diameter and root biomass were higher in peat than in sand, and the same two variables increased with fertilization in flooded as well as drained treatments. These results can be used in Louisiana wetland forest models as inputs of seedling growth and survival, regeneration potential, and biomass accumulation rates of black willow and baldcypress.
Leaf and life history traits predict plant growth in a green roof ecosystem.
Lundholm, Jeremy; Heim, Amy; Tran, Stephanie; Smith, Tyler
2014-01-01
Green roof ecosystems are constructed to provide services such as stormwater retention and urban temperature reductions. Green roofs with shallow growing media represent stressful conditions for plant survival, thus plants that survive and grow are important for maximizing economic and ecological benefits. While field trials are essential for selecting appropriate green roof plants, we wanted to determine whether plant leaf traits could predict changes in abundance (growth) to provide a more general framework for plant selection. We quantified leaf traits and derived life-history traits (Grime's C-S-R strategies) for 13 species used in a four-year green roof experiment involving five plant life forms. Changes in canopy density in monocultures and mixtures containing one to five life forms were determined and related to plant traits using multiple regression. We expected traits related to stress-tolerance would characterize the species that best grew in this relatively harsh setting. While all species survived to the end of the experiment, canopy species diversity in mixture treatments was usually much lower than originally planted. Most species grew slower in mixture compared to monoculture, suggesting that interspecific competition reduced canopy diversity. Species dominant in mixture treatments tended to be fast-growing ruderals and included both native and non-native species. Specific leaf area was a consistently strong predictor of final biomass and the change in abundance in both monoculture and mixture treatments. Some species in contrasting life-form groups showed compensatory dynamics, suggesting that life-form mixtures can maximize resilience of cover and biomass in the face of environmental fluctuations. This study confirms that plant traits can be used to predict growth performance in green roof ecosystems. While rapid canopy growth is desirable for green roofs, maintenance of species diversity may require engineering of conditions that favor less aggressive species.
Ecological Responses to Extreme Flooding Events: A Case Study with a Reintroduced Bird
Soriano-Redondo, Andrea; Bearhop, Stuart; Cleasby, Ian R.; Lock, Leigh; Votier, Stephen C.; Hilton, Geoff M.
2016-01-01
In recent years numerous studies have documented the effects of a changing climate on the world’s biodiversity. Although extreme weather events are predicted to increase in frequency and intensity and are challenging to organisms, there are few quantitative observations on the survival, behaviour and energy expenditure of animals during such events. We provide the first data on activity and energy expenditure of birds, Eurasian cranes Grus grus, during the winter of 2013–14, which saw the most severe floods in SW England in over 200 years. We fitted 23 cranes with telemetry devices and used remote sensing data to model flood dynamics during three consecutive winters (2012–2015). Our results show that during the acute phase of the 2013–14 floods, potential feeding areas decreased dramatically and cranes restricted their activity to a small partially unflooded area. They also increased energy expenditure (+15%) as they increased their foraging activity and reduced resting time. Survival did not decline in 2013–14, indicating that even though extreme climatic events strongly affected time-energy budgets, behavioural plasticity alleviated any potential impact on fitness. However under climate change scenarios such challenges may not be sustainable over longer periods and potentially could increase species vulnerability. PMID:27345214
E. J. Fichtner; S. C. Lynch; D. M. Rizzo
2009-01-01
Because the role of soil inoculum of Phytophthora ramorum in the sudden oak death disease cycle is not well understood, this work addresses survival, chlamydospore production, pathogen suppression, and splash dispersal of the pathogen in infested forest soils. Colonized rhododendron and bay laurel leaf disks were placed in mesh sachets before...
Kreutzweiser, David; Thompson, Dean; Grimalt, Susana; Chartrand, Derek; Good, Kevin; Scarr, Taylor
2011-09-01
The non-target effects of an azadirachtin-based systemic insecticide used for control of wood-boring insect pests in trees were assessed on litter-dwelling earthworms, leaf-shredding aquatic insects, and microbial communities in terrestrial and aquatic microcosms. The insecticide was injected into the trunks of ash trees at a rate of 0.2 gazadirachtin cm(-1) tree diameter in early summer. At the time of senescence, foliar concentrations in most (65%) leaves where at or below detection (<0.01 mg kg(-1) total azadirachtin) and the average concentration among leaves overall at senescence was 0.19 mg kg(-1). Leaves from the azadirachtin-treated trees at senescence were added to microcosms and responses by test organisms were compared to those in microcosms containing leaves from non-treated ash trees (controls). No significant reductions were detected among earthworm survival, leaf consumption rates, growth rates, or cocoon production, aquatic insect survival and leaf consumption rates, and among terrestrial and aquatic microbial decomposition of leaf material in comparison to controls. In a further set of microcosm tests containing leaves from intentional high-dose trees, the only significant, adverse effect detected was a reduction in microbial decomposition of leaf material, and only at the highest test concentration (∼6 mg kg(-1)). Results indicated no significant adverse effects on litter-dwelling earthworms or leaf-shredding aquatic insects at concentrations up to at least 30 × the expected field concentrations at operational rates, and at 6 × expected field concentrations for adverse effects on microbial decomposition. We conclude that when azadirachtin is used as a systemic insecticide in trees for control of insect pests such as the invasive wood-boring beetle, emerald ash borer, resultant foliar concentrations in senescent leaf material are likely to pose little risk of harm to decomposer invertebrates. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
Leaf trait variations associated with habitat affinity of tropical karst tree species.
Geekiyanage, Nalaka; Goodale, Uromi Manage; Cao, Kunfang; Kitajima, Kaoru
2018-01-01
Karst hills, that is, jagged topography created by dissolution of limestone and other soluble rocks, are distributed extensively in tropical forest regions, including southern parts of China. They are characterized by a sharp mosaic of water and nutrient availability, from exposed hilltops with poor soil development to valleys with occasional flooding, to which trees show species-specific distributions. Here we report the relationship of leaf functional traits to habitat preference of tropical karst trees. We described leaf traits of 19 tropical tree species in a seasonal karst rainforest in Guangxi Province, China, 12 species in situ and 13 ex situ in a non-karst arboretum, which served as a common garden, with six species sampled in both. We examined how the measured leaf traits differed in relation to species' habitat affinity and evaluated trait consistency between natural habitats vs . the arboretum. Leaf mass per area (LMA) and optical traits (light absorption and reflectance characteristics between 400 and 1,050 nm) showed significant associations with each other and habitats, with hilltop species showing high values of LMA and low values of photochemical reflectance index (PRI). For the six species sampled in both the karst forest and the arboretum, LMA, leaf dry matter content, stomatal density, and vein length per area showed inconsistent within-species variations, whereas some traits (stomatal pore index and lamina thickness) were similar between the two sites. In conclusion, trees specialized in exposed karst hilltops with little soils are characterized by thick leaves with high tissue density indicative of conservative resources use, and this trait syndrome could potentially be sensed remotely with PRI.
Leaf Assemblages across the Cretaceous-Tertiary Boundary in the Raton Basin, New Mexico and Colorado
NASA Astrophysics Data System (ADS)
Wolfe, Jack A.; Upchurch, Garland R., Jr.
1987-08-01
Analyses of leaf megafossil and dispersed leaf cuticle assemblages indicate that major ecologic disruption and high rates of extinction occurred in plant communities at the Cretaceous-Tertiary boundary in the Raton Basin. In diversity increase, the early Paleocene vegetational sequence mimics normal short-term ecologic succession, but on a far longer time scale. No difference can be detected between latest Cretaceous and early Paleocene temperatures, but precipitation markedly increased at the boundary. Higher survival rate of deciduous versus evergreen taxa supports occurrence of a brief cold interval (<1 year), as predicted in models of an “impact winter.”
Pannuti, L E R; Baldin, E L L; Hunt, T E; Paula-Moraes, S V
2016-02-01
Spodoptera frugiperda J.E. Smith (fall armyworm) is considered one of the most destructive pests of corn throughout the Americas. Although this pest has been extensively studied, little is known about its larval movement and feeding behavior on reproductive compared to vegetative corn stages. Thus, we conducted studies with two corn stages (R1 and R3) and four corn plant zones (tassel, above ear, ear zone, and below ear) in the field at Concord, NE (USA), and in the field and greenhouse at Botucatu, SP (Brazil), to investigate on-plant larval movement. The effects of different corn tissues (opened tassel, closed tassel, silk, kernel, and leaf), two feeding sequence scenarios (closed tassel-leaf-silk-kernel and leaf-silk-kernel), and artificial diet (positive control) on larval survival and development were also evaluated in the laboratory. Ear zone has a strong effect on feeding choice and survival of fall armyworm larvae regardless of reproductive corn stage. Feeding site choice is made by first-instar. Corn leaves of reproductive plants were not suitable for early instar development, but silk and kernel tissues had a positive effect on survival and development of fall armyworm larvae on reproductive stage corn. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Flood dependency of cottonwood establishment along the Missouri River, Montana, USA
Scott, M.L.; Auble, G.T.; Friedman, J.M.
1997-01-01
Flow variability plays a central role in structuring the physical environment of riverine ecosystems. However, natural variability in flows along many rivers has been modified by water management activities. We quantified the relationship between flow and establishment of the dominant tree (plains cottonwood, Populus deltoides subsp. monilifera) along one of the least hydrologically altered alluvial reaches of the Missouri River: Coal Banks Landing to Landusky, Montana. Our purpose was to refine our understanding of how local fluvial geomorphic processes condition the relationship between flow regime and cottonwood recruitment. We determined date and elevation of tree establishment and related this information to historical peak stage and discharge over a 112-yr hydrologic record. Of the excavated trees, 72% were established in the year of a flow >1400 m3/s (recurrence interval of 9.3 yr) or in the following 2 yr. Flows of this magnitude or greater create the necessary bare, moist establishment sites at an elevation high enough to allow cottonwoods to survive subsequent floods and ice jams. Almost all cottonwoods that have survived the most recent flood (1978) were established >1.2 m above the lower limit of perennial vegetation (active channel shelf). Most younger individuals were established between 0 and 1.2 m, and are unlikely to survive over the long term. Protection of riparian cottonwood forest along this National Wild and Scenic section of the Missouri River depends upon maintaining the historical magnitude, frequency, and duration of floods > 1400 m3/s. Here, a relatively narrow valley constrains lateral channel movement that could otherwise facilitate cottonwood recruitment at lower flows. Effective management of flows to promote or maintain cottonwood recruitment requires an understanding of locally dominant fluvial geomorphic processes.
Plant colonization and survival along a hydrological gradient: demography and niche dynamics.
Damgaard, Christian; Merlin, Amandine; Bonis, Anne
2017-01-01
Predicting the effect of a changing environment, e.g., caused by climate change, on realized niche dynamics, and consequently, biodiversity is a challenging scientific question that needs to be addressed. One promising approach is to use estimated demographic parameters for predicting plant abundance and occurrence probabilities. Using longitudinal pinpoint cover data sampled along a hydrological gradient in the Marais poitevin grasslands, France, the effect of the gradient on the demographic probabilities of colonization and survival was estimated. The estimated probabilities and calculated elasticities of survival and colonization covaried with the observed cover of the different species along the hydrological gradient. For example, the flooding tolerant grass A. stolonifera showed a positive response in both colonization and survival to flooding, and the hydrological gradient is clearly the most likely explanation for the occurrence pattern observed for A. stolonifera. The results suggest that knowledge on the processes of colonization and survival of the individual species along the hydrological gradient is sufficient for at least a qualitative understanding of species occurrences along the gradient. The results support the hypothesis that colonization has a predominant role for determining the ecological success along the hydrological gradient compared to survival. Importantly, the study suggests that it may be possible to predict the realized niche of different species from demographic studies. This is encouraging for the important endeavor of predicting realized niche dynamics.
Tharsis-triggered Flood Inundations of the Lowlands of Mars
NASA Technical Reports Server (NTRS)
Fairen, Alberto G.; Dohm, James M.; Baker, Victor R.; dePablo, Miguel A.
2003-01-01
Throughout the recorded history of Mars, liquid water has distinctly shaped its landscape, including the prominent circum-Chryse and the northwestern slope valleys outflow channel systems [1], and the extremely flat northern plains topography at the distal reaches of these outflow channel systems.Basing on the ideas of episodic greenhouse atmosphere and water stability on the lowlands of Mars [3], a conceptual scheme for water evolution and associated geomorphologic features on the northern plains can be proposed. This model highlights Tharsis-triggered flood inundations and their direct impact on shaping the northern plains, as well as making possible the existence of fossil and/or extant life.Possible biologic evolution throughout the resulting different climatic and hydrologic conditions would account for very distinct metabolic pathways for hypothesized organisms capable of surviving and perhaps evolving in each aqueous environment, those that existed in the dry and cold periods between the flood inundations, and those organisms that could survive both extremes. Terrestrial microbiota, chemolithotrophic and heterotrophic bacteria, provide exciting analogues for such potential extremophile existence in Mars, especially where long-lived, magmatic-driven hydrothermal activity is indicated [14].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, T.J.; Temple, S.; Sengupta-Gopalan, C.
1996-05-15
Oats (Avena sativa L. lodi) tolerant of rhizosphere infestation by Pseudomonas syringae pv. tabaci when challenged by the pathogen experience tissue-specific alterations of ammonia assimilatory capabilities. Altered ammonia assimilatory potentials between root and leaf tissue result from selective inactivation of glutamine synthetase (GS) by the toxin Tabtoxinine-B-lactam (TBL). Root GS is sensitive and leaf GSs are resistant to TBL inactivation. With prolonged challenge by the pathogen root GS activity decreases but leaf GS specific activity increase. Higher leaf GS activity is due to decreased rates of degradation rather than increased GS synthesis. Higher leaf GS activity and elevated levels ofmore » GS polypeptide appear to result from a limited interaction between GS and TBL leading to the accumulation of a less active but more stable GS holoenzyme. Tolerant challenged oats besides surviving rhizosphere infestation, experience enhanced growth. A strong correlation exists between leaf GS activity and whole plant fresh weight, suggesting that tissue-specific changes in ammonia assimilatory capability provides the plant a more efficient mechanism for uptake and utilization of nitrogen.« less
An Atmospheric CO2 Record Across the End-Cretaceous Extinction
NASA Astrophysics Data System (ADS)
Royer, D. L.; Milligan, J. N.; Kowalczyk, J.
2017-12-01
A bolide impact and flood-basalt emissions likely caused large changes to the end-Cretaceous carbon cycle. Presently, there is only one proxy record for atmospheric CO2 that captures these changes (Beerling et al., 2002, PNAS 99: 7836-7840). These authors estimated CO2 from the calibrated stomatal indices of Ginkgo dated to within 105 yrs before and after the extinction ( 300-500 ppm) in addition to that of Stenochlaena, a fern disaster taxa present in the Raton Basin, New Mexico, <104 yrs after the bolide impact (>2300 ppm). We revisited these fossil collections and applied a newer and more robust CO2 proxy that is based on leaf gas-exchange principles and does not require calibrations with present-day species (Franks et al., 2014, Geophys Res Lett 41: 4685-4694). We reconstruct pre- and post-extinction CO2 concentrations of 650 ppm from Ginkgo, compared to 850 ppm directly after the extinction from Stenochlaena. This change in CO2 of 200 ppm can be readily explained with carbon cycle models as a consequence of either the bolide impact or flood-basalt emissions. Placing these CO2 estimates into the broader context of other leaf gas-exchange CO2 estimates for the Cenozoic, the Earth system sensitivity was 3 K per CO2 doubling during the early Paleogene, before steepening to >6 K several million years before the Eocene-Oligocene boundary.
Limousin, Jean-Marc; Bickford, Christopher P; Dickman, Lee T; Pangle, Robert E; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Osuna, Jessica L; Pockman, William T; McDowell, Nate G
2013-10-01
Leaf gas-exchange regulation plays a central role in the ability of trees to survive drought, but forecasting the future response of gas exchange to prolonged drought is hampered by our lack of knowledge regarding potential acclimation. To investigate whether leaf gas-exchange rates and sensitivity to drought acclimate to precipitation regimes, we measured the seasonal variations of leaf gas exchange in a mature piñon-juniper Pinus edulis-Juniperus monosperma woodland after 3 years of precipitation manipulation. We compared trees receiving ambient precipitation with those in an irrigated treatment (+30% of ambient precipitation) and a partial rainfall exclusion (-45%). Treatments significantly affected leaf water potential, stomatal conductance and photosynthesis for both isohydric piñon and anisohydric juniper. Leaf gas exchange acclimated to the precipitation regimes in both species. Maximum gas-exchange rates under well-watered conditions, leaf-specific hydraulic conductance and leaf water potential at zero photosynthetic assimilation all decreased with decreasing precipitation. Despite their distinct drought resistance and stomatal regulation strategies, both species experienced hydraulic limitation on leaf gas exchange when precipitation decreased, leading to an intraspecific trade-off between maximum photosynthetic assimilation and resistance of photosynthesis to drought. This response will be most detrimental to the carbon balance of piñon under predicted increases in aridity in the southwestern USA. © 2013 John Wiley & Sons Ltd.
Myers, Ronald L
2013-09-01
In the marshes dominated by palms, seeds face anaerobic substrates and long flooding periods. Some tree species are capable of growing both in flooded swamps and in areas with lower influence of the flood. I studied the potential settlement of various tree species in different macrohabitats in the Tortuguero floodplain using three experiments: (1) Manicaria saccifera and Raphia taedigera seed germination in palm-swamps and forests of slopes; (2) germination of R. taedigera seeds along a microtopographic gradient; and (3) seed germination and seedling height growth of six woody species (Dipteryx oleifera, Pterocarpus officinalis, Prioria copaifera, Pentaclethra macroloba, Carapa guianensis and Crudia acuminata) and two palms (R. taedigera and Manicaria saccifera) under different forest and swamp habitats. In the first experiment, I found that the palms germinated much earlier in the slope forest than in the palm-swamp. In the second experiment, in drier plots (less effect of flooding) germination began earlier than in the more humid plots. In the third experiment, woody species germinated faster than the studied palms, and some species do not tolerate flooded areas (marshes and swamps), so they cannot germinate or survive in them. Other woody species were removed from the slope forest, probably due to seed predators. Based on the presence or absence of these species in the environment of study were divided into: (1) obliged swamp species (R. taedigera and M saccifera), (2) swamp intolerant (D. oleifera), and (3) facultative wetland species (P officinalis, P copaifera, P macroloba, C. guianensis). Crudia acuminata does not seem to follow any of these categories.
Kiffer, Walace P; Mendes, Flavio; Casotti, Cinthia G; Costa, Larissa C; Moretti, Marcelo S
2018-01-01
We evaluated the effect of leaves of native and exotic tree species on the feeding activity and performance of the larvae of Triplectides gracilis, a typical caddisfly shredder in Atlantic Forest streams. Leaves of four native species that differ in chemistry and toughness (Hoffmannia dusenii, Miconia chartacea, Myrcia lineata and Styrax pohlii) and the exotic Eucalyptus globulus were used to determine food preferences and rates of consumption, production of fine particulate organic matter (FPOM), growth and survival of shredders. We hypothesized that the consumption rates of leaves of Eucalyptus and their effects on the growth and survival of shredders could be predicted by leaf chemistry and toughness. The larvae preferred to feed on soft leaves (H. dusenii and M. chartacea) independently of the content of nutrients (N and P) and secondary compounds (total phenolics). When such leaves were absent, they preferred E. globulus and did not consume the tough leaves (M. lineata and S. pohlii). In monodietary experiments, leaf consumption and FPOM production differed among the studied leaves, and the values observed for the E. globulus treatments were intermediate between the soft and tough leaves. The larvae that fed on H. dusenii and M. chartacea grew constantly over five weeks, while those that fed on E. globulus lost biomass. Larval survival was higher on leaves of H. dusenii, M. chartacea and S. pohlii than on E. globulus and M. lineata leaves. Although E. globulus was preferred over tougher leaves, long-term consumption of leaves of the exotic species may affect the abundance of T. gracilis in the studied stream. Additionally, our results suggest that leaf toughness can be a determining factor for the behavior of shredders where low-quality leaves are abundant, as in several tropical streams.
Survival, growth, and localization of epiphytic fitness mutants of pseudomonas syringae on leaves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beattie, G.A.; Lindow, S.E.
Among 82 epiphytic fitness mutants of a Pseudomonas syringae pv. syringae strain that were characterized in a previous study, 4 mutants were particularly intolerant of the stresses associated with dry leaf surfaces. These four mutants each exhibited distinctive behaviors when inoculated into and into plant leaves. For example, while non showed measurable growth on dry potato leaf surfaces, they grew to different population sizes in the intercellular space of bean leaves and on dry bean leaf surfaces, and one mutant appeared incapable of growth in both environments although it grew well on moist bean leaves. The presence of the parentalmore » strain did not influence the survival of the mutants immediately following exposure of leaves to dry, high-light incubation conditions, suggesting that the reduced survival of the mutants did not result from an inability to produce extracellular factors in planta. On moist bean leaves that were colonized by either a mutant or the wild type, the proportion of the total epiphytic population that was located in sizes protected from a surface sterilant was smaller for the mutants than for the wild type, indicating that the mutants were reduced in their ability to locate, multiply in, and/or survive in such protected sites. This reduced ability was only one of possible several factors contributing to the reduced epiphytic fitness of each mutant. Their reduced fitness was not specific to the host plant bean, since they also exhibited reduced fitness on the nonhost plant potato; the functions altered in these strains are thus of interest for their contribution to the general fitness of bacterial epiphytes. 52 refs., 6 figs., 1 tab.« less
Photosynthetic thermotolerance of woody savanna species in China is correlated with leaf life span
Zhang, Jiao-Lin; Poorter, L.; Hao, Guang-You; Cao, Kun-Fang
2012-01-01
Background and Aims Photosynthetic thermotolerance (PT) is important for plant survival in tropical and sub-tropical savannas. However, little is known about thermotolerance of tropical and sub-tropical wild plants and its association with leaf phenology and persistence. Longer-lived leaves of savanna plants may experience a higher risk of heat stress. Foliar Ca is related to cell integrity of leaves under stresses. In this study it is hypothesized that (1) species with leaf flushing in the hot-dry season have greater PT than those with leaf flushing in the rainy season; and (2) PT correlates positively with leaf life span, leaf mass per unit area (LMA) and foliar Ca concentration ([Ca]) across woody savanna species. Methods The temperature-dependent increase in minimum fluorescence was measured to assess PT, together with leaf dynamics, LMA and [Ca] for a total of 24 woody species differing in leaf flushing time in a valley-type savanna in south-west China. Key Results The PT of the woody savanna species with leaf flushing in the hot-dry season was greater than that of those with leaf flushing in the rainy season. Thermotolerance was positively associated with leaf life span and [Ca] for all species irrespective of the time of flushing. The associations of PT with leaf life span and [Ca] were evolutionarily correlated. Thermotolerance was, however, independent of LMA. Conclusions Chinese savanna woody species are adapted to hot-dry habitats. However, the current maximum leaf temperature during extreme heat stress (44·3 °C) is close to the critical temperature of photosystem II (45·2 °C); future global warming may increase the risk of heat damage to the photosynthetic apparatus of Chinese savanna species. PMID:22875810
Zhang, Jinzhe; Wei, Baoye; Yuan, Rongrong; Yu, Hao
2017-01-01
The developmental plasticity of leaf size and shape is important for leaf function and plant survival. However, the mechanisms by which plants form diverse leaves in response to environmental conditions are not well understood. Here, we identified TIE1-ASSOCIATED RING-TYPE E3 LIGASE1 (TEAR1) and found that it regulates leaf development by promoting the degradation of TCP INTERACTOR-CONTAINING EAR MOTIF PROTEIN1 (TIE1), an important repressor of CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors, which are key for leaf development. TEAR1 contains a typical C3H2C3-type RING domain and has E3 ligase activity. We show that TEAR1 interacts with the TCP repressor TIE1, which is ubiquitinated in vivo and degraded by the 26S proteasome system. We demonstrate that TEAR1 is colocalized with TIE1 in nuclei and negatively regulates TIE1 protein levels. Overexpression of TEAR1 rescued leaf defects caused by TIE1 overexpression, whereas disruption of TEAR1 resulted in leaf phenotypes resembling those caused by TIE1 overexpression or TCP dysfunction. Deficiency in TEAR partially rescued the leaf defects of TCP4 overexpression line and enhanced the wavy leaf phenotypes of jaw-5D. We propose that TEAR1 positively regulates CIN-like TCP activity to promote leaf development by mediating the degradation of the TCP repressor TIE1. PMID:28100709
Use of map analysis to elucidate flooding in an Australian Riparian River Red Gum Forest
NASA Astrophysics Data System (ADS)
Bren, L. J.; O'Neill, I. C.; Gibbs, N. L.
1988-07-01
Red gum (Eucalyptus camaldulensis) forests occur on extensive floodplains along the river Murray in Australia. This type of forest is unusual because of its high quality in a semiarid area, the absence of woody species other than red gum, and its survival on a deep, intractable, swelling clay soil of depths exceeding 20 m. This soil probably acts as an aquiclude. The forests require flooding to thrive and regenerate. For many years there has been speculation that irrigation regulation of the river was reducing forest flooding. A grid cell analysis of flood maps of areas flooded over a period of 22 years showed that vegetation communities and forest site quality were statistically related to the flood frequencies of sites. The percentage of forest inundated was dependent on the peak daily flow during the period of inundation. A historical analysis of the estimated percentage of forest inundated showed a substantial influence of river regulation on both timing and extent of inundation. Estimates of historical floodings showed that the environment is one that changes rapidly from wetland to dry land. Although not without limitations, the analysis produced information not available from other sources.
Impact of experimental flooding on larvae and pupae of dung-breeding Culicoides.
Steinke, S; Lühken, R; Kiel, E
2016-10-01
Culicoides biting midges (Diptera: Ceratopogonidae) spend the greatest part of their life in the larval stage. However, knowledge on the immature stages and the impact of abiotic factors on their development is still poor. Therefore, we investigated the effect of flooding on the larvae and pupae of Culicoides chiopterus (Meigen, 1830) and C. dewulfi Goetghebuer, 1936. In water, the larvae of both species showed head-to-tail flexions and sinuous flexions, at slow rates, but were not able to swim. Flooding of larvae for 24 h did not affect the number of emerging adults; flooding of pupae significantly reduced the emergence rate of C. chiopterus, compared to the control group, while C. dewulfi was not affected. Pupae were not able to float and no pupae survived flooding for 10 days. After flooding of larvae for 10 days, 50 % of C. chiopterus and 4 % of C. dewulfi completed the pre-adult development. During this treatment, 84 % of C. chiopterus and 48 % of C. dewulfi larvae pupated in water.
Lauridsen, Torsten; Glavina, Kyriaki; Colmer, Timothy David; Winkel, Anders; Irvine, Sarah; Lefmann, Kim; Feidenhans'l, Robert; Pedersen, Ole
2014-10-01
Floods can completely submerge terrestrial plants but some wetland species can sustain O2 and CO2 exchange with the environment via gas films forming on superhydrophobic leaf surfaces. We used high resolution synchrotron X-ray phase contrast micro-tomography in a novel approach to visualise gas films on submerged leaves of common cordgrass (Spartina anglica). 3D tomograms enabled a hitherto unmatched level of detail regarding the micro-topography of leaf gas films. Gas films formed only on the superhydrophobic adaxial leaf side (water droplet contact angle, Φ=162°) but not on the abaxial side (Φ=135°). The adaxial side of the leaves of common cordgrass is plicate with a longitudinal system of parallel grooves and ridges and the vast majority of the gas film volume was found in large ∼180μm deep elongated triangular volumes in the grooves and these volumes were connected to each neighbouring groove via a fine network of gas tubules (∼1.7μm diameter) across the ridges. In addition to the gas film retained on the leaf exterior, the X-ray phase contrast micro-tomography also successfully distinguished gas spaces internally in the leaf tissues, and the tissue porosity (gas volume per unit tissue volume) ranged from 6.3% to 20.3% in tip and base leaf segments, respectively. We conclude that X-ray phase contrast micro-tomography is a powerful tool to obtain quantitative data of exterior gas features on biological samples because of the significant difference in electron density between air, biological tissues and water. Copyright © 2014 Elsevier Inc. All rights reserved.
Flood scour monitoring system using fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Lin, Yung Bin; Lai, Jihn Sung; Chang, Kuo Chun; Li, Lu Sheng
2006-12-01
The exposure and subsequent undermining of pier/abutment foundations through the scouring action of a flood can result in the structural failure of a bridge. Bridge scour is one of the leading causes of bridge failure. Bridges subject to periods of flood/high flow require monitoring during those times in order to protect the traveling public. In this study, an innovative scour monitoring system using button-like fiber Bragg grating (FBG) sensors was developed and applied successfully in the field during the Aere typhoon period in 2004. The in situ FBG scour monitoring system has been demonstrated to be robust and reliable for real-time scour-depth measurements, and to be valid for indicating depositional depth at the Dadu Bridge. The field results show that this system can function well and survive a typhoon flood.
2010-09-01
The popular recognition of the Aloe barbadensis Miller (Aloe vera) plant as a therapeutic dermatologic agent has led to the widespread incorporation of Aloe vera leaf extracts in skincare products. Studies have suggested that Aloe vera in skincare preparations may enhance the induction of skin cancer by ultraviolet radiation. A 1-year study was conducted in mice to determine whether the topical application of creams containing Aloe vera plant extracts (aloe gel, whole leaf, or decolorized whole leaf) or creams containing aloe-emodin would enhance the photocarcinogenicity of simulated solar light (SSL). 1-YEAR STUDY: groups of 36 male and 36 female Crl:SKH-1 (hr -/hr -) hairless mice received topical applications of control cream or creams containing 3% or 6% (w/w) aloe gel, whole leaf, or decolorized whole leaf or 7.46 or 74.6 µg/g aloe-emodin to the dorsal skin region each weekday morning. The mice were irradiated with SSL emitted from filtered 6 kW xenon arc lamps each weekday afternoon. The topical applications of creams and irradiance exposures were conducted 5 days per week for a period of 40 weeks. A 12-week recovery/observation period followed the 40-week treatment/exposure period. Additional groups of 36 male and 36 female mice received no cream and were exposed to 0.00, 6.85, 13.70, or 20.55 mJ⋅CIE/cm2 SSL per day. Mice that received no cream treatment and were exposed to increasing levels of SSL showed significant SSL exposure-dependent decreases in survival and significant increases in the in-life observations of skin lesion onset, incidence, and multiplicity, and significant SSL exposure-dependent increases in the incidences and multiplicities of histopathology-determined squamous cell nonneoplastic skin lesions (squamous hyperplasia and focal atypical hyperplasia) and squamous cell neoplasms (papilloma, carcinoma in situ, and/or carcinoma). Squamous cell neoplasms were not detected in mice that received no SSL exposure. The topical treatment with the control cream of mice that were exposed to SSL did not impart a measurable effect when compared with comparable measurements in mice that received no cream treatment and were exposed to the same level of SSL, suggesting that the control cream used in these studies did not alter the efficiency of the SSL delivered to mice or the tolerability of mice to SSL. The application of aloe gel creams to mice had no effect on body weights, survival, or the in-life observations of skin lesion onset, incidence, or multiplicity. The administration of aloe gel creams to male mice had no effect on the incidences or multiplicities of histopathology-determined squamous cell nonneoplastic skin lesions or neoplasms. Female mice treated with aloe gel creams (3% and 6%) had significantly increased multiplicities of squamous cell neoplasms. There were no treatment-related effects on body weights, survival, or the in-life observations of skin lesion onset, incidence, or multiplicity in mice treated with the whole leaf creams. In male mice exposed to SSL and treated with the 6% whole leaf cream, a significant increase was observed in the multiplicity of squamous cell neoplasms. Female mice exposed to SSL and treated with the 3% whole leaf creams had significantly decreased multiplicity of squamous cell nonneoplastic lesions and significantly increased multiplicity of squamous cell neoplasms. Female mice exposed to SSL and treated with the 6% whole leaf cream had significantly decreased multiplicity of squamous cell nonneoplastic lesions. The application of decolorized whole leaf creams to mice had no effect on body weights, survival, or the in-life observations of skin lesion onset, incidence, or multiplicity. Male mice administered the 3% decolorized whole leaf cream had significantly increased multiplicity of squamous cell neoplasms. Female mice administered the 3% decolorized whole leaf cream had significantly decreased multiplicity of squamous cell nonneoplastic skin lesions and significantly increased multiplicity of squamous cell neoplasms. In female mice that received the 6% decolorized whole leaf cream, there was a significant increase in the multiplicity of squamous cell neoplasms. As with the Aloe vera plant extracts, the application of aloe-emodin creams to mice had no measurable effect on body weights, survival, or the in-life observations of skin lesion onset, incidence, or multiplicity. The administration of aloe-emodin creams to male mice had no effect on the incidence or multiplicity of histopathology-determined nonneoplastic skin lesions or squamous cell neoplasms. Female mice treated with the 74.6 µg/g aloe-emodin cream had significantly decreased multiplicity of histopathology-determined squamous cell nonneoplastic skin lesions and significantly increased multiplicity of squamous cell neoplasms. these experiments investigated the potential of topical application of creams containing extracts of Aloe barbadensis Miller plant (aloe gel, whole leaf, or decolorized whole leaf) or aloe-emodin to alter the photocarcinogenic activity of filtered xenon arc simulated solar light (SSL) in male and female SKH-1 hairless mice. Data on skin lesions were collected both on digital images during the in-life phase and by histopathologic evaluation at necropsy. No effects of creams upon SSL-induced skin lesions were identified from data collected during the in-life phase. ALOE GEL OR ALOE-EMODIN: under the conditions of these studies, there was a weak enhancing effect of aloe gel or aloe-emodin on the photocarcinogenic activity of SSL in female but not in male SKH-1 mice based on an increase in the multiplicity of histopathologically-determined squamous cell neoplasms. under the conditions of these studies, there was a weak enhancing effect of aloe whole leaf or decolorized whole leaf on the photocarcinogenic activity of SSL in both male and female SKH-1 mice based on an increase in the multiplicity of histopathologically-determined squamous cell neoplasms.
Regional drivers of clutch loss reveal important trade-offs for beach-nesting birds
Schlacher, Thomas A.; Weston, Michael A.; Huijbers, Chantal M.; Anderson, Chris; Gilby, Ben L.; Olds, Andrew D.; Connolly, Rod M.; Schoeman, David S.
2016-01-01
Coastal birds are critical ecosystem constituents on sandy shores, yet are threatened by depressed reproductive success resulting from direct and indirect anthropogenic and natural pressures. Few studies examine clutch fate across the wide range of environments experienced by birds; instead, most focus at the small site scale. We examine survival of model shorebird clutches as an index of true clutch survival at a regional scale (∼200 km), encompassing a variety of geomorphologies, predator communities, and human use regimes in southeast Queensland, Australia. Of the 132 model nests deployed and monitored with cameras, 45 (34%) survived the experimental exposure period. Thirty-five (27%) were lost to flooding, 32 (24%) were depredated, nine (7%) buried by sand, seven (5%) destroyed by people, three (2%) failed by unknown causes, and one (1%) was destroyed by a dog. Clutch fate differed substantially among regions, particularly with respect to losses from flooding and predation. ‘Topographic’ exposure was the main driver of mortality of nests placed close to the drift line near the base of dunes, which were lost to waves (particularly during storms) and to a lesser extent depredation. Predators determined the fate of clutches not lost to waves, with the depredation probability largely influenced by region. Depredation probability declined as nests were backed by higher dunes and were placed closer to vegetation. This study emphasizes the scale at which clutch fate and survival varies within a regional context, the prominence of corvids as egg predators, the significant role of flooding as a source of nest loss, and the multiple trade-offs faced by beach-nesting birds and those that manage them. PMID:27672510
Regional drivers of clutch loss reveal important trade-offs for beach-nesting birds.
Maslo, Brooke; Schlacher, Thomas A; Weston, Michael A; Huijbers, Chantal M; Anderson, Chris; Gilby, Ben L; Olds, Andrew D; Connolly, Rod M; Schoeman, David S
2016-01-01
Coastal birds are critical ecosystem constituents on sandy shores, yet are threatened by depressed reproductive success resulting from direct and indirect anthropogenic and natural pressures. Few studies examine clutch fate across the wide range of environments experienced by birds; instead, most focus at the small site scale. We examine survival of model shorebird clutches as an index of true clutch survival at a regional scale (∼200 km), encompassing a variety of geomorphologies, predator communities, and human use regimes in southeast Queensland, Australia. Of the 132 model nests deployed and monitored with cameras, 45 (34%) survived the experimental exposure period. Thirty-five (27%) were lost to flooding, 32 (24%) were depredated, nine (7%) buried by sand, seven (5%) destroyed by people, three (2%) failed by unknown causes, and one (1%) was destroyed by a dog. Clutch fate differed substantially among regions, particularly with respect to losses from flooding and predation. 'Topographic' exposure was the main driver of mortality of nests placed close to the drift line near the base of dunes, which were lost to waves (particularly during storms) and to a lesser extent depredation. Predators determined the fate of clutches not lost to waves, with the depredation probability largely influenced by region. Depredation probability declined as nests were backed by higher dunes and were placed closer to vegetation. This study emphasizes the scale at which clutch fate and survival varies within a regional context, the prominence of corvids as egg predators, the significant role of flooding as a source of nest loss, and the multiple trade-offs faced by beach-nesting birds and those that manage them.
Growth and Survival of Hardwoods and Pine Interplanted with European Alder
William T. Plass
1977-01-01
European black alder is recommended for planting on many surface mine spoils in the eastern United States. It grows rapidly on a range of spoil types and contributes to soil enrichment by fixing nitrogen and providing a leaf fall rich in nutrients. This study evaluated the effect of alder on the survival and growth of five hardwood and five pine species. After 10...
Betaine accumulation and (/sup 14/C)formate metabolism in water-stressed barley leaves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, A.D.; Nelsen, C.E.
1978-01-01
Barley (Hordeum vulgare L.) plants at the three-leaf stage were water-stressed by flooding the rooting medium with polyethylene glycol 6000 with an osmotic potential of -19 bars, or by withholding water. While leaf water potential fell and leaf kill progressed, the betaine (trimethylglycine) content of the second leaf blade rose from about 0.4 micromole to about 1.5 micromoles in 4 days. The time course of betaine accumulation resembled that of proline. Choline levels in unstressed second leaf blades were low (<0.1 micromole per blade) and remained low during water stress. Upon relief of stress, betaine-like proline-remained at a high concentrationmore » in drought-killed leaf zones, but betaine did not disappear as rapidly as proline during recovery. When (methyl-/sup 14/C)choline was applied to second leaf blades of intact plants in the growth chamber, water-stressed plants metabolized 5 to 10 times more /sup 14/C label to betaine than control plants during 22 hours. When infiltrated with tracer quantities of (/sup 14/C)formate and incubated for various times in darkness or light, segments cut from water-stressed leaf blades incorporated about 2- to 10-fold more /sup 14/C into betaine than did segments from unstressed leaves. In segments from stressed leaves incubated with (/sup 14/C)formate for about 18 hours in darkness, betaine was always the principal /sup 14/C-labeled soluble metabolite. This /sup 14/C label was located exclusively in the N-methyl groups of betaine; thus, reducing equivalents were available in stressed leaves for the reductive steps of methyl group biosynthesis from formate. Incorporation of /sup 14/C from formate into choline was also increased in stressed leaf tissue, but choline was not a major product formed from (/sup 14/C)formate. These results are consistent with a net de novo synthesis of betaine from 1- and 2-carbon precursors during water stress and indicate that the betaine so accumulated may be a metabolically inert end product.« less
USDA-ARS?s Scientific Manuscript database
Larval survival of Cry1F-susceptible (FL), -resistant (PR and Cry1F-RR), and -heterozygous (FL x PR and Cry1F-RS) populations of the fall armyworm, Spodoptera frugiperda (J.E. Smith) to purified Cry1F protein and corn leaf tissue of seven Bacillus thuringiensis (Bt) corn hybrids and five non-Bt corn...
Yadav, Ram P.; Singh, Ajay
2014-01-01
The effect of sub-lethal doses (40% and 80% of LC50/24h) of plant derived molluscicides of singly, binary (1:1) and tertiary (1:1:1) combinations of the Rutin, Ellagic acid, Betulin and taraxerol with J. gossypifolia latex, leaf and stem bark powder extracts and their active component on the reproduction of freshwater snail Lymnaea acuminata have been studied. It was observed that the J. gossypifolia latex, stem bark, individual leaf and their combinations with other plant derived active molluscicidal components caused a significant reduction in fecundity, hatchability and survival of young snails. It is believed that sub-lethal exposure of these molluscicides on snail reproduction is a complex process involving more than one factor in reducing the reproductive capacity. PMID:25229223
Olubajo, Awobajo Funmileyi; Adefunke, Adegoke Olufeyisipe; Olubusola, Iranloye Bolanle; Ibilola, Olatunji-Bello Ibiyemi
2013-01-01
The impact of aqueous leaf extract of Hybanthus enneaspermus (HEaq) on pregnancy factors and litter survival was investigated in Sprague Dawley (SD) rat. Control group received distilled water while the test group received 2g/kg body weight of HEaq orally. Blood samples were collected on days one and twenty of pregnancy for total blood count, serum thyroid hormone, thyroid stimulating hormone (TSH) and thyrotropin releasing hormone (TRH) assay. Half the number of rats in each group was sacrificed on day nineteen of pregnancy and the placenta and foetus were removed and weighed. The second half carried their pregnancy to term. Number and weights of litter were recorded at birth and the litter were also subjected to righting reflex test. Post-natal survival rate was determined for each group while effect of HEaq was also examined in-vivo on the activities of pregnant myometrial muscle. HEaq significantly decreased (p<0.05) foetal weight, placenta weight, foetal growth and survival, number and weights of litter at birth, maternal serum triiodotyroxine T3 and TSH level. Mean corpuscular haemoglobin, white blood cell count, platelet count and lipid profile were significantly increased (P<0.05). HEaq increased the frequency and percentage contraction of gravid myometrial muscle in a dose dependent manner. Maternal consumption of aqueous leaf extract of Hybanthus enneaspermus adversely affected pregnancy and development of the foetus, as it precipitated resorption of developing foetus and reduced size and weight of litter at term.
Archaeological and Historical Reconnaissance Survey of the Ugum River Valley, Guam, Mariana Islands,
1978-08-01
important food plant in Micro- neisa; and betel nut (Areca catechu), chewed for its stimulant effect . Although feral yams (Dioscorea sp.) were not found...determining action required to mitigate the adverse effects of proposed dam construction and sub- sequent flooding of the upper Ugum River drainage. The dam...A:33). Plant identifications were made with reference to Stone (1970). Zone 1 is a mixed, broad- leafed , tropical forest (Fosberg’s Unit 2;. Tracey et
Wentz, Dennis A.; Graczyk, David J.
1982-01-01
From 1960 to 1979, winter floods seem to have had the greatest adverse effect on the survival of brown trout eggs and sac fry. Although construction of the FRS has eliminated some spawning gravels in the flood pool owing to sedimentation, the wild trout have adapted by using spawning grounds above the flood pool more extensively and intensively. The FRS has not blocked the upstream migration of spawning trout, but it has eliminated similar migrations of fish that compete with and prey on the trout. Controlled streamflows downstream from the FRS have had a stabilizing influence on the limited trout reproduction in this region.
Jergenson, Abigail M; Miller, David A W; Neuman-Lee, Lorin A; Warner, Daniel A; Janzen, Fredric J
2014-03-01
Extreme environmental events (EEEs) are likely to exert deleterious effects on populations. From 1996 to 2012 we studied the nesting dynamics of a riverine population of painted turtles (Chrysemys picta) that experienced seven years with significantly definable spring floods. We used capture-mark-recapture methods to estimate the relationships between more than 5 m and more than 6 m flood events and population parameters. Contrary to expectations, flooding was not associated with annual differences in survival, recruitment or annual population growth rates of the adult female segment of the population. These findings suggest that female C. picta exhibit resiliency to key EEE, which are expected to increase in frequency under climate change.
Wang, Chuan-Hua; Li, Jun-Qing; Yang, Ying
2011-12-01
To investigate the effects of atmospheric nitrogen deposition on the seedlings regeneration of Liquidambar formosana, a greenhouse experiment was conducted, in which, the low light- and nitrogen supplies were controlled similar to those in typical L. formosana secondary forests, with the effects of different light- and nitrogen supply on the L. formosana seedlings survival, leaf functional traits, biomass allocation, and gas exchange studied. The whole plant light compensation point (LCP(whoIe-plant)) of the seedlings was estimated with a whole plant carbon balance model, and then compared with the understory photosynthetic active radiance (PAR) of the typical secondary forests. Under 3.0% and 6.0% of full sunlight, eutrophic nitrogen supply led to a decrease of seedlings survival (shade tolerance) and specific leaf area (SLA), but had no obvious effects on the seedlings biomass allocation. At eutrophic nitrogen supply, light intensity had significant effects on the leaf area based maximum assimilation rate, whereas increasing nitrogen supply under low light induced the increase of leaf mass based dark respiration rate. Both light intensity and nitrogen supply had significant effects on the mass based leaf respiration rate, and the interaction of light and nitrogen had significant effects on the mass based stem respiration rate. Increasing nitrogen supply increased the LCP(wholeplant), under 3.0%, 6.0%, and 12.0% of full sunlight, but decreased the LCP(whoIe-plant) under 25.0% of full sunlight. The decrease of the seedlings shade tolerance induced by the increasing nitrogen supply under low light was correlated with the variations of the seedlings carbon balance capacity. Under the background of elevated atmospheric nitrogen deposition, the maintenance of L. formosana populations in China would more depend on disturbances and gap regeneration, and the population dynamics would be deeply affected.
Valladares, Fernando; Gianoli, Ernesto; Saldaña, Alfredo
2011-08-01
While the climbing habit allows vines to reach well-lit canopy areas with a minimum investment in support biomass, many of them have to survive under the dim understorey light during certain stages of their life cycle. But, if the growth/survival trade-off widely reported for trees hold for climbing plants, they cannot maximize both light-interception efficiency and shade avoidance (i.e. escaping from the understorey). The seven most important woody climbers occurring in a Chilean temperate evergreen rainforest were studied with the hypothesis that light-capture efficiency of climbers would be positively associated with their abundance in the understorey. Species abundance in the understorey was quantified from their relative frequency and density in field plots, the light environment was quantified by hemispherical photography, the photosynthetic response to light was measured with portable gas-exchange analyser, and the whole shoot light-interception efficiency and carbon gain was estimated with the 3-D computer model Y-plant. Species differed in specific leaf area, leaf mass fraction, above ground leaf area ratio, light-interception efficiency and potential carbon gain. Abundance of species in the understorey was related to whole shoot features but not to leaf level features such as specific leaf area. Potential carbon gain was inversely related to light-interception efficiency. Mutual shading among leaves within a shoot was very low (<20 %). The abundance of climbing plants in this southern rainforest understorey was directly related to their capacity to intercept light efficiently but not to their potential carbon gain. The most abundant climbers in this ecosystem match well with a shade-tolerance syndrome in contrast to the pioneer-like nature of climbers observed in tropical studies. The climbers studied seem to sacrifice high-light searching for coping with the dim understorey light.
Mitra, R; Cuesta-Alonso, E; Wayadande, A; Talley, J; Gilliland, S; Fletcher, J
2009-07-01
Human pathogens can contaminate leafy produce in the field by various routes. We hypothesized that interactions between Escherichia coli O157:H7 and spinach are influenced by the route of introduction and the leaf microenvironment. E. coli O157:H7 labeled with green fluorescent protein was dropped onto spinach leaf surfaces, simulating bacteria-laden raindrops or sprinkler irrigation, and survived on the phylloplane for at least 14 days, with increasing titers and areas of colonization over time. The same strains placed into the rhizosphere by soil infiltration remained detectable on very few plants and in low numbers (10(2) to 10(6) CFU/g fresh tissue) that decreased over time. Stem puncture inoculations, simulating natural wounding, rarely resulted in colonization or multiplication. Bacteria forced into the leaf interior survived for at least 14 days in intercellular spaces but did not translocate or multiply. Three spinach cultivars with different leaf surface morphologies were compared for colonization by E. coli O157:H7 introduced by leaf drop or soil drench. After 2 weeks, cv. Bordeaux hosted very few bacteria. More bacteria were seen on cv. Space and were dispersed over an area of up to 0.3 mm2. The highest bacterial numbers were observed on cv. Tyee but were dispersed only up to 0.15 mm2, suggesting that cv. Tyee may provide protected niches or more nutrients or may promote stronger bacterial adherence. These findings suggest that the spinach phylloplane is a supportive niche for E. coli O157:H7, but no conclusive evidence was found for natural entry into the plant interior. The results are relevant for interventions aimed at minimizing produce contamination by human pathogens.
Tadesse, Solomon Asmamaw; Wubneh, Zewdu Birhanu
2017-01-05
In Ethiopia, the leaves of Syzygium guineense have been found useful for the prevention and cure of malaria, and demonstrated antiplasmodial activity in vitro. Nevertheless, no scientific study has been conducted to confirm its antimalarial activity in vivo. Therefore, the objective of the study was to evaluate the antimalarial effect of Syzygium guineense leaf extract in mice. Inoculation of the study mice was carried out by using the malaria parasite, Plasmodium berghei. The plant extract was prepared at 200, 400 and 600 mg/kg. Chloroquine and distilled water was administered to the positive and negative control groups respectively. Parameters like parasitaemia, survival time and body weight were determined following standard tests (4-day suppressive, Rane's and repository tests). Syzygium guineense crude leaf extract displayed considerable (p < 0.05) parasite suppression at doses of 600 and 400 mg/kg in a 4-day suppressive test with chemosuppressive value of 59.39 and 49.09% respectively. S. guineense crude leaf extract also showed dose-dependent schizontocidal activity in both the repository and curative tests. The extract also prevented body weight loss and prolonged survival date of mice significantly (P < 0.05) at the highest dose employed in the study. Qualitative chemical assay for S. guineense methanolic leaf extract revealed that the plant is endowed with different plant secondary metabolites exemplified by terpenoids, alkaloids, triterpenes, flavonoids, anthraquinones, tannins, glycosides, saponins and phenols. Syzygium guineense leaf extract possess antimalarial activity in mice. The test substance was found to be safe with no observable signs of toxicity in the study mice. The results of the present work confirmed the in vitro antiplasmodial finding and traditional claims in vivo in mice. Therefore, Syzygium guineense could be regarded as a potential source to develop safe, effective and affordable antimalarial agent.
Aspects of hatching success and chick survival in Gull-billed Terns in coastal Virginia
Eyler, T.B.; Erwin, R.M.; Stotts, D.B.; Hatfield, J.S.
1999-01-01
Because of a long-term population decline in Gull-billed Terns (Sterna nilotica) nesting along the coast of Virginia, we began a three year study in 1994 to monitor hatching success and survival of Gull-billed Tern chicks at several Virginia colony sites. Colonies were located on either small, storm-deposited shellpiles along marsh fringes or large, sandshell overwash fans of barrier islands. Nests were monitored one to three times a week for hatching success, and enclosures were installed around selected nests to monitor chick survival from hatching to about two weeks of age. Hatching success was lower in marsh colonies than island colonies, and was lower in 1995 than in 1994 and 1996, primarily because of flooding. The average brood size of nests where at least one chick hatched was 1.99 chicks. Survival rates of chicks to 14 days depended on hatch order and year but not brood size (one vs. two or more) or time of season. A-chicks had higher survival rates than B-chicks and third-hatched C-chicks (0.661 compared to 0.442 and 0.357, respectively). The year effect was significant only for A-chicks, with lower survival in 1994 (0.50) than in 1995 (0.765) or 1996 (0.758). Overall, productivity was low (0.53 chick per nest) compared to estimates for colonies in Denmark, and was attributable to nest flooding by spring and storm-driven high tides and chick predation, presumably mostly by Great Horned Owls (Bubo virginianus).
Han, Yongqiang; Li, Pei; Gong, Shaolong; Yang, Lang; Wen, Lizhang; Hou, Maolin
2016-01-01
Silicon (Si) amendment to plants can confer enhanced resistance to herbivores. In the present study, the physiological and cytological mechanisms underlying the enhanced resistance of plants with Si addition were investigated for one of the most destructive rice pests in Asian countries, the rice leaf folder, Cnaphalocrocis medinalis (Guenée). Activities of defense-related enzymes, superoxide dismutase, peroxidase, catalase, phenylalanine ammonia-lyase, and polyphenol oxidase, and concentrations of malondialdehyde and soluble protein in leaves were measured in rice plants with or without leaf folder infestation and with or without Si amendment at 0.32 g Si/kg soil. Silicon amendment significantly reduced leaf folder larval survival. Silicon addition alone did not change activities of defense-related enzymes and malondialdehyde concentration in rice leaves. With leaf folder infestation, activities of the defense-related enzymes increased and malondialdehyde concentration decreased in plants amended with Si. Soluble protein content increased with Si addition when the plants were not infested, but was reduced more in the infested plants with Si amendment than in those without Si addition. Regardless of leaf folder infestation, Si amendment significantly increased leaf Si content through increases in the number and width of silica cells. Our results show that Si addition enhances rice resistance to the leaf folder through priming the feeding stress defense system, reduction in soluble protein content and cell silicification of rice leaves. PMID:27124300
Nguyen, Hoa T; Meir, Patrick; Sack, Lawren; Evans, John R; Oliveira, Rafael S; Ball, Marilyn C
2017-08-01
Leaf structure and water relations were studied in a temperate population of Avicennia marina subsp. australasica along a natural salinity gradient [28 to 49 parts per thousand (ppt)] and compared with two subspecies grown naturally in similar soil salinities to those of subsp. australasica but under different climates: subsp. eucalyptifolia (salinity 30 ppt, wet tropics) and subsp. marina (salinity 46 ppt, arid tropics). Leaf thickness, leaf dry mass per area and water content increased with salinity and aridity. Turgor loss point declined with increase in soil salinity, driven mainly by differences in osmotic potential at full turgor. Nevertheless, a high modulus of elasticity (ε) contributed to maintenance of high cell hydration at turgor loss point. Despite similarity among leaves in leaf water storage capacitance, total leaf water storage increased with increasing salinity and aridity. The time that stored water alone could sustain an evaporation rate of 1 mmol m -2 s -1 ranged from 77 to 126 min from subspecies eucalyptifolia to ssp. marina, respectively. Achieving full leaf hydration or turgor would require water from sources other than the roots, emphasizing the importance of multiple water sources to growth and survival of Avicennia marina across gradients in salinity and aridity. © 2017 John Wiley & Sons Ltd.
Han, Yongqiang; Lei, Wenbin; Wen, Lizhang; Hou, Maolin
2015-01-01
The rice leaf folder, Cnaphalocrocis medinalis (Guenée), is one of the most destructive rice pests in Asian countries. Rice varieties resistant to the rice leaf folder are generally characterized by high silicon content. In this study, silicon amendment, at 0.16 and 0.32 g Si/kg soil, enhanced resistance of a susceptible rice variety to the rice leaf folder. Silicon addition to rice plants at both the low and high rates significantly extended larval development and reduced larval survival rate and pupation rate in the rice leaf folder. When applied at the high rate, silicon amendment reduced third-instars’ weight gain and pupal weight. Altogether, intrinsic rate of increase, finite rate of increase and net reproduction rate of the rice leaf folder population were all reduced at both the low and high silicon addition rates. Although the third instars consumed more in silicon-amended treatments, C:N ratio in rice leaves was significantly increased and food conversion efficiencies were reduced due to increased silicon concentration in rice leaves. Our results indicate that reduced food quality and food conversion efficiencies resulted from silicon addition account for the enhanced resistance in the susceptible rice variety to the rice leaf folder. PMID:25837635
Yin, Y.; Wu, Y.; Bartell, S.M.; Cosgriff, R.
2009-01-01
The widespread loss of oak-hickory forests and the impacts of flood have been major issues of ecological interest concerning forest succession in the Upper Mississippi River (UMR) floodplain. The data analysis from two comprehensive field surveys indicated that Quercus was one of the dominant genera in the UMR floodplain ecosystem prior to the 1993 flood and constituted 14% of the total number of trees and 28% of the total basal area. During the post-flood recovery period through 2006, Quercus demonstrated slower recovery rates in both the number of trees (4%) and basal area (17%). In the same period, Carya recovered greatly from the 1993 flood in terms of the number of trees (11%) and basal area (2%), compared to its minor status before the flood. Further analyses suggested that different species responded to the 1993 flood with varying tolerance and different succession strategies. In this study, the relation of flood-caused mortality rates and DBH, fm(d), can be expressed in negative exponential functions for each species. The results of this research also indicate that the growth functions are different for each species and might also be different between pre- and post-flood time periods. These functions indicate different survival strategies and emergent properties in responding to flood impacts. This research enhances our understanding of forest succession patterns in space and time in the UPR floodplain. And such understanding might be used to predict long-term impacts of floods on UMR floodplain forest dynamics in support of management and restoration. ?? 2009 Elsevier B.V.
Paludification and forest retreat in northern oceanic environments.
Crawford, R M M; Jeffree, C E; Rees, W G
2003-01-01
Examination of temperature variations over the past century for Europe and the Arctic from northern Norway to Siberia suggests that variations in the North Atlantic Oscillation are associated with an increase in oceanicity in certain maritime regions. A southward depression of the tree line in favour of wet heaths, bogs and wetland tundra communities is also observed in northern oceanic environments. The physiological basis for this change in ecological succession from forest to bog is discussed in relation to the long-term effects of flooding on tree survival. The heightened values currently detected in the North Atlantic Oscillation Index, together with rising winter temperatures, and increased rainfall in many areas in northern Europe, presents an increasing risk of paludification with adverse consequences for forest regeneration, particularly in areas with oceanic climates. Climatic warming in oceanic areas may increase the area covered by bogs and, contrary to general expectations, lead to a retreat rather than an advance in the northern limit of the boreal forest. High water-table levels are not automatically detrimental to forest survival as can be seen in swamp, bottom land and mangrove forests. Consequently, the inhibitory effects of flooding on tree survival and regeneration in northern regions should not be uncritically accepted as merely due to high water levels. Evidence is discussed which suggests that physiological and ecological factors may interact to inhibit forest regeneration in habitats where there is a risk of prolonged winter-flooding combined with warmer winters and cool moist summers.
Paludification and Forest Retreat in Northern Oceanic Environments
CRAWFORD, R. M. M.; JEFFREE, C. E.; REES, W. G.
2003-01-01
Examination of temperature variations over the past century for Europe and the Arctic from northern Norway to Siberia suggests that variations in the North Atlantic Oscillation are associated with an increase in oceanicity in certain maritime regions. A southward depression of the treeline in favour of wet heaths, bogs and wetland tundra communities is also observed in northern oceanic environments. The physiological basis for this change in ecological succession from forest to bog is discussed in relation to the long‐term effects of flooding on tree survival. The heightened values currently detected in the North Atlantic Oscillation Index, together with rising winter temperatures, and increased rainfall in many areas in northern Europe, presents an increasing risk of paludification with adverse consequences for forest regeneration, particularly in areas with oceanic climates. Climatic warming in oceanic areas may increase the area covered by bogs and, contrary to general expectations, lead to a retreat rather than an advance in the northern limit of the boreal forest. High water‐table levels are not automatically detrimental to forest survival as can be seen in swamp, bottomland and mangrove forests. Consequently, the inhibitory effects of flooding on tree survival and regeneration in northern regions should not be uncritically accepted as merely due to high water levels. Evidence is discussed which suggests that physiological and ecological factors may interact to inhibit forest regeneration in habitats where there is a risk of prolonged winter‐flooding combined with warmer winters and cool moist summers. PMID:12509342
Lenchi, Nesrine; İnceoğlu, Özgül; Kebbouche-Gana, Salima; Gana, Mohamed Lamine; Llirós, Marc; Servais, Pierre; García-Armisen, Tamara
2013-01-01
The microorganisms inhabiting many petroleum reservoirs are multi-extremophiles capable of surviving in environments with high temperature, pressure and salinity. Their activity influences oil quality and they are an important reservoir of enzymes of industrial interest. To study these microbial assemblages and to assess any modifications that may be caused by industrial practices, the bacterial and archaeal communities in waters from four Algerian oilfields were described and compared. Three different types of samples were analyzed: production waters from flooded wells, production waters from non-flooded wells and injection waters used for flooding (water-bearing formations). Microbial communities of production and injection waters appeared to be significantly different. From a quantitative point of view, injection waters harbored roughly ten times more microbial cells than production waters. Bacteria dominated in injection waters, while Archaea dominated in production waters. Statistical analysis based on the relative abundance and bacterial community composition (BCC) revealed significant differences between production and injection waters at both OTUs0.03 and phylum level. However, no significant difference was found between production waters from flooded and non-flooded wells, suggesting that most of the microorganisms introduced by the injection waters were unable to survive in the production waters. Furthermore, a Venn diagram generated to compare the BCC of production and injection waters of one flooded well revealed only 4% of shared bacterial OTUs. Phylogenetic analysis of bacterial sequences indicated that Alpha-, Beta- and Gammaproteobacteria were the main classes in most of the water samples. Archaeal sequences were only obtained from production wells and each well had a unique archaeal community composition, mainly belonging to Methanobacteria, Methanomicrobia, Thermoprotei and Halobacteria classes. Many of the bacterial genera retrieved had already been reported as degraders of complex organic molecules and pollutants. Nevertheless, a large number of unclassified bacterial and archaeal sequences were found in the analyzed samples, indicating that subsurface waters in oilfields could harbor new and still-non-described microbial species. PMID:23805243
Cavallaro, Michael C; Barnhart, M Christopher; Hoback, W Wyatt
2017-04-01
Terrestrial insects in water can often delay or escape drowning by floating and swimming. However, we observed that flooding of pitfall traps baited with rotting carrion results in high overnight mortality of captured beetles and reasoned that this risk may be enhanced by microbial respiration. By assessing carrion beetle (Coleoptera: Silphidae) response to flooding, tolerance to immersion, and swimming behavior, we offer insights to this cause of death and beetle behavioral physiology. Response of buried Nicrophorus orbicollis Say to soil flooding resulted in beetles moving to the soil surface. The lethal time to 50% mortality (LT50 (immersion); mean ± 95% CI) for Nicrophorus investigator Zetterstedt, Nicrophorus marginatus F., Necrodes surinamensis F., and Thanatophilus lapponicus Herbst was 14.8 ± 2.3, 9.0 ± 3.3, 3.2 ± 1.1, and 12.1 ± 2.5 h, respectively. Swimming behavior and survival time of N. investigator was tested using yeast:sucrose (Y:S) solutions to create a eutrophic, severely hypoxic aqueous environment. LT50 (swimming) for N. investigator was 7.5 ± 1.4, 6.0 ± 1.7, and 4.2 ± 1.2 h for the low, medium, and high Y:S solutions, respectively, and >24.0 h in control treatments. Nicrophorus investigator survived nearly twice as long when completely immersed in deoxygenated water, as might occur in flooded burrows, than when swimming on the surface. We document for the first time, the rapid induction of hypoxic coma and death for a terrestrial insect from enhanced microbial activity and CO2 production of an aqueous environment, as well as suggestions on trapping protocols related to the federally endangered Nicrophorus americanus Olivier. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ghazy, Noureldin Abuelfadl; Amano, Hiroshi
2016-07-01
This study investigated the feasibility of using the cannibalistic habits of the mite Neoseiulus californicus (McGregor) and controlling the relative humidity (RH) to prolong the survival time during the storage or shipment of this predatory mite. Three-day-old mated and unmated females were individually kept at 25 ± 1 °C in polypropylene vials (1.5 mL), each containing one of the following items or combinations of items: a kidney bean leaf disk (L), N. californicus eggs (E), and both a leaf disk and the eggs (LE). Because the leaf disk increased the RH in the vials, the RH was 95 ± 2 % under the L and LE treatments and 56 ± 6 % under the E treatment. The median lethal time (LT50) exceeded 50 days for the mated and unmated females under the LE treatment. However, it did not exceed 11 or 3 days for all females under the L or E treatments, respectively. Under the LE treatment, the mated and unmated females showed cannibalistic behavior and consumed an average of 5.2 and 4.6 eggs/female/10 days. Some of the females that survived for LT50 under each treatment were transferred and fed normally with a constant supply of Tetranychus urticae Koch. Unmated females were provided with adult males for 24 h for mating. Only females previously kept at LE treatment produced numbers of eggs equivalent to the control females (no treatment is applied). The results suggested that a supply of predator eggs and leaf material might have furnished nutrition and water vapor, respectively, and that this combination prolonged the survival time of N. californicus during storage. Moreover, this approach poses no risk of pest contamination in commercial products.
Leaf and Life History Traits Predict Plant Growth in a Green Roof Ecosystem
Lundholm, Jeremy; Heim, Amy; Tran, Stephanie; Smith, Tyler
2014-01-01
Green roof ecosystems are constructed to provide services such as stormwater retention and urban temperature reductions. Green roofs with shallow growing media represent stressful conditions for plant survival, thus plants that survive and grow are important for maximizing economic and ecological benefits. While field trials are essential for selecting appropriate green roof plants, we wanted to determine whether plant leaf traits could predict changes in abundance (growth) to provide a more general framework for plant selection. We quantified leaf traits and derived life-history traits (Grime’s C-S-R strategies) for 13 species used in a four-year green roof experiment involving five plant life forms. Changes in canopy density in monocultures and mixtures containing one to five life forms were determined and related to plant traits using multiple regression. We expected traits related to stress-tolerance would characterize the species that best grew in this relatively harsh setting. While all species survived to the end of the experiment, canopy species diversity in mixture treatments was usually much lower than originally planted. Most species grew slower in mixture compared to monoculture, suggesting that interspecific competition reduced canopy diversity. Species dominant in mixture treatments tended to be fast-growing ruderals and included both native and non-native species. Specific leaf area was a consistently strong predictor of final biomass and the change in abundance in both monoculture and mixture treatments. Some species in contrasting life-form groups showed compensatory dynamics, suggesting that life-form mixtures can maximize resilience of cover and biomass in the face of environmental fluctuations. This study confirms that plant traits can be used to predict growth performance in green roof ecosystems. While rapid canopy growth is desirable for green roofs, maintenance of species diversity may require engineering of conditions that favor less aggressive species. PMID:24978031
Procópio, Thamara Figueiredo; Fernandes, Kenner Morais; Pontual, Emmanuel Viana; Ximenes, Rafael Matos; de Oliveira, Aline Rafaella Cardoso; Souza, Carolina de Santana; Melo, Ana Maria Mendonça de Albuquerque; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes; Martins, Gustavo Ferreira; Napoleão, Thiago Henrique
2015-01-01
In this study, a leaf extract from Schinus terebinthifolius was evaluated for effects on survival, development, and midgut of A. aegypti fourth instar larvae (L4), as well as for toxic effect on Artemia salina. Leaf extract was obtained using 0.15 M NaCl and evaluated for phytochemical composition and lectin activity. Early L4 larvae were incubated with the extract (0.3–1.35%, w/v) for 8 days, in presence or absence of food. Polymeric proanthocyanidins, hydrolysable tannins, heterosid and aglycone flavonoids, cinnamic acid derivatives, traces of steroids, and lectin activity were detected in the extract, which killed the larvae at an LC50 of 0.62% (unfed larvae) and 1.03% (fed larvae). Further, the larvae incubated with the extract reacted by eliminating the gut content. No larvae reached the pupal stage in treatments at concentrations between 0.5% and 1.35%, while in the control (fed larvae), 61.7% of individuals emerged as adults. The extract (1.0%) promoted intense disorganization of larval midgut epithelium, including deformation and hypertrophy of cells, disruption of microvilli, and vacuolization of cytoplasms, affecting digestive, enteroendocrine, regenerative, and proliferating cells. In addition, cells with fragmented DNA were observed. Separation of extract components by solid phase extraction revealed that cinnamic acid derivatives and flavonoids are involved in larvicidal effect of the extract, being the first most efficient in a short time after larvae treatment. The lectin present in the extract was isolated, but did not show deleterious effects on larvae. The extract and cinnamic acid derivatives were toxic to A. salina nauplii, while the flavonoids showed low toxicity. S. terebinthifolius leaf extract caused damage to the midgut of A. aegypti larvae, interfering with survival and development. The larvicidal effect of the extract can be attributed to cinnamic acid derivatives and flavonoids. The data obtained using A. salina indicates that caution should be used when employing this extract as a larvicidal agent. PMID:25974067
Yee, Donald A.; Kaufman, Michael G.; Ezeakacha, Nnaemeka F.
2015-01-01
Allocation patterns of carbon and nitrogen in animals are influenced by food quality and quantity, as well as by inherent metabolic and physiological constraints within organisms. Whole body stoichiometry also may vary between the sexes who differ in development rates and reproductive allocation patterns. In aquatic containers, such as tree holes and tires, detrital inputs, which vary in amounts of carbon and nitrogen, form the basis of the mosquito-dominated food web. Differences in development times and mass between male and female mosquitoes may be the result of different reproductive constraints, which could also influence patterns of nutrient allocation. We examined development time, survival, and adult mass for males and females of three co-occurring species, Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus, across environments with different ratios of animal and leaf detritus. We quantified the contribution of detritus to biomass using stable isotope analysis and measured tissue carbon and nitrogen concentrations among species and between the sexes. Development times were shorter and adults were heavier for Aedes in animal versus leaf-only environments, whereas Culex development times were invariant across detritus types. Aedes displayed similar survival across detritus types whereas C. quinquefasciatus showed decreased survival with increasing leaf detritus. All species had lower values of 15N and 13C in leaf-only detritus compared to animal, however, Aedes generally had lower tissue nitrogen compared to C. quinquefasciatus. There were no differences in the C:N ratio between male and female Aedes, however, Aedes were different than C. quinquefasciatus adults, with male C. quinquefasciatus significantly higher than females. Culex quinquefasciatus was homeostatic across detrital environments. These results allow us to hypothesize an underlying stoichiometric explanation for the variation in performance of different container species under similar detrital environments, and if supported may assist in explaining the production of vector populations in nature. PMID:26244643
Yee, Donald A; Kaufman, Michael G; Ezeakacha, Nnaemeka F
2015-01-01
Allocation patterns of carbon and nitrogen in animals are influenced by food quality and quantity, as well as by inherent metabolic and physiological constraints within organisms. Whole body stoichiometry also may vary between the sexes who differ in development rates and reproductive allocation patterns. In aquatic containers, such as tree holes and tires, detrital inputs, which vary in amounts of carbon and nitrogen, form the basis of the mosquito-dominated food web. Differences in development times and mass between male and female mosquitoes may be the result of different reproductive constraints, which could also influence patterns of nutrient allocation. We examined development time, survival, and adult mass for males and females of three co-occurring species, Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus, across environments with different ratios of animal and leaf detritus. We quantified the contribution of detritus to biomass using stable isotope analysis and measured tissue carbon and nitrogen concentrations among species and between the sexes. Development times were shorter and adults were heavier for Aedes in animal versus leaf-only environments, whereas Culex development times were invariant across detritus types. Aedes displayed similar survival across detritus types whereas C. quinquefasciatus showed decreased survival with increasing leaf detritus. All species had lower values of 15N and 13C in leaf-only detritus compared to animal, however, Aedes generally had lower tissue nitrogen compared to C. quinquefasciatus. There were no differences in the C:N ratio between male and female Aedes, however, Aedes were different than C. quinquefasciatus adults, with male C. quinquefasciatus significantly higher than females. Culex quinquefasciatus was homeostatic across detrital environments. These results allow us to hypothesize an underlying stoichiometric explanation for the variation in performance of different container species under similar detrital environments, and if supported may assist in explaining the production of vector populations in nature.
Procópio, Thamara Figueiredo; Fernandes, Kenner Morais; Pontual, Emmanuel Viana; Ximenes, Rafael Matos; de Oliveira, Aline Rafaella Cardoso; Souza, Carolina de Santana; Melo, Ana Maria Mendonça de Albuquerque; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes; Martins, Gustavo Ferreira; Napoleão, Thiago Henrique
2015-01-01
In this study, a leaf extract from Schinus terebinthifolius was evaluated for effects on survival, development, and midgut of A. aegypti fourth instar larvae (L4), as well as for toxic effect on Artemia salina. Leaf extract was obtained using 0.15 M NaCl and evaluated for phytochemical composition and lectin activity. Early L4 larvae were incubated with the extract (0.3-1.35%, w/v) for 8 days, in presence or absence of food. Polymeric proanthocyanidins, hydrolysable tannins, heterosid and aglycone flavonoids, cinnamic acid derivatives, traces of steroids, and lectin activity were detected in the extract, which killed the larvae at an LC50 of 0.62% (unfed larvae) and 1.03% (fed larvae). Further, the larvae incubated with the extract reacted by eliminating the gut content. No larvae reached the pupal stage in treatments at concentrations between 0.5% and 1.35%, while in the control (fed larvae), 61.7% of individuals emerged as adults. The extract (1.0%) promoted intense disorganization of larval midgut epithelium, including deformation and hypertrophy of cells, disruption of microvilli, and vacuolization of cytoplasms, affecting digestive, enteroendocrine, regenerative, and proliferating cells. In addition, cells with fragmented DNA were observed. Separation of extract components by solid phase extraction revealed that cinnamic acid derivatives and flavonoids are involved in larvicidal effect of the extract, being the first most efficient in a short time after larvae treatment. The lectin present in the extract was isolated, but did not show deleterious effects on larvae. The extract and cinnamic acid derivatives were toxic to A. salina nauplii, while the flavonoids showed low toxicity. S. terebinthifolius leaf extract caused damage to the midgut of A. aegypti larvae, interfering with survival and development. The larvicidal effect of the extract can be attributed to cinnamic acid derivatives and flavonoids. The data obtained using A. salina indicates that caution should be used when employing this extract as a larvicidal agent.
NASA Astrophysics Data System (ADS)
Soegiyanto; Rindawati
2018-01-01
This research was conducted in the flood plain Bonorowo in Lamongan East Java Province. The area was inundated almost every year, but people still survive and remain settled at the sites. This research is to identify and analyze the social vulnerability in the flood plains on the characteristics puddle Bonorowo This research method is the study of the characteristics and livelihood strategies of the communities living on marginal lands (floodplains Bonorowo) are regions prone to flooding / inundation. Based on the object of this study is a survey research method mix / mix method, which merge or combination of methods of quantitative and qualitative methods, so it will be obtained a description of a more comprehensive and holistic. The results obtained in this study are; Social vulnerability is not affected by the heightened puddles. Social capital is abundant making society safer and more comfortable to keep their activities and settle in the region
Evolution and mechanisms of plant tolerance to flooding stress
Jackson, Michael B.; Ishizawa, Kimiharu; Ito, Osamu
2009-01-01
Background In recognition of the 200th anniversary of Charles Darwin's birth, this short article on flooding stress acknowledges not only Darwin's great contribution to the concept of evolution but also to the study of plant physiology. In modern biology, Darwin-inspired reductionist physiology continues to shed light on mechanisms that confer competitive advantage in many varied and challenging environments, including those where flooding is prevalent. Scope Mild flooding is experienced by most land plants but as its severity increases, fewer species are able to grow and survive. At the extreme, a highly exclusive aquatic lifestyle appears to have evolved numerous times over the past 120 million years. Although only 1–2% of angiosperms are aquatics, some of their adaptive characteristics are also seen in those adopting an amphibious lifestyle where flooding is less frequent. Lowland rice, the staple cereal for much of tropical Asia falls into this category. But, even amongst dry-land dwellers, or certain of their sub-populations, modest tolerance to occasional flooding is to be found, for example in wheat. The collection of papers summarized in this article describes advances to the understanding of mechanisms that explain flooding tolerance in aquatic, amphibious and dry-land plants. Work to develop more tolerant crops or manage flood-prone environments more effectively is also included. The experimental approaches range from molecular analyses, through biochemistry and metabolomics to whole-plant physiology, plant breeding and ecology. PMID:19145714
46 CFR 174.320 - Damage survival.
Code of Federal Regulations, 2010 CFR
2010-10-01
... angle of heel in each stage of flooding must not exceed 30 degrees or the angle of downflooding whichever is less. (b) The final waterline, taking into account sinkage, heel, and trim, must be below the...
46 CFR 174.320 - Damage survival.
Code of Federal Regulations, 2011 CFR
2011-10-01
... angle of heel in each stage of flooding must not exceed 30 degrees or the angle of downflooding whichever is less. (b) The final waterline, taking into account sinkage, heel, and trim, must be below the...
Dynamic analysis of an inflatable dam subjected to a flood
NASA Astrophysics Data System (ADS)
Lowery, K.; Liapis, S.
A dynamic simulation of the response of an inflatable dam subjected to a flood is carried out to determine the survivability envelope of the dam where it can operate without rupture, or overflow. The free-surface flow problem is solved in two dimensions using a fully nonlinear mixed Eulerian-Lagrangian formulation. The dam is modeled as an elastic shell inflated with air and simply supported from two points. The finite element method is employed to determine the dynamic response of the structure using ABAQUS with a shell element. The problem is solved in the time domain which allows the prediction of a number of transient phenomena such as the generation of upstream advancing waves, the dynamic structural response and structural failure. Failure takes place when the dam either ruptures or overflows. Stresses in the dam material were monitored to determine when rupture occurs. An iterative study was performed to find the serviceability envelope of the dam in terms of the internal pressure and the flood Froude number for two flood depths. It was found that existing inflatable dams are quite effective in suppressing floods for a relatively wide range of flood velocities.
NASA Astrophysics Data System (ADS)
Abelleira, O. J.
2011-12-01
The African tulip tree, Spathodea campanulata, has been introduced to and dominates many post-agricultural secondary forests in the moist tropics, particularly in islands. Some consider these novel forests have null to negative ecological value, yet they appear to restore ecosystem processes on degraded sites. This study describes the litterfall mass and seasonality, canopy phenology, and microclimate of S. campanulata forests on alluvial and karst substrates in northern Puerto Rico. These substrates have different water drainage properties and I hypothesized that (1) annual leaf fall mass and seasonality would differ between substrate types; because (2) leaf fall would be related to water availability and seasonality. I used analysis of variance to compare annual and biweekly litterfall mass across three sites on each substrate type, and multiple linear regression analysis to relate biweekly litterfall to environmental variables. Litterfall mass was high (13.8 Mg/ha/yr, n = 6, SE = 0.60) yet its components did not differ by substrate type except for reproductive part mass which was higher on karst due to more S. campanulata flowers. Leaf fall had a bimodal seasonality and was negatively related to the number of dry days indicating it occurs when water is readily available or in excess as during floods. Observations show systematic leaf senescence in this deciduous species can be caused by water and nutrient demand from flowering. Litterfall mass and seasonality of novel S. campanulata forests is similar to that of native forests in Puerto Rico, yet flower fall appears to be higher than that of tropical forests worldwide. The environmental variables that affect litterfall seasonality and canopy phenology are similar to those in tropical forests in Puerto Rico and elsewhere. Litterfall seasonality and canopy phenology regulate understory microclimate, and influence the establishment and growth of juvenile trees and other organisms within S. campanulata forests. Thus, the forest ecosystem processes and properties restored by novel S. campanulata forests facilitate tree species establishment, growth, and turnover in deforested, abandoned, and degraded agricultural lands in Puerto Rico. This study illustrates how anthropogenic land use change and species transport interact to modify the phenology of current forest cover, and suggests that anthropogenic climate change that modifies seasonal patterns of tempreature and precipitation will have an influence on the litterfall and phenology of novel S. campanulata forests.
Swimming against the tide: resilience of a riverine turtle to recurrent extreme environmental events
Jergenson, Abigail M.; Miller, David A. W.; Neuman-Lee, Lorin A.; Warner, Daniel A.; Janzen, Fredric J.
2014-01-01
Extreme environmental events (EEEs) are likely to exert deleterious effects on populations. From 1996 to 2012 we studied the nesting dynamics of a riverine population of painted turtles (Chrysemys picta) that experienced seven years with significantly definable spring floods. We used capture–mark–recapture methods to estimate the relationships between more than 5 m and more than 6 m flood events and population parameters. Contrary to expectations, flooding was not associated with annual differences in survival, recruitment or annual population growth rates of the adult female segment of the population. These findings suggest that female C. picta exhibit resiliency to key EEE, which are expected to increase in frequency under climate change. PMID:24621555
NASA Astrophysics Data System (ADS)
Schaefer, Janet R.; Scott, William E.; Evans, William C.; Jorgenson, Janet; McGimsey, Robert G.; Wang, Bronwen
2008-07-01
A mass of snow and ice 400-m-wide and 105-m-thick began melting in the summit crater of Mount Chiginagak volcano sometime between November 2004 and early May 2005, presumably owing to increased heat flux from the hydrothermal system, or possibly from magma intrusion and degassing. In early May 2005, an estimated 3.8 × 106 m3 of sulfurous, clay-rich debris and acidic water, with an accompanying acidic aerosol component, exited the crater through a tunnel at the base of a glacier that breaches the south crater rim. Over 27 km downstream, the acidic waters of the flood inundated an important salmon spawning drainage, acidifying Mother Goose Lake from surface to depth (approximately 0.5 km3 in volume at a pH of 2.9 to 3.1), killing all aquatic life, and preventing the annual salmon run. Over 2 months later, crater lake water sampled 8 km downstream of the outlet after considerable dilution from glacial meltwater was a weak sulfuric acid solution (pH = 3.2, SO4 = 504 mg/L, Cl = 53.6 mg/L, and F = 7.92 mg/L). The acid flood waters caused severe vegetation damage, including plant death and leaf kill along the flood path. The crater lake drainage was accompanied by an ambioructic flow of acidic aerosols that followed the flood path, contributing to defoliation and necrotic leaf damage to vegetation in a 29 km2 area along and above affected streams, in areas to heights of over 150 m above stream level. Moss species killed in the event contained high levels of sulfur, indicating extremely elevated atmospheric sulfur content. The most abundant airborne phytotoxic constituent was likely sulfuric acid aerosols that were generated during the catastrophic partial crater lake drainage event. Two mechanisms of acidic aerosol formation are proposed: (1) generation of aerosol mist through turbulent flow of acidic water and (2) catastrophic gas exsolution. This previously undocumented phenomenon of simultaneous vegetation-damaging acidic aerosols accompanying drainage of an acidic crater lake has important implications for the study of hazards associated with active volcanic crater lakes.
Schaefer, J.R.; Scott, W.E.; Evans, William C.; Jorgenson, J.; McGimsey, R.G.; Wang, B.
2008-01-01
A mass of snow and ice 400-m-wide and 105-m-thick began melting in the summit crater of Mount Chiginagak volcano sometime between November 2004 and early May 2005, presumably owing to increased heat flux from the hydrothermal system, or possibly from magma intrusion and degassing. In early May 2005, an estimated 3.8??106 m3 of sulfurous, clay-rich debris and acidic water, with an accompanying acidic aerosol component, exited the crater through a tunnel at the base of a glacier that breaches the south crater rim. Over 27 km downstream, the acidic waters of the flood inundated an important salmon spawning drainage, acidifying Mother Goose Lake from surface to depth (approximately 0.5 km3 in volume at a pH of 2.9 to 3.1), killing all aquatic life, and preventing the annual salmon run. Over 2 months later, crater lake water sampled 8 km downstream of the outlet after considerable dilution from glacial meltwater was a weak sulfuric acid solution (pH = 3.2, SO4 = 504 mg/L, Cl = 53.6 mg/L, and F = 7.92 mg/L). The acid flood waters caused severe vegetation damage, including plant death and leaf kill along the flood path. The crater lake drainage was accompanied by an ambioructic flow of acidic aerosols that followed the flood path, contributing to defoliation and necrotic leaf damage to vegetation in a 29 km2 area along and above affected streams, in areas to heights of over 150 m above stream level. Moss species killed in the event contained high levels of sulfur, indicating extremely elevated atmospheric sulfurcontent. The most abundant airborne phytotoxic constituent was likely sulfuric acid aerosols that were generated during the catastrophic partial crater lake drainage event. Two mechanisms of acidic aerosol formation are proposed: (1) generation of aerosol mist through turbulent flow of acidic water and (2) catastrophic gas exsolution. This previously undocumented phenomenon of simultaneous vegetationdamaging acidic aerosols accompanying drainage of an acidic crater lake has important implications for the study of hazards associated with active volcanic crater lakes. Copyright 2008 by the American Geophysical Union.
Impacts of a spring heat wave on canopy processes in a northern hardwood forest.
Filewod, Ben; Thomas, Sean C
2014-02-01
Heat wave frequency, duration, and intensity are predicted to increase with global warming, but the potential impacts of short-term high temperature events on forest functioning remain virtually unstudied. We examined canopy processes in a forest in Central Ontario following 3 days of record-setting high temperatures (31–33 °C) that coincided with the peak in leaf expansion of dominant trees in late May 2010. Leaf area dynamics, leaf morphology, and leaf-level gas-exchange were compared to data from prior years of sampling (2002–2008) at the same site, focusing on Acer saccharum Marsh., the dominant tree in the region. Extensive shedding of partially expanded leaves was observed immediately following high temperature days, with A. saccharum losing ca. 25% of total leaf production but subsequently producing an unusual second flush of neoformed leaves. Both leaf losses and subsequent reflushing were highest in the upper canopy; however, retained preformed leaves and neoformed leaves showed reduced size, resulting in an overall decline in end-of-season leaf area index of 64% in A. saccharum, and 16% in the entire forest. Saplings showed lower leaf losses, but also a lower capacity to reflush relative to mature trees. Both surviving preformed and neoformed leaves had severely depressed photosynthetic capacity early in the summer of 2010, but largely regained photosynthetic competence by the end of the growing season. These results indicate that even short-term heat waves can have severe impacts in northern forests, and suggest a particular vulnerability to high temperatures during the spring period of leaf expansion in temperate deciduous forests.
Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests.
Poorter, Lourens
2009-03-01
Shade tolerance is the central paradigm for understanding forest succession and dynamics, but there is considerable debate as to what the salient features of shade tolerance are, whether adult leaves show similar shade adaptations to seedling leaves, and whether the same leaf adaptations are found in forests under different climatic control. Here, adult leaf and metamer traits were measured for 39 tree species from a tropical moist semi-evergreen forest (1580 mm rain yr(-1)) and 41 species from a dry deciduous forest (1160 mm yr(-1)) in Bolivia. Twenty-six functional traits were measured and related to species regeneration light requirements.Adult leaf traits were clearly associated with shade tolerance. Different, rather than stronger, shade adaptations were found for moist compared with dry forest species. Shade adaptations exclusively found in the evergreen moist forest were related to tough and persistent leaves, and shade adaptations in the dry deciduous forest were related to high light interception and water use.These results suggest that, for forests differing in rainfall seasonality, there is a shift in the relative importance of functional leaf traits and performance trade-offs that control light partitioning. In the moist evergreen forest leaf traits underlying the growth-survival trade-off are important, whereas in the seasonally deciduous forest leaf traits underlying the growth trade-off between low and high light might become important.
Sabu, Thomas K; Vinod, K V
2009-01-01
The population dynamics of the rubber plantation litter beetle, Luprops tristis Fabricius 1801 (Coleoptera: Tenebrionidae) was assessed in relation to the phenology of leaf shedding and defoliation pattern of para rubber trees, Hevea brasiliensis Müll. Arg (Malpighiales: Euphorbiaceae), during a two year study period. The abundance of adults, larvae and pupae per 1m(2) of litter sample was recorded. Post dormancy beetles appeared in leaf litter following annual leaf shedding, whereas larvae, pupae and teneral adults were present after leaf flush. No stages were recorded from plantations following the summer rains until the annual litter fall in the next season. Parental adults peaked at the time of leaf sprouting and tender leaf fall. Larvae and teneral adults peaked at the time of premature fall of green leaves and flowers. Teneral adults of six age classes were recorded and all entered dormancy irrespective of the feeding time available to each age class. Females outnumbered males in the parent generation, while the sex ratio of new generation adults was not biased towards either sex. The phenological stages of rubber trees included leaf fall in late December and early January, leaf sprouting and new leaf production in January and flowering in February. All feeding stages of L. tristis peaked in abundance when premature leaves are most abundant in the leaf litter. Prediction of the timing of appearance of various developmental stages of L. tristis in plantations, invasion into buildings and intensity of population build up in rubber belts is possible by tracking the phenology of leaf fall in rubber plantations, time of return of post dormancy adults and the onset of summer rainfall. Perfect synchrony was recorded between the field return of parental adults with annual leaf shedding, the oviposition phase of parental adults with tender leaf fall at the time of leaf sprouting, and larval and teneral adult stages with premature fall of leaves. Premature leaf availability is suggested as contributing to the reproductive efficiency of parental adults, the survival of early developmental stages and of new generation adults during dormancy.
Sabu, Thomas K.; Vinod, K.V.
2009-01-01
The population dynamics of the rubber plantation litter beetle, Luprops tristis Fabricius 1801 (Coleoptera: Tenebrionidae) was assessed in relation to the phenology of leaf shedding and defoliation pattern of para rubber trees, Hevea brasiliensis Müll. Arg (Malpighiales: Euphorbiaceae), during a two year study period. The abundance of adults, larvae and pupae per 1m2 of litter sample was recorded. Post dormancy beetles appeared in leaf litter following annual leaf shedding, whereas larvae, pupae and teneral adults were present after leaf flush. No stages were recorded from plantations following the summer rains until the annual litter fall in the next season. Parental adults peaked at the time of leaf sprouting and tender leaf fall. Larvae and teneral adults peaked at the time of premature fall of green leaves and flowers. Teneral adults of six age classes were recorded and all entered dormancy irrespective of the feeding time available to each age class. Females outnumbered males in the parent generation, while the sex ratio of new generation adults was not biased towards either sex. The phenological stages of rubber trees included leaf fall in late December and early January, leaf sprouting and new leaf production in January and flowering in February. All feeding stages of L. tristis peaked in abundance when premature leaves are most abundant in the leaf litter. Prediction of the timing of appearance of various developmental stages of L. tristis in plantations, invasion into buildings and intensity of population build up in rubber belts is possible by tracking the phenology of leaf fall in rubber plantations, time of return of post dormancy adults and the onset of summer rainfall. Perfect synchrony was recorded between the field return of parental adults with annual leaf shedding, the oviposition phase of parental adults with tender leaf fall at the time of leaf sprouting, and larval and teneral adult stages with premature fall of leaves. Premature leaf availability is suggested as contributing to the reproductive efficiency of parental adults, the survival of early developmental stages and of new generation adults during dormancy. PMID:20050775
Wang, Q C; Valkonen, J P T
2008-12-01
Sweet potato chlorotic stunt virus (SPCSV; Closteroviridae) and Sweet potato feathery mottle virus (SPFMV; Potyviridae) interact synergistically and cause severe diseases in co-infected sweetpotato plants (Ipomoea batatas). Sweetpotato is propagated vegetatively and virus-free planting materials are pivotal for sustainable production. Using cryotherapy, SPCSV and SPCSV were eliminated from all treated single-virus-infected and co-infected shoot tips irrespective of size (0.5-1.5mm including 2-4 leaf primordia). While shoot tip culture also eliminated SPCSV, elimination of SPFMV failed in 90-93% of the largest shoot tips (1.5mm) using this technique. Virus distribution to different leaf primordia and tissues within leaf primordia in the shoot apex and petioles was not altered by co-infection of the viruses in the fully virus-susceptible sweetpotato genotype used. SPFMV was immunolocalized to all types of tissues and up to the fourth-youngest leaf primordium. In contrast, SPCSV was detected only in the phloem and up to the fifth leaf primordium. Because only cells in the apical dome of the meristem and the two first leaf primordia survived cryotherapy, all data taken together could explain the results of virus elimination. The simple and efficient cryotherapy protocol developed for virus elimination can also be used for preparation of sweetpotato materials for long-term preservation.
2010-01-01
As the primary site for photosynthetic carbon fixation and the interface between plants and the environment, plant leaves play a key role in plant growth, biomass production and survival, and global carbon and oxygen cycles. Leaves can be simple with a single blade or compound with multiple units of blades known as leaflets. In a palmate-type compound leaf, leaflets are clustered at the tip of the leaf. In a pinnate-type compound leaf, on the other hand, leaflets are placed on a rachis in distance from each other. Higher orders of complexities such as bipinnate compound leaves of the “sensitive” plant, Mimosa pudica, also occur in nature. However, how different leaf morphologies are determined is still poorly understood. Medicago truncatula is a model legume closely related to alfalfa and soybean with trifoliate compound leaves. Recently, we have shown that Palmate-like Pentafoliata1 (PALM1) encodes a putative Cys(2) His(2) zinc finger transcription factor essential for compound leaf morphogenesis in M. truncatula. Here, we present our phylogenetic relationship analysis of PALM1 homologs from different species and demonstrate that PALM1 has transcriptional activity in the transactivation assay in yeast. PMID:20724826
Kang, Yun; Clark, Rebecca; Makiyama, Michael; Fewell, Jennifer
2011-11-21
We propose a simple mathematical model by applying Michaelis-Menton equations of enzyme kinetics to study the mutualistic interaction between the leaf cutter ant and its fungus garden at the early stage of colony expansion. We derive sufficient conditions on the extinction and coexistence of these two species. In addition, we give a region of initial condition that leads to the extinction of two species when the model has an interior attractor. Our global analysis indicates that the division of labor by worker ants and initial conditions are two important factors that determine whether leaf cutter ants' colonies and their fungus garden can survive and grow or not. We validate the model by comparing model simulations and data on fungal and ant colony growth rates under laboratory conditions. We perform sensitive analysis of the model based on the experimental data to gain more biological insights on ecological interactions between leaf-cutter ants and their fungus garden. Finally, we give conclusions and discuss potential future work. Published by Elsevier Ltd.
Remotely-sensed indicators of N-related biomass allocation in Schoenoplectus acutus
O’Connell, Jessica L.; Byrd, Kristin B.; Kelly, Maggi
2014-01-01
Coastal marshes depend on belowground biomass of roots and rhizomes to contribute to peat and soil organic carbon, accrete soil and alleviate flooding as sea level rises. For nutrient-limited plants, eutrophication has either reduced or stimulated belowground biomass depending on plant biomass allocation response to fertilization. Within a freshwater wetland impoundment receiving minimal sediments, we used experimental plots to explore growth models for a common freshwater macrophyte, Schoenoplectus acutus. We used N-addition and control plots (4 each) to test whether remotely sensed vegetation indices could predict leaf N concentration, root:shoot ratios and belowground biomass of S. acutus. Following 5 months of summer growth, we harvested whole plants, measured leaf N and total plant biomass of all above and belowground vegetation. Prior to harvest, we simulated measurement of plant spectral reflectance over 164 hyperspectral Hyperion satellite bands (350–2500 nm) with a portable spectroradiometer. N-addition did not alter whole plant, but reduced belowground biomass 36% and increased aboveground biomass 71%. We correlated leaf N concentration with known N-related spectral regions using all possible normalized difference (ND), simple band ratio (SR) and first order derivative ND (FDN) and SR (FDS) vegetation indices. FDN1235, 549 was most strongly correlated with leaf N concentration and also was related to belowground biomass, the first demonstration of spectral indices and belowground biomass relationships. While S. acutus exhibited balanced growth (reduced root:shoot ratio with respect to nutrient addition), our methods also might relate N-enrichment to biomass point estimates for plants with isometric root growth. For isometric growth, foliar N indices will scale equivalently with above and belowground biomass. Leaf N vegetation indices should aid in scaling-up field estimates of biomass and assist regional monitoring.
Risk factors for injuries in landslide- and flood-affected populations in Uganda.
Agrawal, Shreya; Gopalakrishnan, Tisha; Gorokhovich, Yuri; Doocy, Shannon
2013-08-01
The frequency of occurrence of natural disasters has increased over the past several decades, which necessitates a better understanding of human vulnerability, particularly in low-resource settings. This paper assesses risk factors for injury in the March 2010 floods and landslides in Eastern Uganda, and compares the effects of location, injury type, and severity. A stratified cluster survey of the disaster-affected populations was conducted five months after onset of the disasters. Probability proportional to size sampling was used to sample 800 households, including 400 affected by floods in Butaleja District and 400 affected by landslides in Bududa District. Flood- and landslide-affected populations were surveyed in July 2010 using a stratified cluster design. The odds of injury were 65% higher in the flood-affected groups than the landslide-affected groups in a logistic regression (OR = 0.35; 95% CI, 0.24-0.52; P < .001). The injury rate was greater in individuals under 42 years of age, and location of injury was a contributing factor. More people were injured in the flood-affected population as compared with the landslide-affected population, and injuries were more severe. This study illustrates differences between populations injured by flood and landslide disasters that occurred simultaneously in Eastern Uganda in 2010. In areas where landslides are prone to occur due to massive rainfalls or floods, preventative measures, such as early warning systems and evacuation, are more likely to increase the likelihood of people surviving, while for areas with massive floods, immediate and effective medical attention can save lives and improve injury outcomes.
Emergent insect production in post-harvest flooded agricultural fields used by waterbirds
Moss, Richard C.; Blumenshine, Steven C.; Yee, Julie; Fleskes, Joseph P.
2009-01-01
California’s Tulare Lake Basin (TLB) is one of the most important waterbird areas in North America even though most wetlands there have been converted to cropland. To guide management programs promoting waterbird beneficial agriculture, which includes flooding fields between growing periods, we measured emergence rates of insects, an important waterbird food, in three crop types (tomato, wheat, alfalfa) in the TLB relative to water depth and days flooded during August–October, 2003 and 2004. We used corrected Akaike’s Information Criterion values to compare a set of models that accounted for our repeated measured data. The best model included crop type and crop type interacting with days flooded and depth flooded. Emergence rates (mg m−2 day−1) were greater in tomato than wheat or alfalfa fields, increased with days flooded in alfalfa and tomato but not wheat fields, and increased with water depth in alfalfa and wheat but not tomato fields. To investigate the relationship between the range of diel water temperatures and insect emergence rates, we rearedChironomus dilutus larvae in environmental chambers under high (15–32°C) and low fluctuation (20–26°C) temperature regimes that were associated with shallow and deep (respectively) sampling sites in our fields. Larval survival (4×) and biomass (2×) were greater in the low thermal fluctuation treatment suggesting that deeply flooded areas would support greater insect production.
Genetics, Physiological Mechanisms and Breeding of Flood-Tolerant Rice (Oryza sativa L.).
Singh, Anuradha; Septiningsih, Endang M; Balyan, Harendra S; Singh, Nagendra K; Rai, Vandna
2017-02-01
Flooding of rice fields is a serious problem in the river basins of South and South-East Asia where about 15 Mha of lowland rice cultivation is regularly affected. Flooding creates hypoxic conditions resulting in poor germination and seedling establishment. Flash flooding, where rice plants are completely submerged for 10-15 d during their vegetative stage, causes huge losses. Water stagnation for weeks to months also leads to substantial yield losses when large parts of rice aerial tissues are inundated. The low-yielding traditional varieties and landraces of rice adapted to these flooding conditions have been replaced by flood-sensitive high-yielding rice varieties. The 'FR13A' rice variety and the Submergence 1A (SUB1A) gene were identified for flash flooding and subsequently introgressed to high-yielding rice varieties. The challenge is to find superior alleles of the SUB1A gene, or even new genes that may confer greater tolerance to submergence. Similarly, genes have been identified in tolerant landraces of rice for their ability to survive by rapid stem elongation (SNORKEL1 and SNORKEL2) during deep-water flooding, and for anaerobic germination ability (TPP7). Research on rice genotypes and novel genes that are tolerant to prolonged water stagnation is in progress. These studies will greatly assist in devising more efficient and precise molecular breeding strategies for developing climate-resilient high-yielding rice varieties for flood-prone regions. Here we review the state of our knowledge of flooding tolerance in rice and its application in varietal improvement. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Sap flow characteristics of neotropical mangroves in flooded and drained soils
Krauss, Ken W.; Young, P. Joy; Chambers, Jim L.; Doyle, Thomas W.; Twilley, Robert R.
2007-01-01
Effects of flooding on water transport in mangroves have previously been investigated in a few studies, most of which were conducted on seedlings in controlled settings. In this study, we used heat-dissipation sap probes to determine if sap flow (Js) attenuates with radial depth into the xylem of mature trees of three south Florida mangrove species growing in Rookery Bay. This was accomplished by inserting sap probes at multiple depths and monitoring diurnal flow. For most species and diameter size class combinations tested, Js decreased dramatically beyond a radial depth of 2 or 4 cm, with little sap flow beyond a depth of 6 cm. Mean Js was reduced on average by 20% in Avicennia germinans (L.) Stearn, Laguncularia racemosa (L.) Gaertn. f. and Rhizophora mangle L. trees when soils were flooded. Species differences were highly significant, with L. racemosahaving the greatest midday Js of about 26g H2O H2O m−2s−1 at a radial depth of 2 cm compared with a mean for the other two species of about 15 g H2O m−2s−1. Sap flow at a depth of 2 cm in mangroves was commensurate with rates reported for other forested wetland tree species. We conclude that: (1) early spring flooding of basin mangrove forests causes reductions in sap flow in mature mangrove trees; (2) the sharp attenuations in Js along the radial profile have implications for understanding whole-tree water use strategies by mangrove forests; and (3) regardless of flood state, individual mangrove tree water use follows leaf-level mechanisms in being conservative.
Born from a flood: The Salton Sea and its story of survival
Tompson, Andrew F. B.
2016-02-02
The Salton Sea is a terminal lake located in the deepest point of the topographically closed Salton Trough in southeastern California. It is currently the largest lake in area in the state. It was created by a flooding event along the Colorado River in 1905–1907, similar to the way historical floods over past centuries created ephemeral incarnations of ancient Lake Cahuilla in the same location. Its position at the center of today’s Imperial Valley, a hot and arid locale home to some of the most productive irrigated agricultural lands in the United States, has ensured its ongoing survival through amore » delicate balance between agricultural runoff, its principal form of input, and vast evaporation losses. Nevertheless, its parallel role as a recreational resource and important wildlife habitat, established over its first century of existence, is threatened by increasing salinity decreasing water quality, and reduced water allocations from the Colorado River that feeds the valley’s agriculture. Furthermore, the Salton Sea faces an increasingly uncertain future that will be influenced by reduced water imports from the Colorado River, demands for additional water sources to support farming and energy industries in the valley, and needs to stabilize the lake salinity, maintain recreational resources, and preserve what have become important ecosystems and wildlife habitats.« less
Born from a flood: The Salton Sea and its story of survival
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tompson, Andrew F. B.
The Salton Sea is a terminal lake located in the deepest point of the topographically closed Salton Trough in southeastern California. It is currently the largest lake in area in the state. It was created by a flooding event along the Colorado River in 1905–1907, similar to the way historical floods over past centuries created ephemeral incarnations of ancient Lake Cahuilla in the same location. Its position at the center of today’s Imperial Valley, a hot and arid locale home to some of the most productive irrigated agricultural lands in the United States, has ensured its ongoing survival through amore » delicate balance between agricultural runoff, its principal form of input, and vast evaporation losses. Nevertheless, its parallel role as a recreational resource and important wildlife habitat, established over its first century of existence, is threatened by increasing salinity decreasing water quality, and reduced water allocations from the Colorado River that feeds the valley’s agriculture. Furthermore, the Salton Sea faces an increasingly uncertain future that will be influenced by reduced water imports from the Colorado River, demands for additional water sources to support farming and energy industries in the valley, and needs to stabilize the lake salinity, maintain recreational resources, and preserve what have become important ecosystems and wildlife habitats.« less
Peterson, Cheryl L.; Kaufmann, Gregory S.; Vandello, Christopher; Richardson, Matthew L.
2013-01-01
Species previously unknown to science are continually discovered and some of these species already face extinction at the time of their discovery. Conserving new and rare species in these cases becomes a trial-and-error process and conservationists will attempt to manage them by using knowledge of closely related species, or those that fill the same ecological niche, and then adapting the management program as needed. Savannas Mint (Dicerandra immaculata Lakela var. savannarum Huck) is a perennial plant that was discovered in Florida scrub habitat at two locations in 1995, but is nearly extinct at these locations. We tested whether shade, leaf litter, propagation method, parent genotype, parent collection site, planting date, and absorbent granules influenced survival, reproduction, and recruitment of Savannas Mint in a population of 1,614 plants that we introduced between June 2006 and July 2009 into a state protected site. Survival and reproduction of introduced plants, and recruitment of new plants, was higher in microhabitats in full sun and no leaf litter and lower in partially shaded habitats. The two sites from which parent plants were collected differentially influenced survival and reproduction of introduced plants. These differences in survival and reproduction are likely due to underlying genetic differences. Differential survival of progeny from different parent genotypes further supports the idea that underlying genetics is an important consideration when restoring plant populations. The most successful progeny of parent genotypes had survival rates nearly 12 times higher than the least successful progeny. We speculate that many of these environmental and genetic factors are likely to influence allopatric congeners and other critically endangered gap specialists that grow in Florida scrub and our results can be used to guide their conservation. PMID:23593479
Dual response to nest flooding during monsoon in an Indian ant
Kolay, Swetashree; Annagiri, Sumana
2015-01-01
Flooding causes destruction of shelter and disruption of activity in animals occupying subterranean nests. To ensure their survival organisms have evolved various responses to combat this problem. In this study we examine the response of an Indian ant, Diacamma indicum, to nest flooding during the monsoon season. Based on characterization of nest location, architecture and the response of these ants to different levels of flooding in their natural habitat as well as in the laboratory, we infer that they exhibit a dual response. On the one hand, the challenges presented by monsoon are dealt with by occupying shallow nests and modifying the entrance with decorations and soil mounds. On the other hand, inundated nests are evacuated and the ants occupy shelters at higher elevations. We conclude that focused studies of the monsoon biology of species that dwell in such climatic conditions may help us appreciate how organisms deal with, and adapt to, extreme seasonal changes. PMID:26349015
Ichnological evidence of jökulhlaup deposit recolonization from the Touchet Beds, Mabton, WA, USA
NASA Astrophysics Data System (ADS)
MacEachern, James A.; Roberts, Michael C.
2013-01-01
The late Wisconsinan Touchet Beds section at Mabton, Washington reveals at least seven stacked jökulhlaup deposits, five showing evidence of post-flood recolonization by vertebrates. Tracemakers are attributed to voles or pocket mice (1-3 cm diameter burrows) and pocket gophers or ground squirrels (3-6 cm diameter burrows). The Mount St. Helens S tephra deposited between flood beds contains the invertebrate-generated burrows Naktodemasis and Macanopsis. Estimates of times between floods are based on natal dispersal distances of the likely vertebrate tracemakers (30-50 m median distances; 127-525 m maximum distances) from upland areas containing surviving populations to the Mabton area, a distance of about 7.9 km. Tetrapods would have required at least two to three decades to recolonize these flood beds, based on maximum dispersal distances. Invertebrate recolonization was limited by secondary succession and estimated at only a few years to a decade. These ichnological data support multiple floods from failure of the ice dam at glacial Lake Missoula, separated by hiatal surfaces on the order of decades in duration. Ichnological recolonization times are consistent with published estimates of refill times for glacial Lake Missoula, and complement the other field evidence that points to repeated, autogenically induced flood discharge.
Hunter, Paul J; Shaw, Robert K; Berger, Cedric N; Frankel, Gad; Pink, David; Hand, Paul
2015-06-01
Salmonella can bind to the leaves of salad crops including lettuce and survive for commercially relevant periods. Previous studies have shown that younger leaves are more susceptible to colonization than older leaves and that colonization levels are dependent on both the bacterial serovar and the lettuce cultivar. In this study, we investigated the ability of two Lactuca sativa cultivars (Saladin and Iceberg) and an accession of wild lettuce (L. serriola) to support attachment of Salmonella enterica serovar Senftenberg, to the first and fifth to sixth true leaves and the associations between cultivar-dependent variation in plant leaf surface characteristics and bacterial attachment. Attachment levels were higher on older leaves than on the younger ones and these differences were associated with leaf vein and stomatal densities, leaf surface hydrophobicity and leaf surface soluble protein concentrations. Vein density and leaf surface hydrophobicity were also associated with cultivar-specific differences in Salmonella attachment, although the latter was only observed in the older leaves and was also associated with level of epicuticular wax. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Snyder, C.D.; Johnson, Z.B.
2006-01-01
In June 1995, heavy rains caused severe flooding and massive debris flows on the Staunton River, a 3rd-order stream in the Blue Ridge Mountains (Virginia, USA). Scouring caused the loss of the riparian zone and repositioned the stream channel of the lower 2.1 km of the stream. Between 1998 and 2001, we conducted seasonal macroinvertebrate surveys at sites on the Staunton River and on White Oak Canyon Run, a reference stream of similar size and geology that was relatively unaffected by the flood. Our study was designed to determine the extent to which flood-induced changes to the stream channel and riparian habitats caused long-term changes to macroinvertebrate community structure and composition. Sites within the impacted zone of the Staunton River supported diverse stable benthic macroinvertebrate assemblages 3 y after the flood despite dramatic and persistent changes in environmental factors known to be important controls on stream ecosystem function. However, significant differences in total macroinvertebrate density and trophic structure could be attributed to the flood. In autumn, densities of most feeding guilds, including shredders, were higher at impacted-zone sites than at all other sites, suggesting higher overall productivity in the impacted zone. Higher shredder density in the impacted zone was surprising in light of expected decreases in leaf-litter inputs because of removal of riparian forests. In contrast, in spring, we observed density differences in only one feeding guild, scrapers, which showed higher densities at impacted-zone sites than at all other sites. This result conformed to a priori expectations that reduced shading in the impacted zone would lead to increased light and higher instream primary production. We attribute the seasonal differences in trophic structure to the effects of increased temperatures on food quality and to the relationship between the timing of our sampling and the emergence patterns of important taxa. ?? 2006 by The North American Benthological Society.
Contrasting physiological responses to excess heat and irradiance in two tropical savanna sedges
John-Bejai, C.; Farrell, A. D.; Cooper, F. M.; Oatham, M. P.
2013-01-01
Tropical hyperseasonal savannas provide a rare example of a tropical climax community dominated by graminoid species. Species living in such savannas are frequently exposed to excess heat and light, in addition to drought and waterlogging, and must possess traits to avoid or tolerate these stress factors. Here we examine the contrasting heat and light stress adaptations of two dominant savanna sedges: Lagenocarpus guianensis, which is restricted to the sheltered forest edge, and Lagenocarpus rigidus, which extends from the forest edge to the open savanna. An ecotone extending from the forest edge to the open savanna was used to assess differences in a range of physiological traits (efficiency of photosystem II, cell membrane thermostability, stomatal conductance, leaf surface reflectance and canopy temperature depression) and a range of leaf functional traits (length : width ratio, specific leaf area and degree of folding). Lagenocarpus guianensis showed significantly less canopy temperature depression than L. rigidus, which may explain why this species was restricted to the forest edge. The range of leaf temperatures measured was within the thermal tolerance of L. guianensis and allowed photosystem II to function normally, at least within the cool forest edge. The ability of L. rigidus to extend into the open savanna was associated with an ability to decouple leaf temperature from ambient temperature combined with enhanced cell membrane thermostability. The high degree of canopy temperature depression seen in L. rigidus was not explained by enhanced stomatal conductance or leaf reflectance, but was consistent with a capacity to increase specific leaf area and reduce leaf length: width ratio in the open savanna. Plasticity in leaf functional traits and in cell membrane thermostability are key factors in the ability of this savanna sedge to survive abiotic stress. PMID:24379971
Coste, Sabrina; Roggy, Jean-Christophe; Schimann, Heidy; Epron, Daniel; Dreyer, Erwin
2011-01-01
The maintenance in the long run of a positive carbon balance under very low irradiance is a prerequisite for survival of tree seedlings below the canopy or in small gaps in a tropical rainforest. To provide a quantitative basis for this assumption, experiments were carried out to determine whether construction cost (CC) and payback time for leaves and support structures, as well as leaf life span (i) differ among species and (ii) display an irradiance-elicited plasticity. Experiments were also conducted to determine whether leaf life span correlates to CC and payback time and is close to the optimal longevity derived from an optimization model. Saplings from 13 tropical tree species were grown under three levels of irradiance. Specific-CC was computed, as well as CC scaled to leaf area at the metamer level. Photosynthesis was recorded over the leaf life span. Payback time was derived from CC and a simple photosynthesis model. Specific-CC displayed only little interspecific variability and irradiance-elicited plasticity, in contrast to CC scaled to leaf area. Leaf life span ranged from 4 months to >26 months among species, and was longest in seedlings grown under lowest irradiance. It was always much longer than payback time, even under the lowest irradiance. Leaves were shed when their photosynthesis had reached very low values, in contrast to what was predicted by an optimality model. The species ranking for the different traits was stable across irradiance treatments. The two pioneer species always displayed the smallest CC, leaf life span, and payback time. All species displayed a similar large irradiance-elicited plasticity. PMID:21511904
Valladares, Fernando; Gianoli, Ernesto; Saldaña, Alfredo
2011-01-01
Background and Aims While the climbing habit allows vines to reach well-lit canopy areas with a minimum investment in support biomass, many of them have to survive under the dim understorey light during certain stages of their life cycle. But, if the growth/survival trade-off widely reported for trees hold for climbing plants, they cannot maximize both light-interception efficiency and shade avoidance (i.e. escaping from the understorey). The seven most important woody climbers occurring in a Chilean temperate evergreen rainforest were studied with the hypothesis that light-capture efficiency of climbers would be positively associated with their abundance in the understorey. Methods Species abundance in the understorey was quantified from their relative frequency and density in field plots, the light environment was quantified by hemispherical photography, the photosynthetic response to light was measured with portable gas-exchange analyser, and the whole shoot light-interception efficiency and carbon gain was estimated with the 3-D computer model Y-plant. Key Results Species differed in specific leaf area, leaf mass fraction, above ground leaf area ratio, light-interception efficiency and potential carbon gain. Abundance of species in the understorey was related to whole shoot features but not to leaf level features such as specific leaf area. Potential carbon gain was inversely related to light-interception efficiency. Mutual shading among leaves within a shoot was very low (<20 %). Conclusions The abundance of climbing plants in this southern rainforest understorey was directly related to their capacity to intercept light efficiently but not to their potential carbon gain. The most abundant climbers in this ecosystem match well with a shade-tolerance syndrome in contrast to the pioneer-like nature of climbers observed in tropical studies. The climbers studied seem to sacrifice high-light searching for coping with the dim understorey light. PMID:21685433
Nguyen, H V; Caruso, D; Lebrun, M; Nguyen, N T; Trinh, T T; Meile, J-C; Chu-Ky, S; Sarter, S
2016-08-01
The aims of this study were to characterize the antibacterial activity and the chemotype of Litsea cubeba leaf essential oil (EO) harvested in North Vietnam and to investigate the biological effects induced by the leaf powder on growth, nonspecific immunity and survival of common carp (Cyprinus carpio) challenged with Aeromonas hydrophila. The EO showed the prevalence of linalool (95%, n = 5). It was bactericidal against the majority of tested strains, with minimum inhibitory concentrations ranging from 0·72 to 2·89 mg ml(-1) (Aer. hydrophila, Edwarsiella tarda, Vibrio furnissii, Vibrio parahaemolyticus, Streptococcus garvieae, Escherichia coli, Salmonella Typhimurium). The fish was fed with 0 (control), 2, 4 and 8% leaf powder supplementation diets for 21 days. Nonspecific immunity parameters (lysozyme, haemolytic and bactericidal activities of plasma) were assessed 21 days after feeding period and before the experimental infection. Weight gain, specific growth rate and feed conversion ratio were improved by supplementation of L. cubeba in a dose-related manner, and a significant difference appeared at the highest dose (8%) when compared to the control. The increase in plasma lysozyme was significant for all the treated groups. Haemolysis activity was higher for the groups fed with 4 and 8% plant powder. Antibacterial activity increased significantly for the 8% dose only. Litsea cubeba leaf powder increased nonspecific immunity of carps in dose-related manner. After infection with Aer. hydrophila, survivals of fish fed with 4 and 8% L. cubeba doses were significantly higher than those fed with 2% dose and the control. A range of 4-8% L. cubeba leaf powder supplementation diet (from specific linalool-rich chemotype) can be used in aquaculture to reduce antibiotic burden and impacts of diseases caused by Aer. hydrophila. © 2016 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Mediavilla, Sonia; Gallardo-López, Victoria; González-Zurdo, Patricia; Escudero, Alfonso
2012-09-01
The competitive equilibrium between deciduous and perennial species in a new scenario of climate change may depend closely on the productivity of leaves along the different seasons of the year and on the morphological and chemical adaptations required for leaf survival during the different seasons. The aim of the present work was to analyze such adaptations in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) and their responses to between-site differences in the intensity of winter harshness. We explore the hypothesis that the harshness of winter would contribute to enhancing the leaf traits that allow them to persist under conditions of stress. The results revealed that as winter harshness increases a decrease in leaf size occurs in all three species, together with an increase in the content of nitrogen per unit leaf area and a greater leaf mass per unit area, which seems to be achieved only through increased thickness, with no associated changes in density. P. pinaster was the species with the most intense response to the harshening of winter conditions, undergoing a more marked thickening of its needles than the two Quercus species. Our findings thus suggest that lower winter temperatures involve an increase in the cost of leaf production of evergreen species, which must be taken into account in the estimation of the final cost and benefit balance of evergreens. Such cost increases would be more pronounced for those species that, like P. pinaster, show a stronger response to the winter cold.
Killiny, Nabil
2016-11-01
Orange jasmine, Murraya paniculata and curry leaf tree, Bergera koenegii are alternative hosts for Diaphorina citri, the vector of Candidatus Liberibacter asiaticus (CLas), the pathogen of huanglongbing (HLB) in citrus. D. citri feeds on the phloem sap where CLas grows. It has been shown that orange jasmine was a better host than curry leaf tree to D. citri. In addition, CLas can infect orange jasmine but not curry leaf tree. Here, we compared the phloem sap composition of these 2 plants to the main host, Valencia sweet orange, Citrus sinensis. Phloem sap was analyzed by gas chromatography-mass spectrometry after trimethylsilyl derivatization. Orange jasmine was the highest in proteinogenic, non-proteinogenic amino acids, organic acids, as well as total metabolites. Valencia was the highest in mono- and disaccharides, and sugar alcohols. Curry leaf tree was the lowest in most of the metabolites as well as total metabolites. Interestingly, malic acid was high in Valencia and orange jasmine but was not detected in the curry leaf. On the other hand, tartaric acid which can prevent the formation of malic acid in Krebs cycle was high in curry leaf. The nutrient inadequacy of the phloem sap in curry leaf tree, especially the amino acids could be the reason behind the longer life cycle and the low survival of D. citri and the limitation of CLas growth on this host. Information obtained from this study may help in cultivation of CLas and development of artificial diet for rearing of D. citri.
Smith, Nicholas G; Hoeppner, Susanne S; Dukes, Jeffrey S
2018-01-01
Abstract Predicting the effects of climate change on tree species and communities is critical for understanding the future state of our forested ecosystems. We used a fully factorial precipitation (three levels; ambient, −50 % ambient, +50 % ambient) by warming (four levels; up to +4 °C) experiment in an old-field ecosystem in the northeastern USA to study the climatic sensitivity of seedlings of six native tree species. We measured whole plant-level responses: survival, total leaf area (TLA), seedling insect herbivory damage, as well as leaf-level responses: specific leaf area (SLA), leaf-level water content (LWC), foliar nitrogen (N) concentration, foliar carbon (C) concentration and C:N ratio of each of these deciduous species in each treatment across a single growing season. We found that canopy warming dramatically increased the sensitivity of plant growth (measured as TLA) to rainfall across all species. Warm, dry conditions consistently reduced TLA and also reduced leaf C:N in four species (Acer rubrum, Betula lenta, Prunus serotina, Ulmus americana), primarily as a result of reduced foliar C, not increased foliar N. Interestingly, these conditions also harmed the other two species in different ways, increasing either mortality (Populus grandidentata) or herbivory (Quercus rubra). Specific leaf area and LWC varied across species, but did not show strong treatment responses. Our results indicate that, in the northeastern USA, dry years in a future warmer environment could have damaging effects on the growth capacity of these early secondary successional forests, through species-specific effects on leaf production (total leaves and leaf C), herbivory and mortality. PMID:29484151
Herrero, Asier; Castro, Jorge; Zamora, Regino; Delgado-Huertas, Antonio; Querejeta, José I
2013-12-01
Drought-induced events of massive tree mortality appear to be increasing worldwide. Species-specific vulnerability to drought mortality may alter patterns of species diversity and affect future forest composition. We have explored the consequences of the extreme drought of 2005, which caused high sapling mortality (approx. 50 %) among 10-year-old saplings of two coexisting pine species in the Mediterranean mountains of Sierra Nevada (Spain): boreo-alpine Pinus sylvestris and Mediterranean P. nigra. Sapling height growth, leaf δ(13)C and δ(18)O, and foliar nitrogen concentration in the four most recent leaf cohorts were measured in dead and surviving saplings. The foliar isotopic composition of dead saplings (which reflects time-integrated leaf gas-exchange until mortality) displayed sharp increases in both δ(13)C and δ(18)O during the extreme drought of 2005, suggesting an important role of stomatal conductance (g(s)) reduction and diffusional limitations to photosynthesis in mortality. While P. nigra showed decreased growth in 2005 compared to the previous wetter year, P. sylvestris maintained similar growth levels in both years. Decreased growth, coupled with a sharper increase in foliar δ(18)O during extreme drought in dead saplings, indicate a more conservative water use strategy for P. nigra. The different physiological behavior of the two pine species in response to drought (further supported by data from surviving saplings) may have influenced 2005 mortality rates, which contributed to 2.4-fold greater survival for P. nigra over the lifespan of the saplings. This species-specific vulnerability to extreme drought could lead to changes in dominance and distribution of pine species in Mediterranean mountain forests.
Cardona-Olarte, P.; Twilley, R.R.; Krauss, K.W.; Rivera-Monroy, V.
2006-01-01
We investigated the combined effects of salinity and hydroperiod on seedlings of Rhizophora mangle and Laguncularia racemosa grown under experimental conditions of monoculture and mixed culture by using a simulated tidal system. The objective was to test hypotheses relative to species interactions to either tidal or permanent flooding at salinities of 10 or 40 g/l. Four-month-old seedlings were experimentally manipulated under these environmental conditions in two types of species interactions: (1) seedlings of the same species were grown separately in containers from September 2000 to August 2001 to evaluate intraspecific response and (2) seedlings of each species were mixed in containers to evaluate interspecific, competitive responses from August 2002 to April 2003. Overall, L. racemosa was strongly sensitive to treatment combinations while R. mangle showed little effect. Most plant responses of L. racemosa were affected by both salinity and hydroperiod, with hydroperiod inducing more effects than salinity. Compared to R. mangle, L. racemosa in all treatment combinations had higher relative growth rate, leaf area ratio, specific leaf area, stem elongation, total length of branches, net primary production, and stem height. Rhizophora mangle had higher biomass allocation to roots. Species growth differentiation was more pronounced at low salinity, with few species differences at high salinity under permanent flooding. These results suggest that under low to mild stress by hydroperiod and salinity, L. racemosa exhibits responses that favor its competitive dominance over R. mangle. This advantage, however, is strongly reduced as stress from salinity and hydroperiod increase. ?? Springer 2006.
Arroita, Maite; Aristi, Ibon; Flores, Lorea; Larrañaga, Aitor; Díez, Joserra; Mora, Juanita; Romaní, Anna M; Elosegi, Arturo
2012-12-01
Breakdown of organic matter is a key process in streams and rivers, and thus, it has potential to assess functional impairment of river ecosystems. Because the litter-bag method commonly used to measure leaf breakdown is time consuming and expensive, several authors proposed to measure breakdown of wooden sticks instead. Nevertheless, currently there is little information on the performance of wooden sticks versus that of leaves. We compared the breakdown of tongue depressors made of untreated poplar wood, to that of six common leaf species in two large streams in the Basque Country (northern Spain), one polluted and the other unpolluted. Breakdown rates ranged from 0.0011 to 0.0120 day(-1), and were significantly lower in the polluted stream. Wooden sticks performed very similarly to leaves, but were less affected by flood-induced physical abrasion. The ranking of the materials according to their breakdown rate was consistent, irrespective of the stream. The experiments with leaves were 10 times more costly for breakdown rate, 4 times if we include the rest of the variables measured. Therefore wooden sticks offer a promising tool to assess river ecosystem functioning, although more research is necessary to define the thresholds for ecosystem functional impairment. Copyright © 2012 Elsevier B.V. All rights reserved.
Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav
2017-09-01
Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that there were no drawbacks in the leaf physiological performance which could be attributed to the micropropagated plants of fast growing hybrid poplar. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Hydraulic patterns and safety margins, from stem to stomata, in three eastern U.S. tree species.
Johnson, D M; McCulloh, K A; Meinzer, F C; Woodruff, D R; Eissenstat, D M
2011-06-01
Adequate water transport is necessary to prevent stomatal closure and allow for photosynthesis. Dysfunction in the water transport pathway can result in stomatal closure, and can be deleterious to overall plant health and survival. Although much is known about small branch hydraulics, little is known about the coordination of leaf and stem hydraulic function. Additionally, the daily variations in leaf hydraulic conductance (K(leaf)), stomatal conductance and water potential (Ψ(L)) have only been measured for a few species. The objective of the current study was to characterize stem and leaf vulnerability to hydraulic dysfunction for three eastern U.S. tree species (Acer rubrum, Liriodendron tulipifera and Pinus virginiana) and to measure in situ daily patterns of K(leaf), leaf and stem Ψ, and stomatal conductance in the field. Sap flow measurements were made on two of the three species to compare patterns of whole-plant water use with changes in K(leaf) and stomatal conductance. Overall, stems were more resistant to hydraulic dysfunction than leaves. Stem P50 (Ψ resulting in 50% loss in conductivity) ranged from -3.0 to -4.2 MPa, whereas leaf P50 ranged from -0.8 to -1.7 MPa. Field Ψ(L) declined over the course of the day, but only P. virginiana experienced reductions in K(leaf) (nearly 100% loss). Stomatal conductance was greatest overall in P. virginiana, but peaked midmorning and then declined in all three species. Midday stem Ψ in all three species remained well above the threshold for embolism formation. The daily course of sap flux in P. virginiana was bell-shaped, whereas in A. rubrum sap flux peaked early in the morning and then declined over the remainder of the day. An analysis of our data and data for 39 other species suggest that there may be at least three distinct trajectories of relationships between maximum K(leaf) and the % K(leaf) at Ψ(min). In one group of species, a trade-off between maximum K(leaf) and % K(leaf) at Ψ(min) appeared to exist, but no trade-off was evident in the other two trajectories.
Shi, Yuanyuan; Qiu, Juan; Li, Rendong; Shen, Qiang; Huang, Duan
2017-01-01
Schistosomiasis japonica is an infectious disease caused by Schistosoma japonicum, and it remains endemic in China. Flooding is the main hazard factor, as it causes the spread of Oncomelania hupensis, the only intermediate host of Schistosoma japonicum, thereby triggering schistosomiasis outbreaks. Based on multi-source real-time remote sensing data, we used remote sensing (RS) technology, especially synthetic aperture radar (SAR), and geographic information system (GIS) techniques to carry out warning research on potential snail habitats within the snail dispersal range following flooding. Our research result demonstrated: (1) SAR data from Sentinel-1A before and during a flood were used to identify submerged areas rapidly and effectively; (2) the likelihood of snail survival was positively correlated with the clay proportion, core area standard deviation, and ditch length but negatively correlated with the wetness index, NDVI (normalized difference vegetation index), elevation, woodland area, and construction land area; (3) the snail habitats were most abundant near rivers and ditches in paddy fields; (4) the rivers and paddy irrigation ditches in the submerged areas must be the focused of mitigation efforts following future floods. PMID:28867814
Shi, Yuanyuan; Qiu, Juan; Li, Rendong; Shen, Qiang; Huang, Duan
2017-08-30
Schistosomiasis japonica is an infectious disease caused by Schistosoma japonicum , and it remains endemic in China. Flooding is the main hazard factor, as it causes the spread of Oncomelania hupensis , the only intermediate host of Schistosoma japonicum , thereby triggering schistosomiasis outbreaks. Based on multi-source real-time remote sensing data, we used remote sensing (RS) technology, especially synthetic aperture radar (SAR), and geographic information system (GIS) techniques to carry out warning research on potential snail habitats within the snail dispersal range following flooding. Our research result demonstrated: (1) SAR data from Sentinel-1A before and during a flood were used to identify submerged areas rapidly and effectively; (2) the likelihood of snail survival was positively correlated with the clay proportion, core area standard deviation, and ditch length but negatively correlated with the wetness index, NDVI (normalized difference vegetation index), elevation, woodland area, and construction land area; (3) the snail habitats were most abundant near rivers and ditches in paddy fields; (4) the rivers and paddy irrigation ditches in the submerged areas must be the focused of mitigation efforts following future floods.
Ruas, E A; Ruas, C F; Medri, P S; Medri, C; Medri, M E; Bianchini, E; Pimenta, J A; Rodrigues, L A; Ruas, P M
2011-03-29
Knowledge of the effects of flooding on plant survival is relevant for the efficiency of management and conservation programs. Schinus terebinthifolius is a tree of economic and ecological importance that is common in northeast Brazil. Flooding tolerance and genetic variation were investigated in two riparian populations of S. terebinthifolius distributed along two different ecological regions of the Tibagi River basin. Flooding tolerance was evaluated through the investigation of young plants, submitted to different flooding intensities to examine the morphological and anatomical responses to this stress. The growth rate of S. terebinthifolius was not affected by flooding, but total submersion proved to be lethal for 100% of the plants. Morphological alterations such as hypertrophied lenticels were observed in both populations and lenticel openings were significantly higher in plants from one population. Genetic analysis using DNA samples obtained from both populations showed a moderate degree of genetic variation between populations (13.7%); most of the variation was found within populations (86.3%). These results show that for conservation purposes and management of degraded areas, both populations should be preserved and could be used in programs that intend to recompose riparian forests.
Baattrup-Pedersen, Annette; Garssen, Annemarie; Göthe, Emma; Hoffmann, Carl Christian; Oddershede, Andrea; Riis, Tenna; van Bodegom, Peter M; Larsen, Søren E; Soons, Merel
2018-04-01
The hydrology of riparian areas changes rapidly these years because of climate change-mediated alterations in precipitation patterns. In this study, we used a large-scale in situ experimental approach to explore effects of drought and flooding on plant taxonomic diversity and functional trait composition in riparian areas in temperate Europe. We found significant effects of flooding and drought in all study areas, the effects being most pronounced under flooded conditions. In near-stream areas, taxonomic diversity initially declined in response to both drought and flooding (although not significantly so in all years) and remained stable under drought conditions, whereas the decline continued under flooded conditions. For most traits, we found clear indications that the functional diversity also declined under flooded conditions, particularly in near-stream areas, indicating that fewer strategies succeeded under flooded conditions. Consistent changes in community mean trait values were also identified, but fewer than expected. This can have several, not mutually exclusive, explanations. First, different adaptive strategies may coexist in a community. Second, intraspecific variability was not considered for any of the traits. For example, many species can elongate shoots and petioles that enable them to survive shallow, prolonged flooding but such abilities will not be captured when applying mean trait values. Third, we only followed the communities for 3 years. Flooding excludes species intolerant of the altered hydrology, whereas the establishment of new species relies on time-dependent processes, for instance the dispersal and establishment of species within the areas. We expect that altered precipitation patterns will have profound consequences for riparian vegetation in temperate Europe. Riparian areas will experience loss of taxonomic and functional diversity and, over time, possibly also alterations in community trait responses that may have cascading effects on ecosystem functioning.
Drought responses of flood-tolerant trees in Amazonian floodplains
Parolin, Pia; Lucas, Christine; Piedade, Maria Teresa F.; Wittmann, Florian
2010-01-01
Background Flood-tolerant tree species of the Amazonian floodplain forests are subjected to an annual dry period of variable severity imposed when low river-water levels coincide with minimal precipitation. Although the responses of these species to flooding have been examined extensively, their responses to drought, in terms of phenology, growth and physiology, have been neglected hitherto, although some information is found in publications that focus on flooding. Scope The present review examines the dry phase of the annual flooding cycle. It consolidates existing knowledge regarding responses to drought among adult trees and seedlings of many Amazonian floodplain species. Main Findings Flood-tolerant species display variable physiological responses to dry periods and drought that indicate desiccation avoidance, such as reduced photosynthetic activity and reduced root respiration. However, tolerance and avoidance strategies for drought vary markedly among species. Drought can substantially decrease growth, biomass and photosynthetic activity among seedlings in field and laboratory studies. When compared with the responses to flooding, drought can impose higher seedling mortality and slower growth rates, especially among evergreen species. Results indicate that tolerance and avoidance strategies for drought vary markedly between species. Both seedling recruitment and photosynthetic activity are affected by drought, Conclusions For many species, the effects of drought can be as important as flooding for survival and growth, particularly at the seedling phase of establishment, ultimately influencing species composition. In the context of climate change and predicted decreases in precipitation in the Amazon Basin, the effects of drought on plant physiology and species distribution in tropical floodplain forest ecosystems should not be overlooked. PMID:19880423
NASA Astrophysics Data System (ADS)
Brázdil, R.; Chromá, K.; Řezníčková, L.; Valášek, H.; Dolák, L.; Stachoň, Z.; Soukalová, E.; Dobrovolný, P.
2014-07-01
Since the second half of the 17th century, tax relief has been available to farmers and landowners to offset flood damage to property (buildings) and land (fields, meadows, pastures, gardens) in South Moravia, Czech Republic. Historically, the written applications for this were supported by a relatively efficient bureaucratic process that left a clear data trail of documentation, preserved at several levels: in the communities affected, in regional offices, and in the Moravian Land Office, all of which are to be found in estate and family collections in the Moravian Land Archives in the city of Brno, the provincial capital. As well as detailed information about damage done and administrative responses to it, data is often preserved as to the flood event itself, the time of its occurrence and its impacts, sometimes together with causes and stages. The final flood database based on taxation records is used here to describe the temporal and spatial density of both flood events and the records themselves. The information derived is used to help create long-term flood chronologies for the Rivers Dyje, Jihlava, Svratka and Morava, combining floods interpreted from taxation records with other documentary data and floods derived from later systematic hydrological measurements (water levels, discharges). Common periods of higher flood frequency appear largely in 1821-1850 and 1921-1950, although this shifts to several other decades for individual rivers. Certain uncertainties are inseparable from flood data taxation records: their spatial and temporal incompleteness; the inevitable limitation to larger-scale damage and to the summer half-year; and the different characters of rivers, including land-use changes and channel modifications. Taxation data has great potential for extending our knowledge of past floods for the rest of the Czech Republic as well, not to mention other European countries in which records have survived.
The use of taxation records in assessing historical floods in South Moravia, Czech Republic
NASA Astrophysics Data System (ADS)
Brázdil, R.; Chromá, K.; Řezníčková, L.; Valášek, H.; Dolák, L.; Stachoň, Z.; Soukalová, E.; Dobrovolný, P.
2014-10-01
Since the second half of the 17th century, tax relief has been available to farmers and landowners to offset flood damage to property (buildings) and land (fields, meadows, pastures, gardens) in South Moravia, Czech Republic. Historically, the written applications for this were supported by a relatively efficient bureaucratic process that left a clear data trail of documentation, preserved at several levels: in the communities affected, in regional offices, and in the Moravian Land Office, all of which are to be found in estate and family collections in the Moravian Land Archives in the city of Brno, the provincial capital. As well as detailed information about damage done and administrative responses to it, data are often preserved as to the flood event itself, the time of its occurrence and its impacts, sometimes together with causes and stages. The final flood database based on taxation records is used here to describe the temporal and spatial density of both flood events and the records themselves. The information derived is used to help create long-term flood chronologies for the rivers Dyje, Jihlava, Svratka and Morava, combining floods interpreted from taxation records with other documentary data and floods derived from later systematic hydrological measurements (water levels, discharges). Common periods of higher flood frequency appear largely in the periods 1821-1850 and 1921-1950, although this shifts to several other decades for individual rivers. A number of uncertainties are inseparable from flood data taxation records: their spatial and temporal incompleteness; the inevitable limitation to larger-scale damage and restriction to the summer half-year; and the different characters of rivers, including land-use changes and channel modifications. Taxation data have considerable potential for extending our knowledge of past floods for the rest of the Czech Republic, not to mention other European countries in which records have survived.
Sukumaran, NatarajaPillai
2014-01-01
The main objective of the present study is to improve the immune power of Cyprinus carpio by using Euphorbia hirta plant leaf extract as immunostimulants. The haematological, immunological and enzymatic studies were conducted on the medicated fish infected with Aeromonas hydrophila pathogen. The results obtained from the haematological studies show that the RBC count, WBC count and haemoglobin content were increased in the infected fish at higher concentration of leaf extract. The feeds with leaf extract of Euphorbia hirta were able to stimulate the specific immune response by increasing the titre value of antibody. It was able to stimulate the antibody production only up to the 5th day, when fed with higher concentrations of (25 g and 50 g) plant leaf extract. The plant extract showed non-specific immune responses such as lysozyme activity, phagocytic ratio, NBT assay, etc. at higher concentration (50 g) and in the same concentration (50 g), the leaf extract of Euphorbia hirta significantly eliminated the pathogen in blood and kidney. It was observed that fish have survival percentage significantly at higher concentration (50 g) of Euphorbia hirta, when compared with the control. The obtained results are statistically significant at P < 0.05 and P < 0.01 levels. This research work suggests that the plant Euphorbia hirta has immunostimulant activity by stimulating both specific and non-specific immunity at higher concentrations. PMID:25405077
Moringa oleifera with promising neuronal survival and neurite outgrowth promoting potentials.
Hannan, Md Abdul; Kang, Ji-Young; Mohibbullah, Md; Hong, Yong-Ki; Lee, Hyunsook; Choi, Jae-Suk; Choi, In Soon; Moon, Il Soo
2014-02-27
Moringa oleifera Lam. (Moringaceae) by virtue of its high nutritional as well as ethnomedical values has been gaining profound interest both in nutrition and medicinal research. The leaf of this plant is used in ayurvedic medicine to treat paralysis, nervous debility and other nerve disorders. In addition, research evidence also suggests the nootropic as well as neuroprotective roles of Moringa oleifera leaf in animal models. The aim of the present study was to evaluate the effect of Moringa oleifera leaf in the primary hippocampal neurons regarding its neurotrophic and neuroprotective properties. The primary culture of embryonic hippocampal neurons was incubated with the ethanol extract of Moringa oleifera leaf (MOE). After an indicated time, cultures were either stained directly with a lipophilic dye, DiO, or fixed and immunolabeled to visualize the neuronal morphology. Morphometric analyses for neurite maturation and synaptogenesis were performed using Image J software. Neuronal viability was evaluated using trypan blue exclusion and lactate dehydrogenase assays. MOE promoted neurite outgrowth in a concentration-dependent manner with an optimal concentration of 30 μg/mL. As a very initial effect, MOE significantly promoted the earlier stages of neuronal differentiation. Subsequently, MOE significantly increased the number and length of dendrites, the length of axon, and the number and length of both dendrite and axonal branches, and eventually facilitated synaptogenesis. The β-carotene, one major compound of MOE, promoted neuritogensis, but the increase was not comparable with the effect of MOE. In addition, MOE supported neuronal survival by protecting neurons from naturally occurring cell death in vitro. Our findings indicate that MOE promotes axodendritic maturation as well as provides neuroprotection suggesting a promising pharmacological importance of this nutritionally and ethnomedically important plant for the well-being of nervous system. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Effects of host-plant population size and plant sex on a specialist leaf-miner
NASA Astrophysics Data System (ADS)
Bañuelos, María-José; Kollmann, Johannes
2011-03-01
Animal population density has been related to resource patch size through various hypotheses such as those derived from island biogeography and resource concentration theory. This theoretical framework can be also applied to plant-herbivore interactions, and it can be modified by the sex of the host-plant, and density-dependent relationships. Leaf-miners are specialised herbivores that leave distinct traces on infested leaves in the form of egg scars, mines, signs of predation and emergence holes. This allows the life cycle of the insect to be reconstructed and the success at the different stages to be estimated. The main stages of the leaf-miner Phytomyza ilicis were recorded in eleven populations of the evergreen host Ilex aquifolium in Denmark. Survival rates were calculated and related to population size, sex of the host plant, and egg and mine densities. Host population size was negatively related to leaf-miner prevalence, with larger egg and mine densities in small populations. Percentage of eggs hatching and developing into mines, and percentage of adult flies emerging from mines also differed among host populations, but were not related to population size or host cover. Feeding punctures left by adults were marginally more frequent on male plants, whereas egg scars and mines were more common on females. Overall survival rate from egg stage to adult emergence was higher on female plants. Egg density was negatively correlated with hatching, while mine density was positively correlated with emergence of the larvae. The inverse effects of host population size were not in line with predictions based on island biogeography and resource concentration theory. We discuss how a thorough knowledge of the immigration behaviour of this fly might help to understand the patterns found.
75 FR 65299 - Endangered and Threatened Species; Recovery Plans
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-22
.../quantity. Address direct impacts of Willamette hydropower and flood control dam/reservoir operations by... eastside tributaries of the Willamette River; adverse thermal effects downstream from operation of the dams... spawning is high. c. Downstream passage survival of juvenile offspring through the reservoir and dam...
Ginsberg, Howard; Albert, Marisa; Acevedo, Lixis; Dyer, Megan C.; Arsnoe, Isis M.; Tsao, Jean I.; Mather, Thomas N.; LeBrun, Roger A.
2017-01-01
Recent reports suggest that host-seeking nymphs in southern populations of Ixodes scapularis remain below the leaf litter surface, while northern nymphs seek hosts on leaves and twigs above the litter surface. This behavioral difference potentially results in decreased tick contact with humans in the south, and fewer cases of Lyme disease. We studied whether north-south differences in tick survival patterns might contribute to this phenomenon. Four month old larvae resulting from a cross between Wisconsin males and South Carolina females died faster under southern than under northern conditions in the lab, as has previously been reported for ticks from both northern and southern populations. However, newly-emerged larvae from Rhode Island parents did not differ consistently in mortality under northern and southern conditions, possibly because of their younger age. Survival is lower, and so the north-south survival difference might be greater in older ticks. Larval survival was positively related to larval size (as measured by scutal area), while survival was positively related to larval fat content in some, but not all, trials. The difference in larval survival under northern vs. southern conditions might simply result from faster metabolism under warmer southern conditions leading to shorter life spans. However, ticks consistently died faster under southern than under northern conditions in the laboratory when relative humidity was low (75%), but not under moderate (85%) or high (95%) RH. Therefore, mortality due to desiccation stress is greater under southern than under northern conditions. We hypothesize that mortality resulting from the greater desiccation stress under southern conditions acts as a selective pressure resulting in the evolution of host-seeking behavior in which immatures remain below the leaf litter surface in southern I. scapularis populations, so as to avoid the desiccating conditions at the surface. If this hypothesis is correct, it has implications for the effect of climate change on the future distribution of Lyme disease.
Li, Haobing; Vaillancourt, René; Mendham, Neville; Zhou, Meixue
2008-08-27
Resistance to soil waterlogging stress is an important plant breeding objective in high rainfall or poorly drained areas across many countries in the world. The present study was conducted to identify quantitative trait loci (QTLs) associated with waterlogging tolerance (e.g. leaf chlorosis, plant survival and biomass reduction) in barley and compare the QTLs identified across two seasons and in two different populations using a composite map constructed with SSRs, RFLP and Diversity Array Technology (DArT) markers. Twenty QTLs for waterlogging tolerance related traits were found in the two barley double haploid (DH) populations. Several of these QTLs were validated through replication of experiments across seasons or by co-location across populations. Some of these QTLs affected multiple waterlogging tolerance related traits, for example, QTL Qwt4-1 contributed not only to reducing barley leaf chlorosis, but also increasing plant biomass under waterlogging stress, whereas other QTLs controlled both leaf chlorosis and plant survival. Improving waterlogging tolerance in barley is still at an early stage compared with other traits. QTLs identified in this study have made it possible to use marker assisted selection (MAS) in combination with traditional field selection to significantly enhance barley breeding for waterlogging tolerance. There may be some degree of homoeologous relationship between QTLs controlling barley waterlogging tolerance and that in other crops as discussed in this study.
Santos, Claudiana M Dos; Endres, Laurício; Ferreira, Vilma M; Silva, José V; Rolim, Eduardo V; Wanderley, Humberto C L
2017-01-01
Castor bean is one of the crops with potential to provide raw material for production of oils for biodiesel. This species possess adaptive mechanisms for maintaining the water status when subjected to drought stress. A better understanding these mechanisms under field conditions can unravel the survival strategies used by this species. This study aimed to compare the physiological adaptations of Ricinus communis (L.) in two regions with different climates, the semi-arid and semi-humid subject to water stress. The plants showed greater vapor pressure deficit during the driest hours of the day, which contributed to higher values of the leaf temperature and leaf transpiration, however, the VPD(leaf-air) had the greatest effect on plants in the semi-arid region. In both regions, between 12:00 p.m. and 2:00 p.m., the plants presented reduction in the rates of photosynthesis and intracellular CO2 concentration in response to stomatal closure. During the dry season in the semi-arid region, photoinhibition occurred in the leaves of castor bean between 12:00 p.m. and 2:00 p.m. These results suggest that castor bean plants possess compensatory mechanisms for drought tolerance, such as: higher stomatal control and maintenance of photosynthetic capacity, allowing the plant to survive well in soil with low water availability.
Lasky, Jesse R; Uriarte, María; Boukili, Vanessa K; Chazdon, Robin L
2014-04-15
Interspecific differences in relative fitness can cause local dominance by a single species. However, stabilizing interspecific niche differences can promote local diversity. Understanding these mechanisms requires that we simultaneously quantify their effects on demography and link these effects to community dynamics. Successional forests are ideal systems for testing assembly theory because they exhibit rapid community assembly. Here, we leverage functional trait and long-term demographic data to build spatially explicit models of successional community dynamics of lowland rainforests in Costa Rica. First, we ask what the effects and relative importance of four trait-mediated community assembly processes are on tree survival, a major component of fitness. We model trait correlations with relative fitness differences that are both density-independent and -dependent in addition to trait correlations with stabilizing niche differences. Second, we ask how the relative importance of these trait-mediated processes relates to successional changes in functional diversity. Tree dynamics were more strongly influenced by trait-related interspecific variation in average survival than trait-related responses to neighbors, with wood specific gravity (WSG) positively correlated with greater survival. Our findings also suggest that competition was mediated by stabilizing niche differences associated with specific leaf area (SLA) and leaf dry matter content (LDMC). These drivers of individual-level survival were reflected in successional shifts to higher SLA and LDMC diversity but lower WSG diversity. Our study makes significant advances to identifying the links between individual tree performance, species functional traits, and mechanisms of tropical forest succession.
Martínez-Lüscher, Johann; Holmer, Marianne
2010-06-01
The potential threat to seagrasses of the invasive algae, Gracilaria vermiculophylla was assessed through metabolic indicators under experimental conditions. Net leaf photosynthesis (LNP) and dark respiration (LDR) were measured from leaf segments of Zostera marina shoots under different loads of G. vermiculophylla (control, low 2.2kg FW m(-2) and high 4kg FW m(-2)) in mesocosm experiments separated in tanks at four temperatures (19, 23.5, 26 and 30 degrees C). LNP decreased in the presence of the high density G. vermiculophylla mat (25% on average), being the most severe reductions at 30 degrees C (35% less in high). LDR did not respond significantly to differences in algal biomass, whereas a progressive increase was found with increasing temperatures (3.4 times higher at 30 degrees C than at 19 degrees C). Sulphide in porewater was measured weekly in order clarify the role of sediment conditions on seagrass metabolism, and increased both with algal biomass (29% in high) and temperature (from 0.5mM at 26 degrees C to 2.6mM at 30 degrees C), but changes in LNP and LDR were not correlated with sulphide concentrations. Seagrass survival rates showed decreasing trend with algal biomass at all the temperatures (from 74% to 21% survival). G. vermiculophylla showed harmful effects on Z. marina metabolism and survival with synergistic effects of temperature suggesting greater impact of invasive species under future higher water temperatures.
Cruz, Bruna Paula da; de Castro, Evaristo Mauro; Cardoso, Maria das Graças; de Souza, Katiúscia Freire; Machado, Samísia Maria Fernandes; Pompeu, Patrícia Vieira; Fontes, Marco Aurélio Leite
2014-12-01
Drimys brasiliensis Miers is native to Brazil, where it is mainly found in montane forests and flooded areas in the South and Southeast regions of the country. The objectives of the present study were to compare the leaf anatomy and the chemical constitution of the essential oils from D. brasiliensis present in two altitude levels (1900 and 2100 m), in a Montane Cloud Forest, in Itamonte, MG, Brazil. A higher number of sclereids was observed in the mesophyll of the leaves at 1900 m altitude. At 2100 m, the formation of papillae was observed on the abaxial surface of the leaves, as well as an increase in the stomatal density and index, a reduction in leaf tissue thickness, an increase in the abundance of intercellular spaces in the mesophyll and an increase in stomatal conductance and in carbon accumulation in the leaves. Fifty-nine constituents have been identified in the oils, with the predominance of sesquiterpenes. Two trends could be inferred for the species in relation to its secondary metabolism and the altitude. The biosyntheses of sesquiterpene alcohols at 1900 m, and phenylpropanoids and epi-cyclocolorenone at 2100 m, were favored. D. brasiliensis presented a high phenotypic plasticity at the altitude levels studied. In relation to its leaf anatomy, the species showed adaptive characteristics, which can maximize the absorption of CO 2 at 2100 m altitude, where a reduction in the partial pressure of this atmospheric gas occurs. Its essential oils presented promising compounds for the future evaluation of biological potentialities.
Effect of Neem (Azadirachta indica) on the Survival of Escherichia coli O157:H7 in Dairy Manure
Ravva, Subbarao V.; Korn, Anna
2015-01-01
Escherichia coli O157:H7 (EcO157) shed in cattle manure can survive for extended periods of time and intervention strategies to control this pathogen at the source are critical as produce crops are often grown in proximity to animal raising operations. This study evaluated whether neem (Azadirachta indica), known for its antimicrobial and insecticidal properties, can be used to amend manure to control EcO157. The influence of neem materials (leaf, bark, and oil) on the survival of an apple juice outbreak strain of EcO157 in dairy manure was monitored. Neem leaf and bark supplements eliminated the pathogen in less than 10 d with a D-value (days for 90% elimination) of 1.3 d. In contrast, nearly 4 log CFU EcO157/g remained after 10 d in neem-free manure control. The ethyl acetate extractable fraction of neem leaves was inhibitory to the growth of EcO157 in LB broth. Azadirachtin, a neem product with insect antifeedant properties, failed to inhibit EcO157. Application of inexpensive neem supplements to control pathogens in manure and possibly in produce fields may be an option for controlling the transfer of foodborne pathogens from farm to fork. PMID:26184255
Effect of Neem (Azadirachta indica) on the Survival of Escherichia coli O157:H7 in Dairy Manure.
Ravva, Subbarao V; Korn, Anna
2015-07-10
Escherichia coli O157:H7 (EcO157) shed in cattle manure can survive for extended periods of time and intervention strategies to control this pathogen at the source are critical as produce crops are often grown in proximity to animal raising operations. This study evaluated whether neem (Azadirachta indica), known for its antimicrobial and insecticidal properties, can be used to amend manure to control EcO157. The influence of neem materials (leaf, bark, and oil) on the survival of an apple juice outbreak strain of EcO157 in dairy manure was monitored. Neem leaf and bark supplements eliminated the pathogen in less than 10 d with a D-value (days for 90% elimination) of 1.3 d. In contrast, nearly 4 log CFU EcO157/g remained after 10 d in neem-free manure control. The ethyl acetate extractable fraction of neem leaves was inhibitory to the growth of EcO157 in LB broth. Azadirachtin, a neem product with insect antifeedant properties, failed to inhibit EcO157. Application of inexpensive neem supplements to control pathogens in manure and possibly in produce fields may be an option for controlling the transfer of foodborne pathogens from farm to fork.
Killiny, Nabil
2016-01-01
ABSTRACT Orange jasmine, Murraya paniculata and curry leaf tree, Bergera koenegii are alternative hosts for Diaphorina citri, the vector of Candidatus Liberibacter asiaticus (CLas), the pathogen of huanglongbing (HLB) in citrus. D. citri feeds on the phloem sap where CLas grows. It has been shown that orange jasmine was a better host than curry leaf tree to D. citri. In addition, CLas can infect orange jasmine but not curry leaf tree. Here, we compared the phloem sap composition of these 2 plants to the main host, Valencia sweet orange, Citrus sinensis. Phloem sap was analyzed by gas chromatography-mass spectrometry after trimethylsilyl derivatization. Orange jasmine was the highest in proteinogenic, non-proteinogenic amino acids, organic acids, as well as total metabolites. Valencia was the highest in mono- and disaccharides, and sugar alcohols. Curry leaf tree was the lowest in most of the metabolites as well as total metabolites. Interestingly, malic acid was high in Valencia and orange jasmine but was not detected in the curry leaf. On the other hand, tartaric acid which can prevent the formation of malic acid in Krebs cycle was high in curry leaf. The nutrient inadequacy of the phloem sap in curry leaf tree, especially the amino acids could be the reason behind the longer life cycle and the low survival of D. citri and the limitation of CLas growth on this host. Information obtained from this study may help in cultivation of CLas and development of artificial diet for rearing of D. citri. PMID:27763819
Season-dependent and independent responses of Mediterranean scrub to light conditions.
Zunzunegui, María; Díaz-Barradas, Mari Cruz; Jáuregui, Juan; Rodríguez, Herminia; Álvarez-Cansino, Leonor
2016-05-01
Semi-arid plant species cope with excess of solar radiation with morphological and physiological adaptations that assure their survival when other abiotic stressors interact. At the leaf level, sun and shade plants may differ in the set of traits that regulate environmental stressors. Here, we evaluated if leaf-level physiological seasonal response of Mediterranean scrub species (Myrtus communis, Halimium halimifolium, Rosmarinus officinalis, and Cistus salvifolius) depended on light availability conditions. We aimed to determine which of these responses prevailed independently of the marked seasonality of Mediterranean climate, to define a leaf-level strategy in the scrub community. Thirty six leaf response variables - involving gas exchange, water status, photosystem II photochemical efficiency, photosynthetic pigments and leaf structure - were seasonally measured in sun exposed and shaded plants under field conditions. Physiological responses showed a common pattern throughout the year, in spite of the marked seasonality of the Mediterranean climate and of species-specific differences in the response to light intensity. Variables related to light use, CO2 assimilation, leaf pigment content, and LMA (leaf mass area) presented differences that were consistent throughout the year, although autumn was the season with greater contrast between sun and shade plants. Our data suggest that in Mediterranean scrub shade plants the lutein pool could have an important role in the photoprotection of the photosynthetic tissues. There was a negative linear correlation between the ratio lutein/total chlorophylls and the majority of leaf level variables. The combined effect of abiotic stress factors (light and drought or light and cold) was variable-specific, in some cases enhancing differences between sun and shade plants, while in others leading to unified strategies in all scrub species. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Carter, Jennifer L; White, Donald A
2009-11-01
Information on how vegetation adapts to differences in water supply is critical for predicting vegetation survival, growth and water use, which, in turn, has important impacts on site hydrology. Many field studies assess adaptation to water stress by comparing between disparate sites, which makes it difficult to distinguish between physiological or morphological changes and long-term genetic adaptation. When planting trees into new environments, the phenotypic adaptations of a species to water stress will be of primary interest. This study examined the response to water availability of Eucalyptus kochii ssp. borealis (C. Gardner) D. Nicolle, commonly integrated with agriculture in south-western Australia for environmental and economic benefits. By choosing a site where the groundwater depth varied but where climate and soil type were the same, we were able to isolate tree response to water supply. Tree growth, leaf area and stand water use were much larger for trees over shallow groundwater than for trees over a deep water table below a silcrete hardpan. However, water use on a leaf area basis was similar in trees over deep and shallow groundwater, as were the minimum leaf water potential observed over different seasons and the turgor loss point. We conclude that homeostasis in leaf water use and water relations was maintained through a combination of stomatal control and adjustment of sapwood-to-leaf area ratios (Huber value). Differences in the Huber value with groundwater depth were associated with different sapwood-specific conductivity and water use on a sapwood area basis. Knowledge of the coordination between water supply, leaf area, sapwood area and leaf transpiration rate for different species will be important when predicting stand water use.
Leaf structural traits of tropical woody species resistant to cement dust.
Siqueira-Silva, Advanio Inácio; Pereira, Eduardo Gusmão; Modolo, Luzia Valentina; Paiva, Elder Antonio Sousa
2016-08-01
Cement industries located nearby limestone outcrops in Brazil have contributed to the coating of cement dust over native plant species. However, little is known about the extent of the response of tropical woody plants to such environmental pollutant particularly during the first stages of plant development and establishment. This work focused on the investigation of possible alterations in leaf structural and ultrastructural traits of 5-month-old Guazuma ulmifolia Lam. (Malvaceae), 6-month-old Myracrodruon urundeuva Allemão (Anacardiaceae), and 9-month-old Trichilia hirta L. (Meliaceae) challenged superficially with cement dust during new leaf development. Leaf surface of plants, the soil or both (leaf plus soil), were treated (or not) for 60 days, under controlled conditions, with cement dust at 2.5 or 5.0 mg cm(-2). After exposure, no significant structural changes were observed in plant leaves. Also, no plant death was recorded by the end of the experiment. There was also some evidence of localized leaf necrosis in G. ulmifolia and T. hirta, leaf curling in M. urundeuva and T. hirta, and bulges formation on epidermal surface of T. hirta, after cement dust contact with plant shoots. All species studied exhibited stomata obliteration while T. hirta, in particular, presented early leaf abscission, changes in cellular relief, and organization and content of midrib cells. No significant ultrastructural alterations were detected under the experimental conditions studied. Indeed, mesophyll cells presented plastids with intact membrane systems. The high plant survival rates, together with mild morphoanatomic traits alterations in leaves, indicate that G. ulmifolia is more resistant to cement dust pollutant, followed by M. urundeuva and T. hirta. Thus, the three plant species are promising for being used to revegetate areas impacted by cement industries activities.
Effects of extreme heat and drought on trees: what do we know and what do we need to know?
NASA Astrophysics Data System (ADS)
Teskey, R. O.
2017-12-01
It is almost certain that trees will experience heat waves and droughts during their lifetime. In response, they have acquired many adaptations to survive these periods of intense stress. For example, recently we have investigated the surprising role that stomata play in maintaining leaf function at very high temperatures by opening widely to cool the leaf even when photosynthesis is zero. This process and its trade-offs, as well as many other physiological and morphological responses to high temperatures, will be discussed. The current state of knowledge of the mechanisms trees use to cope with extreme drought, including leaf shedding, hydraulic architecture, carbohydrate storage, and changes in wood anatomy will be discussed. Examples of how the interactions between drought and heat affect trees also will be provided. Finally, an assessment of knowledge gaps and recommendations for future research will be provided.
ERIC Educational Resources Information Center
National Clearinghouse for Educational Facilities, 2009
2009-01-01
This publication discusses conditions that feed wildfires, how a building catches fire, determining the school's risk, creating a survivable space for the school, the importance of maintenance, the fire-resistant school, meeting code requirements, and related flood and mudslide risks. Much of this publication has been adapted for schools from the…
Boron accumulation and toxicity in hybrid poplar (Populus nigra × euramericana).
Rees, Rainer; Robinson, Brett H; Menon, Manoj; Lehmann, Eberhard; Günthardt-Goerg, Madeleine S; Schulin, Rainer
2011-12-15
Poplars accumulate high B concentrations and are thus used for the phytomanagement of B contaminated soils. Here, we performed pot experiments in which Populus nigra × euramericana were grown on a substrate with B concentrations ranging from 13 to 280 mg kg(-1) as H(3)BO(3). Salix viminalis, Brassica juncea, and Lupinus albus were grown under some growing conditions for comparison. Poplar growth was unaffected at soil B treatment levels up to 93 mg kg(-1). Growth was progressively reduced at levels of 168 and 280 mg kg(-1). None of the other species survived at these substrate B levels. At leaf B concentrations <900 mg kg(-1) only <10% of the poplar leaf area showed signs of toxicity. Neutron radiography revealed that chlorotic leaf tissues had B concentrations of 1000-2000 mg kg(-1), while necrotic tissues had >2000 mg kg(-1). Average B concentrations of up to 3500 mg kg(-1) were found in leaves, while spots within leaves had concentrations >7000 mg kg(-1), showing that B accumulation in leaf tissue continued even after the onset of necrosis. The B accumulation ability of P. nigra × euramericana is associated with B hypertolerance in the living tissue and storage of B in dead leaf tissue.
Cavagnaro, Juan B; Ponce, María T; Guzmán, Javier; Cirrincione, Miguel A
2006-04-01
Argentinean Vitis vinifera cultivars although originated from Europe, have clear ampelographic and genotypic differences as compared with the European cultivars currently used in wine making. In vitro evaluation of salt tolerance has been used in many species. Our hypothesis was that Argentinean cultivars are more tolerant to salinity than European ones. Three European cultivars, Malbec, Cabernet Sauvignon and Chardonnay and four Argentincan cultivars, Cereza, Criolla Chica, Pedro Gimcnez and Torrontes Riojano were tested by in vitro culture. Treatments included: 1) Control, 2) 60 mEq/L of a mixture of three parts of NaCl and one part of CaCl2 and 3) 90 mEq/L of the salt mixture. Results from two experiments (I and II) are reported. No differences were found in plant survival, expressed as % of the respective control, among cultivars. Leaf area, leaf, stem and total dry matter (DM) in Experiment I and leaf area, leaf number and leaf, stem, root and total DM in Experiment II, were higher in Argentinean cultivars than in European ones. We conclude that Argentinean cultivars show better performance in growing under salinity, especially in the highest salt concentration. Differences among cultivars, inside each group, were found for most of the measured variables.
Leaf energy balance modelling as a tool to infer habitat preference in the early angiosperms.
Lee, Alexandra P; Upchurch, Garland; Murchie, Erik H; Lomax, Barry H
2015-03-22
Despite more than a century of research, some key aspects of habitat preference and ecology of the earliest angiosperms remain poorly constrained. Proposed growth ecology has varied from opportunistic weedy species growing in full sun to slow-growing species limited to the shaded understorey of gymnosperm forests. Evidence suggests that the earliest angiosperms possessed low transpiration rates: gas exchange rates for extant basal angiosperms are low, as are the reconstructed gas exchange rates for the oldest known angiosperm leaf fossils. Leaves with low transpirational capacity are vulnerable to overheating in full sun, favouring the hypothesis that early angiosperms were limited to the shaded understorey. Here, modelled leaf temperatures are used to examine the thermal tolerance of some of the earliest angiosperms. Our results indicate that small leaf size could have mitigated the low transpirational cooling capacity of many early angiosperms, enabling many species to survive in full sun. We propose that during the earliest phases of the angiosperm leaf record, angiosperms may not have been limited to the understorey, and that some species were able to compete with ferns and gymnosperms in both shaded and sunny habitats, especially in the absence of competition from more rapidly growing and transpiring advanced lineages of angiosperms.
ELF Communications System Ecological Monitoring Program: A Summary Report for 1982-1992
1993-10-01
autumn- abscised alder leaves were used in the packs; since 1990, only fresh alder leaves have been used. Leaf packs were periodically retrieved and...red pine planting survival. Northern Journal of Applied Forestry, 5:14; 1988. 56. Connaughton, P. The effects of acid precipitation on nutrient levels
The relationship of biofilm production to biocontrol activity of Burkholderia pyrrocinia FP62
USDA-ARS?s Scientific Manuscript database
Foliar biocontrol agent (BCA) efficacy is often inconsistent due to poor colonization and survival on plant surfaces. Burkholderia pyrrocinia FP62, a superior leaf colonist and BCA of Botrytis cinerea, forms unsaturated biofilms on plant surfaces. To determine the relationship between biocontrol act...
Defensive effects of extrafloral nectaries in quaking aspen differ with scale.
Mortensen, Brent; Wagner, Diane; Doak, Patricia
2011-04-01
The effects of plant defenses on herbivory can differ among spatial scales. This may be particularly common with indirect defenses, such as extrafloral nectaries (EFNs), that attract predatory arthropods and are dependent on predator distribution, abundance, and behavior. We tested the defensive effects of EFNs in quaking aspen (Populus tremuloides Michx.) against damage by a specialist herbivore, the aspen leaf miner (Phyllocnistis populiella Cham.), at the scale of individual leaves and entire ramets (i.e., stems). Experiments excluding crawling arthropods revealed that the effects of aspen EFNs differed at the leaf and ramet scales. Crawling predators caused similar reductions in the percent leaf area mined on individual leaves with and without EFNs. However, the extent to which crawling predators increased leaf miner mortality and, consequently, reduced mining damage increased with EFN expression at the ramet scale. Thus, aspen EFNs provided a diffuse defense, reducing damage to leaves across a ramet regardless of leaf-scale EFN expression. We detected lower leaf miner damage and survival unassociated with crawling predators on EFN-bearing leaves, suggesting that direct defenses (e.g., chemical defenses) were stronger on leaves with than without EFNs. Greater direct defenses on EFN-bearing leaves may reduce the probability of losing these leaves and thus weakening ramet-scale EFN defense. Aspen growth was not related to EFN expression or the presence of crawling predators over the course of a single season. Different effects of aspen EFNs at the leaf and ramet scales suggest that future studies may benefit from examining indirect defenses simultaneously at multiple scales.
Hydraulic Failure Defines the Recovery and Point of Death in Water-Stressed Conifers[OA
Brodribb, Tim J.; Cochard, Hervé
2009-01-01
This study combines existing hydraulic principles with recently developed methods for probing leaf hydraulic function to determine whether xylem physiology can explain the dynamic response of gas exchange both during drought and in the recovery phase after rewatering. Four conifer species from wet and dry forests were exposed to a range of water stresses by withholding water and then rewatering to observe the recovery process. During both phases midday transpiration and leaf water potential (Ψleaf) were monitored. Stomatal responses to Ψleaf were established for each species and these relationships used to evaluate whether the recovery of gas exchange after drought was limited by postembolism hydraulic repair in leaves. Furthermore, the timing of gas-exchange recovery was used to determine the maximum survivable water stress for each species and this index compared with data for both leaf and stem vulnerability to water-stress-induced dysfunction measured for each species. Recovery of gas exchange after water stress took between 1 and >100 d and during this period all species showed strong 1:1 conformity to a combined hydraulic-stomatal limitation model (r2 = 0.70 across all plants). Gas-exchange recovery time showed two distinct phases, a rapid overnight recovery in plants stressed to <50% loss of leaf hydraulic conductance (Kleaf) and a highly Ψleaf-dependent phase in plants stressed to >50% loss of Kleaf. Maximum recoverable water stress (Ψmin) corresponded to a 95% loss of Kleaf. Thus, we conclude that xylem hydraulics represents a direct limit to the drought tolerance of these conifer species. PMID:19011001
Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency
Adams, Mark Andrew; Turnbull, Tarryn L.; Sprent, Janet I.; Buchmann, Nina
2016-01-01
Using robust, pairwise comparisons and a global dataset, we show that nitrogen concentration per unit leaf mass for nitrogen-fixing plants (N2FP; mainly legumes plus some actinorhizal species) in nonagricultural ecosystems is universally greater (43–100%) than that for other plants (OP). This difference is maintained across Koppen climate zones and growth forms and strongest in the wet tropics and within deciduous angiosperms. N2FP mostly show a similar advantage over OP in nitrogen per leaf area (Narea), even in arid climates, despite diazotrophy being sensitive to drought. We also show that, for most N2FP, carbon fixation by photosynthesis (Asat) and stomatal conductance (gs) are not related to Narea—in distinct challenge to current theories that place the leaf nitrogen–Asat relationship at the center of explanations of plant fitness and competitive ability. Among N2FP, only forbs displayed an Narea–gs relationship similar to that for OP, whereas intrinsic water use efficiency (WUEi; Asat/gs) was positively related to Narea for woody N2FP. Enhanced foliar nitrogen (relative to OP) contributes strongly to other evolutionarily advantageous attributes of legumes, such as seed nitrogen and herbivore defense. These alternate explanations of clear differences in leaf N between N2FP and OP have significant implications (e.g., for global models of carbon fluxes based on relationships between leaf N and Asat). Combined, greater WUE and leaf nitrogen—in a variety of forms—enhance fitness and survival of genomes of N2FP, particularly in arid and semiarid climates. PMID:27035971
Differential survival of chaparral seedlings during the first summer drought after wildfire.
Frazer, J M; Davis, S D
1988-07-01
Big Pod Ceanothus (Ceanothus megacarpus) is an obligate seeder after fire; Laurel Sumac (Rhus laurina) is primarily a resprouter after fire. Both species commonly occur together in mixed stands and are dominant members of the coastal chaparral of southern California. We compared the mean survival of post-fire seedlings of each species during the first summer drought after fire and found C. megacarpus to have a mean survival of 54% while R. laurina had a mean survival of only 0.1%. Rooting dephs were similar between species but predawn water potentials and leaf temperatures were higher for R. laurina seedlings. Leaf temperatures for R. laurina reached a mean value of 46.8° C on hot, summer days, about 5° C higher than seedlings of C. megacarpus. By the end of the first growing season, 92% of all C. megacarpus seedlings had suffered herbivory compared to only 17% of all R. laurina seedlings. Herbivory did not appear to be the immediate cause of seedling mortality. Transect data indicated that full recovery of prefire species composition and density at our study site was likely but the mode of recovery was different for the species examined. R. laurina recovered primarily by sprouting, C. megacarpus totally by seedling establishment and a third species, Adenostoma fasciculatum (chamise), by a combination of sprouting and seedling establishment. We attribute the higher mortality of R. laurina seedlings to the greater sensitivity of its tissue to water stress. It may be that differential survival of shrub seedlings and differential modes of reestablishment after fire play an important role in maintaining species diversity in the chaparral communities of coastal, southern California.
Genetic and life-history consequences of extreme climate events
Mangel, Marc; Jesensek, Dusan; Garza, John Carlos; Crivelli, Alain J.
2017-01-01
Climate change is predicted to increase the frequency and intensity of extreme climate events. Tests on empirical data of theory-based predictions on the consequences of extreme climate events are thus necessary to understand the adaptive potential of species and the overarching risks associated with all aspects of climate change. We tested predictions on the genetic and life-history consequences of extreme climate events in two populations of marble trout Salmo marmoratus that have experienced severe demographic bottlenecks due to flash floods. We combined long-term field and genotyping data with pedigree reconstruction in a theory-based framework. Our results show that after flash floods, reproduction occurred at a younger age in one population. In both populations, we found the highest reproductive variance in the first cohort born after the floods due to a combination of fewer parents and higher early survival of offspring. A small number of parents allowed for demographic recovery after the floods, but the genetic bottleneck further reduced genetic diversity in both populations. Our results also elucidate some of the mechanisms responsible for a greater prevalence of faster life histories after the extreme event. PMID:28148745
Sun, Yiwen; Wang, Tiejun; Skidmore, Andrew K; Wang, Qi; Ding, Changqing
2015-12-01
Traditional agriculture benefits a rich diversity of plants and animals. The winter-flooded rice fields in the Qinling Mountains, China, are the last refuge for the endangered Asian crested ibis (Nipponia nippon), and intensive efforts have been made to protect this anthropogenic habitat. Analyses of multi-temporal satellite data indicate that winter-flooded rice fields have been continuously reduced across the current range of crested ibis during the past two decades. The rate of loss of these fields in the core-protected areas has unexpectedly increased to a higher level than that in non-protected areas in the past decade. The best fit (R (2) = 0.87) numerical response model of the crested ibis population shows that a reduction of winter-flooded rice fields decreases population growth and predicts that the population growth will be constrained by the decline of traditional winter-flooded rice fields in the coming decades. Our findings suggest that the decline of traditional rice farming is likely to continue to pose a threat to the long-term survival and recovery of the crested ibis population in China.
Tropical insular fish assemblages are resilient to flood disturbance
Smith, William E.; Kwak, Thomas J.
2015-01-01
Periods of stable environmental conditions, favoring development of ecological communities regulated by density-dependent processes, are interrupted by random periods of disturbance that may restructure communities. Disturbance may affect populations via habitat alteration, mortality, or displacement. We quantified fish habitat conditions, density, and movement before and after a major flood disturbance in a Caribbean island tropical river using habitat surveys, fish sampling and population estimates, radio telemetry, and passively monitored PIT tags. Native stream fish populations showed evidence of acute mortality and downstream displacement of surviving fish. All fish species were reduced in number at most life stages after the disturbance, but populations responded with recruitment and migration into vacated upstream habitats. Changes in density were uneven among size classes for most species, indicating altered size structures. Rapid recovery processes at the population level appeared to dampen effects at the assemblage level, as fish assemblage parameters (species richness and diversity) were unchanged by the flooding. The native fish assemblage appeared resilient to flood disturbance, rapidly compensating for mortality and displacement with increased recruitment and recolonization of upstream habitats.
Silva, D C G; Carvalho, M C C G; Ruas, P M; Ruas, C F; Medri, M E
2010-05-04
The tree species Parapiptadenia rigida, native to southern South America, is frequently used in reforestation of riverbanks in Brazil. This tree is also a source of gums, tannins and essential oils, and it has some medicinal uses. We investigated flooding tolerance and genetic diversity in two populations of P. rigida; one of them was naturally exposed to flooding. Plants derived from seeds collected from each population were submitted to variable periods of experimental waterlogging and submergence. Waterlogging promoted a decrease in biomass and structural adjustments, such as superficial roots with aerenchyma and hypertrophied lenticels, that contribute to increase atmospheric oxygen intake. Plants that were submerged had an even greater reduction in biomass and a high mortality rate (40%). The two populations varied significantly in their RAPD marker profiles, in their ability to produce aerenchyma when waterlogged and to survive when submerged, suggesting ecotypic differentiation between them. Hence, the seasonal flooding that has been challenging the tropical riparian forest appears to be genetically modifying the P. rigida populations exposed to it by selecting individuals with increased ability to live under this condition.
Salazar-Tortosa, D; Castro, J; Villar-Salvador, P; Viñegla, B; Matías, L; Michelsen, A; Rubio de Casas, R; Querejeta, J I
2018-05-16
Climatic dryness imposes limitations on vascular plant growth by reducing stomatal conductance, thereby decreasing CO 2 uptake and transpiration. Given that transpiration-driven water flow is required for nutrient uptake, climatic stress-induced nutrient deficit could be a key mechanism for decreased plant performance under prolonged drought. We propose the existence of an "isohydric trap", a dryness-induced detrimental feedback leading to nutrient deficit and stoichiometry imbalance in strict isohydric species. We tested this framework in a common garden experiment with 840 individuals of four ecologically-contrasting European pines (Pinus halepensis, P. nigra, P. sylvestris, and P. uncinata) at a site with high temperature and low soil water availability. We measured growth, survival, photochemical efficiency, stem water potentials, leaf isotopic composition (δ 13 C, δ 18 O), and nutrient concentrations (C, N, P, K, Zn, Cu). After two years, the Mediterranean species Pinus halepensis showed lower δ 18 O and higher δ 13 C values than the other species, indicating higher time-integrated transpiration and water-use efficiency (WUE), along with lower predawn and midday water potentials, higher photochemical efficiency, higher leaf P and K concentrations, more balanced N:P and N:K ratios, and much greater dry-biomass (up to 63-fold) and survival (100%). Conversely, the more mesic mountain pine species showed higher leaf δ 18 O and lower δ 13 C, indicating lower transpiration and WUE, higher water potentials, severe P and K deficiencies and N:P and N:K imbalances, and poorer photochemical efficiency, growth, and survival. These results support our hypothesis that vascular plant species with tight stomatal regulation of transpiration can become trapped in a feedback cycle of nutrient deficit and imbalance that exacerbates the detrimental impacts of climatic dryness on performance. This overlooked feedback mechanism may hamper the ability of isohydric species to respond to ongoing global change, by aggravating the interactive impacts of stoichiometric imbalance and water stress caused by anthropogenic N deposition and hotter droughts, respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Evolutionary history and distance dependence control survival of dipterocarp seedlings.
Bagchi, Robert; Press, Malcolm C; Scholes, Julie D
2010-01-01
One important hypothesis to explain tree-species coexistence in tropical forests suggests that increased attack by natural enemies near conspecific trees gives locally rare species a competitive advantage. Host ranges of natural enemies generally encompass several closely related plant taxa suggesting that seedlings should also do poorly around adults of closely related species. We investigated the effects of adult Parashorea malaanonan on seedling survival in a Bornean rain forest. Survival of P. malaanonan seedlings was highest at intermediate distances from parent trees while heterospecific seedlings were unaffected by distance. Leaf herbivores did not drive this relationship. Survival of seedlings was lowest for P. malaanonan, and increased with phylogenetic dissimilarity from this species, suggesting that survival of close relatives of common species is reduced. This study suggests that distance dependence contributes to species coexistence and highlights the need for further investigation into the role of shared plant enemies in community dynamics.
NASA Astrophysics Data System (ADS)
Wen, Colin K. C.; Bonin, Mary C.; Harrison, Hugo B.; Williamson, David H.; Jones, Geoffrey P.
2016-06-01
Acute environmental disturbances impact on habitat quality and resource availability, which can reverberate through trophic levels and become apparent in species' dietary composition. In this study, we observed a distinct dietary shift of newly settled and juvenile coral trout ( Plectropomus maculatus) following severe coral reef habitat degradation after a river flood plume affected the Keppel Islands, Australia. Hard coral cover declined by ~28 % in the 2 yr following the 2010-2011 floods, as did the abundance of young coral trout. Gut contents analysis revealed that diets had shifted from largely crustacean-based to non-preferred prey fishes following the disturbances. These results suggest that newly settled and juvenile coral trout modify their diet and foraging strategy in response to coral habitat degradation. This bottom-up effect of habitat degradation on the diet of a top coral reef predator may incur a metabolic cost, with subsequent effects on growth and survival.
USDA-ARS?s Scientific Manuscript database
Many soil-inhabiting fungi are capable of surviving the dynamic soil microenvironment through the formation of resilient resting structures, such as thick-walled spores, melanized hyphae, and sclerotia. Verticillium dahliae is a soil-inhabiting, economically significant plant pathogenic fungus that ...
46 CFR 172.245 - Survival conditions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... stage of flooding: (a) Final waterline. The final waterline, in the final condition of sinkage, heel... nonopening type; (7) Retractable inflatable seal; or (8) Guillotine door. (b) Heel angle. The maximum angle of heel must not exceed 15 degrees, except that this angle may be increased to 17 degrees if no deck...
46 CFR 172.245 - Survival conditions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... stage of flooding: (a) Final waterline. The final waterline, in the final condition of sinkage, heel... nonopening type; (7) Retractable inflatable seal; or (8) Guillotine door. (b) Heel angle. The maximum angle of heel must not exceed 15 degrees, except that this angle may be increased to 17 degrees if no deck...
ERIC Educational Resources Information Center
Collins, D. Parks
2013-01-01
Populations of the Eastern subterranean termite, "Reticulitermes flavipes," are widespread throughout most of the eastern United States. Subterranean termites have the ability to survive flooding conditions by lowering their metabolism. This lesson investigates the connection between the ability of termites to lower their metabolism to…
Native fish sanctuaries of the lower Colorado River: Cibola High Levee Pond, Desert Pupfish Pond
Mueller, G.
2005-01-01
Isolated by high mountains and harsh deserts, its fish community developed unique and specialized traits that helped them survive raging floods and prolonged droughts. Conditions were so unique that three quarters of the fish species are found nowhere else in the world?|
NASA Astrophysics Data System (ADS)
Xue, Wei; Jeong, Seungtaek; Ko, Jonghan; Tenhunen, John
2017-03-01
Nitrogen and water availability alter canopy structure and physiology, and thus crop growth, yielding large impacts on ecosystem-regulating/production provisions. However, to date, explicitly quantifying such impacts remains challenging partially due to lack of adequate methodology to capture spatial dimensions of ecosystem changes associated with nitrogen and water effects. A data fitting, where close-range remote-sensing measurements of vegetation indices derived from a handheld instrument and an unmanned aerial vehicle (UAV) system are linked to in situ leaf and canopy photosynthetic traits, was applied to capture and interpret inter- and intra-field variations in gross primary productivity (GPP) in lowland rice grown under flooded conditions (paddy rice, PD) subject to three nitrogen application rates and under rainfed conditions (RF) in an East Asian monsoon region of South Korea. Spatial variations (SVs) in both GPP and light use efficiency (LUEcabs) early in the growing season were enlarged by nitrogen addition. The nutritional effects narrowed over time. A shift in planting culture from flooded to rainfed conditions strengthened SVs in GPP and LUEcabs. Intervention of prolonged drought late in the growing season dramatically intensified SVs that were supposed to seasonally decrease. Nevertheless, nitrogen addition effects on SV of LUEcabs at the early growth stage made PD fields exert greater SVs than RF fields. SVs of GPP across PD and RF rice fields were likely related to leaf area index (LAI) development less than to LUEcabs, while numerical analysis suggested that considering strength in LUEcabs and its spatial variation for the same crop type tends to be vital for better evaluation in landscape/regional patterns of ecosystem photosynthetic productivity at critical phenology stages.
Pielström, Steffen; Roces, Flavio
2014-01-01
The Chaco leaf-cutting ant Atta vollenweideri is native to the clay-heavy soils of the Gran Chaco region in South America. Because of seasonal floods, colonies are regularly exposed to varying moisture across the soil profile, a factor that not only strongly influences workers' digging performance during nest building, but also determines the suitability of the soil for the rearing of the colony's symbiotic fungus. In this study, we investigated the effects of varying soil moisture on behaviours associated with underground nest building in A. vollenweideri. This was done in a series of laboratory experiments using standardised, plastic clay-water mixtures with gravimetric water contents ranging from relatively brittle material to mixtures close to the liquid limit. Our experiments showed that preference and group-level digging rate increased with increasing water content, but then dropped considerably for extremely moist materials. The production of vibrational recruitment signals during digging showed, on the contrary, a slightly negative linear correlation with soil moisture. Workers formed and carried clay pellets at higher rates in moist clay, even at the highest water content tested. Hence, their weak preference and low group-level excavation rate observed for that mixture cannot be explained by any inability to work with the material. More likely, extremely high moistures may indicate locations unsuitable for nest building. To test this hypothesis, we simulated a situation in which workers excavated an upward tunnel below accumulated surface water. The ants stopped digging about 12 mm below the interface soil/water, a behaviour representing a possible adaptation to the threat of water inflow field colonies are exposed to while digging under seasonally flooded soils. Possible roles of soil water in the temporal and spatial pattern of nest growth are discussed.
Li, Xiaoqiong; Guo, Wenfeng; Siemann, Evan; Wen, Yuanguang; Huang, Wei; Ding, Jianqing
2016-12-01
Spatially separated aboveground (AG) and belowground (BG) herbivores are closely linked through shared host plants, and both patterns of AG-BG interactions and plant responses may vary among plant genotypes. We subjected invasive (USA) and native (China) genotypes of tallow tree (Triadica sebifera) to herbivory by the AG specialist leaf-rolling weevil Heterapoderopsis bicallosicollis and/or the root-feeding larvae of flea beetle Bikasha collaris. We measured leaf damage and leaves rolled by weevils, quantified beetle survival, and analyzed flavonoid and tannin concentrations in leaves and roots. AG and BG herbivores formed negative feedbacks on both native and invasive genotypes. Leaf damage by weevils and the number of beetle larvae emerging as adults were higher on invasive genotypes. Beetles reduced weevil damage and weevils reduced beetle larval emergence more strongly for invasive genotypes. Invasive genotypes had lower leaf and root tannins than native genotypes. BG beetles decreased leaf tannins of native genotypes but increased root tannins of invasive genotypes. AG herbivory increased root flavonoids of invasive genotypes while BG herbivory decreased leaf flavonoids. Invasive genotypes had lower AG and BG herbivore resistance, and negative AG-BG herbivore feedbacks were much stronger for invasive genotypes. Lower tannin concentrations explained overall better AG and BG herbivore performances on invasive genotypes. However, changes in tannins and flavonoids affected AG and BG herbivores differently. These results suggest that divergent selection on chemical production in invasive plants may be critical in regulating herbivore performances and novel AG and BG herbivore communities in new environments.
Warmest extreme year in U.S. history alters thermal requirements for tree phenology.
Carter, Jacob M; Orive, Maria E; Gerhart, Laci M; Stern, Jennifer H; Marchin, Renée M; Nagel, Joane; Ward, Joy K
2017-04-01
The frequency of extreme warm years is increasing across the majority of the planet. Shifts in plant phenology in response to extreme years can influence plant survival, productivity, and synchrony with pollinators/herbivores. Despite extensive work on plant phenological responses to climate change, little is known about responses to extreme warm years, particularly at the intraspecific level. Here we investigate 43 populations of white ash trees (Fraxinus americana) from throughout the species range that were all grown in a common garden. We compared the timing of leaf emergence during the warmest year in U.S. history (2012) with relatively non-extreme years. We show that (a) leaf emergence among white ash populations was accelerated by 21 days on average during the extreme warm year of 2012 relative to non-extreme years; (b) rank order for the timing of leaf emergence was maintained among populations across extreme and non-extreme years, with southern populations emerging earlier than northern populations; (c) greater amounts of warming units accumulated prior to leaf emergence during the extreme warm year relative to non-extreme years, and this constrained the potential for even earlier leaf emergence by an average of 9 days among populations; and (d) the extreme warm year reduced the reliability of a relevant phenological model for white ash by producing a consistent bias toward earlier predicted leaf emergence relative to observations. These results demonstrate a critical need to better understand how extreme warm years will impact tree phenology, particularly at the intraspecific level.
Ripley, Brad S; Abraham, Trevor; Klak, Cornelia; Cramer, Michael D
2013-12-01
In several taxa, increasing leaf succulence has been associated with decreasing mesophyll conductance (g M) and an increasing dependence on Crassulacean acid metabolism (CAM). However, in succulent Aizoaceae, the photosynthetic tissues are adjacent to the leaf surfaces with an internal achlorophyllous hydrenchyma. It was hypothesized that this arrangement increases g M, obviating a strong dependence on CAM, while the hydrenchyma stores water and nutrients, both of which would only be sporadically available in highly episodic environments. These predictions were tested with species from the Aizoaceae with a 5-fold variation in leaf succulence. It was shown that g M values, derived from the response of photosynthesis to intercellular CO2 concentration (A:C i), were independent of succulence, and that foliar photosynthate δ(13)C values were typical of C3, but not CAM photosynthesis. Under water stress, the degree of leaf succulence was positively correlated with an increasing ability to buffer photosynthetic capacity over several hours and to maintain light reaction integrity over several days. This was associated with decreased rates of water loss, rather than tolerance of lower leaf water contents. Additionally, the hydrenchyma contained ~26% of the leaf nitrogen content, possibly providing a nutrient reservoir. Thus the intermittent use of C3 photosynthesis interspersed with periods of no positive carbon assimilation is an alternative strategy to CAM for succulent taxa (Crassulaceae and Aizoaceae) which occur sympatrically in the Cape Floristic Region of South Africa.
Ripley, Brad S.
2013-01-01
In several taxa, increasing leaf succulence has been associated with decreasing mesophyll conductance (g M) and an increasing dependence on Crassulacean acid metabolism (CAM). However, in succulent Aizoaceae, the photosynthetic tissues are adjacent to the leaf surfaces with an internal achlorophyllous hydrenchyma. It was hypothesized that this arrangement increases g M, obviating a strong dependence on CAM, while the hydrenchyma stores water and nutrients, both of which would only be sporadically available in highly episodic environments. These predictions were tested with species from the Aizoaceae with a 5-fold variation in leaf succulence. It was shown that g M values, derived from the response of photosynthesis to intercellular CO2 concentration (A:C i), were independent of succulence, and that foliar photosynthate δ13C values were typical of C3, but not CAM photosynthesis. Under water stress, the degree of leaf succulence was positively correlated with an increasing ability to buffer photosynthetic capacity over several hours and to maintain light reaction integrity over several days. This was associated with decreased rates of water loss, rather than tolerance of lower leaf water contents. Additionally, the hydrenchyma contained ~26% of the leaf nitrogen content, possibly providing a nutrient reservoir. Thus the intermittent use of C3 photosynthesis interspersed with periods of no positive carbon assimilation is an alternative strategy to CAM for succulent taxa (Crassulaceae and Aizoaceae) which occur sympatrically in the Cape Floristic Region of South Africa. PMID:24127513
Hypoxic coma as a strategy to survive inundation in a salt-marsh inhabiting spider
Pétillon, Julien; Montaigne, William; Renault, David
2009-01-01
Spiders constitute a major arthropod group in regularly inundated habitats. Some species survive a flooding period under water. We compared survival during both submersion and a recovery period after submersion, in three stenotopic lycosids: two salt-marsh species Arctosa fulvolineata and Pardosa purbeckensis, and a forest spider Pardosa lugubris. Both activity and survival rates were determined under controlled laboratory conditions by individually surveying 120 females kept submerged in sea water. We found significant differences between the three species, with the two salt-marsh spiders exhibiting higher survival abilities. To our knowledge, this study reports for the first time the existence of a hypoxic coma caused by submersion, which is most pronounced in A. fulvolineata, the salt-marsh spider known to overcome tidal inundation under water. Its ability to fall into that coma can therefore be considered a physiological adaptation to its regularly inundated habitat. PMID:19411268
Effects of a test flood on fishes of the Colorado River in Grand Canyon, Arizona
Valdez, R.A.; Hoffnagle, T.L.; McIvor, C.C.; McKinney, T.; Leibfried, W.C.
2001-01-01
A beach/habitat-building flow (i.e., test flood) of 1274 m3/s, released from Glen Canyon Dam down the Colorado River through Grand Canyon, had little effect on distribution, abundance, or movement of native fishes, and only short-term effects on densities of some nonnative species Shoreline and backwater catch rates of native fishes, including juvenile humpback chub (Gila cypha), flannelmouth suckers (Catostomus latipinnis), and bluehead suckers (C. discobolus), and all ages of speckled dace (Rhinichthys osculus), were not significantly different before and after the flood. Annual spring spawning migrations of flannelmouth suckers into the Paria River and endangered humpback chub into the Little Colorado River (LCR) took place during and after the flood, indicating no impediment to fish migrations. Pre-spawning adults staged in large slack water pools formed at the mouths of these tributaries during the flood. Net movement and habitat used by nine radio-tagged adult humpback chub during the flood were not significantly different from prior observations. Diet composition of adult humpback chub varied, but total biomass did not differ significantly before, during, and after the flood, indicating opportunistic feeding for a larger array of available food items displaced by the flood. Numbers of nonnative rainbow trout (Oncorhynchus mykiss) <152 mm total length decreased by ???8% in electrofishing samples from the dam tailwaters (0-25 km downstream of the dam) during the flood. Increased catch rates in the vicinity of the LCR (125 km downstream of the dam) and Hell's Hollow (314 km downstream of the dam) suggest that these young trout were displaced downstream by the flood, although displacement distance was unknown since some fish could have originated from local populations associated with intervening tributaries. Abundance, catch rate, body condition, and diet of adult rainbow trout in the dam tailwaters were not significantly affected by the flood, and the flood did not detrimentally affect spawning success; catch of young-of-year increased by 20% in summer following the flood. Post-flood catch rates of nonnative fathead minnows (Pimephales promelas) in shorelines and backwaters, and plains killifish (Fundulus zebrinus) in backwaters decreased in the vicinity of the LCR, and fathead minnows increased near Hell's Hollow, suggesting that the flood displaced this nonnative species. Densities of rainbow trout and fathead minnows recovered to pre-flood levels eight months after the flood by reinvasion from tributaries and reproduction in backwaters. We concluded that the flood was of insufficient magnitude to substantially reduce populations of nonnative fishes, but that similar managed floods can disadvantage alien predators and competitors and enhance survival of native fishes.
Cherry, Julia A; Gough, Laura
2009-09-01
Responses of aquatic macrophytes to leaf herbivory may differ from those documented for terrestrial plants, in part, because the potential to maximize growth following herbivory may be limited by the stress of being rooted in flooded, anaerobic sediments. Herbivory on aquatic macrophytes may have ecosystem consequences by altering the allocation of nutrients and production of biomass within individual plants and changing the quality and quantity of aboveground biomass available to consumers or decomposers. To test the effects of leaf herbivory on plant growth and production, herbivory of a dominant macrophyte, Nymphaea odorata, by chrysomelid beetles and crambid moths was controlled during a 2-year field experiment. Plants exposed to herbivory maintained, or tended to increase, biomass and aboveground net primary production relative to controls, which resulted in 1.5 times more aboveground primary production entering the detrital pathway of the wetland. In a complementary greenhouse experiment, the effects of simulated leaf herbivory on total plant responses, including biomass and nutrient allocation, were investigated. Plants in the greenhouse responded to moderate herbivory by maintaining aboveground biomass relative to controls, but this response occurred at the expense of belowground growth. Results of these studies suggest that N. odorata may tolerate moderate levels of herbivory by reallocating biomass and resources aboveground, which in turn influences the quantity, quality and fate of organic matter available to herbivores and decomposers.
Ayano, Madoka; Kani, Takahiro; Kojima, Mikiko; Sakakibara, Hitoshi; Kitaoka, Takuya; Kuroha, Takeshi; Angeles-Shim, Rosalyn B; Kitano, Hidemi; Nagai, Keisuke; Ashikari, Motoyuki
2014-10-01
Under flooded conditions, the leaves and internodes of deepwater rice can elongate above the water surface to capture oxygen and prevent drowning. Our previous studies showed that three major quantitative trait loci (QTL) regulate deepwater-dependent internode elongation in deepwater rice. In this study, we investigated the age-dependent internode elongation in deepwater rice. We also investigated the relationship between deepwater-dependent internode elongation and the phytohormone gibberellin (GA) by physiological and genetic approach using a QTL pyramiding line (NIL-1 + 3 + 12). Deepwater rice did not show internode elongation before the sixth leaf stage under deepwater condition. Additionally, deepwater-dependent internode elongation occurred on the sixth and seventh internodes during the sixth leaf stage. These results indicate that deepwater rice could not start internode elongation until the sixth leaf stage. Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) method for the phytohormone contents showed a deepwater-dependent GA1 and GA4 accumulation in deepwater rice. Additionally, a GA inhibitor abolished deepwater-dependent internode elongation in deepwater rice. On the contrary, GA feeding mimicked internode elongation under ordinary growth conditions. However, mutations in GA biosynthesis and signal transduction genes blocked deepwater-dependent internode elongation. These data suggested that GA biosynthesis and signal transduction are essential for deepwater-dependent internode elongation in deepwater rice. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Murray, R.; Neale, C.; Nagler, P. L.; Glenn, E. P.
2008-12-01
Heat-balance sap flow sensors provide direct estimates of water movement through plant stems and can be used to accurately measure leaf-level transpiration (EL) and stomatal conductance (GS) over time scales ranging from 20-minutes to a month or longer in natural stands of plants. However, their use is limited to relatively small branches on shrubs or trees, as the gauged stem section needs to be uniformly heated by the heating coil to produce valid measurements. This presents a scaling problem in applying the results to whole plants, stands of plants, and larger landscape areas. We used high-resolution aerial multispectral digital imaging with green, red and NIR bands as a bridge between ground measurements of EL and GS, and MODIS satellite imagery of a flood plain on the Lower Colorado River dominated by saltcedar (Tamarix ramosissima). Saltcedar is considered to be a high-water-use plant, and saltcedar removal programs have been proposed to salvage water. Hence, knowledge of actual saltcedar ET rates is needed on western U.S. rivers. Scaling EL and GS to large landscape units requires knowledge of leaf area index (LAI) over large areas. We used a LAI model developed for riparian habitats on Bosque del Apache, New Mexico, to estimate LAI at our study site on the Colorado River. We compared the model estimates to ground measurements of LAI, determined with a Li-Cor LAI-2000 Plant Canopy Analyzer calibrated by leaf harvesting to determine Specific Leaf Area (SLA) (m2 leaf area per g dry weight leaves) of the different species on the floodplain. LAI could be adequately predicted from NDVI from aerial multispectral imagery and could be cross-calibrated with MODIS NDVI and EVI. Hence, we were able to project point measurements of sap flow and LAI over multiple years and over large areas of floodplain using aerial multispectral imagery as a bridge between ground and satellite data. The methods are applicable to riparian corridors throughout the western U.S.
Disease risk of potting media infested with Phytophthora ramorum under nursery conditions
S.A. Tjosvold; D.L. Chambers; E.J. Fichtner; S.T. Koike; S.R. Mori
2009-01-01
Phytophthora ramorum has been found in potting media of containerized plants; however, the role of infested media on disease development under nursery conditions is unknown. This study assesses pathogen survival, sporulation, and infectivity to rhododendron plants in nursery pots with infected leaf litter that were maintained under greenhouse and...
Soil moisture mediated interaction between Polygonatum biflorum and leaf spot disease
Robert J. II Warren; Erin Mordecai
2010-01-01
Fungal pathogens can regulate the abundance and distribution of natural plant populations by inhibiting the growth, survival, and reproduction of their hosts. The abiotic environment is a crucial component in hostâpathogen interactions in natural plant populations as favorable conditions drive pathogen development, reproduction, and persistence. Foliar plant pathogens...
Kim, Young-Wook; Jeong, Young-Ju; Kim, Ah-Young; Son, Hyun-Hee; Lee, Jong-Am; Jung, Cheong-Hwan; Kim, Chae-Hyun; Kim, Jaeman
2014-01-01
Five novel Lactobacillus brevis strains were isolated from naturally fermented Aloe vera leaf flesh. Each strain was identified by Random Amplified Polymorphic DNA (RAPD) analysis and 16S rRNA sequence comparison. These strains were highly tolerant to acid, surviving in pH2.5 for up to 4 hours, and resistant to 5% bile salts at 37°C for 18 hours. Due to its tolerance to acid and bile salts, one strain passed through the gastric barrier and colonised the intestine after oral administration. All five strains inhibited the growth of many harmful enteropathogens without restraining most of normal commensals in the gut and hence named POAL (Probiotics Originating from Aloe Leaf) strains. Additionally, each strain exhibited discriminative resistance to a wide range of antibiotics. The L. brevis POAL strains, moreover, expressed high levels of the glutamate decarboxylase (GAD) gene which produces a beneficial neurotransmitter, γ-aminobutyric acid (GABA). These characteristics in all suggest that the novel L. brevis strains should be considered as potential food additives and resources for pharmaceutical research.
Kim, Young-Wook; Jeong, Young-Ju; Kim, Ah-Young; Son, Hyun-Hee; Lee, Jong-Am; Jung, Cheong-Hwan; Kim, Chae-Hyun; Kim, Jaeman
2014-01-01
Five novel Lactobacillus brevis strains were isolated from naturally fermented Aloe vera leaf flesh. Each strain was identified by Random Amplified Polymorphic DNA (RAPD) analysis and 16S rRNA sequence comparison. These strains were highly tolerant to acid, surviving in pH2.5 for up to 4 hours, and resistant to 5% bile salts at 37°C for 18 hours. Due to its tolerance to acid and bile salts, one strain passed through the gastric barrier and colonised the intestine after oral administration. All five strains inhibited the growth of many harmful enteropathogens without restraining most of normal commensals in the gut and hence named POAL (Probiotics Originating from Aloe Leaf) strains. Additionally, each strain exhibited discriminative resistance to a wide range of antibiotics. The L. brevis POAL strains, moreover, expressed high levels of the glutamate decarboxylase (GAD) gene which produces a beneficial neurotransmitter, γ-aminobutyric acid (GABA). These characteristics in all suggest that the novel L. brevis strains should be considered as potential food additives and resources for pharmaceutical research. PMID:24598940
MUNNÉ-BOSCH, S.; PEÑUELAS, J.
2003-01-01
Summer leaf senescence in Pistacia lentiscus L. plants serves to remobilize nutrients from the oldest leaves to the youngest ones, and therefore contributes to plant survival during the adverse climatic conditions typical of Mediterranean summers, i.e. water deficit superimposed on high solar radiation and high temperatures. To evaluate the extent of photo- and antioxidative protection during leaf senescence of this species, changes in carotenoids, including xanthophyll cycle pigments, and in the levels of ascorbate and α-tocopherol were measured prior to and during summer leaf senescence in 3-year-old plants grown under Mediterranean field conditions. Although a chlorophyll loss of approx. 20 % was observed during the first stages of leaf senescence, no damage to the photosynthetic apparatus occurred as indicated by constant maximum efficiencies of photosystem II photochemistry. During this period the de-epoxidation state of the xanthophyll cycle, and lutein, neoxanthin and ascorbate levels were kept constant. At the same time β-carotene and α-tocopherol levels increased by approx. 9 and 70 %, respectively, presumably conferring photo- and antioxidative protection to the photosynthetic apparatus. By contrast, during the later stages of leaf senescence, characterized by severe chlorophyll loss, carotenoids were moderately degraded (neoxanthin by approx. 20 %, and both lutein and β-carotene by approx. 35 %), ascorbate decreased by approx. 80 % and α-tocopherol was not detected in senescing leaves. This study demonstrates that mechanisms of photo- and antioxidative protection may play a major role in maintaining chloroplast function during the first stages of leaf senescence, while antioxidant defences are lost during the latest stages of senescence. PMID:12871848
Orlovskis, Zigmunds; Hogenhout, Saskia A.
2016-01-01
Parasites can take over their hosts and trigger dramatic changes in host appearance and behavior that are typically interpreted as extended phenotypes that promote parasite survival and fitness. For example, Toxoplasma gondii is thought to manipulate the behaviors of infected rodents to aid transmission to cats and parasitic trematodes of the genus Ribeiroia alter limb development in their amphibian hosts to facilitate predation of the latter by birds. Plant parasites and pathogens also reprogram host development and morphology. However, whereas some parasite-induced morphological alterations may have a direct benefit to the fitness of the parasite and may therefore be adaptive, other host alterations may be side effects of parasite infections having no adaptive effects on parasite fitness. Phytoplasma parasites of plants often induce the development of leaf-like flowers (phyllody) in their host plants, and we previously found that the phytoplasma effector SAP54 generates these leaf-like flowers via the degradation of plant MADS-box transcription factors (MTFs), which regulate all major aspects of development in plants. Leafhoppers prefer to reproduce on phytoplasma-infected and SAP54-trangenic plants leading to the hypothesis that leafhopper vectors are attracted to plants with leaf-like flowers. Surprisingly, here we show that leafhopper attraction occurs independently of the presence of leaf-like flowers. First, the leafhoppers were also attracted to SAP54 transgenic plants without leaf-like flowers and to single leaves of these plants. Moreover, leafhoppers were not attracted to leaf-like flowers of MTF-mutant plants without the presence of SAP54. Thus, the primary role of SAP54 is to attract leafhopper vectors, which spread the phytoplasmas, and the generation of leaf-like flowers may be secondary or a side effect of the SAP54-mediated degradation of MTFs. PMID:27446117
Gurovich, Luis; Schaffer, Bruce; García, Nicolás; Iturriaga, Rodrigo
2009-01-01
Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone. PMID:19649181
NASA Technical Reports Server (NTRS)
Parks, W. L.; Sewell, J. I.; Hilty, J. W.; Rennie, J. C. (Principal Investigator)
1974-01-01
The author has identified the following significant results. ERTS-1 imagery may be used to delineate soil associations. It does have the capacity to divide soils into groups such that their land use and management would be similar. It offers definite potential for making grass flood-plain, wetland, river shoreline, and land use change surveys. Production of volume strata and forest type from the two usable bands of ERTS-1 imagery were of questionable value. No imagery was received for evaluation during the time of year when maine dwarf mosaic virus and southern corn leaf blight were active.
Shiu, Ya-Li; Lin, Hsueh-Li; Chi, Chia-Chun; Yeh, Shinn-Pyng; Liu, Chun-Hung
2016-08-01
The present study was conducted to evaluate the dietary supplementation of leaf meal from Citrus depressa Hayata on the growth, innate immune response, and disease resistance of juvenile barramundi, Lates calcarifer. Four diets were formulated to contain 0% (control), 1% (C1), 3% (C3), and 5% (C5) leaf meal, respectively. During a 56 d feeding trial, fish survival, growth performance, and feed efficiency were not significantly different among all groups. For immune response, respiratory burst, superoxide dismutase and lysozyme activities were not significantly different among all groups. However, fish fed the C5 diet for 56 d had significantly higher phagocytic activity. Also, fish fed C3 and C5 diets had significantly higher Mx gene expressions in spleens and head kidneys with nerve necrosis virus injections after 24 h. Disease resistance against Aeromonas hydrophila was increased by the C5 diet. In this study, barramundi fed on a diet containing 5% C. depressa Hayata leaf meal had significantly better innate immune response and disease resistance against A. hydrophila. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparative life history and physiology of two understory Neotropical herbs.
Mulkey, Stephen S; Smith, Alan P; Wright, S Joseph
1991-10-01
Demography and physiology of two broad-leaved understory tropical herbs (Marantaceae) were studied in gaps and shaded understory in large-scale irrigated and control treatments during the dry season at Barro Colorado Island (BCI), Panama. Because photosynthetic acclimation potential may not predict light environments where tropical species are found, we studied a suite of physiological features to determine if they uniquely reflect the distribution of each species. Calathea inocephala and Pleiostachya pruinosa grow and reproduce in gaps, persist in shade, and have equivalent rates of leaf production. Calathea leaves survived 2 to 3 times as long as leaves of Pleiostachya and plants of Pleiostachya were 6 to 8 times more likely to die as plants of Calathea during 3.5 years of study. Pleiostachya had lowest survival in shade and when not irrigated during the dry season, while Calathea survived well in both habitats and both treatments. Pleiostachya had higher photosynthetic capacity and stomatal conductance than Calathea and acclimated to gaps by producing leaves with higher photosynthetic capacity. Calathea had lower mesophyll CO 2 concentrations than Pleiostachya. Both species had similar dark respiration rates and light compensation points, and water-use and nitrogen-use efficiencies were inversely related between species. Species showed no differences in leaf osmotic potentials at full turgor. Calathea roots were deeper and had tuberous swellings.Leaf-level assimilation and potential water loss are consistent with where these species are found, but photosynthetic acclimation to high light does not reflect both species' abilities to grow and reproduce in gaps. Pleiostachya's gap-dependent, rapid growth and reproduction require high rates of carbon gain in short-lived leaves, which can amortize their cost quickly. High rates of water loss are associated with reduced longevity during drought. Calathea's roots may confer greater capacitance, while its leaves are durable, long-lived and have lower water loss, permitting persistence long after gap closure.
NASA Astrophysics Data System (ADS)
Sandoval-Gil, José M.; Marín-Guirao, Lázaro; Ruiz, Juan M.
2012-12-01
There are major concerns in the Mediterranean Sea over the effects of hypersaline effluents from seawater desalination plants on seagrass communities. However, knowledge concerning the specific physiological capacities of seagrasses to tolerate or resist salinity increases is still limited. In this study, changes in the photosynthetic characteristics, pigment content, leaf light absorption, growth and survival of the seagrass Cymodocea nodosa were examined across a range of simulated hypersaline conditions. To this end, large plant fragments were maintained under salinities of 37 (control ambient salinity), 39, 41 and 43 (practical salinity scale) in a laboratory mesocosm system for 47 days. At the end of the experimental period, net photosynthesis exhibited a modest, but significant, decline (12-17%) in all tested hypersaline conditions (39-43). At intermediate salinity levels (39-41), the decline in photosynthetic rates was mainly accounted for by substantial increases in respiratory losses (approximately 98% of the control), the negative effects of which on leaf carbon balance were offset by an improved capacity and efficiency of leaves to absorb light, mainly through changes in accessory pigments, but also in optical properties related to leaf anatomy. Conversely, inhibition of gross photosynthesis (by 19.6% compared to the control mean) in the most severe hypersaline conditions (43) reduced net photosynthesis. In this treatment, the respiration rate was limited in order to facilitate a positive carbon balance (similar to that of the control plants) and shoot survival, although vitality would probably be reduced if such metabolic alterations persisted. These results are consistent with the ecology of Mediterranean C. nodosa populations, which are considered to have high morphological and physiological plasticity and a capacity to grow in a wide variety of coastal environments with varying salinity levels. The results from this study support the premise that C. nodosa has a higher tolerance to hypersaline conditions than the highly sensitive Posidonia oceanica, the other dominant Mediterranean seagrass, which is limited to marine environments with stable salinities.
Sen, Monokesh Kumer; Nasrin, Shamima; Rahman, Shahedur; Jamal, Abu Hena Mostofa
2014-01-01
Objective To study callus induction from different explants (internode, leaf, root) and in vitro plantlets propagation from medicinally important plant Achyranthes aspera L. Methods Sterilized explants were prepared by using 0.1% HgCl2 and 0.5% Bavistin and callus was obtained when cultured onto Murashige Skoog's (MS) medium by using different concentrations and combination of 2,4-D, NAA, BAP, IAA, IBA with 3% sucrose and 0.8% agar. Induced callus was immediately transferred to MS medium containing at different concentrations of phytohormones for shootlets and rootlets induction respectively. Results Sterilization treatment of 0.1% HgCl2 for 2-3 min and Bavistin 0.5% for 10-12 min showed the highest percentage of asepsis and survival rate. Maximum induction of callus was obtained from a combination of 2.0 mg/L 2,4-D and 0.5 mg/L NAA from leaf. Highest shootlets number (4.83±0.17) and length (3.8±0.16) cm were observed on full strength MS medium when fortified with BAP 4.0 mg/L and KIN 0.5 mg/L. Concerted efforts of BAP 2.0 mg/L and NAA 0.5 mg/L on full strength MS medium showed highest leaf number (6.77±0.94). In vitro raised shoots were allowed to root on different strengths of MS medium fortified with IAA and IBA at different concentrations. Experimentally, 3.0 mg/L IBA was enabled to induce maximum rootlets number (10.0±9.82) on full strength MS medium. Afterwards, regenerated shoots with well developed roots were successfully subjected to hardening process and were acclimatized. The survived plantlets showed 66.67% survival frequency without any morphological abnormality. Conclusions The results demonstrated that different explants were good source of callus induction, morphology analysis as well as indirect plantlets regeneration. PMID:24144129
Yee, D A; Skiff, J F
2014-01-01
The mosquito Culex coronator (Dyar and Knab) (Diptera: Culicidae) has undergone rapid range expansion in the United States since 2003, with its historical distribution in the southwest expanding eastward to the Atlantic coast. Although Cx. coronator nominally use small natural aquatic habitats for development, the use of containers (e.g., tires) makes it potentially important as container invasive. To determine the potential ecological effects of Cx. coronator on resident container species, we conducted a laboratory experiment to assess its competitive ability with two common tire-inhabiting species, Aedes albopictus (Skuse) and Culex quinquefasciatus (Say) (Diptera: Culicidae). Larvae were reared under a factorial design with each species alone and in combination (Cx. coronator + Ae. albopictus, Cx. coronator + Cx. quinquefasciatus) across three different resource environments (leaf detritus only, animal detritus only, animal + leaf). Mosquito performance (survival, adult male and female mass, and development time) was measured for each species across treatments. Female Cx. coronator developed slowest when grown with Ae. albopictus, or when grown with leaves only regardless of species combinations; similar patterns emerged for males although species effects were restricted to mass. Few differences were evident in performance for male and female Cx. coronator across detritus environments when grown with Cx. quinquefasciatus. Cx. quinquefasciatus did not vary in mass or development time in the presence of Cx. coronator compared with when grown alone. Ae. albopictus female mass was 15% lower in the presence of Cx. coronator. Survival of Cx. coronator was highest in animal and leaf detritus containers, although survival was generally lower when larvae were grown with Ae. albopictus. These findings suggest that the performance of Cx. coronator is similar to that of Cx. quinquefasciatus but it suffers in the presence of Ae. albopictus under some resource environments.
Pondberry (Lindera melissifolia, Lauraceae) seed and seedling dispersers and predators
Andreza M. Martins; Fernanda M. Abilio; Plinio Gonçalves de Oliveira; Raquel Partelli Feltrin; Fernanda Scheffer Alves de Lima; Priscilla de O. Antonelli; Daniela Teixeira Vilela; Carl G. Smith III; Collin Tidwell; Paul Hamel; Margaret Devall; Kristina Connor; Theodor Leininger; Nathan Schiff; A. Dan Wilson
2015-01-01
Pondberry (Lindera melissifolia(Walter) Blume) is an endangered dioecious, clonal shrub that grows in periodically flooded forests of the southeastern United States. The probability of survival of dispersed pondberry seeds and new germinants is unknown, but few seedlings are noted in the forest. This study was undertaken to: (1) identify herbivores...
A Hybrid Shared-Memory Parallel Max-Tree Algorithm for Extreme Dynamic-Range Images.
Moschini, Ugo; Meijster, Arnold; Wilkinson, Michael H F
2018-03-01
Max-trees, or component trees, are graph structures that represent the connected components of an image in a hierarchical way. Nowadays, many application fields rely on images with high-dynamic range or floating point values. Efficient sequential algorithms exist to build trees and compute attributes for images of any bit depth. However, we show that the current parallel algorithms perform poorly already with integers at bit depths higher than 16 bits per pixel. We propose a parallel method combining the two worlds of flooding and merging max-tree algorithms. First, a pilot max-tree of a quantized version of the image is built in parallel using a flooding method. Later, this structure is used in a parallel leaf-to-root approach to compute efficiently the final max-tree and to drive the merging of the sub-trees computed by the threads. We present an analysis of the performance both on simulated and actual 2D images and 3D volumes. Execution times are about better than the fastest sequential algorithm and speed-up goes up to on 64 threads.
Arias, Nadia S; Bucci, Sandra J; Scholz, Fabian G; Goldstein, Guillermo
2015-10-01
Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub-zero temperatures. Seasonal leaf water relations, non-structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to -13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50 ) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub-zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold-acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures. © 2015 John Wiley & Sons Ltd.
King, S.E.; Grace, J.B.
2000-01-01
Cogongrass (Imperata cylindrica), an invasive perennial introduced from Southeast Asia, is currently spreading throughout the southeastern United States from Florida to Louisiana. In the U.S., cogongrass is generally not considered a wetland species, although it's range is expanding in regions with high wetland abundance. The objective of this study was to determine if excessive soil moisture might prevent cogongrass from establishing in areas with seasonally flooded soils. In one greenhouse experiment, we examined cogongrass germination and seedling growth in soils that were freely drained, saturated, and inundated. We performed a second greenhouse experiment to evaluate growth and survival of cogongrass seedlings of four different size classes in five soil moisture treatments ranging from dry to inundated. Cogongrass germination was lowest when seeds were overtopped with water. There were no differences in germination between saturated and freely drained treatments; however, seedlings grew largest in freely drained soil and were smallest when immersed. In our second experiment, most cogongrass plants survived except when given no water, but growth differed by watering treatment depending on seedling size. Increasing moisture was more detrimental to the growth of small seedlings compared to the growth of larger cogongrass plants. Overall, cogongrass was most sensitive to soil inundation in the earliest stages of establishment; thus, excessive moisture conditions in the spring, during early seedling development, could restrict invasion of cogongrass by seed. Once cogongrass is established, however, its tolerance of flooding appears to increase.
Flood impacts in Keppel Bay, southern great barrier reef in the aftermath of cyclonic rainfall.
Jones, Alison M; Berkelmans, Ray
2014-01-01
In December 2010, the highest recorded Queensland rainfall associated with Tropical Cyclone 'Tasha' caused flooding of the Fitzroy River in Queensland, Australia. A massive flood plume inundated coral reefs lying 12 km offshore of the Central Queensland coast near Yeppoon and caused 40-100% mortality to coral fringing many of the islands of Keppel Bay down to a depth of ∼8 m. The severity of coral mortality was influenced by the level of exposure to low salinity seawater as a result of the reef's distance from the flood plume and to a lesser extent, water depth and whether or not the reef faced the plume source. There was no evidence in this study of mortality resulting from pollutants derived from the nearby Fitzroy Catchment, at least in the short term, suggesting that during a major flood, the impact of low salinity on corals outweighs that of pollutants. Recovery of the reefs in Keppel Bay from the 2010/2011 Fitzroy River flood is likely to take 10-15 years based on historical recovery periods from a similar event in 1991; potentially impacting visitor numbers for tourism and recreational usage. In the meantime, activities like snorkeling, diving and coral viewing will be focused on the few shallow reefs that survived the flood, placing even further pressure on their recovery. Reef regeneration, restoration and rehabilitation are measures that may be needed to support tourism in the short term. However, predictions of a warming climate, lower rainfall and higher intensity summer rain events in the Central and Coastal regions of Australia over the next decade, combined with the current anthropogenic influences on water quality, are likely to slow regeneration with consequent impact on long-term reef resilience.
Flood Impacts in Keppel Bay, Southern Great Barrier Reef in the Aftermath of Cyclonic Rainfall
Jones, Alison M.; Berkelmans, Ray
2014-01-01
In December 2010, the highest recorded Queensland rainfall associated with Tropical Cyclone ‘Tasha’ caused flooding of the Fitzroy River in Queensland, Australia. A massive flood plume inundated coral reefs lying 12 km offshore of the Central Queensland coast near Yeppoon and caused 40–100% mortality to coral fringing many of the islands of Keppel Bay down to a depth of ∼8 m. The severity of coral mortality was influenced by the level of exposure to low salinity seawater as a result of the reef's distance from the flood plume and to a lesser extent, water depth and whether or not the reef faced the plume source. There was no evidence in this study of mortality resulting from pollutants derived from the nearby Fitzroy Catchment, at least in the short term, suggesting that during a major flood, the impact of low salinity on corals outweighs that of pollutants. Recovery of the reefs in Keppel Bay from the 2010/2011 Fitzroy River flood is likely to take 10–15 years based on historical recovery periods from a similar event in 1991; potentially impacting visitor numbers for tourism and recreational usage. In the meantime, activities like snorkeling, diving and coral viewing will be focused on the few shallow reefs that survived the flood, placing even further pressure on their recovery. Reef regeneration, restoration and rehabilitation are measures that may be needed to support tourism in the short term. However, predictions of a warming climate, lower rainfall and higher intensity summer rain events in the Central and Coastal regions of Australia over the next decade, combined with the current anthropogenic influences on water quality, are likely to slow regeneration with consequent impact on long-term reef resilience. PMID:24427294
Effects of ice and floods on vegetation in streams in cold regions: implications for climate change
Lind, Lovisa; Nilsson, Christer; Weber, Christine
2014-01-01
Riparian zones support some of the most dynamic and species-rich plant communities in cold regions. A common conception among plant ecologists is that flooding during the season when plants are dormant generally has little effect on the survival and production of riparian vegetation. We show that winter floods may also be of fundamental importance for the composition of riverine vegetation. We investigated the effects of ice formation on riparian and in-stream vegetation in northern Sweden using a combination of experiments and observations in 25 reaches, spanning a gradient from ice-free to ice-rich reaches. The ice-rich reaches were characterized by high production of frazil and anchor ice. In a couple of experiments, we exposed riparian vegetation to experimentally induced winter flooding, which reduced the dominant dwarf-shrub cover and led to colonization of a species-rich forb-dominated vegetation. In another experiment, natural winter floods caused by anchor-ice formation removed plant mimics both in the in-stream and in the riparian zone, further supporting the result that anchor ice maintains dynamic plant communities. With a warmer winter climate, ice-induced winter floods may first increase in frequency because of more frequent shifts between freezing and thawing during winter, but further warming and shortening of the winter might make them less common than today. If ice-induced winter floods become reduced in number because of a warming climate, an important disturbance agent for riparian and in-stream vegetation will be removed, leading to reduced species richness in streams and rivers in cold regions. Given that such regions are expected to have more plant species in the future because of immigration from the south, the distribution of species richness among habitats can be expected to show novel patterns. PMID:25505542
Effects of ice and floods on vegetation in streams in cold regions: implications for climate change.
Lind, Lovisa; Nilsson, Christer; Weber, Christine
2014-11-01
Riparian zones support some of the most dynamic and species-rich plant communities in cold regions. A common conception among plant ecologists is that flooding during the season when plants are dormant generally has little effect on the survival and production of riparian vegetation. We show that winter floods may also be of fundamental importance for the composition of riverine vegetation. We investigated the effects of ice formation on riparian and in-stream vegetation in northern Sweden using a combination of experiments and observations in 25 reaches, spanning a gradient from ice-free to ice-rich reaches. The ice-rich reaches were characterized by high production of frazil and anchor ice. In a couple of experiments, we exposed riparian vegetation to experimentally induced winter flooding, which reduced the dominant dwarf-shrub cover and led to colonization of a species-rich forb-dominated vegetation. In another experiment, natural winter floods caused by anchor-ice formation removed plant mimics both in the in-stream and in the riparian zone, further supporting the result that anchor ice maintains dynamic plant communities. With a warmer winter climate, ice-induced winter floods may first increase in frequency because of more frequent shifts between freezing and thawing during winter, but further warming and shortening of the winter might make them less common than today. If ice-induced winter floods become reduced in number because of a warming climate, an important disturbance agent for riparian and in-stream vegetation will be removed, leading to reduced species richness in streams and rivers in cold regions. Given that such regions are expected to have more plant species in the future because of immigration from the south, the distribution of species richness among habitats can be expected to show novel patterns.
Water levels, rapid vegetational changes, and the endangered Cape Sable seaside-sparrow
Nott, M.P.; Bass, O.L.; Fleming, D.M.; Killeffer, S.E.; Fraley, N.; Manne, L.; Curnutt, J.L.; Brooks, T.M.; Powell, R.; Pimm, S.L.
1998-01-01
The legally endangered Cape Sable seaside-sparrow (Ammodramus maritimus mirabilis) is restricted to short-hydroperiod, marl prairies within Florida's Everglades National Park and Big Cypress National Preserve. Marl prairies are typified by dense, mixed stands of graminoid species usually below 1 m in height, naturally inundated by freshwater for 3-7 months annually. Water levels affect the birds directly, by flooding their nests, and indirectly by altering the habitat on which they depend. Managed redistribution of water flows flooded nearly half of the sparrow's geographical range during several consecutive breeding seasons starting in 1993. Furthermore, these high water levels rapidly changed plant communities, so jeopardizing the sparrow's survival by reducing the availability of nesting habitat.
NASA Astrophysics Data System (ADS)
Schreiber, Christina M.; Schurr, Ulrich; Zeng, Bo; Höltkemeier, Agnes; Kuhn, Arnd J.
2010-05-01
Since the construction of the Three Gorges Dam at the Yangtze River in China, the reservoir management created a new 30m water fluctuation zone 45-75m above the original water level. Only species well adapted to long-time flooding (up to several months) will be able to vegetate the river banks and replace the original vegetation. To investigate how common species of the riverbanks cope with submergence, Alternanthera philoxeroides Mart. and Arundinella anomala Steud., two flooding resistant riparian species, have been examined in a rhizotron environment. Short-time (2 days waterlogging, 2 days flooding, 2 days recovery) flooding cycles in the original substrate and long time (14 days waterlogging, flooding, recovery) flooding cycles, in original substrate and sterile glass bead substrate, have been simulated in floodable two-way access rhizotrons. Oxygen- and pH-sensitive foils (planar optodes, PreSens) automatically monitored root reaction in a confined space (2cm2 each) on the backside of the rhizotron, while soil solution samples were taken 2 times a day from the other side of the rhizotron at the corresponding area through filter and steel capillaries. The samples were analyzed by capillary electrophoresis for low molecular weight organic acids (LMWOA, i.e. oxalic, formic, succinic, malic, acetic, glyoxylic, lactic and citric acid). Results show diurnal rhythms of rhizospheric acidification for both species in high resolution, combined with oxygen entry into the root surrounding during waterlogged state. Flooding caused stronger acidification in the rhizosphere, that were however not accompanied by increased occurrence of LMWOA except for acetic and glyoxylic acid. First results from longer flooding periods show stable diurnal rhythms during waterlogging, but no strongly increased activity during the flooding event. Performance of the two species is not hampered by being waterlogged, and they follow a silencing strategy during a longer phase of anoxia without strong root turnover activity. A. anomala with its strong root system and ability to survive flooding is considered suitable for re-vegetating the riverbanks to help prevent further erosion, while A. philoxeroides, which discards its weaker roots during prolonged flooding and produces new roots afterwards, does not contribute much to soil stabilization.
Cambridge, M L; Zavala-Perez, A; Cawthray, G R; Mondon, J; Kendrick, G A
2017-02-15
Highly saline brines from desalination plants expose seagrass communities to salt stress. We examined effects of raised salinity (46 and 54psu) compared with seawater controls (37psu) over 6weeks on the seagrass, Posidonia australis, growing in tanks with the aim of separating effects of salinity from other potentially deleterious components of brine and determining appropriate bioindicators. Plants survived exposures of 2-4weeks at 54psu, the maximum salinity of brine released from a nearby desalination plant. Salinity significantly reduced maximum quantum yield of PSII (chlorophyll a fluorescence emissions). Leaf water potential (Ψ w ) and osmotic potential (Ψ π ) were more negative at increased salinity, while turgor pressure (Ψ p ) was unaffected. Leaf concentrations of K + and Ca 2+ decreased, whereas concentrations of sugars (mainly sucrose) and amino acids increased. We recommend leaf osmolarity, ion, sugar and amino acid concentrations as bioindicators for salinity effects, associated with brine released in desalination plant outfalls. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dong, Niu; Montanez, Belen; Creelman, Robert A; Cornish, Katrina
2006-02-01
A new method has been developed for guayule tissue culture and transformation. Guayule leaf explants have a poor survival rate when placed on normal MS medium and under normal culture room light conditions. Low light and low ammonium treatment greatly improved shoot organogenesis and transformation from leaf tissues. Using this method, a 35S promoter driven BAR gene and an ubiquitin-3 promoter driven GUS gene (with intron) have been successfully introduced into guayule. These transgenic guayule plants were resistant to the herbicide ammonium-glufosinate and were positive to GUS staining. Molecular analysis showed the expected band and signal in all GUS positive transformants. The transformation efficiency with glufosinate selection ranged from 3 to 6%. Transformation with a pBIN19-based plasmid containing a NPTII gene and then selection with kanamycin also works well using this method. The ratio of kanamycin-resistant calli to total starting explants reached 50% in some experiments.
NASA Astrophysics Data System (ADS)
González-Zurdo, P.; Escudero, A.; Nuñez, R.; Mediavilla, S.
2016-11-01
In temperate climates, evergreen leaves have to survive throughout low temperature winter periods. Freezing and chilling injuries can lead to accelerated senescence of part of the leaf surface, which contributes to a reduction of the lifespan of the photosynthetic machinery and of leaf lifetime carbon gain. Low temperatures are also associated with changes in foliar chemistry and morphology that affect consumption by herbivores. Therefore, the severity of foliar area losses caused by accelerated senescence and herbivory can change along winter temperature gradients. The aim of this study is to analyse such responses in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) along a climatic gradient. The leaves of all three species presented increased leaf mass per area (LMA) and higher concentrations of structural carbohydrates in cooler areas. Only the two oak species showed visible symptoms of damage caused by herbivory, this being less intense at the coldest sites. The leaves of all three species presented chlorotic and necrotic spots that increased in size with leaf age. The foliar surface affected by chlorosis and necrosis was larger at the sites with the coldest winters. Therefore, the effects of the winter cold on the lifespan of the photosynthetic machinery were contradictory: losses of leaf area due to accelerated senescence increased, but there was a decrease in losses caused by herbivory. The final consequences for carbon assimilation strongly depend on the exact timing of the appearance of the damage resulting from low temperature and grazing by herbivores.
Dutilleul, Pierre; Han, Liwen; Valladares, Fernando; Messier, Christian
2015-01-01
Plant light interception and shade tolerance are intrinsically related in that they involve structural, morphological and physiological adaptations to manage light capture for photosynthetic utilization, in order to sustain survival, development and reproduction. At the scale of small-size trees, crown traits related to structural geometry of branching pattern and space occupancy through phyllotaxis can be accurately evaluated in 3D, using computed tomography (CT) scanning data. We demonstrate this by scrutinizing the crowns of 15 potted miniature conifers of different species or varieties, classified in two groups based on leaf type (10 needlelike, 5 scalelike); we also test whether mean values of crown traits measured from CT scanning data and correlations with a shade tolerance index (STI) differ between groups. Seven crown traits, including fractal dimensions (FD1: smaller scales, FD2: larger scales) and leaf areas, were evaluated for all 15 miniature conifers; an average silhouette-to-total-area ratio was also calculated for each of the 10 needlelike-leaf conifers. Between-group differences in mean values are significant (P < 0.05) for STI, FD1, FD2, and the average leaf area displayed (ĀD). Between-group differences in sign and strength of correlations are observed. For example, the correlation between STI and FD1 is negative and significant (P < 0.10) for the needlelike-leaf group, but is positive and significant (P < 0.05) for the miniature conifers with scalelike leaves, which had lower STI and higher FD1 on average in our study; the positive correlation between STI and ĀD is significant (P < 0.05) for the scalelike-leaf group, and very moderate for the needlelike-leaf one. A contrasting physical attachment of the leaves to branches may explain part of the between-group differences. Our findings open new avenues for the understanding of fundamental plant growth processes; the information gained could be included in a multi-scale approach to tree crown modeling.
Genetic and life-history consequences of extreme climate events.
Vincenzi, Simone; Mangel, Marc; Jesensek, Dusan; Garza, John Carlos; Crivelli, Alain J
2017-02-08
Climate change is predicted to increase the frequency and intensity of extreme climate events. Tests on empirical data of theory-based predictions on the consequences of extreme climate events are thus necessary to understand the adaptive potential of species and the overarching risks associated with all aspects of climate change. We tested predictions on the genetic and life-history consequences of extreme climate events in two populations of marble trout Salmo marmoratus that have experienced severe demographic bottlenecks due to flash floods. We combined long-term field and genotyping data with pedigree reconstruction in a theory-based framework. Our results show that after flash floods, reproduction occurred at a younger age in one population. In both populations, we found the highest reproductive variance in the first cohort born after the floods due to a combination of fewer parents and higher early survival of offspring. A small number of parents allowed for demographic recovery after the floods, but the genetic bottleneck further reduced genetic diversity in both populations. Our results also elucidate some of the mechanisms responsible for a greater prevalence of faster life histories after the extreme event. © 2017 The Author(s).
2015-05-01
quality attributes. Prioritization of the utility tree leafs driven by mission goals help the user ensure that critical requirements are well-specified...Methods: State of the Art and Future Directions”, ACM Computing Surveys. 1996. 10 Laitenberger, Oliver , “A Survey of Software Inspection Technologies, Handbook on Software Engineering and Knowledge Engineering”. 2002.
J. W. Van Sambeek; Michael E. Ostry; James J. Zaczek
2003-01-01
Butternut (Juglans cinerea L.), highly valued for its timber and nuts, occurs as widely scattered trees or isolated stands throughout the Central Hardwood region (Rink 1990). The introduced fungus Sirococcus clavigignenti-juglandacearum has rapidly cankered, girdled, and killed most of the butternut trees; however, a few trees that...
Limited Multiplication of Symbiotic Cyanobacteria of Azolla spp. on Artificial Media
Tang, L. F.; Watanabe, I.; Liu, C. C.
1990-01-01
We examined various media and conditions to isolate symbiotic cyanobacteria from the leaf cavities of Azolla spp. Cyanobacteria survived and multiplied to a limited extent on a medium with fructose, Casamino Acids, yeast extract, and NaNO3 under 1% O2. These cyanobacteria were antigenically identical to the endosymbionts. Images PMID:16348366
USDA-ARS?s Scientific Manuscript database
Laboratory and field experiments were conducted to determine the effectiveness of microbial and chemical insecticides for supplemental control of bollworm (Helicoverpa zea Boddie) on non-Bt (DP1441®) and Bt (DP1321®) cottons. Neonate and 3rd instar larvae survival were evaluated on leaf tissue treat...
Lopez, Omar R; Kursar, Thomas A
2007-11-01
Flood tolerance is commonly regarded as the main factor explaining low diversity and monodominance in tropical swamps. In this study we examined seedling mortality in relation to seasonality, i.e., flooding versus drought, of the dominant tree species (Prioria copaifera), and three associated species (Pterocarpus officinalis, Carapa guianensis and Pentaclethra macroloba), in seasonally flooded forests (SFF) in Darien, Panama. Seedling mortality differed among species, years and seasons. Prioria seedlings experienced the lowest overall mortality, and after 3 years many more Prioria seedlings remained alive than those of any of the associated species. In general, within species, larger seedlings had greater survival. Seed size, which can vary by close to 2 orders of magnitude in Prioria, had a confounding effect with that of topography. Large-seeded Prioria seedlings experienced 1.5 times greater mortality than small-seeded seedlings, as large-seeded Prioria seedlings were more likely to be located in depressions. This finding suggests that seed size, plant size and topography are important in understanding SFF regeneration. For all species, seedling mortality was consistently greater during the dry season than during flooding. For Prioria, dry season seedling mortality was correlated with drought stress, that is, high mortality during the long El Niño dry season of 1998 and the normal dry season of 2000, but very low dry season mortality during the mild dry season of 1999. Prioria's ability to dominate in seasonally flooded forest of Central America is partly explained by its low drought-related mortality in comparison to associated species.
46 CFR 172.110 - Survival conditions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... flooding: (c) A hopper barge must not heel or trim beyond the angle at which— (1) The deck edge is first... section. (d) A hopper barge must not heel beyond the angle at which the deck edge is first submerged by... section, each tank barge must not heel beyond the angle at which— (1) The deck edge is first submerged; or...
46 CFR 172.110 - Survival conditions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... flooding: (c) A hopper barge must not heel or trim beyond the angle at which— (1) The deck edge is first... section. (d) A hopper barge must not heel beyond the angle at which the deck edge is first submerged by... section, each tank barge must not heel beyond the angle at which— (1) The deck edge is first submerged; or...
Butte Digital Image Project: Shifting Focus from Collection to Community
ERIC Educational Resources Information Center
Pierson, Patricia
2010-01-01
The Butte Free Public Library was established in 1894. At that time, head librarian J. Davies published a catalog of the opening collection. Two fires and one flood later, many of the monographs from that original collection list have, remarkably, survived. Because of this, in part, the library, now known as the Butte-Silver Bow Public Library…
Pondberry (Lindera melissifolia) seed predators
Fernanda Maria Abilio; Carl Smith; Colin Tidwell; Paul Hamel; Margaret Devall; Ted Leininger
2008-01-01
Pondberry is an endangered, dioecious, deciduous shrub that grows in periodically flooded forests of the southeastern United States of America. Pondbeny is a clonal plant. Each female stem grows up to two meters tall and may produce many red drupes. The probability of dispersed seeds to survive to germination and beyond is unknown in the species. For this study, six...
Erwin, R.M.; Nichols, J.D.; Eyler, T.B.; Stotts, D.B.; Truitt, B.R.
1998-01-01
We developed a Markov process model for colony-site dynamics of Gull-billed Terns (Sterna nilotica). From 1993 through 1996, we monitored breeding numbers of Gull-billed Terns and their frequent colony associates, Common Terns (Sterna hirundo) and Black Skimmers (Rynchops niger), at colony sites along 80 km of the barrier island region of coastal Virginia. We also monitored flooding events and renesting. We developed the model for colony survival, extinction, and recolonization at potential colony sites over the four-year period. We then used data on annual site occupation by Gull-billed Terns to estimate model parameters and tested for differences between nesting substrates (barrier island vs. shellpile). Results revealed a dynamic system but provided no evidence that the dynamics were Markovian, i.e. the probability that a site was occupied in one year was not influenced by whether it had been occupied in the previous year. Nor did colony-level reproductive success the previous season seem to affect the probability of site occupancy. Site survival and recolonization rates were similar, and the estimated overall annual probability of a site being occupied was 0.59. Of the 25 sites that were used during the four-year period, 16 were used in one or two years only, and only three were used in all four years. Flooding and renesting were frequent in both habitat types in all years. The frequent flooding of nests on shellpiles argues for more effective management; augmentation with shell and sand to increase elevations as little as 20 cm could have reduced flooding at a number of sites. The low colonysite fidelity that we observed suggests that an effective management approach would be to provide a large number of sand and/or shellpile sites for use by nesting terns. Sites not used in one year may still be used in subsequent years.
Estimating Leaf Water Potential of Giant Sequoia Trees from Airborne Hyperspectral Imagery
NASA Astrophysics Data System (ADS)
Francis, E. J.; Asner, G. P.
2015-12-01
Recent drought-induced forest dieback events have motivated research on the mechanisms of tree survival and mortality during drought. Leaf water potential, a measure of the force exerted by the evaporation of water from the leaf surface, is an indicator of plant water stress and can help predict tree mortality in response to drought. Scientists have traditionally measured water potentials on a tree-by-tree basis, but have not been able to produce maps of tree water potential at the scale of a whole forest, leaving forest managers unaware of forest drought stress patterns and their ecosystem-level consequences. Imaging spectroscopy, a technique for remote measurement of chemical properties, has been used to successfully estimate leaf water potentials in wheat and maize crops and pinyon-pine and juniper trees, but these estimates have never been scaled to the canopy level. We used hyperspectral reflectance data collected by the Carnegie Airborne Observatory (CAO) to map leaf water potentials of giant sequoia trees (Sequoiadendron giganteum) in an 800-hectare grove in Sequoia National Park. During the current severe drought in California, we measured predawn and midday leaf water potentials of 48 giant sequoia trees, using the pressure bomb method on treetop foliage samples collected with tree-climbing techniques. The CAO collected hyperspectral reflectance data at 1-meter resolution from the same grove within 1-2 weeks of the tree-level measurements. A partial least squares regression was used to correlate reflectance data extracted from the 48 focal trees with their water potentials, producing a model that predicts water potential of giant sequoia trees. Results show that giant sequoia trees can be mapped in the imagery with a classification accuracy of 0.94, and we predicted the water potential of the mapped trees to assess 1) similarities and differences between a leaf water potential map and a canopy water content map produced from airborne hyperspectral data, 2) spatial variability in leaf water potentials and, 3) relationships between water potential and tree leaf area, topography, and surrounding tree density. These results will help forest managers plan prescribed burns to maintain the health of giant sequoia trees during drought.
Azizkhani, Maryam; Elizaquível, Patricia; Sánchez, Gloria; Selma, María Victoria; Aznar, Rosa
2013-09-02
Ready-to-eat salads using baby-leaf and multi-leaf mixes are one of the most promising developments in the fresh-cut food industry. There is great interest in developing novel decontamination treatments, which are both safe for consumers and more efficient against foodborne pathogens. In this study, emulsions of essential oils (EOs) from Origanum compactum (oregano), Eugenia caryophyllus (clove), and Zataria multiflora Boiss (zataria) were applied by spray (0.8 ml) after the sanitizing washing step. The aim was to investigate their ability to control the growth of potentially cross-contaminating pathogens and endogenous microbiota in commercial baby leaves, processed in a fresh-cut produce company. Zataria EO emulsions of 3%, 5% and 10% reduced Escherichia coli O157:H7 by 1.7, 2.2 and 3.5 log cfu/g in baby-leaf salads after 5 days of storage at 7°C. By contrast, reductions in E. coli O157:H7 counts remained the same when clove was applied at concentrations of 5% and 10% (2.5 log cfu/g reduction). Oregano (10%) reduced inoculated E. coli O157:H7 counts in baby-leaf salads by a maximum of 0.5 log cfu/g after 5 days of storage. Zataria showed strong antimicrobial efficacy against E. coli O157:H7 and also against the endogenous microbiota of baby-leaf salads stored for 9 days. Feline calicivirus (FCV), a norovirus surrogate, survived on inoculated baby-leaf salads during refrigerated storage (9 days at 7°C) regardless of treatment. Refrigeration temperatures completely annulled the effectiveness of the EOs against FCV inoculated in baby-leaf salads as occurred in FCV cultures. This study shows that EOs, and zataria in particular, have great potential use as an additional barrier to reduce contamination-related risks in baby-leaf salads. However, further research should be done into foodborne viruses in order to improve food safety. © 2013.
Głowacka, Katarzyna; Jørgensen, Uffe; Kjeldsen, Jens B; Kørup, Kirsten; Spitz, Idan; Sacks, Erik J; Long, Stephen P
2015-05-01
A clone of the hybrid perennial C4 grass Miscanthus × giganteus (Mxg) is known for achieving exceptionally high rates of leaf CO2 uptake during chilling. This is a requisite of success in the early spring, as is the ability of the leaves to survive occasional frosts. The aim of this study was to search for genotypes with greater potential than Mxg for photosynthesis and frost survival under these conditions. A total of 864 accessions representing 164 local populations of M. sacchariflorus (Msa), M. sinensis (Msi) and M. tinctorius (Mti) collected across Japan were studied. Accessions whose leaves survived a natural late frost in the field were screened for high maximum photosystem II efficiency (Fv/Fm) following chilling weather, as an indicator of their capacity for light-limited photosynthesis. Those showing the highest Fv/Fm were transferred to a high-light-controlled environment and maintained at chilling temperatures, where they were further screened for their capacities for high-light-limited and light-saturated leaf uptake of CO2 (ΦCO2,max and Asat, respectively). For the first time, relatives of Mxg with significantly superior capacities for photosynthesis at chilling temperatures were identified. Msa accession '73/2' developed leaves in the spring that survived night-time frost, and during growth under chilling maintained a statistically significant 79 % higher ΦCO2,max, as a measure of light-limited photosynthesis, and a 70 % higher Asat, as a measure of light-saturated photosynthesis. A second Msa accession, '73/3' also showed significantly higher rates of leaf uptake of CO2. As remarkable as Mxg has proved in its chilling tolerance of C4 photosynthesis, this study shows that there is still value and potential in searching for yet more superior tolerance. Msa accession '73/2' shows rates of light-limited and light-saturated photosynthesis at chilling temperatures that are comparable with those of the most cold-tolerant C3 species. This adds further proof to the thesis that C4 photosynthesis is not inherently limited to warm climates. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Leroy, C; Petitclerc, F; Orivel, J; Corbara, B; Carrias, J-F; Dejean, A; Céréghino, R
2017-01-01
Plant germination and development depend upon a seed's successful dispersal into a suitable habitat and its ability to grow and survive within the surrounding biotic and abiotic environment. The seeds of Aechmea mertensii, a tank-bromeliad species, are dispersed by either Camponotus femoratus or Neoponera goeldii, two ant species that initiate ant gardens (AGs). These two mutualistic ant species influence the vegetative and reproductive traits of the bromeliad through their divergent ecological preferences (i.e. light and substrate). We hypothesised that the seeds dispersed by these two ant species have underlying genetic differences affecting germination, growth and survival of A. mertensii seedlings in different ways. To test this, we used an experimental approach consisting of sowing seeds of A. mertensii: (i) taken from the two AG-ant associations (i.e. seed origin), (ii) in two contrasting light conditions, and (iii) on three different substrates. Light and substrate had significant effects on germination, survival and on eight key leaf traits reflecting plant performance. Seed origin had a significant effect only on germination and on two leaf traits (total dry mass and relative growth rate). Overall, this bromeliad performs better (i.e. high growth and survival rates) when growing both in the shade and in the carton nest developed by C. femoratus ants. These results suggest that the plasticity of the tank bromeliad A. mertensii is mainly due to environment but also to genetic differences related to seed origin, as some traits are heritable. Thus, these two ant species may play contrasting roles in shaping plant evolution and speciation. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Albacete, Alfonso A; Martínez-Andújar, Cristina; Pérez-Alfocea, Francisco
2014-01-01
Securing food production for the growing population will require closing the gap between potential crop productivity under optimal conditions and the yield captured by farmers under a changing environment, which is termed agronomical stability. Drought and salinity are major environmental factors contributing to the yield gap ultimately by inducing premature senescence in the photosynthetic source tissues of the plant and by reducing the number and growth of the harvestable sink organs by affecting the transport and use of assimilates between and within them. However, the changes in source-sink relations induced by stress also include adaptive changes in the reallocation of photoassimilates that influence crop productivity, ranging from plant survival to yield stability. While the massive utilization of -omic technologies in model plants is discovering hundreds of genes with potential impacts in alleviating short-term applied drought and salinity stress (usually measured as plant survival), only in relatively few cases has an effect on crop yield stability been proven. However, achieving the former does not necessarily imply the latter. Plant survival only requires water status conservation and delayed leaf senescence (thus maintaining source activity) that is usually accompanied by growth inhibition. However, yield stability will additionally require the maintenance or increase in sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves and to delayed stress-induced leaf senescence. This review emphasizes the role of several metabolic and hormonal factors influencing not only the source strength, but especially the sink activity and their inter-relations, and their potential to improve yield stability under drought and salinity stresses. © 2013.
Fernández-Pérez, Laura; Villar-Salvador, Pedro; Martínez-Vilalta, Jordi; Toca, Andrei; Zavala, Miguel A
2018-04-01
Drought and frosts are major determinants of plant functioning and distribution. Both stresses can cause xylem embolism and foliage damage. The objective of this study was to analyse if the distribution of six common pine species along latitudinal and altitudinal gradients in Europe is related to their interspecific differences in frost tolerance and to the physiological mechanisms underlying species-specific frost tolerance. We also evaluate if frost tolerance depends on plant water status. We studied survival to a range of freezing temperatures in 2-year-old plants and assessed the percentage loss of hydraulic conductivity (PLC) due xylem embolism formation and foliage damage determined by needle electrolyte leakage (EL) after a single frost cycle to -15 °C and over a range of predawn water potential (ψpd) values. Species experiencing cold winters in their range (Pinus nigra J.F. Arnold, Pinus sylvestris L. and Pinus uncinata Raymond ex A. DC.) had the highest frost survival rates and lowest needle EL and soluble sugar (SS) concentration. In contrast, the pines inhabiting mild or cool winter locations (especially Pinus halepensis Mill. and Pinus pinea L. and, to a lesser extent, Pinus pinaster Ait.) had the lowest frost survival and highest needle EL and SS values. Freezing-induced PLC was very low and differences among species were not related to frost damage. Reduction in ψpd decreased leaf frost damage in P. pinea and P. sylvestris, increased it in P. uncinata and had a neutral effect on the rest of the species. This study demonstrates that freezing temperatures are a major environmental driver for pine distribution and suggests that interspecific differences in leaf frost sensitivity rather than vulnerability to freezing-induced embolism or SS explain pine juvenile frost survival.
Puterka, Gary J; Scott, J Nicholson; Brown, Michael J; Hammon, R W
2013-04-01
Three Diuraphis species, Diuraphis frequens (Walker), Diuraphis mexicana (McVicar Baker), and Diuraphis tritici (Gillette), were known to exist in the United States before the 1986 appearance of the Russian wheat aphid, Diuraphis noxia Kurdjumov. The Russian wheat aphid soon became a significant pest of wheat although other endemic Diuraphis species were known to infest wheat. Wheat and barley entries resistant and susceptible to Russian wheat aphid biotype 2 were evaluated against all four Diuraphis species to determine their host interrelationships. Leaf chlorosis, leaf roll, leaf number, plant height, and infestation levels were assessed 21 d after the plants were infested by aphids in a no-choice caged environment. D. mexicana was unable to survive on wheat by 21 d after infestation and effects on the plant damage variables were negligible. D. frequens survived at low levels on resistant and susceptible plant entries and had a low impact on plant damage and growth. Russian wheat aphid biotype 2 and D. tritici were damaged most wheat and barley lines except the Russian wheat aphid biotype 2-resistant wheat lines containing genes from Dn7, STARS 2414-11, and CI2401; and resistant barley containing genes from STARS 9577B and 9301B. Russian wheat aphid biotype 2 and D. tritici reduced the growth of resistant plants by 25-50% and susceptible entries by 65-75%. Reductions at this level are typical under no-choice studies but resistant cultivars do not have these reductions under field conditions. The Russian wheat aphid biotype 2 resistant wheat lines would be effective in managing both wheat pest species.
Groff, Luke A.; Calhoun, Aram J.K.; Loftin, Cynthia S.
2016-01-01
Poikilothermic species, such as amphibians, endure harsh winter conditions via freeze-tolerance or freeze-avoidance strategies. Freeze-tolerance requires a suite of complex, physiological mechanisms (e.g., cryoprotectant synthesis); however, behavioral strategies (e.g., hibernal habitat selection) may be used to regulate hibernaculum temperatures and promote overwintering survival. We investigated the hibernal ecology of the freeze-tolerant Wood Frog (Lithobates sylvaticus) in north-central Maine. Our objectives were to characterize the species hibernaculum microclimate (temperature, relative humidity), evaluate hibernal habitat selection, and describe the spatial arrangement of breeding, post-breeding, and hibernal habitats. We monitored 15 frogs during two winters (2011/12: N = 10; 2012/13: N = 5), measured hibernal habitat features at micro (2 m) and macro (10 m) spatial scales, and recorded microclimate hourly in three strata (hibernaculum, leaf litter, ambient air). We compared these data to that of 57 random locations with logistic regression models, Akaike Information Criterion, and Kolmogorov–Smirnov tests. Hibernaculum microclimate was significantly different and less variable than leaf litter, ambient air, and random location microclimate. Model averaging indicated that canopy cover (−), leaf litter depth (+), and number of logs and stumps (+; microhabitat only) were important predictors of Wood Frog hibernal habitat. These habitat features likely act to insulate hibernating frogs from extreme and variable air temperatures. For example, decreased canopy cover facilitates increased snowpack depth and earlier snowpack accumulation and melt. Altered winter temperature and precipitation patterns attributable to climate change may reduce snowpack insulation, facilitate greater temperature variation in the underlying hibernacula, and potentially compromise Wood Frog winter survival.
Species climate range influences hydraulic and stomatal traits in Eucalyptus species.
Bourne, Aimee E; Creek, Danielle; Peters, Jennifer M R; Ellsworth, David S; Choat, Brendan
2017-07-01
Plant hydraulic traits influence the capacity of species to grow and survive in water-limited environments, but their comparative study at a common site has been limited. The primary aim of this study was to determine whether selective pressures on species originating in drought-prone environments constrain hydraulic traits among related species grown under common conditions. Leaf tissue water relations, xylem anatomy, stomatal behaviour and vulnerability to drought-induced embolism were measured on six Eucalyptus species growing in a common garden to determine whether these traits were related to current species climate range and to understand linkages between the traits. Hydraulically weighted xylem vessel diameter, leaf turgor loss point, the water potential at stomatal closure and vulnerability to drought-induced embolism were significantly ( P < 0·05) correlated with climate parameters from the species range. There was a co-ordination between stem and leaf parameters with the water potential at turgor loss, 12 % loss of conductivity and the point of stomatal closure significantly correlated. The correlation of hydraulic, stomatal and anatomical traits with climate variables from the species' original ranges suggests that these traits are genetically constrained. The conservative nature of xylem traits in Eucalyptus trees has important implications for the limits of species responses to changing environmental conditions and thus for species survival and distribution into the future, and yields new information for physiological models. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Transient response of Salix cuttings to changing water level regimes
NASA Astrophysics Data System (ADS)
Gorla, L.; Signarbieux, C.; Turberg, P.; Buttler, A.; Perona, P.
2015-03-01
Sustainable water management requires an understanding of the effects of flow regulation on riparian ecomorphological processes. We investigated the transient response of Salix viminalis by examining the effect of water-level regimes on its above-ground and below-ground biomass. Four sets of Salix cuttings, three juveniles (in the first growing season) and one mature (1 year old), were planted and initially grown under the same water-level regime for 1 month. We imposed three different water-level regime treatments representing natural variability, a seasonal trend with no peaks, and minimal flow (characteristic of hydropower) consisting of a constant water level and natural flood peaks. We measured sap flux, stem water potential, photosynthesis, growth parameters, and final root architecture. The mature cuttings were not affected by water table dynamics, but the juveniles displayed causal relationships between the changing water regime, plant growth, and root distribution during a 2 month transient period. For example, a 50% drop in mean sap flux corresponded with a -1.5 Mpa decrease in leaf water potential during the first day after the water regime was changed. In agreement with published field observations, the cuttings concentrated their roots close to the mean water table of the corresponding treatment, allowing survival under altered conditions and resilience to successive stress events. Juvenile development was strongly impacted by the minimum flow regime, leading to more than 60% reduction of both above-ground and below-ground biomass, with respect to the other treatments. Hence, we suggest avoiding minimum flow regimes where Salix restoration is prioritized.
Hebelstrup, Kim H; van Zanten, Martijn; Mandon, Julien; Voesenek, Laurentius A C J; Harren, Frans J M; Cristescu, Simona M; Møller, Ian M; Mur, Luis A J
2012-09-01
Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1-1.0% O(2)), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2, whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S-nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S-nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways.
A flow resistance model for assessing the impact of vegetation on flood routing mechanics
NASA Astrophysics Data System (ADS)
Katul, Gabriel G.; Poggi, Davide; Ridolfi, Luca
2011-08-01
The specification of a flow resistance factor to account for vegetative effects in the Saint-Venant equation (SVE) remains uncertain and is a subject of active research in flood routing mechanics. Here, an analytical model for the flow resistance factor is proposed for submerged vegetation, where the water depth is commensurate with the canopy height and the roughness Reynolds number is sufficiently large so as to ignore viscous effects. The analytical model predicts that the resistance factor varies with three canonical length scales: the adjustment length scale that depends on the foliage drag and leaf area density, the canopy height, and the water level. These length scales can reasonably be inferred from a range of remote sensing products making the proposed flow resistance model eminently suitable for operational flood routing. Despite the numerous simplifications, agreement between measured and modeled resistance factors and bulk velocities is reasonable across a range of experimental and field studies. The proposed model asymptotically recovers the flow resistance formulation when the water depth greatly exceeds the canopy height. This analytical treatment provides a unifying framework that links the resistance factor to a number of concepts and length scales already in use to describe canopy turbulence. The implications of the coupling between the resistance factor and the water depth on solutions to the SVE are explored via a case study, which shows a reasonable match between empirical design standard and theoretical predictions.
Li, Bai-Quan; Feng, Chao-Hong; Wang, Min-Rui; Hu, Ling-Yun; Volk, Gayle; Wang, Qiao-Chun
2015-11-20
A droplet-vitrification procedure is described for cryopreservation of Malus shoot tips. Survival patterns, recovery types, histological observations, and genetic integrity were compared for Malus shoot tips cryopreserved using this droplet-vitrification procedure and an encapsulation-dehydration procedure that was previously reported by us. In both procedures, three types of shoot tip recovery were observed following cryopreservation: callus formation without shoot regrowth, leaf formation without shoot regrowth, and shoot regrowth. Three categories of histological observations were also identified in cross-sections of shoot tips recovered after cryopreservation using the two cryogenic procedures. In category 1, almost all of the cells (94-95%) in the apical dome (AD) were damaged or killed and only some cells (30-32%) in the leaf primordia (LPs) survived. In category 2, only a few cells (18-20%) in the AD and some cells (30-31%) in the LPs survived. In category 3, majority of the cells (60-62%) in the AD and some cells (30-33%) in the LPs survived. These data suggest that shoot regrowth is correlated to the presence of a majority of surviving cells in the AD after liquid nitrogen exposure. No polymorphic bands were detected by inter-simple sequence repeats or by random amplified polymorphic DNA assessments, and ploidy levels analyzed by flow cytometry were unchanged when plants recovered after cryoexposure were compared to controls. The droplet-vitrification procedure appears to be robust since seven genotypes representing four Malus species and one hybrid recovered shoots following cryopreservation. Mean shoot regrowth levels of these seven genotypes were 48% in the droplet-vitrification method, which were lower than those (61%) in the encapsulation-dehydration procedure reported in our previous study, suggesting the latter may be preferred for routine cryobanking applications for Malus shoot tips. Copyright © 2015 Elsevier B.V. All rights reserved.
Tombesi, Sergio; Palliotti, Alberto; Poni, Stefano; Farinelli, Daniela
2015-01-01
Adventitious root formation in plant cuttings is influenced by many endogenous and environmental factors. Leaf photosynthesis during rooting of leafy cuttings in hard to root species can contribute to supply carbohydrates to the intensive metabolic processes related to adventious root formation. Light intensity during rooting is artificially kept low to decrease potential cutting desiccation, but can be limiting for photosynthetic activity. Furthermore, leafy cuttings collected from different part of the shoot can have a different ability to fuel adventitious root formation in cutting stem. The aim of this work was to determine the role of leaf photosynthesis on adventitious root formation in hazelnut (Corylus avellana L) (a hard-to-root specie) leafy cuttings and to investigate the possible influence of the shoot developmental stage on cutting rooting and survival in the post-rooting phase. Cutting rooting was closely related to carbohydrate content in cutting stems during the rooting process. Cutting carbohydrate status was positively influenced by leaf photosynthesis during rooting. Non-saturating light exposure of leafy cuttings can contribute to improve photosynthetic activity of leafy cuttings. Collection of cuttings from different part of the mother shoots influenced rooting percentage and this appear related to the different capability to concentrate soluble sugars in the cutting stem during rooting. Adventitious root formation depend on the carbohydrate accumulation at the base of the cutting. Mother shoot developmental stage and leaf photosynthesis appear pivotal factors for adventitious roots formation. PMID:26635821
Cultural and environmental factors affecting the longevity of Escherichia coli in Histosols.
Tate, R L
1978-05-01
The survival of Escherichia coli in organic soils (Histosols) was examined. The death rate of this organism in Pahokee muck was less than that observed in Pompano fine sand. The number of viable E. coli cells found in the muck was approximately threefold greater than that found in the sand following 8 days of incubation. The initial population of the coliform affected the death rate. The rate of loss of viability varied 100-fold when the population size decreased from 2.5 x 10(7) to 3.4 x 10(4). Other factors affecting the viability of E. coli in muck were aerobic versus anaerobic growth of the organism and moist versus flooded conditions in the soil. The greatest survival of the coliform was noted with anaerobically grown cells amended to flooded soil. That the observed decrease in E. coli viability in soil was the result of biotic factors was demonstrated with amendment of sterile soil with E. coli. When 1.1 x 10(5) bacteria per g of soil were added to sterile muck, a population of 3.0 x 10(7) organisms per g of soil developed over a 10-day period. The role of the protozoa in eradication of the coliform from the muck was indicated by a sixfold increase in the protozoan population in natural soil amended with E. coli. Higher organic matter content in a Histosol compared with a mineral soil resulted in an increased survival of the fecal coliforms. Biotic factors are instrumental in the decline in coliform populations, but the potential for growth of the coliform in the organic soil could extend the survival of the organism.
Cultural and Environmental Factors Affecting the Longevity of Escherichia coli in Histosols †
Tate, Robert L.
1978-01-01
The survival of Escherichia coli in organic soils (Histosols) was examined. The death rate of this organism in Pahokee muck was less than that observed in Pompano fine sand. The number of viable E. coli cells found in the muck was approximately threefold greater than that found in the sand following 8 days of incubation. The initial population of the coliform affected the death rate. The rate of loss of viability varied 100-fold when the population size decreased from 2.5 × 107 to 3.4 × 104. Other factors affecting the viability of E. coli in muck were aerobic versus anaerobic growth of the organism and moist versus flooded conditions in the soil. The greatest survival of the coliform was noted with anaerobically grown cells amended to flooded soil. That the observed decrease in E. coli viability in soil was the result of biotic factors was demonstrated with amendment of sterile soil with E. coli. When 1.1 × 105 bacteria per g of soil were added to sterile muck, a population of 3.0 × 107 organisms per g of soil developed over a 10-day period. The role of the protozoa in eradication of the coliform from the muck was indicated by a sixfold increase in the protozoan population in natural soil amended with E. coli. Higher organic matter content in a Histosol compared with a mineral soil resulted in an increased survival of the fecal coliforms. Biotic factors are instrumental in the decline in coliform populations, but the potential for growth of the coliform in the organic soil could extend the survival of the organism. PMID:350158
Daniel Saenz; Erin M. Fucik; Matthew A. Kwiatkowski
2013-01-01
Changes in climate and the introduction of invasive species are two major stressors to amphibians, although little is known about the interaction between these two factors with regard to impacts on amphibians. We focused our study on an invasive tree species, the Chinese tallow (Triadica sebifera), that annually sheds its leaves and produces leaf...
M. N. Jimenez; J. R. Pinto; M. A. Ripoll; A. Sanchez-Miranda; F. B. Navarro
2014-01-01
In Southwestern Spain, multifunctional silvopastoral systems consisting of pastureland and open oak woodlands are known as Dehesas. These, and other similar systems of the Mediterranean basin, are currently threatened by increasing intensive land use. As a consequence, oak regeneration is declining and is in need of adequate management and active restoration....
Hydraulic patterns and safety margins, from stem to stomata, in three eastern US tree species
D.M. Johnson; K.A. McCulloh; F.C. Meinzer; D.R. Woodruff; D.M. Eissenstat
2011-01-01
Adequate water transport is necessary to prevent stomatal closure and allow for photosynthesis. Dysfunction in the water transport pathway can result in stomatal closure, and can be deleterious to overall plant health and survival. Although much is known about small branch hydraulics, little is known about the coordination of leaf and stem hydraulic function....
Givnish, T.J.; McDiarmid, R.W.; Buck, W.R.
1986-01-01
Neblinaria celiae (Theaceae), a rosette shrub endemic to the exceedingly rainy summit of remote Cerro de la Neblina in southern Venezuela, has a previously undescribed set of adaptations to fire. Its growth form entails sparse branching, massive terminal leaf rosettes, and thick bark. It is highly fire-tolerant, with a survival rate of 93% in a stand recently ignited by lightning, vs. 0% in seven co-occurring woody species. Survival increases sharply with rosette height, favoring a sparsely branched habit that would maximize the rate of upward growth through the sparse fuel layer supported by a sterile substrate. Thick bark and massive rosettes help protect cambial and foliar meristems from brief exposure to high temperatures. Rosettes on shorter plants are exposed to greater damage from fire near the ground and, as expected, are bigger and impound more rainwater; the greater number of leaves nearly balances the greater leaf mortality caused by fire. We relate Neblinaria's growth form to its dominance atop Neblina, to a general model for the evolution of sparse branching, and to the evolution of growth form in other tepui plants.
The growth and survival of plants in urban green roofs in a dry climate.
Razzaghmanesh, M; Beecham, S; Kazemi, F
2014-04-01
Green roofs as one of the components of water-sensitive urban design have become widely used in recent years. This paper describes performance monitoring of four prototype-scale experimental green roofs in a northern suburb of Adelaide, South Australia, undertaken over a 1-year period. Four species of indigenous Australian ground cover and grass species comprising Carpobrotus rossii, Lomandra longifolia 'Tanika,' Dianella caerula 'Breeze' and Myoporum parvifolium were planted in extensive and intensive green roof configurations using two different growing media. The first medium consisted of crushed brick, scoria, coir fibre and composted organics while the second comprised scoria, composted pine bark and hydro-cell flakes. Plant growth indices including vertical and horizontal growth rate, leaf succulence, shoot and root biomasses, water use efficiency and irrigation regimes were studied during a 12-month period. The results showed that the succulent species, C. rossii, can best tolerate the hot, dry summer conditions of South Australia, and this species showed a 100% survival rate and had the maximum horizontal growth rate, leaf succulence, shoot biomass and water use efficiency. All of the plants in the intensive green roofs with the crushed brick mix media survived during the term of this study. It was shown that stormwater can be used as a source of irrigation water for green roofs during 8 months of the year in Adelaide. However, supplementary irrigation is required for some of the plants over a full annual cycle. Copyright © 2014 Elsevier B.V. All rights reserved.
da Silva Ferreira, Cristiane; Piedade, Maria Teresa Fernandez; Tiné, Marco Aurélio Silva; Rossatto, Davi Rodrigo; Parolin, Pia; Buckeridge, Marcos Silveira
2009-01-01
Background and Aims In the Amazonian floodplains plants withstand annual periods of flooding which can last 7 months. Under these conditions seedlings remain submerged in the dark for long periods since light penetration in the water is limited. Himatanthus sucuuba is a tree species found in the ‘várzea’ (VZ) floodplains and adjacent non-flooded ‘terra-firme’ (TF) forests. Biochemical traits which enhance flood tolerance and colonization success of H. sucuuba in periodically flooded environments were investigated. Methods Storage carbohydrates of seeds of VZ and TF populations were extracted and analysed by HPAEC/PAD. Starch was analysed by enzyme (glucoamylase) degradation followed by quantification of glucose oxidase. Carbohydrate composition of roots of VZ and TF seedlings was studied after experimental exposure to a 15-d period of submersion in light versus darkness. Key Results The endosperm contains a large proportion of the seed reserves, raffinose being the main non-structural carbohydrate. Around 93 % of the cell wall storage polysaccharides (percentage dry weight basis) in the endosperm of VZ seeds was composed of mannose, while soluble sugars accounted for 2·5%. In contrast, 74 % of the endosperm in TF seeds was composed of galactomannans, while 22 % of the endosperm was soluble sugars. This suggested a larger carbohydrate allocation to germination in TF populations whereas VZ populations allocate comparatively more to carbohydrates mobilized during seedling development. The concentration of root non-structural carbohydrates in non-flooded seedlings strongly decreased after a 15-d period of darkness, whereas flooded seedlings were less affected. These effects were more pronounced in TF seedlings, which showed significantly lower root non-structural carbohydrate concentrations. Conclusions There seem to be metabolic adjustments in VZ but not TF seedlings that lead to adaptation to the combined stresses of darkness and flooding. This seems to be important for the survival of the species in these contrasting environments, leading these populations to different directions during evolution. PMID:19770164
Chauvin, K McManus; Asner, G P; Martin, R E; Kress, W J; Wright, S J; Field, C B
2018-03-01
Trade-offs among plant functional traits indicate diversity in plant strategies of growth and survival. The leaf economics spectrum (LES) reflects a trade-off between short-term carbon gain and long-term leaf persistence. A related trade-off, between foliar growth and anti-herbivore defense, occurs among plants growing in contrasting resource regimes, but it is unclear whether this trade-off is maintained within plant communities, where resource gradients are minimized. The LES and the growth-defense trade-off involve related traits, but the extent to which these trade-off dimensions are correlated is poorly understood. We assessed the relationship between leaf economic and anti-herbivore defense traits among sunlit foliage of 345 canopy trees in 83 species on Barro Colorado Island, Panama. We quantified ten traits related to resource allocation and defense, and identified patterns of trait co-variation using multivariate ordination. We tested whether traits and ordination axes were correlated with patterns of phylogenetic relatedness, juvenile demographic trade-offs, or topo-edaphic variation. Two independent axes described ~ 60% of the variation among canopy trees. Axis 1 revealed a trade-off between leaf nutritional and structural investment, consistent with the LES. Physical defense traits were largely oriented along this axis. Axis 2 revealed a trade-off between investments in phenolic defenses versus other foliar defenses, which we term the leaf defense spectrum. Phylogenetic relationships and topo-edaphic variation largely did not explain trait co-variation. Our results suggest that some trade-offs among the growth and defense traits of outer-canopy trees may be captured by the LES, while others may occur along additional resource allocation dimensions.
Firmat, C; Delzon, S; Louvet, J-M; Parmentier, J; Kremer, A
2017-12-01
It has been predicted that environmental changes will radically alter the selective pressures on phenological traits. Long-lived species, such as trees, will be particularly affected, as they may need to undergo major adaptive change over only one or a few generations. The traits describing the annual life cycle of trees are generally highly evolvable, but nothing is known about the strength of their genetic correlations. Tight correlations can impose strong evolutionary constraints, potentially hampering the adaptation of multivariate phenological phenotypes. In this study, we investigated the evolutionary, genetic and environmental components of the timing of leaf unfolding and senescence within an oak metapopulation along an elevation gradient. Population divergence, estimated from in situ and common-garden data, was compared to expectations under neutral evolution, based on microsatellite markers. This approach made it possible (1) to evaluate the influence of genetic correlation on multivariate local adaptation to elevation and (2) to identify traits probably exposed to past selective pressures due to the colder climate at high elevation. The genetic correlation was positive but very weak, indicating that genetic constraints did not shape the local adaptation pattern for leaf phenology. Both spring and fall (leaf unfolding and senescence, respectively) phenology timings were involved in local adaptation, but leaf unfolding was probably the trait most exposed to climate change-induced selection. Our data indicated that genetic variation makes a much smaller contribution to adaptation than the considerable plastic variation displayed by a tree during its lifetime. The evolutionary potential of leaf phenology is, therefore, probably not the most critical aspect for short-term population survival in a changing climate. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Barrajón-Catalán, Enrique; Taamalli, Amani; Quirantes-Piné, Rosa; Roldan-Segura, Cristina; Arráez-Román, David; Segura-Carretero, Antonio; Micol, Vicente; Zarrouk, Mokhtar
2015-02-01
A new differential metabolomic approach has been developed to identify the phenolic cellular metabolites derived from breast cancer cells treated with a supercritical fluid extracted (SFE) olive leaf extract. The SFE extract was previously shown to have significant antiproliferative activity relative to several other olive leaf extracts examined in the same model. Upon SFE extract incubation of JIMT-1 human breast cancer cells, major metabolites were identified by using HPLC coupled to electrospray ionization quadrupole-time-of-flight mass spectrometry (ESI-Q-TOF-MS). After treatment, diosmetin was the most abundant intracellular metabolite, and it was accompanied by minor quantities of apigenin and luteolin. To identify the putative antiproliferative mechanism, the major metabolites and the complete extract were assayed for cell cycle, MAPK and PI3K proliferation pathways modulation. Incubation with only luteolin showed a significant effect in cell survival. Luteolin induced apoptosis, whereas the whole olive leaf extract incubation led to a significant cell cycle arrest at the G1 phase. The antiproliferative activity of both pure luteolin and olive leaf extract was mediated by the inactivation of the MAPK-proliferation pathway at the extracellular signal-related kinase (ERK1/2). However, the flavone concentration of the olive leaf extract did not fully explain the strong antiproliferative activity of the extract. Therefore, the effects of other compounds in the extract, probably at the membrane level, must be considered. The potential synergistic effects of the extract also deserve further attention. Our differential metabolomics approach identified the putative intracellular metabolites from a botanical extract that have antiproliferative effects, and this metabolomics approach can be expanded to other herbal extracts or pharmacological complex mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.
Takahashi, Koichi; Obata, Yoshiko
2014-03-01
The conifers Abies veitchii, A. mariesii, Picea jezoensis var. hondoensis, Tsuga diversifolia dominate in subalpine forests in central Japan. We expected that species differences in shade tolerance and in aboveground and belowground architecture are important for their coexistence. We examined net production and carbon allocation of understory saplings. Although the four species allocated similar amounts of biomass to roots at a given trunk height, the root-zone area of T. diversifolia was greater than that of the three other species. T. diversifolia often dominates shallow soil sites, such as ridge and rocky slopes, and, therefore, a wide spread of lateral roots would be an adaptation to such edaphic conditions. Crown width and leaf and branch mass were greatest for T. diversifolia and A. mariesii, followed in order by A. veitchii and P. jezoensis var. hondoensis. Although leaf mass of P. jezoensis var. hondoensis was lowest among the four species, species differences were not found in the net production per sapling because net production per leaf mass was greatest for P. jezoensis var. hondoensis. The leaf lifespan was longer in the order A. mariesii, T. diversifolia, P. jezoensis var. hondoensis and A. veitchii. The minimum rate of net production per leaf mass required to maintain the current sapling leaf mass (MRNP(LM)) was lowest in A. mariesii and T. diversifolia, and increased in the order of A. veitchii and P. jezoensis var. hondoensis. A. mariesii and T. diversifolia may survive in shade conditions by a lower MRNP(LM) than the two other species. Therefore, species differences in aboveground and belowground architecture and MRNPLM reflected their shade tolerance and regeneration strategies, which contribute to their coexistence.
Physiological response to drought in radiata pine: phytohormone implication at leaf level.
De Diego, N; Pérez-Alfocea, F; Cantero, E; Lacuesta, M; Moncaleán, P
2012-04-01
Pinus radiata D. Don is one of the most abundant species in the north of Spain. Knowledge of drought response mechanisms is essential to guarantee plantation survival under reduced water supply as predicted in the future. Tolerance mechanisms are being studied in breeding programs, because information on such mechanisms can be used for genotype selection. In this paper, we analyze the changes of leaf water potential, hydraulic conductance (K(leaf)), stomatal conductance and phytohormones under drought in P. radiata breeds (O1, O2, O3, O4, O5 and O6) from different climatology areas, hypothesizing that they could show variable drought tolerance. As a primary signal, drought decreased cytokinin (zeatin and zeatin riboside-Z + ZR) levels in needles parallel to K(leaf) and gas exchange. When Z + ZR decreased by 65%, indole-3-acetic acid (IAA) and abscisic acid (ABA) accumulation started as a second signal and increments were higher for IAA than for ABA. When plants decreased by 80%, Z + ZR and K(leaf) doubled their ABA and IAA levels, the photosystem II yield decreased and the electrolyte leakage increased. At the end of the drought period, less tolerant breeds increased IAA over 10-fold compared with controls. External damage also induced jasmonic acid accumulation in all breeds except in O5 (P. radiata var. radiata × var. cedrosensis), which accumulated salicylic acid as a defense mechanism. After rewatering, only the most tolerant plants recovered their K(leaf,) perhaps due to an IAA decrease and 1-aminocyclopropane-1-carboxylic acid maintenance. From all phytohormones, IAA was the most representative 'water deficit signal' in P. radiata.
Macarisin, Dumitru; Patel, Jitendra; Bauchan, Gary; Giron, Jorge A; Ravishankar, Sadhana
2013-11-01
Similar to phytopathogens, human bacterial pathogens have been shown to colonize the plant phylloplane. In addition to environmental factors, such as temperature, UV, relative humidity, etc., the plant cultivar and, specifically, the leaf blade morphological characteristics may affect the persistence of enteropathogens on leafy greens. This study was conducted to evaluate the effect of cultivar-dependent leaf topography and the role of strain phenotypic characteristics on Escherichia coli O157:H7 persistence on organic spinach. Spinach cultivars Emilia, Lazio, Space, and Waitiki were experimentally inoculated with the foodborne E. coli O157:H7 isolate EDL933 and its isogenic mutants deficient in cellulose, curli, or both curli and cellulose production. Leaves of 6-week-old plants were inoculated with 6.5 log CFU per leaf in a biosafety level 2 growth chamber. At 0, 1, 7, and 14 days, E. coli O157:H7 populations were determined by plating on selective medium and verified by laser scanning confocal microscopy. Leaf morphology (blade roughness and stoma density) was evaluated by low-temperature and variable-pressure scanning electron microscopy. E. coli O157:H7 persistence on spinach was significantly affected by cultivar and strain phenotypic characteristics, specifically, the expression of curli. Leaf blade roughness and stoma density influenced the persistence of E. coli O157:H7 on spinach. Cultivar Waitiki, which had the greatest leaf roughness, supported significantly higher E. coli O157:H7 populations than the other cultivars. These two morphological characteristics of spinach cultivars should be taken into consideration in developing intervention strategies to enhance the microbial safety of leafy greens.
Herbaceous Weed Control Improves Survival of Planted Shumard Oak Seedlings
A.W. Ezell; J.D. Hodges
2002-01-01
Shumard oak seedlings were planted on a cutoversite in the Mississippi River floodplain, which had received both chemical and mechanical site preparation treatments. Soil at the site was a commerce silt loam and the elevation was such that the area does not flood. Planting stock was 1-0, bareroot seedlings. A total of seven active herbicide treatments were applied at a...
Reproductive ecology of American Oystercatchers nesting on shell rakes
Jodice, Patrick G.R.; Thibault, Janet M.; Collins, S.A.; Spinks, Mark D.; Sanders, Felicia J.
2014-01-01
Degradation of nesting habitat for coastal birds has led to the use of nontraditional nesting habitat. The American Oystercatcher (Haematopus palliatus) is listed as a "Species of High Concern'' by the U. S. Shorebird Conservation Plan and is declining in the southern portion of its U. S. breeding range, where ~ 50% of breeding oystercatchers nest on shell substrate instead of beachfront habitat. We measured daily survival rates during incubation and chick rearing in shell rake habitats over five breeding seasons in the Cape Romain region of South Carolina, USA. Of 354 nesting attempts monitored, 16.1% hatched at least one egg. During incubation, daily survival rate was 0.938, corresponding to 22.8% success to hatching (nest success). For broods, daily survival was 0.991, or 74.0% success from hatching to fledging. Productivity in the Cape Romain region is primarily being lost during the incubation phase, when nests are exposed to overwash and predation. Mobile chicks may, however, be able to avoid flood events or predators by relocating to higher or more protected portions of a shell rake. Based on comparative data for American Oystercatchers from elsewhere in their range, it does not appear that shell rakes in the Cape Romain region are inferior breeding habitat. Our data suggest that conservation actions targeting nest and chick loss from flooding and predation have the greatest opportunity to enhance reproductive success in this core breeding area, and that an assessment of the availability, structure, avian use, and protection status of shell rakes is warranted.
Salt intrusion in tidal wetlands: European willow species tolerate oligohaline conditions
NASA Astrophysics Data System (ADS)
Markus-Michalczyk, Heike; Hanelt, Dieter; Ludewig, Kristin; Müller, David; Schröter, Brigitte; Jensen, Kai
2014-01-01
Tidal wetlands experience salt intrusion due to the effects of climate change. This study clarifies that the European flood plain willows species Salix alba and Salix viminalis tolerate oligohaline conditions. Salix alba L. and Salix viminalis L. are distributed on flood plains up to transitional waters of the oligohaline to the mesohaline estuarine stretch in temperate climates. They experience spatial and temporal variations in flooding and salinity. In the past, willows dominated the vegetation above the mean high water line, attenuated waves and contributed to sedimentation. In recent centuries, human utilization reduced willow stands. Today, the Elbe estuary - a model system for an estuary in temperate zones - exhibits increasing flooding and salinity due to man-induced effects and climatic changes. Willows were described as having no salinity tolerance. In contrast, our soil water salinity measurements at willows in tidal wetlands prove that mature Salix individuals tolerate oligohaline conditions. To assess immature plant salinity tolerance, we conducted a hydroponic greenhouse experiment. Vegetative propagules originating from a freshwater and an oligohaline site were treated in four salinities. Related to growth rates and biomass production, we found interspecific similarities and a salinity tolerance up to salinity 2. Vitality and chlorophyll fluorescence indicated an acclimation of Salix viminalis to oligohaline conditions. We conclude, that the survival of S. alba and S. viminalis and the restoration of willow stands in estuarine flood plains - with regard to wave attenuation and sedimentation - might be possible, despite increasing salinity in times of climate change.
Estimating bridge scour in New York from historical U.S. geological survey streamflow measurements
Butch, Gerard K.; ,
1993-01-01
Historical streamflow measurements by the U.S. Geological Survey an bridge-inspection reports by the New York State Department of Transportation are being used to estimate scour at 31 bridges in New York State. Streamflow measurements that were made before, during, or after high flows are used to estimate scour and to define hydraulic properties associated with floods. Clear-water scour is common at most sites; local scour holes that formed during high flows did not refill after subsequent high flows. The 31 streambeds are armored by gravel; median particle size ranges form 22 to 68 millimeters. Streambed elevations measured after a high flow are assumed to represent the elevations during peak flow. Measurements at several bridges indicate scour by multiple high flows, severe floods, and debris. Three high flows at State Route 23 over the Otselic River in Cortland County produced 6.1 feet of local scour and partly exposed concrete pilings below the footing. Although the recurrence interval of each flow was less than 10 years, a 30-degree angle between the flow and the pier increased the tendency of the streambed to scour. State Route 427 over the Chemung River in Chemung County survived the 1972 flood ( recurrence interval greater than 100 years) because pilings supported the undermined piers. The maximum local scour during the 1972 flood was estimated to be 5.4 feet. A local-scour hole, 2.4 feet deep before the flood, was deepened to 7.8 feet.
Hirano, Susan S.; Upper, Christen D.
2000-01-01
The extremely large number of leaves produced by terrestrial and aquatic plants provide habitats for colonization by a diversity of microorganisms. This review focuses on the bacterial component of leaf microbial communities, with emphasis on Pseudomonas syringae—a species that participates in leaf ecosystems as a pathogen, ice nucleus, and epiphyte. Among the diversity of bacteria that colonize leaves, none has received wider attention than P. syringae, as it gained notoriety for being the first recombinant organism (Ice− P. syringae) to be deliberately introduced into the environment. We focus on P. syringae to illustrate the attractiveness and somewhat unique opportunities provided by leaf ecosystems for addressing fundamental questions of microbial population dynamics and mechanisms of plant-bacterium interactions. Leaf ecosystems are dynamic and ephemeral. The physical environment surrounding phyllosphere microbes changes continuously with daily cycles in temperature, radiation, relative humidity, wind velocity, and leaf wetness. Slightly longer-term changes occur as weather systems pass. Seasonal climatic changes impose still a longer cycle. The physical and physiological characteristics of leaves change as they expand, mature, and senesce and as host phenology changes. Many of these factors influence the development of populations of P. syringae upon populations of leaves. P. syringae was first studied for its ability to cause disease on plants. However, disease causation is but one aspect of its life strategy. The bacterium can be found in association with healthy leaves, growing and surviving for many generations on the surfaces of leaves as an epiphyte. A number of genes and traits have been identified that contribute to the fitness of P. syringae in the phyllosphere. While still in their infancy, such research efforts demonstrate that the P. syringae-leaf ecosystem is a particularly attractive system with which to bridge the gap between what is known about the molecular biology of genes linked to pathogenicity and the ecology and epidemiology of associated diseases as they occur in natural settings, the field. PMID:10974129
Physically-based modeling of drag force caused by natural woody vegetation
NASA Astrophysics Data System (ADS)
Järvelä, J.; Aberle, J.
2014-12-01
Riparian areas and floodplains are characterized by woody vegetation, which is an essential feature to be accounted for in many hydro-environmental models. For applications including flood protection, river restoration and modelling of sediment processes, there is a need to improve the reliability of flow resistance estimates. Conventional methods such as the use of lumped resistance coefficients or simplistic cylinder-based drag force equations can result in significant errors, as these methods do not adequately address the effect of foliage and reconfiguration of flexible plant parts under flow action. To tackle the problem, physically-based methods relying on objective and measurable vegetation properties are advantageous for describing complex vegetation. We have conducted flume and towing tank investigations with living and artificial plants, both in arrays and with isolated plants, providing new insight into advanced parameterization of natural vegetation. The stem, leaf and total areas of the trees confirmed to be suitable characteristic dimensions for estimating flow resistance. Consequently, we propose the use of leaf area index and leaf-to-stem-area ratio to achieve better drag force estimates. Novel remote sensing techniques including laser scanning have become available for effective collection of the required data. The benefits of the proposed parameterization have been clearly demonstrated in our newest experimental studies, but it remains to be investigated to what extent the parameter values are species-specific and how they depend on local habitat conditions. The purpose of this contribution is to summarize developments in the estimation of vegetative drag force based on physically-based approaches as the latest research results are somewhat dispersed. In particular, concerning woody vegetation we seek to discuss three issues: 1) parameterization of reconfiguration with the Vogel exponent; 2) advantage of parameterizing plants with the leaf area index and leaf-to-stem-area ratio, and 3) effect of plant scale (size from twigs to mature trees). To analyze these issues we use experimental data from the authors' research teams as well as from other researchers. The results are expected to be useful for the design of future experimental campaigns and developing drag force models.
Drought stress and carbon assimilation in a warming climate: Reversible and irreversible impacts.
Feller, Urs
2016-09-20
Global change is characterized by increased CO 2 concentration in the atmosphere, increasing average temperature and more frequent extreme events including drought periods, heat waves and flooding. Especially the impacts of drought and of elevated temperature on carbon assimilation are considered in this review. Effects of extreme events on the subcellular level as well as on the whole plant level may be reversible, partially reversible or irreversible. The photosynthetically active biomass depends on the number and the size of mature leaves and the photosynthetic activity in this biomass during stress and subsequent recovery phases. The total area of active leaves is determined by leaf expansion and senescence, while net photosynthesis per leaf area is primarily influenced by stomatal opening (stomatal conductance), mesophyll conductance, activity of the photosynthetic apparatus (light absorption and electron transport, activity of the Calvin cycle) and CO 2 release by decarboxylation reactions (photorespiration, dark respiration). Water status, stomatal opening and leaf temperature represent a "magic triangle" of three strongly interacting parameters. The response of stomata to altered environmental conditions is important for stomatal limitations. Rubisco protein is quite thermotolerant, but the enzyme becomes at elevated temperature more rapidly inactivated (decarbamylation, reversible effect) and must be reactivated by Rubisco activase (carbamylation of a lysine residue). Rubisco activase is present under two forms (encoded by separate genes or products of alternative splicing of the pre-mRNA from one gene) and is very thermosensitive. Rubisco activase was identified as a key protein for photosynthesis at elevated temperature (non-stomatal limitation). During a moderate heat stress Rubisco activase is reversibly inactivated, but during a more severe stress (higher temperature and/or longer exposure) the protein is irreversibly inactivated, insolubilized and finally degraded. On the level of the leaf, this loss of photosynthetic activity may still be reversible when new Rubisco activase is produced by protein synthesis. Rubisco activase as well as enzymes involved in the detoxification of reactive oxygen species or in osmoregulation are considered as important targets for breeding crop plants which are still productive under drought and/or at elevated leaf temperature in a changing climate. Copyright © 2016 Elsevier GmbH. All rights reserved.
The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes
Kirwanm, M.L.; Langley, J.A.; Guntenspergen, Gleen R.; Megonigal, J.P.
2013-01-01
The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise.
The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes
NASA Astrophysics Data System (ADS)
Kirwan, M. L.; Langley, J. A.; Guntenspergen, G. R.; Megonigal, J. P.
2013-03-01
The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise.
The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes
NASA Astrophysics Data System (ADS)
Kirwan, M. L.; Langley, J. A.; Guntenspergen, G. R.; Megonigal, J. P.
2012-10-01
The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise.
Determination of the Water Potential Threshold at Which Rice Growth Is Impacted.
Dos Santos, Caio Luiz; de Borja Reis, André Froes; Mazzafera, Paulo; Favarin, José Laércio
2018-06-22
Rice feeds 50% of the world’s population. Flooding is the most common irrigation system used for growing rice, a practice responsible for a large amount of water loss. Climate changes may affect water availability in irrigated agriculture, and it will be necessary to develop more sustainable irrigation practices. The aim of this work was to determine, in controlled conditions, the threshold when water potential begins to decrease plant growth. Two independent greenhouse experiments were conducted during middle summer and fall, in order to validate the results for high and low evapotranspiration conditions. Rice plants were grown in hydroponics and the water potential was adjusted with polyethylene glycol 6000, varying from −0.04 MPa (control) to −0.19 MPa. Leaf water potential, water use efficiency, leaf area, and root and shoot biomass were evaluated. All assayed parameters decreased as the water potential was decreased. The water potential threshold which starts to negatively affect rice growth was between −0.046 and −0.056 MPa, which are values close to those observed in the field in previous research. The definition of a critical value may help to improve water management in rice cultivation and to maintain productivity.
Zhao, Zhenhua; Xia, Liling; Jiang, Xin; Gao, Yanzheng
2018-03-15
The effects of different water-saving modes on PAHs residue and risk, field environment conditions and enzyme activities in paddy field were investigated in a field experiment plot in Laoyaba, Nanjing, China. Results showed that (1) water-saving treatment affected greatly the ΣPAHs in water and soil. The order of ΣPAHs residue in surface water and groundwater in farmland is as follows: dry fields
Designing Resilient and Productive Grasses with Plasticity to Extreme Weather Events
NASA Astrophysics Data System (ADS)
Loka, D.; Humphreys, M.; Gwyn Jones, D.; Scullion, J.; Doonan, J.; Gasior, D.; Harper, J.; Farrell, M.; Kingston-Smith, A.; Dodd, R.; Chadwick, D.; Hill, P.; Robinson, D.; Jones, D.
2016-12-01
Grasslands occupy more than 70% of the world's agricultural land and are major providers of healthy feed for livestock and for ecosystem services. Global warming is projected to increase the intensity and frequency of extreme weather events such as drought and flooding and will reduce persistency of currently productive but stress sensitive forage grass varieties, thereby challenging global food security and compromising on their existing ecosystem functionality. New perennial grass varieties, tolerant to the onsets of more than one abiotic stresses, are required in order to achieve sustainable grassland production and function over years under adverse environmental conditions. Identifying and selecting reliable morphological and physiological traits associated with increased resistance to multiple stress conditions is a prerequisite to ensure future grasslands resilience. The objectives of our study were to select from diverse and novel Festulolium (ryegrass spp. x fescue spp. hybrids) grass populations capable of providing optimal combinations of good forage production together with resilience to multiple stresses and to monitor morphological and physiological responses under multiple stress conditions. The grasses were: Festulolium variety Prior (L. perenne x F. pratensis), shown to alter soil structure and hydrology to mitigate run-off and flooding; two advanced breeding populations of diploid L. perenne with genes for drought tolerance derived from the Mediterranean fescue species F. arundinacea and F. glaucescens; two tetraploid hybrid populations involving L. perenne in combination with F. glaucescens and F. mairei (from North Africa), respectively. As controls, Festulolium variety AberNiche and L. perenne variety AberWolf varieties, were used. Treatments consisted of: A) Control; plants maintained at optimum conditions, B) Flood; plants were flooded for 6 weeks followed by a 4-week recovery, C) Drought; plants received limited quantity of water for 12 weeks followed by a 4-week recovery, and D) Flood followed by drought for a total of 18 weeks followed by a 4-week recovery. Leaf physiological and root morphological responses were monitored and recorded before stress initiation, at the end of stress and recovery periods and the results were evaluated.
Wetland hydrology and tree distribution of the Apalachicola River flood plain, Florida
Leitman, Helen M.; Sohm, James E.; Franklin, Marvin A.
1984-01-01
The Apalachicola River in northwest Florida is part of a three-State drainage basin encompassing 50,800 km 2 in Alabama, Georgia, and Florida. The river is formed by the confluence of the Chattahoochee and Flint Rivers at Jim Woodruff Dam from which it flows 171 km to Apalachicola Bay in the Gulf of Mexico. Its average annual discharge at Chattahoochee, Fla., is 690 m3/s (1958-80) with annual high flows averaging nearly 3,000 m3/s. Its flood plain supports 450 km 2 of bottom-land hardwood and tupelo-cypress forests. The Apalachicola River Quality Assessment focuses on the hydrology and productivity of the flood-plain forest. The purpose of this part of the assessment is to address river and flood-plain hydrology, flood-plain tree species and forest types, and water and tree relations. Seasonal stage fluctuations in the upper river are three times greater than in the lower river. Analysis of long-term streamflow record revealed that 1958-79 average annual and monthly flows and flow durations were significantly greater than those of 1929-57, probably because of climatic changes. However, stage durations for the later period were equal to or less than those of the earlier period. Height of natural riverbank levees and the size and distribution of breaks in the levees have a major controlling effect on flood-plain hydrology. Thirty-two kilometers upstream of the bay, a flood-plain stream called the Brothers River was commonly under tidal influence during times of low flow in the 1980 water year. At the same distance upstream of the bay, the Apalachicola River was not under tidal influence during the 1980 water year. Of the 47 species of trees sampled, the five most common were wet-site species constituting 62 percent of the total basal area. In order of abundance, they were water tupelo, Ogeechee tupelo, baldcypress, Carolina ash, and swamp tupelo. Other common species were sweetgum, overcup oak, planertree, green ash, water hickory, sugarberry, and diamond-leaf oak. Five forest types were defined on the basis of species predominance by basal area. Biomass increased downstream and was greatest in forests growing on permanently saturated soils. Depth of water, duration of inundation and saturation, and water-level fluctuation, but not water velocity, were highly correlated with forest types. Most forest types dominated by tupelo and bald-cypress grew on permanently saturated soils that were inundated by flood waters 50 to 90 percent of the time, or an average of 75 to 225 consecutive days during the growing season from 1958 to 1980. Most forest types dominated by other species grew in areas that were saturated or inundated 5 to 25 percent of the time, or an average of 5 to 40 consecutive days during the growing season from 1958 to 1980. Water and tree relations varied with river location because range in water-level fluctuation and topographic relief in the flood plain diminished downstream.
McCoy-Sulentic, Miles; Kolb, Thomas; Merritt, David; Palmquist, Emily C.; Ralston, Barbara E.; Sarr, Daniel; Shafroth, Patrick B.
2017-01-01
Comparisons of community-level functional traits across environmental gradients have potential for identifying links among plant characteristics, adaptations to stress and disturbance, and community assembly. We investigated community-level variation in specific leaf area (SLA), plant mature height, seed mass, stem specific gravity (SSG), relative cover of C4 species, and total plant cover over hydrologic zones and gradients in years 2013 and 2014 in the riparian plant community along the Colorado River in the Grand Canyon. Vegetation cover was lowest in the frequently inundated active channel zone, indicating constraints on plant establishment and production by flood disturbance and anaerobic stress. Changes in trait values over hydrologic zones and inundation gradients indicate that frequently inundated plots exhibit a community-level ruderal strategy with adaptation to submergence (high SLA and low SSG, height, seed mass, C4 relative cover), whereas less frequently inundated plots exhibit adaptation to drought and infrequent flood disturbance (low SLA and high SSG, height, seed mass, C4 relative cover). Variation in traits not associated with inundation suggests niche differentiation and multiple modes of community assembly. The results enhance understanding of future responses of riparian communities of the Grand Canyon to anticipated drying and changes in hydrologic regime.
Samuelian, Suren
2016-06-01
Trichoderma isolates were obtained from diseased leaves and fruit collected from plantations in the main banana production area in Northern Queensland. Phylogenetic analyses identified the Trichoderma isolates as T. harzianum and T. virens. The Trichoderma spp. were found to be antagonistic against the banana leaf pathogens Mycosphaerella musicola, Cordana musae, and Deightoniella torulosa in vitro. Several products used by the banana industry to increase production, including molasses, Fishoil and Seasol, were tested as food source for the Trichoderma isolates. The optimal food substrate was found to be molasses at a concentration of 5 %, which when used in combination with a di-1-p-menthene spreader-sticker enhanced the survivability of Trichoderma populations under natural conditions. This formulation suppressed D. torulosa development under glasshouse conditions. Furthermore, high sensitivity was observed towards the protectant fungicide Mancozeb but Biopest oil ® , a paraffinic oil, only marginally suppressed the growth of Trichoderma isolates in vitro. Thus, this protocol represents a potential to manage banana leaf pathogens as a part of an integrated disease approach.
Pielström, Steffen; Roces, Flavio
2014-01-01
The Chaco leaf-cutting ant Atta vollenweideri is native to the clay-heavy soils of the Gran Chaco region in South America. Because of seasonal floods, colonies are regularly exposed to varying moisture across the soil profile, a factor that not only strongly influences workers' digging performance during nest building, but also determines the suitability of the soil for the rearing of the colony's symbiotic fungus. In this study, we investigated the effects of varying soil moisture on behaviours associated with underground nest building in A. vollenweideri. This was done in a series of laboratory experiments using standardised, plastic clay-water mixtures with gravimetric water contents ranging from relatively brittle material to mixtures close to the liquid limit. Our experiments showed that preference and group-level digging rate increased with increasing water content, but then dropped considerably for extremely moist materials. The production of vibrational recruitment signals during digging showed, on the contrary, a slightly negative linear correlation with soil moisture. Workers formed and carried clay pellets at higher rates in moist clay, even at the highest water content tested. Hence, their weak preference and low group-level excavation rate observed for that mixture cannot be explained by any inability to work with the material. More likely, extremely high moistures may indicate locations unsuitable for nest building. To test this hypothesis, we simulated a situation in which workers excavated an upward tunnel below accumulated surface water. The ants stopped digging about 12 mm below the interface soil/water, a behaviour representing a possible adaptation to the threat of water inflow field colonies are exposed to while digging under seasonally flooded soils. Possible roles of soil water in the temporal and spatial pattern of nest growth are discussed. PMID:24748382
Dutilleul, Pierre; Han, Liwen; Valladares, Fernando; Messier, Christian
2015-01-01
Plant light interception and shade tolerance are intrinsically related in that they involve structural, morphological and physiological adaptations to manage light capture for photosynthetic utilization, in order to sustain survival, development and reproduction. At the scale of small-size trees, crown traits related to structural geometry of branching pattern and space occupancy through phyllotaxis can be accurately evaluated in 3D, using computed tomography (CT) scanning data. We demonstrate this by scrutinizing the crowns of 15 potted miniature conifers of different species or varieties, classified in two groups based on leaf type (10 needlelike, 5 scalelike); we also test whether mean values of crown traits measured from CT scanning data and correlations with a shade tolerance index (STI) differ between groups. Seven crown traits, including fractal dimensions (FD1: smaller scales, FD2: larger scales) and leaf areas, were evaluated for all 15 miniature conifers; an average silhouette-to-total-area ratio was also calculated for each of the 10 needlelike-leaf conifers. Between-group differences in mean values are significant (P < 0.05) for STI, FD1, FD2, and the average leaf area displayed (ĀD). Between-group differences in sign and strength of correlations are observed. For example, the correlation between STI and FD1 is negative and significant (P < 0.10) for the needlelike-leaf group, but is positive and significant (P < 0.05) for the miniature conifers with scalelike leaves, which had lower STI and higher FD1 on average in our study; the positive correlation between STI and ĀD is significant (P < 0.05) for the scalelike-leaf group, and very moderate for the needlelike-leaf one. A contrasting physical attachment of the leaves to branches may explain part of the between-group differences. Our findings open new avenues for the understanding of fundamental plant growth processes; the information gained could be included in a multi-scale approach to tree crown modeling. PMID:25852721
Vander Mijnsbrugge, Kristine; Turcsán, Arion; Maes, Jorne; Duchêne, Nils; Meeus, Steven; Steppe, Kathy; Steenackers, Marijke
2016-01-01
Climate change predicts harsher summer droughts for mid-latitudes in Europe. To enhance our understanding of the putative impacts on forest regeneration, we studied the response of oak seedlings (Quercus petraea) to water deficit. Potted seedlings originating from three locally sourced provenances were subjected to two successive drought periods during the first growing season each followed by a plentiful re-watering. Here, we describe survival and phenological responses after the second drought treatment, applying general linear mixed modeling. From the 441 drought treated seedlings 189 subsisted with higher chances of survival among smaller plants and among single plants per pot compared to doubles. Remarkably, survival was independent of the provenance, although relatively more plants had died off in two provenances compared to the third one with mean plant height being higher in one provenance and standard deviation of plant height being higher in the other. Timing of leaf senescence was clearly delayed after the severe drought treatment followed by re-watering, with two seedlings per pot showing a lesser retardation compared to single plants. This delay can be interpreted as a compensation time in which plants recover before entering the subsequent developmental process of leaf senescence, although it renders seedlings more vulnerable to early autumn frosts because of the delayed hardening of the shoots. Onset of bud flush in the subsequent spring still showed a significant but small delay in the drought treated group, independent of the number of seedlings per pot, and can be considered as an after effect of the delayed senescence. In both phenological models significant differences among the three provenances were detected independent from the treatment. The only provenance that is believed to be local of origin, displayed the earliest leaf senescence and the latest flushing, suggesting an adaptation to the local maritime climate. This provenance also displayed the highest standard deviation of plant height, which can be interpreted as an adaptation to variable and unpredictable weather conditions, favoring smaller plants in drought-prone summers and higher plants in more normal growing seasons. PMID:27064667
NASA Astrophysics Data System (ADS)
Tai, X.; Mackay, D. S.
2015-12-01
Interactions among co-occurring species are mediated by plant physiology, morphology and environment. Without proper mechanisms to account for these factors, it remains difficult to predict plant mortality/survival under changing climate. A plant ecophysiological model, TREES, was extended to incorporate co-occurring species' belowground interaction for water. We used it to examine the interaction between two commonly co-occurring species during drought experiment, pine (Pinus edulis) and juniper (Juniperus monosperma), with contrasting physiological traits (vulnerability to cavitation and leaf water potential regulation). TREES was parameterized and validated using field-measured plant physiological traits. The root architecture (depth, profile, and root area to leaf area ratio) of juniper was adjusted to see how root morphology could affect the survival/mortality of its neighboring pine under both ambient and drought conditions. Drought suppressed plant water and carbon uptake, as well increased the average percentage loss of conductivity (PLC). Pine had 59% reduction in water uptake, 48% reduction in carbon uptake, and 38% increase in PLC, while juniper had 56% reduction in water uptake, 50% reduction in carbon and 29% increase in PLC, suggesting different vulnerability to drought as mediated by plant physiological traits. Variations in juniper root architecture further mediated drought stress on pine, from negative to positive. Different juniper root architecture caused variations in response of pine over drought (water uptake reduction ranged 0% ~63%, carbon uptake reduction ranged 0% ~ 70%, and PLC increase ranged 2% ~ 91%). Deeper or more uniformly distributed roots of juniper could effectively mitigate stress experienced by pine. In addition, the total water and carbon uptake tended to increase as the ratio of root area to leaf area increased while PLC showed non-monotonic response, suggesting the potential trade-off between maximizing resource uptake and susceptibility to cavitation. The results showed that co-occurring species' morphological traits could alleviate or aggravate stress imposed by drought and should therefore be considered together with plant physiological traits in predicting plant mortality and ecosystem structural shift under future climate conditions.
Nilsen, E T; Walker, J F; Miller, O K; Semones, S W; Lei, T T; Clinton, B D
1999-11-01
In the southern Appalachian mountains a subcanopy species, Rhododendron maximum, inhibits the establishment and survival of canopy tree seedlings. One of the mechanisms by which seedlings could be inhibited is an allelopathic effect of decomposing litter or leachate from the canopy of R. maximum (R.m.) on seed germination, root elongation, or mycorrhizal colonization. The potential for allelopathy by R.m. was tested with two bioassay species (lettuce and cress), with seeds from four native tree species, and with three ectomycorrhizal fungi. Inhibitory influences of throughfall, fresh litter, and decomposed litter (organic layer) from forest with R.m. (+R.m. sites) were compared to similar extractions made from forest without R.m. (-R.m. sites). Throughfall and leachates of the organic layer from both +R.m. and -R.m. sites stimulated germination of the bioassay species above that of the distilled water control, to a similar extent. There was an inhibitory effect of leachates of litter from +R.m. sites on seed germination and root elongation rate of both bioassay species compared with that of litter from -R.m. sites. Native tree seed stratified in forest floor material from both forest types had a slightly higher seed germination rate compared with the control. A 2-yr study of seed germination and seedling mortality of two tree species, Quercus rubra and Prunus serotina, in field plots showed no significant influence of litter or organic layer from either forest type. Incorporating R.m. leaf material into the growth medium in vitro depressed growth of one ectomycorrhizal species but did not affect two other species. Leaf material from other deciduous tree species depressed ectomycorrhizal growth to a similar or greater extent as leaf material from R.m. In conclusion, R.m. litter can have an allelopathic effect on seed germination and root elongation of bioassay species as well as some ectomycorrhizal species. However, this allelopathic affect is not manifest in field sites and is not likely to be an important cause for the inhibition of seedling survival within thickets of R.m.
NASA Astrophysics Data System (ADS)
Zhong, Da; Yang, Qinglin; Guo, Lin; Dou, Shixue; Liu, Kesong; Jiang, Lei
2013-06-01
Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater.Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33632h
Shelmidine, Nichole; McAloose, Denise; McCann, Colleen
2013-03-01
This study examines mortality in the North American (N.A.) population of silvered leaf monkeys (Trachypithecus cristatus) maintained in Association of Zoos and Aquarium's zoos. Understanding the causes of death associated with mortality rates (MR) can highlight relative susceptibility to intrinsic/extrinsic factors and differences between age and sex classes. Overall, life tables can provide insight into a species' population dynamics. We expect that the MR will fit the general mammalian and primate trends of a U-shaped curve when graphed, that males will have a higher MR and shorter life expectancy than females and that infant survival will be higher in captivity than in wild populations. Our results indicate that the N.A. captive population fits expected MR trends of a U-shaped curve. However, no differences in MR or life expectancy were found between the sexes. Infant survivorship did not differ from the wild or other leaf monkey populations (both captive and wild). The majority of infant deaths occurred on day 1 of life (52.8% of all infant deaths) and infant survivorship to 1 year was 66%. Neonates (n = 6, 31.6%) and infants (n = 4, 44.4%) died from trauma, juveniles (n = 2, 33.3%) from nutritional reasons, adults from non-infectious diseases (n = 7, 29.2%) and from post-surgical complications (n = 7, 29.2%), and older adults from idiopathic diseases (n = 4, 26.7%) and non-infectious diseases (n = 4, 26.7%). Only older adult males died from degenerative diseases (i.e., heart failure, n = 3, 42.9%). In general, this captive population demonstrated some similar trends to those observed in mammalian and Old World monkey populations. © 2013 Wiley Periodicals, Inc.
Transcriptional responses of Escherichia coli K-12 and O157:H7 associated with lettuce leaves.
Fink, Ryan C; Black, Elaine P; Hou, Zhe; Sugawara, Masayuki; Sadowsky, Michael J; Diez-Gonzalez, Francisco
2012-03-01
An increasing number of outbreaks of gastroenteritis recently caused by Escherichia coli O157:H7 have been linked to the consumption of leafy green vegetables. Although it is known that E. coli survives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identify E. coli genes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparing E. coli K-12, a model system, and E. coli O157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, including tnaA (33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsA and ybiM) and curli production (csgA and csgB) were significantly upregulated in E. coli K-12 and O157:H7. Both csgA and bhsA (ycfR) mutants were impaired in the long-term colonization of the leaf surface, but only csgA mutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction of E. coli K-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation.
Brighenti, F L; Luppens, S B I; Delbem, A C B; Deng, D M; Hoogenkamp, M A; Gaetti-Jardim, E; Dekker, H L; Crielaard, W; ten Cate, J M
2008-01-01
Plants naturally produce secondary metabolites that can be used as antimicrobials. The aim of this study was to assess the effects of Psidium cattleianum leaf extract on Streptococcus mutans. The extract (100%) was obtained by decoction of 100 g of leaves in 600 ml of deionized water. To assess killing, S. mutans biofilms were treated with water (negative control) or various extract dilutions [100, 50, 25% (v/v) in water] for 5 or 60 min. To evaluate the effect on protein expression, biofilms were exposed to water or 1.6% (v/v) extract for 120 min, proteins were extracted and submitted to 2-dimensional difference gel electrophoresis. Differentially expressed proteins were identified by mass spectrometry. The effect of 1.6% (v/v) extract on acid production was determined by pH measurements and compared to a water control. Viability was similar after 5 min of treatment with the 100% extract or 60 min with the 50% extract (about 0.03% survival). There were no differences in viability between the biofilms exposed to the 25 or 50% extract after 60 min of treatment (about 0.02% survival). Treatment with the 1.6% extract significantly changed protein expression. The abundance of 24 spots was decreased compared to water (p < 0.05). The extract significantly inhibited acid production (p < 0.05). It is concluded that P. cattleianum leaf extract kills S. mutans grown in biofilms when applied at high concentrations. At low concentrations it inhibits S. mutans acid production and reduces the expression of proteins involved in general metabolism, glycolysis and lactic acid production. (c) 2008 S. Karger AG, Basel
Transcriptional Responses of Escherichia coli K-12 and O157:H7 Associated with Lettuce Leaves
Fink, Ryan C.; Black, Elaine P.; Hou, Zhe; Sugawara, Masayuki; Sadowsky, Michael J.
2012-01-01
An increasing number of outbreaks of gastroenteritis recently caused by Escherichia coli O157:H7 have been linked to the consumption of leafy green vegetables. Although it is known that E. coli survives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identify E. coli genes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparing E. coli K-12, a model system, and E. coli O157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, including tnaA (33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsA and ybiM) and curli production (csgA and csgB) were significantly upregulated in E. coli K-12 and O157:H7. Both csgA and bhsA (ycfR) mutants were impaired in the long-term colonization of the leaf surface, but only csgA mutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction of E. coli K-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation. PMID:22247152
Ehleringer, James R.; Björkman, Olle
1978-01-01
Measurements of the dependence of photosynthesis on light, CO2, and temperature are reported for two species of Encelia (Compositae) which differ in leaf pubescence and in geographical distribution. Encelia californica is glabrous and occurs in relatively mild, but arid habitats and Encelia farinosa is heavily pubescent and occurs in hot, arid habitats. Both species possess the C3 photosynthetic pathway. Under high irradiances and normal atmospheric conditions the two species have high photosynthetic rates, exceeding 3 nanomoles of CO2 per square centimeter per second (48 milligrams of CO2 per square decimeter per hour) and complete light saturation does not occur by full noon sunlight. The high photosynthetic capacity is related to a high efficiency of utilization of intercellular CO2 combined with high stomatal conductance. Leaf estimates of total soluble protein and fraction I protein are higher in these species than in most plants, although the proportion of fraction I protein is not higher. Both E. californica and E. farinosa attain a maximum rate of photosynthesis between 25 and 30 C, despite the fact that the two species grow in very different thermal habitats. Neither E. californica nor E. farinosa shows significant acclimation in the temperature dependence of photosynthesis when grown under different temperature regimes. The presence of leaf hairs which reduce leaf absorptance and consequently leaf temperature plays an important part in the ability of E. farinosa to survive in its native high temperature environment. When the effects of pubescence are taken into account, there are few if any significant differences in the photosynthetic characteristics of the two species. PMID:16660483
Thermography to explore plant-environment interactions.
Costa, J Miguel; Grant, Olga M; Chaves, M Manuela
2013-10-01
Stomatal regulation is a key determinant of plant photosynthesis and water relations, influencing plant survival, adaptation, and growth. Stomata sense the surrounding environment and respond rapidly to abiotic and biotic stresses. Stomatal conductance to water vapour (g s) and/or transpiration (E) are therefore valuable physiological parameters to be monitored in plant and agricultural sciences. However, leaf gas exchange measurements involve contact with leaves and often interfere with leaf functioning. Besides, they are time consuming and are limited by the sampling characteristics (e.g. sample size and/or the high number of samples required). Remote and rapid means to assess g s or E are thus particularly valuable for physiologists, agronomists, and ecologists. Transpiration influences the leaf energy balance and, consequently, leaf temperature (T leaf). As a result, thermal imaging makes it possible to estimate or quantify g s and E. Thermal imaging has been successfully used in a wide range of conditions and with diverse plant species. The technique can be applied at different scales (e.g. from single seedlings/leaves through whole trees or field crops to regions), providing great potential to study plant-environment interactions and specific phenomena such as abnormal stomatal closure, genotypic variation in stress tolerance, and the impact of different management strategies on crop water status. Nevertheless, environmental variability (e.g. in light intensity, temperature, relative humidity, wind speed) affects the accuracy of thermal imaging measurements. This review presents and discusses the advantages of thermal imaging applications to plant science, agriculture, and ecology, as well as its limitations and possible approaches to minimize them, by highlighting examples from previous and ongoing research.
Shalileh, Sheida; Moualeu, Dany Pascal; Poehling, Hans-Michael
2016-01-01
Earlier studies have shown that Tomato spotted wilt virus (TSWV) influences the biology, performance, and behavioral patterns of its vector Frankliniella occidentalis Pergande. In this study, using Capsicum annuum L. as the host plant, we aimed to determine the manipulation of F. occidentalis by TSWV through switching of the diet (+ or −TSWV) during vector’s development. Behavioral patterns, fitness, as well as vector performance were evaluated. The specific parameters investigated included longevity/survival, fecundity, development time, feeding, and preferential behavior. F. occidentalis were reared on either TSWV-infected (exposed) or healthy leaves (non-exposed) throughout their larval stages. The emerging adults were then individually transferred to either healthy or TSWV-infected leaf disks. This resulted into four treatments, consisting of exposed or non-exposed thrips reared on either infected or healthy leaf disks as adults. All F. occidentalis exposed to TSWV in their larval stages had shorter development time regardless of the adults’ diet. Whereas, the ones that were later reared on healthy leaf disks as adults recorded the highest longevity and reproduction rate. Furthermore, adults of F. occidentalis that were exposed to TSWV in their larval stages showed preference toward healthy leaf disks (−TSWV), whereas the non-exposed significantly preferred the infected leaf disks (+TSWV). These are further indications that TSWV modifies the nutritional content of its host plants, which influences vector’s biology and preferential behavior, in favor of its multiplication and dispersal. The findings offer additional explanation to the often aggressive spread of the virus in crop stands. PMID:27566527
Reid, Douglas E B; Silins, Uldis; Lieffers, Victor J
2003-08-01
Stem sapwood hydraulic permeability, tree leaf area, sapwood basal area, earlywood to latewood ratio of annual rings, radial variation in hydraulic permeability and stem hydraulic capacity were examined in dominant (D), codominant (CD) and suppressed (SP) lodgepole pine (Pinus contorta Dougl. ex Loud.) trees growing on medium and poor sites. Hydraulic permeability on a sapwood area basis (ks) was lower in suppressed trees (0.71 x 10(-12) m2) compared to dominants (1.97 x 10(-12) m2) and codominants (1.79 x 10(-12) m2), and higher on medium than on poor sites. The leaf/sapwood area ratio (S) varied with crown dominance position (D > CD > SP) but not by site type. Leaf specific conductivity (kL) did not vary between crown classes or site types. The relationship between leaf area and stem hydraulic supply capacity (Q*) was strong, but differed among crown classes. Dominant trees and trees from the medium sites had a greater proportion of earlywood in outer rings of sapwood than suppressed trees. Sapwood permeability declined from the cambium to the sapwood-heartwood boundary in all samples, but the decline was more gradual in dominant trees compared to codominant and suppressed trees; differences in the radial variation in sapwood permeability may be related to differences in S. Sapwood permeability is positively related to crown dominance, whereas subdominant (CD and SP) trees have greater Q* in relation to leaf area, leading us to propose that this may give subdominant trees a survival advantage, slowing self-thinning.
NASA Astrophysics Data System (ADS)
Brach, Marcin; Chormański, Jarosław
2014-05-01
The exact determination of water storage capacity in river valley is an important issue for hydrologists, ecologist and flood modellers. In case of natural river valley, the dense and complexity vegetation of the natural ecosystems can influence the proper identification of the water storage. Methods considered to be sufficient in other cases (urbanized, agricultural) may not produce correct results. Sedge communities in natural river valleys form characteristic tussocks, built from the species roots, other organic material and silt or mud. They are formed due to partial flooding during the inundation, so the plants can survive in hard, anaerobic conditions. They can growth even up to 0.5 meters, which is not so visible due to very dense vegetation in the valleys. These tussocks form a microtopography or a river valley. Currently, the most commonly used technology to register the terrain topography is an Airborne Laser Scanning (ALS), but in the case of the tussocks and the dense vegetation it generates high errors on elevation in the areas of the sedges (Carex appropinquata). This study concerns the Upper Biebrza Valley which is located in the northeastern Poland. For purpose of our work we used Terrestrial Laser Scanner (TLS) technology to determine microtopography of selected fields. Before measurements, the green part of the sedge was cut in selected measurements fields. It make possible to register only tussocks shape. Next, step was collection of the airborne ALS data of the valley with density of 8 points/sq m. The experimental field was divided on two sub-fields: one was cut and scanned using TLS before ALS collection, while the second after. Data collected as ALS and the TLS were then compared. The accuracy of the ALS data depends on the land cover of an area, while TLS accuracy is around 2 millimeters (when georeferenced it depends on the accuracy of reference points - in our case it was made using GPS RTK which gave us accuracy of few centimeters). The analysis shown that differences between ALS measurements and TLS on leaf free area is on average of 5 centimeters, while on areas which were not mowed it grows up to 0,5 m. Thanks to this studies we were able to determine water storage possibilities of valley while considering the tussocks shape.
Shimono, Hiroyuki; Nakamura, Hirofumi; Hasegawa, Toshihiro; Okada, Masumi
2013-08-01
An elevated atmospheric CO2 concentration ([CO2 ]) can reduce stomatal conductance of leaves for most plant species, including rice (Oryza sativa L.). However, few studies have quantified seasonal changes in the effects of elevated [CO2 ] on canopy evapotranspiration, which integrates the response of stomatal conductance of individual leaves with other responses, such as leaf area expansion, changes in leaf surface temperature, and changes in developmental stages, in field conditions. We conducted a field experiment to measure seasonal changes in stomatal conductance of the uppermost leaves and in the evapotranspiration, transpiration, and evaporation rates using a lysimeter method. The study was conducted for flooded rice under open-air CO2 elevation. Stomatal conductance decreased by 27% under elevated [CO2 ], averaged throughout the growing season, and evapotranspiration decreased by an average of 5% during the same period. The decrease in daily evapotranspiration caused by elevated [CO2 ] was more significantly correlated with air temperature and leaf area index (LAI) rather than with other parameters of solar radiation, days after transplanting, vapor-pressure deficit and FAO reference evapotranspiration. This indicates that higher air temperatures, within the range from 16 to 27 °C, and a larger LAI, within the range from 0 to 4 m(2) m(-2) , can increase the magnitude of the decrease in evapotranspiration rate caused by elevated [CO2 ]. The crop coefficient (i.e. the evapotranspiration rate divided by the FAO reference evapotranspiration rate) was 1.24 at ambient [CO2 ] and 1.17 at elevated [CO2 ]. This study provides the first direct measurement of the effects of elevated [CO2 ] on rice canopy evapotranspiration under open-air conditions using the lysimeter method, and the results will improve future predictions of water use in rice fields. © 2013 John Wiley & Sons Ltd.
Can CO2 help save Venice from the Sea?
NASA Astrophysics Data System (ADS)
Comerlati, Andrea; Ferronato, Massimiliano; Gambolati, Giuseppe; Putti, Mario; Teatini, Pietro
On 14 May this year, Italian Prime Minister Silvio Berlusconi cut the ribbon on a multi-billion-dollar project named MOSE that is aimed at solving the problem of “acqua alta,” the increasingly frequent floods that jeopardize the survival of Venice. Cost is estimated (a few say conservatively) at 3 billion euros and construction time (a few say optimistically) at 8 years. MOSE involves building mobile barriers at the Venice Lagoon inlets to prevent severe Adriatic Sea storms from flooding the city. Although the Italian government and the local administrations have given their final approval, MOSE still has several opponents who believe it will cause severe threats to the lagoon ecosystem, and will soon become obsolete because of the expected sea level rise due to global warming.
Sarah J. Kupferberg; Wendy J. Palen; Amy J. Lind; Steve Bobzien; Alessandro Catenazzi; Joe Drennan; Mary. Power
2012-01-01
Widespread alteration of natural hydrologic patterns by large dams combined with peak demands for power and water delivery during summer months have resulted in frequent aseasonal flow pulses in rivers of western North America. Native species in these ecosystems have evolved with predictable annual flood-drought cycles; thus, their likelihood of persistence may...
Inhibition of tomato shoot growth by over-irrigation is linked to nitrogen deficiency and ethylene.
Fiebig, Antje; Dodd, Ian C
2016-01-01
Although physiological effects of acute flooding have been well studied, chronic effects of suboptimal soil aeration caused by over-irrigation of containerized plants have not, despite its likely commercial significance. By automatically scheduling irrigation according to soil moisture thresholds, effects of over-irrigation on soil properties (oxygen concentration, temperature and moisture), leaf growth, gas exchange, phytohormone [abscisic acid (ABA) and ethylene] relations and nutrient status of tomato (Solanum lycopersicum Mill. cv. Ailsa Craig) were studied. Over-irrigation slowly increased soil moisture and decreased soil oxygen concentration by 4%. Soil temperature was approximately 1°C lower in the over-irrigated substrate. Over-irrigating tomato plants for 2 weeks significantly reduced shoot height (by 25%) and fresh weight and total leaf area (by 60-70%) compared with well-drained plants. Over-irrigation did not alter stomatal conductance, leaf water potential or foliar ABA concentrations, suggesting that growth inhibition was not hydraulically regulated or dependent on stomatal closure or changes in ABA. However, over-irrigation significantly increased foliar ethylene emission. Ethylene seemed to inhibit growth, as the partially ethylene-insensitive genotype Never ripe (Nr) was much less sensitive to over-irrigation than the wild type. Over-irrigation induced significant foliar nitrogen deficiency and daily supplementation of small volumes of 10 mM Ca(NO3 )2 to over-irrigated soil restored foliar nitrogen concentrations, ethylene emission and shoot fresh weight of over-irrigated plants to control levels. Thus reduced nitrogen uptake plays an important role in inhibiting growth of over-irrigated plants, in part by stimulating foliar ethylene emission. © 2015 Scandinavian Plant Physiology Society.
Winkel, Anders; Pedersen, Ole; Ella, Evangelina; Ismail, Abdelbagi M.; Colmer, Timothy D.
2014-01-01
Floods can completely submerge some rice (Oryza sativa L.) fields. Leaves of rice have gas films that aid O2 and CO2 exchange under water. The present study explored the relationship between gas film persistence and underwater net photosynthesis (PN) as influenced by genotype and submergence duration. Four contrasting genotypes (FR13A, IR42, Swarna, and Swarna-Sub1) were submerged for 13 days in the field and leaf gas films, chlorophyll, and the capacity for underwater PN at near ambient and high CO2 were assessed with time of submergence. At high CO2 during the PN assay, all genotypes initially showed high rates of underwater PN, and this rate was not affected by time of submergence in FR13A. This superior photosynthetic performance of FR13A was not evident in Swarna-Sub1 (carrying the SUB1 QTL) and the declines in underwater PN in both Swarna-Sub1 and Swarna were equal to that in IR42. At near ambient CO2 concentration, underwater PN declined in all four genotypes and this corresponded with loss of leaf gas films with time of submergence. FR13A retained leaf gas films moderately longer than the other genotypes, but gas film retention was not linked to SUB1. Diverse rice germplasm should be screened for gas film persistence during submergence, as this trait could potentially increase carbohydrate status and internal aeration owing to increased underwater PN, which contributes to submergence tolerance in rice. PMID:24759881
Winkel, Anders; Pedersen, Ole; Ella, Evangelina; Ismail, Abdelbagi M; Colmer, Timothy D
2014-07-01
Floods can completely submerge some rice (Oryza sativa L.) fields. Leaves of rice have gas films that aid O2 and CO2 exchange under water. The present study explored the relationship between gas film persistence and underwater net photosynthesis (PN) as influenced by genotype and submergence duration. Four contrasting genotypes (FR13A, IR42, Swarna, and Swarna-Sub1) were submerged for 13 days in the field and leaf gas films, chlorophyll, and the capacity for underwater PN at near ambient and high CO2 were assessed with time of submergence. At high CO2 during the PN assay, all genotypes initially showed high rates of underwater PN, and this rate was not affected by time of submergence in FR13A. This superior photosynthetic performance of FR13A was not evident in Swarna-Sub1 (carrying the SUB1 QTL) and the declines in underwater PN in both Swarna-Sub1 and Swarna were equal to that in IR42. At near ambient CO2 concentration, underwater PN declined in all four genotypes and this corresponded with loss of leaf gas films with time of submergence. FR13A retained leaf gas films moderately longer than the other genotypes, but gas film retention was not linked to SUB1. Diverse rice germplasm should be screened for gas film persistence during submergence, as this trait could potentially increase carbohydrate status and internal aeration owing to increased underwater PN, which contributes to submergence tolerance in rice. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
NASA Astrophysics Data System (ADS)
Marín-Guirao, Lázaro; Sandoval-Gil, José M.; Ruíz, Juan M.; Sánchez-Lizaso, José L.
2011-04-01
This study aims to examine the effect of increased salinity on the photosynthetic activity of the Mediterranean seagrass Posidonia oceanica in a laboratory mesocosm system. To do this, large rhizome fragments were transplanted in a mesocosm laboratory system and maintained at 37 (ambient salinity, control treatment), 39, 41 and 43 (hypersaline treatments) for 47 days. Pigment content, light absorption, photosynthetic characteristics (derived from P vs. E curves and fluorescence parameters), and shoot size, growth rates and net shoot change were determined at the end of the experimental period. Both net and gross photosynthetic rates of plants under hypersaline conditions were significantly reduced, with rates some 25-33% and 13-20% lower than in control plants. The pigment content (Chl a, Chl b, Chl b:Chl a molar ratio, total carotenoids and carotenoids:Chl a ratio), leaf absorptance and maximum quantum yield of PSII ( F v/ F m) of control plants showed little or no changes under hypersaline conditions, which suggests that alterations to the capacity of the photosynthetic apparatus to capture and process light were not responsible for the reduced photosynthetic rates. In contrast, dark respiration rates increased substantially, with mean values up to 98% higher than in control leaves. These results suggest that the respiratory demands of the osmoregulatory process are likely to be responsible for the observed decrease in photosynthetic rates, although alterations to photosynthetic carbon assimilation and reduction could also be involved. As a consequence, leaf carbon balance was considerably impaired and leaf growth rates decreased as salinity increased above the ambient (control) salinity. No significant differences were found in the percentage of net shoot change, but mean values were clearly negative at salinity levels of 41 and 43. Results presented here indicate that photosynthesis of P. oceanica is highly sensitive to hypersaline stress and that it likely account for the decline in leaf growth and shoot survival reported in this and previous studies in response to even small increments of the ambient salinity.
NASA Astrophysics Data System (ADS)
Nytch, C. J.; Meléndez-Ackerman, E. J.
2014-12-01
There is a pressing need to generate spatially-explicit models of rainfall-runoff dynamics in the urban humid tropics that can characterize flow pathways and flood magnitudes in response to erratic precipitation events. To effectively simulate stormwater runoff processes at multiple scales, complex spatio-temporal parameters such as rainfall, evapotranspiration, and antecedent soil moisture conditions must be accurately represented, in addition to uniquely urban factors including stormwater conveyance structures and connectivity between green and gray infrastructure elements. In heavily urbanized San Juan, Puerto Rico, stream flashiness and frequent flooding are major issues, yet still lacking is a hydrological analysis that models the generation and movement of fluvial and pluvial stormwater through the watershed. Our research employs a novel and multifaceted approach to dealing with this problem that integrates 1) field-based rainfall interception and infiltration methodologies to quantify the hydrologic functions of natural and built infrastructure in San Juan; 2) remote sensing analysis to produce a fine-scale typology of green and gray cover types in the city and determine patterns of spatial distribution and connectivity; 3) assessment of precipitation and streamflow variability at local and basin-wide scales using satellite and radar precipitation estimates in concert with rainfall and stream gauge point data and participatory flood mapping; 4) simulation of historical, present-day, and future stormwater runoff scenarios with a fully distributed hydrologic model that couples diverse components of urban socio-hydrological systems from formal and informal knowledge sources; and 5) bias and uncertainty analysis of parameters and model structure within a Bayesian hierarchical framework. Preliminary results from the rainfall interception study suggest that canopy structure and leaf area index of different tree species contribute to variable throughfall and stemflow responses. Additional investigations are pending. The findings from this work will help inform urban planning and design, and build adaptive capacity to reduce flood vulnerability in the context of a changing climate.
Lei, Shutong; Zeng, Bo; Yuan, Zhi; Su, Xiaolei
2014-01-01
The Three Gorges project has caused many ecosystem problems. Ecological restoration using readily-available plants is an effective way of mitigating environmental impacts. Two perennial submergence-tolerant ecotypes of Calamagrostis arundinacea were planted in an experimental field in the drawdown zone. Responses of the two plant ecotypes to flooding stress in the drawdown zone were unknown. Carbohydrate content and membrane stability, two key factors for survival of plants under flooding stress, of two ecotypes (designated "dwarf" and "green") of C. arundinacea growing at different elevations of the drawdown zone were investigated. Live stems (LS) and dead stems (DS) of the two plant ecotypes at eight elevations (175, 170, 162, 160, 158, 155, 152 m and 149 m) were sampled. Contents of soluble sugar, starch and malondialdehyde (MDA), as well as plasma membrane permeability of live stems were measured. The lowest elevations for survival of dwarf and green C. arundinacea were 160 m and 158 m, respectively. Soluble sugar content of live stems of both ecotypes decreased with elevation, with amounts from an elevation of 170 m being lower than from an elevation of 175 m. MDA content and plasma membrane permeability in live stems of green C. arundinacea did not increase with the decrease in elevation, while these measures in dwarf C. arundinacea from an elevation of 162 m were significantly higher than from an elevation of 175 m. Carbohydrate content, especially soluble sugar content, in both ecotypes was more sensitive to flooding stress than membrane stability. Green C. arundinacea had a higher tolerance to submergence than dwarf C. arundinacea, and thus green C. arundinacea can be planted at lower elevations than dwarf C. arundinacea.
Lakshmanan, Meiyappan; Zhang, Zhaoyang; Mohanty, Bijayalaxmi; Kwon, Jun-Young; Choi, Hong-Yeol; Nam, Hyung-Jin; Kim, Dong-Il; Lee, Dong-Yup
2013-01-01
Rice (Oryza sativa) is one of the major food crops in world agriculture, especially in Asia. However, the possibility of subsequent occurrence of flood and drought is a major constraint to its production. Thus, the unique behavior of rice toward flooding and drought stresses has required special attention to understand its metabolic adaptations. However, despite several decades of research investigations, the cellular metabolism of rice remains largely unclear. In this study, in order to elucidate the physiological characteristics in response to such abiotic stresses, we reconstructed what is to our knowledge the first metabolic/regulatory network model of rice, representing two tissue types: germinating seeds and photorespiring leaves. The phenotypic behavior and metabolic states simulated by the model are highly consistent with our suspension culture experiments as well as previous reports. The in silico simulation results of seed-derived rice cells indicated (1) the characteristic metabolic utilization of glycolysis and ethanolic fermentation based on oxygen availability and (2) the efficient sucrose breakdown through sucrose synthase instead of invertase. Similarly, flux analysis on photorespiring leaf cells elucidated the crucial role of plastid-cytosol and mitochondrion-cytosol malate transporters in recycling the ammonia liberated during photorespiration and in exporting the excess redox cofactors, respectively. The model simulations also unraveled the essential role of mitochondrial respiration during drought stress. In the future, the combination of experimental and in silico analyses can serve as a promising approach to understand the complex metabolism of rice and potentially help in identifying engineering targets for improving its productivity as well as enabling stress tolerance. PMID:23753178
A Water Temperature Simulation Model for Rice Paddies With Variable Water Depths
NASA Astrophysics Data System (ADS)
Maruyama, Atsushi; Nemoto, Manabu; Hamasaki, Takahiro; Ishida, Sachinobu; Kuwagata, Tsuneo
2017-12-01
A water temperature simulation model was developed to estimate the effects of water management on the thermal environment in rice paddies. The model was based on two energy balance equations: for the ground and for the vegetation, and considered the water layer and changes in the aerodynamic properties of its surface with water depth. The model was examined with field experiments for water depths of 0 mm (drained conditions) and 100 mm (flooded condition) at two locations. Daily mean water temperatures in the flooded condition were mostly higher than in the drained condition in both locations, and the maximum difference reached 2.6°C. This difference was mainly caused by the difference in surface roughness of the ground. Heat exchange by free convection played an important role in determining water temperature. From the model simulation, the temperature difference between drained and flooded conditions was more apparent under low air temperature and small leaf area index conditions; the maximum difference reached 3°C. Most of this difference occurred when the range of water depth was lower than 50 mm. The season-long variation in modeled water temperature showed good agreement with an observation data set from rice paddies with various rice-growing seasons, for a diverse range of water depths (root mean square error of 0.8-1.0°C). The proposed model can estimate water temperature for a given water depth, irrigation, and drainage conditions, which will improve our understanding of the effect of water management on plant growth and greenhouse gas emissions through the thermal environment of rice paddies.
Improved simulation of poorly drained forests using Biome-BGC.
Bond-Lamberty, Ben; Gower, Stith T; Ahl, Douglas E
2007-05-01
Forested wetlands and peatlands are important in boreal and terrestrial biogeochemical cycling, but most general-purpose forest process models are designed and parameterized for upland systems. We describe changes made to Biome-BGC, an ecophysiological process model, that improve its ability to simulate poorly drained forests. Model changes allowed for: (1) lateral water inflow from a surrounding watershed, and variable surface and subsurface drainage; (2) adverse effects of anoxic soil on decomposition and nutrient mineralization; (3) closure of leaf stomata in flooded soils; and (4) growth of nonvascular plants (i.e., bryophytes). Bryophytes were treated as ectohydric broadleaf evergreen plants with zero stomatal conductance, whose cuticular conductance to CO(2) was dependent on plant water content. Individual model changes were parameterized with published data, and ecosystem-level model performance was assessed by comparing simulated output to field data from the northern BOREAS site in Manitoba, Canada. The simulation of the poorly drained forest model exhibited reduced decomposition and vascular plant growth (-90%) compared with that of the well-drained forest model; the integrated bryophyte photosynthetic response accorded well with published data. Simulated net primary production, biomass and soil carbon accumulation broadly agreed with field measurements, although simulated net primary production was higher than observed data in well-drained stands. Simulated net primary production in the poorly drained forest was most sensitive to oxygen restriction on soil processes, and secondarily to stomatal closure in flooded conditions. The modified Biome-BGC remains unable to simulate true wetlands that are subject to prolonged flooding, because it does not track organic soil formation, water table changes, soil redox potential or anaerobic processes.
Jothy, Subramanion L; Saito, Tamio; Kanwar, Jagat R; Chen, Yeng; Aziz, Azlan; Yin-Hui, Leong; Sasidharan, Sreenivasan
2016-01-01
The radioprotective effect of Polyalthia longifolia was studied in mice. P. longifolia treatment showed improvement in mice survival compared to 100% mortality in the irradiated mice. Significant increases in hemoglobin concentration, and red blood cell, white blood cell and platelet counts were observed in the animals pretreated with leaf extract. Pre-irradiation administration of P. longifolia leaf extract also increased the CFU counts of the spleen colony and increased the relative spleen size. A dose-dependent decrease in lipid peroxidation levels was observed in the animals pretreated with P. longifolia. However, although the animals pretreated with P. longifolia exhibited a significant increase in superoxide dismutase and catalase activity, the values remained below normal in both liver and the intestine. Pre-irradiation administration of P. longifolia also resulted in the regeneration of the mucosal crypts and villi of the intestine. Moreover, pretreatment with P. longifolia leaf extract also showed restoration of the normal liver cell structure and a significant reduction in the elevated levels of ALT, AST and bilirubin. These results suggested the radioprotective ability of P. longifolia leaf extract, which is significant for future investigation for human applications in developing efficient, economically viable, non-toxic natural and clinically acceptable novel radioprotectors. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Correlation between plant physiology and CO2 removable
NASA Astrophysics Data System (ADS)
Leman, A. M.; Shamsuri, Mohd Mahathir Suhaimi; Hariri, Azian; Kadir, Aeslina Abdul; Idris, Ahmad Fu'ad; Afandi, Azizi
2017-09-01
Certain plants that are able to live in the building are known as indoor plants. Plants have tolerance with indoor environment in order to survive. Usually these plants are able to improve indoor air quality (IAQ). Absorption of carbon dioxide (CO2) by plants is one of the indicators that plants are still alive during photosynthesis process. The possibility of plants structure (plant physiology) to affect CO2 absorption had been the concerns of former researchers. This research intends to study the significant of plant structure (leaf area, fresh weight, and dry weight) that leads to reducing the concentration of CO2 by seven plant species (Anthurium, Dumb Cane, Golden Pothos, Kadaka Fern, Prayer Plants, Spider Plants, and Syngonium). The data of CO2 reduction by plants has been obtained from previous studies. Based on results show that, the leaf area is the most contributing the significant effect to the plant absorb CO2 compare to fresh weight and dry weight. It can be prove by Pearson Correlation, where only the value of leaf area is more than 0.5 for every four conditions. This study can be conclude that the leaf area is quite plays an important role to the plant treat air from CO2, while concentration of light and CO2 will become catalytic factor for the plants improve their photosynthesis process.
Vigna, Bianca Baccili Zanotto; de Oliveira, Fernanda Ancelmo; de Toledo-Silva, Guilherme; da Silva, Carla Cristina; do Valle, Cacilda Borges; de Souza, Anete Pereira
2016-11-11
Urochloa humidicola (Koronivia grass) is a polyploid (6x to 9x) species that is used as forage in the tropics. Facultative apospory apomixis is present in most of the genotypes of this species, although one individual has been described as sexual. Molecular studies have been restricted to molecular marker approaches for genetic diversity estimations and linkage map construction. The objectives of the present study were to describe and compare the leaf transcriptome of two important genotypes that are highly divergent in terms of their phenotypes and reproduction modes: the sexual BH031 and the aposporous apomictic cultivar BRS Tupi. We sequenced the leaf transcriptome of Koronivia grass using an Illumina GAIIx system, which produced 13.09 Gb of data that consisted of 163,575,526 paired-end reads between the two libraries. We de novo-assembled 76,196 transcripts with an average length of 1,152 bp and filtered 35,093 non-redundant unigenes. A similarity search against the non-redundant National Center of Biotechnology Information (NCBI) protein database returned 65 % hits. We annotated 24,133 unigenes in the Phytozome database and 14,082 unigenes in the UniProtKB/Swiss-Prot database, assigned 108,334 gene ontology terms to 17,255 unigenes and identified 5,324 unigenes in 327 known metabolic pathways. Comparisons with other grasses via a reciprocal BLAST search revealed a larger number of orthologous genes for the Panicum species. The unigenes were involved in C4 photosynthesis, lignocellulose biosynthesis and flooding stress responses. A search for functional molecular markers revealed 4,489 microsatellites and 560,298 single nucleotide polymorphisms (SNPs). A quantitative real-time PCR analysis validated the RNA-seq expression analysis and allowed for the identification of transcriptomic differences between the two evaluated genotypes. Moreover, 192 unannotated sequences were classified as containing complete open reading frames, suggesting that the new, potentially exclusive genes should be further investigated. The present study represents the first whole-transcriptome sequencing of U. humidicola leaves, providing an important public information source of transcripts and functional molecular markers. The qPCR analysis indicated that the expression of certain transcripts confirmed the differential expression observed in silico, which demonstrated that RNA-seq is useful for identifying differentially expressed and unique genes. These results corroborate the findings from previous studies and suggest a hybrid origin for BH031.
B. J. Saffell; F. C. Meinzer; D. R. Woodruff; D. C. Shaw; S. L. Voelker; B. Lachenbruch; K. Falk
2014-01-01
Stored non-structural carbohydrates (NSCs) could play an important role in tree survival in the face of a changing climate and associated stress-related mortality. We explored the effects of the stomata-blocking and defoliating fungal disease called Swiss needle cast on Douglas-fir carbohydrate reserves and growth to evaluate the extent to which NSCs can be mobilized...
NASA Astrophysics Data System (ADS)
Vilela, Alejandra; Cariaga, Rodrigo; González-Paleo, Luciana; Ravetta, Damián
2008-01-01
A trade-off between reproduction and survival arises because current reproduction diminishes levels of a limiting resource such that less can be placed in storage organs for the survival of an organism during the unfavorable season. Oenothera is a particularly suited genus for studying those kind of trade-offs because it contains species with different life-history strategies (annual, biennial and perennial). Since allocation to leaves is a major factor associated with changes in life-history, here we tested the hypothesis that Oenothera leaf attributes would affect plant reproductive effort and therefore, root reserves. We selected two groups of taxa differing in their leaf area ratio (low- and high-LAR) and we compared their pattern of resource allocation to growth, reproduction and storage. Path analysis confirmed our hypothesis that LAR is the most important variable in explaining variation in allocation to reproduction or storage. The group with high allocation to leaves assigned resources preferentially to storage while the other group allocated more resources to reproduction, as predicted. A trade-off between reproduction and storage was only confirmed for the high-LAR group. The low-LAR group showed the life-history tactic of annual plants, while the high-LAR group exhibited a strategy generally associated with perenniality.
Radiation-induced mutations in sweet cherry (Prunus avium L. ) cvs Napoleon and Bing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saamin, S.
1987-01-01
Experiments were conducted using gamma radiation to determine radiosensitivities of main and accessory buds, to increase the proportion of mutant tissue, and to determine the type of damage and mode of recovery in irradiated shoot spices of sweet cherry cvs Napoleon and Bin. Survival, growth, and the types of mutations of V/sub 1/ (primary) shoots and V/sub 2/ plants were observed. LD/sub 50/ values, based on survival of forced buds were about 5kR for both acute and fractionated irradiation in air, 5.5kR for acute exposure in water, and 6kR for fractionated dose in water. 0.39-0.69 accessory buds/site on non-irradiated Napoleonmore » had forced after 30 days in the glasshouse. In the Bing field experiment with main buds, the LD/sub 50/ for both acute and fractionated irradiation in air was 3.5kR. In water, the LD/sub 50/ was 5kR for acute treatment and 6.5kR for fractionated dose. The overall mutation frequency in Napoleon V/sub 2/ shoots derived from main buds was 7.6%: 0.04% growth-reduced mutants, 0.4% total leaf mutants, and7.1% partial leaf mutants.« less
Damiani, Natalia; Fernández, Natalia J; Porrini, Martín P; Gende, Liesel B; Álvarez, Estefanía; Buffa, Franco; Brasesco, Constanza; Maggi, Matías D; Marcangeli, Jorge A; Eguaras, Martín J
2014-02-01
A diverse set of parasites and pathogens affects productivity and survival of Apis mellifera honeybees. In beekeeping, traditional control by antibiotics and molecules of synthesis has caused problems with contamination and resistant pathogens. In this research, different Laurus nobilis extracts are tested against the main honeybee pests through an integrated point of view. In vivo effects on bee survival are also evaluated. The ethanol extract showed minimal inhibitory concentration (MIC) values of 208 to 416 μg/mL, having the best antimicrobial effect on Paenibacillus larvae among all substances tested. Similarly, this leaf extract showed a significant antiparasitic activity on Varroa destructor, killing 50 % of mites 24 h after a 30-s exposure, and on Nosema ceranae, inhibiting the spore development in the midgut of adult bees ingesting 1 × 10(4) μg/mL of extract solution. Both ethanol extract and volatile extracts (essential oil, hydrolate, and its main component) did not cause lethal effects on adult honeybees. Thus, the absence of topical and oral toxicity of the ethanol extract on bees and the strong antimicrobial, microsporicidal, and miticidal effects registered in this study place this laurel extract as a promising integrated treatment of bee diseases and stimulates the search for other bioactive phytochemicals from plants.
Lochmann, Rebecca T; Islam, Shahidul; Phillips, Harold; Adam, Zelalem; Everette, Jace
2013-04-01
Traditional energy sources in catfish diets have become costly, and economical alternatives are needed. Sweet potato leaves are underutilised agricultural by-products that provide energy and substantial amounts of phenols, which affect animal and human health. There is little information on the effects of these compounds on catfish, or the capacity of catfish to accumulate dietary phenols. Catfish enriched with phenols have marketing potential as functional foods. This study investigated the effects of diets with sweet potato leaf meal (SPLM) on growth performance, health and total phenolic compounds in catfish. SPLM was substituted for wheat middlings in three diets fed to groups of juvenile catfish for 10 weeks. Weight gain, feed conversion, survival, alternative complement activity and lysozyme activity were similar among diets. Haematocrit was lower in fish fed diets with SPLM, but within the normal range. Total phenols and antioxidant capacity in the whole body were similar among treatments. SPLM was an effective energy source for catfish up to the maximum level tested (230 g kg(-1) diet). SPLM did not enhance total phenols in catfish, but there were no apparent antinutritional effects of the meal on catfish growth, health or survival. © 2012 Society of Chemical Industry.
Demographic drivers of functional composition dynamics.
Muscarella, Robert; Lohbeck, Madelon; Martínez-Ramos, Miguel; Poorter, Lourens; Rodríguez-Velázquez, Jorge Enrique; van Breugel, Michiel; Bongers, Frans
2017-11-01
Mechanisms of community assembly and ecosystem function are often analyzed using community-weighted mean trait values (CWMs). We present a novel conceptual framework to quantify the contribution of demographic processes (i.e., growth, recruitment, and mortality) to temporal changes in CWMs. We used this framework to analyze mechanisms of secondary succession in wet tropical forests in Mexico. Seed size increased over time, reflecting a trade-off between colonization by small seeds early in succession, to establishment by large seeds later in succession. Specific leaf area (SLA) and leaf phosphorus content decreased over time, reflecting a trade-off between fast growth early in succession vs. high survival late in succession. On average, CWM shifts were driven mainly (70%) by growth of surviving trees that comprise the bulk of standing biomass, then mortality (25%), and weakly by recruitment (5%). Trait shifts of growing and recruiting trees mirrored the CWM trait shifts, and traits of dying trees did not change during succession, indicating that these traits are important for recruitment and growth, but not for mortality, during the first 30 yr of succession. Identifying the demographic drivers of functional composition change links population dynamics to community change, and enhances insights into mechanisms of succession. © 2017 by the Ecological Society of America.
Wetland restoration, flood pulsing, and disturbance dynamics
Middleton, Beth A.
1999-01-01
While it is generally accepted that flood pulsing and disturbance dynamics are critical to wetland viability, there is as yet no consensus among those responsible for wetland restoration about how best to plan for those phenomena or even whether it is really necessary to do so at all. In this groundbreaking book, Dr. Beth Middleton draws upon the latest research from around the world to build a strong case for making flood pulsing and disturbance dynamics integral to the wetland restoration planning process.While the initial chapters of the book are devoted to laying the conceptual foundations, most of the coverage is concerned with demonstrating the practical implications for wetland restoration and management of the latest ecological theory and research. It includes a fascinating case history section in which Dr. Middleton explores the restoration models used in five major North American, European, Australian, African, and Asian wetland projects, and analyzes their relative success from the perspective of flood pulsing and disturbance dynamics planning.Wetland Restoration also features a wealth of practical information useful to all those involved in wetland restoration and management, including: * A compendium of water level tolerances, seed germination, seedling recruitment, adult survival rates, and other key traits of wetland plant species * A bibliography of 1,200 articles and monographs covering all aspects of wetland restoration * A comprehensive directory of wetland restoration ftp sites worldwide * An extensive glossary of essential terms
Alinia, F; Ghareyazie, B; Rubia, L; Bennett, J; Cohen, M B
2000-04-01
The resistance of vegetative, booting, and flowering stage plants of a variety of an aromatic rice, Oryza sativa L., transformed with a Bacillus thuringiensis Berliner cry1Ab gene under control of the maize phosphoenolpyruvate carboxylase (PEPC) promoter was evaluated against four lepidopterous rice pests--the stem borers Chilo suppressalis (Walker) (Lepidoptera: Crambidae) and Scirpophaga incertulas (Walker) (Lepidoptera: Pyralidae), and the foliage feeders Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae) and Naranga aenescens Moore (Lepidoptera: Noctuidae). Plants of the cry1Ab-transformed line (no. 827) were more resistant to young larvae of S. incertulas, C. suppressalis, and C. medinalis than control plants at the vegetative stage but not at the flowering stage. Survival of 10-d-old stem borer larvae did not differ on cry1Ab plants and control plants at either the vegetative or flowering stage, but the development of 10-d-old C. suppressalis larvae was retarded on the vegetative stage cry1Ab plants. Immunological analysis also showed an apparent decline in Cry1Ab titer in leaf blades and leaf sheaths at the reproductive stage. In experiments comparing three fertilizer treatments (NPK, PK, and none), there was a significant interaction between fertilizer treatment and variety on larval survival only in whole-plant assays at booting stage with C. suppressalis. On cry1Ab plants, larval survival did not differ significantly among the three fertilizer levels, whereas on control plants survival was highest with the NPK treatment. cry1Ab plants tested at the sixth and seventh generations after transformation were more resistant than control plants to N. aenescens and C. suppressalis, respectively, suggesting that gene silencing will not occur in line 827. The results of the experiments are discussed in terms of resistance management for B. thuringiensis toxins in rice.
Factors that influence vital rates of Seaside and Saltmarsh sparrows in coastal New Jersey, USA
Roberts, Samuel G.; Longenecker, Rebecca A.; Etterson, Matthew A.; Ruskin, Katharine J.; Elphick, Chris S.; Olsen, Brian J.; Shriver, W. Gregory
2018-01-01
As saltmarsh habitat continues to disappear, understanding the factors that influence saltmarsh breeding bird population dynamics is an important step for the conservation of these declining species. Using five years (2011 – 2015) of demographic data, we evaluated and compared Seaside (Ammodramus maritimus) and Saltmarsh (A. caudacutus) sparrow apparent adult survival and nest survival at the Edwin B. Forsythe National Wildlife Refuge, New Jersey, USA. We determined the effect of site management history (unditched vs. ditched marsh) on adult and nest survival to aid in prioritizing future management or restoration actions. Seaside Sparrow apparent adult survival (61.6%, 95% CI: 52.5 – 70.0%) averaged >1.5 times greater than Saltmarsh Sparrow apparent adult survival (39.9%, 95% CI: 34.0 – 46.2%). Nest survival and predation and flooding rates did not differ between species, and predation was the primary cause of failure for both species. Apparent adult survival and nest survival did not differ between unditched and ditched marshes for either species, indicating that marsh ditching history may not affect breeding habitat quality for these species. With predation as the primary cause of nest failure for both species in New Jersey, we suggest that future research should focus on identification of predator communities in salt marshes and the potential for implementing predator-control programs to limit population declines. PMID:29479129
Photosynthetic properties of C4 plants growing in an African savanna/wetland mosaic.
Mantlana, K B; Arneth, A; Veenendaal, E M; Wohland, P; Wolski, P; Kolle, O; Wagner, M; Lloyd, J
2008-01-01
Photosynthesis rates and photosynthesis-leaf nutrient relationships were analysed in nine tropical grass and sedge species growing in three different ecosystems: a rain-fed grassland, a seasonal floodplain, and a permanent swamp, located along a hydrological gradient in the Okavango Delta, Botswana. These investigations were conducted during the rainy season, at a time of the year when differences in growth conditions between the sites were relatively uniform. At the permanent swamp, the largest variations were found for area-based leaf nitrogen contents, from 20 mmol m(-2) to 140 mmol m(-2), nitrogen use efficiencies (NUE), from 0.2 mmol (C) mol(-1) (N) s(-1) to 2.0 mmol (C) mol(-1) (N) s(-1), and specific leaf areas (SLA), from 50 cm(2) g(-1) to 400 cm(2) g(-1). For the vegetation growing at the rain-fed grassland, the highest leaf gas exchange rates, high leaf nutrient levels, a low ratio of intercellular to ambient CO(2) concentration, and high carboxylation efficiency were found. Taken together, these observations indicate a very efficient growth strategy that is required for survival and reproduction during the relatively brief period of water availability. The overall lowest values of light-saturated photosynthesis (A(sat)) were observed at the seasonal floodplain; around 25 micromol m(-2) s(-1) and 30 micromol m(-2) s(-1). To place these observations into the broader context of functional leaf trait analysis, relationships of photosynthesis rates, specific leaf area, and foliar nutrient levels were plotted, in the same way as was done for previously published 'scaling relationships' that are based largely on C(3) plants, noting the differences in the analyses between this study and the previous study. The within- and across-species variation in both A(sat) and SLA appeared better predicted by foliar phosphorus content (dry mass or area basis) rather than by foliar nitrogen concentrations, possibly because the availability of phosphorus is even more critical than the availability of nitrogen in the studied relatively oligotrophic ecosystems.
Inter-genotypic differences in drought tolerance of maritime pine are modified by elevated [CO2].
Sánchez-Gómez, David; Mancha, José A; Cervera, M Teresa; Aranda, Ismael
2017-10-17
Despite the importance of growth [CO 2 ] and water availability for tree growth and survival, little information is available on how the interplay of these two factors can shape intraspecific patterns of functional variation in tree species, particularly for conifers. The main objective of the study was to test whether the range of realized drought tolerance within the species can be affected by elevated [CO 2 ]. Intraspecific variability in leaf gas exchange, growth rate and other leaf functional traits were studied in clones of maritime pine. A factorial experiment including water availability, growth [CO 2 ] and four different genotypes was conducted in growth rooms. A 'water deficit' treatment was imposed by applying a cycle of progressive soil water depletion and recovery at two levels of growth [CO 2 ]: 'ambient [CO 2 ]' (aCO 2 400 μmol mol -1 ) and 'elevated [CO 2 ]' (eCO 2 800 μmol mol -1 ). eCO2 had a neutral effect on the impact of drought on growth and leaf gas exchange of the most drought-sensitive genotypes while it aggravated the impact of drought on the most drought-tolerant genotypes at aCO2. Thus, eCO2 attenuated genotypic differences in drought tolerance as compared with those observed at aCO2. Genotypic variation at both levels of growth [CO2] was found in specific leaf area and leaf nitrogen content but not in other physiological leaf traits such as intrinsic water use efficiency and leaf osmotic potential. eCO2 increased Δ 13 C but had no significant effect on δ 18 O. This effect did not interact with the impact of drought, which increased δ 18 O and decreased Δ 13 C. Nevertheless, correlations between Δ 13 C and δ 18 O indicated the non-stomatal component of water use efficiency in this species can be particularly sensitive to drought. Evidence from this study suggests elevated [CO 2 ] can modify current ranges of drought tolerance within tree species. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Balsamo, Ronald A; Bauer, Aaron M; Davis, Stephen D; Rice, Benita M
2003-01-01
Leaf tensile properties were compared between the mesic deciduous tree Prunus serrulata (var. "Kwanzan") and the xeric and sclerophyllous chaparral evergreen shrub Heteromeles arbutifolia (M. Roem). All values for biomechanical parameters for H. arbutifolia were significantly greater than those of P. serrulata. The fracture planes also differed between the two species with P. serrulata fracturing along the secondary veins, while H. arbutifolia most often fractured across the leaf irrespective of the vein or mesophyll position, thus yielding qualitative differences in the stress-strain curves of the two species. Anatomically, P. serrulata exhibits features typical for a deciduous mesophytic leaf such as a thin cuticle, a single layer of palisade mesophyll, isodiametric spongy mesophyll, and extensive reticulation of the laminar veins. Heteromeles arbutifolia leaves, however, are typically two- to three-fold thicker with a 35% higher dry mass/fresh mass ratio. The vascular tissue is restricted to the interface of the palisade and spongy mesophyll near the center of the leaf. Both epidermal layers have a thick cuticle. The palisade mesophyll is tightly packed and two to three layers thick. The spongy mesophyll cells are ameboid in shape and tightly interlinked both to other spongy cells as well as to the overlying palisade layer. We conclude that the qualitative and quantitative biomechanical differences between the leaves of these two species are likely due to a complex interaction of internal architectural arrangement and the physical/chemical differences in the properties of their respective cell walls. These studies illustrate the importance that morphological and anatomical correlates play with mechanical behavior in plant material and ultimately reflect adaptations present in the leaves of chaparral shrubs that are conducive to surviving in arid environments.
Shalileh, Sheida; Ogada, Pamella Akoth; Moualeu, Dany Pascal; Poehling, Hans-Michael
2016-10-01
Earlier studies have shown that Tomato spotted wilt virus (TSWV) influences the biology, performance, and behavioral patterns of its vector Frankliniella occidentalis Pergande. In this study, using Capsicum annuum L. as the host plant, we aimed to determine the manipulation of F. occidentalis by TSWV through switching of the diet (+ or -TSWV) during vector's development. Behavioral patterns, fitness, as well as vector performance were evaluated. The specific parameters investigated included longevity/survival, fecundity, development time, feeding, and preferential behavior. F. occidentalis were reared on either TSWV-infected (exposed) or healthy leaves (non-exposed) throughout their larval stages. The emerging adults were then individually transferred to either healthy or TSWV-infected leaf disks. This resulted into four treatments, consisting of exposed or non-exposed thrips reared on either infected or healthy leaf disks as adults. All F. occidentalis exposed to TSWV in their larval stages had shorter development time regardless of the adults' diet. Whereas, the ones that were later reared on healthy leaf disks as adults recorded the highest longevity and reproduction rate. Furthermore, adults of F. occidentalis that were exposed to TSWV in their larval stages showed preference toward healthy leaf disks (-TSWV), whereas the non-exposed significantly preferred the infected leaf disks (+TSWV). These are further indications that TSWV modifies the nutritional content of its host plants, which influences vector's biology and preferential behavior, in favor of its multiplication and dispersal. The findings offer additional explanation to the often aggressive spread of the virus in crop stands. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.
Nou, Xiangwu; Luo, Yaguang
2010-06-01
Currently, most fresh-cut processing facilities in the United States use chlorinated water or other sanitizer solutions for microbial reduction after lettuce is cut. Freshly cut lettuce releases significant amounts of organic matter that negatively impacts the effectiveness of chlorine or other sanitizers for microbial reduction. The objective of this study is to evaluate whether a sanitizer wash before cutting improves microbial reduction efficacy compared to a traditional postcutting sanitizer wash. Romaine lettuce leaves were quantitatively inoculated with E. coli O157:H7 strains and washed in chlorinated water before or after cutting, and E. coli O157:H7 cells that survived the washing process were enumerated to determine the effectiveness of microbial reduction for the 2 cutting and washing sequences. Whole-leaf washing in chlorinated water improved pathogen reduction by approximately 1 log unit over traditional cut-leaf sanitization. Similar improvement in the reduction of background microflora was also observed. Inoculated "Lollo Rossa" red lettuce leaves were mixed with noninoculated Green-Leaf lettuce leaves to evaluate pathogen cross-contamination during processing. High level (96.7% subsamples, average MPN 0.6 log CFU/g) of cross-contamination of noninoculated green leaves by inoculated red leaves was observed when mixed lettuce leaves were cut prior to washing in chlorinated water. In contrast, cross-contamination of noninoculated green leaves was significantly reduced (3.3% of subsamples, average MPN
Kreutzweiser, David; Good, Kevin; Chartrand, Derek; Scarr, Taylor; Thompson, Dean
2007-11-01
Imidacloprid is effective against emerald ash borer when applied as a systemic insecticide. Following stem or soil injections to trees in riparian areas, imidacloprid residues could be indirectly introduced to aquatic systems via leaf fall or leaching. Either route of exposure may affect non-target, aquatic decomposer organisms. Leaves from ash trees treated with imidacloprid at two field rates and an intentionally-high concentration were added to aquatic microcosms. Leaves from trees treated at the two field rates contained imidacloprid concentrations of 0.8-1.3 ppm, and did not significantly affect leaf-shredding insect survival, microbial respiration or microbial decomposition rates. Insect feeding rates were significantly inhibited at foliar concentrations of 1.3 ppm but not at 0.8 ppm. Leaves from intentionally high-dose trees contained concentrations of about 80 ppm, and resulted in 89-91% mortality of leaf-shredding insects, but no adverse effects on microbial respiration and decomposition rates. Imidacloprid applied directly to aquatic microcosms to simulate leaching from soils was at least 10 times more toxic to aquatic insects than the foliar concentrations, with high mortality at 0.13 ppm and significant feeding inhibition at 0.012 ppm.
Effect of wind-induced drag on leaf shapes
NASA Astrophysics Data System (ADS)
Louf, Jean-Francois; Ntoh Song, Pierre; Zehnbauer, Tim; Jung, Sunghwan
2016-11-01
Under windy conditions everyone can see leaves bending and twisting. From a geometrical point of view, a leaf is composed of two parts: a large flat plate called the lamina, and a small beam called the petiole, connecting the lamina to the branch/stem. While the wind is exerting forces (e.g. drag) on the lamina, the petiole undergoes twisting and bending stresses. To survive in harsh abiotic conditions, leaves might have evolved to form in many different shapes, resulting from a coupling between the lamina and the petiole. In this study we measure the twisting modulus (G) of the petiole using a twisting setup, and its Young modulus (E) by performing tensile tests. Micro-CT scan is used to precisely measure the cross section of the petiole allowing us to calculate the second moment of inertia (I) and the second moment of area (J). We then use the non-dimensional number EI/GJ and compare it to a geometrical non-dimensional number (Lpetiole +Llamina/2)/W, where Lpetiole is the length of the petiole, Llamina the length of the lamina, and W the width of the lamina. We found a linear relation between the ratio of the bending to twisting rigidity and the leaf geometry.
Santos, Karen B Dos; Meneguim, Ana M; Santos, Walter J Dos; Neves, Pedro M O J; Santos, Rachel B Dos
2010-01-01
The cotton plant, Gossypium hirsutum, hosts various pests that damage different structures. Among these pests, Spodoptera cosmioides (Walker) and Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae) are considered important. The objectives of this study were to characterize and to quantify the potential damage of S. eridania and S. cosmioides feeding on different structures of cotton plants. For this purpose, newly-hatched larvae were reared on the following plant parts: leaf and flower bud; leaf and boll; flower bud or boll; and leaf, flower bud and boll. The survival of S. cosmioides and S. eridania was greater than 80% and 70% for larvae fed on cotton plant parts offered separately or together, respectively. One larva of S. eridania damaged 1.7 flower buds, but did not damage bolls, while one larva of S. cosmioides damaged 5.2 flower buds and 3.0 cotton bolls. Spodoptera eridania and S. cosmioides can be considered species with potential to cause economic damage to cotton plants because they can occur throughout cotton developmental stages causing defoliation and losses of reproductive structures. Therefore, the results validate field observations that these two species of Spodoptera are potential pests for cotton.
Adaptation to different host plant ages facilitates insect divergence without a host shift
Zhang, Bin; Segraves, Kari A.; Xue, Huai-Jun; Nie, Rui-E; Li, Wen-Zhu; Yang, Xing-Ke
2015-01-01
Host shifts and subsequent adaption to novel host plants are important drivers of speciation among phytophagous insects. However, there is considerably less evidence for host plant-mediated speciation in the absence of a host shift. Here, we investigated divergence of two sympatric sister elm leaf beetles, Pyrrhalta maculicollis and P. aenescens, which feed on different age classes of the elm Ulmus pumila L. (seedling versus adult trees). Using a field survey coupled with preference and performance trials, we show that these beetle species are highly divergent in both feeding and oviposition preference and specialize on either seedling or adult stages of their host plant. An experiment using artificial leaf discs painted with leaf surface wax extracts showed that host plant chemistry is a critical element that shapes preference. Specialization appears to be driven by adaptive divergence as there was also evidence of divergent selection; beetles had significantly higher survival and fecundity when reared on their natal host plant age class. Together, the results identify the first probable example of divergence induced by host plant age, thus extending how phytophagous insects might diversify in the absence of host shifts. PMID:26378220
J. Grogan; M. Schulze
2008-01-01
requires producer nations to certify that exported supplies were obtained in a manner non-detrimental to the speciesâ survival in its role in the ecosystem. Non-detriment findings based on annual export quotas should verify that current harvest rates are sustainable with respect to total commercial stocks. In order to assess this impact, a method for converting export...
NASA Astrophysics Data System (ADS)
Jourdain, Camille; Belleudy, Philippe; Tal, Michal; Malavoi, Jean-René
2016-04-01
In natural alpine gravel bed rivers, floods and their associated bedload transport maintain channels active and free of mature woody vegetation. In managed rivers, where flood regime and sediment supply have been modified by hydroelectric infrastructures and sediment mining, river beds tend to stabilize. As a result, in the recent past, mature vegetation has established on gravel bars of many gravel bed rivers worldwide. This established vegetation increases the risk of flooding by decreasing flow velocity and increasing water levels. In addition, the associated reduction in availability of pioneer habitats characteristic of these environments typically degrades biodiversity. Managing hydrology in a way that would limit vegetation establishment on bars presents an interesting management option. In this context, our study aims at understanding the impacts of floods of varying magnitude on vegetation removal, and identifying and quantifying the underlying mechanisms. Our study site is the Isère River, a heavily managed gravel bed river flowing in the western part of the French Alps. We studied the impact of floods on sediment transport and vegetation survival at the bar scale through field monitoring from 2014 to 2015, focusing on young salicaceous vegetation (<2 yr old). Measurements were made before and after floods. Vegetation was monitored on 16m² plots through repeat photographs. Sediment transport was assessed using painted plots, scour chains, and topographic surveys. Hourly water discharge was obtained from the national gauging network. The hydraulics of monitored floods was characterized using a combination of field measurements and 2D hydraulic modeling: water levels were measured with pressure sensors and Large Scale Particle Velocimetry was used to measure flow velocities. These data were used to calibrate 2D hydrodynamic model using TELEMAC2D. At the reach scale, removal of mature vegetation was assed using a series of historical aerial photographs between 2001 and 2015. Our monitoring period covered a series of floods with recurrence intervals of 2 to 4 times per year, as well as one large flood with a 10 year return period. Only the largest flood, which triggered important bed mobility, partially removed vegetation from bars. Young vegetation removal occurred through four different mechanisms: 1) burial under a thick layer of coarse sediments (> 30cm), 2) uprooting by surface scour, 3) uprooting by a combination of surface scour and sediment deposition resulting in no net topographic change, and 4) lateral erosion of the margins of main and secondary channels. Hydraulic modeling in progress will allow us to determine shear stress and durations associated with each of the four mechanisms of vegetation removal. As for mature vegetation removal at the reach scale, preliminary results indicate that lateral erosion is by far most efficient, in years marked by important floods (return period of at least 2 years). In summary, our study thus far highlights that vegetation removal by floods from bars of the Isere River only occurs when there is important bed mobility, which in this system requires floods with a return period higher than 2 years.
Lovelock, Catherine E; Ball, Marilyn C; Choat, Brendan; Engelbrecht, Bettina M J; Holbrook, N Michelle; Feller, Ilka C
2006-05-01
Spatial gradients in mangrove tree height in barrier islands of Belize are associated with nutrient deficiency and sustained flooding in the absence of a salinity gradient. While nutrient deficiency is likely to affect many parameters, here we show that addition of phosphorus (P) to dwarf mangroves stimulated increases in diameters of xylem vessels, area of conductive xylem tissue and leaf area index (LAI) of the canopy. These changes in structure were consistent with related changes in function, as addition of P also increased hydraulic conductivity (Ks), stomatal conductance and photosynthetic assimilation rates to the same levels measured in taller trees fringing the seaward margin of the mangrove. Increased xylem vessel size and corresponding enhancements in stem hydraulic conductivity in P fertilized dwarf trees came at the cost of enhanced mid-day loss of hydraulic conductivity and was associated with decreased assimilation rates in the afternoon. Analysis of trait plasticity identifies hydraulic properties of trees as more plastic than those of leaf structural and physiological characteristics, implying that hydraulic properties are key in controlling growth in mangroves. Alleviation of P deficiency, which released trees from hydraulic limitations, reduced the structural and functional distinctions between dwarf and taller fringing tree forms of Rhizophora mangle.
Feeding group responses of a Neotropical termite assemblage to rain forest fragmentation.
Davies, Richard G
2002-10-01
Biomass collapse and its associated microclimatic stresses within recently isolated rain forest fragments may negatively affect species diversity of most resident taxa. However, for some decomposer organisms, increased resource availability via accompanying tree die-off may effect positive responses, at least for a time, with implications for rates of nutrient cycling and greenhouse gas release. This study investigates the early effects of forest fragmentation on a Neotropical termite assemblage. Numbers of encounters (surrogate for relative abundance) and species richness of wood and leaf-litter feeders, soil feeders, and the whole assemblage, were studied across true forest islands and mainland sites at a hydroelectric reservoir in French Guiana. Results showed no overall effect of fragmentation on either total termite encounters or species richness. However, numbers of encounters and species richness of wood and leaf-litter feeders showed positive responses to forest fragmentation. By contrast, soil feeders showed a negative response for numbers of encounters and no significant effect for species richness. Environmental data suggest that increased tree die-off, and other edge effects associated with biomass collapse, were underway at the time of sampling. Resulting increase in resource availability may therefore explain the positive influence on wood and leaf-litter feeders. A possible decrease in predation pressure from ants with decrease in island size was not tested for, but was a likely effect of the flooded matrix habitat. Fragmentation effects on soil feeder encounters may be due to the energetic and microclimatic constraints of feeding lower down the humification gradient of termite food substrates, but were not sufficient to affect species richness. The patterns revealed suggest that rates of wood decomposition following tree die-off, and of soil nutrient cycling, under different rain forest fragmentation scenarios, merit further study.
A Fresh Start for Flood Estimation in Ungauged Basins
NASA Astrophysics Data System (ADS)
Woods, R. A.
2017-12-01
The two standard methods for flood estimation in ungauged basins, regression-based statistical models and rainfall-runoff models using a design rainfall event, have survived relatively unchanged as the methods of choice for more than 40 years. Their technical implementation has developed greatly, but the models' representation of hydrological processes has not, despite a large volume of hydrological research. I suggest it is time to introduce more hydrology into flood estimation. The reliability of the current methods can be unsatisfactory. For example, despite the UK's relatively straightforward hydrology, regression estimates of the index flood are uncertain by +/- a factor of two (for a 95% confidence interval), an impractically large uncertainty for design. The standard error of rainfall-runoff model estimates is not usually known, but available assessments indicate poorer reliability than statistical methods. There is a practical need for improved reliability in flood estimation. Two promising candidates to supersede the existing methods are (i) continuous simulation by rainfall-runoff modelling and (ii) event-based derived distribution methods. The main challenge with continuous simulation methods in ungauged basins is to specify the model structure and parameter values, when calibration data are not available. This has been an active area of research for more than a decade, and this activity is likely to continue. The major challenges for the derived distribution method in ungauged catchments include not only the correct specification of model structure and parameter values, but also antecedent conditions (e.g. seasonal soil water balance). However, a much smaller community of researchers are active in developing or applying the derived distribution approach, and as a result slower progress is being made. A change in needed: surely we have learned enough about hydrology in the last 40 years that we can make a practical hydrological advance on our methods for flood estimation! A shift to new methods for flood estimation will not be taken lightly by practitioners. However, the standard for change is clear - can we develop new methods which give significant improvements in reliability over those existing methods which are demonstrably unsatisfactory?
NASA Astrophysics Data System (ADS)
Kabisch, Sigrun; Jean-Baptiste, Nathalie
2013-04-01
Social vulnerability assessment remains central in discourses on global climatic change and takes a more pertinent meaning considering that natural disasters in African countries continue to deeply affect human settlements and destroys human livelihoods. In recent years, in particular large territories and growing cities have experienced severe weather events. Among them are river and flash floods, affecting the social and economic assets of local populations. The impact of the damage related to floods is not only perceptible during seasonal events but also during unexpected larger disasters which place a particular burden on local population and institutions to adapt effectively to increasing climatic pressures. Important features for social vulnerability assessment are the increasing severity of the physical damages, the shortcoming of social and technical infrastructure, the complexity of land management/market, the limited capacity of local institutions and last but not least the restricted capacities of local population to resist these events. Understanding vulnerability implies highlighting and interlinking relevant indicators and/or perceptions encompassed in four main dimensions: social, institutional, physical and attitudinal vulnerability. Case studies in Dar es Salaam, Ouagadougou and Addis Ababa were carried out to obtain insights into the context-related conditions, behavior routines and survival networks in urban areas in west and east Africa. Using a combination of tools (e.g. focus group discussions, transect walks, interviews) we investigated in close cooperation with African partners how households and communities are being prepared to cope with, as well as to recover from floods. A comprehensive process of dealing with floods can be described based on sequential attributes concerning i) Anticipation before a flood occurs, ii) Resistance and coping activities during a flood event and, iii) Recovery and reconstruction afterwards. A participatory approach at household level provides detailed knowledge about the preparedness, the susceptibility and the coping capacities of identified community including its leaders and members. Assessing and ranking the weaknesses and limitations help strengthen awareness and initiate measures for improving coping capacities to social vulnerability in case of flooding. Examples of social vulnerability and the spectrum of coping activities are demonstrated through to use of empirical research results.
Host tree phenology affects vascular epiphytes at the physiological, demographic and community level
Einzmann, Helena J. R.; Beyschlag, Joachim; Hofhansl, Florian; Wanek, Wolfgang; Zotz, Gerhard
2015-01-01
The processes that govern diverse tropical plant communities have rarely been studied in life forms other than trees. Structurally dependent vascular epiphytes, a major part of tropical biodiversity, grow in a three-dimensional matrix defined by their hosts, but trees differ in their architecture, bark structure/chemistry and leaf phenology. We hypothesized that the resulting seasonal differences in microclimatic conditions in evergreen vs. deciduous trees would affect epiphytes at different levels, from organ physiology to community structure. We studied the influence of tree leaf phenology on vascular epiphytes on the Island of Barro Colorado, Panama. Five tree species were selected, which were deciduous, semi-deciduous or evergreen. The crowns of drought-deciduous trees, characterized by sunnier and drier microclimates, hosted fewer individuals and less diverse epiphyte assemblages. Differences were also observed at a functional level, e.g. epiphyte assemblages in deciduous trees had larger proportions of Crassulacean acid metabolism species and individuals. At the population level a drier microclimate was associated with lower individual growth and survival in a xerophytic fern. Some species also showed, as expected, lower specific leaf area and higher δ13C values when growing in deciduous trees compared with evergreen trees. As hypothesized, host tree leaf phenology influences vascular epiphytes at different levels. Our results suggest a cascading effect of tree composition and associated differences in tree phenology on the diversity and functioning of epiphyte communities in tropical lowland forests. PMID:25392188
Sevilla-Perea, A; Mingorance, M D
2015-08-01
An approach was devised for revegetation of a mining dump soil, sited in a semiarid region, with basic pH as well as Fe and Mn enrichment. A field experiment was conducted involving the use of co-compost (a mixture of urban sewage sludge and plant remains) along with a commercial biofertilizer (a gel suspension which contains arbuscular mycorrhizal fungus) to reinforce the benefits of the former. Four treatments were studied: unamended soil; application of conditioners separately and in combination. Pistachio, caper, rosemary, thyme and juniper were planted. We evaluated the effects of the treatments using soil quality (physicochemical properties, total content of hazardous elements, nutrient availability, microbial biomass and enzyme activities) and plant establishment indicators (survival, growth, vigor, nutrient content in leaves, nutrient balances and mycorrhizal root colonization). Thyme and juniper did not show a suitable survival rate (<50%) whereas 70-100% of the pistachio, rosemary and caper survived for at least 27 months. In unamended soil, plant growth was severely hampered by P, N, K and Zn deficiencies as well as Fe and Mn excess. Overall, the treatments affected the soil and plant indicators as follows: biofertilizer + co-compost > co-compost > biofertilizer > unamended. The application of co-compost was therefore essential with regard to improving soil fertility; furthermore, it increased leaf N and P content, whereas leaf Fe and Mn concentrations showed a decrease. The combined treatment, however, provided the best results. The positive interaction between the two soil conditioners might be related to the capacity of the biofertilizer to increase nutrient uptake from the composted residue, and to protect plants against Fe and Mn toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Responses to water depth and clipping of twenty−three plant species in an Indian monsoonal wetland
Middleton, Beth A.; van der Valk, Arnold; Davis, Craig B.
2015-01-01
Responses of species to disturbances give insights into how species might respond to future wetland changes. In this study, species of monsoonal wetlands belonging to various functional types (graminoid and non−graminoid emergents, submersed aquatic, floating−leaved aquatic) varied in their growth responses to water depth and harvesting. We tested the effects of water depth (moist soil, flooded) and clipping (unclipped, and clipped) on the biomass and longevity of twenty−three dominant plant species of monsoonal wetlands in the Keoladeo National Park, India in a controlled experiment. With respect to total biomass and survival, six species responded positively to flooding and twelve species responded negatively to clipping. Responses to flooding and clipping, however, sometimes interacted. Individualistic responses of species to water levels and clipping regimes were apparent; species within a functional group did not always respond similarly. Therefore, detailed information on the individualistic responses of species may be needed to predict the vegetation composition of post−disturbance wetlands. In particular, as demands for fresh water increase around the world, studies of life history constraints and responses to hydrological changes will aid wetland managers in developing strategies to conserve biodiversity.
Fish population dynamics in a seasonally varying wetland
DeAngelis, Donald L.; Trexler, Joel C.; Cosner, Chris; Obaza, Adam; Jopp, Fred
2010-01-01
Small fishes in seasonally flooded environments such as the Everglades are capable of spreading into newly flooded areas and building up substantial biomass. Passive drift cannot account for the rapidity of observed population expansions. To test the reaction-diffusion mechanism for spread of the fish, we estimated their diffusion coefficient and applied a reaction-diffusion model. This mechanism was also too weak to account for the spatial dynamics. Two other hypotheses were tested through modeling. The first--the 'refuge mechanism--hypothesizes that small remnant populations of small fishes survive the dry season in small permanent bodies of water (refugia), sites where the water level is otherwise below the surface. The second mechanism, which we call the 'dynamic ideal free distribution mechanism' is that consumption by the fish creates a prey density gradient and that fish taxis along this gradient can lead to rapid population expansion in space. We examined the two alternatives and concluded that although refugia may play an important role in recolonization by the fish population during reflooding, only the second, taxis in the direction of the flooding front, seems capable of matching empirical observations. This study has important implications for management of wetlands, as fish biomass is an essential support of higher trophic levels.
Multiple mortality events in bats: a global review
O'Shea, Thomas J.; Cryan, Paul; Hayman, David TH; Plowright, Raina K.; Streicker, Daniel G.
2016-01-01
Collectively, over half of all reported MMEs were of anthropogenic origin. The documented occurrence of MMEs in bats due to abiotic factors such as intense storms, flooding, heat waves, and drought is likely to increase in the future with climate change. Coupled with the chronic threats of roosting and foraging habitat loss, increasing mortality through MMEs is unlikely to be compensated for, given the need for high survival in the dynamics of bat populations.
NASA Astrophysics Data System (ADS)
Coates, Victoria; Pattison, Ian
2017-04-01
A dominant feature in the agricultural landscape in the UK are field boundaries. Two thirds of England has been continuously hedged for over a thousand years although most modern hedges were planted during the Enclosures Acts 1720-1840. However, the use of larger agricultural machinery has resulted in the removal of some field boundaries and the subsequent increase in field sizes over the 20th Century. The multiple benefits of hedgerows in ecology have been extensively studied, but the impact of these widespread features on hydrology and flood risk has seen very little attention. Nature-based solutions are increasingly being seen as a complementary approach to hard engineered flood defences. It is hypothesised that hedgerows play a part in this through modifying hillslope hydrological processes, including (a) changing the spatial distribution of precipitation due to sheltering effects; (b) biological loss of water through transpiration; (c) infiltration increased through improved soil structure at the boundaries; and (d) throughflow effected by modified hydraulic gradients. An extensive monitoring programme of a 20m transect through a hedgerow in the Skell Catchment, Northern England occurred from April 2014 to October 2015. The holistic hydrological cycle was monitored, including precipitation and soil moisture at different distances from the hedgerow, leaf wetness interception, stemflow collars, and throughfall gauges, and transpiration losses from the hedgerow. Results indicate that hedgerows modify precipitation volumes at different distances along the transect, but that relationships are complex, probably related to event specific weather conditions such as wind direction and speed and rainfall intensity. Soil moisture levels are significantly (p<0.001) lower along the hedgerow compared to 1, 3 and 10m away from it in all seasons. It has also been shown that hedgerows modify hydrological connectivity at the catchment scale.
Micropropagation of Ajuga bracteosa, a medicinal herb.
Kaul, Shivanee; Das, Sandip; Srivastava, P S
2013-04-01
For conservation and genetic transformation, a successful in vitro micropropagation protocol for Ajuga bracteosa, a medicinal herb has been established for the first time. MS medium supplemented with IAA (2 mg/L) and BA (5 mg/L) induced 100 % shoot regeneration with an average of 41.4 shoots of 8.4 cm per culture. Excised in vitro shoots when transferred to MS + IBA (0.5 mg/L) produced 20 roots/shoot of 20.2 cm average length in 100 % cultures. Of the three explants, leaf, petiole and root, leaf displayed quickest response followed by petiole while root was the slowest. Hardening of plantlets was achieved with 82 % survival. The hardened plants were maintained in pots with garden soil under controlled (Temp. 25 ± 2 °C) conditions. RAPD exhibited genetic fidelity with 100 % monomorphism in regenerants.
Hydroxychavicol: a new anti-nitrosating phenolic compound from betel leaf.
Nagabhushan, M; Amonkar, A J; Nair, U J; D'Souza, A V; Bhide, S V
1989-05-01
Hydroxychavicol and eugenol are the phenolic compounds isolated from betel leaf (piper betel). The modulation of nitrosation of methylurea by sodium nitrite at pH 3.6 and 30 degrees C was studied. The formation of mutagenic N-nitrosomethylurea was monitored by checking the mutagenicity of reaction mixture in Salmonella typhimurium strain TA100 and TA1535 without S9 mix. Hydroxychavicol and eugenol exhibit dose-dependent suppression of nitrosation in vitro without affecting the survival of the bacteria. Pre- or post-treatment of bacterial cells from S. typhimurium strains TA100 and TA1535 with phenolics did not modify the mutagenicity of nitrosomethylurea. The blocking of hydroxy group(s) in the benzene ring by acetylation abolishes the anti-nitrosating activity of the molecule(s). The nitrosation inhibition by hydroxychavicol is through scavenging of nitrite ions in the media, thus making them non-available for the nitrosation of methylurea.
Zhong, Da; Yang, Qinglin; Guo, Lin; Dou, Shixue; Liu, Kesong; Jiang, Lei
2013-07-07
Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater.
Future heat waves due to climate change threaten the survival of Posidonia oceanica seedlings.
Guerrero-Meseguer, Laura; Marín, Arnaldo; Sanz-Lázaro, Carlos
2017-11-01
Extreme weather events are major drivers of ecological change, and their occurrence is likely to increase due to climate change. The transient increases in atmospheric temperatures are leading to a greater occurrence of heat waves, extreme events that can produce a substantial warming of water, especially in enclosed basins such as the Mediterranean Sea. Here, we tested the effects of current and predicted heat waves on the early stages of development of the seagrass Posidonia oceanica. Temperatures above 27 °C limited the growth of the plant by inhibiting its photosynthetic system. It suffered a reduction in leaf growth and faster leaf senescence, and in some cases mortality. This study demonstrates that the greater frequency of heat waves, along with anticipated temperature rises in coming decades, are expected to negatively affect the germination of P. oceanica seedlings. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gibbs, A.; Erikson, L. H.; Richmond, B. M.
2017-12-01
Arctic lagoons and mainland coasts support highly productive ecosystems, where soft substrate and coastal wet sedge fringing the shores act as feeding grounds and nurseries for a variety of marine fish and waterfowl. Much tundra vegetation is intolerant to saltwater flooding, but some vegetation cherished by geese for example, is maintained by flooding one to two times per month. The balance of northern ecosystems such as these may be in jeopardy as the Arctic climate is rapidly changing. In this study, sea level rise and 21st century storms are simulated with a numerical model to evaluate changes in ocean-driven flooding of low-lying tundra and coastal wet sedge that fringe the shores of Arey Lagoon, located in eastern Arctic Alaska. Numerically modeled extreme surge levels are projected to increase from a historical range of 0.5 m - 1.3 m (1976-2010) to 1.0 m - 2.0 m by end-of-century (2011-2100). The maximum storm surge of the projected time-period translates to > 6 km2 of flooded tundra, much of which consists of salt-intolerant vegetation. Monthly flood extents that might be expected to maintain halophytic vegetation were calculated by extracting the maximum monthly water levels of months that had more than 21 days ( 70%) of ice-free conditions. Median monthly water levels are shown to range from 0.46 m in 1981-1990 to 0.91 m by the final decades of the 21st century. The temporal trend is strongly linear (r2 = 0.82). An overlay of these water elevations onto a 10 m resolution elevation model shows that monthly flood extents will increase by 26% by the end of the century compared to the present decade (2011 to 2020) (from 2.86 km2 to 3.60 km2). The rate at which the flood extents are projected to increase will dictate if inland succession of salt-tolerant vegetation will survive. By combining the frequency and magnitude of extreme storm surge events with the progression of modeled monthly inland flood extents, it might be possible to identify areas along this stretch of coast where non-saline vegetation communities will be destroyed and salt tolerant vegetation will keep pace with changing conditions and extend upland. Permafrost thawing, subsidence, erosion and sedimentation are other critical areas of future research that are needed to more accurately predict wetland gains, losses, and habitat conversions.
Climate change -- Its impacts on Bangladesh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobhan, M.A.
1994-12-31
Predictions regarding the possible effects of global warming on Bangladesh`s climate are uncertain. However, the predictions for 2030 made by four General Circulation Models all suggest that there might be increased precipitation, with estimates ranging between 5 and 100% increases in rainfall. Increases of these magnitudes, if they were to occur, would have significant implications for agriculture, flooding, river sediment loads, and flood protection works. Increased flooding of the coastal areas of countries like Bangladesh is a possibility, and enormous health and economic distress and human suffering may follow. With the change in temperature, there may be unpredictable change inmore » bacterial and viral morphology with health hazards of unpredictable limits. It has been estimated that a 100 cm rise in sea level in the Bay of Bengal would result in 12--18% of land areas of Bangladesh being lost to the sea, including most of the Sundarbans. Although it is difficult to predict the timing and magnitude of all the global changes including sea-level rise, climate change, etc., it is anticipated that one of the most serious consequence for Bangladesh would be the reduction of already minimal land: person ratio and consequently exacerbating pressure on the remaining natural resources. Bangladesh is in favor of an international agreement for assistance to vulnerable countries like Bangladesh to take necessary preparations and adopt measures to survive a sea-level rise, climate change, increased flooding, and more frequent storm surges.« less
Introduction to Chronobiology.
Kuhlman, Sandra J; Craig, L Michon; Duffy, Jeanne F
2017-10-16
A diverse range of species, from cyanobacteria to humans, evolved endogenous biological clocks that allow for the anticipation of daily variations in light and temperature. The ability to anticipate regular environmental rhythms promotes optimal performance and survival. Herein we present a brief historical timeline of how circadian concepts and terminology have emerged since the early observation of daily leaf movement in plants made by an astronomer in the 1700s. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.