Science.gov

Sample records for sustainable energy system

  1. A sustainable legume biomass energy farming system

    SciTech Connect

    Neathery, J.; Rubel, A.; Stencel, J.; Collins, M.

    1996-12-31

    Before environmentally sensitive areas are converted to biomass energy production, the production, the potential for sustainability of such systems must be assessed. The focus has been on woody or grass crops because of their high potential yields; however, yield sustainability is dependent on the application of fertilizer and lining materials, which in turn contribute to large costs. Growing legumes or mixtures of legumes with grasses could lower or alleviate the need for nitrate fertilizers. The incorporation of legumes into energy cropping systems could: (1) add soil organic matter; (2) introduce biologically fixed N; (3) improve soil structure and texture; (4) reduce soil erosion; (5) reduce production costs; and (6) decrease nitrate run-off in surface waters. Through the {open_quotes}rotation effect{close_quotes}, legumes cause increases in yield of subsequent non-legume crops beyond that accounted for by biologically-fixed N alone. In this paper, we describe a biomass energy system combining legume and grass biomass energy with fertilizer production from these same materials. Preliminary agronomic and engineering assessments for this type of biomass system are presented. The technologies needed to integrate nitrate production with legume energy farming and energy production through legume energy conversion are identified.

  2. Environmental sustainability of cellulosic energy cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environmental sustainability of bioenergy production depends on both direct and indirect effects of the production systems to produce bioenergy feedstocks. This chapter evaluates what is known about the environmental sustainability of cellulosic bioenergy crop production for the types of produc...

  3. Center for Efficiency in Sustainable Energy Systems

    SciTech Connect

    Abraham, Martin

    2016-01-31

    The main goal of the Center for Efficiency in Sustainable Energy Systems is to produce a methodology that evaluates a variety of energy systems. Task I. Improved Energy Efficiency for Industrial Processes: This task, completed in partnership with area manufacturers, analyzes the operation of complex manufacturing facilities to provide flexibilities that allow them to improve active-mode power efficiency, lower standby-mode power consumption, and use low cost energy resources to control energy costs in meeting their economic incentives; (2) Identify devices for the efficient transformation of instantaneous or continuous power to different devices and sections of industrial plants; and (3) use these manufacturing sites to demonstrate and validate general principles of power management. Task II. Analysis of a solid oxide fuel cell operating on landfill gas: This task consists of: (1) analysis of a typical landfill gas; (2) establishment of a comprehensive design of the fuel cell system (including the SOFC stack and BOP), including durability analysis; (3) development of suitable reforming methods and catalysts that are tailored to the specific SOFC system concept; and (4) SOFC stack fabrication with testing to demonstrate the salient operational characteristics of the stack, including an analysis of the overall energy conversion efficiency of the system. Task III. Demonstration of an urban wind turbine system: This task consists of (1) design and construction of two side-by-side wind turbine systems on the YSU campus, integrated through power control systems with grid power; (2) preliminary testing of aerodynamic control effectors (provided by a small business partner) to demonstrate improved power control, and evaluation of the system performance, including economic estimates of viability in an urban environment; and (3) computational analysis of the wind turbine system as an enabling activity for development of smart rotor blades that contain integrated sensor

  4. Distributed Power Systems for Sustainable Energy

    DTIC Science & Technology

    2012-10-01

    all programming and optimization software that may be required in DOD installations to provide optimal microgrid energy management. Computers and...growth and innovation. Defining and implementing adequate safety provisions, including venting issues, for new batteries and microgrid ...solutions. 8.2 REQUIRED ACCESS TO INTERNET OR EXTERNAL COMMUNICATION NETWORKS AT DOD SITES Advanced energy systems, including energy microgrids

  5. Sustainable design of complex industrial and energy systems under uncertainty

    NASA Astrophysics Data System (ADS)

    Liu, Zheng

    Depletion of natural resources, environmental pressure, economic globalization, etc., demand seriously industrial organizations to ensure that their manufacturing be sustainable. On the other hand, the efforts of pursing sustainability also give raise to potential opportunities for improvements and collaborations among various types of industries. Owing to inherent complexity and uncertainty, however, sustainability problems of industrial and energy systems are always very difficult to deal with, which has made industrial practice mostly experience based. For existing research efforts on the study of industrial sustainability, although systems approaches have been applied in dealing with the challenge of system complexity, most of them are still lack in the ability of handling inherent uncertainty. To overcome this limit, there is a research need to develop a new generation of systems approaches by integrating techniques and methods for handling various types of uncertainties. To achieve this objective, this research introduced series of holistic methodologies for sustainable design and decision-making of industrial and energy systems. The introduced methodologies are developed in a systems point of view with the functional components involved in, namely, modeling, assessment, analysis, and decision-making. For different methodologies, the interval-parameter-based, fuzzy-logic-based, and Monte Carlo based methods are selected and applied respectively for handling various types of uncertainties involved, and the optimality of solutions is guaranteed by thorough search or system optimization. The proposed methods are generally applicable for any types of industrial systems, and their efficacy had been successfully demonstrated by the given case studies. Beyond that, a computational tool was designed, which provides functions on the industrial sustainability assessment and decision-making through several convenient and interactive steps of computer operation. This

  6. Bioelectrochemical system platform for sustainable environmental remediation and energy generation.

    PubMed

    Wang, Heming; Luo, Haiping; Fallgren, Paul H; Jin, Song; Ren, Zhiyong Jason

    2015-01-01

    The increasing awareness of the energy-environment nexus is compelling the development of technologies that reduce environmental impacts during energy production as well as energy consumption during environmental remediation. Countries spend billions in pollution cleanup projects, and new technologies with low energy and chemical consumption are needed for sustainable remediation practice. This perspective review provides a comprehensive summary on the mechanisms of the new bioelectrochemical system (BES) platform technology for efficient and low cost remediation, including petroleum hydrocarbons, chlorinated solvents, perchlorate, azo dyes, and metals, and it also discusses the potential new uses of BES approach for some emerging contaminants remediation, such as CO2 in air and nutrients and micropollutants in water. The unique feature of BES for environmental remediation is the use of electrodes as non-exhaustible electron acceptors, or even donors, for contaminant degradation, which requires minimum energy or chemicals but instead produces sustainable energy for monitoring and other onsite uses. BES provides both oxidation (anode) and reduction (cathode) reactions that integrate microbial-electro-chemical removal mechanisms, so complex contaminants with different characteristics can be removed. We believe the BES platform carries great potential for sustainable remediation and hope this perspective provides background and insights for future research and development.

  7. Environment, Energy and Sustainability from a Systems Perspective

    NASA Astrophysics Data System (ADS)

    Selin, N. E.; Webster, M. D.; Trancik, J.

    2010-12-01

    We present a framework for teaching and learning about environment, energy and sustainability issues from the perspective of the emerging field of engineering systems. Engineering systems integrates approaches from engineering, management and social sciences to address systems with a high degree of technical and social complexity of importance to human societies. We share approaches to integrating engineering systems research and teaching from the Engineering Systems Division at the Massachusetts Institute of Technology. Topics include simulation and modeling; risk assessment; technology assessment; coupled human-natural systems; and optimization. We show how we have applied active learning techniques using simple models (e.g. climate and economic system modeling) to help students understand the dynamics of complexity in environmental systems and their interacting human components.

  8. Nonregenerative natural resources in a sustainable system of energy supply.

    PubMed

    Bradshaw, Alex M; Hamacher, Thomas

    2012-03-12

    Following the lead of the European Union in introducing binding measures to promote the use of regenerative energy forms, it is not unreasonable to assume that the global demand for combustible raw materials for energy generation will be reduced considerably in the second half of this century. This will not only have a favourable effect on the CO(2) concentration in the atmosphere, but will also help preserve fossil fuels-important as raw materials in the chemical industry-for future generations. Nevertheless, associated with the concomitant massive shift to regenerative energy forms, there will be a strong demand for other exhaustible raw materials, in particular metals, some of which are already regarded as scarce. After reviewing the debate on mineral depletion between "cornucopians" and "pessimists", we discuss the meaning of mineral "scarcity", particularly in the geochemical sense, and mineral "exhaustion". The expected drastic increase in demand for mineral resources caused by demographic and societal pressures, that is, due to the increase in in-use stock, is emphasised. Whilst not discussing the issue of "strong" versus "weak" sustainability in detail, we conclude that regenerative energy systems-like nearly all resource-consuming systems in our society-do not necessarily satisfy generally accepted sustainability criteria. In this regard, we discuss some current examples, namely, lithium and cobalt for batteries, rare earth-based permanent magnets for wind turbines, cadmium and tellurium for solar cells and copper for electrical power distribution.

  9. A System of Systems (SoS) Approach to Sustainable Energy Planning

    NASA Astrophysics Data System (ADS)

    Madani, Kaveh; Hadian, Saeed

    2015-04-01

    The general policy of mandating fossil fuel replacement with "green" energies may not be as effective and environmental-friendly as perceived, due to the secondary impacts of renewable energies on different natural resources. An integrated systems analysis framework is essential to developing sustainable energy supply systems with minimal unintended impacts on valuable natural resources such as water, climate, and ecosystem. This presentation discusses how a system of systems (SoS) framework can be developed to quantitatively evaluate the desirability of different energy supply alternatives with respect to different sustainability criteria under uncertainty. Relative Aggregate Footprint (RAF) scores of a range of renewable and nonrenewable energy alternatives are determined using their performance values under four sustainability criteria, namely carbon footprint, water footprint, land footprint, and cost of energy production. Our results suggest that despite their lower emissions, some renewable energy sources are less promising than non-renewable energy sources from a SoS perspective that considers the trade-offs between carbon footprint of energies and their effects on water, ecosystem, and economic resources. A new framework based on the Modern Portfolio Theory (MPT) is also proposed for analyzing the overall sustainability of different energy mixes for different risk of return levels with respect to the trade-offs involved. It is discussed how the proposed finance-based sustainability evaluation method can help policy makers maximize the energy portfolio's expected sustainability for a given amount of portfolio risk, or equivalently minimize risk for a given level of expected sustainability level, by revising the energy mix.

  10. Towards sustainable and renewable systems for electrochemical energy storage.

    PubMed

    Tarascon, Jean-Marie

    2008-01-01

    Renewable energy sources and electric automotive transportation are popular topics in our belated energy-conscious society, placing electrochemical energy management as one of the major technological developments for this new century. Besides efficiency, any new storage technologies will have to provide advantages in terms of cost and environmental footprint and thus rely on sustainable materials that can be processed at low temperature. To meet such challenges future devices will require inspiration from living organisms and rely on either bio-inspired or biomimetic approaches.

  11. Evaluating the sustainability of an energy supply system using renewable energy sources: An energy demand assessment of South Carolina

    NASA Astrophysics Data System (ADS)

    Green, Cedric Fitzgerald

    run the Sustainable Systems Analysis Algorithm (SSAA) and the multi-criteria decision analysis (MCDA) decision models. The following alternative energy sources for electricity (kilo- and megawatt output) will be assessed in this paper: solar, biomass and biofuels, hydro, geothermal, onshore wind, offshore wind, tidal, and natural gas. The SSAA methodology, in conjunction with the MCDA model techniques, will be used to obtain sustainable, alternative energy source system options; the system will attempt to balance its three linked aspects (environmental, economic, and technical). The results, based on the Sustainability Directive three-dimensional vector calculations from each alternative energy source option, are presented in this paper. Moving towards sustainability is a dynamically changing process, and the SSAA methodology is a synergist for system modifications that strives for continuous improvement toward the Ideal Sustainability Directive.

  12. Sustainable markets for sustainable energy

    SciTech Connect

    Millan, J.; Smyser, C.

    1997-12-01

    The author discusses how the Inter-American Development Bank (IDB) is involved in sustainable energy development. It presently has 50 loans and grants for non conventional renewable energy projects and ten grants for efficiency programs for $600 and $17 million respectively, representing 100 MW of power. The IDB is concerned with how to create a sustainable market for sustainable energy projects. The IDB is trying to work with government, private sector, NGOs, trading allies, credit sources, and regulators to find proper roles for such projects. He discusses how the IDB is working to expand its vision and objectives in renewable energy projects in Central and South America.

  13. A Framework for Supporting Organizational Transition Processes Towards Sustainable Energy Systems

    NASA Astrophysics Data System (ADS)

    Buch, Rajesh

    Economic development over the last century has driven a tripling of the world's population, a twenty-fold increase in fossil fuel consumption, and a tripling of traditional biomass consumption. The associated broad income and wealth inequities are retaining over 2 billion people in poverty. Adding to this, fossil fuel combustion is impacting the environment across spatial and temporal scales and the cost of energy is outpacing all other variable costs for most industries. With 60% of world energy delivered in 2008 consumed by the commercial and industrial sector, the fragmented and disparate energy-related decision making within organizations are largely responsible for the inefficient and impacting use of energy resources. The global transition towards sustainable development will require the collective efforts of national, regional, and local governments, institutions, the private sector, and a well-informed public. The leadership role in this transition could be provided by private and public sector organizations, by way of sustainability-oriented organizations, cultures, and infrastructure. The diversity in literature exemplifies the developing nature of sustainability science, with most sustainability assessment approaches and frameworks lacking transformational characteristics, tending to focus on analytical methods. In general, some shortfalls in sustainability assessment processes include lack of: · thorough stakeholder participation in systems and stakeholder mapping, · participatory envisioning of future sustainable states, · normative aggregation of results to provide an overall measure of sustainability, and · influence within strategic decision-making processes. Specific to energy sustainability assessments, while some authors aggregate results to provide overall sustainability scores, assessments have focused solely on energy supply scenarios, while including the deficits discussed above. This paper presents a framework for supporting

  14. Modeling sustainability in renewable energy supply chain systems

    NASA Astrophysics Data System (ADS)

    Xie, Fei

    This dissertation aims at modeling sustainability of renewable fuel supply chain systems against emerging challenges. In particular, the dissertation focuses on the biofuel supply chain system design, and manages to develop advanced modeling framework and corresponding solution methods in tackling challenges in sustaining biofuel supply chain systems. These challenges include: (1) to integrate "environmental thinking" into the long-term biofuel supply chain planning; (2) to adopt multimodal transportation to mitigate seasonality in biofuel supply chain operations; (3) to provide strategies in hedging against uncertainty from conversion technology; and (4) to develop methodologies in long-term sequential planning of the biofuel supply chain under uncertainties. All models are mixed integer programs, which also involves multi-objective programming method and two-stage/multistage stochastic programming methods. In particular for the long-term sequential planning under uncertainties, to reduce the computational challenges due to the exponential expansion of the scenario tree, I also developed efficient ND-Max method which is more efficient than CPLEX and Nested Decomposition method. Through result analysis of four independent studies, it is found that the proposed modeling frameworks can effectively improve the economic performance, enhance environmental benefits and reduce risks due to systems uncertainties for the biofuel supply chain systems.

  15. A System of Systems (SoS) Approach to Sustainable Energy Planning in MENA

    NASA Astrophysics Data System (ADS)

    Mahlooji, Maral; Ristic, Bora; Price, Katherine; Madani, Kaveh

    2016-04-01

    The global issue of climate change has put pressure on governments to de-carbonise their energy portfolios by transitioning from the dominant use of fossil fuels energy to extensive use of renewable energies. The lack of renewable energy laws and credible targets and valid roadmaps for energy policies within the MENA region has let to ambitious and unrealistic renewable targets, where countries such as Djibouti and Morocco are aiming for 100% and 42% renewables respectively, by 2020, while Kuwait and Qatar are only aiming for 5% and 6% respectively. Nevertheless, this demonstrates the commitment and desirability of the members of the MENA region on increasing their share of renewables in their energy mix to reduce the greenhouse gas emissions of the region and minimise the unintended impacts of energy technologies on major natural resources through use of cost efficient technologies. The Relative Aggregate Footprint (RAF) of energy sources among the member states of the MENA region is assessed by applying the "System of Systems (SoS) Approach to Energy Sustainability Assessment" (Hadian and Madani, 2015). RAF demonstrates the efficiency of the overall resource-use of energy resources through creating a trade-off between carbon footprint, land footprint, water footprint, and economic cost. Using the resource availability of each member states, weights are assigned to the four criteria. This allows the evaluation of the desirability of energy sources with respect to regional resource availability and therefore, the efficiency of the overall resource-use of the energy portfolio of the MENA region is determined. This study has recognised the need for reform and radical changes within the MENA region's energy profile to make a significant contribution to the reduction of carbon emissions in order to use the resources in a sustainable way and increase the regional energy security of the member states across MENA. Reference: Hadian S, Madani K (2015) A System of Systems

  16. Fuel cell systems for a sustainable energy production

    SciTech Connect

    Kivisaari, T.

    1996-12-31

    When talking about fuel cell systems for stationary applications, two of the advantages are claimed to be a high inherent efficiency and environmentally favourable characteristics. It should, however, be obvious to everybody that in order to call an energy production route environmentally benign, it is not enough that just the energy production step itself has a low negative environmental impact, but that all steps involved (e.g. fuel pre-treatment, fuel processing etc.) should be subjected to the same constraints if the overall production process is to be considered environmentally friendly. In order to evaluate the technical possibilities of a biomass fuelled MCFC unit for stationary applications a system study of a 40 MWe biomass-fired MCFC system is currently carried out at The Royal Institute of Technology, as part of the international co-operation within the IEA Advanced Fuel Cell Programme Annex 1, Balance of Plant of MCFC Systems. In addition to the present work, other recent studies involving biomass and fuel cells can be found in literature.

  17. An energy systems view of sustainability: emergy analysis of the San Luis Basin, Colorado

    EPA Science Inventory

    Energy Systems Theory (EST) is used to provide a context for understanding and interpreting sustainability. We propose that “what is sustainable” for a system at any given level of organization is determined by the cycles of change originating in the next larger system. Further...

  18. An energy systems view of sustainability: emergy evaluation of the San Luis Basin, Colorado.

    PubMed

    Campbell, Daniel E; Garmestani, Ahjond S

    2012-03-01

    Energy Systems Theory (EST) provides a framework for understanding and interpreting sustainability. EST implies that "what is sustainable" for a system at any given level of organization is determined by the cycles of change originating in the next larger system and within the system of concern. The pulsing paradigm explains the ubiquitous cycles of change that apparently govern ecosystems, rather than succession to a steady state that is then sustainable. Therefore, to make robust decisions among environmental policies and alternatives, decision-makers need to know where their system resides in the cycles of change that govern it. This theory was examined by performing an emergy evaluation of the sustainability of a regional system, the San Luis Basin (SLB), CO. By 1980, the SLB contained a climax stage agricultural system with well-developed crop and livestock production along with food and animal waste processing. The SLB is also a hinterland in that it exports raw materials and primary products (exploitation stage) to more developed areas. Emergy indices calculated for the SLB from 1995 to 2005 revealed changes in the relative sustainability of the system over this time. The sustainability of the region as indicated by the renewable emergy used as a percent of total use declined 4%, whereas, the renewable carrying capacity declined 6% over this time. The Emergy Sustainability Index (ESI) showed the largest decline (27%) in the sustainability of the region. The total emergy used by the SLB, a measure of system well-being, was fairly stable (CV = 0.05). In 1997, using renewable emergy alone, the SLB could support 50.7% of its population at the current standard of living, while under similar conditions the U.S. could support only 4.8% of its population. In contrast to other indices of sustainability, a new index, the Emergy Sustainable Use Index (ESUI), which considers the benefits gained by the larger system compared to the potential for local environmental

  19. Chapter 2: Sustainable and Unsustainable Developments in the U.S. Energy System

    SciTech Connect

    Levine, Mark; Levine, Mark D.; Aden, Nathaniel T.

    2008-05-01

    Over the course of the nineteenth and twentieth centuries, the United States developed a wealthy society on the basis of cheap and abundant fossil fuel energy. As fossil fuels have become ecologically and economically expensive in the twenty-first century, America has shown mixed progress in transitioning to a more sustainable energy system. From 2000 to 2006, energy and carbon intensity of GDP continued favorable long-term trends of decline. Energy end-use efficiency also continued to improve; for example, per-capita electricity use was 12.76 MWh per person per year in 2000 and again in 2006, despite 16 percent GDP growth over that period. Environmental costs of U.S. energy production and consumption have also been reduced, as illustrated in air quality improvements. However, increased fossil fuel consumption, stagnant efficiency standards, and expanding corn-based ethanol production have moved the energy system in the opposite direction, toward a less sustainable energy system. This chapter reviews energy system developments between 2000 and 2006 and presents policy recommendations to move the United States toward a more sustainable energy system.

  20. Prospects for Sustainable Energy

    NASA Astrophysics Data System (ADS)

    Cassedy, Edward S., Jr.

    2000-04-01

    Fossil fuels are a finite resource, and their continued use as the world's dominant energy supply is damaging the environment. Future use of alternative methods of energy supply is inescapable. This book offers a critical assessment of all possible sustainable energy technologies and energy storage. Coverage explores the historical origins, technical features, marketability, and environmental impacts of the complete range of sustainable energy technologies: solar, biomass, wind, hydropower, geothermal power, ocean-energy sources, solar-derived hydrogen fuel, and energy storage. The aim is to inform policy analysts and decision makers of the options available for sustainable energy production. This accessible volume will be a valuable resource for a broad group of academics and researchers with a wide range of backgrounds and scientific training. It will also be an ideal supplementary next for advanced courses in environmental studies, energy economics and policy, and engineering.

  1. Sustainability Efficiency Factor: Measuring Sustainability in Advanced Energy Systems through Exergy, Exergoeconomic, Life Cycle, and Economic Analyses

    NASA Astrophysics Data System (ADS)

    Boldon, Lauren

    The Encyclopedia of Life Support Systems defines sustainability or industrial ecology as "the wise use of resources through critical attention to policy, social, economic, technological, and ecological management of natural and human engineered capital so as to promote innovations that assure a higher degree of human needs fulfilment, or life support, across all regions of the world, while at the same time ensuring intergenerational equity" (Encyclopedia of Life Support Systems 1998). Developing and integrating sustainable energy systems to meet growing energy demands is a daunting task. Although the technology to utilize renewable energies is well understood, there are limited locations which are ideally suited for renewable energy development. Even in areas with significant wind or solar availability, backup or redundant energy supplies are still required during periods of low renewable generation. This is precisely why it would be difficult to make the switch directly from fossil fuel to renewable energy generation. A transition period in which a base-load generation supports renewables is required, and nuclear energy suits this need well with its limited life cycle emissions and fuel price stability. Sustainability is achieved by balancing environmental, economic, and social considerations, such that energy is produced without detriment to future generations through loss of resources, harm to the environment, etcetera. In essence, the goal is to provide future generations with the same opportunities to produce energy that the current generation has. This research explores sustainability metrics as they apply to a small modular reactor (SMR)-hydrogen production plant coupled with wind energy and storage technologies to develop a new quantitative sustainability metric, the Sustainability Efficiency Factor (SEF), for comparison of energy systems. The SEF incorporates the three fundamental aspects of sustainability and provides SMR or nuclear hybrid energy system

  2. Sustainable agriculture, renewable energy and rural development: An analysis of bio-energy systems used by small farms in China

    NASA Astrophysics Data System (ADS)

    Zhou, Aiming

    Renewable energy needs to be incorporated into the larger picture of sustainable agriculture and rural development if it is to serve the needs of the 3.25 billion human beings whose livelihoods and based on rural economies and ecologies. For rural communities, increasing agriculture production is key to raising income generation and improving social well-being, but this linkage depends also upon not harming natural resources. This dissertation provides an overview of recent Chinese agriculture history, discusses the role of energy in contemporary's China's agriculture and rural development, and introduces a new approach---the integrated agricultural bio-energy (IAB) system---to address the challenge of sustainable agriculture and rural development. IAB is an innovative design and offers a renewable energy solution for improving agricultural productivity, realizing efficient resource management, and enhancing social well-being for rural development. In order to understand how the IAB system can help to achieve sustainable agricultural and rural development in China, a comprehensive evaluation methodology is developed from health, ecological, energy and economic (HE3) perspectives. With data from surveys of 200 small farm households, a detailed study of IAB and conventional agricultural energy (CAE) system applications (in China's Liaoning and Yunnan Province) is conducted. The HE3 impacts of IAB systems in China's rural areas (compared to existing CAE systems) are quantified. The dissertation analyzes the full life-cycle costs and benefits of IAB systems, including their contributions to energy savings, CO2 emissions reduction, agricultural waste reduction, increased rural incomes, better rural health, and improved ecosystem sustainability. The analysis relies upon qualitative and quantitative modeling in order to produce a comprehensive assessment of IAB system impacts. Finally, the dissertation discusses the barriers to greater diffusion of the IAB systems

  3. Materials for Sustainable Energy

    NASA Astrophysics Data System (ADS)

    Crabtree, George

    2009-03-01

    The global dependence on fossil fuels for energy is among the greatest challenges facing our economic, social and political future. The uncertainty in the cost and supply of oil threatens the global economy and energy security, the pollution of fossil combustion threatens human health, and the emission of greenhouse gases threatens global climate. Meeting the demand for double the current global energy use in the next 50 years without damaging our economy, security, environment or climate requires finding alternative sources of energy that are clean, abundant, accessible and sustainable. The transition to greater sustainability involves tapping unused energy flows such as sunlight and wind, producing electricity without carbon emissions from clean coal and high efficiency nuclear power plants, and using energy more efficiently in solid-state lighting, fuel cells and transportation based on plug-in hybrid and electric cars. Achieving these goals requires creating materials of increasing complexity and functionality to control the transformation of energy between light, electrons and chemical bonds. Challenges and opportunities for developing the complex materials and controlling the chemical changes that enable greater sustainability will be presented.

  4. Institute for Sustainable Energy

    SciTech Connect

    Agrawal, Ajay

    2016-03-28

    Alternate fuels offer unique challenges and opportunities as energy source for power generation, vehicular transportation, and industrial applications. Institute for Sustainable Energy (ISE) at UA conducts innovative research to utilize the complex mix of domestically-produced alternate fuels to achieve low-emissions, high energy-efficiency, and fuel-flexibility. ISE also provides educational and advancement opportunities to students and researchers in the energy field. Basic research probing the physics and chemistry of alternative fuels has generated practical concepts investigated in a burner and engine test platforms.

  5. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    SciTech Connect

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E., II; Rochau, Gary Eugene

    2009-09-01

    The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink{reg_sign}, an extension of MATLAB{reg_sign}, is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub

  6. Energy Security, Innovation & Sustainability Initiative

    SciTech Connect

    2010-04-30

    More than a dozen energy experts convened in Houston, Texas, on February 13, 2009, for the first in a series of four regionally-based energy summits being held by the Council on Competitiveness. The Southern Energy Summit was hosted by Marathon Oil Corporation, and participants explored the public policy, business and technological challenges to increasing the diversity and sustainability of U.S. energy supplies. There was strong consensus that no single form of energy can satisfy the projected doubling, if not tripling, of demand by the year 2050 while also meeting pressing environmental challenges, including climate change. Innovative technology such as carbon capture and storage, new mitigation techniques and alternative forms of energy must all be brought to bear. However, unlike breakthroughs in information technology, advancing broad-based energy innovation requires an enormous scale that must be factored into any equation that represents an energy solution. Further, the time frame for developing alternative forms of energy is much longer than many believe and is not understood by the general public, whose support for sustainability is critical. Some panelists estimated that it will take more than 50 years to achieve the vision of an energy system that is locally tailored and has tremendous diversity in generation. A long-term commitment to energy sustainability may also require some game-changing strategies that calm volatile energy markets and avoid political cycles. Taking a page from U.S. economic history, one panelist suggested the creation of an independent Federal Energy Reserve Board not unlike the Federal Reserve. The board would be independent and influence national decisions on energy supply, technology, infrastructure and the nation's carbon footprint to better calm the volatile energy market. Public-private efforts are critical. Energy sustainability will require partnerships with the federal government, such as the U.S. Department of Energy

  7. Sustainable Energy Solutions Task 1.0: Networked Monitoring and Control of Small Interconnected Wind Energy Systems

    SciTech Connect

    edu, Janet. twomey@wichita.

    2010-04-30

    This report presents accomplishments, results, and future work for one task of five in the Wichita State University Sustainable Energy Solutions Project: To develop a scale model laboratory distribution system for research into questions that arise from networked control and monitoring of low-wind energy systems connected to the AC distribution system. The lab models developed under this task are located in the Electric Power Quality Lab in the Engineering Research Building on the Wichita State University campus. The lab system consists of four parts: 1. A doubly-fed induction generator 2. A wind turbine emulator 3. A solar photovoltaic emulator, with battery energy storage 4. Distribution transformers, lines, and other components, and wireless and wired communications and control These lab elements will be interconnected and will function together to form a complete testbed for distributed resource monitoring and control strategies and smart grid applications testing. Development of the lab system will continue beyond this project.

  8. The path towards sustainable energy.

    PubMed

    Chu, Steven; Cui, Yi; Liu, Nian

    2016-12-20

    Civilization continues to be transformed by our ability to harness energy beyond human and animal power. A series of industrial and agricultural revolutions have allowed an increasing fraction of the world population to heat and light their homes, fertilize and irrigate their crops, connect to one another and travel around the world. All of this progress is fuelled by our ability to find, extract and use energy with ever increasing dexterity. Research in materials science is contributing to progress towards a sustainable future based on clean energy generation, transmission and distribution, the storage of electrical and chemical energy, energy efficiency, and better energy management systems.

  9. The path towards sustainable energy

    NASA Astrophysics Data System (ADS)

    Chu, Steven; Cui, Yi; Liu, Nian

    2017-01-01

    Civilization continues to be transformed by our ability to harness energy beyond human and animal power. A series of industrial and agricultural revolutions have allowed an increasing fraction of the world population to heat and light their homes, fertilize and irrigate their crops, connect to one another and travel around the world. All of this progress is fuelled by our ability to find, extract and use energy with ever increasing dexterity. Research in materials science is contributing to progress towards a sustainable future based on clean energy generation, transmission and distribution, the storage of electrical and chemical energy, energy efficiency, and better energy management systems.

  10. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    SciTech Connect

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E., II; Rochau, Gary Eugene

    2010-10-01

    A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.

  11. A multi-stakeholder framework for sustainable energy behavior: A multidisciplinary systems study

    NASA Astrophysics Data System (ADS)

    Khansari, Nasrin

    Growth of population and moving towards over-consumption and over-pollution are significant threats to the environment and therefore necessitate moving towards sustainability approaches. CO2 emissions are considered to be the main basis of the incredible increase in the earth's surface temperature in recent years. Most emissions result from human activities. Thus, developing a detailed framework representing the parameters affecting individuals' energy behaviors is required. This dissertation offers an integrated conceptual framework to increase the efficiency of energy systems under complex and uncertainty conditions, facilitate energy consumption problem solving, and support the development of capacities at the individual, social, and technical levels to improve managing energy consumptions in the future. This research presents a conceptual soft systems model to explore the process of individuals' energy behavior change based on socio-structural and techno-structural contexts. In addition, a comprehensive model based on systems dynamics principles is presented to address the issue of CO2 emissions related to the households' energy consumption behavior. The proposed systems dynamics model provides a broad overview of the key agents affecting energy consumption, including government/public sector, households, and power industry. The model is created based on the research in the literature discussing the causal relations between various variables. The proposed systems dynamics model is verified by simulating different scenarios. In this research a survey is designed and conducted to investigate the role of individual, social and technical behaviors in reducing energy consumption, energy costs and carbon footprints based on the energy use profile. In sum, this study investigates the process of energy behavior change based on socio-structural and techno-structural contexts.

  12. Towards Design of Sustainable Energy Systems in Developing Countries: Centralized and Localized Options

    NASA Astrophysics Data System (ADS)

    Kursun, Berrin

    Energy use in developing countries is projected to equal and exceed the demand in developed countries in the next five years. Growing concern about environmental problems, depletion and price fluctuation of fossil fuels pushes the efforts for meeting energy demand in an environmentally friendly and sustainable way. Hence, it is essential to design energy systems consisting of centralized and localized options that generate the optimum energy mix to meet this increasing energy demand in a sustainable manner. In this study, we try to answer the question, "How can the energy demand in Rampura village be met sustainably?" via two centralized clean coal (CCC) technology and three localized energy technology options analyzed. We perform the analysis of these energy technologies through joint use of donor-side analysis technique emergy analysis (EA) and user-side analysis technique life cycle assessment (LCA). Sustainability of such an energy combination depends on its reliance on renewable inputs rather than nonrenewable or purchased inputs. CCC technologies are unsustainable energy systems dependent on purchased external inputs almost 100%. However, increased efficiency and significantly lower environmental impacts of CCC technologies can lead to more environmentally benign utilization of coal as an energy source. CCC technologies supply electricity at a lower price compared to the localized energy options investigated. Localized energy options analyzed include multi-crystalline solar PV, floating drum biogas digester and downdraft biomass gasifier. Solar PV has the lowest water and land use, however, solar electricity has the highest price with a high global warming potential (GWP). Contrary to general opinion, solar electricity is highly non-renewable. Although solar energy is a 100% renewable natural resource, materials utilized in the production of solar panels are mostly non-renewable purchased inputs causing the low renewability of solar electricity. Best

  13. Hopi Sustainable Energy Plan

    SciTech Connect

    Norman Honie, Jr.; Margie Schaff; Mark Hannifan

    2004-08-01

    The Hopi Tribal Government as part of an initiative to ?Regulate the delivery of energy and energy services to the Hopi Reservation and to create a strategic business plan for tribal provision of appropriate utility, both in a manner that improves the reliability and cost efficiency of such services,? established the Hopi Clean Air Partnership Project (HCAPP) to support the Tribe?s economic development goals, which is sensitive to the needs and ways of the Hopi people. The Department of Energy (DOE) funded, Formation of Hopi Sustainable Energy Program results are included in the Clean Air Partnership Report. One of the Hopi Tribe?s primary strategies to improving the reliability and cost efficiency of energy services on the Reservation and to creating alternative (to coal) economic development opportunities is to form and begin implementation of the Hopi Sustainable Energy Program. The Hopi Tribe through the implementation of this grant identified various economic opportunities available from renewable energy resources. However, in order to take advantage of those opportunities, capacity building of tribal staff is essential in order for the Tribe to develop and manage its renewable energy resources. As Arizona public utilities such as APS?s renewable energy portfolio increases the demand for renewable power will increase. The Hopi Tribe would be in a good position to provide a percentage of the power through wind energy. It is equally important that the Hopi Tribe begin a dialogue with APS and NTUA to purchase the 69Kv transmission on Hopi and begin looking into financing options to purchase the line.

  14. Leveraging Human-environment Systems in Residential Buildings for Aggregate Energy Efficiency and Sustainability

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqi

    Reducing the energy consumed in the built environment is a key objective in many sustainability initiatives. Existing energy saving methods have consisted of physical interventions to buildings and/or behavioral modifications of occupants. However, such methods may not only suffer from their own disadvantages, e.g. high cost and transient effect, but also lose aggregate energy saving potential due to the oftentimes-associated single-building-focused view and an isolated examination of occupant behaviors. This dissertation attempts to overcome the limitations of traditional energy saving research and practical approaches, and enhance residential building energy efficiency and sustainability by proposing innovative energy strategies from a holistic perspective of the aggregate human-environment systems. This holistic perspective features: (1) viewing buildings as mutual influences in the built environment, (2) leveraging both the individual and contextualized social aspects of occupant behaviors, and (3) incorporating interactions between the built environment and human behaviors. First, I integrate three interlinked components: buildings, residents, and the surrounding neighborhood, and quantify the potential energy savings to be gained from renovating buildings at the inter-building level and leveraging neighborhood-contextualized occupant social networks. Following the confirmation of both the inter-building effect among buildings and occupants' interpersonal influence on energy conservation, I extend the research further by examining the synergy that may exist at the intersection between these "engineered" building networks and "social" peer networks, focusing specifically on the additional energy saving potential that could result from interactions between the two components. Finally, I seek to reach an alignment of the human and building environment subsystems by matching the thermostat preferences of each household with the thermal conditions within their

  15. Sustainable Systems Analysis of Production and Transportation Scenarios for Conventional and Bio-based Energy Commodities

    NASA Astrophysics Data System (ADS)

    Doran, E. M.; Golden, J. S.; Nowacek, D. P.

    2013-12-01

    International commerce places unique pressures on the sustainability of water resources and marine environments. System impacts include noise, emissions, and chemical and biological pollutants like introduction of invasive species into key ecosystems. At the same time, maritime trade also enables the sustainability ambition of intragenerational equity in the economy through the global circulation of commodities and manufactured goods, including agricultural, energy and mining resources (UN Trade and Development Board 2013). This paper presents a framework to guide the analysis of the multiple dimensions of the sustainable commerce-ocean nexus. As a demonstration case, we explore the social, economic and environmental aspects of the nexus framework using scenarios for the production and transportation of conventional and bio-based energy commodities. Using coupled LCA and GIS methodologies, we are able to orient the findings spatially for additional insight. Previous work on the sustainable use of marine resources has focused on distinct aspects of the maritime environment. The framework presented here, integrates the anthropogenic use, governance and impacts on the marine and coastal environments with the natural components of the system. A similar framework has been highly effective in progressing the study of land-change science (Turner et al 2007), however modification is required for the unique context of the marine environment. This framework will enable better research integration and planning for sustainability objectives including mitigation and adaptation to climate change, sea level rise, reduced dependence on fossil fuels, protection of critical marine habitat and species, and better management of the ocean as an emerging resource base for the production and transport of commodities and energy across the globe. The framework can also be adapted for vulnerability analysis, resilience studies and to evaluate the trends in production, consumption and

  16. Climate Convention Implementation: An Opportunity for the Pacific Island Nations to Move Toward Sustainable Energy Systems

    PubMed

    Yu; Taplin; Gilmour

    1997-07-01

    / The impacts of global warming are among the more serious environmental threats for the Pacific Island countries. These nations justifiably argue that developed countries should give immediate priority to the implementation of climate change mitigation policies because of the severe nature of potential greenhouse impacts for the Pacific Islands. Another immediate priority acknowledged by these nations is the need for development of adaptation policies that plan for adjustment or adaptation, where possible, to the foreshadowed impacts of climate change. This article does not focus on adaptation or mitigation policy directly but on an allied opportunity that exists for the Pacific Islands via the auspices of the Climate Convention, because the existing very costly energy systems used in the Pacific Island region are fossil-fuel dependent. It is argued here that efforts can be made towards the development of energy systems that are ecologically sustainable because Pacific Island nations are eligible to receive assistance to introduce renewable energy technology and pursue energy conservation via implementation mechanisms of the Climate Convention and, in particular, through transfer of technology and via joint implementation. It is contended that assistance in the form of finance, technology, and human resource development from developed countries and international organizations would provide sustainable benefits in improving the local Pacific Island environments. It is also emphasized that mitigation of greenhouse gas emissions is not the responsibility of the Pacific Islands as they contribute very little on a per capita global scale and a tiny proportion of total global greenhouse gas emissions.KEY WORDS: Pacific Islands; Climate change; Renewable energy; Framework Convention on Climate Change.

  17. Sustainable Energy Solutions Task 3.0:Life-Cycle Database for Wind Energy Systems

    SciTech Connect

    Twomey, Janet M.

    2010-03-01

    developed a fundamental approach. The emphasis was place on individual unit processes as an organizing framework to understand the life cycle of manufactured products. The rearrangement of unit processes provides an efficient and versatile means of understanding improved manufactured products such as wind generators. The taxonomy and structure of unit process lci were developed in this project. A series of ten unit process lci were developed to sample the major segments of the manufacturing unit process taxonomy. Technical and economic effectiveness has been a focus of the project research in Task three. The use of repeatable modules for the organization of information on environmental improvement has a long term impact. The information developed can be used and reused in a variety of manufacturing plants and for a range of wind generator sizes and designs. Such a modular approach will lower the cost of life cycle analysis, that is often asked questions of carbon footprint, environmental impact, and sustainability. The use of a website for dissemination, linked to NREL, adds to the economic benefit as more users have access to the lci information. Benefit to the public has been achieved by a well-attended WSU conference, as well as presentations for the Kansas Wind Energy Commission. Attendees represented public interests, land owners, wind farm developers, those interested in green jobs, and industry. Another benefit to the public is the start of information flow from manufacturers that can inform individuals about products.

  18. Harnessing the sun: Developing capacity to sustain local solar energy systems

    NASA Astrophysics Data System (ADS)

    Olarewaju, Olufemi

    2011-12-01

    Use of solar photovoltaic (PV) and other renewable sources to meet rising electricity demand by a growing world population has gained traction in many countries in recent years. In rural Sub-Saharan Africa, where 86 percent of the populace has no access to electricity, solar energy systems represent partial solutions to demand, especially in support of rural development initiatives to supply potable water, health care services and education. Unfortunately, development of human and organizational capacity to maintain solar technology has not kept pace with the rate of installation, causing many to fall into disrepair and disuse. This has stimulated interest in capacity development processes required to make solar systems sustainable. To cast light on the practical meanings and challenges of capacity development for solar energy, this study compares the experiences of two rural projects, one in Lagos State (Nigeria) that disregarded the importance of capacity development, and the other in Texas (United States) that, in contrast, made such development the centerpiece of its operations. Based largely on interviews with 60 key actors, findings underscore the crucial importance of sustained investment in capacity development to assurance of durable power supply from renewable sources.

  19. Conceptual energy and water recovery system for self-sustained nano membrane toilet.

    PubMed

    Hanak, Dawid P; Kolios, Athanasios J; Onabanjo, Tosin; Wagland, Stuart T; Patchigolla, Kumar; Fidalgo, Beatriz; Manovic, Vasilije; McAdam, Ewan; Parker, Alison; Williams, Leon; Tyrrel, Sean; Cartmell, Elise

    2016-10-15

    With about 2.4 billion people worldwide without access to improved sanitation facilities, there is a strong incentive for development of novel sanitation systems to improve the quality of life and reduce mortality. The Nano Membrane Toilet is expected to provide a unique household-scale system that would produce electricity and recover water from human excrement and urine. This study was undertaken to evaluate the performance of the conceptual energy and water recovery system for the Nano Membrane Toilet designed for a household of ten people and to assess its self-sustainability. A process model of the entire system, including the thermochemical conversion island, a Stirling engine and a water recovery system was developed in Aspen Plus®. The energy and water recovery system for the Nano Membrane Toilet was characterised with the specific net power output of 23.1 Wh/kgsettledsolids and water recovery rate of 13.4 dm(3)/day in the nominal operating mode. Additionally, if no supernatant was processed, the specific net power output was increased to 69.2 Wh/kgsettledsolids. Such household-scale system would deliver the net power output (1.9-5.8 W). This was found to be enough to charge mobile phones or power clock radios, or provide light for the household using low-voltage LED bulbs.

  20. Climate convention implementation: An opportunity for the Pacific Island nations to move toward sustainable energy systems

    SciTech Connect

    Yu, Xiaojiang; Taplin, R.; Gilmour, A.J.

    1997-07-01

    The impacts of global warming are among the more serious environmental threats for the Pacific Island countries. These nations justifiably argue that developed countries should give immediate priority to the implementation of climate change mitigation policies because of the severe nature of potential greenhouse impacts for the Pacific Islands. Another immediate priority acknowledged by these nations is the need for development of adaptation policies that plan for adjustment or adaptation, where possible, to the foreshadowed impacts of climate change. This article does not focus on adaptation or mitigation policy directly but on an allied opportunity that exists for the Pacific Islands via the auspices of the Climate Convention, because the existing very costly energy systems used in the Pacific Island region are fossil-fuel dependent. It is argued here that efforts can be made towards the development of energy systems that are ecologically sustainable because Pacific Island nations are eligible to receive assistance to introduce renewable energy technology and pursue energy conservation via implementation mechanisms of the Climate Convention and, in particular, through transfer of technology and via joint implementation. It is contended that assistance in the form of finance, technology, and human resource development from developed countries and international organizations would provide sustainable benefits in improving the local Pacific Island environments. It is also emphasized that mitigation of green-house gas emissions is not the responsibility of the Pacific Islands as they contribute very little on a per capita global scale and a tiny proportion of total global greenhouse gas emissions. 61 refs., 1 fig., 6 tabs.

  1. Exploring the sustainability of industrial production and energy generation with a model system

    EPA Science Inventory

    The importance and complexity of sustainability has been well recognized and a formal study of sustainability based on system theory approaches is imperative as many of the relationships between the various components of the system could be non-linear, intertwined, and non-intuit...

  2. Sustainable aquaculture systems

    SciTech Connect

    Brune, D.E.

    1994-08-01

    The goal of this paper is to examine and assess the technical feasibility of the integration of plant and/or animal aquaculture systems into a sustainable agriculture. Although most researchers tend to avoid a precise definition of sustainable aquaculture, the implication that one gets from `reading between the lines` is that a sustainable agro-ecosystem is one which recycles materials at maximum energy efficiency. The `unspoken` standard against which comparisons of sustainability are often made is that of a mature natural ecosystem at a steady state. Cost comparisons of alternative systems will be used whenever possible, however, in many cases, conventional cost/benefit analysis will be of limited value in such an analysis. For aquaculture, such an analysis can best be conducted by analyzing the possibilities of integrating nutrients, water, and energy flow from aquaculture systems both to and from, conventional agricultural systems. The various aquaculture options are then qualitatively compared as their potential, limitations, environmental soundness, productivity, socio-economic viability and the availability of supporting technology. It is important to realize that the usefulness or applicability of any sustainable or integrated aquaculture practice is highly site specific.

  3. Energy Conversion Chain Analysis of Sustainable Energy Systems: A Transportation Case Study

    ERIC Educational Resources Information Center

    Evans, Robert L.

    2008-01-01

    In general terms there are only three primary energy sources: fossil fuels, renewable energy, and nuclear fission. For fueling road transportation, there has been much speculation about the use of hydrogen as an energy carrier, which would usher in the "hydrogen economy." A parallel situation would use a simple battery to store electricity…

  4. Policy Strategies and Paths to promote Sustainable Energy Systems- The dynamic Invert Simulation Tool

    SciTech Connect

    Stadler, Michael; Kranzl, Lukas; Huber, Claus; Haas, Reinhard; Tsioliaridou, Elena

    2006-05-01

    The European Union has established a number of targetsregarding energy efficiency, Renewable Energy Sources (RES) and CO2reductions as the 'GREEN PAPER on Energy Efficiency', the Directive for'promotion of the use of bio-fuels or other renewable fuels fortransport' or 'Directive of the European Parliament of the Council on thepromotion of cogeneration based on a useful heat demand in the internalenergy market'. A lot of the according RES and RUE measures are notattractive for investors from an economic point of view. Thereforegovernmentsall over the world have to spend public money to promotethese technologies/measures to bring them into market. These expenditureshave to be adjusted to budget concerns and should be spent mostefficiently. Therefore, the spent money has to be dedicated totechnologies and efficiency measures with the best yield in CO2 reductionwithout wasting money. The core question: "How can public money - forpromoting sustainable energy systems - be spent most efficiently toreduce GHG-emissions?" has been well investigated by the European projectInvert. In course of this project a simulation tool has been designed toanswer this core question. This paper describes the modelling with theInvert simulation tool and shows the key features necessary forsimulating the energy system. A definition of 'Promotion SchemeEfficiency' is given which allows estimating the most cost effectivetechnologies and/or efficiency measures to reduce CO2 emissions.Investigations performed with the Invert simulation tool deliver anoptimum portfolio mix of technologies and efficiency measures for eachselected region. Within Invert seven European regions were simulated andfor the Austrian case study the detailed portfolio mix is shown andpolitical conclusions are derived.

  5. Energy access and sustainable development

    NASA Astrophysics Data System (ADS)

    Kammen, Daniel M.; Alstone, Peter; Gershenson, Dimitry

    2015-03-01

    With 1.4 billion people lacking electricity to light their homes and provide other basic services, or to conduct business, and all of humanity (and particularly the poor) are in need of a decarbonized energy system can close the energy access gap and protect the global climate system. With particular focus on addressing the energy needs of the underserved, we present an analytical framework informed by historical trends and contemporary technological, social, and institutional conditions that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. We find that the current day is a unique moment of innovation in decentralized energy networks based on super-efficient end-use technology and low-cost photovoltaics, supported by rapidly spreading information technology, particularly mobile phones. Collectively these disruptive technology systems could rapidly increase energy access, contributing to meeting the Millennium Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, energy systems.

  6. Content for Teaching Sustainable Energy Systems in Physics at Upper Secondary School

    ERIC Educational Resources Information Center

    Engstrom, Susanne; Gustafsson, Peter; Niedderer, Hans

    2011-01-01

    Understanding energy with a focus on sustainable development requires further knowledge beyond traditional conceptual understanding. This paper presents the result from one main investigation and two smaller follow-up studies. The main study (step 1) consists of an interpreting, iterative analysis of statements made by experts on contents for…

  7. Sustainable systems as organisms?

    PubMed

    Ho, Mae-Wan; Ulanowicz, Robert

    2005-10-01

    Schrödinger [Schrödinger, E., 1944. What is Life? Cambridge University Press, Cambridge] marvelled at how the organism is able to use metabolic energy to maintain and even increase its organisation, which could not be understood in terms of classical statistical thermodynamics. Ho [Ho, M.W., 1993. The Rainbow and the Worm, The Physics of Organisms, World Scientific, Singapore; Ho, M.W., 1998a. The Rainbow and the Worm, The Physics of Organisms, 2nd (enlarged) ed., reprinted 1999, 2001, 2003 (available online from ISIS website www.i-sis.org.uk)] outlined a novel "thermodynamics of organised complexity" based on a nested dynamical structure that enables the organism to maintain its organisation and simultaneously achieve non-equilibrium and equilibrium energy transfer at maximum efficiency. This thermodynamic model of the organism is reminiscent of the dynamical structure of steady state ecosystems identified by Ulanowicz [Ulanowicz, R.E., 1983. Identifying the structure of cycling in ecosystems. Math. Biosci. 65, 210-237; Ulanowicz, R.E., 2003. Some steps towards a central theory of ecosystem dynamics. Comput. Biol. Chem. 27, 523-530]. The healthy organism excels in maintaining its organisation and keeping away from thermodynamic equilibrium--death by another name--and in reproducing and providing for future generations. In those respects, it is the ideal sustainable system. We propose therefore to explore the common features between organisms and ecosystems, to see how far we can analyse sustainable systems in agriculture, ecology and economics as organisms, and to extract indicators of the system's health or sustainability. We find that looking at sustainable systems as organisms provides fresh insights on sustainability, and offers diagnostic criteria for sustainability that reflect the system's health. In the case of ecosystems, those diagnostic criteria of health translate into properties such as biodiversity and productivity, the richness of cycles, the

  8. Sustainable Biomass Supply Systems

    SciTech Connect

    Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

    2009-04-01

    The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOE’s ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

  9. Climate stabilization wedges in action: a systems approach to energy sustainability for Hawaii Island.

    PubMed

    Johnson, Jeremiah; Chertow, Marian

    2009-04-01

    Pacala and Socolow developed a framework to stabilize global greenhouse gas levels for the next fifty years using wedges of constant size representing an increasing use of existing technologies and approaches for energy efficiency, carbon free generation, renewables, and carbon storage. The research presented here applies their approach to Hawaii Island, with modifications to support local scale analysis and employing a "bottom-up" methodology that allows for wedges of various sizes. A discretely bounded spatial unit offers a testing ground for a holistic approach to improving the energy sector with the identification of local options and limitations to the implementation of a comprehensive energy strategy. Nearly 80% of total primary energy demand across all sectors for Hawaii Island is currently met using petroleum-based fuels.The Sustainable Energy Plan scenario included here presents an internally consistent set of recommendations bounded by local constraints in areas such as transportation efficiency, centralized renewable generation (e.g., geothermal, wind), reduction in transmission losses, and improved building efficiency. This scenario shows thatthe demand for primary energy in 2030 could be reduced by 23% through efficiency measures while 46% could be met by renewable generation, resulting in only 31% of the projected demand being met by fossil fuels. In 2030, the annual releases of greenhouse gases would be 3.2 Mt CO2-eq/year under the Baseline scenario, while the Sustainable Energy Plan would reduce this to 1.2 Mt CO2-eq/year--an annual emissions rate 40% below 2006 levels and 10% below 1990 levels. The total for greenhouse gas emissions during the 24-year study period (2007 to 2030) is 59.9 Mt CO2-eq under the Baseline scenario and 32.5 Mt CO2-eq under the Sustainable Energy Plan scenario. Numerous combinations of efficiency and renewable energy options can be employed in a manner that stabilizes the greenhouse gas emissions of Hawaii Island.

  10. Energy sustainability: consumption, efficiency, and ...

    EPA Pesticide Factsheets

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consumption began exceeding planetary supply in 1977 and by 2030, global energy demand, population, and gross domestic product are projected to greatly increase over 1977 levels. With the aim of finding sustainable energy solutions, we present a simple yet rigorous procedure for assessing and counterbalancing the relationship between energy demand, environmental impact, population, GDP, and energy efficiency. Our analyses indicated that infeasible increases in energy efficiency (over 100 %) would be required by 2030 to return to 1977 environmental impact levels and annual reductions (2 and 3 %) in energy demand resulted in physical, yet impractical requirements; hence, a combination of policy and technology approaches is needed to tackle this critical challenge. This work emphasizes the difficulty in moving toward energy sustainability and helps to frame possible solutions useful for policy and management. Based on projected energy consumption, environmental impact, human population, gross domestic product (GDP), and energy efficiency, for this study, we explore the increase in energy-use efficiency and the decrease in energy use intensity required to achieve sustainable environmental impact le

  11. Energy efficiency, renewable energy and sustainable development

    SciTech Connect

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  12. Sustainable Energy Crop Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofuels currently supply a small portion of the world’s energy needs but this is increasing due to mandates intended to reduce use of fossil fuels and the associated environmental impacts. However, the potentials of plant based feedstocks to substitute for fossil fuels and mitigate environmental im...

  13. Development and Analysis of New Integrated Energy Systems for Sustainable Buildings

    NASA Astrophysics Data System (ADS)

    Khalid, Farrukh

    Excessive consumption of fossil fuels in the residential sector and their associated negative environmental impacts bring a significant challenge to engineers within research and industrial communities throughout the world to develop more environmentally benign methods of meeting energy needs of residential sector in particular. This thesis addresses potential solutions for the issue of fossils fuel consumption in residential buildings. Three novel renewable energy based multigeneration systems are proposed for different types of residential buildings, and a comprehensive assessment of energetic and exergetic performances is given on the basis of total occupancy, energy load, and climate conditions. System 1 is a multigeneration system based on two renewable energy sources. It uses biomass and solar resources. The outputs of System 1 are electricity, space heating, cooling, and hot water. The energy and exergy efficiencies of System 1 are 91.0% and 34.9%, respectively. The results of the optimisation analysis show that the net present cost of System 1 is 2,700,496 and that the levelised cost of electricity is 0.117/kWh. System 2 is a multigeneration system, integrating three renewable energy based subsystems; wind turbine, concentrated solar collector, and Organic Rankine Cycle supplied by a ground source heat exchanger. The outputs of the System 2 are electricity, hot water, heating and cooling. The optimisation analysis shows that net present cost is 35,502 and levelised cost of electricity is 0.186/kWh. The energy and exergy efficiencies of System 2 are found to be 34.6% and 16.2%, respectively. System 3 is a multigeneration system, comprising two renewable energy subsystems-- geothermal and solar to supply power, cooling, heating, and hot water. The optimisation analysis shows that the net present cost of System 3 is 598,474, and levelised cost of electricity of 0.111/kWh. The energy and exergy efficiencies of System 3 are 20.2% and 19.2%, respectively, with

  14. Sustainable diets within sustainable food systems.

    PubMed

    Meybeck, Alexandre; Gitz, Vincent

    2017-02-01

    Sustainable diets and sustainable food systems are increasingly explored by diverse scientific disciplines. They are also recognised by the international community and called upon to orient action towards the eradication of hunger and malnutrition and the fulfilment of sustainable development goals. The aim of the present paper is to briefly consider some of the links between these two notions in order to facilitate the operationalisation of the concept of sustainable diet. The concept of sustainable diet was defined in 2010 combining two totally different perspectives: a nutrition perspective, focused on individuals, and a global sustainability perspective, in all its dimensions: environmental, economic and social. The nutrition perspective can be easily related to health outcomes. The global sustainability perspective is more difficult to analyse directly. We propose that it be measured as the contribution of a diet to the sustainability of food systems. Such an approach, covering the three dimensions of sustainability, enables identification of interactions and interrelations between food systems and diets. It provides opportunities to find levers of change towards sustainability. Diets are both the results and the drivers of food systems. The drivers of change for those variously involved, consumers and private individuals, are different, and can be triggered by different dimensions (heath, environment, social and cultural). Combining different dimensions and reasons for change can help facilitate the transition to sustainable diets, recognising the food system's specificities. The adoption of sustainable diets can be facilitated and enabled by food systems, and by appropriate policies and incentives.

  15. Radio frequency sustained ion energy

    DOEpatents

    Jassby, Daniel L.; Hooke, William M.

    1977-01-01

    Electromagnetic (E.M.) energy injection method and apparatus for producing and sustaining suprathermal ordered ions in a neutral, two-ion-species, toroidal, bulk equilibrium plasma. More particularly, the ions are produced and sustained in an ordered suprathermal state of existence above the average energy and velocity of the bulk equilibrium plasma by resonant rf energy injection in resonance with the natural frequency of one of the ion species. In one embodiment, the electromagnetic energy is injected to clamp the energy and velocity of one of the ion species so that the ion energy is increased, sustained, prolonged and continued in a suprathermal ordered state of existence containing appreciable stored energy that counteracts the slowing down effects of the bulk equilibrium plasma drag. Thus, selective deuteron absorption may be used for ion-tail creation by radio-frequency excitation alone. Also, the rf can be used to increase the fusion output of a two-component neutral injected plasma by selective heating of the injected deuterons.

  16. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics.

    PubMed

    Niu, Simiao; Wang, Xiaofeng; Yi, Fang; Zhou, Yu Sheng; Wang, Zhong Lin

    2015-12-11

    Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m(-3)) in a regulated and managed manner. This self-charging unit can be universally applied as a standard 'infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things.

  17. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics

    PubMed Central

    Niu, Simiao; Wang, Xiaofeng; Yi, Fang; Zhou, Yu Sheng; Wang, Zhong Lin

    2015-01-01

    Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m−3) in a regulated and managed manner. This self-charging unit can be universally applied as a standard ‘infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things. PMID:26656252

  18. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics

    NASA Astrophysics Data System (ADS)

    Niu, Simiao; Wang, Xiaofeng; Yi, Fang; Zhou, Yu Sheng; Wang, Zhong Lin

    2015-12-01

    Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m-3) in a regulated and managed manner. This self-charging unit can be universally applied as a standard `infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things.

  19. Solving the Meteorological Challenges of Creating a Sustainable Energy System (Invited)

    NASA Astrophysics Data System (ADS)

    Marquis, M.

    2010-12-01

    Global energy demand is projected to double from 13 TW at the start of this century to 28 TW by the middle of the century. This translates into obtaining 1000 MW (1 GW, the amount produced by an average nuclear or coal power plant) of new energy every single day for the next 40 years. The U.S. Department of Energy has conducted three feasibility studies in the last two years identifying the costs, challenges, impacts, and benefits of generating large portions of the nation’s electricity from wind and solar energy, in the new two decades. The 20% Wind by 2030 report found that the nation could meet one-fifth of its electricity demand from wind energy by 2030. The second report, the Eastern Wind Integration and Transmission Study, considered similar costs, challenges, and benefits, but considered 20% wind energy in the Eastern Interconnect only, with a target date of 2024. The third report, the Western Wind and Solar Integration Study, considered the operational impact of up to 35% penetration of wind, photovoltaics (PVs) and, concentrating solar power (CSP) on the power system operated by the WestConnect group, with a target date of 2017. All three studies concluded that it is technically feasible to obtain these high penetration levels of renewable energy, but that increases in the balancing area cooperation or coordination, increased utilization of transmission and building of transmission in some cases, and improved weather forecasts are needed. Current energy systems were designed for dispatchable fuels, such as coal, natural gas and nuclear energy. Fitting weather-driven renewable energy into today's energy system is like fitting a square peg into a round hole. If society chooses to meet a significant portion of new energy demand from weather-driven renewable energy, such as wind and solar energy, a number of obstacles must be overcome. Some of these obstacles are meteorological and climatological issues that are amenable to scientific research. For variable

  20. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    SciTech Connect

    Danuso, Francesco

    2008-06-18

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed. SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Joergensen, 1994) in which systems are modeled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  1. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    SciTech Connect

    Danuso, Francesco

    2008-06-18

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed.  SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower  management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  2. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    ScienceCinema

    Danuso, Francesco [University of Udine, Italy

    2016-07-12

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed.  SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower  management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  3. An Energy Systems Perspective on Sustainability and the “Prosperous Way Down”

    EPA Science Inventory

    Energy Systems Theory provides a theoretical context for understanding, evaluating and interpreting shared social visions like “Growth”, “Sustainability” and “The Prosperous Way Down”. A social vision becomes dominant within society when a sufficient number of people recognize t...

  4. Nigeria: Energy for sustainable development

    SciTech Connect

    Eleri, E.O.

    1993-12-31

    Though an essentially contested concept, it is safe to acknowledge that the attainment of sustainable development requires that the growth and well-being of present generations are brought about in such ways that the ability of future people to meet their own needs will not be compromised. The availability of safe and sound energy as a factor of production is a key element in such a development process. Despite the abundance of energy resources, acute shortages of energy services have become endemic in Nigeria. This paper reassesses the common proposition that energy has fueled growth and development in Nigeria by its role as the chief source of state revenue and through its input into economic activities in the country. It is argued here, however, that conventional energy management in Nigeria has tended to create development flaws of its own. The article is divided into six sections: 1st, a general account of the energy and development linkages in Nigeria; 2nd, the failures of these linkages are assessed; 3rd, policy initiatives are considered that would be reconcilable to the nation`s sustainable development; 4th, the present reform agenda, its inadequacies and barriers are surveyed; 5th, the achievement of sustainable development, it is argued, will demand the re-institutionalization of the political economy of the energy sector in Nigeria, which will depend largely on the resolution of the dilemmas and conflicts in the country`s broader political and economic reforms; and 6th, an outlook is suggested for future policy development.

  5. Measure it, See it, Manage it: Using Real Time Data to Benchmark,Optimize, and Sustain System Energy Efficiency

    SciTech Connect

    Taranto, Thomas; McKane, Aimee; Amon, Ricardo; Maulhardt, Michael

    2007-07-02

    Even after years of training and awareness building at thestate and national level, industrial cross-cutting systems (motor-driven,steam, process heating) continue to offer significant opportunities forenergy savings. The US Department of Energy estimates these remainingsavings at more than 7 percent of all industrial energy use. This paperpresents a different approach to promoting industrial system energyefficiency -- providing plant personnel with ready access to data uponwhich to base energy management decisions.In 2005, a Del Monte Foodsfruit processing plant in Modesto, California worked with LawrenceBerkeley National Laboratory (LBNL)to specify and purchase permanentinstrumentation for monitoring their compressed air system. This work,completed as part of a demonstration project under a State TechnologiesAdvancement Collaborative (STAC) grant, was designed to demonstrate theeffectiveness of enterprise energy management (EEM), which is predicatedon the assumption that the energy efficiency of existing, cross-cuttingindustrial systems (motor-driven, steam) can be improved by providingmanagement and operating personnel with real-time data on energy use. Theinitial STAC grant provided for the installation and some initialanalyses, but did not address the larger issue of integrating these newdata into an ongoing energy management program for the compressed airsystem.The California Energy Commission (CEC) decided to support furtheranalysis to identify potential for air system optimization. Through theCEC's Energy in Agriculture Program, a compressed air system audit wasperformed by Tom Taranto to: Measure and document the system's baselineand CASE Index of present operation; Establish methods to sustain anongoing CASE Index measure of performance; Use AIRMaster+ to analyzesupply side performance as compared to the CASE Index; Identify demandside opportunities for efficiency and performance improvement; Assesssupply / demand balance and energy reduction

  6. a Perspective on Sustainability and Resilience in Interdependent Water-Energy Systems

    NASA Astrophysics Data System (ADS)

    Lall, U.; Devineni, N.

    2015-12-01

    Since the World Economic Forum highlighted the Water-Energy-Food-Climate nexus of issues, with examples that distinguised between the developing and developed country manifestations, there has been a tremendous interest in exploring related topics by academics, the media, industry, the public sector and leading politicians. It is clear that there is interdependence across these systems and exigencies in one can lead to impacts in the other. By and large, we have seen case studies exposing attributes of the nexus, and broad generalizations of the potential inersections. Some have proposed network models, others have spoken to the fact that the fragmentation of these issues across many institutions restricts the ability to manage these as an integrated control system. Given that hydroclimatic systems are globally connected dynamical systems that influence social systems that manage the production and consumption of water, food and energy, and are in turn influenced by them, one direction that needs to emerge is an understanding of the multiscale and bidirectional links between climate and the managed earth systems. However, a challenge in this regard is that our managed systems are not explicitly managed. We have market processes for food and energy, but with regulatory intervention and subsidies and incentives that often distort market outcomes. For water, we typically have disjunctive public sector managementof resources, with very limited market like approaches. How then can one understand the interlinked functioning of these systems, seek predictabiliy and develop rules that allow adaptive management across the nexus while developing a regulated market structure that stimulates innovation and cost reduction/efficiency improvements. This may be one of the more significant challenges facing those who wish to be earth system managers and postulate future scenarios, regulate emissions and foster life cycle thinking as part of green engineering. In this talk, I will

  7. A virtual laboratory for the simulation of sustainable energy systems in a low energy building: A case study

    NASA Astrophysics Data System (ADS)

    Breen, M.; O'Donovan, A.; Murphy, M. D.; Delaney, F.; Hill, M.; Sullivan, P. D. O.

    2016-03-01

    The aim of this paper was to develop a virtual laboratory simulation platform of the National Building Retrofit Test-bed at the Cork Institute of Technology, Ireland. The building in question is a low-energy retrofit which is provided with electricity by renewable systems including photovoltaics and wind. It can be thought of as a living laboratory, as a number of internal and external building factors are recorded at regular intervals during human occupation. The analysis carried out in this paper demonstrated that, for the period from April to September 2015, the electricity provided by the renewable systems did not consistently match the building’s electricity requirements due to differing load profiles. It was concluded that the use of load shifting techniques may help to increase the percentage of renewable energy utilisation.

  8. Modeling Sustainable Food Systems

    NASA Astrophysics Data System (ADS)

    Allen, Thomas; Prosperi, Paolo

    2016-05-01

    The processes underlying environmental, economic, and social unsustainability derive in part from the food system. Building sustainable food systems has become a predominating endeavor aiming to redirect our food systems and policies towards better-adjusted goals and improved societal welfare. Food systems are complex social-ecological systems involving multiple interactions between human and natural components. Policy needs to encourage public perception of humanity and nature as interdependent and interacting. The systemic nature of these interdependencies and interactions calls for systems approaches and integrated assessment tools. Identifying and modeling the intrinsic properties of the food system that will ensure its essential outcomes are maintained or enhanced over time and across generations, will help organizations and governmental institutions to track progress towards sustainability, and set policies that encourage positive transformations. This paper proposes a conceptual model that articulates crucial vulnerability and resilience factors to global environmental and socio-economic changes, postulating specific food and nutrition security issues as priority outcomes of food systems. By acknowledging the systemic nature of sustainability, this approach allows consideration of causal factor dynamics. In a stepwise approach, a logical application is schematized for three Mediterranean countries, namely Spain, France, and Italy.

  9. Integrated Renewable Energy and Campus Sustainability Initiative

    SciTech Connect

    Uthoff, Jay; Jensen, Jon; Bailey, Andrew

    2013-09-25

    Renewable energy, energy conservation, and other sustainability initiatives have long been a central focus of Luther College. The DOE funded Integrated Renewable Energy and Campus Sustainability Initiative project has helped accelerate the College’s progress toward carbon neutrality. DOE funds, in conjunction with institutional matching funds, were used to fund energy conservation projects, a renewable energy project, and an energy and waste education program aimed at all campus constituents. The energy and waste education program provides Luther students with ideas about sustainability and conservation guidelines that they carry with them into their future communities.

  10. Demonstration of a Rapid Energy Audit Procedure for use with an Army Sustainment Management System (SMS)

    DTIC Science & Technology

    2012-12-01

    practices of the American Association of Heating, Refrigerating, and Air-Conditioning Engineers ( ASHRAE ). Consequently, energy per- formance data tend...Retro—Commissioning Study. Kissock, J. K., J. S. Haberl and D.E. Claridge. 2003. “Inverse modeling toolkit: numerical algorithms.” ASHRAE

  11. Sustainable roofs with real energy savings

    SciTech Connect

    Christian, J.E.; Petrie, T.W.

    1996-12-31

    This paper addresses the general concept of sustainability and relates it to the building owner`s selection of a low-slope roof. It offers a list of performance features of sustainable roofs. Experiences and data relevant to these features for four unique roofs are then presented which include: self-drying systems, low total equivalent warming foam insulation, roof coatings and green roofs. The paper concludes with a list of sustainable roofing features worth considering for a low-slope roof investment. Building owners and community developers are showing more interest in investing in sustainability. The potential exists to design, construct, and maintain roofs that last twice as long and reduce the building space heating and cooling energy loads resulting from the roof by 50% (based on the current predominant design of a 10-year life and a single layer of 1 to 2 in. (2.5 to 5.1 cm) of insulation). The opportunity to provide better low-slope roofs and sell more roof maintenance service is escalating. The general trend of outsourcing services could lead to roofing companies` owning the roofs they install while the traditional building owner owns the rest of the building. Such a situation would have a very desirable potential to internalize the costs of poor roof maintenance practices and high roof waste disposal costs, and to offer a profit for installing roofs that are more sustainable. 14 refs., 12 figs.

  12. SUSTAINABILITY AND COMPLEX SYSTEMS

    EPA Science Inventory

    The important question in sustainability is not whether the world is sustainable, but whether a humanly acceptable regime of the world is sustainable. World commission on environment and development defines sustainability as ‘development that meets the needs of the present withou...

  13. Sustainability. Systems integration for global sustainability.

    PubMed

    Liu, Jianguo; Mooney, Harold; Hull, Vanessa; Davis, Steven J; Gaskell, Joanne; Hertel, Thomas; Lubchenco, Jane; Seto, Karen C; Gleick, Peter; Kremen, Claire; Li, Shuxin

    2015-02-27

    Global sustainability challenges, from maintaining biodiversity to providing clean air and water, are closely interconnected yet often separately studied and managed. Systems integration—holistic approaches to integrating various components of coupled human and natural systems—is critical to understand socioeconomic and environmental interconnections and to create sustainability solutions. Recent advances include the development and quantification of integrated frameworks that incorporate ecosystem services, environmental footprints, planetary boundaries, human-nature nexuses, and telecoupling. Although systems integration has led to fundamental discoveries and practical applications, further efforts are needed to incorporate more human and natural components simultaneously, quantify spillover systems and feedbacks, integrate multiple spatial and temporal scales, develop new tools, and translate findings into policy and practice. Such efforts can help address important knowledge gaps, link seemingly unconnected challenges, and inform policy and management decisions.

  14. Sustainable Rural Energy Development in Brazil

    SciTech Connect

    Ghandour, A.

    2005-01-01

    Under the Luz Para Todos ('Lights for All') Program, the Government of Brazil (GOB) seeks to provide basic electricity services to all its citizens by 2008. An estimated 2.5 million rural households (over 12 million Brazilians) currently lack electric service, with approximately 80% of them located in rural areas. Since many of these households are too geographically isolated to be connected to the national grid, they will receive distributed energy systems, and the government hopes to maximize the use of local renewable resources to service them. The National Renewable Energy Laboratory (NREL) is working with the GOB and a variety of local partners to identify and implement sustainable off-grid solutions to meet Brazil's rural energy needs. Focused in the Amazon region, these collaborative activities are, on one hand, using field-based activities to build local technical capacity and design replicable models for rural energy development, while on the other hand helping to develop the institutional structures that will be necessary to sustain distributed renewable energy development on a large-scale in Brazil.

  15. Understanding the human dimensions of a sustainable energy transition

    PubMed Central

    Steg, Linda; Perlaviciute, Goda; van der Werff, Ellen

    2015-01-01

    Global climate change threatens the health, economic prospects, and basic food and water sources of people. A wide range of changes in household energy behavior is needed to realize a sustainable energy transition. We propose a general framework to understand and encourage sustainable energy behaviors, comprising four key issues. First, we need to identify which behaviors need to be changed. A sustainable energy transition involves changes in a wide range of energy behaviors, including the adoption of sustainable energy sources and energy-efficient technology, investments in energy efficiency measures in buildings, and changes in direct and indirect energy use behavior. Second, we need to understand which factors underlie these different types of sustainable energy behaviors. We discuss three main factors that influence sustainable energy behaviors: knowledge, motivations, and contextual factors. Third, we need to test the effects of interventions aimed to promote sustainable energy behaviors. Interventions can be aimed at changing the actual costs and benefits of behavior, or at changing people’s perceptions and evaluations of different costs and benefits of behavioral options. Fourth, it is important to understand which factors affect the acceptability of energy policies and energy systems changes. We discuss important findings from psychological studies on these four topics, and propose a research agenda to further explore these topics. We emphasize the need of an integrated approach in studying the human dimensions of a sustainable energy transition that increases our understanding of which general factors affect a wide range of energy behaviors as well as the acceptability of different energy policies and energy system changes. PMID:26136705

  16. Understanding the human dimensions of a sustainable energy transition.

    PubMed

    Steg, Linda; Perlaviciute, Goda; van der Werff, Ellen

    2015-01-01

    Global climate change threatens the health, economic prospects, and basic food and water sources of people. A wide range of changes in household energy behavior is needed to realize a sustainable energy transition. We propose a general framework to understand and encourage sustainable energy behaviors, comprising four key issues. First, we need to identify which behaviors need to be changed. A sustainable energy transition involves changes in a wide range of energy behaviors, including the adoption of sustainable energy sources and energy-efficient technology, investments in energy efficiency measures in buildings, and changes in direct and indirect energy use behavior. Second, we need to understand which factors underlie these different types of sustainable energy behaviors. We discuss three main factors that influence sustainable energy behaviors: knowledge, motivations, and contextual factors. Third, we need to test the effects of interventions aimed to promote sustainable energy behaviors. Interventions can be aimed at changing the actual costs and benefits of behavior, or at changing people's perceptions and evaluations of different costs and benefits of behavioral options. Fourth, it is important to understand which factors affect the acceptability of energy policies and energy systems changes. We discuss important findings from psychological studies on these four topics, and propose a research agenda to further explore these topics. We emphasize the need of an integrated approach in studying the human dimensions of a sustainable energy transition that increases our understanding of which general factors affect a wide range of energy behaviors as well as the acceptability of different energy policies and energy system changes.

  17. ON ENERGY AND SUSTAINABILITY (PERSONAL COLUMN)

    EPA Science Inventory

    The use of energy is a major and desirable feature of modern human existence, but it has significant impact on the planetary environment. It is, therefore, an important issue in the quest for sustainability. The search for viable policies leading to energy sustainability falls ...

  18. Energy 101: Sustainable Public Transportation

    ScienceCinema

    None

    2016-09-20

    You may already know that public transportation reduces pollution and eases congestion on the road. However, many transit fleets are switching over to cleaner, alternative fuels and technologies, making this mode of transportation even more sustainable.

  19. Energy 101: Sustainable Public Transportation

    SciTech Connect

    2016-09-07

    You may already know that public transportation reduces pollution and eases congestion on the road. However, many transit fleets are switching over to cleaner, alternative fuels and technologies, making this mode of transportation even more sustainable.

  20. Progress on linking gender and sustainable energy

    SciTech Connect

    Farhar, B.

    2000-04-05

    The field of gender and energy has been identified as critical in global sustainable energy development and is increasingly important to decision makers. The theme of women and energy was of significance at the 1998 World Renewable Energy Congress in Florence, Italy. This paper traces further developments in this field by summarizing selected programmatic initiatives, meetings, and publications over the past 18 months.

  1. Energy Sustainability and the Green Campus.

    ERIC Educational Resources Information Center

    Simpson, Walter

    2003-01-01

    Discusses the importance of campus energy sustainability, explaining that both demand- and supply-side strategies are required. Suggests that on the demand side, an aggressive campus energy conservation program can reduce campus energy consumption by 30 percent or more. Asserts that addressing the supply side of the energy equation means shifting…

  2. Control System for Sustainable Development

    NASA Astrophysics Data System (ADS)

    Carlman, Inga

    2008-10-01

    Ecological sustainability presupposes that a global human population acts in such ways, that their total impact on the biosphere, together with nature's reactions, keeps the biosphere sufficient for sustaining generations to come. Human conduct is ultimately controlled by means of law. The problem can be summed up as: Controlling system—Population—Sustainable ecosystems This paper discusses two interlinked issues: a) the social scientific need for systems theory in the context of achieving and maintaining sustainable development and b) how theory of anticipatory modelling and computing can be applied when constructing and applying societal controlling systems for ecological sustainability with as much local democracy and economic efficiency as possible.

  3. The EU sustainable energy policy indicators framework.

    PubMed

    Streimikiene, Dalia; Sivickas, Gintautas

    2008-11-01

    The article deals with indicators framework to monitor implementation of the main EU (European Union) directives and other policy documents targeting sustainable energy development. The main EU directives which have impact on sustainable energy development are directives promoting energy efficiency and use of renewable energy sources, directives implementing greenhouse gas mitigation and atmospheric pollution reduction policies and other policy documents and strategies targeting energy sector. Promotion of use of renewable energy sources and energy efficiency improvements are among priorities of EU energy policy because the use of renewable energy sources and energy efficiency improvements has positive impact on energy security and climate change mitigation. The framework of indicators can be developed to establish the main targets set by EU energy and environmental policies allowing to connect indicators via chain of mutual impacts and to define policies and measures necessary to achieve established targets based on assessment of their impact on the targeted indicators representing sustainable energy development aims. The article discusses the application of indicators framework for EU sustainable energy policy analysis and presents the case study of this policy tool application for Baltic States. The article also discusses the use of biomass in Baltic States and future considerations in this field.

  4. The United Nations development programme initiative for sustainable energy

    SciTech Connect

    Hurry, S.

    1997-12-01

    Energy is central to current concerns about sustainable human development, affecting economic and social development; economic growth, the local, national, regional, and global environment; the global climate; a host of social concerns, including poverty, population, and health, the balance of payments, and the prospects for peace. Energy is not an end in itself, but rather the means to achieve the goals of sustainable human development. The energy systems of most developing countries are in serious crisis involving insufficient levels of energy services, environmental degradation, inequity, poor technical and financial performance, and capital scarcity. Approximately 2.5 billion people in the developing countries have little access to commercial energy supplies. Yet the global demand for energy continues to grow: total primary energy is projected to grow from 378 exajoules (EJ) per year in 1990 to 571 EJ in 2020, and 832 EJ in 2050. If this increase occurs using conventional approaches and energy sources, already serious local (e.g., indoor and urban air pollution), regional (eg., acidification and land degradation), and global (e.g., climate change) environmental problems will be critically aggravated. There is likely to be inadequate capital available for the needed investments in conventional energy sources. Current approaches to energy are thus not sustainable and will, in fact, make energy a barrier to socio-economic development. What is needed now is a new approach in which energy becomes an instrument for sustainable development. The two major components of a sustainable energy strategy are (1) more efficient energy use, especially at the point of end-use, and (2) increased use of renewable sources of energy. The UNDP Initiative for Sustainable Energy (UNISE) is designed to harness opportunities in these areas to build upon UNDP`s existing energy activities to help move the world toward a more sustainable energy strategy by helping program countries.

  5. Towards greener and more sustainable batteries for electrical energy storage.

    PubMed

    Larcher, D; Tarascon, J-M

    2015-01-01

    Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.

  6. Towards greener and more sustainable batteries for electrical energy storage

    NASA Astrophysics Data System (ADS)

    Larcher, D.; Tarascon, J.-M.

    2015-01-01

    Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.

  7. China Energy Group - Sustainable Growth Through EnergyEfficiency

    SciTech Connect

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various industries, and

  8. Magnetic Materials in sustainable energy

    NASA Astrophysics Data System (ADS)

    Gutfleisch, Oliver

    2012-02-01

    A new energy paradigm, consisting of greater reliance on renewable energy sources and increased concern for energy efficiency in the total energy lifecycle, has accelerated research in energy-related technologies. Due to their ubiquity, magnetic materials play an important role in improving the efficiency and performance of devices in electric power generation, conversion and transportation. Magnetic materials are essential components of energy applications (i.e. motors, generators, transformers, actuators, etc.) and improvements in magnetic materials will have significant impact in this area, on par with many ``hot'' energy materials efforts. The talk focuses on the state-of-the-art hard and soft magnets and magnetocaloric materials with an emphasis on their optimization for energy applications. Specifically, the impact of hard magnets on electric motor and transportation technologies, of soft magnetic materials on electricity generation and conversion technologies, and of magnetocaloric materials for refrigeration technologies, will be discussed. The synthesis, characterization, and property evaluation of the materials, with an emphasis on structure-property relationships, will be examined in the context of their respective markets as well as their potential impact on energy efficiency. Finally, considering future bottle-necks in raw materials and in the supply chain, options for recycling of rare-earth metals will be analyzed.ootnotetextO. Gutfleisch, J.P. Liu, M. Willard, E. Bruck, C. Chen, S.G. Shankar, Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient (review), Adv. Mat. 23 (2011) 821-842.

  9. Summer institute of sustainability and energy

    SciTech Connect

    Crabtree, George W.

    2012-08-01

    The vision for the Summer Institute on Sustainability and Energy (SISE) is to integrate advancements in basic energy sciences with innovative energy technologies to train the next generation of interdisciplinary scientists and policy makers for both government and industry. Through BES related research, these future leaders will be equipped to make educated decisions about energy at the personal, civic, and global levels in energy related fields including science, technology, entrepreneurship, economics, policy, planning, and behavior. This vision explicitly supports the 2008 report by the Department of Energy’s Basic Energy Science Advisory Committee (2), which outlines scientific opportunities and challenges to achieve energy security, lower CO2 emissions, reduce reliance on foreign oil and create enduring economic growth through discovery, development and the marketing of new technologies for sustainable energy production, delivery, and use (3).

  10. Sustainable intensification in agricultural systems

    PubMed Central

    Pretty, Jules; Bharucha, Zareen Pervez

    2014-01-01

    Background Agricultural systems are amended ecosystems with a variety of properties. Modern agroecosystems have tended towards high through-flow systems, with energy supplied by fossil fuels directed out of the system (either deliberately for harvests or accidentally through side effects). In the coming decades, resource constraints over water, soil, biodiversity and land will affect agricultural systems. Sustainable agroecosystems are those tending to have a positive impact on natural, social and human capital, while unsustainable systems feed back to deplete these assets, leaving fewer for the future. Sustainable intensification (SI) is defined as a process or system where agricultural yields are increased without adverse environmental impact and without the conversion of additional non-agricultural land. The concept does not articulate or privilege any particular vision or method of agricultural production. Rather, it emphasizes ends rather than means, and does not pre-determine technologies, species mix or particular design components. The combination of the terms ‘sustainable’ and ‘intensification’ is an attempt to indicate that desirable outcomes around both more food and improved environmental goods and services could be achieved by a variety of means. Nonetheless, it remains controversial to some. Scope and Conclusions This review analyses recent evidence of the impacts of SI in both developing and industrialized countries, and demonstrates that both yield and natural capital dividends can occur. The review begins with analysis of the emergence of combined agricultural–environmental systems, the environmental and social outcomes of recent agricultural revolutions, and analyses the challenges for food production this century as populations grow and consumption patterns change. Emergent criticisms are highlighted, and the positive impacts of SI on food outputs and renewable capital assets detailed. It concludes with observations on policies and

  11. Promoting sustainable energy strategies in Russia

    SciTech Connect

    Watson, R.K.

    1995-12-31

    Enormous structural changes are taking place in the economy of Russia. It is important that vital sectors of the economy undergo a smooth transition from a centrally-planned paradigm to a more market-oriented structure. Introducing market-oriented-institutional structures and energy planning approaches to Russian utilities can facilitate the transition to the market and allow them to become vehicles for change rather than mere witnesses. As real electricity prices increase relative to other prices, a significant industrial restructuring can be expected, with an accompanying reduction of energy consumption. By developing programs to help industry become more energy-efficiency, the electricity sector can play a central role in Russia`s economic recovery. A robust energy sector will be in a much better position to lead other sectors of the economy toward market-oriented solutions to the present economic crisis. Because of the magnitude of the task of recreating an economy for one of the world`s superpowers, institutional restructuring should take place incrementally. The transition of US utilities from a {open_quotes}build-and-grow{close_quotes} paradigm to one of Integrated Resource Planning (IRP) and subsequently to a hybrid of competition and IRP began and is continuing on the state and regional level. Local success stories on the West Coast and New England persuaded other states to adopt these methods. This strategy could also prove to be very effective in regions of Russia that are served by integrated electricity grids, such as the South Russia Power pool (Yuzhenergo) that serves the North Caucasus region. As the Russian energy system currently undergoes change, simultaneously privatizing and restructuring, these issues will be largely decided within the next two years. One of the greatest challenges involves implementing an environmentally sustainable strategy which ensures that energy efficiency and renewable energy are incorporated into the new structure.

  12. China's sustainable energy future: Scenarios of energy and carbonemissions (Summary)

    SciTech Connect

    Zhou, Dadi; Levine, Mark; Dai, Yande; Yu, Cong; Guo, Yuan; Sinton, Jonathan E.; Lewis, Joanna I.; Zhu, Yuezhong

    2004-03-10

    China has ambitious goals for economic development, and mustfind ways to power the achievement of those goals that are bothenvironmentally and socially sustainable. Integration into the globaleconomy presents opportunities for technological improvement and accessto energy resources. China also has options for innovative policies andmeasures that could significantly alter the way energy is acquired andused. These opportunities andoptions, along with long-term social,demographic, and economic trends, will shape China s future energysystem, and consequently its contribution to emissions of greenhousegases, particularly carbon dioxide (CO2). In this study, entitled China sSustainable Energy Future: Scenarios of Energy and Carbon Emissions, theEnergy Research Institute (ERI), an independent analytic organizationunder China's Na tional Development and Reform Commission (NDRC), soughtto explore in detail how China could achieve the goals of the TenthFive-Year Plan and its longer term aims through a sustainable developmentstrategy. China's ability to forge a sustainable energy path has globalconsequences. China's annual emissions of greenhouse gases comprisenearly half of those from developing countries, and 12 percent of globalemissions. Most of China's greenhouse gas emissions are in the form ofCO2, 87 percent of which came from energy use in 2000. In that year,China's carbon emissions from energy use and cement production were 760million metric tons (Mt-C), second only to the 1,500 Mt-C emitted by theUS (CDIAC, 2003). As China's energy consumption continues to increase,greenhouse gas emissions are expected to inevitably increase into thefuture. However, the rate at which energy consumption and emissions willincrease can vary significantly depending on whether sustainabledevelopment is recognized as an important policy goal. If the ChineseGovernment chooses to adopt measures to enhance energy efficiency andimprove the overall structure of energy supply, it is possible

  13. SUSTAINABLE SYSTEMS THEORY

    EPA Science Inventory

    While sustainability is generally associated with the definition given by the World Commission on Environment and Development (1987) namely development that "meets the needs and aspirations of the present without compromising the ability to meet those of the future," it is import...

  14. Sustainability.

    PubMed

    Chang, Chein-Chi; DiGiovanni, Kimberly; Mei, Ying; Wei, Li

    2016-10-01

    This review on Sustainability covers selected 2015 publications on the focus of Sustainability. It is divided into the following sections : • Sustainable water and wastewater utilities • Sustainable water resources management • Stormwater and green infrastructure • Sustainability in wastewater treatment • Life cycle assessment (LCA) applications • Sustainability and energy in wastewater industry, • Sustainability and asset management.

  15. Sustainability.

    PubMed

    Chang, Chein-Chi; DiGiovanni, Kimberly; Mei, Ying; Wei, Li

    2016-10-01

    This review on Sustainability covers selected 2015 publications on the focus of Sustainability. It is divided into the following sections : Sustainable water and wastewater utilities Sustainable water resources management Stormwater and green infrastructure Sustainability in wastewater treatment Life cycle assessment (LCA) applications Sustainability and energy in wastewater industry, Sustainability and asset management.

  16. Sustainable Biofuel Project: Emergy Analysis of South Florida Energy Crops

    SciTech Connect

    Amponsah, Nana Yaw; Izursa, Jose-Luis; Hanlon, Edward A.; Capece, John C.

    2012-11-15

    This study evaluates the sustainability of various farming systems, namely (1) sugarcane on organic and mineral soils and (2) energycane and sweet sorghum on mineral soils. The primary objective of the study is to compare the relative sustainability matrices of these energy crops and their respective farming systems. These matrices should guide decision and policy makers to determine the overall sustainability of an intended or proposed bioethanol project related to any of these studied crops. Several different methods of energy analysis have been proposed to assess the feasibility or sustainability of projects exploiting natural resources (such as (Life Cycle Analysis, Energy Analysis, Exergy Analysis, Cost Benefit Analysis, Ecological Footprint, etc.). This study primarily focused on the concept of Emergy Analysis, a quantitative analytical technique for determining the values of nonmonied and monied resources, services and commodities in common units of the solar energy it took to make them. With this Emergy Analysis study, the Hendry County Sustainable Biofuels Center intends to provide useful perspective for different stakeholder groups to (1) assess and compare the sustainability levels of above named crops cultivation on mineral soils and organic soils for ethanol production and (2) identify processes within the cultivation that could be targeted for improvements. The results provide as much insight into the assumptions inherent in the investigated approaches as they do into the farming systems in this study.

  17. Combining sustainable energy development and employment strategies

    SciTech Connect

    Olesen, G.B.

    1994-12-31

    International Network for Sustainable Energy--Europe (INforSE--Europe) is developing proposals to focus on the important connections between CO,-abatement strategies and employment. Basically, support for unemployed people in industrialized countries can be used to support job-creating sustainable energy measures. This paper describes the first version of the proposals for the European Union (EU), covering estimates of potential employment effects of wind energy, solar thermal energy, combustible and digestible biomass, and increased energy efficiency in heat and electricity. The result of these first estimates is that these proposals can create directly about 600,000 jobs and by induced effects an additional 1,300,000 jobs lasting for more than 10 years. The proposed elements of a sustainable energy strategy will have a significant role in reducing the unemployment of 17 million persons in EU. Because of reduced expenses of the states for unemployment benefits and increased tax revenue, it is estimated that the states can support the implementation of the proposals with at least 25% of the investments and still have a positive effect on the state budgets, The paper also describes the worldwide INforSE campaign and a number of other NGO activities on environment, energy, and employment.

  18. Ethanol for a sustainable energy future.

    PubMed

    Goldemberg, José

    2007-02-09

    Renewable energy is one of the most efficient ways to achieve sustainable development. Increasing its share in the world matrix will help prolong the existence of fossil fuel reserves, address the threats posed by climate change, and enable better security of the energy supply on a global scale. Most of the "new renewable energy sources" are still undergoing large-scale commercial development, but some technologies are already well established. These include Brazilian sugarcane ethanol, which, after 30 years of production, is a global energy commodity that is fully competitive with motor gasoline and appropriate for replication in many countries.

  19. Guidelines for Energy-Efficient Sustainable Schools.

    ERIC Educational Resources Information Center

    Nicklas, Michael; Bailey, Gary; Rosemain, Pascale; Olin, Samuel

    These guidelines present optional strategies to be considered in designing schools to be more energy efficient and sustainable. The guidelines are organized by the following design and construction process: site selection; selection of A & E design team; programming and goal setting; schematic design; design development; construction…

  20. Energy sustainability: consumption, efficiency, and environmental impact

    EPA Science Inventory

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consump...

  1. Sustainable Systems SFA 2.0

    SciTech Connect

    Hubbard, Susan

    2015-12-19

    Berkeley Lab Earth Sciences Division Director Susan Hubbard, the Project Lead for the Sustainable Systems Scientific Focus Area (SFA) 2.0, gives an overview of the project and its mission to develop a predictive understanding of terrestrial environments, from the genome to the watershed scales, to enable a new class of solutions for environmental and energy solutions.

  2. Sustainable Systems SFA 2.0

    ScienceCinema

    Hubbard, Susan

    2016-07-12

    Berkeley Lab Earth Sciences Division Director Susan Hubbard, the Project Lead for the Sustainable Systems Scientific Focus Area (SFA) 2.0, gives an overview of the project and its mission to develop a predictive understanding of terrestrial environments, from the genome to the watershed scales, to enable a new class of solutions for environmental and energy solutions.

  3. Advanced Decentralized Water/Energy Network Design for Sustainable Infrastructure

    EPA Science Inventory

    In order to provide a water infrastructure that is more sustainable into and beyond the 21st century, drinking water distribution systems and wastewater collection systems must account for our diminishing water supply, increasing demands, climate change, energy cost and availabil...

  4. Sustainability.

    PubMed

    Chang, Chein-Chi; DiGiovanni, Kimberly; Zhang, Gong; Yang, Xiahua; You, Shao-Hong

    2015-10-01

    This review on Sustainability covers selected 2014 publications on the focus of the following sections: • Sustainable water and wastewater utilities • Sustainable water resources management • Stormwater and green infrastructure • Sustainability in wastewater treatment • Life cycle assessment (LCA) applications • Sustainability and energy in wastewater industry, • Sustainability and asset management.

  5. Carbon nanotubes for sustainable energy applications.

    PubMed

    Centi, Gabriele; Perathoner, Siglinda

    2011-07-18

    The grand challenge of a sustainable production and use of energy has focused research on the nanostructure of materials. This aspect is considered of critical importance for improving the performance of advanced materials and electrodes to meet demanding expectations. Carbon nanotubes (CNTs) are the first and most-successful example of nanomaterials, and play a central role in the development of advanced solutions for sustainable energy applications. However, notwithstanding the rising scientific and technological interest in CNTs, their use is still largely based on phenomenological observations that miss the complexities of the nanostructure and characteristics of these materials. This Concept paper addresses the need for a rational design of CNTs for energy applications, based on an understanding of the key aspects to be considered for their optimization in different applications such as lithium ion batteries, supercapacitors, solar cells, and fuel cells.

  6. Knowledge systems for sustainable development

    PubMed Central

    Cash, David W.; Clark, William C.; Alcock, Frank; Dickson, Nancy M.; Eckley, Noelle; Guston, David H.; Jäger, Jill; Mitchell, Ronald B.

    2003-01-01

    The challenge of meeting human development needs while protecting the earth's life support systems confronts scientists, technologists, policy makers, and communities from local to global levels. Many believe that science and technology (S&T) must play a more central role in sustainable development, yet little systematic scholarship exists on how to create institutions that effectively harness S&T for sustainability. This study suggests that efforts to mobilize S&T for sustainability are more likely to be effective when they manage boundaries between knowledge and action in ways that simultaneously enhance the salience, credibility, and legitimacy of the information they produce. Effective systems apply a variety of institutional mechanisms that facilitate communication, translation and mediation across boundaries. PMID:12777623

  7. Global drivers, sustainable manufacturing and systems ergonomics.

    PubMed

    Siemieniuch, C E; Sinclair, M A; Henshaw, M J deC

    2015-11-01

    This paper briefly explores the expected impact of the 'Global Drivers' (such as population demographics, food security; energy security; community security and safety), and the role of sustainability engineering in mitigating the potential effects of these Global Drivers. The message of the paper is that sustainability requires a significant input from Ergonomics/Human Factors, but the profession needs some expansion in its thinking in order to make this contribution. Creating a future sustainable world in which people experience an acceptable way of life will not happen without a large input from manufacturing industry into all the Global Drivers, both in delivering products that meet sustainability criteria (such as durability, reliability, minimised material requirement and low energy consumption), and in developing sustainable processes to deliver products for sustainability (such as minimum waste, minimum emissions and low energy consumption). Appropriate changes are already being implemented in manufacturing industry, including new business models, new jobs and new skills. Considerable high-level planning around the world is in progress and is bringing about these changes; for example, there is the US 'Advanced Manufacturing National Program' (AMNP)', the German 'Industrie 4.0' plan, the French plan 'la nouvelle France industrielle' and the UK Foresight publications on the 'Future of Manufacturing'. All of these activities recognise the central part that humans will continue to play in the new manufacturing paradigms; however, they do not discuss many of the issues that systems ergonomics professionals acknowledge. This paper discusses a number of these issues, highlighting the need for some new thinking and knowledge capture by systems ergonomics professionals. Among these are ethical issues, job content and skills issues. Towards the end, there is a summary of knowledge extensions considered necessary in order that systems ergonomists can be fully

  8. City-integrated renewable energy for urban sustainability.

    PubMed

    Kammen, Daniel M; Sunter, Deborah A

    2016-05-20

    To prepare for an urban influx of 2.5 billion people by 2050, it is critical to create cities that are low-carbon, resilient, and livable. Cities not only contribute to global climate change by emitting the majority of anthropogenic greenhouse gases but also are particularly vulnerable to the effects of climate change and extreme weather. We explore options for establishing sustainable energy systems by reducing energy consumption, particularly in the buildings and transportation sectors, and providing robust, decentralized, and renewable energy sources. Through technical advancements in power density, city-integrated renewable energy will be better suited to satisfy the high-energy demands of growing urban areas. Several economic, technical, behavioral, and political challenges need to be overcome for innovation to improve urban sustainability.

  9. Sustainability of three apple production systems.

    PubMed

    Reganold, J P; Glover, J D; Andrews, P K; Hinman, H R

    2001-04-19

    Escalating production costs, heavy reliance on non-renewable resources, reduced biodiversity, water contamination, chemical residues in food, soil degradation and health risks to farm workers handling pesticides all bring into question the sustainability of conventional farming systems. It has been claimed, however, that organic farming systems are less efficient, pose greater health risks and produce half the yields of conventional farming systems. Nevertheless, organic farming became one of the fastest growing segments of US and European agriculture during the 1990s. Integrated farming, using a combination of organic and conventional techniques, has been successfully adopted on a wide scale in Europe. Here we report the sustainability of organic, conventional and integrated apple production systems in Washington State from 1994 to 1999. All three systems gave similar apple yields. The organic and integrated systems had higher soil quality and potentially lower negative environmental impact than the conventional system. When compared with the conventional and integrated systems, the organic system produced sweeter and less tart apples, higher profitability and greater energy efficiency. Our data indicate that the organic system ranked first in environmental and economic sustainability, the integrated system second and the conventional system last.

  10. Sustainable-energy managment practices in an energy economy

    NASA Astrophysics Data System (ADS)

    Darkwa, K.

    2001-10-01

    The economic survival of any nation depends upon its ability to produce and manage sufficient supplies of low-cost safe energy. The world's consumption of fossil fuel resources currently increasing at 3% per annum is found to be unsustainable. Projections of this trend show that mankind will exhaust all known reserves in the second half of the coming century. Governments, industrialists, commercial organizations, public sector departments and the general public have now become aware of the urgent requirements for the efficient management of resources and energy-consuming activities. Most organizations in the materials, manufacturing and retail sectors and in the service industries have also created energy management departments, or have employed consultants, to monitor energy consumption and to reduce wastage. Conversely, any sustained attempt to reduce rates of energy consumption even by as little as 0.1% per annum ensures relatively an eternal future supply as well as reduction on environmental and ecological effect. Thus, there is no long- term solution to energy flow problem other than systematic and effective energy management and the continuous application of the techniques of energy management. Essential energy management strategies in support of a sustainable energy- economy are discussed.

  11. Proactive sustainability strategy and corporate sustainability performance: The mediating effect of sustainability control systems.

    PubMed

    Wijethilake, Chaminda

    2017-03-25

    This study examines to what extent corporations use sustainability control systems (SCS) to translate proactive sustainability strategy into corporate sustainability performance. The study investigates the mediating effect of SCS on the relationship between proactive sustainability strategy and corporate sustainability performance. Survey data were collected from top managers in 175 multinational and local corporations operating in Sri Lanka and analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM). SCS were observed to only partially mediate the relationship between proactive sustainability strategy and corporate sustainability performance. The mediating effect of SCS is further examined under three sustainability strategies; environmental and social strategies reveal a partial mediation, while the economic strategy exhibits no mediation. The study also finds that (i) a proactive sustainability strategy is positively associated with SCS and corporate sustainability performance and (ii) SCS are positively associated with corporate sustainability performance.

  12. A sustained-arc ignition system for internal combustion engines

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  13. Education in Sustainable Energy by European Projects

    NASA Astrophysics Data System (ADS)

    Stanescu, Corina; Stefureac, Crina

    2010-05-01

    Our schools have been involved in several European projects having with the primary objective of educating the young generation to find ways for saving energy and for using the renewable energy. Small changes in our behaviour can lead to significant energy savings and a major reduction in emissions. In our presentation we will refer to three of them: - The Comenius 1 project "Energy in the Consumers' Hands" tried to improve the quality of education for democratic citizenship in all participant schools by creating a model of curricula concerning the integrative teaching of democratic citizenship using the topic approaches based on key concept - energy as important element of the community welfare. The students studied on the following topics: • Sources of energy • The clean use of fossil based resources; • The rational use of energyEnergy and the environment - The project "Solar Schools Forum" (SSF) focuses on environmental education in schools, in particular addressing the topics of Renewable Energy (RE) and Energy Efficiency (EE). The youth need to become more aware of energy-related problems, and how they can change their own lifestyles to limit environmental damage caused by the daily use of energy. As the decision-makers of tomorrow we need to empower them to make the right choices. The SSF is aimed at improving knowledge about RE and EE among children and young people, using a fun approach and aimed at generating greater enthusiasm for clean energy. The youth will also be encouraged to help raise awareness and so act as multipliers in their own communities, starting with their families and friends. As a result of this project we involved in developing and implementing an optional course for high school students within the Solar Schools Forum project. The optional course entitled "Sustainable energy and the environment" had a great deal of success, proof of this success being the fact that it is still taught even today, three years after its

  14. Functional materials for sustainable energy technologies: four case studies.

    PubMed

    Kuznetsov, V L; Edwards, P P

    2010-01-01

    The critical topic of energy and the environment has rarely had such a high profile, nor have the associated materials challenges been more exciting. The subject of functional materials for sustainable energy technologies is demanding and recognized as a top priority in providing many of the key underpinning technological solutions for a sustainable energy future. Energy generation, consumption, storage, and supply security will continue to be major drivers for this subject. There exists, in particular, an urgent need for new functional materials for next-generation energy conversion and storage systems. Many limitations on the performances and costs of these systems are mainly due to the materials' intrinsic performance. We highlight four areas of activity where functional materials are already a significant element of world-wide research efforts. These four areas are transparent conducting oxides, solar energy materials for converting solar radiation into electricity and chemical fuels, materials for thermoelectric energy conversion, and hydrogen storage materials. We outline recent advances in the development of these classes of energy materials, major factors limiting their intrinsic functional performance, and potential ways to overcome these limitations.

  15. Efficient use of land to meet sustainable energy needs

    NASA Astrophysics Data System (ADS)

    Hernandez, Rebecca R.; Hoffacker, Madison K.; Field, Christopher B.

    2015-04-01

    The deployment of renewable energy systems, such as solar energy, to achieve universal access to electricity, heat and transportation, and to mitigate climate change is arguably the most exigent challenge facing humans today. However, the goal of rapidly developing solar energy systems is complicated by land and environmental constraints, increasing uncertainty about the future of the global energy landscape. Here, we test the hypothesis that land, energy and environmental compatibility can be achieved with small- and utility-scale solar energy within existing developed areas in the state of California (USA), a global solar energy hotspot. We found that the quantity of accessible energy potentially produced from photovoltaic (PV) and concentrating solar power (CSP) within the built environment (`compatible’) exceeds current statewide demand. We identify additional sites beyond the built environment (`potentially compatible’) that further augment this potential. Areas for small- and utility-scale solar energy development within the built environment comprise 11,000-15,000 and 6,000 TWh yr-1 of PV and CSP generation-based potential, respectively, and could meet the state of California’s energy consumptive demand three to five times over. Solar energy within the built environment may be an overlooked opportunity for meeting sustainable energy needs in places with land and environmental constraints.

  16. Energy and sustainable development in North American Sunbelt cities

    NASA Astrophysics Data System (ADS)

    Roosa, Stephen A.

    The goals of sustainable development are often misunderstood and variously applied. Sustainability as an urban goal is hindered by the lack of a consensus definition of sustainable development. The failure to focus on energy in cities as a means of achieving urban sustainability is one reason that successful empirical examples of implementing sustainable development are rare. The paradox is that as society attempts to achieve the goals of sustainable development, cities are using more fossil fuel based energy, which results in more pollution and ultimately makes sustainability more difficult to achieve. This dissertation explores the linkages between energy and sustainability and their connection to urban polices. This research provides a detailed review of the history of the concept of sustainability, a review of literature to date, and comparative issues concerning sustainability. The literature review will describe the underlying causes and effects of changes which have led to concerns about urban sustainability. The types of urban policies that are used by Sunbelt cities will be discussed. The purpose of this research is multifold: (1) to study the energy related policies of Sunbelt cities; (2) to propose a workable typology of policies; (3) to develop an index by which cities can be ranked in terms of sustainability; and (4) to assess and evaluate the relationships between the adoption of urban policies that promote energy efficiency, energy conservation and alternative energy to determine if they are associated with reduced energy use and greater urban sustainability. This research involves use of empirical data, U.S. census information, database explorations and other data. Both qualitative and quantitative analysis methodologies were employed as a means of defining and exploring the dimensions of energy and sustainable development in urban areas. The research will find that certain urban policies are related to changes in indicators and measures of urban

  17. Sustainable Energy - Without the hot air

    NASA Astrophysics Data System (ADS)

    MacIsaac, Dan

    2009-11-01

    Reader John Roeder writes about a website associated with David MacKay's book Sustainable Energy-Without the hot air. The book is a freely downloadable PDF (or purchasable) book describing an analysis detailing a low-carbon renewable energy transformation route for a large, modern first world industrial country (the United Kingdom). Written for the layman, the work uses vernacular language, e.g., energy consumption and production in a series of bar charts detailing the impacts of necessary strategies such as population reduction, lifestyle changes, and technology changes. MacKay notes that most reasonable plans have large nuclear and ``clean coal'' or other carbon capture components, lots of pumped heat, wind, and much efficiency improvement. He debunks some sacred cows (roof-mounted micro-turbines; hydrogen-powered cars) while pointing out simple effective technologies such as roof-mounted solar water heaters. Similar modest changes in the U.S. (painting roofs white in the southern half of the country) have strong impacts. MacKay claims that he ``doesn't advocate any particular plan or technology,'' but ``tells you how many bricks are in the lego box, and how big each brick is'' so readers can start making planning decisions.

  18. Keeping the Future Bright: Department of Defense (DOD) Sustainable Energy Strategy for Installations

    DTIC Science & Technology

    2016-04-04

    goal established by EISA 2007 (See Figure 5))4 The Army continued to employ combined heat and power (CHP) systems to improve its energy efficiency...progress. DON’s investment in thermal energy from the waste heat of cogeneration systems help to meet reduction goals through source energy credits. In FY...sustainable energy included renewable energy sources, such as hydroelectricity, solar energy, wind energy, wave power, geothermal energy, bioenergy, tidal

  19. Current energy usage and sustainable energy in Kazakhstan: A review

    NASA Astrophysics Data System (ADS)

    Karatayev, Marat; Islam, Tofazzal; Salnikov, Vitaliy

    2014-05-01

    energy resources such as wind, solar, small hydro and biomass as alternative energy supplies in this country. Our analysis shows that wind and solar energy can become major contributors towards renewable energy in Kazakhstan. The biomass of agricultural residues, municipal solid waste and wood residues could be used for energy purposes too. Therefore, Kazakhstan should optimize energy consumption and take active and effective measures to increase the contribution of renewables in energy supply to make the country's energy mix environmentally sustainable.

  20. Sustainable energy in china: the closing window of opportunity

    SciTech Connect

    Fei Feng; Roland Priddle; Leiping Wang; Noureddine Berrah

    2007-03-15

    China's remarkable economic growth has been supported by a generally adequate and relatively low-cost supply of energy, creating the world's largest coal industry, its second-largest oil market, and an eclectic power business that is adding capacity at an unprecedented rate. If energy requirements continue to double every decade, China will not be able to meet the energy demands of the present without seriously compromising the ability of future generations to meet their own energy needs. This title uses historical data from 1980 and alternative scenarios through 2020 to assess China's future energy requirements and the resources to meet them. It calls for a high-level commitment to develop and implement an integrated, coordinated, and comprehensive energy policy. The authors recommend eight building blocks to reduce energy consumption growth well below the targeted rate of economic growth, to use national resources on an economically and environmentally sound basis, and to establish a robust energy system that can better ensure the security of a diverse supply of competitively priced energy forms. Sustainability calls for persistence of effort, greater reliance on advanced energy technologies, and better standards enforcement. Achieving these goals will require policy initiatives that restrict demand and create a 'resources-conscious society', reconcile energy needs with environmental imperatives, rationalize pricing, and tackle supply security. While the challenges are daunting, China has a unique opportunity to position itself as a world leader in the application of cutting-edge energy developments to create a sustainable energy sector effectively supporting a flourishing economy and society.

  1. Developing Sustainable Life Support System Concepts

    NASA Technical Reports Server (NTRS)

    Thomas, Evan A.

    2010-01-01

    Sustainable spacecraft life support concepts may allow the development of more reliable technologies for long duration space missions. Currently, life support technologies at different levels of development are not well evaluated against each other, and evaluation methods do not account for long term reliability and sustainability of the hardware. This paper presents point-of-departure sustainability evaluation criteria for life support systems, that may allow more robust technology development, testing and comparison. An example sustainable water recovery system concept is presented.

  2. A Sustainable Energy Laboratory Course for Non-Science Majors

    ERIC Educational Resources Information Center

    Nathan, Stephen A.; Loxsom, Fred

    2016-01-01

    Sustainable energy is growing in importance as the public becomes more aware of climate change and the need to satisfy our society's energy demands while minimizing environmental impacts. To further this awareness and to better prepare a workforce for "green careers," we developed a sustainable energy laboratory course that is suitable…

  3. Fostering sustained energy behavior change and increasing energy literacy in a student housing energy challenge

    NASA Astrophysics Data System (ADS)

    Brewer, Robert Stephen

    We designed the Kukui Cup challenge to foster energy conservation and increase energy literacy. Based on a review of the literature, the challenge combined a variety of elements into an overall game experience, including: real-time energy feedback, goals, commitments, competition, and prizes. We designed a software system called Makahiki to provide the online portion of the Kukui Cup challenge. Energy use was monitored by smart meters installed on each floor of the Hale Aloha residence halls on the University of Hawai'i at Manoa campus. In October 2011, we ran the UH Kukui Cup challenge for the over 1000 residents of the Hale Aloha towers. To evaluate the Kukui Cup challenge, I conducted three experiments: challenge participation, energy literacy, and energy use. Many residents participated in the challenge, as measured by points earned and actions completed through the challenge website. I measured the energy literacy of a random sample of Hale Aloha residents using an online energy literacy questionnaire administered before and after the challenge. I found that challenge participants' energy knowledge increased significantly compared to non-challenge participants. Positive self-reported energy behaviors increased after the challenge for both challenge participants and non-participants, leading to the possibility of passive participation by the non-challenge participants. I found that energy use varied substantially between and within lounges over time. Variations in energy use over time complicated the selection of a baseline of energy use to compare the levels during and after the challenge. The best team reduced its energy use during the challenge by 16%. However, team energy conservation did not appear to correlate to participation in the challenge, and there was no evidence of sustained energy conservation after the challenge. The problems inherent in assessing energy conservation using a baseline call into question this common practice. My research has

  4. A Landscape Perspective on Sustainability of Agricultural Systems

    SciTech Connect

    Dale, Virginia H; Kline, Keith L; Kaffka, Stephen R; Langeveld, J.W.A.

    2013-01-01

    Landscape sustainability of agricultural systems considers effects of farm activities on social, economic, and ecosystem services at local and regional scales. Sustainable agriculture entails: defining sustainability, developing easily measured indicators of sustainability, moving toward integrated agricultural systems, and offering incentives or imposing regulations to affect farmer behavior. A landscape perspective is useful because landscape ecology provides theory and methods for dealing with spatial heterogeneity, scaling, integration, and complexity. To implement agricultural sustainability, we propose adopting a systems perspective, recognizing spatial heterogeneity, addressing the influences of context, and integrating landscape-design principles. Topics that need further attention at local and regional scales include (1) protocols for quantifying material and energy flows; (2) effects of management practices; (3) incentives for enhancing social, economic, and ecosystem services; (4) integrated landscape planning and management; (5) monitoring and assessment; (6) effects of societal demand; and (7) consistent and holistic policies for promoting agricultural sustainability.

  5. Key Factors in Planning a Sustainable Energy Future Including Hydrogen and Fuel Cells

    ERIC Educational Resources Information Center

    Hedstrom, Lars; Saxe, Maria; Folkesson, Anders; Wallmark, Cecilia; Haraldsson, Kristina; Bryngelsson, Marten; Alvfors, Per

    2006-01-01

    In this article, a number of future energy visions, especially those basing the energy systems on hydrogen, are discussed. Some often missing comparisons between alternatives, from a sustainability perspective, are identified and then performed for energy storage, energy transportation, and energy use in vehicles. It is shown that it is important…

  6. Sustainable Energy Resources for Consumers (SERC) Vermont Highlight (Fact Sheet)

    SciTech Connect

    Not Available

    2012-01-01

    Case study on Vermont's innovative strategy for helping low-income families save energy through its Sustainable Energy Resources for Consumers (SERC) program. The DOE Weatherization Assistance Program (WAP) granted Vermont to give its weatherization clients access to solar energy systems and one-on-one assistance from energy efficiency coaches to help clients achieve meaningful and long-lasting reductions in their energy bills. Vermont-SERC is administered by the Vermont Office of Economic Opportunity and is carried out by five local weatherization agencies. The purpose of the program is to identify technologies and new approaches-in this case, solar energy and energy efficiency coaches-that can improve weatherization services to low-income clients. The program selects households that have previously received weatherization services. This has several advantages. First, the clients already understand how weatherization works and are willing to strive for additional energy savings. Second, the weatherization agencies are working with clients who have previously had weatherization and therefore have complete energy usage data from utility bills collected during the first energy upgrade installation. This allows the agencies to select the best potential candidates for solar energy. Agencies have existing knowledge of the homes and can pre-screen them for potential structural problems or lack of south-facing exposure.

  7. TOWARD A THEORY OF SUSTAINABLE SYSTEMS

    EPA Science Inventory

    While there is tremendous interest in sustainability, a fundamental theory of sustainability does not exist. We present our efforts at constructing such a theory using Physics, Information Theory, Economics and Ecology. We discuss the state of complex sustainable systems that i...

  8. Energy justice and foundations for a sustainable sociology of energy

    NASA Astrophysics Data System (ADS)

    Holleman, Hannah Ann

    This dissertation proposes an approach to energy that transcends the focus on energy as a mere technical economic or engineering problem, is connected to sociological theory as a whole, and takes issues of equality and ecology as theoretical starting points. In doing so, the work presented here puts ecological and environmental sociological theory, and the work of environmental justice scholars, feminist ecologists, and energy scholars, in a context in which they may complement one another to broaden the theoretical basis of the current sociology of energy. This theoretical integration provides an approach to energy focused on energy justice. Understanding energy and society in the terms outlined here makes visible energy injustice, or the interface between social inequalities and ecological depredations accumulating as the social and ecological debts of the modern energy regime. Systems ecology is brought into this framework as a means for understanding unequal exchange, energy injustice more generally, and the requirements for long-term social and ecological reproduction in ecological terms. Energy developments in Ecuador and Cuba are used here as case studies in order to further develop the idea of energy justice and the theory of unequal ecological exchange. The point is to broaden the framework of the contemporary critical sociology of energy, putting energy justice at its heart. This dissertation contains previously published and unpublished co-authored material.

  9. MIT - Mighty Steps toward Energy Sustainability

    SciTech Connect

    Robinson, Alastair; Regnier, Cindy; Settlemyre, Kevin; Bosnic, Zorana

    2012-07-01

    Massachusetts Institute of Technology (MIT) partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program.1 Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program. MIT is one of the U.S.’s foremost higher education institutions, occupying a campus that is nearly 100 years old, with a building floor area totaling more than 12 million square feet. The CBP project focused on improving the energy performance of two campus buildings, the Ray and Maria Stata Center (RMSC) and the Building W91 (BW91) data center. A key goal of the project was to identify energy saving measures that could be applied to other buildings both within MIT’s portfolio and at other higher education institutions. The CBP retrofits at MIT are projected to reduce energy consumption by approximately 48%, including a reduction of around 72% in RMSC lighting energy and a reduction of approximately 55% in RMSC server room HVAC energy. The energy efficiency measure (EEM) package proposed for the BW91 data center is expected to reduce heating, ventilation, and air-conditioning (HVAC) energy use by 30% to 50%, depending on the final air intake temperature that is established for the server racks. The RMSC, an iconic building designed by Frank Gehry, houses the Computer Science and Artificial Intelligence Laboratory, the Laboratory for Information and Decision Systems, and the Department of Linguistics and Philosophy.

  10. Renewability and sustainability aspects of nuclear energy

    SciTech Connect

    Şahin, Sümer

    2014-09-30

    Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium, {sup 233}U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of (ThO{sub 2}/RG‐PuO{sub 2}) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG‐PuO{sub 2} + 96 % ThO{sub 2}; 6 % RG‐PuO{sub 2} + 94 % ThO{sub 2}; 10 % RG‐PuO{sub 2} + 90 % ThO{sub 2}; 20 % RG‐PuO{sub 2} + 80 % ThO{sub 2}; 30 % RG‐PuO{sub 2} + 70 % ThO{sub 2}, uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ∼ 0.65, 1.1, 1.9, 3.5, and 4.8 years and with burn ups of ∼ 30 000, 60 000, 100 000, 200 000 and 290 000 MW.d/ton, respectively. Increase of RG‐PuO{sub 2} fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MW{sub th} has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0, 2, 3, 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134, 1.286, 1.387, 1.52 and 1.67, respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3, 4.6, 6.15 and 8.1 with 2, 3, 4 and 5 % TRISO volume fraction at start up, respectively. Alternatively with thorium, the same fusion driver would produce ∼160 kg {sup 233}U per year in addition to fission

  11. Renewability and sustainability aspects of nuclear energy

    NASA Astrophysics Data System (ADS)

    Şahin, Sümer

    2014-09-01

    Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium, 233U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of (ThO2/RG-PuO2) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG-PuO2 + 96 % ThO2; 6 % RG-PuO2 + 94 % ThO2; 10 % RG-PuO2 + 90 % ThO2; 20 % RG-PuO2 + 80 % ThO2; 30 % RG-PuO2 + 70 % ThO2, uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ˜ 0.65, 1.1, 1.9, 3.5, and 4.8 years and with burn ups of ˜ 30 000, 60 000, 100 000, 200 000 and 290 000 MW.d/ton, respectively. Increase of RG-PuO2 fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MWth has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0, 2, 3, 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134, 1.286, 1.387, 1.52 and 1.67, respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3, 4.6, 6.15 and 8.1 with 2, 3, 4 and 5 % TRISO volume fraction at start up, respectively. Alternatively with thorium, the same fusion driver would produce ˜160 kg 233U per year in addition to fission energy production in situ, multiplying the fusion energy by a factor of ˜1.3.

  12. Key Assets for a Sustainable Low Carbon Energy Future

    NASA Astrophysics Data System (ADS)

    Carre, Frank

    2011-10-01

    Since the beginning of the 21st century, concerns of energy security and climate change gave rise to energy policies focused on energy conservation and diversified low-carbon energy sources. Provided lessons of Fukushima accident are evidently accounted for, nuclear energy will probably be confirmed in most of today's nuclear countries as a low carbon energy source needed to limit imports of oil and gas and to meet fast growing energy needs. Future challenges of nuclear energy are then in three directions: i) enhancing safety performance so as to preclude any long term impact of severe accident outside the site of the plant, even in case of hypothetical external events, ii) full use of Uranium and minimization long lived radioactive waste burden for sustainability, and iii) extension to non-electricity energy products for maximizing the share of low carbon energy source in transportation fuels, industrial process heat and district heating. Advanced LWRs (Gen-III) are today's best available technologies and can somewhat advance nuclear energy in these three directions. However, breakthroughs in sustainability call for fast neutron reactors and closed fuel cycles, and non-electric applications prompt a revival of interest in high temperature reactors for exceeding cogeneration performances achievable with LWRs. Both types of Gen-IV nuclear systems by nature call for technology breakthroughs to surpass LWRs capabilities. Current resumption in France of research on sodium cooled fast neutron reactors (SFRs) definitely aims at significant progress in safety and economic competitiveness compared to earlier reactors of this type in order to progress towards a new generation of commercially viable sodium cooled fast reactor. Along with advancing a new generation of sodium cooled fast reactor, research and development on alternative fast reactor types such as gas or lead-alloy cooled systems (GFR & LFR) is strategic to overcome technical difficulties and/or political

  13. Energy systems transformation.

    PubMed

    Dangerman, A T C Jérôme; Schellnhuber, Hans Joachim

    2013-02-12

    The contemporary industrial metabolism is not sustainable. Critical problems arise at both the input and the output side of the complex: Although affordable fossil fuels and mineral resources are declining, the waste products of the current production and consumption schemes (especially CO(2) emissions, particulate air pollution, and radioactive residua) cause increasing environmental and social costs. Most challenges are associated with the incumbent energy economy that is unlikely to subsist. However, the crucial question is whether a swift transition to its sustainable alternative, based on renewable sources, can be achieved. The answer requires a deep analysis of the structural conditions responsible for the rigidity of the fossil-nuclear energy system. We argue that the resilience of the fossil-nuclear energy system results mainly from a dynamic lock-in pattern known in operations research as the "Success to the Successful" mode. The present way of generating, distributing, and consuming energy--the largest business on Earth--expands through a combination of factors such as the longevity of pertinent infrastructure, the information technology revolution, the growth of the global population, and even the recent financial crises: Renewable-energy industries evidently suffer more than the conventional-energy industries under recession conditions. Our study tries to elucidate the archetypical traits of the lock-in pattern and to assess the respective importance of the factors involved. In particular, we identify modern corporate law as a crucial system element that thus far has been largely ignored. Our analysis indicates that the rigidity of the existing energy economy would be reduced considerably by the assignment of unlimited liabilities to the shareholders.

  14. Molecular-Level Design of Hierarchically Porous Carbons Codoped with Nitrogen and Phosphorus Capable of In Situ Self-Activation for Sustainable Energy Systems.

    PubMed

    Ai, Wei; Wang, Xuewan; Zou, Chenji; Du, Zhuzhu; Fan, Zhanxi; Zhang, Hua; Chen, Peng; Yu, Ting; Huang, Wei

    2017-02-01

    Hierarchically porous carbons are attracting tremendous attention in sustainable energy systems, such as lithium ion battery (LIB) and fuel cell, due to their excellent transport properties that arise from the high surface area and rich porosity. The state-of-the-art approaches for synthesizing hierarchically porous carbons normally require chemical- and/or template-assisted activation techniques, which is complicate, time consuming, and not feasible for large scale production. Here, a molecular-level design principle toward large-scale synthesis of nitrogen and phosphorus codoped hierarchically porous carbon (NPHPC) through an in situ self-activation process is proposed. The material is fabricated based on the direct pyrolysis of a well-designed polymer, melamine polyphosphate, which is capable of in situ self-activation to generate large specific surface area (1479 m(2) g(-1) ) and hierarchical pores in the final NPHPC. As an anode material for LIB, NPHPC delivers a high reversible capacity of 1073 mAh g(-1) and an excellent cyclic stability for 300 cycles with negligible capacity decay. The peculiar structural properties and synergistic effect of N and P codopants also enable NPHPC a promising electrocatalyst for oxygen reduction reaction, a key cathodic reaction process of many energy conversion devices (for example, fuel cells and metal air batteries). Electrochemical measurements show NPHPC a comparable electrocatalytic performance to commercial Pt/C catalyst (onset potential of 0.88 V vs reversible hydrogen electrode in alkaline medium) with excellent stability (89.8% retention after 20 000 s continuous operation) and superior methanol tolerance.

  15. Energy Department to Host First Sustainable Transportation Summit

    SciTech Connect

    Sarkar, Reuben

    2016-06-29

    On July 11-12, mobility and transportation leaders from across the country are coming to Washington, D.C. for the inaugural Sustainable Transportation Summit hosted by the Office of Energy Efficiency and Renewable Energy (EERE).

  16. Energy Department to Host First Sustainable Transportation Summit

    ScienceCinema

    Sarkar, Reuben

    2016-08-17

    On July 11-12, mobility and transportation leaders from across the country are coming to Washington, D.C. for the inaugural Sustainable Transportation Summit hosted by the Office of Energy Efficiency and Renewable Energy (EERE).

  17. Energy for a sustainable future. Summary report and recommendations

    SciTech Connect

    Not Available

    2010-04-15

    This year, in September, world leaders will meet at the United Nations to assess progress on the Millennium Development Goals and to chart a course of action for the period leading up to the agreed MDG deadline of 2015. Later in the year, government delegations will gather in Mexico to continue the process of working towards a comprehensive, robust and ambitious climate change agreement. Energy lies at the heart of both of these efforts. The decisions we take today on how we produce, consume and distribute energy will profoundly influence our ability to eradicate poverty and respond effectively to climate change. Addressing these challenges is beyond the reach of governments alone. It will take the active engagement of all sectors of society: the private sector; local communities and civil society; international organizations and the world of academia and research. To that end, in 2009 a high-level Advisory Group on Energy and Climate Change was established, chaired by Kandeh Yumkella, Director-General of the United Nations Industrial Development Organization (UNIDO). Comprising representatives from business, the United Nations system and research institutions, its mandate was to provide recommendations on energy issues in the context of climate change and sustainable development. The Group also examined the role the United Nations system could play in achieving internationally-agreed climate goals. The Advisory Group has identified two priorities - improving energy access and strengthening energy efficiency - as key areas for enhanced effort and international cooperation. Expanding access to affordable, clean energy is critical for realizing the MDGs and enabling sustainable development across much of the globe. Improving energy efficiency is paramount if we are to reduce greenhouse gas emissions. It can also support market competitiveness and green innovation. (LN)

  18. NASA Johnson Space Center's Energy and Sustainability Efforts

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.

    2008-01-01

    This viewgraph presentation reviews the efforts that NASA is making to assure a sustainable environment and energy savings at the Johnson Space Center. Sustainability is defined as development that meets the needs of present generations without compromising the ability of future generations to meet their own needs. The new technologies that are required for sustainable closed loop life support for space exploration have uses on the ground to reduce energy, greenhouse gas emissions, and water use. Some of these uses are reviewed.

  19. Wood Energy Production, Sustainable Farming Livelihood and Multifunctionality in Finland

    ERIC Educational Resources Information Center

    Huttunen, Suvi

    2012-01-01

    Climate change and the projected depletion of fossil energy resources pose multiple global challenges. Innovative technologies offer interesting possibilities to achieve more sustainable outcomes in the energy production sector. Local, decentralized alternatives have the potential to sustain livelihoods in rural areas. One example of such a…

  20. Toward Knowledge Systems for Sustainability Science

    NASA Astrophysics Data System (ADS)

    Zaks, D. P.; Jahn, M.

    2011-12-01

    Managing ecosystems for the outcomes of agricultural productivity and resilience will require fundamentally different knowledge management systems. In the industrial paradigm of the 20th century, land was considered an open, unconstrained system managed for maximum yield. While dramatic increases in yield occurred in some crops and locations, unintended but often foreseeable consequences emerged. While productivity remains a key objective, we must develop analytic systems that can identify better management options for the full range of monetized and non-monetized inputs, outputs and outcomes that are captured in the following framing question: How much valued service (e.g. food, materials, energy) can we draw from a landscape while maintaining adequate levels of other valued or necessary services (e.g. biodiversity, water, climate regulation, cultural services) including the long-term productivity of the land? This question is placed within our contemporary framing of valued services, but structured to illuminate the shifts required to achieve long-term sufficiency and planetary resilience. This framing also highlights the need for fundamentally new knowledge systems including information management infrastructures, which effectively support decision-making on landscapes. The purpose of this initiative by authors from diverse fields across government and academic science is to call attention to the need for a vision and investment in sustainability science for landscape management. Substantially enhanced capabilities are needed to compare and integrate information from diverse sources, collected over time that link choices made to meet our needs from landscapes to both short and long term consequences. To further the goal of an information infrastructure for sustainability science, three distinct but interlocking domains are best distinguished: 1) a domain of data, information and knowledge assets; 2) a domain that houses relevant models and tools in a curated

  1. Energy systems transformation

    PubMed Central

    Dangerman, A. T. C. Jérôme; Schellnhuber, Hans Joachim

    2013-01-01

    The contemporary industrial metabolism is not sustainable. Critical problems arise at both the input and the output side of the complex: Although affordable fossil fuels and mineral resources are declining, the waste products of the current production and consumption schemes (especially CO2 emissions, particulate air pollution, and radioactive residua) cause increasing environmental and social costs. Most challenges are associated with the incumbent energy economy that is unlikely to subsist. However, the crucial question is whether a swift transition to its sustainable alternative, based on renewable sources, can be achieved. The answer requires a deep analysis of the structural conditions responsible for the rigidity of the fossil-nuclear energy system. We argue that the resilience of the fossil-nuclear energy system results mainly from a dynamic lock-in pattern known in operations research as the “Success to the Successful” mode. The present way of generating, distributing, and consuming energy—the largest business on Earth—expands through a combination of factors such as the longevity of pertinent infrastructure, the information technology revolution, the growth of the global population, and even the recent financial crises: Renewable-energy industries evidently suffer more than the conventional-energy industries under recession conditions. Our study tries to elucidate the archetypical traits of the lock-in pattern and to assess the respective importance of the factors involved. In particular, we identify modern corporate law as a crucial system element that thus far has been largely ignored. Our analysis indicates that the rigidity of the existing energy economy would be reduced considerably by the assignment of unlimited liabilities to the shareholders. PMID:23297208

  2. Controlling the Functionality of Materials for Sustainable Energy

    NASA Astrophysics Data System (ADS)

    Crabtree, George; Sarrao, John

    2011-03-01

    Our understanding and control of sustainable energy technologies is in its infancy. Many sustainable energy phenomena depend on the exchange of photons and electrons among quantized energy levels of semiconductors, molecules, and metals at nanoscale spatial scales and at fast or ultrafast time scales. Improving the performance of sustainable energy technologies to make them competitive with fossil technologies requires probing and understanding these quantum phenomena with advanced scientific techniques. This understanding must then be translated into control of the functionality and performance of the materials and chemistry that govern sustainable energy technologies. The review begins by contrasting the foundations of fossil fuel technology based on combustion, heat, and classical thermodynamics with the foundations of sustainable energy technology based on quantum exchange of energy among photons, chemical bonds, and electrons without conversion to heat. Two sets of tools that are essential to observe, understand, and control the quantum phenomena of sustainable energy are described: in situ and time-resolved experiments and theory, and numerical modeling of the functionality of large assemblies of atoms. Finally, the challenges and opportunities for understanding and ultimately controlling sustainable energy phenomena are presented for catalysis, solar water splitting, and superconductivity.

  3. Advanced Materials for Sustainable, Clean Energy Future

    SciTech Connect

    Yang, Zhenguo

    2009-04-01

    The current annual worldwide energy consumption stands at about 15 terawatts (TW, x1012 watts). Approximately 80% of it is supplied from fossil fuels: oil (34 %), coal (25 %), and natural gas (21 %). Biomass makes up 8% of the energy supply, nuclear energy accounts for 6.5 %, hydropower has a 2% share and other technologies such as wind and solar make up the rest. Even with aggressive conservation and new higher efficiency technology development, worldwide energy demand is predicted to double to 30 TW by 2050 and triple to 46 TW by the end of the century. Meanwhile oil and natural gas production is predicted to peak over the next few decades. Abundant coal reserves may maintain the current consumption level for longer period of time than the oil and gas. However, burning the fossil fuels leads to a serious environmental consequence by emitting gigantic amount of green house gases, particularly CO2 emissions which are widely considered as the primary contributor to global warming. Because of the concerns over the greenhouse gas emission, many countries, and even some states and cities in the US, have adopted regulations for limiting CO2 emissions. Along with increased CO2 regulations, is an emerging trend toward carbon “trading,” giving benefits to low “carbon footprint” industries, while making higher emitting industries purchase carbon “allowances”. There have been an increasing number of countries and states adopting the trade and cap systems.

  4. Kansas State University Center for Sustainable Energy

    SciTech Connect

    Rezac, Mary E.

    2013-01-29

    This project sought to develop next generation bioenergy/biorefining systems to reduce greenhouse gas impacts, stabilize rural economies, and establish US leadership in 21st century energy solutions. In the past several years the U.S. Department of Energy (DOE), USDA, and other partners have developed the “25 x 25” vision, with a goal of replacing 25% of our petroleum needs with renewables by 2025. To achieve this ambitious goal, more efficient conversion of biomass to fuels and chemicals must be realized. In most existing facilities based on fermenting the starches of the biomass feedstock to alcohols, only about 33% of the feedstock mass is converted to a fuel product. Here, research was conducted that advanced our ability to convert the majority of the biomass feedstock to fuels and chemicals using thermochemical processing. Additionally, educational training tools were developed and employed for training the next generation of scientists and engineers who will implement this technology.

  5. Sustainable Development and Energy Geotechnology Potential Roles for Geotechnical Engineering

    SciTech Connect

    FragaszyProgram Dire, Dr. R. J.; Santamarina, Carlos; Espinoza, N.; Jang, J.W.; Jung, J.W.; Tsouris, Costas

    2011-01-01

    The world is facing unprecedented challenges related to energy resources, global climate change, material use, and waste generation. Failure to address these challenges will inhibit the growth of the developing world and will negatively impact the standard of living and security of future generations in all nations. The solutions to these challenges will require multidisciplinary research across the social and physical sciences and engineering. Although perhaps not always recognized, geotechnical engineering expertise is critical to the solution of many energy and sustainability-related problems. Hence, geotechnical engineers and academicians have opportunity and responsibility to contribute to the solution of these worldwide problems. Research will need to be extended to non-standard issues such as thermal properties of soils; sediment and rock response to extreme conditions and at very long time scales; coupled hydro-chemo-thermo-bio-mechanical processes; positive feedback systems; the development of discontinuities; biological modification of soil properties; spatial variability; and emergent phenomena. Clearly, the challenges facing geotechnical engineering in the future will require a much broader knowledge base than our traditional educational programs provide. The geotechnical engineering curricula, from undergraduate education through continuing professional education, must address the changing needs of a profession that will increasingly be engaged in alternative/renewable energy production; energy efficiency; sustainable design, enhanced and more efficient use of natural resources, waste management, and underground utilization.

  6. Threshold Concepts, Systems and Learning for Sustainability

    ERIC Educational Resources Information Center

    Sandri, Orana Jade

    2013-01-01

    This paper presents a framework for understanding the role that systems theory might play in education for sustainability (EfS). It offers a sketch and critique of Land and Meyer's notion of a "threshold concept", to argue that seeing systems as a threshold concept for sustainability is useful for understanding the processes of…

  7. Sustainable bioreactor systems for producing hydrogen

    SciTech Connect

    Zaborsky, O.R.; Radway, J.C.; Yoza, B.A.; Benemann, J.R.; Tredici, M.R.

    1998-08-01

    The overall goal of Hawaii`s BioHydrogen Program is to generate hydrogen from water using solar energy and microalgae under sustainable conditions. Specific bioprocess engineering objectives include the design, construction, testing and validation of a sustainable photobioreactor system. Specific objectives relating to biology include investigating and optimizing key physiological parameters of cyanobacteria of the genus Arthrospira (Spirulina), the organism selected for initial process development. Another objective is to disseminate the Mitsui-Miami cyanobacteria cultures, now part of the Hawaii Culture Collection (HCC), to other research groups. The approach is to use a single organisms for producing hydrogen gas from water. Key stages are the growth of the biomass, the dark induction of hydrogenase, and the subsequent generation of hydrogen in the light. The biomass production stage involves producing dense cultures of filamentous, non-heterocystous cyanobacteria and optimizing biomass productivity in innovative tubular photobioreactors. The hydrogen generation stages entail inducing the enzymes and metabolic pathways that enable both dark and light-driven hydrogen production. The focus of Year 1 has been on the construction and operation of the outdoor photobioreactor for the production of high-density mass cultures of Arthrospira. The strains in the Mitsui-Miami collection have been organized and distributed to other researchers who are beginning to report interesting results. The project is part of the International Energy Agency`s biohydrogen program.

  8. Sustainable Rural Energy: Traditional Water Wheels in Padang (PWW) Indonesia

    NASA Astrophysics Data System (ADS)

    Ibrahim, Gusri Akhyar; Haron, Che Hassan Che; Azhari, Che Husna

    2010-06-01

    Renewable and sustainable energy is increasingly gaining interest in current research circles due to the debates on renewable energy resources. It is essential for scientists and researchers to search for solutions in renewable energy resources, with effective technologies, and low cost in operation and maintenance. Hydro resources can be considered a potential renewable energy resource. The traditional water wheel with simple construction coupled with a basic concept of technology can be utilised as a renewable and sustainable rural energy system. This paper discusses the case of the water wheel as a renewable energy system employed in Padang, Indonesia. The Padang water wheel is constructed from hardwood material with a diameter of 300 cm and width of 40 cm. It is built on a river using water flow to generate the movement of the wheel. The water wheel application in the area showed that it is suitable to be utilised to elevate and distribute water to rice fields located at a higher level than the water level of the river. The water wheel capacity is about 100-120 liters/min. It could continuously irrigate ±5 ha. of the rice fields. One of the advantages of this water wheel type is to function as a green technology concept promising no negative effect on the environment. The traditional water wheel has also a big economic impact on the rural economy, increasing the productivity of the rice fields. The people of Padang live in a water landscape encompassing the water wheel as an ubiquitous part of their lives, hence they relate to it and the technology of fabrication as well as the utilisation, making it an amenable and effective technology, finding relevance in the modern world.

  9. Preface: photosynthesis and hydrogen energy research for sustainability.

    PubMed

    Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2017-04-10

    Energy supply, climate change, and global food security are among the main chalenges facing humanity in the twenty-first century. Despite global energy demand is continuing to increase, the availability of low cost energy is decreasing. Together with the urgent problem of climate change due to CO2 release from the combustion of fossil fuels, there is a strong requirement of developing the clean and renewable energy system for the hydrogen production. Solar fuel, biofuel, and hydrogen energy production gained unlimited possibility and feasibility due to understanding of the detailed photosynthetic system structures. This special issue contains selected papers on photosynthetic and biomimetic hydrogen production presented at the International Conference "Photosynthesis Research for Sustainability-2016", that was held in Pushchino (Russia), during June 19-25, 2016, with the sponsorship of the International Society of Photosynthesis Research (ISPR) and of the International Association for Hydrogen Energy (IAHE). This issue is intended to provide recent information on the photosynthetic and biohydrogen production to our readers.

  10. Opportunity knocks - the sustainable energy industry and climate change

    SciTech Connect

    Price, B.; Keegan, P.

    1997-12-31

    Climate change mitigation, if intelligently undertaken, can stimulate economic growth. The main tools available for this task are energy efficiency, renewable energy, and clean energy technologies and services, which are collectively known as sustainable energy. To unleash this potential, the US and other governments need the full cooperation of the sustainable energy industry. This industry knows more than most other about turning energy-related pollution prevention into profits. If engaged, they can help: (1) Identify the economic benefits of greenhouse gas mitigation; (2) Identify barriers to the implementation of greenhouse gas mitigation projects; (3) Develop policies and measures to overcome these barriers; and (4) Implement greenhouse gas mitigation projects. 7 refs.

  11. Impact of Sustainable Cool Roof Technology on Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Vuppuluri, Prem Kiran

    Highly reflective roofing systems have been analyzed over several decades to evaluate their ability to meet sustainability goals, including reducing building energy consumption and mitigating the urban heat island. Studies have isolated and evaluated the effects of climate, surface reflectivity, and roof insulation on energy savings, thermal load mitigation and also ameliorating the urban heat island. Other sustainable roofing systems, like green-roofs and solar panels have been similarly evaluated. The motivation for the present study is twofold: the first goal is to present a method for simultaneous evaluation and inter-comparison of multiple roofing systems, and the second goal is to quantitatively evaluate the realized heating and cooling energy savings associated with a white roof system compared to the reduction in roof-top heat flux. To address the first research goal a field experiment was conducted at the International Harvester Building located in Portland, OR. Thermal data was collected for a white roof, vegetated roof, and a solar panel shaded vegetated roof, and the heat flux through these roofing systems was compared against a control patch of conventional dark roof membrane. The second research goal was accomplished using a building energy simulation program to determine the impact of roof area and roof insulation on the savings from a white roof, in both Portland and Phoenix. The ratio of cooling energy savings to roof heat flux reduction from replacing a dark roof with a white roof was 1:4 for the month of July, and 1:5 annually in Portland. The COP of the associated chillers ranges from 2.8-4.2, indicating that the ratio of cooling energy savings to heat flux reduction is not accounted for solely by the COP of the chillers. The results of the building simulation indicate that based on energy savings alone, white roofs are not an optimal choice for Portland. The benefits associated with cooling energy savings relative to a black roof are offset by

  12. A Sustainable Energy Laboratory Course for Non-Science Majors

    NASA Astrophysics Data System (ADS)

    Nathan, Stephen A.; Loxsom, Fred

    2016-10-01

    Sustainable energy is growing in importance as the public becomes more aware of climate change and the need to satisfy our society's energy demands while minimizing environmental impacts. To further this awareness and to better prepare a workforce for "green careers," we developed a sustainable energy laboratory course that is suitable for high school and undergraduate students, especially non-science majors. Thirteen hands-on exercises provide an overview of sustainable energy by demonstrating the basic principles of wind power, photovoltaics, electric cars, lighting, heating/cooling, insulation, electric circuits, and solar collectors. The order of content presentation and instructional level (secondary education or college) can easily be modified to suit instructor needs and/or academic programs (e.g., engineering, physics, renewable and/or sustainable energy).

  13. System learning approach to assess sustainability and ...

    EPA Pesticide Factsheets

    This paper presents a methodology that combines the power of an Artificial Neural Network and Information Theory to forecast variables describing the condition of a regional system. The novelty and strength of this approach is in the application of Fisher information, a key method in Information Theory, to preserve trends in the historical data and prevent over fitting projections. The methodology was applied to demographic, environmental, food and energy consumption, and agricultural production in the San Luis Basin regional system in Colorado, U.S.A. These variables are important for tracking conditions in human and natural systems. However, available data are often so far out of date that they limit the ability to manage these systems. Results indicate that the approaches developed provide viable tools for forecasting outcomes with the aim of assisting management toward sustainable trends. This methodology is also applicable for modeling different scenarios in other dynamic systems. Indicators are indispensable for tracking conditions in human and natural systems, however, available data is sometimes far out of date and limit the ability to gauge system status. Techniques like regression and simulation are not sufficient because system characteristics have to be modeled ensuring over simplification of complex dynamics. This work presents a methodology combining the power of an Artificial Neural Network and Information Theory to capture patterns in a real dyna

  14. Energy and Environmental Consequences of Transportation: Indicators of Sustainability

    SciTech Connect

    Greene, D.L.

    1997-07-01

    The rapid motorization of world transportation systems puts growing emphasis on controlling transportation`s direct and indirect impacts on the global environment, in other words, on achieving sustainability in transport. In 1950, the world contained 70 million motor vehicles, of which 70% were in the United States. Today the world`s motor vehicle fleet exceeds 600 million,of which less than one-third are in the U.S. Outside of the U.S., motor vehicle stocks are growing twice as fast (Davis & McFarlin, 1996, tables 1.1 & 1.2). With this explosive growth of motorized transport comes a compelling need to control its concomitant pollution, greenhouse gas emissions, and fossil fuel consumption. Large scale indicators of transportation`s performance with respect to sustainability are therefore becoming increasingly important for monitoring trends and evaluating the effectiveness of policies at national and international scales. A recent survey by the Bureau of Transportation Statistics (U. S. DOT/BTS, 1 996) of data on transportation`s environmental consequences in the U.S., found that reasonable indicators exist for energy use and for certain of transportation`s environmental impacts. Statistics on air pollutant emissions, greenhouse gas emissions, and energy use are adequate for developing rigorous indicators of at least emissions and energy use. Much less is known about noise generation, water and groundwater pollution, solid waste,land-use and habitat impacts.

  15. Solar power for energy sustainability and environmental friendliness of Curtin University Sarawak

    NASA Astrophysics Data System (ADS)

    Palanichamy, C.; Goh, Alvin

    2016-03-01

    The demand on electrical energy is rapidly increasing. Everything around us requires electrical energy either during its production or usage stage. Sustainability has become the main concern nowadays as the availability of fossil fuels is limited. As renewable energy is the path-way to energy sustainability and environmental friendly environment, this paper proposes a solar power system for Curtin University Sarawak to reduce its electricity consumption and greenhouse gas emissions. The proposed 208 kW solar system saves an energy consumption of more than 380,000 kWh per year, and a CO2 offset by 285 Tons per year

  16. The silver bullet myth of sustainable energy savings

    SciTech Connect

    Pasqualetti, Martin J.; Tabbert, Michael K.; Boscamp, Robert L.

    2010-10-15

    Especially in the U.S., people like to think that solving problems just requires finding the proper ''silver bullet.'' Such fixes are not sustainable. Any utility company wanting sustainable long-term savings in personal energy demand requires a more thorough commitment that might be referred to as ''head'' (education), ''heart'' (motivation), and ''hands'' (action). (author)

  17. Teaching Energy as Part of Education for Sustainability

    ERIC Educational Resources Information Center

    Tas, Maarten; McKeon, Frankie; Charnley, Fiona; Fleming, Margaret

    2014-01-01

    This article describes how energy issues and education for sustainable development (ESD) are part of the agenda for two current European projects, CoDeS and SUSTAIN. The latter is mainly concerned with the development of inquiry-based primary and lower secondary science education while the former is a network that aims to learn more about…

  18. Wind energy systems

    NASA Technical Reports Server (NTRS)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  19. Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy.

    PubMed

    Bayro-Kaiser, Vinzenz; Nelson, Nathan

    2017-02-26

    Modern energy production is required to undergo a dramatic transformation. It will have to replace fossil fuel use by a sustainable and clean energy economy while meeting the growing world energy needs. This review analyzes the current energy sector, available energy sources, and energy conversion technologies. Solar energy is the only energy source with the potential to fully replace fossil fuels, and hydrogen is a crucial energy carrier for ensuring energy availability across the globe. The importance of photosynthetic hydrogen production for a solar-powered hydrogen economy is highlighted and the development and potential of this technology are discussed. Much successful research for improved photosynthetic hydrogen production under laboratory conditions has been reported, and attempts are underway to develop upscale systems. We suggest that a process of integrating these achievements into one system to strive for efficient sustainable energy conversion is already justified. Pursuing this goal may lead to a mature technology for industrial deployment.

  20. Conducting Sustainable Energy Projects in Secondary Science Classrooms

    ERIC Educational Resources Information Center

    Toolin, Regina; Watson, Anne

    2010-01-01

    This article discusses how sixth through twelfth grade science teachers can engage their students in the design and implementation of sustainable energy projects as part of a unit of study on energy. The project challenges students to engage in an energy project that gives them the opportunity to make a difference in their local community and the…

  1. Sustain

    SciTech Connect

    2013-08-20

    Current building energy simulation technology requires excessive labor, time and expertise to create building energy models, excessive computational time for accurate simulations and difficulties with the interpretation of the results. These deficiencies can be ameliorated using modern graphical user interfaces and algorithms which take advantage of modern computer architectures and display capabilities. To prove this hypothesis, we developed an experimental test bed for building energy simulation. This novel test bed environment offers an easy-to-use interactive graphical interface, provides access to innovative simulation modules that run at accelerated computational speeds, and presents new graphics visualization methods to interpret simulation results. Our system offers the promise of dramatic ease of use in comparison with currently available building energy simulation tools. Its modular structure makes it suitable for early stage building design, as a research platform for the investigation of new simulation methods, and as a tool for teaching concepts of sustainable design. Improvements in the accuracy and execution speed of many of the simulation modules are based on the modification of advanced computer graphics rendering algorithms. Significant performance improvements are demonstrated in several computationally expensive energy simulation modules. The incorporation of these modern graphical techniques should advance the state of the art in the domain of whole building energy analysis and building performance simulation, particularly at the conceptual design stage when decisions have the greatest impact. More importantly, these better simulation tools will enable the transition from prescriptive to performative energy codes, resulting in better, more efficient designs for our future built environment.

  2. Sustainable Design and Renewable Energy Concepts in Practice

    NASA Astrophysics Data System (ADS)

    Maxwell, Lawrence

    2009-07-01

    The energy use of residential and non-residential buildings in the US makes up a full 50% of the total energy use in the country. The Architects role in positively altering this equation has become more and more apparent. A change in the paradigm of how buildings are designed and the integration of renewable energy sources to meet their energy requirements can have tremendous impacts on sustainability, energy consumption, environment impacts, and the potential for climate change.

  3. Renewable energy sources for sustainable tourism in the Carpathian region

    NASA Astrophysics Data System (ADS)

    Mandryk, O. M.; Arkhypova, L. M.; Pobigun, O. V.; Maniuk, O. R.

    2016-08-01

    The use of renewable energy in sustainable tourism development of the region is grounded in the paper. There are three stages of selecting areas for projects of renewable energy sources: selection of potentially suitable area; consideration of exclusion criteria, detailed assessment of potential sites or areas. The factors of impact on spatial constraints and opportunities for building wind, solar and small hydro power plants on the parameters of sustainable tourism development in the Carpathian region were determined.

  4. Nanotechnology and clean energy: sustainable utilization and supply of critical materials

    NASA Astrophysics Data System (ADS)

    Fromer, Neil A.; Diallo, Mamadou S.

    2013-11-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies.

  5. Modelling Sustainable Development Scenarios of Croatian Power System

    NASA Astrophysics Data System (ADS)

    Pašičko, Robert; Stanić, Zoran; Debrecin, Nenad

    2010-05-01

    The main objective of power system sustainable development is to provide the security of electricity supply required to underpin economic growth and increase the quality of living while minimizing adverse environmental impacts. New challenges such as deregulation, liberalization of energy markets, increased competition on energy markets, growing demands on security of supply, price insecurities and demand to cut CO2 emissions, are calling for better understanding of electrical systems modelling. Existing models are not sufficient anymore and planners will need to think differently in order to face these challenges. Such a model, on the basis on performed simulations, should enable planner to distinguish between different options and to analyze sustainability of these options. PLEXOS is an electricity market simulation model, used for modeling electrical system in Croatia since 2005. Within this paper, generation expansion scenarios until 2020 developed for Croatian Energy Strategy and modeled in PLEXOS. Development of sustainable Croatian energy scenario was analyzed in the paper - impacts of CO2 emission price and wind generation. Energy Strategy sets goal for 1200 MW from wind power plants in 2020. In order to fully understand its impacts, intermittent nature of electricity generation from wind power plant was modeled. We conclude that electrical system modelling using everyday growing models has proved to be inevitable for sustainable electrical system planning in complex environment in which power plants operate today.

  6. Role of Fusion Energy in a Sustainable Global Energy Strategy

    SciTech Connect

    Meier, W; Najmabadi, F; Schmidt, J; Sheffield, J

    2001-03-07

    of an attractive fusion system with present achievements to identify remaining technical challenges for fusion. We discuss scenarios for fusion energy deployment in the energy market.

  7. World energy: Building a sustainable future

    SciTech Connect

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  8. World energy: Building a sustainable future

    SciTech Connect

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  9. SEMS: System for Environmental Monitoring and Sustainability

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond E.

    1998-01-01

    The goal of this project was to establish a computational and data management system, SEMS, building on our existing system and MTPE-related research. We proposed that the new system would help support Washington University's efforts in environmental sustainability through use in: (a) Problem-based environmental curriculum for freshmen and sophomores funded by the Hewlett Foundation that integrates scientific, cultural, and policy perspectives to understand the dynamics of wetland degradation, deforestation, and desertification and that will develop policies for sustainable environments and economies; (b) Higher-level undergraduate and graduate courses focused on monitoring the environment and developing policies that will lead to sustainable environmental and economic conditions; and (c) Interdisciplinary research focused on the dynamics of the Missouri River system and development of policies that lead to sustainable environmental and economic floodplain conditions.

  10. Sustainable, Reliable Mission-Systems Architecture

    NASA Technical Reports Server (NTRS)

    O'Neil, Graham; Orr, James K.; Watson, Steve

    2007-01-01

    A mission-systems architecture, based on a highly modular infrastructure utilizing: open-standards hardware and software interfaces as the enabling technology is essential for affordable and sustainable space exploration programs. This mission-systems architecture requires (a) robust communication between heterogeneous system, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered system are applied to define the model. Technology projections reaching out 5 years are mde to refine model details.

  11. Sustainable, Reliable Mission-Systems Architecture

    NASA Technical Reports Server (NTRS)

    O'Neil, Graham; Orr, James K.; Watson, Steve

    2005-01-01

    A mission-systems architecture, based on a highly modular infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is essential for affordable md sustainable space exploration programs. This mission-systems architecture requires (8) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, end verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered systems are applied to define the model. Technology projections reaching out 5 years are made to refine model details.

  12. Low-cost sustainable wall construction system

    SciTech Connect

    Vohra, A.; Rosenfeld, A.H.

    1998-07-01

    Houses with no wall cavities, such as those made of adobe, stone, brick, or block, have poor thermal properties but are rarely insulated because of the cost and difficulty of providing wall insulation. A simple, low-cost technique using loose-fill indigenous materials has been demonstrated for the construction of highly insulated walls or the retrofit of existing walls in such buildings. Locally available pumice, in sandbags stacked along the exterior wall of an adobe house in New Mexico, added a thermal resistance (R) of 16 F{sm{underscore}bullet}ft{sup 2}{sm{underscore}bullet}h/Btu (2.8 m{sup 2}{sm{underscore}bullet}K/W). The total cost of the sandbag insulation wall retrofit was $3.76 per square foot ($40.50/m{sup 2}). Computer simulations of the adobe house using DOE 2.1E show savings of $275 per year, corresponding to 50% reduction in heating energy consumption. The savings-to-investment ratio ranges from 1.1 to 3.2, so the cost of conserved energy is lower than the price of propane, natural gas and electric heat, making the system cost-effective. Prototype stand-alone walls were also constructed using fly ash and sawdust blown into continuous polypropylene tubing, which was folded between corner posts as it was filled to form the shape of the wall. Other materials could also be used. The inexpensive technique solves the problem of insulating solid-wall hours and constructing new houses without specialized equipment and skills, thereby saving energy, reducing greenhouse gas emissions, and improving comfort for people in many countries. The US Department of Energy (DOE) has filed patent applications on this technology, which is part of a DOE initiative on sustainable building envelope materials and systems.

  13. Automated Demand Response for Energy Sustainability

    DTIC Science & Technology

    2015-05-01

    ahead price incentives to customers for reducing energy consumption during a DBP Event. The DR controlled electric loads at Fort Irwin consisted of...offers Day-Ahead price incentives to customers for reducing energy consumption during a DBP Event. A Day-Ahead DBP Event may be called at SCE’s...sometimes struggle to meet customer demands, which can cause instability, rolling blackouts, and high energy prices . This technology enables the

  14. Scientific challenges in sustainable energy technology

    NASA Astrophysics Data System (ADS)

    Lewis, Nathan

    2006-04-01

    We describe and evaluate the technical, political, and economic challenges involved with widespread adoption of renewable energy technologies. First, we estimate fossil fuel resources and reserves and, together with the current and projected global primary power production rates, estimate the remaining years of oil, gas, and coal. We then compare the conventional price of fossil energy with that from renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the potential for a transition to renewable energy in the next 20-50 years. Secondly, we evaluate - per the Intergovernmental Panel on Climate Change - the greenhouse constraint on carbon-based power consumption as an unpriced externality to fossil-fuel use, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit GDP. This constraint is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, to levels far greater than current renewable energy demand. Thirdly, we evaluate the level and timescale of R&D investment needed to produce the required quantity of carbon-free power by the 2050 timeframe. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected demand. Fifth, we evaluate the challenges to the chemical sciences to enable the cost-effective production of carbon-free power required. Finally, we discuss the effects of a change in primary power technology on the energy supply infrastructure and discuss the impact of such a change on the modes of energy consumption by the energy consumer and additional demands on the chemical sciences to support such a transition in energy supply.

  15. Scientific Challenges in Sustainable Energy Technology

    NASA Astrophysics Data System (ADS)

    Lewis, Nathan

    2006-03-01

    This presentation will describe and evaluate the challenges, both technical, political, and economic, involved with widespread adoption of renewable energy technologies. First, we estimate the available fossil fuel resources and reserves based on data from the World Energy Assessment and World Energy Council. In conjunction with the current and projected global primary power production rates, we then estimate the remaining years of supply of oil, gas, and coal for use in primary power production. We then compare the price per unit of energy of these sources to those of renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the degree to which supply/demand forces stimulate a transition to renewable energy technologies in the next 20-50 years. Secondly, we evaluate the greenhouse gas buildup limitations on carbon-based power consumption as an unpriced externality to fossil-fuel consumption, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit of globally averaged GDP, as produced by the Intergovernmental Panel on Climate Change (IPCC). A greenhouse gas constraint on total carbon emissions, in conjunction with global population growth, is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, at potentially daunting levels relative to current renewable energy demand levels. Thirdly, we evaluate the level and timescale of R&D investment that is needed to produce the required quantity of carbon-free power by the 2050 timeframe, to support the expected global energy demand for carbon-free power. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected global carbon-free energy demand requirements. Fifth, we evaluate the challenges to the chemical sciences to

  16. Sustained turbulence and magnetic energy in nonrotating shear flows

    NASA Astrophysics Data System (ADS)

    Nauman, Farrukh; Blackman, Eric G.

    2017-03-01

    From numerical simulations, we show that nonrotating magnetohydrodynamic shear flows are unstable to finite amplitude velocity perturbations and become turbulent, leading to the growth and sustenance of magnetic energy, including large scale fields. This supports the concept that sustained magnetic energy from turbulence is independent of the driving mechanism for large enough magnetic Reynolds numbers.

  17. Energy Sustainability: It's Easier (and Cheaper) than You Think

    ERIC Educational Resources Information Center

    Smith, Molly; Peterson, David

    2010-01-01

    In this economy, it's hard to implement any kind of school facility improvement plan with tight budgets and rising energy costs. The following strategies and suggestions are just some of the many ways schools can reach toward sustainability. In creating this presentation, our objective was to point out what you can do to save energy right now with…

  18. Sustainable Schools: Making Energy Efficiency a Lifestyle Priority

    ERIC Educational Resources Information Center

    Purnell, Ken; Sinclair, Mark; Gralton, Anna

    2004-01-01

    Promoting efficient energy use in schools that consequently reduces greenhouse gas emissions is the purpose of a residential Energy Efficiency in Schools (EEIS) program reported on in this paper. Research on this program aligns with one of the "key "overarching" sustainability issues", set out in the "Learning for…

  19. Energy Control Systems: Energy Savings.

    ERIC Educational Resources Information Center

    School Business Affairs, 1980

    1980-01-01

    The installation of proper control systems is estimated as saving up to 25 percent of the energy used in schools. Other potential energy-saving areas are transmission (heat loss or gain through walls, especially ceilings); internal load (heat from students, lights, and machinery); ventilation; and equipment maintenance. (Author/MLF)

  20. Sustainable energy development in Austria until 2020: Insights from applying the integrated model "e3.at"

    PubMed

    Stocker, Andrea; Großmann, Anett; Madlener, Reinhard; Wolter, Marc Ingo

    2011-10-01

    This paper reports on the Austrian research project "Renewable energy in Austria: Modeling possible development trends until 2020". The project investigated possible economic and ecological effects of a substantially increased use of renewable energy sources in Austria. Together with stakeholders and experts, three different scenarios were defined, specifying possible development trends for renewable energy in Austria. The scenarios were simulated for the period 2006-2020, using the integrated environment-energy-economy model "e3.at". The modeling results indicate that increasing the share of renewable energy sources in total energy use is an important but insufficient step towards achieving a sustainable energy system in Austria. A substantial increase in energy efficiency and a reduction of residential energy consumption also form important cornerstones of a sustainable energy policy.

  1. The Sustainable Energy Utility (SEU) Model for Energy Service Delivery

    ERIC Educational Resources Information Center

    Houck, Jason; Rickerson, Wilson

    2009-01-01

    Climate change, energy price spikes, and concerns about energy security have reignited interest in state and local efforts to promote end-use energy efficiency, customer-sited renewable energy, and energy conservation. Government agencies and utilities have historically designed and administered such demand-side measures, but innovative…

  2. Sustainable energy development and water supply security in Kamojang Geothermal Field: The Energy-Water Nexus

    NASA Astrophysics Data System (ADS)

    Sofyan, Y.; Nishijima, J.; Fujimitsu, Y.

    2014-12-01

    The Kamojang Geothermal Field (KGF) is a typical vapor dominated hydrothermal system in West Java, Indonesia. This geothermal field is the oldest exploited geothermal field in Indonesia. From 1983 to 2005, more than 160 million tons of steam have been exploited from the KGF and more than 30 million tons of water were injected into the reservoir system. The injected water come from condensed water, local river and ground water. Sustainable production in the geothermal energy development is the ability of the production system applied to sustain the stable production level over long times and to manage the mass balance between production, injection and natural recharge in the geothermal reservoir during exploitation. Mass balance in the reservoir system can be monitored by using time lapse gravity monitoring. Mass variation of hydrodynamic in the reservoir of KGF from 1999 to 2005 is about -3.34 Mt/year while is about -3.78 Mt/year from 1999 to 2008. Another period between 2009 and 2010, mass variation decreased about -8.24 Mt. According to the history of production and injection, natural recharge to the KGF's reservoir is estimated at about 2.77 Mt/year from 1999 to 2005 and 2.75 Mt/year from 1999 to 2008. Between 2009 and 2010, KGF has a bigger mass deficiency rate throughout 200 MWe maintain production. Large amount of fresh water is needed for sustainable geothermal energy production, while the domestic water supply need is also increased. Natural recharge, about 50% of injected water, cooling system, drilling and other production activities in KGF spend large amounts of fresh water. Water consumption for local people around KGF is about 1.46 MT/year. The water volume around KGF of total runoff is the range between dry season 0.07 MT/month and rainy season 4.4 MT/month. The water demands for sustainable geothermal production of KGF and for local people's consumption will increase in the future. Integrated planning between the energy and water sectors in KGF

  3. Operationalizing Sustainable Development Suncor Energy Inc: A critical case

    NASA Astrophysics Data System (ADS)

    Fergus, Andrew

    The concept of Sustainable Development is often understood as a framework within which organizations are able to move forward in a successful and beneficial manner. However, it is also seen as an ambiguous notion with little substance beyond a hopeful dialogue. If we are to base organizational action upon the concepts of Sustainable Development, it is vital that we comprehend the implications of how the concept is understood at a behavioral level. Industry leaders, competitors, shareholders, and stakeholders recognize Suncor Energy Inc as a leading organization within the Oil and Gas energy field. In particular it has a reputation for proactive thinking and action within the areas of environmental and social responsibility. Through attempting to integrate the ideas of Sustainable Development at a foundational level into the strategic plan, the management of Suncor Energy Inc has committed the organization to be a sustainable energy company. To achieve this vision the organization faces the challenge of converting strategic goals into operational behaviors, a process critical for a successful future. This research focuses on understanding the issues found with this conversion process. Through exploring a critical case, this research illuminates the reality of a best-case scenario. The findings thus have implications for both Suncor Energy Inc and more importantly all other organizations attempting to move in a Sustainable Development direction.

  4. Renewable energy and sustainable communities: Alaska's wind generator experience†

    PubMed Central

    Konkel, R. Steven

    2013-01-01

    Background In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. Method This article reviews data and conclusions presented in “Alaska's Wind Energy Systems; Inventory and Economic Assessment” (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Results Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. Discussion State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards – $202,000,000 to date for 227 REF projects in the first 5 cycles of funding – along with numerous energy conservation programs – are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers:changing environmental conditions in remote Alaska villages,impacts associated

  5. Sustainable Production of Switchgrass for Biomass Energy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) is a C4 grass native to the North American tallgrass prairies, which historically extended from Mexico to Canada. It is the model perennial warm-season grass for biomass energy. USDA-ARS in Lincoln, NE has studied switchgrass continuously since 1936. Plot-scale rese...

  6. Sustainability of Switchgrass Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) is a perennial C4 grass that is native to the eastern two thirds of temperate North America. It has been used for conservation purposes and as a pasture grass since the 1940’s. It is currently being developed as a cellulosic biomass energy crop because it can produ...

  7. Engineering biological systems toward a sustainable bioeconomy.

    PubMed

    Lopes, Mateus Schreiner Garcez

    2015-06-01

    The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy.

  8. Designing Systems for Environmental Sustainability

    EPA Science Inventory

    Dr. Smith will describe his U.S. EPA research which involves elements of design, from systems as diverse as biofuel supply chains to recycling systems and chemical processes. Design uses models that rate performance as part of a synthesis approach, where steps of analysis and sy...

  9. Biomass as a Sustainable Energy Source: An Illustration of Chemical Engineering Thermodynamic Concepts

    ERIC Educational Resources Information Center

    Mohan, Marguerite A.; May, Nicole; Assaf-Anid, Nada M.; Castaldi, Marco J.

    2006-01-01

    The ever-increasing global demand for energy has sparked renewed interest within the engineering community in the study of sustainable alternative energy sources. This paper discusses a power generation system which uses biomass as "fuel" to illustrate the concepts taught to students taking a graduate level chemical engineering process…

  10. Water and energy as inseparable twins for sustainable solutions.

    PubMed

    Hofman, Jan; Hofman-Caris, Roberta; Nederlof, Maarten; Frijns, Jos; van Loosdrecht, Mark

    2011-01-01

    Although the water cycle is only a minor contributor to the energy demand in society, it is a matter of good housekeeping to minimize the energy need within a sustainable water cycle. Wastewater treatment should not only be applied to purify the water, but also recover the energy present in this water, as well as to recover essential elements like nitrogen and phosphorus. From an energy analysis of the Dutch water cycle it is concluded that creating an energy neutral water cycle by using the heat content or by making use of the organic load of wastewater is within hands.

  11. Opportunities and challenges for a sustainable energy future.

    PubMed

    Chu, Steven; Majumdar, Arun

    2012-08-16

    Access to clean, affordable and reliable energy has been a cornerstone of the world's increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty-first century must also be sustainable. Solar and water-based energy generation, and engineering of microbes to produce biofuels are a few examples of the alternatives. This Perspective puts these opportunities into a larger context by relating them to a number of aspects in the transportation and electricity generation sectors. It also provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.

  12. Sustainable Energy Solutions for Rural Alaska

    SciTech Connect

    Allen, Riley; Brutkoski, Donna; Farnsworth, David; Larsen, Peter

    2016-04-22

    The state of Alaska recognizes the challenges these rural communities face and provides financial support via the Power Cost Equalization (PCE) program. The PCE subsidizes the electricity prices paid by customers of these high-cost utilities. The PCE program is designed to spread the benefits of Alaska’s natural resources more evenly throughout the state. Yet even with this subsidy, electricity is still much more expensive for these rural customers. And beyond the PCE, other forms of assistance to rural utilities are becoming scarce given the state’s current fiscal environment. Nearly 90 percent of Alaska’s unrestricted budget funds in recent years have been tied to oil royalties—a sector experiencing significant declines in production and oil prices. Consequently, as Alaska looks to tighten budgets, the challenge of lowering rural utility costs, while encouraging self-sufficiency, has become more urgent.This study examines reliability, capital and strategic planning, management, workforce development, governance, financial performance and system efficiency in the various communities visited by the research team. Using those attributes, a tier system was developed to categorize rural Alaska utilities into Leading and Innovating Systems (Tier I), Advanced Diesel Systems (Tier II), Basic Systems (Tier III), and Underperforming Systems (Tier IV). The tier approach is not meant to label specific utilities, but rather to provide a general set of benchmarks and guideposts for improvement.

  13. Urban sustainable energy development: A case study of the city of Philadelphia

    NASA Astrophysics Data System (ADS)

    Argyriou, Iraklis

    This study explores the role of cities in sustainable energy development through a governance-informed analysis. Despite the leading position of municipalities in energy sustainability, cities have been mostly conceptualized as sites where energy development is shaped by external policy scales, i.e. the national level. A growing body of research, however, critiques this analytical perspective, and seeks to better understand the type of factors and dynamics that influence energy sustainability within a multi-level policy context for urban energy. Given that particular circumstances are applicable across cities, a context-specific analysis can provide insight regarding how sustainable energy development takes place in urban areas. In applying such an analytical perspective on urban energy sustainability, this study undertakes a qualitative case study analysis for the city of Philadelphia, Pennsylvania, by looking at four key local policy initiatives relevant to building energy efficiency and solar electricity development at the municipal government and city-wide level. The evaluation of the initiatives suggests that renewable electricity use has increased substantially in the city over the last years but the installed capacity of local renewable electricity systems, including solar photovoltaics, is low. On the other hand, although the city has made little progress in meeting its building energy efficiency targets, more comprehensive action is taken in this area. The study finds that the above outcomes have been shaped mainly by four factors. The first is the city government's incremental policy approach aiming to develop a facilitative context for local action. The second is the role that a diverse set of stakeholders have in local sustainable energy development. The third is the constraints that systemic policy barriers create for solar power development. The fourth is the ways through which the relevant multi-level policy environment structures the city

  14. Sustainable multipurpose tree production systems for Nepal

    SciTech Connect

    Shen, S.Y.; Kilpatrick, K.J.

    1988-03-01

    Argonne National Laboratory is developing methods for producing reforestation plating stock, fuel, and fodder in a sustainable manner in Nepal. This project, in cooperation with the Ministry of Forest and Soil Conservation of Nepal, is sponsored by the US Agency for International Development (AID). Several production systems are being evaluated for the Mid-Hills Region of Nepal. To provide sustainable biomass production and ecological management of the fragile Mid-Hills Region, the production systems must simultaneously satisfy the physiological requirements of the plants, the symbiotic requirements of the plant and the microorganisms in its rhizosphere, the physicochemical requirements of nutrient and water cycling, and the climatic and topographic constraints.

  15. Innovative paths for providing green energy for sustainable global economic growth

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra; Alapatt, G. F.

    2012-10-01

    According to United Nation, world population may reach 10.1 billion by the year 2100. The fossil fuel based global economy is not sustainable. For sustainable global green energy scenario we must consider free fuel based energy conversion, environmental concerns and conservation of water. Photovoltaics (PV) offers a unique opportunity to solve the 21st century's electricity generation because solar energy is essentially unlimited and PV systems provide electricity without any undesirable impact on the environment. Innovative paths for green energy conversion and storage are proposed in areas of R and D, manufacturing and system integration, energy policy and financing. With existing silicon PV system manufacturing, the implementation of new innovative energy policies and new innovative business model can provide immediately large capacity of electricity generation to developed, emerging and underdeveloped economies.

  16. Water and Energy Sustainability: A Balance of Government Action and Industry Innovation

    SciTech Connect

    Ben Grunewald

    2009-12-31

    By completing the tasks and subtasks of the project, the Ground Water Protection Council (GWPC) through its state regulatory agency members and oil and gas industry partners, will bring attention to water quality and quantity issues and make progress toward water and energy sustainability though enhanced water protection and conservation thus enhancing the viability of the domestic fossil fuel industry. The project contains 4 major independent Tasks. Task 1 - Work Plan: Water-Energy Sustainability: A Symposium on Resource Viability. Task 2 - Work Plan: A Regional Assessment of Water and Energy Sustainability. Task 3 - Work Plan: Risk Based Data Management System-Water Water and Energy Module. Task 4 - Work Plan: Identification and Assessment of States Regulatory Programs Regarding Geothermal Heating and Cooling Systems. Each task has a specific scope (details given).

  17. Italian parliamentary debates on energy sustainability: How argumentative 'short-circuits' affect public engagement.

    PubMed

    Brondi, Sonia; Sarrica, Mauro; Caramis, Alessandro; Piccolo, Chiara; Mazzara, Bruno M

    2016-08-01

    Public engagement is considered a crucial process in the transition towards sustainable energy systems. However, less space has been devoted to understand how policy makers and stakeholders view citizens and their relationship with energy issues. Nonetheless, together with technological advancements, policies and political debates on energy affect public engagement as well as individual practices. This article aims at tackling this issue by exploring how policy makers and stakeholders have socially constructed sustainable energy in Italian parliamentary debates and consultations during recent years (2009-2012). Results show that societal discourses on sustainable energy are oriented in a manner that precludes public engagement. The political debate is characterised by argumentative 'short-circuits' that constrain individual and community actions to the acceptance or the refusal of top-down decisions and that leave little room for community empowerment and bottom-up innovation.

  18. Sustaining Action and Optimizing Entropy: Coupling Efficiency for Energy and the Sustainability of Global Ecosystems

    ERIC Educational Resources Information Center

    Rose, Michael T.; Crossan, Angus N.; Kennedy, Ivan R.

    2008-01-01

    Consideration of the property of action is proposed to provide a more meaningful definition of efficient energy use and sustainable production in ecosystems. Action has physical dimensions similar to angular momentum, its magnitude varying with mass, spatial configuration and relative motion. In this article, the relationship of action to…

  19. Sustainable Algal Energy Production and Environmental Remediation

    SciTech Connect

    Cooke, William E.

    2012-07-14

    Overall, our results confirm that wild algal species sequester a wide range of organic and metal contaminants and excess nutrients (PAHs, trace metals, and nutrients) from natural waters, and suggest parameters that could be useful in predicting uptake rates for algae growing on an algal floway or other algal growth systems in the environment or in industrial processes. The implication for various fuel production processes differ with the detailed unit operations involved, and these results will be of use in the developing of scaling experiments for various types of engineering process designs.

  20. Sustainability Indicators for Coupled Human-Earth Systems

    NASA Astrophysics Data System (ADS)

    Motesharrei, S.; Rivas, J. R.; Kalnay, E.

    2014-12-01

    Over the last two centuries, the Human System went from having a small impact on the Earth System (including the Climate System) to becoming dominant, because both population and per capita consumption have grown extremely fast, especially since about 1950. We therefore argue that Human System Models must be included into Earth System Models through bidirectional couplings with feedbacks. In particular, population should be modeled endogenously, rather than exogenously as done currently in most Integrated Assessment Models. The growth of the Human System threatens to overwhelm the Carrying Capacity of the Earth System, and may be leading to catastrophic climate change and collapse. We propose a set of Ecological and Economic "Sustainability Indicators" that can employ large data-sets for developing and assessing effective mitigation and adaptation policies. Using the Human and Nature Dynamical Model (HANDY) and Coupled Human-Climate-Water Model (COWA), we carry out experiments with this set of Sustainability Indicators and show that they are applicable to various coupled systems including Population, Climate, Water, Energy, Agriculture, and Economy. Impact of nonrenewable resources and fossil fuels could also be understood using these indicators. We demonstrate interconnections of Ecological and Economic Indicators. Coupled systems often include feedbacks and can thus display counterintuitive dynamics. This makes it difficult for even experts to see coming catastrophes from just the raw data for different variables. Sustainability Indicators boil down the raw data into a set of simple numbers that cross their sustainability thresholds with a large time-lag before variables enter their catastrophic regimes. Therefore, we argue that Sustainability Indicators constitute a powerful but simple set of tools that could be directly used for making policies for sustainability.

  1. Sustainable Energy in Remote Indonesian Grids. Accelerating Project Development

    SciTech Connect

    Hirsch, Brian; Burman, Kari; Davidson, Carolyn; Elchinger, Michael; Hardison, R.; Karsiwulan, D.; Castermans, B.

    2015-06-30

    Sustainable Energy for Remote Indonesian Grids (SERIG) is a U.S. Department of Energy (DOE) funded initiative to support Indonesia’s efforts to develop clean energy and increase access to electricity in remote locations throughout the country. With DOE support, the SERIG implementation team consists of the National Renewable Energy Laboratory (NREL) and Winrock International’s Jakarta, Indonesia office. Through technical assistance that includes techno-economic feasibility evaluation for selected projects, government-to-government coordination, infrastructure assessment, stakeholder outreach, and policy analysis, SERIG seeks to provide opportunities for individual project development and a collective framework for national replication office.

  2. Towards a sustainable energy future: realities and opportunities.

    PubMed

    Armstrong, Lynda

    2011-05-13

    My purpose in this paper is threefold. First, I would like to examine why the world needs us to produce more energy. Second, I will look at the range of energy sources available for a sustainable future. A number of myths have grown up around the various energy sources and their relative contribution to addressing the global energy challenge: I will seek to dispel some of those. Third, I want to highlight what I see as an urgent need: for more informed decision making and more action in this complex area.

  3. In-School Sustainability Action: Climate Clever Energy Savers

    ERIC Educational Resources Information Center

    Buchanan, John; Schuck, Sandy; Aubusson, Peter

    2016-01-01

    The mandate for living sustainably is becoming increasingly urgent. This article reports on the Climate Clever Energy Savers (CCES) Program, a student-centred, problem- and project-based program in New South Wales, Australia, aimed at enabling school students to identify ways of reducing their schools' electricity consumption and costs. As part of…

  4. Building Integrated Photovoltaic (BIPV) Roofs for Sustainability and Energy Efficiency

    DTIC Science & Technology

    2014-04-01

    photovoltaic roof; PV; renewable energy; rooftop PV 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME...the adhesive -only approach, but is restricted to certain roofing materials. Crystalline silicon based PV technology is currently the most commonly...TECHNICAL REPORT TR-NAVFAC-EXWC-PW-1406 APRIL 2014 BUILDING INTEGRATED PHOTOVOLTAIC (PV) ROOFS FOR SUSTAINABILITY AND ENERGY EFFICIENCY

  5. Sustainability of Agricultural Systems: Concept to Application

    EPA Science Inventory

    Agriculture not only feeds the planet, it also is the biggest overall factor affecting the environment. Thus, innovative sustainable farming systems that produce healthy food and protect the environment at the same time are very much needed. We, as agricultural engineers, need ...

  6. Modeling and planning distributed energy systems online

    NASA Astrophysics Data System (ADS)

    Wieler, Susana

    Sustainable energy is a core concern worldwide for the foreseeable future. Technologically, its key trends are distributed and renewable energy resources and smart grid capabilities. At the same time, a global need for sustainable energy is meeting increasingly diverse energy policy and economics. To plan with such complex contexts and systems, a novel distributed energy software tool and its initial implementation is presented: the Energy Systems Evaluator Online (ESEO). Its contributions include: (1) A flexible model framework that can simulate current and expected distributed energy systems; (2) An architecture specifying the modular design needed for distributed energy planning software in general; (3) A working implementation as the first general energy planning tool deployed via the Internet with collaborative capabilities.

  7. Assessment of Renewable Energy Technology and a Case of Sustainable Energy in Mobile Telecommunication Sector

    PubMed Central

    Okundamiya, Michael S.; Emagbetere, Joy O.; Ogujor, Emmanuel A.

    2014-01-01

    The rapid growth of the mobile telecommunication sectors of many emerging countries creates a number of problems such as network congestion and poor service delivery for network operators. This results primarily from the lack of a reliable and cost-effective power solution within such regions. This study presents a comprehensive review of the underlying principles of the renewable energy technology (RET) with the objective of ensuring a reliable and cost-effective energy solution for a sustainable development in the emerging world. The grid-connected hybrid renewable energy system incorporating a power conversion and battery storage unit has been proposed based on the availability, dynamism, and technoeconomic viability of energy resources within the region. The proposed system's performance validation applied a simulation model developed in MATLAB, using a practical load data for different locations with varying climatic conditions in Nigeria. Results indicate that, apart from being environmentally friendly, the increase in the overall energy throughput of about 4 kWh/$ of the proposed system would not only improve the quality of mobile services, by making the operations of GSM base stations more reliable and cost effective, but also better the living standards of the host communities. PMID:24578673

  8. Assessment of renewable energy technology and a case of sustainable energy in mobile telecommunication sector.

    PubMed

    Okundamiya, Michael S; Emagbetere, Joy O; Ogujor, Emmanuel A

    2014-01-01

    The rapid growth of the mobile telecommunication sectors of many emerging countries creates a number of problems such as network congestion and poor service delivery for network operators. This results primarily from the lack of a reliable and cost-effective power solution within such regions. This study presents a comprehensive review of the underlying principles of the renewable energy technology (RET) with the objective of ensuring a reliable and cost-effective energy solution for a sustainable development in the emerging world. The grid-connected hybrid renewable energy system incorporating a power conversion and battery storage unit has been proposed based on the availability, dynamism, and technoeconomic viability of energy resources within the region. The proposed system's performance validation applied a simulation model developed in MATLAB, using a practical load data for different locations with varying climatic conditions in Nigeria. Results indicate that, apart from being environmentally friendly, the increase in the overall energy throughput of about 4 kWh/$ of the proposed system would not only improve the quality of mobile services, by making the operations of GSM base stations more reliable and cost effective, but also better the living standards of the host communities.

  9. Not planning a sustainable transport system

    SciTech Connect

    Finnveden, Göran Åkerman, Jonas

    2014-04-01

    The overall objective of the Swedish transport policy is to ensure the economically efficient and sustainable provision of transport services for people and business throughout the country. More specifically, the transport sector shall, among other things, contribute to the achievement of environmental quality objectives in which the development of the transport system plays an important role in the achievement of the objectives. The aim of this study is to analyse if current transport planning supports this policy. This is done by analysing two recent cases: the National Infrastructure Plan 2010–2021, and the planning of Bypass Stockholm, a major road investment. Our results show that the plans are in conflict with several of the environmental quality objectives. Another interesting aspect of the planning processes is that the long-term climate goals are not included in the planning processes, neither as a clear goal nor as factor that will influence future transport systems. In this way, the long-term sustainability aspects are not present in the planning. We conclude that the two cases do not contribute to a sustainable transport system. Thus, several changes must be made in the processes, including putting up clear targets for emissions. Also, the methodology for the environmental assessments needs to be further developed and discussed. - Highlights: • Two cases are studied to analyse if current planning supports a sustainable transport system. • Results show that the plans are in conflict with several of the environmental quality objectives. • Long-term climate goals are not included in the planning processes. • Current practices do not contribute to a sustainable planning processes. • Methodology and process for environmental assessments must be further developed and discussed.

  10. Sustainability of energy and carbon capture and storage for Turkey

    NASA Astrophysics Data System (ADS)

    Alpsar, Cengiz

    This study, as study herein, is intended to approach a different way to provide sustainability of energy and environment by different aspects for Turkey. This study investigates the potential of renewable energy sources in Turkey for non-emissions of GHG and elaborates on a carbon capture and storage technology by creating a roadmap for Turkey. The main purpose of this study is to make a roadmap about carbon capture and storage (CCS) for Turkey to use as it proceeds. As one of the members of International Panel of Climate Change, which signed Kyoto protocol, it must adapt its acts and regulations. In addition, this study concentrates on the sustainable energy potential of Turkey, although the study investigated only the alternative energy resources suitable for Turkey: solar, wind, geothermal, bio-energy, and hydropower. There are huge numbers of potential renewable energy sources, and given Turkey's total energy demand of 106.3 million tons equivalent petroleum in 2010, only solar potential would be able to eventually supply the total demand, but energy from the wind and hydropower are sufficient to provide partial amounts. This study might help policy makers in their decisions regarding CCS technology. Currently, there are various technical and non-technical economic and social challenges that prevent CCS from become an extensively used commercial technology. This document discusses them and presents goals for each research pathway.

  11. Interlocal collaboration on energy efficiency, sustainability and climate change issues

    NASA Astrophysics Data System (ADS)

    Chen, Ssu-Hsien

    Interlocal energy collaboration builds upon network structures among local policy actors dealing with energy, climate change and sustainability issues. Collaboration efforts overcome institutional collective action (ICA) dilemmas, and cope with the problems spanning jurisdictional boundaries, externalities, and free-rider problems. Interlocal energy collaboration emerges as the agreements in greenhouse gas (GHG) emission reduction, pollution control, land use, purchasing, retrofits, transportation, and so forth. Cities work collaboratively through contractual mechanisms (i.e. formal/informal agreements) and collective mechanisms (i.e. regional partnerships or membership organizations) on a variety of energy issues. What factors facilitate interlocal energy collaboration? To what extent is collaboration through interlocal contractual mechanisms different from collective mechanisms? This dissertation tries to answer these questions by examining: city goal priority on energy related issues as well as other ICA explanatory factors. Research data are drawn mainly from the 2010 national survey "Implementation of energy efficiency and sustainability program" supported by National Science Foundation and the IBM Endowment for the Business of Government. The research results show that city emphasis on common pool resource, scale economies and externality issues significantly affect individual selection of tools for energy collaboration. When expected transaction costs are extremely high or low, the contractual mechanism of informal agreement is more likely to be selected to preserve most local autonomy and flexibility; otherwise, written and formal tools for collaboration are preferred to impose constraints on individual behavior and reduce the risks of defection.

  12. Energy Systems Laboratory Groundbreaking

    SciTech Connect

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.

    2011-01-01

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  13. Energy Systems Laboratory Groundbreaking

    ScienceCinema

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.

    2016-07-12

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  14. Future energy system in environment, economy, and energy problems (2) various nuclear energy system evaluations

    SciTech Connect

    Matsui, Kazuaki; Ujita, Hiroshi; Tashimo, Masanori

    2006-07-01

    Role and potentials of nuclear energy system in the energy options are discussed from the viewpoint of sustainable development with protecting from global warming by using the energy module structure of GRAPE model. They change and are affected dramatically by different sets of energy characteristics, nuclear behavior and energy policy even under the moderate set of presumptions. Introduction of thousands of reactors in the end of the century seems inevitable for better life and cleaner earth, but it will not come without efforts and cost. The analysis suggests the need of long term planning and R and D efforts under the wisdom. (authors)

  15. Energy and sustainable development in Latin America and the Caribbean

    SciTech Connect

    Suding, P.H.

    1995-12-31

    There is a marked difference between the perception of the sustainable development problem in the industrialized countries and that prevailing in the countries of Latin America and the Caribbean (LA&C). Whereas the industrialized countries seem concerned about the sustainability of their development in view of global climate change, developing countries in LA&C are looking for a sustainable development course that will lead them out of poverty and away from the destruction of the local environment. The industrialized countries perspective is apparent in the titles of the papers being presented at the IAEE Conference under the topic: Harmonizing Energy Policy, Environment, and Sustainable Economic Growth. A great number of titles and sessions focus on the apparent antagonism between economic growth and the environment. By environment one seems to primarily mean emissions into the air, especially greenhouse gas emissions. Probably the majority of the energy community of the industrial countries regards Latin America, on the one hand, as a holder of a large CO{sub 2} sink in danger of extinction and, on the other hand, as a potential new large contributor to greenhouse gas emissions.

  16. Sustainability Analysis of Innovative Transport System

    NASA Astrophysics Data System (ADS)

    Meiere, Ieva; Bazbauers, Gatis

    2011-01-01

    The focus of the research is to develop a new approach to transport solution based on the use of a conveyortype system and to compare the environmental impact of the new system with the existing ones. The new transport system consists of a conveyor driven by an electric motor, with a wind power plant supplying electricity, hydrogen storage and a fuel cell for matching the wind power production with the motor load. The research tasks included the evaluation of the consumption of fossil fuels and the associated environmental impact of existing transport system and a comparison with energy consumption and associated environmental impact of the new system. The energy balance of the conveyor transport system was modelled on an hourly basis by using the EnergyPLAN computer program [1] which allows to analyze a combination of intermittent renewable energy technologies, storage and transport systems. The results show that the existing transport system has greater impact on the environment than the proposed one.

  17. Fostering Sustained Energy Behavior Change and Increasing Energy Literacy in a Student Housing Energy Challenge

    ERIC Educational Resources Information Center

    Brewer, Robert Stephen

    2013-01-01

    We designed the Kukui Cup challenge to foster energy conservation and increase energy literacy. Based on a review of the literature, the challenge combined a variety of elements into an overall game experience, including: real-time energy feedback, goals, commitments, competition, and prizes. We designed a software system called Makahiki to…

  18. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1977-01-01

    An improved solar energy collection system, having enhanced energy collection and conversion capabilities, is delineated. The system is characterized by a plurality of receivers suspended above a heliostat field comprising a multiplicity of reflector surfaces, each being adapted to direct a concentrated beam of solar energy to illuminate a target surface for a given receiver. A magnitude of efficiency, suitable for effectively competing with systems employed in collecting and converting energy extracted from fossil fuels, is indicated.

  19. Enhancing energy security in Malayia: the challenges towards sustainable environment

    NASA Astrophysics Data System (ADS)

    Sahid, E. J. M.; Siang, C. Ch; Peng, L. Y.

    2013-06-01

    Energy is known as one of the essential ingredients for economic development and security of energy supply is crucial in ensuring continuous economic development of a country. Malaysia's proven domestic oil reserves are estimated to last for another 25 years, while that of gas for another 39 years as of 2011. Despite the depleting indigenous energy resources, the primary energy demand has continued to grow robustly, at an annual rate of 6.3 percent per year from 1990 to 2010, while the primary energy import has grown 7.2% per year and the primary energy export has grown at a slower rate of 1.9% per year. This worrying trend is further compounded by the faster rate of primary oil import averaging 10.5% per year while the primary energy export has shrink at a rate of 1.4% per year. This paper has identified two main concerns namely overdependence on fossil fuel and increasing energy import dependency in creating a precarious position towards energy self-sufficiency. The study will analyse the energy security of the country and explore possible options and challenges in enhancing the energy supply security toward sustainable environment.

  20. Sustainability evaluation of Sicily's lemon and orange production: an energy, economic and environmental analysis.

    PubMed

    Pergola, M; D'Amico, M; Celano, G; Palese, A M; Scuderi, A; Di Vita, G; Pappalardo, G; Inglese, P

    2013-10-15

    The island of Sicily has a long standing tradition in citrus growing. We evaluated the sustainability of orange and lemon orchards, under organic and conventional farming, using an energy, environmental and economic analysis of the whole production cycle by using a life cycle assessment approach. These orchard systems differ only in terms of a few of the inputs used and the duration of the various agricultural operations. The quantity of energy consumption in the production cycle was calculated by multiplying the quantity of inputs used by the energy conversion factors drawn from the literature. The production costs were calculated considering all internal costs, including equipment, materials, wages, and costs of working capital. The performance of the two systems (organic and conventional), was compared over a period of fifty years. The results, based on unit surface area (ha) production, prove the stronger sustainability of the organic over the conventional system, both in terms of energy consumption and environmental impact, especially for lemons. The sustainability of organic systems is mainly due to the use of environmentally friendly crop inputs (fertilizers, not use of synthetic products, etc.). In terms of production costs, the conventional management systems were more expensive, and both systems were heavily influenced by wages. In terms of kg of final product, the organic production system showed better environmental and energy performances.

  1. Noncatalytic dissociation of MgO by laser pulses towards sustainable energy cycle

    NASA Astrophysics Data System (ADS)

    Yabe, T.; Mohamed, M. S.; Uchida, S.; Baasandash, C.; Sato, Y.; Tsuji, M.; Mori, Y.

    2007-06-01

    We succeeded in dissociating MgO using laser pulses without a reducing agent. The energy efficiency from laser to magnesium reaction energy exceeded 42.5%. Although 1kW CO2 cw laser and Nd-YAG pulse laser are used in this experiment, the laser can be pumped by natural resources such as solar light or wind power. Thus natural resources are stored in the form of magnesium, which can be used through the reaction with water whenever we need the energy, and thus a renewable energy system will be established. This paper reports the preliminary experiments of MgO reduction toward a sustainable energy cycle.

  2. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    SciTech Connect

    Santarius, Tilman

    2015-03-30

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may ‘eat up’ parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential ‘psychological rebound effects.’ It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough “rule of thumb”, in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  3. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    NASA Astrophysics Data System (ADS)

    Santarius, Tilman

    2015-03-01

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may `eat up' parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential `psychological rebound effects.' It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough "rule of thumb", in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  4. The interaction of energy, population and sustainable development

    SciTech Connect

    Mills, J.I.; Herring, J.S.

    1995-12-31

    The relationships among, energy, population growth, and sustainable economic development will be of critical importance during the next half century. In previous papers, the authors have modeled the interactions among energy, population and economic development. These studies have shown that the increased availability of economic alternatives, improved health conditions, and sustainable energy supplies have a direct interaction with the rate of population growth. Conversely, their studies and others have shown that poverty, poor health conditions, and the lack of economic alternatives contribute to a vicious cycle in which rapid population growth continues, poverty prevails, and health conditions deteriorate further. Reducing population growth to a sustainable steady state value is, in part, a product of the improved health and living conditions brought on by a well-considered industrialization. Improving the availability and reliability of the electric supply is an integral part of that industrialization. Free trade zones surrounding major ports are becoming a major vehicle for development and gateways to the global economy. By providing the needed electricity to power these enterprise zones, US technology could furnish a vital link in development. Many current projects for providing power to preindustrial countries involve the construction of large, centralized projects. The construction of conventional fossil and nuclear plants requires that the developing countries first develop an infrastructure for both the construction and operation of such plants. Both hydro and steam plants require significant capital investment, either by the host country or by outside development agencies, before the first kilowatt-hour is delivered.

  5. A developing country perspective on implementing sustainable energy programs

    SciTech Connect

    Ul Haq, Z.; James, J.A.; Kamal, S.

    1997-12-31

    Bangladesh is a developing country faced with many challenges such as high population growth rate, low literacy levels, and poverty. One of its most difficult tasks is providing the infrastructure necessary to sustain a growing population with a finite resource base. There is a need to develop a long term energy strategy that relies on sustainable resources while reducing environmental harm. Solar energy has the potential to meet these requirements and presents a highly attractive energy source for Bangladesh. Bangladesh is fortunate enough to have a significant amount of solar irradiance. A number of projects have been started in Bangladesh to exploit renewable energy resources. This paper will highlight the current status of these projects. Major interest and activity is directed towards development of photovoltaic and wind resources. The market for renewable technologies is vast in Bangladesh where a significant portion of the population is off-grid and in need of energy. Although this is not an affluent market technology costs have come down sufficiently such that it is becoming accessible to rural populations with credit schemes. While developing sustainable energy is a worthwhile goal and much encouraged by donor agencies, Bangladesh`s perspective on attempting to develop this sector suggests that it is not an easy road to follow, due to numerous internal and external barriers. A discussion of the barriers to the commercialization of renewables will be included in this paper. The objective of this paper is to shed some light on these issues and to stimulate discussions on how to overcome the barriers and encourage the dissemination of renewables in developing countries.

  6. Glyphosate sustainability in South American cropping systems.

    PubMed

    Christoffoleti, Pedro J; Galli, Antonio J B; Carvalho, Saul J P; Moreira, Murilo S; Nicolai, Marcelo; Foloni, Luiz L; Martins, Bianca A B; Ribeiro, Daniela N

    2008-04-01

    South America represents about 12% of the global land area, and Brazil roughly corresponds to 47% of that. The major sustainable agricultural system in South America is based on a no-tillage cropping system, which is a worldwide adopted agricultural conservation system. Societal benefits of conservation systems in agriculture include greater use of conservation tillage, which reduces soil erosion and associated loading of pesticides, nutrients and sediments into the environment. However, overreliance on glyphosate and simpler cropping systems has resulted in the selection of tolerant weed species through weed shifts (WSs) and evolution of herbicide-resistant weed (HRW) biotypes to glyphosate. It is a challenge in South America to design herbicide- and non-herbicide-based strategies that effectively delay and/or manage evolution of HRWs and WSs to weeds tolerant to glyphosate in cropping systems based on recurrent glyphosate application, such as those used with glyphosate-resistant soybeans. The objectives of this paper are (i) to provide an overview of some factors that influence WSs and HRWs to glyphosate in South America, especially in Brazil, Argentina and Paraguay soybean cropped areas; (ii) to discuss the viability of using crop rotation and/or cover crops that might be integrated with forage crops in an economically and environmentally sustainable system; and (iii) to summarize the results of a survey of the perceptions of Brazilian farmers to problems with WSs and HRWs to glyphosate, and the level of adoption of good agricultural practices in order to prevent or manage it.

  7. FISHER INFORMATION AS A METRIC FOR SUSTAINABLE SYSTEM REGIMES

    EPA Science Inventory

    The important question in sustainability is not whether the world is sustainable, but whether a humanly acceptable regime of the world is sustainable. We propose Fisher Information as a metric for the sustainability of dynamic regimes in complex systems. The quantity now known ...

  8. What makes closed ecological systems sustainable?

    NASA Astrophysics Data System (ADS)

    Gitelson, I.; Degermendzhy, A.; Rodicheva, E.

    A closed ecosystem has some properties that an open systems lacks. Let us consider the ones that increase the sustainability of an ecosystem. The common feature of biological and physicochemical life support systems is that basically they are both catalytic. There are two fundamental properties distinguishing biological systems: 1) they are auto-catalytic: their catalysts - enzymes of protein nature - are continuously reproduced when the system functions; 2) the program of every process performed by enzymes and the program of their reproduction are inherent in the biological system itself - in the totality of genomes of the species involved in the functioning of the ecosystem. Actually, one cell with the genome capable of the phenotypic realization is enough for the self- restoration of the function performed by the cells of this species in the ecosystem. The multi-cellular organisms with stem cells are constantly ready to repair themselves by intensifying the continuous process of regeneration. We (Gitelson) have made a quantitative investigation of this process by studying the regeneration and reparation of erythrocytes in mammals. The continuous microalgal culture of Chlorella vulgaris was taken to investigate quantitatively the similar functional process of self-restoration in unicellular algae (Rodicheva). Based on the data obtained, we proposed a mathematical model of the restoration process in the cell population that has suffered an acute radiation damage. Besides these general biological mechanisms responsible for their sustainability, closed systems also possess specific features enhancing their stability. They are as follows: 1. Nutrients cannot leave the system. 2. The metabolic pathways of the material cycling are closed. 3. The rates of interlink metabolism are in conformity with each other due to their mutual limitation. We present the data obtained in the Bios-3 experiments that prove the efficiency of this mechanism as a factor of the

  9. Preparation and characterization of nanomaterials for sustainable energy production.

    PubMed

    Liu, Chang-jun; Burghaus, Uwe; Besenbacher, Flemming; Wang, Zhong Lin

    2010-10-26

    The use of nanotechnology to develop a suite of sustainable energy production schemes is one of the most important scientific challenges of the 21st century. The challenge is to design, to synthesize, and to characterize new functional nanomaterials with controllable sizes, shapes, and/or structures. To summarize the progress of the research and development made in this important field, the Fuel Chemistry Division of the American Chemical Society (ACS) organized a symposium on "Nanotechnology for Sustainable Energy and Fuels" during the 240th ACS National Meeting in Boston, MA on August 22-26, 2010, with the ACS Catalysis Division as the cosponsor. This symposium was a global gathering of leading scientists at the intersection of energy and nanotechnology. The topics discussed at the symposium included nanotechnology, not only for traditional fossil fuel production but also for novel processes for renewable energy applications. This article aims to highlight some of the most exciting advances presented at the symposium, including the preparation and characterization of nanomaterials for clean fuel production, CO(2) capture, solar cells and solar fuels, energy conversion and storage materials, hydrogen storage materials, and fuel cells. Finally, possible future developments in this important and timely area are discussed.

  10. Net-Zero-Energy Model for Sustainable Wastewater Treatment.

    PubMed

    Yan, Peng; Qin, Rong-Cong; Guo, Jin-Song; Yu, Qiang; Li, Zhe; Chen, You-Peng; Shen, Yu; Fang, Fang

    2017-01-17

    A large external energy input prevents wastewater treatment from being environmentally sustainable. A net-zero-energy (NZE) wastewater treatment concept based on biomass energy recycling was proposed to avoid wasting resources and to promote energy recycling in wastewater treatment plants (WWTPs). Simultaneously, a theoretical model and boundary condition based on energy balance were established to evaluate the feasibility of achieving NZE in WWTPs; the model and condition were employed to analyze data from 20 conventional WWTPs in China. A total of six WWTPs can currently export excess energy, eight WWTPs can achieve 100% energy self-sufficiency by adjusting the metabolic material allocation, and six municipal WWTPs cannot achieve net-zero energy consumption based on the evaluation of the theoretical model. The NZE model offset 79.5% of the electricity and sludge disposal cost compared with conventional wastewater treatment. The NZE model provides a theoretical basis for the optimization of material regulation for the effective utilization of organic energy from wastewater and promotes engineering applications of the NZE concept in WWTPs.

  11. ENVIRONMENTAL SYSTEMS MANAGEMENT AND SUSTAINABLE SYSTEMS THEORY

    EPA Science Inventory

    Environmental Systems Management is the management of environmental problems at the systems level fully accounting for the multi-dimensional nature of the environment. This includes socio-economic dimensions as well as the usual physical and life science aspects. This is importa...

  12. Life Cycle Thinking, Measurement and Management for Food System Sustainability.

    PubMed

    Pelletier, Nathan

    2015-07-07

    Food systems critically contribute to our collective sustainability outcomes. Improving food system sustainability requires life cycle thinking, measurement and management strategies. This article reviews the status quo and future prospects for bringing life cycle approaches to food system sustainability to the fore.

  13. Energy Recovery System

    NASA Astrophysics Data System (ADS)

    1983-01-01

    Cogeneration system is one in which the energy ordinarily wasted in an industrial process is recovered and reused to create a second form of energy. Such an energy recovery system is in use at Crane Company's plant in Ferguson, KY, which manufactures ceramic bathroom fixtures. Crane's system captures hot stack gases from the company's four ceramic kilns and uses them to produce electrical power for plant operations.

  14. Linking Energy Efficiency and ISO: Creating a Framework forSustainable Industrial Energy Efficiency

    SciTech Connect

    McKane, Aimee; Perry, Wayne; Aixian, Li; Tienan, Li; Williams,Robert

    2005-04-01

    Industrial motor-driven systems consume more than 2194billion kWh annually on a global basis and offer one of the largestopportunities for energy savings. In the United States (US), they accountfor more than 50 percent of all manufacturing electricity use. Incountries with less well-developed consumer economies, the proportion ofelectricity consumed by motors is higher-more than 50 percent ofelectricity used in all sectors in China is attributable to motors.Todate, the energy savings potential from motor-driven systems haveremained largely unrealized worldwide. Both markets and policy makerstend to focus on individual system components, which have a typicalimprovement potential of 2-5 percent versus 20-50 percent for completesystems. Several factors contribute to this situation, most notably thecomplexity of the systems themselves. Determining how to optimize asystem requires a high level of technical skill. In addition, once anenergy efficiency project is completed, the energy savings are often notsustained due to changes in personnel and production processes. Althoughtraining and educational programs in the US, UK, and China to promotesystem optimization have proven effective, these resource-intensiveefforts have only reached a small portion of the market.The same factorsthat make it so challenging to achieve and sustain energy efficiency inmotor-driven systems (complexity, frequent changes) apply to theproduction processes that they support. Yet production processestypically operate within a narrow band of acceptable performance. Theseprocesses are frequently incorporated into ISO 9000/14000 quality andenvironmental management systems, which require regular, independentaudits to maintain ISO certification, an attractive value forinternational trade.This paper presents a new approach to achievingindustrial system efficiency (motors and steam) that will encourageplants to incorporate system energy efficiency into their existing ISOmanagement systems. We will

  15. Multisource energy system project

    NASA Astrophysics Data System (ADS)

    Dawson, R. W.; Cowan, R. A.

    1987-03-01

    The mission of this project is to investigate methods of providing uninterruptible power to Army communications and navigational facilities, many of which have limited access or are located in rugged terrain. Two alternatives are currently available for deploying terrestrial stand-alone power systems: (1) conventional electric systems powered by diesel fuel, propane, or natural gas, and (2) alternative power systems using renewable energy sources such as solar photovoltaics (PV) or wind turbines (WT). The increased cost of fuels for conventional systems and the high cost of energy storage for single-source renewable energy systems have created interest in the hybrid or multisource energy system. This report will provide a summary of the first and second interim reports, final test results, and a user's guide for software that will assist in applying and designing multi-source energy systems.

  16. Natural Treatment Systems as Sustainable Ecotechnologies for the Developing Countries

    PubMed Central

    Mahmood, Qaisar; Pervez, Arshid; Zeb, Bibi Saima; Zaffar, Habiba; Yaqoob, Hajra; Waseem, Muhammad; Zahidullah

    2013-01-01

    The purpose of natural treatment systems is the re-establishment of disturbed ecosystems and their sustainability for benefits to human and nature. The working of natural treatment systems on ecological principles and their sustainability in terms of low cost, low energy consumption, and low mechanical technology is highly desirable. The current review presents pros and cons of the natural treatment systems, their performance, and recent developments to use them in the treatment of various types of wastewaters. Fast population growth and economic pressure in some developing countries compel the implementation of principles of natural treatment to protect natural environment. The employment of these principles for waste treatment not only helps in environmental cleanup but also conserves biological communities. The systems particularly suit developing countries of the world. We reviewed information on constructed wetlands, vermicomposting, role of mangroves, land treatment systems, soil-aquifer treatment, and finally aquatic systems for waste treatment. Economic cost and energy requirements to operate various kinds of natural treatment systems were also reviewed. PMID:23878819

  17. Natural treatment systems as sustainable ecotechnologies for the developing countries.

    PubMed

    Mahmood, Qaisar; Pervez, Arshid; Zeb, Bibi Saima; Zaffar, Habiba; Yaqoob, Hajra; Waseem, Muhammad; Zahidullah; Afsheen, Sumera

    2013-01-01

    The purpose of natural treatment systems is the re-establishment of disturbed ecosystems and their sustainability for benefits to human and nature. The working of natural treatment systems on ecological principles and their sustainability in terms of low cost, low energy consumption, and low mechanical technology is highly desirable. The current review presents pros and cons of the natural treatment systems, their performance, and recent developments to use them in the treatment of various types of wastewaters. Fast population growth and economic pressure in some developing countries compel the implementation of principles of natural treatment to protect natural environment. The employment of these principles for waste treatment not only helps in environmental cleanup but also conserves biological communities. The systems particularly suit developing countries of the world. We reviewed information on constructed wetlands, vermicomposting, role of mangroves, land treatment systems, soil-aquifer treatment, and finally aquatic systems for waste treatment. Economic cost and energy requirements to operate various kinds of natural treatment systems were also reviewed.

  18. Alfalfa -- a sustainable crop for biomass energy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alfalfa (Medicago sativa) has the potential to be a significant contributor to America's renewable energy future. In an alfalfa biomass energy production system, alfalfa forage would be separated into stem and leave fractions. The stems would be processed to produce energy, and the leaves would be s...

  19. Oxygen electrochemistry as a cornerstone for sustainable energy conversion.

    PubMed

    Katsounaros, Ioannis; Cherevko, Serhiy; Zeradjanin, Aleksandar R; Mayrhofer, Karl J J

    2014-01-03

    Electrochemistry will play a vital role in creating sustainable energy solutions in the future, particularly for the conversion and storage of electrical into chemical energy in electrolysis cells, and the reverse conversion and utilization of the stored energy in galvanic cells. The common challenge in both processes is the development of-preferably abundant-nanostructured materials that can catalyze the electrochemical reactions of interest with a high rate over a sufficiently long period of time. An overall understanding of the related processes and mechanisms occurring under the operation conditions is a necessity for the rational design of materials that meet these requirements. A promising strategy to develop such an understanding is the investigation of the impact of material properties on reaction activity/selectivity and on catalyst stability under the conditions of operation, as well as the application of complementary in situ techniques for the investigation of catalyst structure and composition.

  20. Renewable Energy Tracking Systems

    EPA Pesticide Factsheets

    Renewable energy generation ownership can be accounted through tracking systems. Tracking systems are highly automated, contain specific information about each MWh, and are accessible over the internet to market participants.

  1. SNAPSHOT: A MODERN, SUSTAINABLE HOLDUP MEASUREMENT SYSTEM

    SciTech Connect

    Rowe, Nathan C; Younkin, James R; Smith, Steven E; Chapman, Jeffrey Allen; Dunn, Michael E; Stewart, Scott L

    2016-01-01

    SNAPSHOT is a software platform designed to eventually replace Holdup Measurement System 4 (HMS 4), which is the current state-of-the-art for acquisition and analysis of nondestructive assay measurement data for in situ nuclear materials, holdup, in support of criticality safety and material control and accounting. HMS 4 is over 10 years old and is currently unsustainable due to hardware and software incompatibilities that have arisen from advances in detector electronics, primarily updates to multi-channel analyzers (MCAs), and both computer and handheld operating systems. SNAPSHOT is a complete redesign of HMS 4 that addresses the issue of compatibility with modern MCAs and operating systems and that is designed with a flexible architecture to support long-term sustainability. It also provides an updated and more user friendly interface and is being developed under an NQA 1 software quality assurance (SQA) program to facilitate site acceptance for safety-related applications. This paper provides an overview of the SNAPSHOT project including details of the software development process, the SQA program, and the architecture designed to support sustainability.

  2. Thermochemical energy systems research

    NASA Astrophysics Data System (ADS)

    Nix, R. G.

    1983-08-01

    Research on Heat-pump thermochemical energy systems and thermochemical reduction of CO2 to CO for open-loop solar energy transport is described. Analysis of the NaOH-H2O heat-pumped system indicted cost effectiveness relative to hot oil solar system with parabolic trough receivers for production of 0.101 MPa saturated steam high-temperature heat-pumped systems are being defined.

  3. Developing Sustainable Spacecraft Water Management Systems

    NASA Technical Reports Server (NTRS)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  4. Towards a sustainable system of drug development.

    PubMed

    Moors, Ellen H M; Cohen, Adam F; Schellekens, Huub

    2014-11-01

    Drug development has become the exclusive activity of large pharmaceutical companies. However, the output of new drugs has been decreasing for the past decade and the prices of new drugs have risen steadily, leading to access problems for many patients. By analyzing the history of drug development and the pharmaceutical industry, we identified the main factors causing this system failure. Although many solutions have been suggested to fix the drug development system, we believe that a combination of reforms of the regulatory and patent systems is necessary to make drug development sustainable. These reforms must be combined with a larger, open-access role for public research institutes in the discovery, clinical evaluation and safety evaluation of new drugs.

  5. Reporting Systems for Sustainability: What Are They Measuring?

    ERIC Educational Resources Information Center

    Davidson, Kathryn M.

    2011-01-01

    The dominance of the neoliberal discourse in the sustainability debate has tended to privilege the economy over environment and social dimensions with implications for what is measured by sustainability monitoring systems. Moreover, systems to measure sustainability, including those influenced by neoliberal discourse, lack robust definitions and…

  6. Controllability of complex networks for sustainable system dynamics

    EPA Science Inventory

    Successful implementation of sustainability ideas in ecosystem management requires a basic understanding of the often non-linear and non-intuitive relationships among different dimensions of sustainability, particularly the system-wide implications of human actions. This basic un...

  7. Energy for sustainable development: Key issues and challenges

    SciTech Connect

    Kaygusuz, K.

    2007-07-01

    Energy generation and use are strongly linked to all elements of sustainable development such as economic, social, and environmental. The history of human development rests on the availability and use of energy, the transformation from the early use of fire and animal power that improved lives, to the present world with use of electricity and clean fuels for a multitude of purposes. Energy is the neglected issue of the development debate. The lack of access to reliable and clean energy supplies is a major barrier to improving human well-being around the globe. There are an estimated 1.6 billion people living in the rural areas of developing countries who lack access to electricity, and so dependence on fossil fuels. Combustion of fossil fuels produces large amounts of CO{sub 2}, an important greenhouse gas. In response to increasing concern about the effect of anthropogenic greenhouse gases on global climate, international action has been agreed to reduce these emissions. On the other hand, renewable energy is the great, barely tapped solution to the two great challenges of the coming century such as poverty and global warming. Not only can renewable energy provide a clean, flexible power source for homes, schools and hospitals, at the micro-to-medium scale it has huge potential to create meaningful and useful jobs.

  8. Decentralized energy systems for clean electricity access

    NASA Astrophysics Data System (ADS)

    Alstone, Peter; Gershenson, Dimitry; Kammen, Daniel M.

    2015-04-01

    Innovative approaches are needed to address the needs of the 1.3 billion people lacking electricity, while simultaneously transitioning to a decarbonized energy system. With particular focus on the energy needs of the underserved, we present an analytic and conceptual framework that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. A historical analysis shows that the present day is a unique moment in the history of electrification where decentralized energy networks are rapidly spreading, based on super-efficient end-use appliances and low-cost photovoltaics. We document how this evolution is supported by critical and widely available information technologies, particularly mobile phones and virtual financial services. These disruptive technology systems can rapidly increase access to basic electricity services and directly inform the emerging Sustainable Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, inclusive energy systems.

  9. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    SciTech Connect

    Not Available

    2014-12-01

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

  10. Sustainable System for Residual Hazards Management

    SciTech Connect

    Kevin M. Kostelnik; James H. Clarke; Jerry L. Harbour

    2004-06-01

    Hazardous, radioactive and other toxic substances have routinely been generated and subsequently disposed of in the shallow subsurface throughout the world. Many of today’s waste management techniques do not eliminate the problem, but rather only concentrate or contain the hazardous contaminants. Residual hazards result from the presence of hazardous and/or contaminated material that remains on-site following active operations or the completion of remedial actions. Residual hazards pose continued risk to humans and the environment and represent a significant and chronic problem that require continuous longterm management (i.e. >1000 years). To protect human health and safeguard the natural environment, a sustainable system is required for the proper management of residual hazards. A sustainable system for the management of residual hazards will require the integration of engineered, institutional and land-use controls to isolate residual contaminants and thus minimize the associated hazards. Engineered controls are physical modifications to the natural setting and ecosystem, including the site, facility, and/or the residual materials themselves, in order to reduce or eliminate the potential for exposure to contaminants of concern (COCs). Institutional controls are processes, instruments, and mechanisms designed to influence human behavior and activity. System failure can involve hazardous material escaping from the confinement because of system degradation (i.e., chronic or acute degradation) or by externalintrusion of the biosphere into the contaminated material because of the loss of institutional control. An ongoing analysis of contemporary and historic sites suggests that the significance of the loss of institutional controls is a critical pathway because decisions made during the operations/remedial action phase, as well as decisions made throughout the residual hazards management period, are key to the longterm success of the prescribed system. In fact

  11. An Investigation into Energy Requirements and Conservation Techniques for Sustainable Buildings

    NASA Astrophysics Data System (ADS)

    Robitaille, Jad

    Traditionally, societies use to design their built environment in a way that was in line with the climate and the geographical location that they evolved in, thereby supporting sustainable lifestyles (i.e. thick walls with small windows in cold climates). With the industrial revolution and the heavy use and reliance on cheap fossil fuels, it can be argued that the built environment has become more focused on aesthetics and cost savings rather than on true sustainability. This, in turn, has led to energy intensive practices associated with the construction of homes, buildings, cities and megalopolises. Environmental concerns with regards to the future have pushed people, entities and industries to search for ways to decrease human's energy dependency and/or to supply the demand in ways that are deemed sustainable. Efforts to address this concern with respect to the built environment were translated into 'green buildings', sustainable building technologies and high performance buildings that can be rated and/or licensed by selected certifying bodies with varying metrics of building construction and performance. The growing number of such systems has brought real concerns: Do certified sustainable buildings really achieve the level of sustainability (i.e. performance) they were intended to? For the purpose of this study, buildings' energy consumption will be analysed, as it is one of the main drivers when taking into consideration greenhouse gas emissions. Heating and cooling in the residential and commercial/institutional sector, combined account for approximately a fifth of the secondary energy use in Canada. For this reason, this research aims at evaluating the main rating systems in Canada based on the efficacy of their rating systems' certification methodology and the weighting and comparison of energy requirements under each scheme. It has been proven through numerous studies that major energy savings can be achieved by focusing primarily on building designs

  12. Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy

    SciTech Connect

    Zhiwei Zhou

    2006-07-01

    Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are

  13. Information systems for engineering sustainable development

    SciTech Connect

    Leonard, R.S.

    1992-02-27

    The ability of a country to follow sustainable development paths is determined to a large extent by the capacity or capabilities of its people and its institutions. Specifically, capacity-building in the UNCED terminology encompasses the country's human, scientific, technological, organizational, institutional, and resource capabilities. A fundamental goal of capacity-building is to enhance the ability to pose, evaluate and address crucial questions related to policy choices and methods of implementation among development options. As a result the United Nations Conference on Environment and Development (UNCED) Agenda 21 planning process has identified the need for better methods by which information can be transferred between industrialized nations and developing nations. The reasons for better methods of information transfer include facilitating decisions related to sustainable development and building the capacity of developing nations to better plan their future in both an economical and environmentally sound manner. This paper is a discussion on mechanisms for providing information and technologies available for presenting the information to a variety of cultures and levels of technical literacy. Consideration is given to access to information technology as well as to the cost to the user. One concept discussed includes an Engineering Partnership'' which brings together the talents and resources of private consulting engineers, corporations, non-profit professional organizations, government agencies and funding institution which work in partnership with each other and associates in developing countries. Concepts which are related to information technologies include a hypertext based, user configurable cultural translator and information navigator and the use of multi-media technologies to educate engineers about the concepts of sustainability, and the adaptation of the concept of metabolism to creating industrial systems.

  14. Information systems for engineering sustainable development

    SciTech Connect

    Leonard, R.S.

    1992-02-27

    The ability of a country to follow sustainable development paths is determined to a large extent by the capacity or capabilities of its people and its institutions. Specifically, capacity-building in the UNCED terminology encompasses the country`s human, scientific, technological, organizational, institutional, and resource capabilities. A fundamental goal of capacity-building is to enhance the ability to pose, evaluate and address crucial questions related to policy choices and methods of implementation among development options. As a result the United Nations Conference on Environment and Development (UNCED) Agenda 21 planning process has identified the need for better methods by which information can be transferred between industrialized nations and developing nations. The reasons for better methods of information transfer include facilitating decisions related to sustainable development and building the capacity of developing nations to better plan their future in both an economical and environmentally sound manner. This paper is a discussion on mechanisms for providing information and technologies available for presenting the information to a variety of cultures and levels of technical literacy. Consideration is given to access to information technology as well as to the cost to the user. One concept discussed includes an ``Engineering Partnership`` which brings together the talents and resources of private consulting engineers, corporations, non-profit professional organizations, government agencies and funding institution which work in partnership with each other and associates in developing countries. Concepts which are related to information technologies include a hypertext based, user configurable cultural translator and information navigator and the use of multi-media technologies to educate engineers about the concepts of sustainability, and the adaptation of the concept of metabolism to creating industrial systems.

  15. Sustainably powering wearable electronics solely by biomechanical energy

    PubMed Central

    Wang, Jie; Li, Shengming; Yi, Fang; Zi, Yunlong; Lin, Jun; Wang, Xiaofeng; Xu, Youlong; Wang, Zhong Lin

    2016-01-01

    Harvesting biomechanical energy is an important route for providing electricity to sustainably drive wearable electronics, which currently still use batteries and therefore need to be charged or replaced/disposed frequently. Here we report an approach that can continuously power wearable electronics only by human motion, realized through a triboelectric nanogenerator (TENG) with optimized materials and structural design. Fabricated by elastomeric materials and a helix inner electrode sticking on a tube with the dielectric layer and outer electrode, the TENG has desirable features including flexibility, stretchability, isotropy, weavability, water-resistance and a high surface charge density of 250 μC m−2. With only the energy extracted from walking or jogging by the TENG that is built in outsoles, wearable electronics such as an electronic watch and fitness tracker can be immediately and continuously powered. PMID:27677971

  16. Sustainably powering wearable electronics solely by biomechanical energy.

    PubMed

    Wang, Jie; Li, Shengming; Yi, Fang; Zi, Yunlong; Lin, Jun; Wang, Xiaofeng; Xu, Youlong; Wang, Zhong Lin

    2016-09-28

    Harvesting biomechanical energy is an important route for providing electricity to sustainably drive wearable electronics, which currently still use batteries and therefore need to be charged or replaced/disposed frequently. Here we report an approach that can continuously power wearable electronics only by human motion, realized through a triboelectric nanogenerator (TENG) with optimized materials and structural design. Fabricated by elastomeric materials and a helix inner electrode sticking on a tube with the dielectric layer and outer electrode, the TENG has desirable features including flexibility, stretchability, isotropy, weavability, water-resistance and a high surface charge density of 250 μC m(-2). With only the energy extracted from walking or jogging by the TENG that is built in outsoles, wearable electronics such as an electronic watch and fitness tracker can be immediately and continuously powered.

  17. Sustainably powering wearable electronics solely by biomechanical energy

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Li, Shengming; Yi, Fang; Zi, Yunlong; Lin, Jun; Wang, Xiaofeng; Xu, Youlong; Wang, Zhong Lin

    2016-09-01

    Harvesting biomechanical energy is an important route for providing electricity to sustainably drive wearable electronics, which currently still use batteries and therefore need to be charged or replaced/disposed frequently. Here we report an approach that can continuously power wearable electronics only by human motion, realized through a triboelectric nanogenerator (TENG) with optimized materials and structural design. Fabricated by elastomeric materials and a helix inner electrode sticking on a tube with the dielectric layer and outer electrode, the TENG has desirable features including flexibility, stretchability, isotropy, weavability, water-resistance and a high surface charge density of 250 μC m-2. With only the energy extracted from walking or jogging by the TENG that is built in outsoles, wearable electronics such as an electronic watch and fitness tracker can be immediately and continuously powered.

  18. From Dust Devil to Sustainable Swirling Wind Energy

    PubMed Central

    Zhang, Mingxu; Luo, Xilian; Li, Tianyu; Zhang, Liyuan; Meng, Xiangzhao; Kase, Kiwamu; Wada, Satoshi; Yu, Chuck Wah; Gu, Zhaolin

    2015-01-01

    Dust devils are common but meteorologically unique phenomena on Earth and on Mars. The phenomenon produces a vertical vortex motion in the atmosphere boundary layer and often occurs in hot desert regions, especially in the afternoons from late spring to early summer. Dust devils usually contain abundant wind energy, for example, a maximum swirling wind velocity of up to 25 m/s, with a 15 m/s maximum vertical velocity and 5 m/s maximum near-surface horizontal velocity can be formed. The occurrences of dust devils cannot be used for energy generation because these are generally random and short-lived. Here, a concept of sustained dust-devil-like whirlwind is proposed for the energy generation. A prototype of a circular shed with pre-rotation vanes has been devised to generate the whirlwind flow by heating the air inflow into the circular shed. The pre-rotation vanes can provide the air inflow with angular momentum. The results of numerical simulations and experiment illustrate a promising potential of the circular shed for generating swirling wind energy via the collection of low-temperature solar energy. PMID:25662574

  19. From dust devil to sustainable swirling wind energy.

    PubMed

    Zhang, Mingxu; Luo, Xilian; Li, Tianyu; Zhang, Liyuan; Meng, Xiangzhao; Kase, Kiwamu; Wada, Satoshi; Yu, Chuck Wah; Gu, Zhaolin

    2015-02-09

    Dust devils are common but meteorologically unique phenomena on Earth and on Mars. The phenomenon produces a vertical vortex motion in the atmosphere boundary layer and often occurs in hot desert regions, especially in the afternoons from late spring to early summer. Dust devils usually contain abundant wind energy, for example, a maximum swirling wind velocity of up to 25 m/s, with a 15 m/s maximum vertical velocity and 5 m/s maximum near-surface horizontal velocity can be formed. The occurrences of dust devils cannot be used for energy generation because these are generally random and short-lived. Here, a concept of sustained dust-devil-like whirlwind is proposed for the energy generation. A prototype of a circular shed with pre-rotation vanes has been devised to generate the whirlwind flow by heating the air inflow into the circular shed. The pre-rotation vanes can provide the air inflow with angular momentum. The results of numerical simulations and experiment illustrate a promising potential of the circular shed for generating swirling wind energy via the collection of low-temperature solar energy.

  20. TOWARD A THEORY OF SUSTAINABLE SYSTEMS

    EPA Science Inventory

    While there is tremendous interest in the topic of sustainability, a fundamental theory of sustainability does not exist. We present our efforts at constructing such a theory starting with Information Theory and ecological models. We discuss the state of complex sustainable syste...

  1. Solar energy systems cost

    SciTech Connect

    Lavender, J.A.

    1980-01-01

    Five major areas of work currently being pursued in the United States in solar energy which will have a significant impact on the world's energy situation in the future are addressed. The five significant areas discussed include a technical description of several solar technologies, current and projected cost of the selected solar systems, and cost methodologies which are under development. In addition, sensitivity considerations which are unique to solar energy systems and end user applications are included. A total of six solar technologies - biomass, photovoltaics, wind, ocean thermal energy conversion (OTEC), solar thermal, and industrial process heat (IPH) have been included in a brief technical description to present the variety of systems and their techncial status. System schematics have been included of systems which have been constructed, are currently in the detail design and test stage of development, or are of a conceptual nature.

  2. Sustainability of rainwater harvesting system in terms of water quality.

    PubMed

    Rahman, Sadia; Khan, M T R; Akib, Shatirah; Din, Nazli Bin Che; Biswas, S K; Shirazi, S M

    2014-01-01

    Water is considered an everlasting free source that can be acquired naturally. Demand for processed supply water is growing higher due to an increasing population. Sustainable use of water could maintain a balance between its demand and supply. Rainwater harvesting (RWH) is the most traditional and sustainable method, which could be easily used for potable and nonpotable purposes both in residential and commercial buildings. This could reduce the pressure on processed supply water which enhances the green living. This paper ensures the sustainability of this system through assessing several water-quality parameters of collected rainwater with respect to allowable limits. A number of parameters were included in the analysis: pH, fecal coliform, total coliform, total dissolved solids, turbidity, NH3-N, lead, BOD5, and so forth. The study reveals that the overall quality of water is quite satisfactory as per Bangladesh standards. RWH system offers sufficient amount of water and energy savings through lower consumption. Moreover, considering the cost for installation and maintenance expenses, the system is effective and economical.

  3. Sustainability of Rainwater Harvesting System in terms of Water Quality

    PubMed Central

    Khan, M. T. R.; Akib, Shatirah; Din, Nazli Bin Che; Biswas, S. K.; Shirazi, S. M.

    2014-01-01

    Water is considered an everlasting free source that can be acquired naturally. Demand for processed supply water is growing higher due to an increasing population. Sustainable use of water could maintain a balance between its demand and supply. Rainwater harvesting (RWH) is the most traditional and sustainable method, which could be easily used for potable and nonpotable purposes both in residential and commercial buildings. This could reduce the pressure on processed supply water which enhances the green living. This paper ensures the sustainability of this system through assessing several water-quality parameters of collected rainwater with respect to allowable limits. A number of parameters were included in the analysis: pH, fecal coliform, total coliform, total dissolved solids, turbidity, NH3–N, lead, BOD5, and so forth. The study reveals that the overall quality of water is quite satisfactory as per Bangladesh standards. RWH system offers sufficient amount of water and energy savings through lower consumption. Moreover, considering the cost for installation and maintenance expenses, the system is effective and economical. PMID:24701186

  4. Biomass energy: Sustainable solution for greenhouse gas emission

    NASA Astrophysics Data System (ADS)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    Biomass is part of the carbon cycle. Carbon dioxide is produced after combustion of biomass. Over a relatively short timescale, carbon dioxide is renewed from atmosphere during next generation of new growth of green vegetation. Contribution of renewable energy including hydropower, solar, biomass and biofuel in total primary energy consumption in world is about 19%. Traditional biomass alone contributes about 13% of total primary energy consumption in the world. The number of traditional biomass energy users expected to rise from 2.5 billion in 2004 to 2.6 billion in 2015 and to 2.7 billion in 2030 for cooking in developing countries. Residential biomass demand in developing countries is projected to rise from 771 Mtoe in 2004 to 818 Mtoe in 2030. The main sources of biomass are wood residues, bagasse, rice husk, agro-residues, animal manure, municipal and industrial waste etc. Dedicated energy crops such as short-rotation coppice, grasses, sugar crops, starch crops and oil crops are gaining importance and market share as source of biomass energy. Global trade in biomass feedstocks and processed bioenergy carriers are growing rapidly. There are some drawbacks of biomass energy utilization compared to fossil fuels viz: heterogeneous and uneven composition, lower calorific value and quality deterioration due to uncontrolled biodegradation. Loose biomass also is not viable for transportation. Pelletization, briquetting, liquefaction and gasification of biomass energy are some options to solve these problems. Wood fuel production is very much steady and little bit increase in trend, however, the forest land is decreasing, means the deforestation is progressive. There is a big challenge for sustainability of biomass resource and environment. Biomass energy can be used to reduce greenhouse emissions. Woody biomass such as briquette and pellet from un-organized biomass waste and residues could be used for alternative to wood fuel, as a result, forest will be saved and

  5. Energy Sustainability and the Army: The Current Transformation

    DTIC Science & Technology

    2009-04-01

    Organization of Petroleum Exporting Countries RDF Refuse Derived Fuel RES Renewable Energy Systems xiv SEO Strategic Energy Objectives U.S. United...and it will serve as beneficial for the Army by turning waste into usable product, reduce the landfill waste disposal and provide the Army the ability

  6. Sustainable nanocomposites toward electrochemical energy storage and environmental remediation

    NASA Astrophysics Data System (ADS)

    Zhu, Jiahua

    Energy shortage and environmental pollution are the two most concerns right now for the long term sustainable development of human society. New technology developments are the key solutions to these challenges, which strongly rely on the continuous upgrading of advanced material performance. In this dissertation, sustainable nanocomposites with multifunctionalities are designed and fabricated targeting to the applications in high energy/power density capacitor electrodes and efficient heavy metal adsorbent for polluted water purification. Contrary to the helical carbon structure from pure cotton fabrics under microwave heating and radical oxidized ignition of nanoparticles from conventional heating, magnetic carbon tubular nanocomposite fabrics decorated with unifromally dispersed Co-Co3O4 nanoparticles were successfully synthesized via a microwave heating process using cotton fabric and inorganic salt as precursors, which have shown better anti-corrosive performance and demonstrated great potential as novel electrochemical pseudocapacitor electrode. Polyaniline nanofibers (PANI-NFs)/graphite oxide (GO) nanocomposites with excellent interfacial interaction and elongated fiber structure were synthesized via a facile interfacial polymerization method. The PANI-NFs/GO hybrid materials showed orders of magnitude enhancement in capacitance and energy density than that of individual GO and PANI-NF components. At the same weight loading of PANI in the composites, fibrous PANI demonstrated higher energy density and long term stability than that of particle-shaped PANI at higher power density. Besides the efforts focusing on the inside of the capacitor including new electrodes, electrolyte materials, and capacitor configuration designs. A significant small external magnetic field (720 Gauss) induced capacitance enhancement is reported for graphene and graphene nanocomposite electrodes. The capacitance of Fe2O3/graphene nanocomposites increases by 154.6% after appling

  7. How sustainable is Japan's foreign aid policy? An analysis of Japan's official development assistance and funding for energy sector projects

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hideka

    paradigm; first, the heavy reliance on modern science leads to a failure to use local knowledge and practices which can be more sustainable to sustainability; second, the acceptance of the international capitalist system as the basis for project implementation results in little or no long-term sustainability commitment; and third, the compatibility of economic growth with environmental sustainability, which appears unlikely in the context of global economic inequality. As an alternative, this dissertation suggests several policies for promoting energy systems for rural sustainable development in the Global South.

  8. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  9. Integrated agricultural energy system

    NASA Astrophysics Data System (ADS)

    Taylor, R. M.

    1985-08-01

    The purpose of this program is to show New England farmers and other New England energy users how they can use alternative energy sources to reduce their energy cost and dependency on conventional sources. The project demonstrates alternative energy technologies in solar, alcohol and methane. Dissemination is planned through tours to be conducted by the Worcester County Extension Service. Most of these goals were completed as planned. A few things have yet to be completed. The solar panels and solar hot water tanks have to be installed. The fermenter's agitating and cooling system have to be secured inside the fermenter. Once these items are complete tours will begin early in the spring.

  10. Sustainable infrastructure system modeling under uncertainties and dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Yongxi

    Infrastructure systems support human activities in transportation, communication, water use, and energy supply. The dissertation research focuses on critical transportation infrastructure and renewable energy infrastructure systems. The goal of the research efforts is to improve the sustainability of the infrastructure systems, with an emphasis on economic viability, system reliability and robustness, and environmental impacts. The research efforts in critical transportation infrastructure concern the development of strategic robust resource allocation strategies in an uncertain decision-making environment, considering both uncertain service availability and accessibility. The study explores the performances of different modeling approaches (i.e., deterministic, stochastic programming, and robust optimization) to reflect various risk preferences. The models are evaluated in a case study of Singapore and results demonstrate that stochastic modeling methods in general offers more robust allocation strategies compared to deterministic approaches in achieving high coverage to critical infrastructures under risks. This general modeling framework can be applied to other emergency service applications, such as, locating medical emergency services. The development of renewable energy infrastructure system development aims to answer the following key research questions: (1) is the renewable energy an economically viable solution? (2) what are the energy distribution and infrastructure system requirements to support such energy supply systems in hedging against potential risks? (3) how does the energy system adapt the dynamics from evolving technology and societal needs in the transition into a renewable energy based society? The study of Renewable Energy System Planning with Risk Management incorporates risk management into its strategic planning of the supply chains. The physical design and operational management are integrated as a whole in seeking mitigations against the

  11. Living Systems Energy Module

    SciTech Connect

    1995-09-26

    The Living Systems Energy Module, renamed Voyage from the Sun, is a twenty-lesson curriculum designed to introduce students to the major ways in which energy is important in living systems. Voyage from the Sun tells the story of energy, describing its solar origins, how it is incorporated into living terrestrial systems through photosynthesis, how it flows from plants to herbivorous animals, and from herbivores to carnivores. A significant part of the unit is devoted to examining how humans use energy, and how human impact on natural habitats affects ecosystems. As students proceed through the unit, they read chapters of Voyage from the Sun, a comic book that describes the flow of energy in story form (Appendix A). During the course of the unit, an ``Energy Pyramid`` is erected in the classroom. This three-dimensional structure serves as a classroom exhibit, reminding students daily of the importance of energy and of the fragile nature of our living planet. Interactive activities teach students about adaptations that allow plants and animals to acquire, to use and to conserve energy. A complete list of curricular materials and copies of all activity sheets appear in Appendix B.

  12. Challenges in developing biohydrogen as a sustainable energy source: implications for a research agenda.

    PubMed

    Brentner, Laura B; Peccia, Jordan; Zimmerman, Julie B

    2010-04-01

    The U.S. Department of Energy's Hydrogen Program aims to develop hydrogen as an energy carrier to decrease emissions of greenhouse gases and other air pollutants and reduce the use of fossil fuels. However, current hydrogen production technologies are not sustainable as they rely heavily on fossil fuels, either directly or indirectly through electricity generation. Production of hydrogen by microorganisms, biohydrogen, has potential as a renewable alternative to current technologies. The state-of-the-art for four different biohydrogen production mechanisms is reviewed, including biophotolysis, indirect biophotolysis, photofermentation, and dark fermentation. Future research challenges are outlined for bioreactor design, optimization of bioreactor conditions, and metabolic engineering. Development of biohydrogen technologies is still in the early stages, although some fermentation systems have demonstrated efficiencies reasonable for implementation. To enhance the likelihood of biohydrogen as a feasible system to meet future hydrogen demands sustainably, directed investment in a strategic research agenda will be necessary.

  13. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics.

    PubMed

    Wang, Sihong; Lin, Long; Wang, Zhong Lin

    2012-12-12

    Harvesting energy from our living environment is an effective approach for sustainable, maintenance-free, and green power source for wireless, portable, or implanted electronics. Mechanical energy scavenging based on triboelectric effect has been proven to be simple, cost-effective, and robust. However, its output is still insufficient for sustainably driving electronic devices/systems. Here, we demonstrated a rationally designed arch-shaped triboelectric nanogenerator (TENG) by utilizing the contact electrification between a polymer thin film and a metal thin foil. The working mechanism of the TENG was studied by finite element simulation. The output voltage, current density, and energy volume density reached 230 V, 15.5 μA/cm(2), and 128 mW/cm(3), respectively, and an energy conversion efficiency as high as 10-39% has been demonstrated. The TENG was systematically studied and demonstrated as a sustainable power source that can not only drive instantaneous operation of light-emitting diodes (LEDs) but also charge a lithium ion battery as a regulated power module for powering a wireless sensor system and a commercial cell phone, which is the first demonstration of the nanogenerator for driving personal mobile electronics, opening the chapter of impacting general people's life by nanogenerators.

  14. Industrial sustainability of competing wood energy options in Canada.

    PubMed

    Ackom, Emmanuel K; Mabee, Warren E; Saddler, John N

    2010-12-01

    The amount of sawmill residue available in Canada to support the emerging cellulosic ethanol industry was examined. A material flow analysis technique was employed to determine the amount of sawmill residue that could possibly be available to the ethanol industry per annum. A combination of two key trends--improved efficiency of lumber recovery and increased uptake of sawmill residues for self-generation and for wood pellet production--have contributed to a declining trend of sawmill residue availability. Approximately 2.3 x 10⁶ bone-dry tons per year of sawmill residue was estimated to be potentially available to the cellulosic ethanol industry in Canada, yielding 350 million liters per year of cellulosic ethanol using best practices. An additional 2.7 billion liters of cellulosic ethanol might be generated from sawmill residue that is currently used for competing wood energy purposes, including wood pellet generation. Continued competition between bioenergy options will reduce the industrial sustainability of the forest industry. Recommendations for policy reforms towards improved industrial sustainability practices are provided.

  15. Participatory Systems Modeling to Explore Sustainable ...

    EPA Pesticide Factsheets

    Decision makers often need assistance in understanding dynamic interactions and linkages among economic, environmental and social systems in coastal watersheds. They also need scientific input to better evaluate potential costs and benefits of alternative policy interventions. The US EPA is applying sustainability science to address these needs. Triple Value (3V) Scoping and Modeling projects bring a systems approach to understand complex environmental problems, incorporate local knowledge, and allow decision-makers to explore policy scenarios. This leads to better understanding of feedbacks and outcomes to both human and environmental systems. The Suffolk County, NY (eastern Long Island) 3V Case uses SES interconnections to explore possible policy options and scenarios for intervention to mitigate the effects of excess nitrogen (N) loading to ground, surface, and estuarine waters. Many of the environmental impacts of N pollution negatively affect social and economic well-being and productivity. Key are loss of enjoyment and recreational use of local beach environments and loss of income and revenues from tourism and local fisheries. Stakeholders generated this Problem Statement: Suffolk County is experiencing widespread degradation to groundwater and the coastal marine environment caused by excess nitrogen. How can local stakeholders and decision makers in Suffolk County arrest and reverse this degradation, restore conditions to support a healthy thriving ecos

  16. Sustain: An experimental test bed for building energy simulation

    SciTech Connect

    Greenberg, Donald; Pratt, Kevin; Hencey, Brandon; Jones, Nathaniel; Schumann, Lars; Dobbs, Justin; Dong, Zhao; Bosworth, David; Walter, Bruce

    2013-03-01

    Current building energy simulation technology requires extensive labor, time and expertise to create building energy models, substantial computational time for accurate simulations, and generates data in formats that make results difficult to interpret. These deficiencies can be ameliorated using modern graphical user interfaces and algorithms which take advantage of modern computer architectures and display capabilities. This paper describes a novel test bed environment which offers an interactive graphical interface, provides access to simulation modules that run at accelerated computational speeds, and presents new graphic visualization methods for the interpretation of simulation results. Its modular structure makes it suitable for use in early stage building design, for use as a research platform for the investigation of new simulation methods, and for use as a tool for teaching concepts of sustainable design. Improvements in the accuracy and execution speed of many of the simulation modules are based on the modification of advanced computer graphics rendering algorithms. Significant performance improvements are illustrated in several computationally expensive energy simulation modules.

  17. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    PubMed Central

    Yusoff, Fatimah Md.; Shariff, M.

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  18. Microalgae as sustainable renewable energy feedstock for biofuel production.

    PubMed

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  19. Decreased energy levels can cause and sustain obesity.

    PubMed

    Wlodek, Danuta; Gonzales, Michael

    2003-11-07

    Obesity has reached epidemic proportions and has become one of the major health problems in developed countries. Current theories consider obesity a result of overeating and sedentary life style and most efforts to treat or prevent weight gain concentrate on exercise and food intake. This approach does not improve the situation as may be seen from the steep increase in the prevalence of obesity. This encouraged us to reanalyse existing information and look for biochemical basis of obesity. Our approach was to ignore current theories and concentrate on experimental data which are described in scientific journals and are available from several databases. We developed and applied a Knowledge Discovery in Databases procedure to analyse metabolic data. We began with the contradictory information: in obesity, more calories are consumed than used up, suggesting that obese people should have excess energy. On the other side, obese people experience fatigue and decreased physical endurance that indicates diminished energy supply in the body. The result of our work is a chain of metabolic events leading to obesity. The crucial event is the inhibition of the TCA cycle at the step of aconitase. It disturbs energy metabolism and results in ATP deficiency with simultaneous fat accumulation. Further steps in obesity development are the consequences of diminished energy supply: inhibition of beta-oxidation, leptin resistance, increase in appetite and food intake and a decrease in physical activity. Thus, our theory shows that obesity does not have to be caused by overeating and sedentary life-style but may be the result of the "obese" change in metabolism which is forcing people to overeat and save energy to sustain metabolic functions of cells. This "obese" change is caused by environmental factors that activate chronic low-grade inflammatory process in the body linking obesity with the environment of developed countries.

  20. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Kreutz, T.

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  1. Sustainable energy development in Austria until 2020: Insights from applying the integrated model “e3.at”

    PubMed Central

    Stocker, Andrea; Großmann, Anett; Madlener, Reinhard; Wolter, Marc Ingo

    2011-01-01

    This paper reports on the Austrian research project “Renewable energy in Austria: Modeling possible development trends until 2020”. The project investigated possible economic and ecological effects of a substantially increased use of renewable energy sources in Austria. Together with stakeholders and experts, three different scenarios were defined, specifying possible development trends for renewable energy in Austria. The scenarios were simulated for the period 2006–2020, using the integrated environment–energy–economy model “e3.at”. The modeling results indicate that increasing the share of renewable energy sources in total energy use is an important but insufficient step towards achieving a sustainable energy system in Austria. A substantial increase in energy efficiency and a reduction of residential energy consumption also form important cornerstones of a sustainable energy policy. PMID:21976785

  2. Advancing Military Systems Toward Sustainability Through Innovative Environmental Assessment

    DTIC Science & Technology

    2009-05-04

    ISO 14000 series (env mgmt, LCA, impacts, GHGs, etc) – Green ammo initiatives  Looking Forward – Sustainability frameworks for bootprints – Green ... Chemistry and Engineering – Cradle-to-Cradle The Drivers Background NDIA - 2009 Environment, Energy & Sustainability Symposium 6  A Long History – Lewis

  3. CONSTRUCTING A GENERAL SUSTAINABLE SYSTEMS THEORY

    EPA Science Inventory

    Sustainability attracts enormous interest in the minds of the public and the scientific and engineering community because it holds the promise of a long-tem solution to environmental problems. Sustainability, however, is mathematically loosely defined. There is no widely accepted...

  4. CONSTRUCTING A GENERAL SUSTAINABLE SYSTEMS THEORY

    EPA Science Inventory

    Sustainability atracts enormous interest in the minds of the public and the scientific and engineering community because it holds the promise of a long-term solution to environmental problems. Sustainability, however, is mathematically loosely defined. There is no widely accepted...

  5. Sustainable Energy Solutions Task 2.0: Wind Turbine Reliability and Maintainability Enhancement through System-wide Structure Health Monitoring and Modifications to Rotating Components

    SciTech Connect

    Twomey, Janet M.

    2010-04-30

    An evaluation of nondestructive structural health monitoring methods was completed with over 132 documents, 37 specifically about wind turbines, summarized into a technology matrix. This matrix lists the technology, what can be monitored with this technology, and gives a short summary of the key aspects of the technology and its application. Passive and active acoustic emission equipment from Physical Acoustics Corp. and Acellent Technologies have been evaluated and selected for use in experimental state loading and fatigue tests of composite wind turbine blade materials. Acoustic Emission (AE) and Active Ultrasonic Testing (AUT), were applied to composite coupons with both simulated and actual damage. The results found that, while composites are more complicated in nature, compared to metallic structures, an artificial neural network analysis could still be used to determine damage. For the AE system, the failure mode could be determined (i.e. fiber breakage, delamination, etc.). The Acellent system has been evaluated to work well with composite materials. A test-rig for reliability testing of the rotating components was constructed. The research on the types of bearings used in the wind turbines indicated that in most of the designs, the main bearings utilized to support the shaft are cylindrical roller bearings. The accelerated degradation testing of a population of bearings was performed. Vibration and acoustic emission data was collected and analyzed in order to identify a representative degradation signal for each bearing to identify the initiation of the degradation process in the bearings. Afterwards, the RMS of the vibration signal from degradation initiation up to the end of the useful life of the bearing was selected to predict the remaining useful life of the bearing. This step included fitting Autoregressive Moving Average (ARMA) models to the degradation signals and approximating the probability distribution function (PDF) of remaining useful life

  6. Ocean energy systems

    NASA Astrophysics Data System (ADS)

    1984-04-01

    The Johns Hopkins University Applied Physics Laboratory is engaged in developing ocean thermal energy conversion (OTEC) systems that are to provide synthetic fuels or an energy intensive product such as ammonia or aluminum. The work also includes assessment and design concepts for hybrid plants, such as geothermal-OTEC plants. The laboratory also has a technical advisory role with respect to DOE/DOET's management of the preliminary design activity of an industry team headed by Ocean Thermal Corporation that is designing an OTEC pilot plant that could be built in shallow water off the shore of Oahu, Hawaii. In addition, the Laboratory is now taking part in a program to evaluate and test the pneumatic wave energy conversion system, an ocean energy device consisting of a turbine that is air driven as a result of wave action in a chamber.

  7. Ocean energy systems

    NASA Astrophysics Data System (ADS)

    Progress is reported on the development of Ocean Thermal Energy Conversion (OTEC) systems that will provide synthetic fuels (e.g., methanol), energy-intensive products such as ammonia (for fertilizers and chemicals), and aluminum. The work also includes assessment and design concepts for hybrid plants, such as geothermal-OTEC (GEOTEC) plants. Another effort that began in the spring of 1982 is a technical advisory role to DOE with respect to their management of the conceptual and preliminary design activity of industry teams that are designing a shelf-mounted offshore OTEC pilot plant that could deliver power to Oahu, Hawaii. In addition, a program is underway to evaluate and test the Pneumatic Wave-Energy Conversion System (PWECS), an ocean-energy device consisting of a turbine that is air-driven as a result of wave action in a chamber. The work on the various tasks as of 31 March 1983 is reported.

  8. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1979-01-01

    A fixed, linear, ground-based primary reflector having an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material, reflects solar energy to a movably supported collector that is kept at the concentrated line focus reflector primary. The primary reflector may be constructed by a process utilizing well known freeway paving machinery. The solar energy absorber is preferably a fluid transporting pipe. Efficient utilization leading to high temperatures from the reflected solar energy is obtained by cylindrical shaped secondary reflectors that direct off-angle energy to the absorber pipe. A seriatim arrangement of cylindrical secondary reflector stages and spot-forming reflector stages produces a high temperature solar energy collection system of greater efficiency.

  9. Perspectives on achieving sustainable energy production and use

    EPA Science Inventory

    The traditional definition of sustainability calls for polices and strategies that meet society's present needs without compromising the ability of future generations to meet their own needs. Achieving operational sustainability requires three critical elements: advances in scien...

  10. An integrated strategy for sustainable forest-energy-environment interactions in Nigeria.

    PubMed

    Akinbami, J-F K; Salami, A T; Siyanbola, W O

    2003-10-01

    The Nigerian forests have been subjected to unguarded exploitation over the years. Although there is overwhelming empirical evidence, which show that Nigeria's forest, may soon vanish, available statistics have shown its increasing importance in the energy sector. With increasing population come the attendant demands on the biotic environment through increased land clearing, deforestation, devegetation, decertification, with attendant soil erosion, flooding, sand dune formation, and changes in the micro-climate with consequent loss of biological productivity and associated socio-economic and socio-political problems in the country. There is therefore the need to adopt measures that will shift the attention of the Nigerian populace from the forest to satisfy their energy needs. However, such measures that will address the challenges confronting the forestry, forest-based energy systems and the environment should be consistent with the development needs, resources and priorities of the nation. Hence, for sustainable forest-energy-environment interactions, a holistic and integrated strategy that can be adopted to minimise the observed forest depletion must take cognisance of options from various land use practices, energy and forest sectors. The focus of this paper is on a strategy of options from both the energy and forest sectors. Based on the socio-economic, socio-political and environmental analyses of various options from the energy and forest sectors, the philosophy behind the mosaic approach to sustainable development has been considered in developing the proposed strategy. Policy measures to implement this strategy of options in the national development programs are also suggested.

  11. Overview of the US Department of Energy Light Water Reactor Sustainability Program

    SciTech Connect

    K. A. McCarthy; D. L. Williams; R. Reister

    2012-05-01

    The US Department of Energy Light Water Reactor Sustainability Program is focused on the long-term operation of US commercial power plants. It encompasses two facets of long-term operation: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the nuclear industry that support implementation of performance improvement technologies. An important aspect of the Light Water Reactor Sustainability Program is partnering with industry and the Nuclear Regulatory Commission to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The Department of Energy research, development, and demonstration role focuses on aging phenomena and issues that require long-term research and/or unique Department of Energy laboratory expertise and facilities and are applicable to all operating reactors. This paper gives an overview of the Department of Energy Light Water Reactor Sustainability Program, including vision, goals, and major deliverables.

  12. Vibration energy harvester with sustainable power based on a single-crystal piezoelectric cantilever array.

    PubMed

    Kim, Moonkeun; Lee, Sang-Kyun; Ham, Yong-Hyun; Yang, Yil Suk; Kwon, Jong-Kee; Kwon, Kwang-Ho

    2012-08-01

    We designed and fabricated a bimorph cantilever array for sustainable power with an integrated Cu proof mass to obtain additional power and current. We fabricated a cantilever system using single-crystal piezoelectric material and compared the calculations for single and arrayed cantilevers to those obtained experimentally. The vibration energy harvester had resonant frequencies of 60.4 and 63.2 Hz for short and open circuits, respectively. The damping ratio and quality factor of the cantilever device were 0.012 and 41.66, respectively. The resonant frequency at maximum average power was 60.8 Hz. The current and highest average power of the harvester array were found to be 0.728 mA and 1.61 mW, respectively. The sustainable maximum power was obtained after slightly shifting the short-circuit frequency. In order to improve the current and power using an array of cantilevers, we also performed energy conversion experiments.

  13. Optimal energy options under Clean Development Mechanism: Renewable energy projects for sustainable development and carbon emission reduction

    NASA Astrophysics Data System (ADS)

    Gilau, Asmerom M.

    This dissertation addresses two distinct objectives; designing cost-effective renewable energy powered projects including seawater reverse osmosis (SWRO), aquaculture, and ice-making plant, and analyzing the cost-effectiveness of these projects in achieving low abatement costs and promoting sustainable developments under the Clean Development Mechanism. The results of SWRO analysis show that a wind powered system is the least expensive and a PV powered system the most expensive, with finished water costs of about 0.50 /m3 and 1.00 /m3, respectively. By international standards, these costs are competitive. The results of renewable energy powered commercial tilapia production indicate that a wind-diesel system has high potential for intensive tilapia production as well as carbon dioxide emission reductions. The study also investigates aeration failures in renewable energy powered tilapia production systems. With respect to the ice-making plant, unlike previous studies which consider nighttime operation only, we have found that a nighttime PV powered ice-making system is more expensive (1/kWh) than daytime ice-making system (0.70/kWh). Our optimal energy options analysis at project scale which includes SWRO, ice-making plant and household energy consumption for about 100 households shows that compared to diesel only energy option, PV-D, W-D, and PV-W-D hybrids are very cost-effective energy options. Moreover, energy options with high levels of renewable energy including 100% renewables have the lowest net present cost and they are already cost-effective without CDM. On the other hand, while the removal of about 87% carbon dioxide emissions could be achieved at negative cost, initial investment could increase by a factor of 40, which is one of the primary barriers hindering wider renewable energy applications in developing countries. Thus in order to increase developing countries' participation in the carbon market, CDM policy should shift from a purely market oriented

  14. Hydrogen and the materials of a sustainable energy future

    SciTech Connect

    Zalbowitz, M.

    1997-02-01

    The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings, develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.

  15. Sustainable Energy Production from Jatropha Bio-Diesel

    NASA Astrophysics Data System (ADS)

    Yadav, Amit Kumar; Krishna, Vijai

    2012-10-01

    The demand for petroleum has risen rapidly due to increasing industrialization and modernization of the world. This economic development has led to a huge demand for energy, where the major part of that energy is derived from fossil sources such as petroleum, coal and natural gas. Continued use of petroleum sourced fuels is now widely recognized as unsustainable because of depleting supplies. There is a growing interest in using Jatropha curcas L. oil as the feedstock for biodiesel production because it is non-edible and thus does not compromise the edible oils, which are mainly used for food consumption. Further, J. curcas L. seed has a high content of free fatty acids that is converted in to biodiesel by trans esterification with alcohol in the presence of a catalyst. The biodiesel produced has similar properties to that of petroleum-based diesel. Biodiesel fuel has better properties than petro diesel fuel; it is renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. Biodiesel seems to be a realistic fuel for future. Biodiesel has the potential to economically, socially, and environmentally benefit communities as well as countries, and to contribute toward their sustainable development.

  16. What is Energy Systems Integration?

    ScienceCinema

    Kroposki, Ben; Lundstrom, Blake; Hannegan, Bryan; Symko-Davies, Martha

    2016-10-19

    To achieve the most efficient, flexible, and reliable energy system, NREL’s Energy Systems Integration researchers work with manufacturers, utilities, and other research organizations to find solutions to big energy challenges. This video describes the concept of energy systems integration, an approach that explores ways for energy systems to work more efficiently on their own and with each other.

  17. What is Energy Systems Integration?

    SciTech Connect

    Kroposki, Ben; Lundstrom, Blake; Hannegan, Bryan; Symko-Davies, Martha

    2016-10-14

    To achieve the most efficient, flexible, and reliable energy system, NREL’s Energy Systems Integration researchers work with manufacturers, utilities, and other research organizations to find solutions to big energy challenges. This video describes the concept of energy systems integration, an approach that explores ways for energy systems to work more efficiently on their own and with each other.

  18. Sustainability development platform for nuclear–renewable energy integration: Environmental impacts, economics, and socio-political implications

    SciTech Connect

    Bolden, Lauren; Sabharwall, Piyush; Bragg-Sitton, Shannon; Abreu, Neyda; Liu, Li

    2015-01-01

    Global energy needs are primarily being met with fossil fuel plants in both developed and developing nations. Although it is unlikely to entirely replace fossil fuel systems, the incorporation of alternative energy systems that produce fewer emissions and utilize fewer resources may prove useful in furthering sustainable energy practices. Nuclear and Renewable Energy Integration (NREI) represents one potential, alternative system and is comprised of both nuclear and renewable technologies coupled with energy storage and industrial process heat applications. This article reviews the fundamentals of sustainability and its drivers, defines the necessary scope for analyzing energy systems, details widely used sustainability metrics, and assesses sustainability through the sustainability efficiency factor (SEF) based on the core pillars of economy, environment, and society—all of which aim to promote future sustainable development. The assessment is performed for an NREI system comprised of a small modular reactor (SMR), where a portion of the heat generated is utilized for hydrogen production through high-temperature steam electrolysis (HTSE). The global warming potential for NREI is compared to the typical emissions observed for hydrogen production via steam methane reforming and are estimated to yield 92.6% fewer grams of CO2-equivalent per kilogram of hydrogen produced. Furthermore, the calculated SEF for NREI is 22.2% higher than steam methane reforming. Because SMR designs are at varying design, developmental, and deployment stages, a method of estimating economics is presented to demonstrate the differences observed between first-of-a-kind (FOAK) and nth-of-a-kind (NOAK) units, as well as the resulting total capital investment cost. Lastly, a comprehensive list of considerations necessary for future energy system development was enumerated based on four core assessment areas: technical feasibility, environmental impact, economic feasibility and

  19. SMR Handbook: Hybrid Energy Systems Involving SMRs

    SciTech Connect

    Shannon M. Bragg-Sitton

    2014-09-01

    Large-scale nuclear reactors are traditionally operated for a singular purpose: steady-state production of dispatchable baseload electricity that is distributed broadly on the electric grid. While this implementation is key to a sustainable, reliable energy grid, SMRs offer new opportunities for increased use of clean nuclear energy for both electric and thermal applications in more locations – while still accommodating the desire to support renewable production sources. This chapter considers a scenario in which renewable generation would be tightly coupled with the nuclear generation source – behind the grid – to meet the grid demand as an integrated energy system while simultaneously producing other commodities with the available thermal energy.

  20. Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects.

    PubMed

    Yip, Ngai Yin; Brogioli, Doriano; Hamelers, Hubertus V M; Nijmeijer, Kitty

    2016-11-15

    . While research attention is squarely focused on efficiency and power improvements, efforts to mitigate fouling and lower membrane and electrode cost will be equally important to reduce levelized cost of salinity gradient energy production and, thus, boost PRO, RED, and CapMix power generation to be competitive with other renewable technologies. Cognizance of the recent key developments and technical progress on the different technological fronts can help steer the strategic advancement of salinity gradient as a sustainable energy source.

  1. SUSTAINABLE SYSTEMS THEORY: ECOLOGICAL AND OTHER ASPECTS

    EPA Science Inventory

    While sustainability is generally associated with the definition given by the Brundtland Commission (World Commission on Environment and Development, 1987), namely development that "meets the needs and asperations of the present without compromising the ability to meet those of t...

  2. SUSTAINABLE SYSTEMS THEORY: ECOLOGICAL AND OTHER ASPECTS

    EPA Science Inventory

    While sustainability is generally associated with the definition given by the Brundtland Commission (World Commission on Environment and Development, 1987), namely development that "meets the needs and aspirations of the present without compromising the ability to meet those...

  3. SUSTAINABLE SYSTEMS THEORY: ECOLOGICAL AND OTHER ASPECTS

    EPA Science Inventory

    While sustainability is generally associated with the definition given by the Brundtland Commission (World Commission on Environment and Development, 1987), namely development that "meets the needs and aspirations of the present without compromising the ability to meet those of t...

  4. Placing Ecosystem Sustainability Within the Context of Dynamic Earth Systems

    EPA Science Inventory

    Because the concept of ecosystem sustainability and the practice of sustainable land management both have long-term foci, it is necessary to view these from the perspective of dynamic rather than static systems. In addition to the typical static system approach for assessing ecos...

  5. Energy generation system

    SciTech Connect

    Wardman, J.C.; Adams, J.Y.

    1983-07-26

    An energy generation system includes a motive fluid which is alternately heated and cooled to drive a heat engine. An inexpensively built and operated system heats the motive fluid with solar radiation and cools it with atmospheric or wind cooling. Low cost solar heat collectors are fabricated with aluminum foil or aluminized Mylar reflective surface overlying parabolically shaped paperboard bases. Low cost fluid cooling devices are fabricated from various fluid carrying porous canvas bags, some being provided with wind catching devices.

  6. An Emergy Systems View of Sustainability: Emergy Evaluation of the San Luis Basin, Colorado

    EPA Science Inventory

    Energy Systems Theory (EST) was used to provide a context for understanding and interpreting sustainability. We propose that “what is sustainable” for a system at any given level of organization is determined by the cycles of change originating in the next larger system. Furtherm...

  7. Wind Energy Systems.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    During the 1920s and 1930s, millions of wind energy systems were used on farms and other locations far from utility lines. However, with passage of the Rural Electrification Act in 1939, cheap electricity was brought to rural areas. After that, the use of wind machines dramatically declined. Recently, the rapid rise in fuel prices has led to a…

  8. Investigation of sustainable development potential for Ulubey Aquifer System, Turkey

    NASA Astrophysics Data System (ADS)

    Burcu, U.; Hasan, Y.

    2014-09-01

    This study investigates sustainable development potential for Ulubey aquifer system which serves as an important water supply for Usak province (Turkey). In recent years, growing population, accelerating industrial activities and decreasing rainfall, as well as contamination of the surface water resources, made groundwater indispensable to meet the freshwater demands of Usak province. Therefore, a sustainable groundwater development plan has to be set up by determining the sustainable yield of the system, which is the aim of this study. To achieve this goal, a mathematical groundwater flow model is constructed in order to test the alternative development scenarios. Results show that the system preserves equilibrium conditions under present stresses. The future effects of possible increases in stresses are also simulated and based on the dynamic responses of the system to changing stresses; sustainable yield and sustainable pumping rate of the aquifer are determined and compared with the safe yield of the system.

  9. Multilevel and multi-user sustainability assessment of farming systems

    SciTech Connect

    Van Passel, Steven; Meul, Marijke

    2012-01-15

    Sustainability assessment is needed to build sustainable farming systems. A broad range of sustainability concepts, methodologies and applications already exists. They differ in level, focus, orientation, measurement, scale, presentation and intended end-users. In this paper we illustrate that a smart combination of existing methods with different levels of application can make sustainability assessment more profound, and that it can broaden the insights of different end-user groups. An overview of sustainability assessment tools on different levels and for different end-users shows the complementarities and the opportunities of using different methods. In a case-study, a combination of the sustainable value approach (SVA) and MOTIFS is used to perform a sustainability evaluation of farming systems in Flanders. SVA is used to evaluate sustainability at sector level, and is especially useful to support policy makers, while MOTIFS is used to support and guide farmers towards sustainability at farm level. The combined use of the two methods with complementary goals can widen the insights of both farmers and policy makers, without losing the particularities of the different approaches. To stimulate and support further research and applications, we propose guidelines for multilevel and multi-user sustainability assessments. - Highlights: Black-Right-Pointing-Pointer We give an overview of sustainability assessment tools for agricultural systems. Black-Right-Pointing-Pointer SVA and MOTIFS are used to evaluate the sustainability of dairy farming in Flanders. Black-Right-Pointing-Pointer Combination of methods with different levels broadens the insights of different end-user groups. Black-Right-Pointing-Pointer We propose guidelines for multilevel and multi-user sustainability assessments.

  10. Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran.

    PubMed

    Yousefi, Mohammad; Damghani, Abdolmajid Mahdavi; Khoramivafa, Mahmud

    2014-09-15

    The objectives of this study were to assess the energy flow, greenhouse gas (GHG) emission, global warming potential (GWP) and sustainability of corn production systems in Kermanshah province, western Iran. The data were collected from 70 corn agroecosystems which were selected based on randomly sampled method in the summer of 2011. The results indicated that total input and output energy were 50,485 and 134,946 MJ ha(-1), respectively. The highest share of total input energy in corn production systems was recorded for N fertilizer, electricity power and diesel fuel with 35, 25 and 20%, respectively. Energy use efficiency and energy productivity were 2.67 and 0.18 kg MJ(-1), respectively. Also agrochemical energy ratio was estimated as 40%. Applying chemical inputs produced the following emissions of greenhouse gases: 2994.66 kg CO2, 31.58 kg N2O and 3.82 kg CH4 per hectare. Hence, total GWP was 12,864.84 kg Co2eq ha(-1) in corn production systems. In terms of CO2 equivalents 23% of the GWPs came from CO2, 76% from N2O, and 1% from CH4. In this study input and output C equivalents per total GHG and Biomass production were 3508.59 and 10,696.34 kg Cha(-1). Net carbon and sustainability indexes in corn production systems were 7187.75 kg Cha(-1) and 2.05. Accordingly, efficient use of energy is essential to reduce the greenhouse gas emissions and environmental impact in corn agroecosystems.

  11. Energy storage connection system

    DOEpatents

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  12. Integrated renewable energy systems

    SciTech Connect

    Ramakumar, R.

    1995-02-01

    Utilization of several manifestations of solar energy in tandem by means of integrated renewable energy systems (IRES) to supply a variety of energy and other needs has the potential to energize (in contrast to electrification) remote rural areas in a cost-effective manner. Such actions can dramatically improve the quality of life for hundreds of millions of people living in remote villages in the continents of Asia, Africa, and Latin America. The environmentally benign nature of renewable resource utilization and the potability of exploiting locally available resources with the consequent growth of job opportunities are some of the many benefits that can accrue by the deployment of IRES. Even small amounts of energy can be very beneficial in remote rural areas of developing countries with no grid connection as compared to the massive urban sprawls in both developed and developing countries. A concerted global effort in this direction can build the much-needed market potential for renewables now, resulting in future cost reductions. Summaries of the three panel session presentations are assembled here for the readers of the IEEE Power Engineering Review: Designing an Integrated Renewable Energy System, by K. Ashenayi, The University of Tulsa, Tulsa, Oklahoma; Africa-1000: Water in Thousands of Villages, by C. Kashkari Founder, Africa-1000, The University of Akron, Akron, Ohio; Renewables in Mexico, by J. Gutierrez-Vera, Energia Del Siglo 21, Mexico D.F.

  13. A System of Systems Approach to the EU Energy System

    NASA Astrophysics Data System (ADS)

    Jess, Tom; Madani, Kaveh; Mahlooji, Maral; Ristic, Bora

    2016-04-01

    Around the world, measures to prevent dangerous climate change are being adopted and may change energy systems fundamentally. The European Union (EU) is committed to reducing greenhouse gas emission by 20% by 2020 and by 80-95% by 2050. In order to achieve this, EU member states aim to increase the share of renewables in the energy mix to 20% by 2020. This commitment comes as part of a series of other aims, principles, and policies to reform the EU's energy system. Cost-efficiency in the emissions reductions measures as well as strategic goals under the Resource Efficient Europe flagship initiative which would include a more prudent approach to other natural resources such as water and land. Using the "System of Systems Approach", as from Hadian and Madani (2015), energy sources' Relative Aggregate Footprints (RAF) in the EU are evaluated. RAF aggregates across four criteria: carbon footprint, water footprint, land footprint, and economic cost. The four criteria are weighted by resource availability across the EU and for each Member State. This provides an evaluation of the overall resource use efficiency of the EU's energy portfolio and gives insight into the differences in the desirability of energy sources across Member States. Broadly, nuclear, onshore wind, and geothermal are most desirable under equal criteria weights and EU average weighting introduces only small changes in the relative performance of only few technologies. The member state specific weightings show that most countries have similar energy technology preferences. However, the UK deviates most strongly from the average, with an even stronger preference for nuclear and coal. Sweden, Malta and Finland also deviate from the typical preferences indicating the complexity in play in reforming the EU energy system. Reference Hadian S, Madani K (2015) A System of Systems Approach to Energy Sustainability Assessment: Are All Renewables Really Green? Ecological Indicators, 52, 194-206.

  14. Energy Storage System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  15. Minimum Energy Requirements for Sustained Microbial Activity in Anoxic Sediments

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christoper S.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Currently understood mechanisms of biochemical energy conservation dictate that, in order to be biologically useful, energy must be available to organisms in "quanta" equal to, at minimum one-third to one-fifth of the energy required to synthesize ATP in vivo. The existence of this biological energy quantum means that a significant fraction of the chemical amp on Earth cannot be used to drive biological productivity, and places a fundamental thermodynamic constraint on the origins, evolution, and distribution of life. We examined the energy requirements of intact microbial assemblages in anoxic sediments from Cape Lookout Bight, NC, USA, using dissolved hydrogen concentrations as a non-invasive probe. In this system, the thermodynamics of metabolic processes occurring inside microbial cells is reflected quantitatively by H2 concentrations measured outside those cells. We find that methanogenic archaea are supported by energy yields as small as 10 kJ per mol, about half the quantity calculated from studies of microorganisms in culture. This finding implies that a significantly broader range of geologic and chemical niches might be exploited by microorganisms than would otherwise be expected.

  16. Energy Production Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in energy production systems is one of 15 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  17. Alliance for Sustainable Colorado Renovation Raises Its Energy Performance to New Heights, Commercial Building Energy Efficiency (Fact Sheet); Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-03-01

    The Alliance for Sustainable Colorado (The Alliance) is a nonprofit organization aiming to transform sustainability from vision to reality. Part of its mission is to change the operating paradigms of commercial building design to make them more sustainable. Toward that end The Alliance uses its headquarters, The Alliance Center at 1536 Wynkoop Street in Denver, as a living laboratory, conductingpilot studies of innovative commercial-building-design solutions for using and generating energy.

  18. Sustainable System Management with Fisher Information based Objectives

    EPA Science Inventory

    Sustainable ecosystem management that integrates ecological, economic and social perspectives is a complex task where simultaneous persistence of human and natural components of the system must be ensured. Given the complexity of this task, systems theory approaches based on soun...

  19. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    SciTech Connect

    Diamond, Rick; Harris, Jeff; Diamond, Rick; Iyer, Maithili; Payne, Christopher; Blumstein, Carl; Siderius, Hans-Paul

    2007-08-13

    We argue that a primary focus on energy efficiency may not be sufficient to slow (and ultimately reverse) the growth in total energy consumption and carbon emissions. Instead, policy makers need to return to an earlier emphasis on"conservation," with energy efficiency seen as a means rather than an end in itself. We briefly review the concept of"intensive" versus"extensive" variables (i.e., energy efficiency versus energy consumption), and why attention to both consumption and efficiency is essential for effective policy in a carbon- and oil-constrained world with increasingly brittle energy markets. To start, energy indicators and policy evaluation metrics need to reflect energy consumption as well as efficiency. We introduce the concept of"progressive efficiency," with the expected or required level of efficiency varying as a function of house size, appliance capacity, or more generally, the scale of energy services. We propose introducing progressive efficiency criteria first in consumer information programs (including appliance labeling categories) and then in voluntary rating and recognition programs such as ENERGY STAR. As acceptance grows, the concept could be extended to utility rebates, tax incentives, and ultimately to mandatory codes and standards. For these and other programs, incorporating criteria for consumption as well as efficiency offers a path for energy experts, policy-makers, and the public to begin building consensus on energy policies that recognize the limits of resources and global carrying-capacity. Ultimately, it is both necessary and, we believe, possible to manage energy consumption, not just efficiency in order to achieve a sustainable energy balance. Along the way, we may find it possible to shift expectations away from perpetual growth and toward satisfaction with sufficiency.

  20. Waste to energy – key element for sustainable waste management

    SciTech Connect

    Brunner, Paul H. Rechberger, Helmut

    2015-03-15

    Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.

  1. Sustainability of Switchgrass for Cellulosic Ethanol: Evaluating Net Energy, Greenhouse Gas Emissions, and Feedstocks Costs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial herbaceous plants such as switchgrass are being evaluated as cellulosic bioenergy crops. Sustainability concerns with switchgrass (Panicum virgatum L.) and similar energy crops have been about net energy efficiency, potential greenhouse gas (GHG) emissions, and economic feasibility grown ...

  2. NASA's Space Launch System: Affordability for Sustainability

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is charged with delivering a new capability for human exploration beyond Earth orbit in an austere economic climate. But the SLS value is clear and codified in United States (U.S.) budget law. The SLS Program knows that affordability is the key to sustainability and will provide an overview of initiatives designed to fit within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat, yet evolve the 70-tonne (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through the competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface some 40 years ago. Astronauts train for long-duration voyages on platforms such as the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. In parallel with SLS concept studies, NASA is now refining its mission manifest, guided by U.S. space policy and the Global Exploration Roadmap, which reflects the mutual goals of a dozen member nations. This mission planning will converge with a flexible heavy-lift rocket that can carry international crews and the air, water, food, and equipment they need for extended trips to asteroids and Mars. In addition, the SLS capability will accommodate very large science instruments and other payloads, using a series of modular fairings and

  3. Sodium-ion hybrid electrolyte battery for sustainable energy storage applications

    NASA Astrophysics Data System (ADS)

    Senthilkumar, S. T.; Abirami, Mari; Kim, Junsoo; Go, Wooseok; Hwang, Soo Min; Kim, Youngsik

    2017-02-01

    Sustainable, safe, and low-cost energy storage systems are essential for large-scale electrical energy storage. Herein, we report a sodium (Na)-ion hybrid electrolyte battery with a replaceable cathode system, which is separated from the Na metal anode by a Na superionic conducting ceramic. By using a fast Na-ion-intercalating nickel hexacyanoferrate (NiHCF) cathode along with an eco-friendly seawater catholyte, we demonstrate good cycling performance with an average discharge voltage of 3.4 V and capacity retention >80% over 100 cycles and >60% over 200 cycle. Remarkably, such high capacity retention is observed for both the initial as well as replaced cathodes. Moreover, a Na-metal-free hybrid electrolyte battery containing hard carbon as the anode exhibits an energy density of ∼146 Wh kg-1 at a current density of 10 mA g-1, which is comparable to that of lead-acid batteries and much higher than that of conventional aqueous Na-ion batteries. These results pave the way for further advances in sustainable energy storage technology.

  4. Sustainable Water Use System of Artesian Water in Alluvial Fan

    NASA Astrophysics Data System (ADS)

    Kishi, K.; Tsujimura, M.; Tase, N.

    2013-12-01

    The traditional water use system, developed with the intelligence of the local residents, usually takes advantage of local natural resources and is considered as a sustainable system, because of its energy saving(only forces of nature). For this reason, such kind of water use system is also recommended in some strategic policies for the purpose of a symbiosis between nature and human society. Therefore, it is important to clarify the relationship between human activities and water use systems. This study aims to clarify the mechanism of traditional water use processes in alluvial fan, and in addition, to investigate the important factors which help forming a sustainable water use system from the aspects of natural conditions and human activities. The study area, an alluvial fan region named Adogawa, is located in Shiga Prefecture, Japan and is in the west of Biwa Lake which is the largest lake in Japan. In this alluvial region where the land use is mainly occupied by settlements and paddy fields, a groundwater flowing well system is called "kabata" according to local tradition. During field survey, we took samples of groundwater, river water and lake water as well as measured the potential head of groundwater. The results showed that the upper boundary of flowing water was approximately 88m amsl, which is basically the same as the results reported by Kishi and Kanno (1966). In study area, a rapid increase of water pumping for domestic water use and melting snow during last 50 years, even if the irrigation area has decreased about 30% since 1970, and this fact may cause a decrease in recharge rate to groundwater. However, the groundwater level didn't decline based on the observed results, which is probably contributed by some water conservancy projects on Biwa Lake which maintained the water level of the lake. All the water samples are characterized by Ca-HCO3 type and similar stable isotopic value of δD and δ18O. Groundwater level in irrigation season is higher

  5. Engineering for Sustainable Energy Education within Suburban, Urban and Developing Secondary Schools

    ERIC Educational Resources Information Center

    Kaikai, Moijue; Baker, Erin

    2016-01-01

    It is crucial that the younger generation be included in the conversation of sustainable development, given the urgent need of a global transition to cleaner energy solutions. Sustainable energy engineering (SEE) taught as early as secondary school can not only increase the number of students that will potentially study engineering to solve global…

  6. Toward a sustainable regional electricity system: The case of Kangwaon Province in Korea

    NASA Astrophysics Data System (ADS)

    Jung, Inwhan

    Korea's exceptional economic growth for the last three decades has been accompanied by a rapid growth in commercial energy use. While the world increased its total primary energy consumption by 1.7 percent annually during the period between 1971 and 1994, Korea expanded its consumption level by 8.5 percent during the same period. The first quarter of the twenty-first century will be a period when energy consumption in Korea escalates even further, particularly in electricity consumption. This projection raises potential conflicts between Korea's economic growth and Korea's participation in international efforts to reduce greenhouse gas (GHG) emissions (Noh, 1991). A sustainable energy system is likely to promote sustainable development. However, Korea's current electricity system mainly comprised of fossil fuels and nuclear power is unsustainable in the context of energy, environment, and economy (E3). As a means of addressing the problem, this study introduces the country's electricity system shaped by the actions of local regions. How a local region, such as Kangwon Province in Korea, might take steps to mitigate the problems associated with Korea's current electricity system? Reducing regional electricity requirements through end-use efficiency improvements in electric appliances, buildings, and industrial processes is fundamentally important. Decentralized and renewable-oriented electricity supply options are also important to the success of region-based sustainable electricity systems. This dissertation compares environmental and economic benefits between the conventional and sustainable electricity systems to meet electricity requirements in Kangwon Province in the year 2010. The results clearly indicate that the region-based sustainable electricity system gives significant benefits to the Province in terms of energy, economy, and environment. In the final chapter, policy guidelines are developed to implement region-based sustainable electricity plans.

  7. Thermoelectric energy system

    SciTech Connect

    Peck, R.

    1980-07-08

    A thermoelectric energy system is described comprising: (A) at least first and second separated electrodes, said electrodes including copper; (B) a liquid electrolyte comprising a source of copper ions and a material for complexing the ions, the complexing material being selected from the group consisting of one or a combination of a source of tartrate, a source of ethylenediaminetetraacetic acid,a source of gluconate, lactic acid, malic acid, citric acid, oxalic acid, and a source of silicon dioxide, the electrolyte being disposed between and in contact with the electrodes to provide a metal ion conduction path which extends substantially the entire distance between the electrodes; (C) an electric circuit connected to the electrodes for removal of electrical energy from the system; and (D) means for establishing a temperature gradient within said electrolyte whereby the average temperature of one of said electrodes will be greater than that of the other of said electrodes to thereby produce a voltage across the electrodes.

  8. Wind energy conversion system

    DOEpatents

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  9. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Dennis, E.

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  10. Energy Systems Divisions

    NASA Technical Reports Server (NTRS)

    Applewhite, John

    2011-01-01

    This slide presentation reviews the JSC Energy Systems Divisions work in propulsion. Specific work in LO2/CH4 propulsion, cryogenic propulsion, low thrust propulsion for Free Flyer, robotic and Extra Vehicular Activities, and work on the Morpheus terrestrial free flyer test bed is reviewed. The back-up slides contain a chart with comparisons of LO2/LCH4 with other propellants, and reviewing the advantages especially for spacecraft propulsion.

  11. Sustainability development platform for nuclear–renewable energy integration: Environmental impacts, economics, and socio-political implications

    DOE PAGES

    Bolden, Lauren; Sabharwall, Piyush; Bragg-Sitton, Shannon; ...

    2015-01-01

    Global energy needs are primarily being met with fossil fuel plants in both developed and developing nations. Although it is unlikely to entirely replace fossil fuel systems, the incorporation of alternative energy systems that produce fewer emissions and utilize fewer resources may prove useful in furthering sustainable energy practices. Nuclear and Renewable Energy Integration (NREI) represents one potential, alternative system and is comprised of both nuclear and renewable technologies coupled with energy storage and industrial process heat applications. This article reviews the fundamentals of sustainability and its drivers, defines the necessary scope for analyzing energy systems, details widely used sustainabilitymore » metrics, and assesses sustainability through the sustainability efficiency factor (SEF) based on the core pillars of economy, environment, and society—all of which aim to promote future sustainable development. The assessment is performed for an NREI system comprised of a small modular reactor (SMR), where a portion of the heat generated is utilized for hydrogen production through high-temperature steam electrolysis (HTSE). The global warming potential for NREI is compared to the typical emissions observed for hydrogen production via steam methane reforming and are estimated to yield 92.6% fewer grams of CO2-equivalent per kilogram of hydrogen produced. Furthermore, the calculated SEF for NREI is 22.2% higher than steam methane reforming. Because SMR designs are at varying design, developmental, and deployment stages, a method of estimating economics is presented to demonstrate the differences observed between first-of-a-kind (FOAK) and nth-of-a-kind (NOAK) units, as well as the resulting total capital investment cost. Lastly, a comprehensive list of considerations necessary for future energy system development was enumerated based on four core assessment areas: technical feasibility, environmental impact, economic feasibility and impact

  12. Energy budget closure and field scale estimation of canopy energy storage with increased and sustained turbulence

    NASA Astrophysics Data System (ADS)

    Anderson, R. G.; Wang, D.

    2012-12-01

    Eddy Covariance (EC) is widely used for direct, non-invasive observations of land-atmosphere energy and mass fluxes. However, EC observations of available energy fluxes are usually less than fluxes inferred from radiometer and soil heat flux observations; thus introducing additional uncertainty in using and interpreting EC flux measurements. We compare EC observations from two towers established over sugarcane (Saccharum officinarum L.) in Hawai'i, USA under similar cultivation, temperature, sunlight, and precipitation, but drastically different wind conditions due to orographic effects. At a daily scale, we find that energy closure for both towers occurs on days when the entire 24 hours has sufficient turbulence. At our windier site, this turbulence condition occurs over 60% of the time, which contributes to substantially better daily energy closure (~98%) than at the calmer site (~75%). At our windy site, we then invert the daily energy closure for continuously windy days to calculate canopy energy storage. At full canopy, peak daily canopy energy storage fluxes (200-400 Wm-2) are approximately an order of magnitude larger than soil heat flux (20-40 Wm-2). As a fraction of net radiation, canopy energy storage appears to vary seasonally and shows substantially greater variability than soil heat flux. The results illustrate the importance of sustained turbulence for accurate, direct measurement of land-atmosphere fluxes. As increasing number of EC towers are established in complex terrain, these results indicate the need for preliminary wind studies to optimize tower placement where orography enhances, rather than suppresses, turbulence.

  13. Sustainable Capture: Concepts for Managing Stream-Aquifer Systems.

    PubMed

    Davids, Jeffrey C; Mehl, Steffen W

    2015-01-01

    Most surface water bodies (i.e., streams, lakes, etc.) are connected to the groundwater system to some degree so that changes to surface water bodies (either diversions or importations) can change flows in aquifer systems, and pumping from an aquifer can reduce discharge to, or induce additional recharge from streams, springs, and lakes. The timescales of these interactions are often very long (decades), making sustainable management of these systems difficult if relying only on observations of system responses. Instead, management scenarios are often analyzed based on numerical modeling. In this paper we propose a framework and metrics that can be used to relate the Theis concepts of capture to sustainable measures of stream-aquifer systems. We introduce four concepts: Sustainable Capture Fractions, Sustainable Capture Thresholds, Capture Efficiency, and Sustainable Groundwater Storage that can be used as the basis for developing metrics for sustainable management of stream-aquifer systems. We demonstrate their utility on a hypothetical stream-aquifer system where pumping captures both streamflow and discharge to phreatophytes at different amounts based on pumping location. In particular, Capture Efficiency (CE) can be easily understood by both scientists and non-scientist alike, and readily identifies vulnerabilities to sustainable stream-aquifer management when its value exceeds 100%.

  14. Actualizing sustainability: environmental policy for resilience in ecological systems

    EPA Science Inventory

    Society benefits from ecological systems in many ways. These benefits are often referred to as ecosystem services (MA 2005). Because these services matter to humans, they are critical to sustainability. Sustainability has many definitions, but for this chapter, we link our defi...

  15. Understanding and Advancing Campus Sustainability Using a Systems Framework

    ERIC Educational Resources Information Center

    Posner, Stephen M.; Stuart, Ralph

    2013-01-01

    Purpose: University campuses behave as complex systems, and sustainability in higher education is best seen as an emergent quality that arises from interactions both within an institution and between the institution and the environmental and social contexts in which it operates. A framework for strategically prioritizing campus sustainability work…

  16. SYSTEMS METRICS AND ENVIRONMENTAL MANAGEMENT FOR SUSTAINABILITY

    EPA Science Inventory

    The concept of sustainability is often associated with the statement from the World Commission on Environment and Development, 1987: "... development that meets the needs and aspirations of the present without compromising the ability to meet those of the future ...". Hence, sus...

  17. SIMULATED EXPERIMENTS WITH COMPLEX SUSTAINABLE SYSTEMS

    EPA Science Inventory

    The concept of sustainability is associated with the statement from the World Commission on Environment and Development: "Development that meets the needs and aspirations of the present without compromising the ability to meet those of the future." But the construction of practi...

  18. Sustainable Development, Systems Thinking and Professional Practice

    ERIC Educational Resources Information Center

    Martin, Stephen

    2008-01-01

    This article explores the impact of the sustainable development (SD) agenda on the occupational and professional needs of those who have undergone educational and training programmes in the environmental field either at the undergraduate or the postgraduate level or through relevant professional institutions' continuing professional development…

  19. Sustainability, Systems Thinking and Professional Practice

    ERIC Educational Resources Information Center

    Martin, Stephen; Brannigan, James; Hall, Annie

    2005-01-01

    This article explores the impact of the new sustainability agenda on the occupational and professional needs of those who have taken educational and training programmes in the environmental field at either undergraduate or postgraduate level or through relevant professional institutions' continuing professional development programmes. It also…

  20. Role of ruminant livestock in sustainable agricultural systems.

    PubMed

    Oltjen, J W; Beckett, J L

    1996-06-01

    Ruminants have served and will continue to serve a valuable role in sustainable agricultural systems. They are particularly useful in converting vast renewable resources from rangeland, pasture, and crop residues or other by-products into food edible for humans. With ruminants, land that is too poor or too erodable to cultivate becomes productive. Also, nutrients in by-products are utilized and do not become a waste-disposal problem. The need to maintain ruminants to utilize these humanly inedible foodstuffs and convert them into high-quality foods for human consumption has been a characteristic of advanced societies for several thousand years. Further, ruminant livestock production is entirely consistent with proper agronomy practices in which forages are grown on 25% of arable land to minimize water and soil erosion. Questions have been asked, however, about the use of humanly edible foodstuffs (grains, protein sources, etc.) in ruminant diets. Does their use create a net loss of nutrients for human consumption? What level of their use is necessary or desirable? Does the use of some of these improve the nutrient (e.g. protein) quality or product value? Too often the opponents of animal agriculture evaluate the desirability of animal production on gross calorie or protein intake/output values. However, in many cases the feeds used in animal production are not consumable by humans, and in order to properly evaluate animal production, humanly consumable energy and protein intake should be used for efficiency comparisons. Analysis of the costs/returns of humanly edible energy and protein for a variety of dairy and beef cattle production systems shows that food value is increased with ruminant products, and that net returns of humanly edible nutrients are dependent on the production system used. The efficiency with which ruminants convert humanly edible energy and protein into meat or milk is highly dependent on diet, and hence, on regional production practices

  1. Energy Systems Integration Facility Overview

    ScienceCinema

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2016-07-12

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  2. Energy Systems Integration Facility Overview

    SciTech Connect

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-02-28

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  3. A Systems Approach to Develop Sustainable Water Supply Infrastructure and Management

    EPA Science Inventory

    In a visit to Zhejiang University, China, Dr. Y. Jeffrey Yang will discuss in this presentation the system approach for urban water infrastructure sustainability. Through a system analysis, it becomes clear at an urban scale that the energy and water efficiencies of a water supp...

  4. Energy conversion system

    DOEpatents

    Murphy, L.M.

    1985-09-16

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

  5. Energy conversion system

    DOEpatents

    Murphy, Lawrence M.

    1987-01-01

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

  6. Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production.

    PubMed

    Chandel, Anuj K; Gonçalves, Bruna C M; Strap, Janice L; da Silva, Silvio S

    2015-01-01

    Lignocellulosic biomass (LB) is a promising sugar feedstock for biofuels and other high-value chemical commodities. The recalcitrance of LB, however, impedes carbohydrate accessibility and its conversion into commercially significant products. Two important factors for the overall economization of biofuel production is LB pretreatment to liberate fermentable sugars followed by conversion into ethanol. Sustainable biofuel production must overcome issues such as minimizing water and energy usage, reducing chemical usage and process intensification. Amongst available pretreatment methods, microorganism-mediated pretreatments are the safest, green, and sustainable. Native biodelignifying agents such as Phanerochaete chrysosporium, Pycnoporous cinnabarinus, Ceriporiopsis subvermispora and Cyathus stercoreus can remove lignin, making the remaining substrates amenable for saccharification. The development of a robust, integrated bioprocessing (IBP) approach for economic ethanol production would incorporate all essential steps including pretreatment, cellulase production, enzyme hydrolysis and fermentation of the released sugars into ethanol. IBP represents an inexpensive, environmentally friendly, low energy and low capital approach for second-generation ethanol production. This paper reviews the advancements in microbial-assisted pretreatment for the delignification of lignocellulosic substrates, system metabolic engineering for biorefineries and highlights the possibilities of process integration for sustainable and economic ethanol production.

  7. Operationalizing sustainability in urban coastal systems: a system dynamics analysis.

    PubMed

    Mavrommati, Georgia; Bithas, Kostas; Panayiotidis, Panayiotis

    2013-12-15

    We propose a system dynamics approach for Ecologically Sustainable Development (ESD) in urban coastal systems. A systematic analysis based on theoretical considerations, policy analysis and experts' knowledge is followed in order to define the concept of ESD. The principles underlying ESD feed the development of a System Dynamics Model (SDM) that connects the pollutant loads produced by urban systems' socioeconomic activities with the ecological condition of the coastal ecosystem that it is delineated in operational terms through key biological elements defined by the EU Water Framework Directive. The receiving waters of the Athens Metropolitan area, which bears the elements of typical high population density Mediterranean coastal city but which currently has also new dynamics induced by the ongoing financial crisis, are used as an experimental system for testing a system dynamics approach to apply the concept of ESD. Systems' thinking is employed to represent the complex relationships among the components of the system. Interconnections and dependencies that determine the potentials for achieving ESD are revealed. The proposed system dynamics analysis can facilitate decision makers to define paths of development that comply with the principles of ESD.

  8. Land-Use Analysis of Croplands for Sustainable Food and Energy Production in the United States

    NASA Astrophysics Data System (ADS)

    Zumkehr, Andrew Lee

    Energy security and environmental sustainability are major concerns to many in the U.S. Energy from biomass has been proposed as a strategy to help meet future energy needs; however, widespread cultivation for biofuels could have significant impacts on food security and the environment. One solution to minimizing the impacts of biofuel cultivation is to limit production to abandoned croplands where competition from food crops and environmental degradation will be minimized. Here I estimate the spatial distribution of historical U.S. cropland areas from 1850 to 2000 and subsequently calculate abandoned cropland areas for the year 2000. From this data I estimate the potential biomass energy that could be obtained from abandoned croplands. I also estimate the potential for biomass energy to contribute to a renewable energy system consisting of wind and solar power by meeting seasonal energy storage needs that are a result of the intermittent nature of renewable energy sources. Lastly, I use the historical cropland areas result to estimate the ability of U.S. croplands to supply food to local populations at the county level.

  9. Energy-Systems Economic Analysis

    NASA Technical Reports Server (NTRS)

    Doane, J.; Slonski, M. L.; Borden, C. S.

    1982-01-01

    Energy Systems Economic Analysis (ESEA) program is flexible analytical tool for rank ordering of alternative energy systems. Basic ESEA approach derives an estimate of those costs incurred as result of purchasing, installing and operating an energy system. These costs, suitably aggregated into yearly costs over lifetime of system, are divided by expected yearly energy output to determine busbar energy costs. ESEA, developed in 1979, is written in FORTRAN IV for batch execution.

  10. Sustainable agriculture: how to sustain a production system in a changing environment.

    PubMed

    Wagner, W C

    1999-01-01

    During the past 10-15 years, sustainable agriculture has progressed from a focus primarily on a low-input, organic farming approach with a major emphasis on small fruit or vegetable production farms, often described as Low Input Sustainable Agriculture, to the current situation where sustainability is an important part of mainstream animal and plant production units. The US Department of Agriculture programmes cover a broad range of activities, including conserving the natural resource base, enhancing environmental quality, and sustaining productivity of the nation's farms. The use of Geographic Information Systems technology to direct application of fertilisers, pesticides, and herbicides is one example of a rapidly emerging technology that can reduce use of external inputs, protect the agricultural environment, and improve economic returns. This Geographic Information Systems technology also is being used to localise animal pest and disease problems, assist in regulatory or control measures, and identify high risk areas that might need different management systems or should be avoided as sites for animal production. Use of intensive grazing systems also has increased markedly over the past 5-6 years. These systems will allow longer grazing seasons in southern parts of the USA, provide more efficient use of the forages being produced and reduce labour costs in the typical dairy operation. Major animal and plant production agriculture-oriented programmes at the US Department of Agriculture focus on integrated production systems, use of Integrated Pest Management techniques, and development of alternative methods to manage pests and diseases that reduce or avoid the use of drugs and chemicals. The US Department of Agriculture has a programme for sustainable agriculture, the Sustainable Agriculture Research and Education programme, which emphasises alternative approaches for animal and plant production systems.

  11. The energy trilogy: An integrated sustainability model to bridge wastewater treatment plant energy and emissions gaps

    NASA Astrophysics Data System (ADS)

    Al-Talibi, A. Adhim

    An estimated 4% of national energy consumption is used for drinking water and wastewater services. Despite the awareness and optimization initiatives for energy conservation, energy consumption is on the rise owing to population and urbanization expansion and to commercial and industrial business advancement. The principal concern is since energy consumption grows, the higher will be the energy production demand, leading to an increase in CO2 footprints and the contribution to global warming potential. This research is in the area of energy-water nexus, focusing on wastewater treatment plant (WWTP) energy trilogy -- the group of three related entities, which includes processes: (1) consuming energy, (2) producing energy, and (3) the resulting -- CO2 equivalents. Detailed and measurable energy information is not readily obtained for wastewater facilities, specifically during facility preliminary design phases. These limitations call for data-intensive research approach on GHG emissions quantification, plant efficiencies and source reduction techniques. To achieve these goals, this research introduced a model integrating all plant processes and their pertinent energy sources. In a comprehensive and "Energy Source-to-Effluent Discharge" pattern, this model is capable of bridging the gaps of WWTP energy, facilitating plant designers' decision-making for meeting energy assessment, sustainability and the environmental regulatory compliance. Protocols for estimating common emissions sources are available such as for fuels, whereas, site-specific emissions for other sources have to be developed and are captured in this research. The dissertation objectives were met through an extensive study of the relevant literature, models and tools, originating comprehensive lists of processes and energy sources for WWTPs, locating estimation formulas for each source, identifying site specific emissions factors, and linking the sources in a mathematical model for site specific CO2 e

  12. Center for Coal-Derived Low Energy Materials for Sustainable Construction

    SciTech Connect

    Jewell, Robert; Robl, Tom; Rathbone, Robert

    2012-06-30

    The overarching goal of this project was to create a sustained center to support the continued development of new products and industries that manufacture construction materials from coal combustion by-products or CCB’s (e.g., cements, grouts, wallboard, masonry block, fillers, roofing materials, etc). Specific objectives includes the development of a research kiln and associated system and the formulation and production of high performance low-energy, low-CO2 emitting calcium sulfoaluminate (CAS) cement that utilize coal combustion byproducts as raw materials.

  13. Modeling and Advanced Control for Sustainable Process Systems

    EPA Science Inventory

    This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-insp...

  14. The Triple Value Model: A Systems Approach to Sustainable Solutions

    EPA Science Inventory

    The unintended environmental impacts of economic development threaten the continued availability of ecosystem services that are critical to human well being. An integrated systems approach is needed to characterize sustainability problems and evaluate potential solutions. The T...

  15. 75 FR 34657 - Energy Efficiency and Sustainable Design Standards for New Federal Buildings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... Parts 433 and 435 RIN 1904-AC13 Energy Efficiency and Sustainable Design Standards for New Federal Buildings AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Proposed... siting, design, and construction of new Federal buildings. This notice extends the comment period...

  16. Toward sustainable energy development in the Indian power sector: A critique of fifty years of power development in India and an analysis of sustainable energy alternatives

    NASA Astrophysics Data System (ADS)

    Govindarajalu, Chandrasekhar

    At present, the Indian electric power sector (EPS) finds itself in a "triple bind," plagued by a severe resource crunch, adverse environmental impacts and unequal social access to energy services, and a poor record of technical performance in generation and distribution of electricity. The problems of the EPS are seen in this dissertation as manifestations of a larger crisis of unsustainable energy development, rooted in the political economy of power development in India. A theoretical framework is articulated based on a political economy approach constructed for this dissertation. The political economy framework is comprised of three elements: a materialization thesis that describes the core social relations in support of a specific political and economic structure; an institutionalization thesis that describes how these material relations are reproduced; and an ideology thesis which argues that a pervasive ideology exists making intelligible the existence of a particular form of political economy. From the vantage-point of this framework, and through a detailed examination of the political history of the power sector in India, the crisis in the Indian power sector is linked to the contradictions of what is termed as the "conventional model of energy development" (CMED) embraced by Indian planners at the time of independence. It is argued that the crisis in the EPS is caused by the intensive bureaucratization and technicization of the system, all but removing it from social and environmental evaluation. Current policy prescriptions for the Indian EPS, both Western as well as domestic, call for further strengthening the technocratic construct of the EPS. Privatization and restructuring experiments, underway in India, rather than breaking away from the existing approach, actually deepen the institutional hold of the CMED. Sustainable energy development (SED) is examined as an alternative to the CMED. The meaning and relevance of this concept in the context of the

  17. Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production

    NASA Astrophysics Data System (ADS)

    An, L.; Zhao, T. S.

    2017-02-01

    Alkaline direct ethanol fuel cells (DEFC), which convert the chemical energy stored in ethanol directly into electricity, are one of the most promising energy-conversion devices for portable, mobile and stationary power applications, primarily because this type of fuel cell runs on a carbon-neutral, sustainable fuel and the electrocatalytic and membrane materials that constitute the cell are relatively inexpensive. As a result, the alkaline DEFC technology has undergone a rapid progress over the last decade. This article provides a comprehensive review of transport phenomena of various species in this fuel cell system. The past investigations into how the design and structural parameters of membrane electrode assemblies and the operating parameters affect the fuel cell performance are discussed. In addition, future perspectives and challenges with regard to transport phenomena in this fuel cell system are also highlighted.

  18. Evaluating the prospects for sustainable energy development in a sample of Chinese villages.

    PubMed

    Mortimer, Nigel D; Grant, John F

    2008-04-01

    This paper describes the methods used to evaluate the potential for achieving sustainable energy development in six Chinese villages included in the Sustainable Users' Concepts for China Engaging Scientific Scenarios (SUCCESS) Project by examining energy efficiency potential and local renewable energy prospects. The approaches needed to obtain and analyse information on possible energy efficiency measures and renewable energy resources are summarised. Results are presented in terms of cumulative net savings in primary energy consumption, as an indicator of energy resource depletion, and associated carbon dioxide emissions, as an indicator of global climate change. Options for sustainable energy development are ranked in order of likely implementation and practical actions which could be considered in each village are identified.

  19. Carbonless Transportation and Energy Storage in Future Energy Systems

    SciTech Connect

    Lamont, A.D.; Berry, G.D.

    2001-01-17

    By 2050 world population is projected to stabilize near 10 billion. Global economic development will outpace this growth, achieving present European per capita living standards by quintupling the size of the global economy--and increasing energy use, especially electricity, substantially. Even with aggressive efficiency improvements, global electricity use will at least triple to 30 trillion kWh/yr in 2050. Direct use of fuels, with greater potential for efficiency improvement, may be held to 80 trillion kWh (289 EJ) annually, 50% above present levels (IPCC, 1996). Sustaining energy use at these or higher rates, while simultaneously stabilizing atmospheric greenhouse gas levels, will require massive deployment of carbon-conscious energy systems for electricity generation and transportation by the mid 21st Century. These systems will either involve a shift to non-fossil primary energy sources (such as solar, wind, biomass, nuclear, and hydroelectric) or continue to rely on fossil primary energy sources and sequester carbon emissions (Halmann, 1999). Both approaches share the need to convert, transmit, store and deliver energy to end-users through carbonless energy carriers.

  20. Subtask 5.3 - Water and Energy Sustainability and Technology

    SciTech Connect

    Bruce Folkedahl; Christopher Martin; David Dunham

    2010-09-30

    The overall goal of this Energy & Environmental Research Center project was to evaluate water capture technologies in a carbon capture and sequestration system and perform a complete systems analysis of the process to determine potential water minimization opportunities within the entire system. To achieve that goal, a pilot-scale liquid desiccant dehumidification system (LDDS) was fabricated and tested in conjunction with a coal-fired combustion test furnace outfitted with CO{sub 2} mitigation technologies, including the options of oxy-fired operation and postcombustion CO{sub 2} capture using an amine scrubber. The process gas stream for these tests was a coal-derived flue gas that had undergone conventional pollutant control (particulates, SO{sub 2}) and CO{sub 2} capture with an amine-based scrubber. The water balance data from the pilot-scale tests show that the packed-bed absorber design was very effective at capturing moisture down to levels that approach equilibrium conditions.

  1. Human behavior research and the design of sustainable transport systems

    NASA Astrophysics Data System (ADS)

    Schauer, James J.

    2011-09-01

    Transport currently represents approximately 19% of the global energy demand and accounts for about 23% of the global carbon dioxide emissions (IEA 2009). As the demand for mobility is expected to continue to increase in the coming decades, the stabilization of atmospheric carbon dioxide levels will require the evolution of transport, along with power generation, building design and manufacturing. The continued development of these sectors will need to include changes in energy sources, energy delivery, materials, infrastructure and human behavior. Pathways to reducing carbon from the transport sector have unique challenges and opportunities that are inherent to the human choices and behavioral patterns that mold the transportation systems and the associated energy needs. Technology, government investment, and regulatory policies have a significant impact on the formulation of transportation infrastructure; however, the role of human behavior and public acceptance on the efficiency and effectiveness of transport systems should not be underestimated. Although developed, rapidly developing, and underdeveloped nations face different challenges in the establishment of transport infrastructure that can meet transport needs while achieving sustainable carbon dioxide emissions, the constraints that establish the domain of possibilities are closely related for all nations. These constraints include capital investment, fuel supplies, power systems, and human behavior. Throughout the world, there are considerable efforts directed at advancing and optimizing the financing of sustainable infrastructures, the production of low carbon fuels, and the production of advanced power systems, but the foundational work on methods to understand human preferences and behavior within the context of transport and the valuation of reductions in carbon dioxide emissions is greatly lagging behind. These methods and the associated understanding of human behavior and the willingness to pay for

  2. Assessing the sustainability of egg production systems in The Netherlands.

    PubMed

    van Asselt, E D; van Bussel, L G J; van Horne, P; van der Voet, H; van der Heijden, G W A M; van der Fels-Klerx, H J

    2015-08-01

    Housing systems for laying hens have changed over the years due to increased public concern regarding animal welfare. In terms of sustainability, animal welfare is just one aspect that needs to be considered. Social aspects as well as environmental and economic factors need to be included as well. In this study, we assessed the sustainability of enriched cage, barn, free-range, and organic egg production systems following a predefined protocol. Indicators were selected within the social, environmental, and economic dimensions, after which parameter values and sustainability limits were set for the core indicators in order to quantify sustainability. Uncertainty in the parameter values as well as assigned weights and compensabilities of the indicators influenced the outcome of the sustainability assessment. Using equal weights for the indicators showed that, for the Dutch situation, enriched cage egg production was most sustainable, having the highest score on the environmental dimension, whereas free-range egg production gave the highest score in the social dimension (covering food safety, animal welfare, and human welfare). In the economic dimension both enriched cage egg and organic egg production had the highest sustainability score. When weights were attributed according to stakeholder outputs, individual differences were seen, but the overall scores were comparable to the sustainability scores based on equal weights. The provided method enabled a quantification of sustainability using input from stakeholders to include societal preferences in the overall assessment. Allowing for different weights and compensabilities helps policymakers in communicating with stakeholders involved and provides a weighted decision regarding future housing systems for laying hens.

  3. Environmental impacts and sustainability of egg production systems.

    PubMed

    Xin, H; Gates, R S; Green, A R; Mitloehner, F M; Moore, P A; Wathes, C M

    2011-01-01

    As part of a systemic assessment toward social sustainability of egg production, we have reviewed current knowledge about the environmental impacts of egg production systems and identified topics requiring further research. Currently, we know that 1) high-rise cage houses generally have poorer air quality and emit more ammonia than manure belt (MB) cage houses; 2) manure removal frequency in MB houses greatly affects ammonia emissions; 3) emissions from manure storage are largely affected by storage conditions, including ventilation rate, manure moisture content, air temperature, and stacking profile; 4) more baseline data on air emissions from high-rise and MB houses are being collected in the United States to complement earlier measurements; 5) noncage houses generally have poorer air quality (ammonia and dust levels) than cage houses; 6) noncage houses tend to be colder during cold weather due to a lower stocking density than caged houses, leading to greater feed and fuel energy use; 7) hens in noncage houses are less efficient in resource (feed, energy, and land) utilization, leading to a greater carbon footprint; 8) excessive application of hen manure to cropland can lead to nutrient runoff to water bodies; 9) hen manure on open (free) range may be subject to runoff during rainfall, although quantitative data are lacking; 10) mitigation technologies exist to reduce generation and emission of noxious gases and dust; however, work is needed to evaluate their economic feasibility and optimize design; and 11) dietary modification shows promise for mitigating emissions. Further research is needed on 1) indoor air quality, barn emissions, thermal conditions, and energy use in alternative hen housing systems (1-story floor, aviary, and enriched cage systems), along with conventional housing systems under different production conditions; 2) environmental footprint for different US egg production systems through life cycle assessment; 3) practical means to mitigate air

  4. Kinetic energy transducing system

    SciTech Connect

    Danihel, M.

    1986-07-08

    A device is described for converting wave energy to mechanical motion comprising: a frame, at least one wave energy transducer each of which has a float to ride upon the undulating surface of a body of water, a rocker shaft rotatably mounted in the frame and connected to the float by a rocker arm to turn in response to movement of the float upon the undulating water surface, a pair of unidirectional clutch mechanisms coupled to the rocker shaft, a drive shaft rotatably mounted on the frame and connected to the clutch mechanisms to turn in a single direction of rotation responsive to alternative engagement of the clutch mechanisms therewith and turning movement of the rocker shaft in both directions of rotation, and a hydrofoil system for each float including a vertical shaft extending downwardly from the bottom of each float, a transverse rod which is rotatably coupled to the vertical shaft, a pair of hydrofoil wings secured to the transverse rod on opposite sides of the vertical shaft, and means for centering the hydrofoil wings acting between the vertical shaft and the transverse rod to urge the hydrofoil wings toward horizontal orientation.

  5. Sustainable deforestation evaluation model and system dynamics analysis.

    PubMed

    Feng, Huirong; Lim, C W; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi

    2014-01-01

    The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony.

  6. Sustainable Deforestation Evaluation Model and System Dynamics Analysis

    PubMed Central

    Feng, Huirong; Lim, C. W.; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi

    2014-01-01

    The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony. PMID:25254225

  7. Energy recovery system

    DOEpatents

    Moore, Albert S.; Verhoff, Francis H.

    1980-01-01

    The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

  8. Protective sustainability of ecosystems using Department of Energy buffer lands as a case study.

    PubMed

    Burger, Joanna

    2007-11-01

    State and federal agencies are faced with protecting human health and the environment for a range of hazardous sites, including nuclear waste storage facilities. At some sites, nuclear materials must be stored for the foreseeable future because no technology currently exists for safe treatment and disposal. Using Department of Energy (DOE) lands as a case study, this article examines the meaning of protective sustainability for ecosystems and proposes a tiered approach to such protection with stakeholder participation during all phases. The approach includes: (1) governmental, institutional and public support to maintain the system, (2) agreement on the ecosystem to sustain, (3) agreement on the goods and services that the ecosystem should provide, (4) methods of monitoring the status of the ecosystem (usually involving bioindicators), (5) methods of evaluating the trends and changes within that system, and (6) methods of managing or restoring components of the ecosystem (response and corrective actions). The latter three steps are those normally considered for management and maintenance of healthy ecosystems, and figure prominently in natural resource damage assessment (NRDA). However, the former three are necessary components for sustainability. Regardless of technologies or technical expertise, the ecosystem will not be protected sustainably unless there is governmental, institutional, and public support for its protection, as well as consensus about the features of the ecosystem to be protected. While the selection of a preferred ecosystem at DOE sites will likely occur as part of remediation/restoration/NRDA, decisions about ecosystem services and human use on buffer lands can be revisited periodically. Monitoring is an integral part of evaluating continued health and safety of the ecosystem and its component parts, and such data should then be used to evaluate status and trends. These evaluations, however, will be most useful when they include hypothesis

  9. Moving Sustainability Forward: Energy Efficient Renovations and Solar Solutions

    ERIC Educational Resources Information Center

    Taylor, Bill

    2011-01-01

    For any goal to be a "smart goal" it needs to be specific, measurable, attainable, relevant and time sensitive. This is equally true for sustainability goals for educational facilities. Evidence abounds that "green strategies" greatly impact both the academic and operational performance of a school. Agencies from the U.S. Environmental Protection…

  10. Using Information Processing Techniques to Forecast, Schedule, and Deliver Sustainable Energy to Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Pulusani, Praneeth R.

    As the number of electric vehicles on the road increases, current power grid infrastructure will not be able to handle the additional load. Some approaches in the area of Smart Grid research attempt to mitigate this, but those approaches alone will not be sufficient. Those approaches and traditional solution of increased power production can result in an insufficient and imbalanced power grid. It can lead to transformer blowouts, blackouts and blown fuses, etc. The proposed solution will supplement the ``Smart Grid'' to create a more sustainable power grid. To solve or mitigate the magnitude of the problem, measures can be taken that depend on weather forecast models. For instance, wind and solar forecasts can be used to create first order Markov chain models that will help predict the availability of additional power at certain times. These models will be used in conjunction with the information processing layer and bidirectional signal processing components of electric vehicle charging systems, to schedule the amount of energy transferred per time interval at various times. The research was divided into three distinct components: (1) Renewable Energy Supply Forecast Model, (2) Energy Demand Forecast from PEVs, and (3) Renewable Energy Resource Estimation. For the first component, power data from a local wind turbine, and weather forecast data from NOAA were used to develop a wind energy forecast model, using a first order Markov chain model as the foundation. In the second component, additional macro energy demand from PEVs in the Greater Rochester Area was forecasted by simulating concurrent driving routes. In the third component, historical data from renewable energy sources was analyzed to estimate the renewable resources needed to offset the energy demand from PEVs. The results from these models and components can be used in the smart grid applications for scheduling and delivering energy. Several solutions are discussed to mitigate the problem of overloading

  11. Defense Systems Modernization and Sustainment Initiative

    DTIC Science & Technology

    2014-03-31

    alerts as: actual system faults , sensor faults , EPLS system faults , or other anomalies in order to assess the overall system effectiveness and look for...develop better diagnostics capabilities to enhance the EPLS system and relate a set of symptoms to a diagnosis of a root cause for a failure. Approach...maximize its performance in determining actual alerts on the vehicle or sensor/ system faults . Several recommendations can be made as a result of this

  12. SMES for wind energy systems

    NASA Astrophysics Data System (ADS)

    Paul Antony, Anish

    simulation results the utility of SMES in voltage sag mitigation for momentary interruptions. The 1MJ SMES mitigates voltage sags for a useful duration ~50 seconds. In conclusion (Chapter 7), we believe that in this dissertation, we have documented the design of SMES for both momentary and sustained interruptions in wind turbines. We have put forth some novel and relevant hypotheses, developed and performed suitable simulation studies to validate these hypotheses. By doing so, we have been able to expand our knowledge in our quest to grasp the underlying mechanisms of storage systems in wind energy integration. Although the resulting analysis has allowed us to gain valuable insight, we feel that it is only the tip of the iceberg, and that many yet unknown discoveries are to be made. We remain hopeful that the future of SMES for wind energy will only look brighter from here onward. (Abstract shortened by UMI.).

  13. Strategic Plan for Sustainable Energy Management and Environmental Stewardship for Los Angeles Unified School District

    SciTech Connect

    Walker, A.; Beattie, D.; Thomas, K.; Davis, K.; Sim, M.; Jhaveri, A.

    2007-11-01

    This Strategic Plan for Sustainable Energy Management and Environmental Stewardship states goals, measures progress toward goals and how actions are monitored to achieve continuous improvement for the Los Angeles Unified School District.

  14. A sustainability analysis of geothermal energy development on the island of Dominica

    NASA Astrophysics Data System (ADS)

    Edwards, Kiyana Marie-Jose

    Dominica is heavily dependent on fossil fuels to meet its electricity generation needs. Dominica's volcanic origin and current volcanic activity allow the island to be an ideal place for the production of geothermal energy. Once geothermal exploration and development has begun in Dominica, it is uncertain whether the efforts will produce an environmentally, economically and socially feasible exploitation of the resource. Using content analysis and cost benefit analysis, this study examined the impacts of geothermal energy development based on the triple bottom line of sustainability for the Wotten Waven community, as well as the island as a whole. The results indicate that this project will have an overall positive impact on the triple bottom line of sustainability for Dominica. Therefore, geothermal energy may provide substantial net benefits to economic and sustainable development of the island. Assessing the sustainability of geothermal development is important as Dominica begins to produce geothermal energy.

  15. Strengths and weaknesses of common sustainability indices for multidimensional systems.

    PubMed

    Mayer, Audrey L

    2008-02-01

    Sustainability is rapidly moving from an abstract concept to a measurable state of dynamic human-ecological systems. The large number of economic, social, and environmental indicators currently available provides an unwieldy view of system sustainability. To aid policy decisions, these indicators are therefore either presented in the context of a conceptual framework, or quantitatively aggregated into indices. Due to the quantitative nature of sustainability indices, their results may be given more weight by scientists and policy-makers. However, policy decisions can be ineffective or even counterproductive if they do not consider factors which influence index behavior: the scale of the available data and choice of system boundaries; the inclusion, transformation, and weighting of indicator data; and the aggregation method used. As previous reviews have demonstrated, sustainability indices do not rank countries consistently, even when using some of the same indicator data. Several improvements would increase the utility of sustainability indices for policy decisions, particularly the identification of biases introduced by the index methodology and data inclusion. The discrepancy of current sustainability indices due to theoretical or methodological differences supports the use of several complementary indices.

  16. Management Strategies for Sustainability Education, Planning, Design, Energy Conservation in California Higher Education

    ERIC Educational Resources Information Center

    Petratos, Panagiotis; Damaskou, Evangelia

    2015-01-01

    Purpose: The purpose of this paper is to describe and analyze the effects of campus sustainability planning to annual campus energy inflows and outflows in California higher education. The paper also offers a preliminary statistical analysis for the evaluation of impact factors on energy outflows and a link between energy outflows and building…

  17. Practicing Sustainability in an Urban University: A Case Study of a Behavior Based Energy Conservation Project

    ERIC Educational Resources Information Center

    Chan, Stuart; Dolderman, Dan; Savan, Beth; Wakefield, Sarah

    2012-01-01

    This case study of the University of Toronto Sustainability Office's energy conservation project, Rewire, explores the implementation of a social marketing campaign that encourages energy efficient behavior. Energy conservation activities have reached approximately 3,000 students and staff members annually, and have saved electricity, thermal…

  18. The Potential for Launching a Postgraduate Course on Sustainable Energy in Saudi Arabia

    ERIC Educational Resources Information Center

    Taleb, Hanan M.

    2014-01-01

    The pressures of a growing global population, compounded by environmental degradation, escalating energy use and the depletion of natural energy resources, have led to sustainable energy (SE) holding a prominent position on the international agenda. In spite of the widespread recognition of the important role of SE education in securing a…

  19. Federal Energy Information Systems.

    ERIC Educational Resources Information Center

    Coyne, Joseph G.; Moneyhun, Dora H.

    1979-01-01

    Describes the Energy Information Administration (EIA) and the Technical Information Center (TIC), and lists databases accessible online to the Department of Energy and its contractors through DOE/RECON. (RAA)

  20. Less is More: DoD’s Strategy for Facility Energy Security and Environmental Sustainability

    DTIC Science & Technology

    2012-05-22

    Less is More: DoD’s Strategy for Facility Energy Security and Environmental Sustainability Dorothy Robyn Deputy Under Secretary of Defense...Installations & Environment ) E2S2 Symposium May 22, 2012 1 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden...AND SUBTITLE Less is More: DoD’s Strategy for Facility Energy Security and Environmental Sustainability 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  1. Approaches for Planning and Implementing Sustainable Energy Growth in a Complex World: Preprint

    SciTech Connect

    Snyder, N.; Schwab, A.

    2012-06-01

    The subject of sustainable energy development has been widely discussed and debated in recent years. However, despite widespread interest, progress toward this goal has been limited. This paper will build on current thinking related to sustainable development, energy forecasting, and complexity theory and show how past roadmapping methodologies fall short. While proposing ways of thinking about our responses to global changes, we consider how we can create and discover the pathways through those unpredictable changes toward high global renewables penetration.

  2. Challenges and opportunities for implementing sustainable energy strategies in coastal communities of Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Etcheverry, Jose R.

    This dissertation explores the potential of renewable energy and efficiency strategies to solve the energy challenges faced by the people living in the biosphere reserve of El Vizcaino, which is located in the North Pacific region of the Mexican state of Baja California Sur. This research setting provides a practical analytical milieu to understand better the multiple problems faced by practitioners and agencies trying to implement sustainable energy solutions in Mexico. The thesis starts with a literature review (chapter two) that examines accumulated international experience regarding the development of renewable energy projects as a prelude to identifying the most salient implementation barriers impeding this type of initiatives. Two particularly salient findings from the literature review include the importance of considering gender issues in energy analysis and the value of using participatory research methods. These findings informed fieldwork design and the analytical framework of the dissertation. Chapter three surveys electricity generation as well as residential and commercial electricity use in nine coastal communities located in El Vizcaino. Chapter three summarizes the fieldwork methodology used, which relies on a mix of qualitative and quantitative research methods that aim at enabling a gender-disaggregated analysis to describe more accurately local energy uses, needs, and barriers. Chapter four describes the current plans of the state government, which are focused in expanding one of the state's diesel-powered electricity grids to El Vizcaino. The Chapter also examines the potential for replacing diesel generators with a combination of renewable energy systems and efficiency measures in the coastal communities sampled. Chapter five analyzes strategies to enable the implementation of sustainable energy approaches in El Vizcaino. Chapter five highlights several international examples that could be useful to inform organizational changes at the federal

  3. Energy Smart Schools: Creating a Sustainable Learning Environment in Ohio.

    ERIC Educational Resources Information Center

    Ohio Energy Project, Lewis Center.

    In 1999, the Ohio Energy Project (OEP) was awarded a grant through Rebuild America, under the U.S. Department of Energy, to develop an EnergySmart Schools Program for Ohio. Together with its partners, this program serves to empower students to improve the conditions of their school buildings through education, thus increasing scientific literacy…

  4. Solar Energy: Solar System Economics.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  5. Opportunities for GEOGLAM to contribute to Food Systems Sustainability

    NASA Astrophysics Data System (ADS)

    LeZaks, D.; Jahn, M.

    2013-12-01

    Since the GEO Global Agricultural Monitoring (GEO-GLAM) community of practice was formed, there has been much interest in how this community can be leveraged to address a series of challenges that has received recognition from a variety of stakeholder groups across acacemia, government, the private sector and multilateral international organizations. This talk will review the collaborative network that has formed around the on-going and planned activities of GEOGLAM, and how future research and development activities within and around GEOGLAM can contribute to the innovation ecosystem around agricultural monitoring and how monitoring activities can contribute to informing decision processes from stakeholders ranging from farmers to policy-makers and other key stakeholders. These collaborative activities revolve around sharing data, information, knowledge, analytics, improved reflections of risks, and opportunities related to humanity's sustainable provisioning at the land/water/energy nexus. The goal of extending GEOGLAMs collaborative activities is to mobilize aligned assets and commitments to set up more ordered approaches to describing and managing the dynamics of food systems, viewed more holistically as sets of nested geospatially and temporally explicit processes. A special focus will be given to how information assets originating from within GEOGLAM can be used to support a coherent visualization of the world's food systems along with improving representation of the resource bases upon which our survival depends

  6. Energy System Modeling with REopt

    SciTech Connect

    Simpkins, Travis; Anderson, Kate; Cutler, Dylan; Olis, Dan; Elgqvist, Emma; DiOrio, Nick; Walker, Andy

    2016-07-15

    This poster details how REopt - NREL's software modeling platform for energy systems integration and optimization - can help to model energy systems. Some benefits of modeling with REopt include optimizing behind the meter storage for cost and resiliency, optimizing lab testing, optimizing dispatch of utility scale storage, and quantifying renewable energy impact on outage survivability.

  7. Environmental impacts and sustainability of egg production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of a systemic assessment toward social sustainability of egg production, we have reviewed current knowledge about the environmental impacts of egg production systems and identified topics requiring further research. Currently, we know that 1) high-rise cage houses generally have poorer air q...

  8. Sustaining the Earth's watersheds, agricultural research data system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS water resources program has developed a web-based data system, STEWARDS: Sustaining the Earth’s Watersheds, Agricultural Research Data System to support research that encompasses a broad range of topics such as water quality, hydrology, conservation, land use, and soils. The data syst...

  9. Sustainability, Complexity and Learning: Insights from Complex Systems Approaches

    ERIC Educational Resources Information Center

    Espinosa, A.; Porter, T.

    2011-01-01

    Purpose: The purpose of this research is to explore core contributions from two different approaches to complexity management in organisations aiming to improve their sustainability,: the Viable Systems Model (VSM), and the Complex Adaptive Systems (CAS). It is proposed to perform this by summarising the main insights each approach offers to…

  10. The NERSC Sustained System Performance (SSP) Metric

    SciTech Connect

    Kramer, William; Shalf, John; Strohmaier, Erich

    2005-09-18

    Most plans and reports recently discuss only one of four distinct purposes benchmarks are used. The obvious purpose is selection of a system from among its competitors, something that is the main focus of this paper. This purpose is well discussed in many workshops and reports. The second use of benchmarks is validating the selected system actually works the way expected once it arrives. This purpose may be more important than the first reason. The second purpose is particularly key when systems are specified and selected based on performance projections rather than actual runs on the actual hardware. The third use of benchmarks, seldom mentioned, is to assure the system performs as expected throughout its lifetime1, (e.g. after upgrades, changes, and regular use.) Finally, benchmarks are used to guide system designs, something covered in detail in a companion paper from Berkeley's Institute for Performance Studies (BIPS).

  11. Indicators to support environmental sustainability of bioenergy systems

    SciTech Connect

    McBride, Allen; Dale, Virginia H; Baskaran, Latha Malar; Downing, Mark; Eaton, Laurence M; Efroymson, Rebecca Ann; Garten Jr, Charles T; Kline, Keith L; Jager, Yetta; Mulholland, Patrick J; Parish, Esther S; Schweizer, Peter E; Storey, John Morse

    2011-01-01

    Indicators are needed to assess environmental sustainability of bioenergy systems. Effective indicators will help in the quantification of benefits and costs of bioenergy options and resource uses. We identify 19 measurable indicators for soil quality, water quality and quantity, greenhouse gases, biodiversity, air quality, and productivity, building on existing knowledge and on national and international programs that are seeking ways to assess sustainable bioenergy. Together, this suite of indicators is hypothesized to reflect major environmental effects of diverse feedstocks, management practices, and post-production processes. The importance of each indicator is identified. Future research relating to this indicator suite is discussed, including field testing, target establishment, and application to particular bioenergy systems. Coupled with such efforts, we envision that this indicator suite can serve as a basis for the practical evaluation of environmental sustainability in a variety of bioenergy systems.

  12. Energy - A systems problem

    NASA Technical Reports Server (NTRS)

    Bourke, Roger D.

    1982-01-01

    Energy management in its most comprehensive sense encompasses economic, technical, environmental, and political problems. The present evaluation of prospects notes that opportunities for energy conservation are widespread, in such fields as building air conditioning, transportation, electrical appliances, and industrial processes. Further conservation is expected to be achieved through a combination of technology development and economics; the latter factor must not be unduly influenced by political measures that shield consumers from the true cost of energy.

  13. Geothermal energy conversion system

    SciTech Connect

    Goldstein, D.

    1991-04-02

    This patent describes a combination with a source of heat energy, means for converting the heat energy into electrical energy. It comprises a pair of gears and frame means mounting the gears for rotation in operatively orientated relation to the source, one of the gears comprising a tubular element rotatably mounted by the frame means for exposure to the source of heat energy within a thermal heating region, the tubular element including deformable means in meshing engagement with the other of the gears within a thermally colder region for inducing rotation of the gears.

  14. A low frequency rotational energy harvesting system

    NASA Astrophysics Data System (ADS)

    Febbo, M.; Machado, S. P.; Ramirez, J. M.; Gatti, C. D.

    2016-11-01

    This paper presents a rotary power scavenging unit comprised of two systems of flexible beams connected by two masses which are joined by means of a spring, considering a PZT (QP16N, Midé Corporation) piezoelectric sheet mounted on one of the beams. The energy harvesting (EH) system is mounted rigidly on a rotating hub. The gravitational force on the masses causes sustained oscillatory motion in the flexible beams as long as there is rotary motion. The intention is to use the EH system in the wireless autonomous monitoring of wind turbines under different wind conditions. Specifically, the development is oriented to monitor the dynamic state of the blades of a wind generator of 30 KW which rotates between 50 and 150 rpm. The paper shows a complete set of experimental results on three devices, modifying the amount of beams in the frame supporting the system. The results show an acceptable sustained voltage generation for the expected range, in the three proposed cases. Therefore, it is possible to use this system for generating energy in a low-frequency rotating environment. As an alternative, the system can be easily adapted to include an array of piezoelectric sheets to each of the beams, to provide more power generation.

  15. Aging Systems Sustainment and Enabling Technologies (ASSET)

    DTIC Science & Technology

    2012-08-14

    requirements that include an active CAGE Code, an active JCP (DD 2345) and baseline audit of a Quality Management System (QMS). Site visits were conducted...CAGE Code, (2) apply/confirm JCP, (3) validate capabilities, (4) perform baseline audit o\\’ current QMS, (5) initiate/provide ISO 9001 -2008 template...6) perform ISO based overview . (7) perform follow up audits when QMS system is in place. Several firms were confirmed to be, ISO 9001 -2008

  16. Evaluating the sustainability of a regional system using Fisher information in the San Luis Basin, Colorado.

    PubMed

    Eason, Tarsha; Cabezas, Heriberto

    2012-02-01

    This paper describes the theory, data, and methodology necessary for using Fisher information to assess the sustainability of the San Luis Basin (SLB) regional system over time. Fisher information was originally developed as a measure of the information content in data and is an important method in information theory. Our adaptation of Fisher information provides a means of monitoring the variables of a system to characterize dynamic order, and, therefore, its regimes and regime shifts. This work is part of the SLB Sustainability Metrics Project, which aimed to evaluate movement over time towards or away from regional sustainability. One of the key goals of this project was to use readily available data to assess the sustainability of the system including its environmental, social and economic aspects. For this study, Fisher information was calculated for fifty-three variables which characterize the consumption of food and energy, agricultural production, environmental characteristics, demographic properties and changes in land use for the SLB system from 1980 to 2005. Our analysis revealed that while the system displayed small changes in dynamic order over time with a slight decreasing trend near the end of the period, there is no indication of a regime shift. Therefore, the SLB system is stable with very slight movement away from sustainability in more recent years.

  17. A Model for Sustainable Building Energy Efficiency Retrofit (BEER) Using Energy Performance Contracting (EPC) Mechanism for Hotel Buildings in China

    NASA Astrophysics Data System (ADS)

    Xu, Pengpeng

    Hotel building is one of the high-energy-consuming building types, and retrofitting hotel buildings is an untapped solution to help cut carbon emissions contributing towards sustainable development. Energy Performance Contracting (EPC) has been promulgated as a market mechanism for the delivery of energy efficiency projects. EPC mechanism has been introduced into China relatively recently, and it has not been implemented successfully in building energy efficiency retrofit projects. The aim of this research is to develop a model for achieving the sustainability of Building Energy Efficiency Retrofit (BEER) in hotel buildings under the Energy Performance Contracting (EPC) mechanism. The objectives include: • To identify a set of Key Performance Indicators (KPIs) for measuring the sustainability of BEER in hotel buildings; • To identify Critical Success Factors (CSFs) under EPC mechanism that have a strong correlation with sustainable BEER project; • To develop a model explaining the relationships between the CSFs and the sustainability performance of BEER in hotel building. Literature reviews revealed the essence of sustainable BEER and EPC, which help to develop a conceptual framework for analyzing sustainable BEER under EPC mechanism in hotel buildings. 11 potential KPIs for sustainable BEER and 28 success factors of EPC were selected based on the developed framework. A questionnaire survey was conducted to ascertain the importance of selected performance indicators and success factors. Fuzzy set theory was adopted in identifying the KPIs. Six KPIs were identified from the 11 selected performance indicators. Through a questionnaire survey, out of the 28 success factors, 21 Critical Success Factors (CSFs) were also indentified. Using the factor analysis technique, the 21 identified CSFs in this study were grouped into six clusters to help explain project success of sustainable BEER. Finally, AHP/ANP approach was used in this research to develop a model to

  18. Renewable Energy for Rural Sustainability in Developing Countries

    ERIC Educational Resources Information Center

    Alazraque-Cherni, Judith

    2008-01-01

    This article establishes the benefits of applying renewable energy and analyzes the main difficulties that have stood in the way of more widely successful renewable energy for rural areas in the developing world and discusses why outcomes from these technologies fall short. Although there is substantial recognition of technological, economic,…

  19. Data Acquisition System(DAS) Sustaining Engineering

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This paper presents general information describing the Data Acquisition System contract, a summary of objectives, tasks performed and completed. The hardware deliverables which are comprised of: 1) Two ground DAS units; 2) Two flight DAS units; 3) Logistic spares; and 4) Shipping containers are described. Also included are the data requirements and scope of the contract.

  20. Globalisation of agrifood systems and sustainable nutrition.

    PubMed

    Qaim, Matin

    2017-02-01

    The globalisation of agrifood systems is a mega-trend with potentially profound nutritional implications. This paper describes various facets of this globalisation process and reviews studies on nutritional effects with a particular focus on developing countries. Results show that global trade and technological change in agriculture have substantially improved food security in recent decades, although intensified production systems have also contributed to environmental problems in some regions. New agricultural technologies and policies need to place more emphasis on promoting dietary diversity and reducing environmental externalities. Globalising agrifood systems also involve changing supply-chain structures, with a rapid rise of modern retailing, new food safety and food quality standards, and higher levels of vertical integration. Studies show that emerging high-value supply chains can contribute to income growth in the small farm sector and improved access to food for rural and urban populations. However, there is also evidence that the retail revolution in developing countries, with its growing role of supermarkets and processed foods, can contribute to overweight and obesity among consumers. The multi-faceted linkages between changing agrifood systems and nutrition are a new field of interdisciplinary research, combining agricultural, nutritional, economics and social sciences perspectives. The number of studies on specific aspects is still limited, so the evidence is not yet conclusive. A review at this early stage can help to better understand important relationships and encourage follow-up work.

  1. Leadership & Sustainability: System Thinkers in Action

    ERIC Educational Resources Information Center

    Fullan, Michael

    2004-01-01

    As agencies have pushed for greater performance and public accountability over the past two decades, some incremental improvements have been seen. All too often experience reveals that these improvements are temporary. This book provides a comprehensive examination of what leaders at all levels of the educational system can do to pave the way for…

  2. Converting Light Energy to Chemical Energy: A New Catalytic Approach for Sustainable Environmental Remediation

    PubMed Central

    2016-01-01

    We report a synthetic approach to form cubic Cu2O/Pd composite structures and demonstrate their use as photocatalytic materials for tandem catalysis. Pd nanoparticles were deposited onto Cu2O cubes, and their tandem catalytic reactivity was studied via the reductive dehalogenation of polychlorinated biphenyls. The Pd content of the materials was gradually increased to examine its influence on particle morphology and catalytic performance. Materials were prepared at different Pd amounts and demonstrated a range of tandem catalytic reactivity. H2 was generated via photocatalytic proton reduction initiated by Cu2O, followed by Pd-catalyzed dehalogenation using in situ generated H2. The results indicate that material morphology and composition and substrate steric effects play important roles in controlling the overall reaction rate. Additionally, analysis of the postreacted materials revealed that a small number of the cubes had become hollow during the photodechlorination reaction. Such findings offer important insights regarding photocatalytic active sites and mechanisms, providing a pathway toward converting light-based energy to chemical energy for sustainable catalytic reactions not typically driven via light. PMID:27656687

  3. Converting Light Energy to Chemical Energy: A New Catalytic Approach for Sustainable Environmental Remediation.

    PubMed

    Nguyen, Michelle A; Zahran, Elsayed M; Wilbon, Azaan S; Besmer, Alexander V; Cendan, Vincent J; Ranson, William A; Lawrence, Randy L; Cohn, Joshua L; Bachas, Leonidas G; Knecht, Marc R

    2016-07-31

    We report a synthetic approach to form cubic Cu2O/Pd composite structures and demonstrate their use as photocatalytic materials for tandem catalysis. Pd nanoparticles were deposited onto Cu2O cubes, and their tandem catalytic reactivity was studied via the reductive dehalogenation of polychlorinated biphenyls. The Pd content of the materials was gradually increased to examine its influence on particle morphology and catalytic performance. Materials were prepared at different Pd amounts and demonstrated a range of tandem catalytic reactivity. H2 was generated via photocatalytic proton reduction initiated by Cu2O, followed by Pd-catalyzed dehalogenation using in situ generated H2. The results indicate that material morphology and composition and substrate steric effects play important roles in controlling the overall reaction rate. Additionally, analysis of the postreacted materials revealed that a small number of the cubes had become hollow during the photodechlorination reaction. Such findings offer important insights regarding photocatalytic active sites and mechanisms, providing a pathway toward converting light-based energy to chemical energy for sustainable catalytic reactions not typically driven via light.

  4. Sustainable Manufacturing System Focusing on the Natural Growth of Bamboo

    NASA Astrophysics Data System (ADS)

    Ogawa, Keiji; Hirogaki, Toshiki; Aoyama, Eiichi; Taniguchi, Mitsuaki; Ogawa, Sachiko

    Recently, sustainable materials have attracted attention because of the need to alleviate environmental problems. Bamboo, in particular, has attracted attention as a sustainable material because it has the fastest natural growth rate among various natural materials. A self-bonding fiberboard using high quality bamboo fiber extracted with a machining center has been enabled to be fabricated by hot press forming. Therefore, we propose a sustainable manufacturing system that focuses on bamboo. An environmental impact of our system was evaluated by life cycle assessment (LCA), comparing with a glass fiber reinforced plastic production. Additionally, based on the LCA result, higher efficient fiber extraction process was proposed by an application of in-situ measurement of uninformed bamboo shape with irregularity.

  5. Investigating the potential for a self-sustaining slow pyrolysis system under varying operating conditions.

    PubMed

    Crombie, Kyle; Mašek, Ondřej

    2014-06-01

    This work aimed to investigate the impact of highest treatment temperature (HTT), heating rate, carrier gas flow rate and feedstock on the composition and energy content of pyrolysis gas to assess whether a self-sustained system could be achieved through the combustion of the gas fraction alone, leaving other co-products available for alternative high-value uses. Calculations based on gas composition showed that the pyrolysis process could be sustained by the energy contained within the pyrolysis gases alone. The lower energy limit (6% biomass higher heating value (HHV)) was surpassed by pyrolysis at ⩾450°C while only a HTT of 650°C consistently met the upper energy limit (15% biomass HHV). These findings fill an important gap in literature related to the energy balance of the pyrolysis systems for biochar production, and show that, at least from an energy balance perspective; self-sustained slow pyrolysis for co-production of biochar and liquid products is feasible.

  6. Terrestrial Energy Storage SPS Systems

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1998-01-01

    Terrestrial energy storage systems for the SSP system were evaluated that could maintain the 1.2 GW power level during periods of brief outages from the solar powered satellite (SPS). Short-term outages of ten minutes and long-term outages up to four hours have been identified as "typical" cases where the ground-based energy storage system would be required to supply power to the grid. These brief interruptions in transmission could result from performing maintenance on the solar power satellite or from safety considerations necessitating the power beam be turned off. For example, one situation would be to allow for the safe passage of airplanes through the space occupied by the beam. Under these conditions, the energy storage system needs to be capable of storing 200 MW-hrs and 4.8 GW-hrs, respectively. The types of energy storage systems to be considered include compressed air energy storage, inertial energy storage, electrochemical energy storage, superconducting magnetic energy storage, and pumped hydro energy storage. For each of these technologies, the state-of-the-art in terms of energy and power densities were identified as well as the potential for scaling to the size systems required by the SSP system. Other issues addressed included the performance, life expectancy, cost, and necessary infrastructure and site locations for the various storage technologies.

  7. Stochastic Energy Deployment System

    SciTech Connect

    2011-11-30

    SEDS is an economy-wide energy model of the U.S. The model captures dynamics between supply, demand, and pricing of the major energy types consumed and produced within the U.S. These dynamics are captured by including: the effects of macroeconomics; the resources and costs of primary energy types such as oil, natural gas, coal, and biomass; the conversion of primary fuels into energy products like petroleum products, electricity, biofuels, and hydrogen; and lastly the end- use consumption attributable to residential and commercial buildings, light and heavy transportation, and industry. Projections from SEDS extend to the year 2050 by one-year time steps and are generally projected at the national level. SEDS differs from other economy-wide energy models in that it explicitly accounts for uncertainty in technology, markets, and policy. SEDS has been specifically developed to avoid the computational burden, and sometimes fruitless labor, that comes from modeling significantly low-level details. Instead, SEDS focuses on the major drivers within the energy economy and evaluates the impact of uncertainty around those drivers.

  8. Master of Engineering Energy Systems Engineering Program: Smart Campus Energy Systems Demonstration DE-SC0005523

    SciTech Connect

    Dodge, Martha; Coulter, John

    2014-09-25

    Program Purpose and Position: The mission of the Master of Engineering in Energy Systems Engineering program is to invigorate the pipeline of new engineering graduates interested in energy oriented careers and thus produce a new generation of technical leaders for the energy and power industries. Over the next decade, nearly 50% of the skilled workers and technical leaders in the gas and electric utility industries will retire -- a much larger void than the current available and qualified professionals could fill [CEWD, 2012 survey]. The Masters of Engineering in Energy System Engineering program provides an opportunity for cross-discipline education for graduates interested in a career in the energy industry. It focuses on electric power and the challenges and opportunities to develop a sustainable, reliable and resilient system that meets human needs in an increasingly sustainable manner through the use of environmentally sound energy resources and delivery. Both graduates and employers benefit from a well-trained professional workforce that is ready to hit the road running and be immediately productive in meeting these challenges, through this innovative and unique program.

  9. Building Better Buildings: Sustainable Building Activities in California Higher Education Systems.

    ERIC Educational Resources Information Center

    Sowell, Arnold; Eichel, Amanda; Alevantis, Leon; Lovegreen, Maureen

    2003-01-01

    This article outlines the activities and recommendations of California's sustainable building task force, discusses sustainable building activities in California's higher education systems, and highlights key issues that California is grappling with in its implementation of sustainable building practices. (EV)

  10. Innovating a Sustainable Energy Future (2011 EFRC Summit)

    ScienceCinema

    Little, Mark (GE Global Research)

    2016-07-12

    The second speaker in the 2011 EFRC Summit session titled "Leading Perspectives in Energy Research" was Mark Little, Senior Vice President and Director of GE Global Research. He discussed the role that industry and in particular GE is playing as a partner in innovative energy research. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  11. New Science for a Secure and Sustainable Energy Future

    SciTech Connect

    2008-12-01

    Over the past five years, the Department of Energy's Office of Basic Energy Sciences has engaged thousands of scientists around the world to study the current status, limiting factors and specific fundamental scientific bottlenecks blocking the widespread implementation of alternate energy technologies. The reports from the foundational BESAC workshop, the ten 'Basic Research Needs' workshops and the panel on Grand Challenge science detail the necessary research steps (http://www.sc.doe.gov/bes/reports/list.html). This report responds to a charge from the Director of the Office of Science to the Basic Energy Sciences Advisory Committee to conduct a study with two primary goals: (1) to assimilate the scientific research directions that emerged from these workshop reports into a comprehensive set of science themes, and (2) to identify the new implementation strategies and tools required to accomplish the science. From these efforts it becomes clear that the magnitude of the challenge is so immense that existing approaches - even with improvements from advanced engineering and improved technology based on known concepts - will not be enough to secure our energy future. Instead, meeting the challenge will require fundamental understanding and scientific breakthroughs in new materials and chemical processes to make possible new energy technologies and performance levels far beyond what is now possible.

  12. Sustainable nanotechnology decision support system: bridging risk management, sustainable innovation and risk governance

    NASA Astrophysics Data System (ADS)

    Subramanian, Vrishali; Semenzin, Elena; Hristozov, Danail; Zabeo, Alex; Malsch, Ineke; McAlea, Eamonn; Murphy, Finbarr; Mullins, Martin; van Harmelen, Toon; Ligthart, Tom; Linkov, Igor; Marcomini, Antonio

    2016-04-01

    The significant uncertainties associated with the (eco)toxicological risks of engineered nanomaterials pose challenges to the development of nano-enabled products toward greatest possible societal benefit. This paper argues for the use of risk governance approaches to manage nanotechnology risks and sustainability, and considers the links between these concepts. Further, seven risk assessment and management criteria relevant to risk governance are defined: (a) life cycle thinking, (b) triple bottom line, (c) inclusion of stakeholders, (d) risk management, (e) benefit-risk assessment, (f) consideration of uncertainty, and (g) adaptive response. These criteria are used to compare five well-developed nanotechnology frameworks: International Risk Governance Council framework, Comprehensive Environmental Assessment, Streaming Life Cycle Risk Assessment, Certifiable Nanospecific Risk Management and Monitoring System and LICARA NanoSCAN. A Sustainable Nanotechnology Decision Support System (SUNDS) is proposed to better address current nanotechnology risk assessment and management needs, and makes. Stakeholder needs were solicited for further SUNDS enhancement through a stakeholder workshop that included representatives from regulatory, industry and insurance sectors. Workshop participants expressed the need for the wider adoption of sustainability assessment methods and tools for designing greener nanomaterials.

  13. Reorienting land degradation towards sustainable land management: linking sustainable livelihoods with ecosystem services in rangeland systems.

    PubMed

    Reed, M S; Stringer, L C; Dougill, A J; Perkins, J S; Atlhopheng, J R; Mulale, K; Favretto, N

    2015-03-15

    This paper identifies new ways of moving from land degradation towards sustainable land management through the development of economic mechanisms. It identifies new mechanisms to tackle land degradation based on retaining critical levels of natural capital whilst basing livelihoods on a wider range of ecosystem services. This is achieved through a case study analysis of the Kalahari rangelands in southwest Botswana. The paper first describes the socio-economic and ecological characteristics of the Kalahari rangelands and the types of land degradation taking place. It then focuses on bush encroachment as a way of exploring new economic instruments (e.g. Payments for Ecosystem Services) designed to enhance the flow of ecosystem services that support livelihoods in rangeland systems. It does this by evaluating the likely impacts of bush encroachment, one of the key forms of rangeland degradation, on a range of ecosystem services in three land tenure types (private fenced ranches, communal grazing areas and Wildlife Management Areas), before considering options for more sustainable land management in these systems. We argue that with adequate policy support, economic mechanisms could help reorient degraded rangelands towards more sustainable land management.

  14. Generating sustainable towns from Chinese villages: a system modeling approach.

    PubMed

    Levine, Richard S; Hughes, Michael T; Ryan Mather, Casey; Yanarella, Ernest J

    2008-04-01

    The great majority of China's developing towns will be extensions of already existing villages. With the prospect of hundreds of millions of Chinese farmers projected to leave their villages to become industrial workers in new and expanded towns within the next few years, new challenges will be faced. As expansion and modernization progress, this development moves from the traditional village model that operates not far from resource sustainability to increasingly unsustainable patterns of commerce, urban development, and modern life. With such an unprecedented mass migration and transformation, how can Chinese culture survive? What is to become of the existing million plus agricultural villages? How can these massively unsustainable new industrial towns survive? In the European Commission sponsored research program SUCCESS, researchers worked from the scale of the Chinese village to find viable answers to these questions. To address these issues, the Center for Sustainable Cities, one of the SUCCESS teams, studied the metabolism of several small villages. In these studies, system dynamics models of a village's metabolism were created and then modified so that inherently unsustainable means were eliminated from the model (fossil fuels, harmful agricultural chemicals, etc.) and replaced by sustainability-oriented means. Small Chinese farming villages are unlikely to survive in anything like their present form or scale, not least because they are too small to provide the range of life opportunities to which the young generation of educated Chinese aspires. As a response to this realization as well as to the many other threats to the Chinese village and its rural way of life, it was proposed that one viable path into the future would be to enlarge the villages to become full service towns with sufficient diversity of opportunity to be able to attract and keep many of the best and brightest young people who are now migrating to the larger cities. Starting with the

  15. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development.

    PubMed

    Golberg, Alexander; Sack, Martin; Teissie, Justin; Pataro, Gianpiero; Pliquett, Uwe; Saulis, Gintautas; Stefan, Töpfl; Miklavcic, Damijan; Vorobiev, Eugene; Frey, Wolfgang

    2016-01-01

    Fossil resources-free sustainable development can be achieved through a transition to bioeconomy, an economy based on sustainable biomass-derived food, feed, chemicals, materials, and fuels. However, the transition to bioeconomy requires development of new energy-efficient technologies and processes to manipulate biomass feed stocks and their conversion into useful products, a collective term for which is biorefinery. One of the technological platforms that will enable various pathways of biomass conversion is based on pulsed electric fields applications (PEF). Energy efficiency of PEF treatment is achieved by specific increase of cell membrane permeability, a phenomenon known as membrane electroporation. Here, we review the opportunities that PEF and electroporation provide for the development of sustainable biorefineries. We describe the use of PEF treatment in biomass engineering, drying, deconstruction, extraction of phytochemicals, improvement of fermentations, and biogas production. These applications show the potential of PEF and consequent membrane electroporation to enable the bioeconomy and sustainable development.

  16. SUSTAIN:Urban Modeling Systems Integrating Optimization and Economics

    EPA Science Inventory

    The System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN) was developed by the U.S. Environmental Protection Agency to support practitioners in developing cost-effective management plans for municipal storm water programs and evaluating and selecting Best Manag...

  17. Photovoltaic (PV) Power Systems for Enhancing Energy Security

    DTIC Science & Technology

    2012-05-24

    Energy and Environment Technology Transition – Supporting DoD Readiness, Sustainability, and the Warfighter Photovoltaic (PV) Power Systems for...to 00-00-2012 4. TITLE AND SUBTITLE Photovoltaic (PV) Power Systems for Enhancing Energy Security 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...use of 235W solar panels Note [2] System AC Rating based upon typical .77 conversion factor from DC power to AC power ConsiderationNo. PV LAYOUT OPTION

  18. ENERGY-TRANSFER SYSTEMS

    DOEpatents

    Thonemann, P.C.; Cowhig, W.T.; Davenport, P.A.

    1963-04-01

    This patent relates to the transfer of energy in a traveling electromagnetic wave to direct-current electrical energy in a gaseous medium. The traveling wave is generated by means of a radio-frequency oscillator connected across a capacitance-loaded helix wound around a sealed tube enclosing the gaseous medium. The traveling wave causes the electrons within the medium to drift towards one end of the tube. The direct current appearing across electrodes placed at each end of the tube is then used by some electrical means. (AEC)

  19. Innovations in the Use of Nuclear Energy for Sustainable Manufacturing

    SciTech Connect

    J. Stephen Herring

    2010-10-01

    Abstract Over the next 50 years, nuclear energy will become increasingly important in providing the electricity and heat needed both by the presently industrialized countries and by those countries which are now developing their manufacturing industries. The twin concerns of global climate change and of the vulnerability of energy supplies caused by increasing international competition will lead to a greater reliance on nuclear energy for both electricity and process heat. Conservative estimates of new nuclear construction indicate a 50% increase in capacity by 2030. Other estimates predict a tripling of present capacity. Required machine tool technologies will include the improvements in the manufacture of standard LWR components, such as pressure vessels and pumps. Further in the future, technologies for working high temperature metals and ceramics will be needed and will require new machining capabilities.

  20. Nanostructured conducting polymers for energy applications: towards a sustainable platform.

    PubMed

    Ghosh, Srabanti; Maiyalagan, Thandavarayan; Basu, Rajendra N

    2016-04-07

    Recently, there has been tremendous progress in the field of nanodimensional conducting polymers with the objective of tuning the intrinsic properties of the polymer and the potential to be efficient, biocompatible, inexpensive, and solution processable. Compared with bulk conducting polymers, conducting polymer nanostructures possess a high electrical conductivity, large surface area, short path length for ion transport and superior electrochemical activity which make them suitable for energy storage and conversion applications. The current status of polymer nanostructure fabrication and characterization is reviewed in detail. The present review includes syntheses, a deeper understanding of the principles underlying the electronic behavior of size and shape tunable polymer nanostructures, characterization tools and analysis of composites. Finally, a detailed discussion of their effectiveness and perspectives in energy storage and solar light harvesting is presented. In brief, a broad overview on the synthesis and possible applications of conducting polymer nanostructures in energy domains such as fuel cells, photocatalysis, supercapacitors and rechargeable batteries is described.

  1. Nanostructured conducting polymers for energy applications: towards a sustainable platform

    NASA Astrophysics Data System (ADS)

    Ghosh, Srabanti; Maiyalagan, Thandavarayan; Basu, Rajendra N.

    2016-03-01

    Recently, there has been tremendous progress in the field of nanodimensional conducting polymers with the objective of tuning the intrinsic properties of the polymer and the potential to be efficient, biocompatible, inexpensive, and solution processable. Compared with bulk conducting polymers, conducting polymer nanostructures possess a high electrical conductivity, large surface area, short path length for ion transport and superior electrochemical activity which make them suitable for energy storage and conversion applications. The current status of polymer nanostructure fabrication and characterization is reviewed in detail. The present review includes syntheses, a deeper understanding of the principles underlying the electronic behavior of size and shape tunable polymer nanostructures, characterization tools and analysis of composites. Finally, a detailed discussion of their effectiveness and perspectives in energy storage and solar light harvesting is presented. In brief, a broad overview on the synthesis and possible applications of conducting polymer nanostructures in energy domains such as fuel cells, photocatalysis, supercapacitors and rechargeable batteries is described.

  2. Calcium Carbonate Nanoplate Assemblies with Directed High-Energy Facets: Additive-Free Synthesis, High Drug Loading, and Sustainable Releasing.

    PubMed

    Zhang, Jing; Li, Yu; Xie, Hao; Su, Bao-Lian; Yao, Bin; Yin, Yixia; Li, Shipu; Chen, Fang; Fu, Zhengyi

    2015-07-29

    Developing drug delivery systems (DDSs) with high drug-loading capacity and sustainable releasing is critical for long-term chemotherapeutic efficacy, and it still remains challenging. Herein, vaterite CaCO3 nanoplate assemblies with exposed high-energy {001} facets have been synthesized via a novel, additive-free strategy. The product shows a high doxorubicin-loading capacity (65%); the best of all the CaCO3-based DDSs so far. Also, the product's sustainable releasing performance and its inhibition of the initial burst release, together, endow it with long-term drug efficacy. The work may shed light on exposing directed high-energy facets for rationally designing of a drug delivery system with long-term efficacy.

  3. Approach to an Affordable and Sustainable Space Transportation System

    NASA Technical Reports Server (NTRS)

    McCleskey, Caey M.; Rhodes, R. E.; Robinson, J. W.; Henderson, E. M.

    2012-01-01

    This paper describes an approach and a general procedure for creating space transportation architectural concepts that are at once affordable and sustainable. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on a functional system breakdown structure for an architecture and definition of high-payoff design techniques with a technology integration strategy. This paper follows up by using a structured process that derives architectural solutions focused on achieving life cycle affordability and sustainability. Further, the paper includes an example concept that integrates key design techniques discussed in previous papers. !

  4. Nanofluidic sustainable energy conversion using a 1D nanofluidic network.

    PubMed

    Kim, Sang Hui; Kwak, Seungmin; Han, Sung Il; Chun, Dong Won; Lee, Kyu Hyoung; Kim, Jinseok; Lee, Jeong Hoon

    2014-05-01

    We propose a 1-dimensional (1D) nanofluidic energy conversion device by implementing a surface-patterned Nafion membrane for the direct energy conversion of the pressure to electrical power. By implementing a -200-nm-thick nano-bridge with a 5-nm pore size between two microfluidic channels, we acquired an effective streaming potential of 307 mV and output power of 94 pW with 0.1 mM KCI under pressure difference of 45 MPa. The experimental results show both the effects of applied pressure differences and buffer concentrations on the effective streaming potential, and are consistent with the analytical prediction.

  5. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A waste water treatment plant in Wilton, Maine, where sludge is converted to methane gas, and Monsanto Company's Environmental Health Laboratory in St. Louis Missouri, where more than 200 solar collectors provide preheating of boiler feed water for laboratory use are representative of Grumman's Sunstream line of solar energy equipment. This equipment was developed with technology from NASA's Apollo lunar module program.

  6. 'Part of the solution': Developing sustainable energy through co-operatives and learning

    NASA Astrophysics Data System (ADS)

    Duguid, Fiona C. B.

    After five years of development, WindShare Co-operative in Toronto, Ontario became the first urban wind turbine in North America and the first co-operatively owned and operated wind turbine in Canada. The development of WindShare Co-operative has spurred the growth of a green energy co-operative sector in Ontario. This study, which included 27 interviews and a focus group with members of WindShare Co-operative, focuses on the roles of community-based green energy co-operatives in advancing sustainable energy development and energy literacy. Sustainable energy development is firmly rooted in the triple bottom line of environmental, social and economic success, and green energy co-operatives can be a way to help achieve those successes. Green energy co-operatives are structures for providing renewable energy generation or energy conservation practices, both of which have important environmental impacts regarding climate change and pollution levels. Co-operative structures are supported by processes that include local ownership, democracy, participation, community organizing, learning and social change. These processes have a significant social impact by creating a venue for people to be directly involved in the energy industry, by involving learning through participation in a community-based organization, and by advancing energy literacy within the membership and the general public. In regards to the economic impacts, green energy co-operatives foster a local economy and local investment opportunities, which have repercussions regarding building expertise within Ontario's green energy and co-operative development future, and more generally, captures members' interest because they have a direct stake in the co-operative. This thesis shows that green energy co-operatives, like WindShare, play an important role in advancing sustainable energy development, energy literacy and the triple bottom line. Members of WindShare expressed resounding feelings of pride, efficacy

  7. Sustaining high performance: dynamic balancing in an otherwise unbalanced system.

    PubMed

    Wolf, Jason A

    2011-01-01

    As Ovid said, "There is nothing in the whole world which is permanent." It is this very premise that frames the discoveries in this chapter and the compelling paradox it has raised. What began as a question of how performance is sustained, unveiled a collection of core organizational paradoxes. The findings ultimately suggest that sustained high performance is not a permanent state an organization achieves, but rather it is through perpetual movement and dynamic balance that sustainability occurs. The idea of sustainability as movement is predicated on the ability of organizational members to move beyond the experience of paradox as an impediment to progress. Through holding three critical "movements"--agile/consistency, collective/individualism, and informative/inquiry--not as paradoxical, but as active polarities, the organizations in the study were able to transcend paradox, and take active steps to continuous achievement in outperforming their peers. The study, focused on a collection of hospitals across the Unites States, reveals powerful stories of care and service, of the profound grace of human capacity, and of clear actions taken to create significant results. All of this was achieved in an environment of great volatility, in essence an unbalanced system. It was the discovery of movement and ultimately of dynamic balancing that allowed the organizations to in this study to move beyond stasis to the continuous "state" of sustaining high performance.

  8. Improving Biofuels Recovery Processes for Energy Efficiency and Sustainability

    EPA Science Inventory

    Biofuels are made from living or recently living organisms. For example, ethanol can be made from fermented plant materials. Biofuels have a number of important benefits when compared to fossil fuels. Biofuels are produced from renewable energy sources such as agricultural resou...

  9. Optimizing Nutrient Management for Sustainable Bio-energy Feedstock Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn grain and stover are both being evaluated as feedstock sources for bio-energy production. To meet current and future demands for corn, both short- and long-term effects on nutrient cycling, physical properties, and biological activity in soils must be understood. Our project goal was to increas...

  10. The Most Economic, Socially Viable, and Environmentally Sustainable Alternative Energy

    ERIC Educational Resources Information Center

    Vanderburg, Willem H.

    2008-01-01

    The strengths and weaknesses of current energy planning can be attributed to the limited economic, social, and environmental contexts taken into account as a result of the current intellectual and professional division of labor. A preventive approach is developed by which the ratio of desired to undesired effects can be substantially improved. It…

  11. Building Integrated Photovoltaic (BIPV) Roofs for Sustainability and Energy Efficiency

    DTIC Science & Technology

    2013-09-10

    crystalline silicon PV. However, a-Si cells can be manufactured at lower temperatures and deposited on low-cost substrates. The less energy intensive...W/ INTEGRATED DC & AC DISCONNECTS INVERTER INSTAlLATIOI’I NOTE: IF ’<ALL MOUNTED ASBESTOS INSPECTION NEEDED INVERTER OET AIL: !;CAl£: 1/𔃻· -r

  12. The human component of sustainability: a study for assessing "human performances" of energy efficient construction blocks.

    PubMed

    Attaianese, Erminia; Duca, Gabriella

    2012-01-01

    This paper presents an applied research aimed at understanding the relevance and the applicability of human related criteria in sustainability assessment of construction materials. Under a theoretical perspective, human factors consideration is strongly encouraged by building sustainability assessment methods, but the practice demonstrates that current models for building sustainability assessment neglect ergonomic issues, especially those ones concerning the construction phase. The study starts from the observation that new construction techniques for high energy efficient external walls are characterized by elements generally heavier and bigger than traditional materials. In this case, high sustainability performances connected with energy saving could be reached only consuming high, and then not very much sustainable, human efforts during setting-up operations. The paper illustrates a practical approach for encompassing human factors in sustainability assessment of four block types for energy efficient external walls. Research steps, from block selections to bricklaying task analysis, human factors indicators and metrics formulation, data gathering and final assessment are going to be presented. Finally, open issues and further possible generalizations from the particular case study will be discussed.

  13. System for controlling a hybrid energy system

    DOEpatents

    Hoff, Brian D.; Akasam, Sivaprasad

    2013-01-29

    A method includes identifying a first operating sequence of a repeated operation of at least one non-traction load. The method also includes determining first and second parameters respectively indicative of a requested energy and output energy of the at least one non-traction load and comparing the determined first and second parameters at a plurality of time increments of the first operating sequence. The method also includes determining a third parameter of the hybrid energy system indicative of energy regenerated from the at least one non-traction load and monitoring the third parameter at the plurality of time increments of the first operating sequence. The method also includes determining at least one of an energy deficiency or an energy surplus associated with the non-traction load of the hybrid energy system and selectively adjusting energy stored within the storage device during at least a portion of a second operating sequence.

  14. Definition of animal breeding goals for sustainable production systems.

    PubMed

    Olesen, I; Groen, A F; Gjerde, B

    2000-03-01

    What we do is determined by the way we "view" a complex issue and what sample of issues or events we choose to deal with. In this paper, a model based on a communal, cultural, or people-centered worldview, informed by a subjective epistemology and a holistic ontology, is considered. Definitions and interpretations of sustainable agriculture are reviewed. Common elements in published definitions of sustainable agriculture and animal production among those who seek long-term and equitable solutions for food production are resource efficiency, profitability, productivity, environmental soundness, biodiversity, social viability, and ethical aspects. Possible characteristics of future sustainable production systems and further development are presented. The impact of these characteristics on animal breeding goals is reviewed. The need for long-term biologically, ecologically, and sociologically sound breeding goals is emphasized, because animal breeding determined only by short-term market forces leads to unwanted side effects. Hence, a procedure for defining animal breeding goals with ethical priorities and weighing of market and non-market values is suggested. Implementation of non-market as well as market economic trait values in the aggregate genotype, as suggested, may allow for breeding programs that contribute to sustainable production systems. Examples of breeding goals in salmon, cattle, and pigs are given, and the resulting genetic responses are evaluated with respect to economic profit (or costs) and other criteria of sustainability. Important prerequisites for breeding programs for sustainable production are appropriate governmental policies, awareness of our way of thinking, and a more communal worldview informed by a subjective epistemology and a holistic ontology.

  15. Simulation of submarine gas hydrate deposits as a sustainable energy source and CO2 storage

    NASA Astrophysics Data System (ADS)

    Janicki, G.; Hennig, T.; Schlüter, S.; Deerberg, G.

    2012-04-01

    Being aware that conventionally exploitable natural gas resources are limited, research concentrates on the development of new technologies for the extraction of methane from gas hydrate deposits in subsea sediments. The quantity of methane stored in hydrate form is considered to be a promising means to overcome future shortages in energy resources. In combination with storing carbon dioxide (CO2) as hydrates in the deposits chances for sustainable energy supply systems are given. The combustion of hydrate-based natural gas can contribute to the energy supply, but the coupled CO2 emissions cause climate change effects. At present, the possible options to capture and subsequently store CO2 (CCS-Technology) become of particular interest. To develop a sustainable hydrate-based energy supply system, the production of natural gas from hydrate deposits has to be coupled with the storage of CO2. Hence, the simultaneous storage of CO2 in hydrate deposits has to be developed. Decomposition of methane hydrate in combination with CO2 sequestration appears to be promising because CO2 hydrate is stable within a wider range of pressure and temperature than methane hydrate. As methane hydrate provides structural integrity and stability in its natural formation, incorporating CO2 hydrate as substitute for methane hydrate will help to preserve the natural sediments' stability. Regarding the technological implementation, many problems have to be overcome. Especially heat and mass transfer in the deposits are limiting factors causing very long process times. Within the scope of the German research project »SUGAR«, different technological approaches are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical effects are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs like

  16. Utilization of waste materials, non-refined materials, and renewable energy in in situ remediation and their sustainability benefits.

    PubMed

    Favara, Paul; Gamlin, Jeff

    2017-04-05

    In the ramp-up to integrating sustainability into remediation, a key industry focus area has been to reduce the environmental footprint of treatment processes. The typical approach to integrating sustainability into remediation projects has been a top-down approach, which involves developing technology options and then applying sustainability thinking to the technology, after it has been conceptualized. A bottom-up approach allows for systems thinking to be included in remedy selection and could potentially result in new or different technologies being considered. When using a bottom-up approach, there is room to consider the utilization of waste materials, non-refined materials, and renewable energy in remediation technology-all of which generally have a smaller footprint than processed materials and traditional forms of energy. By integrating more systems thinking into remediation projects, practitioners can think beyond the traditional technologies typically used and how technologies are deployed. To compare top-down and bottom-up thinking, a traditional technology that is considered very sustainable-enhanced in situ bioremediation-is compared to a successful, but infrequently deployed technology-subgrade biogeochemical reactors. Life Cycle Assessment is used for the evaluation and shows the footprint of the subgrade biogeochemical reactor to be lower in all seven impact categories evaluated, sometimes to a significant degree.

  17. Astronomy in Sustainable Energy: A New Approach to Make It Matter

    NASA Astrophysics Data System (ADS)

    Ruzhitskaya, Lanika; Speck, A.

    2012-01-01

    We present a study of a new approach to teaching non-science students concepts of sustainable energy using astronomy, real life and fictional scenarios. Teaching non-science majors about energy is important because of the challenge that scientific (il)literacy poses for tangible and political problems like energy. We have established a course in which students are involved in critical thinking and the process of scientific reasoning while discovering the nature of energy and its role in our lives and its presentation in the fiction genre. In the course, students construct and apply their knowledge of transformation of energy to understanding of the concepts of the formation of the sun and the planets. Along with these concepts, students learn about ways of harnessing energy for sustaining life on Earth. During the course students transform their "Why do I care?” to "What can I do?” We are achieving this change by starting with a broad introduction of the concepts and physical laws involved in understanding of the Solar Nebular hypothesis during which we discuss the role of different forms of energy involved in the process. In the next step we narrow down the discussion to importance and use of energy on Earth and then we discuss the role of different forms of energy in maintaining our individual lives. Thus students go from intangible notions about energy to making informed decisions on what type of sustainable energy makes sense to use in their houses and how many burgers they want to eat per day. Moving towards sustainable energy technologies requires a public who understands the science behind the issues. The work presented here is aimed at providing a mechanism for increase literacy regarding these issues and testing this mechanism's success.

  18. Thermally-sustained structure in convectively unstable systems

    NASA Technical Reports Server (NTRS)

    Deissler, Robert J.

    1993-01-01

    The complex Ginzburg-Landau equation with a thermal noise term is studied under conditions when the system is convectively unstable. Under these conditions, the noise is selectively and spatially amplified giving rise to a noise-sustained structure. Analytical results, applicable to a wide range of physical systems, are derived for the variance, and the coefficients and thermal noise term are determined for Taylor-Couette flow with an axial through-flow. Comparison is made to recent experiments.

  19. Defining elements of sustainable work systems--a system-oriented approach.

    PubMed

    Fischer, Klaus; Zink, Klaus J

    2012-01-01

    Based on a system-theoretic discussion of sustainability, this paper aims to develop a conceptual model of a sustainable work system which is consistent with the definition of ergonomics by the IEA in 2000 (but also with earlier definitions) as well as with the triple bottom line understanding of sustainable development - comprising the management of human, social, ecological and economic capital in a balanced manner.

  20. Miniaturized supercapacitors: key materials and structures towards autonomous and sustainable devices and systems

    NASA Astrophysics Data System (ADS)

    Soavi, Francesca; Bettini, Luca Giacomo; Piseri, Paolo; Milani, Paolo; Santoro, Carlo; Atanassov, Plamen; Arbizzani, Catia

    2016-09-01

    Supercapacitors (SCs) are playing a key role for the development of self-powered and self-sustaining integrated systems for different fields ranging from remote sensing, robotics and medical devices. SC miniaturization and integration into more complex systems that include energy harvesters and functional devices are valuable strategies that address system autonomy. Here, we discuss about novel SC fabrication and integration approaches. Specifically, we report about the results of interdisciplinary activities on the development of thin, flexible SCs by an additive technology based on Supersonic Cluster Beam Deposition (SCBD) to be implemented into supercapacitive electrolyte gated transistors and supercapacitive microbial fuel cells. Such systems integrate at materials level the specific functions of devices, like electric switch or energy harvesting with the reversible energy storage capability. These studies might open new frontiers for the development and application of new multifunction-energy storage elements.

  1. Sustainable biofuel contributions to carbon mitigation and energy independence

    SciTech Connect

    Lippke, Bruce; Gustafson, Richard; Venditti, Richard; Volk, Timothy; Oneil, Elaine; Johnson, Leonard; Puettmann, Maureen; Steele, Phillip

    2011-10-19

    The growing interest in US biofuels has been motivated by two primary national policy goals, (1) to reduce carbon emissions and (2) to achieve energy independence. However, the current low cost of fossil fuels is a key barrier to investments in woody biofuel production capacity. The effectiveness of wood derived biofuels must consider not only the feedstock competition with low cost fossil fuels but also the wide range of wood products uses that displace different fossil intensive products. Alternative uses of wood result in substantially different unit processes and carbon impacts over product life cycles. We developed life cycle data for new bioprocessing and feedstock collection models in order to make life cycle comparisons of effectiveness when biofuels displace gasoline and wood products displace fossil intensive building materials. Wood products and biofuels can be joint products from the same forestland. Furthermore, substantial differences in effectiveness measures are revealed as well as difficulties in valuing tradeoffs between carbon mitigation and energy independence.

  2. Coal exports may make Australia's energy sector among least sustainable

    SciTech Connect

    2009-11-15

    Plentiful coal and cheap energy prices have resulted in an unusually heavy carbon footprint. Clearly, Australia has to rethink how much coal it will use to feed its own growing economy while becoming more conscious of its significant carbon export problem. For a country long used to digging the coal out of the ground and shipping it overseas, climate change will be a game changer.

  3. Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management

    NASA Astrophysics Data System (ADS)

    Tan, S. T.; Hashim, H.

    2014-02-01

    Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study.

  4. Geographies of biomass and solar energy: Spatial decision support for regional energy sustainability

    NASA Astrophysics Data System (ADS)

    Calvert, Kirby Edward

    This thesis applies concepts and techniques in geography in order to contribute to our understanding of the opportunities and challenges associated with the transition toward renewable energy. The work is best understood as the sum of two parts. In the first part, the methodological and philosophical underpinnings of the field of energy geography are explored in order to situate the research in the broader constellation of geographical practices surrounding energy. I make the case that energy transitions are not merely shifts in energy supply but are also simultaneously fundamental shifts in prevailing spatial relations, so that energy transition management is best conceived as a spatial strategy with emphasis on regional level land-energy planning. In the second part of the thesis, I aim to provide decision support in favour of this spatial strategy. This begins in Chapter 4 with a comprehensive critical review of how GIScience and remote sensing has been applied in RE assessments and spatial planning. The next three chapters engage key gaps in this literature and are the analytical contributions of the thesis. The focus of the research is on biomass and solar energy in (eastern) Ontario. In Chapter 5 I develop geographically explicit supply-cost curves for forestry and agricultural biomass and assess the relative merits of a mixed biomass feedstock stream. In Chapter 6 I recognize and address the issue that developers of dedicated bioenergy crops and ground-mount solar PV systems prefer the same type of land. Land-energy trade-offs are modeled and their implications in the context of incentivizing RE development are discussed. In Chapter 7 I explore ways in which targeted facility siting can capture ancillary benefits related to RE production. I argue that focusing on the benefits as well as the costs of system siting is critical to linking developer and public interests. Ontario's feed-in tariff program is evaluated in the light of this claim. Chapter 8

  5. National Energy Modeling System (NEMS)

    DOE Data Explorer

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. through 2030. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). NEMS can be used to analyze the effects of existing and proposed government laws and regulations related to energy production and use; the potential impact of new and advanced energy production, conversion, and consumption technologies; the impact and cost of greenhouse gas control; the impact of increased use of renewable energy sources; and the potential savings from increased efficiency of energy use; and the impact of regulations on the use of alternative or reformulated fuels. NEMS has also been used for a number of special analyses at the request of the Administration, U.S. Congress, other offices of DOE and other government agencies, who specify the scenarios and assumptions for the analysis. Modules allow analyses to be conducted in energy topic areas such as residential demand, industrial demand, electricity market, oil and gas supply, renewable fuels, etc.

  6. Local energy governance in vermont: an analysis of energy system transition strategies and actor capacity

    NASA Astrophysics Data System (ADS)

    Rowse, Tarah

    While global, national, and regional efforts to address climate and energy challenges remain essential, local governments and community groups are playing an increasingly stronger and vital role. As an active state in energy system policy, planning and innovation, Vermont offers a testing ground for research into energy governance at the local level. A baseline understanding of the energy planning and energy organizing activities initiated at the local level can support efforts to foster a transition to a sustainable energy system in Vermont. Following an inductive, applied and participatory approach, and grounded in the fields of sustainability transitions, energy planning, and community energy, this research project identifies conditions for change, including opportunities and challenges, within Vermont energy system decision-making and governance at the local level. The following questions are posed: What are the main opportunities and challenges for sustainable energy development at the town level? How are towns approaching energy planning? What are the triggers that will facilitate a faster transition to alternative energy systems, energy efficiency initiatives, and localized approaches? In an effort to answer these questions two studies were conducted: 1) an analysis of municipal energy plans, and 2) a survey of local energy actors. Study 1 examined Vermont energy planning at the state and local level through a review and comparison of 40 municipal plan energy chapters with the state 2011 Comprehensive Energy Plan. On average, municipal plans mentioned just over half of the 24 high-level strategies identified in the Comprehensive Energy Plan. Areas of strong and weak agreement were examined. Increased state and regional interaction with municipal energy planners would support more holistic and coordinated energy planning. The study concludes that while municipalities are keenly aware of the importance of education and partnerships, stronger policy mechanisms

  7. Double- and relay-cropping oilseed and biomass crops for sustainable energy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economically and environmentally sustainable bioenergy production requires strategic integration of biofuel crops into modern cropping systems. Double- and relay-cropping can offer a means of increasing production efficiency to boost profits and provide environmental benefits through crop diversific...

  8. Contingency Base Energy Management System

    SciTech Connect

    2016-06-09

    CB-EMS is the latest implementation of DSOM (Decision Support for Operations and Maintenance), which was previously patented by PNNL. CB-EMS WAS specifically designed for contingency bases for the US Army. It is a software package that is designed to monitor energy consumption at an Army contingency base to alert the camp manager when the systems are wasting energy. It's main feature that separates it from DSOM is it's ability to add systems using a plug and play menu system.

  9. A review of parenteral sustained-release naltrexone systems

    SciTech Connect

    Olsen, J.L.; Kincl, F.A.

    1981-01-01

    The ideal naltrexone sustained-release delivery system should be easy to inject or implant, not cause adverse tissue reaction, release the drug at a relatively constant rate for at least 30 days, and biodegrade within a short time afterwards. Mechanisms which can be used for sustaining drug release include reducing solubility and surface area, coating, encapsulation and microencapsulation, complexation, binding and hydrophilic gelation. Drug release from such systems is controlled by diffusion through a barrier/film, diffusion from a monolithic device, erosion of the surface, hydrolysis, ion exchange, biodegradation, or a combination of these. Injectable systems would seem to be ultimately preferred because of the ease of administration and handling, while the implantable devices may find first use in man since they are easily removable, should that be necessary. Maintaining particulate-free products and sterilization methods are two problems with all parenteral dosage forms. Production must be particularly well controlled and validated.

  10. Evaluating sustainable energy strategies for a water utility.

    PubMed

    Zakkour, P D; Gochin, R J; Lester, J N

    2002-07-01

    Research suggests that political will to deliver improvements in the quality of surface water in the UK and across the EU, alongside measures to place tighter controls on the quality of biosolids applied to agricultural land, will augment the levels of energy used in sewage and sludge treatment. This coincides with increasing concerns over the use of fossil fuel derived energy sources and their potential to enhance the Earth's greenhouse effect and promote global climate change, creating a serious paradox for these responsible for managing the aquatic environment. However, previous research also suggests that novel technologies and practices could potentially mitigate the problem in hand. This paper describes the development of a model for estimating future energy use and CO2 emissions in the wastewater treatment sector, and outlines the results of different projections using incumbent and novel practices. Indications are that using incumbent approaches could augment CO2 emissions by 15-30% in the medium- to long-term, while loss of the agricultural sludge route and deployment of an incineration strategy could mean increases are of the order of 50-70%. Alternatively, the construction of a greater number of sludge treatment facilities, with greater biogas recovery, could reduce this burden to around -8 to +7% over the same period, while the realisation of the full potential an anaerobic pre-treatment process could lead to reductions of up to 16%. Nevertheless, some of the options will come at a higher cost than incumbents, and the potential for making the business case for these investments is explored.

  11. Organic nanohybrids for fast and sustainable energy storage.

    PubMed

    Lee, Minah; Hong, Jihyun; Kim, Haegyeom; Lim, Hee-Dae; Cho, Sung Baek; Kang, Kisuk; Park, Chan Beum

    2014-04-23

    A nanohybridization strategy is presented for the fabrication of high performance lithium ion batteries based on redox-active organic molecules. The rearrangement of electroactive aromatic molecules from bulk crystalline particles into molecular layers is achieved by non-covalent nanohybridization of active molecules with conductive scaffolds. As a result, nano-hybrid organic electrodes in the form of a flexible self-standing paper-free of binder/additive and current collector-are synthesized, which exhibit high energy and power densities combined with excellent cyclic stability.

  12. Energy and the food system

    PubMed Central

    Woods, Jeremy; Williams, Adrian; Hughes, John K.; Black, Mairi; Murphy, Richard

    2010-01-01

    Modern agriculture is heavily dependent on fossil resources. Both direct energy use for crop management and indirect energy use for fertilizers, pesticides and machinery production have contributed to the major increases in food production seen since the 1960s. However, the relationship between energy inputs and yields is not linear. Low-energy inputs can lead to lower yields and perversely to higher energy demands per tonne of harvested product. At the other extreme, increasing energy inputs can lead to ever-smaller yield gains. Although fossil fuels remain the dominant source of energy for agriculture, the mix of fuels used differs owing to the different fertilization and cultivation requirements of individual crops. Nitrogen fertilizer production uses large amounts of natural gas and some coal, and can account for more than 50 per cent of total energy use in commercial agriculture. Oil accounts for between 30 and 75 per cent of energy inputs of UK agriculture, depending on the cropping system. While agriculture remains dependent on fossil sources of energy, food prices will couple to fossil energy prices and food production will remain a significant contributor to anthropogenic greenhouse gas emissions. Technological developments, changes in crop management, and renewable energy will all play important roles in increasing the energy efficiency of agriculture and reducing its reliance of fossil resources. PMID:20713398

  13. Ethanol used as an environmentally sustainable energy resource for thermal power plants

    NASA Astrophysics Data System (ADS)

    Markov, V. A.; Biryukov, V. V.; Kas'kov, S. I.

    2016-09-01

    Justification of using renewable energy sources and a brief analysis of their application prospects is given. The most common renewable energy sources for mobile thermal power plants are presented. The possibilities and ways of using ethanol as an energy source for such plants with diesel engines are analyzed. It is shown that it is feasible to add small amounts of ethanol to oil diesel fuel (DF) for obtaining an environmentally sustainable energy source for diesel engines. Therewith, a stable mixture of components can be obtained by adding anhydrous (absolute) ethanol to the oil fuel. The authors studied a mixture containing 4% (by volume) of absolute ethanol and 96% of oil DF. The physicochemical properties of the mixture and each of its components are presented. Diesel engine of the type D-245.12S has been experimentally studied using the mixture of DF and ethanol. The possibility of reducing the toxicity level of the exhaust emissions when using this mixture as an energy source for diesel engines of mobile power plants is shown. Transition of the studied diesel engine from oil DF to its mixture with ethanol made it possible to reduce the smoke capacity of the exhaust gases by 15-25% and to decrease the specific mass emissions of nitrogen oxides by 17.4%. In this case, we observed a slight increase in the exhaust gas emissions of carbon monoxide and light unburned hydrocarbons, which, however, can easily be eliminated by providing the exhaust system of a diesel engine with a catalytic converter. It is noted that the studied mixture composition should be optimized. The conclusion is made that absolute ethanol is a promising ecofriendly additive to oil diesel fuel and should be used in domestic diesel engines.

  14. Decarbonizing the global energy system

    SciTech Connect

    Gruebler, A.; Nakicenovic, N.

    1996-09-01

    The study analyzes the long-term decarbonization of the global energy system, i.e., the decrease of the carbon emissions per unit of primary energy. Decarbonization appears as a continuous and persistent trend throughout the world, albeit occurring at very slow rates of approximately 0.3% per year. The study also discusses driving forces of the associated structural changes in energy systems such as technological change. Decarbonization also occurs at the level of energy end use and trends for final energy are shown. The quest for higher flexibility, convenience, and cleanliness of energy services demanded by consumers leads to decarbonization trends in final energy that are more pronounced than that of the upstream energy sector. The study concludes with a discussion of the implications for long-term scenarios of energy-environment interactions suggesting that decarbonization and its driving forces may still be insufficiently captured by most models and scenarios of the long-term evolution of the energy system. 32 refs., 5 figs., 4 tabs.

  15. The International Finance Corporation and financing of sustainable energy

    SciTech Connect

    1997-12-01

    The International Finance Corporation (IFC), a member of the World Bank Group, is the largest multilateral source of loan and equity financing for private sector projects in the developing world. IFC participates in an investment only when it can make a special contribution that complements the role of market operators. Since its founding 40 years ago, IFC has provided more than $18.8 billion in financing for 1,706 companies in developing countries. Its share capital is provided by its 170 member countries, which collectively determine its policies and activities. Strong shareholder support and a substantial paid-in capital base have allowed IFC to raise funds for its lending activities through its triple-A rated bond issues in international financial markets. IFC created an Infrastructure Department in 1992 in response to the growing demand for its services in this area. During fiscal 1996 IFC approved 33 projects for new investments of $715 million of which 27% were in the power sector. In recognition of the continuing demand growth for private power investments an expanded Power Department has been formed to handle IFC`s investments in electric power generation projects using renewable resources such as: run-of-the-river hydro, geothermal, biomass cogeneration, wind energy, and solar (photovoltaic, solar thermal, etc.), as well as conventional thermal generation projects, transmission and distribution projects, and energy efficiency investments.

  16. Sustainable biofuel contributions to carbon mitigation and energy independence

    DOE PAGES

    Lippke, Bruce; Gustafson, Richard; Venditti, Richard; ...

    2011-10-19

    The growing interest in US biofuels has been motivated by two primary national policy goals, (1) to reduce carbon emissions and (2) to achieve energy independence. However, the current low cost of fossil fuels is a key barrier to investments in woody biofuel production capacity. The effectiveness of wood derived biofuels must consider not only the feedstock competition with low cost fossil fuels but also the wide range of wood products uses that displace different fossil intensive products. Alternative uses of wood result in substantially different unit processes and carbon impacts over product life cycles. We developed life cycle datamore » for new bioprocessing and feedstock collection models in order to make life cycle comparisons of effectiveness when biofuels displace gasoline and wood products displace fossil intensive building materials. Wood products and biofuels can be joint products from the same forestland. Furthermore, substantial differences in effectiveness measures are revealed as well as difficulties in valuing tradeoffs between carbon mitigation and energy independence.« less

  17. Assessing sustainable land-use practices using geographic information systems

    NASA Astrophysics Data System (ADS)

    Davis, Amelie Y.

    Many prominent scientists have claimed that we need to develop environmentally sustainable practices otherwise societies may collapse. The use of Geographic Information Systems allows detailed studies that can cross disciplinary boundaries and lead to quantifiable statements as to the change of land use practices that took place in the past and those that may occur in the future. This dissertation focuses on two research topics. One that attempts to quantify the environmental consequences of parking lots located in the Midwest, USA. The other research topic focuses on the land area needed to support ethanol in the United States. In Tippecanoe County, Indiana, it was determined that parking lots occupied approximately 6.6% of the urban areas, that the area devoted to parking lots exceeded the area devoted to urban parks by a factor of 3, and that these parking lots contributed to increased runoff of pollutants. The parking lots of Tippecanoe County were estimated to be responsible for 46.5 thousand pounds of oil and grease released annually in runoff, as well as an increase of 240.6 thousand pounds of suspended solids, and 65.7 pounds of lead released when compared to pre-development conditions. A method that scales up the county wide study was also developed to determine the areal footprint of parking lots with the states of Illinois, Indiana, Michigan and Wisconsin. It was estimated that these four states allocate approximately 1260 square km of their land to parking lots and that this accounts for 4.97% of urban land use and over 43 million parking spaces, whereas the number of individuals in age of driving (adults over 18 years old) amounted to just over 25 million. Within the four states studied, states where urban sprawl was considered more prevalent were also states that had a higher proportion of their urban land devoted to parking lots. The second dissertation topic focused on using GIS to locate suitable sites for corn or cellulosic based ethanol

  18. Electrical Energy Storage for Renewable Energy Systems

    SciTech Connect

    Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  19. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M.

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  20. Artificial photosynthesis combines biology with technology for sustainable energy transformation

    NASA Astrophysics Data System (ADS)

    Moore, Thomas A.; Moore, Ana L.; Gust, Devens

    2013-03-01

    Photosynthesis supports the biosphere. Currently, human activity appropriates about one fourth of terrestrial photosynthetic net primary production (NPP) to support our GDP and nutrition. The cost to Earth systems of "our cut" of NPP is thought to be rapidly driving several Earth systems outside of bounds that were established on the geological time scale. Even with a fundamental realignment of human priorities, changing the unsustainable trajectory of the anthropocene will require reengineering photosynthesis to more efficiently meet human needs. Artificial photosynthetic systems are envisioned that can both supply renewable fuels and serve as platforms for exploring redesign strategies for photosynthesis. These strategies can be used in the nascent field of synthetic biology to make vast, much needed improvements in the biomass production efficiency of photosynthesis.

  1. Energy, environment and sustainable development - tough decisions for a democracy

    SciTech Connect

    Rossin, A.D.

    1994-12-31

    Electricity is recognized to be essential to attaining even minimum modem levels of human welfare in any country. However, where electricity is available, the public shows little concern about where it comes from or what it takes to make sure supply continues to be adequate. In the next century, the world will have to face the difficult decision about the long-term use of plutonium as fuel, and deal with its implications for nonproliferation. What the United States does on this issue will affect all nations, and particularly those around the Pacific Basin. How do responsible leaders set rational priorities in a democracy, when every issue has its vocal advocates and the news media can reach every household? If democracies are to avoid the downside risks of energy shortages, leadership will have to emerge that has the courage to tell the people the truth. That means providing scientific facts and explanations in terms that people can understand.

  2. Steam System Energy Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: fixing steam leaks. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  3. Sustainable use of glyphosate in North American cropping systems.

    PubMed

    Gustafson, David I

    2008-04-01

    Roundup Ready (glyphosate-resistant) cropping systems enable the use of glyphosate, a non-selective herbicide that offers growers several benefits, including superior weed control, flexibility in weed control timing and economic advantages. The rapid adoption of such crops in North America has resulted in greater glyphosate use and concern over the potential for weed resistance to erode the sustainability of its efficacy. Computer modeling is one method that can be used to explore the sustainability of glyphosate when used in glyphosate-resistant cropping systems. Field tests should help strengthen the assumptions on which the models are based, and have been initiated for this purpose. Empirical evaluations of published data show that glyphosate-resistant weeds have an appearance rate of 0.007, defined as the number of newly resistant species per million acres treated, which ranks low among herbicides used in North America. Modeling calculations and ongoing field tests support a practical recommendation for growers occasionally to include other herbicides in glyphosate-resistant cropping systems, to lower further the potential for new resistance to occur. The presented data suggest that the sustainability of glyphosate in North America would be enhanced by prudent use of additional herbicides in glyphosate-resistant cropping systems.

  4. Agricultural biodiversity, social-ecological systems and sustainable diets.

    PubMed

    Allen, Thomas; Prosperi, Paolo; Cogill, Bruce; Flichman, Guillermo

    2014-11-01

    The stark observation of the co-existence of undernourishment, nutrient deficiencies and overweight and obesity, the triple burden of malnutrition, is inviting us to reconsider health and nutrition as the primary goal and final endpoint of food systems. Agriculture and the food industry have made remarkable advances in the past decades. However, their development has not entirely fulfilled health and nutritional needs, and moreover, they have generated substantial collateral losses in agricultural biodiversity. Simultaneously, several regions are experiencing unprecedented weather events caused by climate change and habitat depletion, in turn putting at risk global food and nutrition security. This coincidence of food crises with increasing environmental degradation suggests an urgent need for novel analyses and new paradigms. The sustainable diets concept proposes a research and policy agenda that strives towards a sustainable use of human and natural resources for food and nutrition security, highlighting the preeminent role of consumers in defining sustainable options and the importance of biodiversity in nutrition. Food systems act as complex social-ecological systems, involving multiple interactions between human and natural components. Nutritional patterns and environment structure are interconnected in a mutual dynamic of changes. The systemic nature of these interactions calls for multidimensional approaches and integrated assessment and simulation tools to guide change. This paper proposes a review and conceptual modelling framework that articulate the synergies and tradeoffs between dietary diversity, widely recognised as key for healthy diets, and agricultural biodiversity and associated ecosystem functions, crucial resilience factors to climate and global changes.

  5. World Energy Data Systems (WENDS).

    ERIC Educational Resources Information Center

    Lareau, William E.

    The World Energy Data System (WENDS) allows qualified users on-line access to non-classified management level data on worldwide energy technology and research and development activities. Information is arranged on textual pages and available by means of a simple accessing procedure. Described in this report are the WENDS concept and approach, the…

  6. Energy conservation system

    SciTech Connect

    Long, W.E.

    1984-02-21

    Conservation system is disclosed for use with a power source which supplies power over premises wiring to utilization equipment such as lighting equipment. Contactors and a control system are provided to temporarily interrupt the supplying of power from the power source to at least a portion of the utilization equipment. At least one switching circuit is connected in series between the power and that portion of the utilization equipment. The switching circuit is responsive to the temporary interruption of power to open the circuit between the power source and that portion of the utilization equipment and to maintain that circuit open after the temporary interruption of power ceases, thereby automatically deenergizing that portion of the utilization equipment upon interruption of the power.

  7. Operationalizing the social-ecological systems framework to assess sustainability.

    PubMed

    Leslie, Heather M; Basurto, Xavier; Nenadovic, Mateja; Sievanen, Leila; Cavanaugh, Kyle C; Cota-Nieto, Juan José; Erisman, Brad E; Finkbeiner, Elena; Hinojosa-Arango, Gustavo; Moreno-Báez, Marcia; Nagavarapu, Sriniketh; Reddy, Sheila M W; Sánchez-Rodríguez, Alexandra; Siegel, Katherine; Ulibarria-Valenzuela, José Juan; Weaver, Amy Hudson; Aburto-Oropeza, Octavio

    2015-05-12

    Environmental governance is more effective when the scales of ecological processes are well matched with the human institutions charged with managing human-environment interactions. The social-ecological systems (SESs) framework provides guidance on how to assess the social and ecological dimensions that contribute to sustainable resource use and management, but rarely if ever has been operationalized for multiple localities in a spatially explicit, quantitative manner. Here, we use the case of small-scale fisheries in Baja California Sur, Mexico, to identify distinct SES regions and test key aspects of coupled SESs theory. Regions that exhibit greater potential for social-ecological sustainability in one dimension do not necessarily exhibit it in others, highlighting the importance of integrative, coupled system analyses when implementing spatial planning and other ecosystem-based strategies.

  8. Operationalizing the social-ecological systems framework to assess sustainability

    PubMed Central

    Leslie, Heather M.; Basurto, Xavier; Nenadovic, Mateja; Sievanen, Leila; Cavanaugh, Kyle C.; Cota-Nieto, Juan José; Erisman, Brad E.; Finkbeiner, Elena; Hinojosa-Arango, Gustavo; Moreno-Báez, Marcia; Nagavarapu, Sriniketh; Reddy, Sheila M. W.; Sánchez-Rodríguez, Alexandra; Siegel, Katherine; Ulibarria-Valenzuela, José Juan; Weaver, Amy Hudson; Aburto-Oropeza, Octavio

    2015-01-01

    Environmental governance is more effective when the scales of ecological processes are well matched with the human institutions charged with managing human–environment interactions. The social-ecological systems (SESs) framework provides guidance on how to assess the social and ecological dimensions that contribute to sustainable resource use and management, but rarely if ever has been operationalized for multiple localities in a spatially explicit, quantitative manner. Here, we use the case of small-scale fisheries in Baja California Sur, Mexico, to identify distinct SES regions and test key aspects of coupled SESs theory. Regions that exhibit greater potential for social-ecological sustainability in one dimension do not necessarily exhibit it in others, highlighting the importance of integrative, coupled system analyses when implementing spatial planning and other ecosystem-based strategies. PMID:25918372

  9. Waste to energy--key element for sustainable waste management.

    PubMed

    Brunner, Paul H; Rechberger, Helmut

    2015-03-01

    Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of "protection of men and environment" and "resource conservation". Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.

  10. Chemical engineering challenges and investment opportunities in sustainable energy.

    PubMed

    Heller, Adam

    2008-01-01

    The chemical and energy industries are transforming as they adjust to the new era of high-priced petroleum and severe global warming. As a result of the transformation, engineering challenges and investment opportunities abound. Rapid evolution and fast growth are expected in cathode and anode materials as well as polymeric electrolytes for vehicular batteries and in high-performance polymer-ceramic composites for wind turbines, fuel-efficient aircraft, and lighter and safer cars. Unique process-engineering opportunities exist in sand-oil, coal, and possibly also shale liquefaction to produce transportation fuel; and also in genetic engineering of photosynthesizing plants and other organisms for their processing into high-performance biodegradable polymers and high-value-added environmentally friendly chemicals. Also, research on the feasibility of mitigation of global warming through enhancement of CO(2) uptake by the southern oceans by fertilization with trace amounts of iron is progressing. Because chemical engineers are uniquely well trained in mathematical modeling of mass transport, flow, and mixing, and also in cost analysis, they are likely to join the oceanographers and marine biologists in this important endeavor.

  11. Do Increasingly Globalized Land Systems Promote or Undermine Sustainability?

    NASA Astrophysics Data System (ADS)

    Munroe, D. K.

    2015-12-01

    Scholars are now studying land systems in a global context using such concepts as "telecoupling." Research to date has recognized that local land systems may be undermined by globalization, and local people displaced. The land change community emphasizes the ways in which local people make decisions about natural resources given the opportunities and constraints that globalization presents. This talk will present a summary of current land systems science research in agribusiness, global trade and financial institutions, highlighting key ways in which sustainability measures can capture the effects of these actors and activities.

  12. Can the Unit Manning System Sustain in War

    DTIC Science & Technology

    1988-03-31

    TITLE (and Subtitle) S. TYPE OF REPORT 6 PERIOD COVERED "CAN THE UNIT MANNING SYSTEM SUSTAIN IN WAR" Study Project S. PERFORMING ORG. REPORT NUMBER ś...WORK UNIT NUMBERS U.S. Army War College Carlisle Barracks, PA 17013-5050 11,. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE 31 March 1988 Same...DECL ASSI Fl CATION/ DOWNGRADINGp SCHEDULE IS. DISTRIBUTION STATEMENT (of this Report) Approved for public release ; distribution is unlimited. [7

  13. Rayleigh criterion and acoustic energy balance in unconfined self-sustained oscillating flames

    SciTech Connect

    Durox, D.; Schuller, T.; Noiray, N.; Birbaud, A.L.; Candel, S.

    2008-11-15

    Instabilities of confined combustion systems are often discussed in terms of the Rayleigh criterion, which provides a necessary condition for unstable operation and is commonly used to distinguish driving and damping regions. The analysis is also carried out in some cases by making use of an acoustic energy balance in which the Rayleigh term acts as a source. The case of unconfined flames is less well documented but of importance in practical systems used in heating and drying. This study is motivated by problems of self-sustained oscillations of radiant burners for domestic or industrial processes and of various other types of open flames. Application of the Rayleigh criterion and of the balance of acoustic energy to oscillations arising in such unconfined systems is examined. The objective is to see if the Rayleigh condition is fulfilled and to show how the different perturbed variables are linked to each other to develop an unstable oscillation. These issues are investigated by experiments in two geometries. The first case relates to a single ''V''- or ''M''-shaped flame formed by a burner behaving like a Helmholtz resonator. The second geometry features a collection of conical flames (CCF) established by a multipoint injector. This system is fed by a manifold that features a set of plane modes and resonates like an organ pipe at frequencies corresponding to odd multiples of the quarter wave. The Rayleigh criterion and a related result written in the form of an acoustic energy balance are used to define conditions of instability. A link is established between the pressure signal radiated by the burner and the total heat release rate perturbation yielding the phase lag between these two variables and providing conditions for unstable operation. Systematic experiments carried out in the two burner geometries and model predictions are in good agreement indicating that the Rayleigh source term is positive and that the criterion is well fulfilled by the wavefield

  14. Rayleigh criterion and acoustic energy balance in unconfined self-sustained oscillating flames

    SciTech Connect

    Durox, D.; Schuller, T.; Noiray, N.; Birbaud, A.L.; Candel, S.

    2009-01-15

    Instabilities of confined combustion systems are often discussed in terms of the Rayleigh criterion, which provides a necessary condition for unstable operation and is commonly used to distinguish driving and damping regions. The analysis is also carried out in some cases by making use of an acoustic energy balance in which the Rayleigh term acts as a source. The case of unconfined flames is less well documented but of importance in practical systems used in heating and drying. This study is motivated by problems of self-sustained oscillations of radiant burners for domestic or industrial processes and of various other types of open flames. Application of the Rayleigh criterion and of the balance of acoustic energy to oscillations arising in such unconfined systems is examined. The objective is to see if the Rayleigh condition is fulfilled and to show how the different perturbed variables are linked to each other to develop an unstable oscillation. These issues are investigated by experiments in two geometries. The first case relates to a single ''V''- or ''M''-shaped flame formed by a burner behaving like a Helmholtz resonator. The second geometry features a collection of conical flames (CCF) established by a multipoint injector. This system is fed by a manifold that features a set of plane modes and resonates like an organ pipe at frequencies corresponding to odd multiples of the quarter wave. The Rayleigh criterion and a related result written in the form of an acoustic energy balance are used to define conditions of instability. A link is established between the pressure signal radiated by the burner and the total heat release rate perturbation yielding the phase lag between these two variables and providing conditions for unstable operation. Systematic experiments carried out in the two burner geometries and model predictions are in good agreement indicating that the Rayleigh source term is positive and that the criterion is well fulfilled by the wavefield

  15. Health care financing and the sustainability of health systems.

    PubMed

    Liaropoulos, Lycourgos; Goranitis, Ilias

    2015-09-15

    The economic crisis brought an unprecedented attention to the issue of health system sustainability in the developed world. The discussion, however, has been mainly limited to "traditional" issues of cost-effectiveness, quality of care, and, lately, patient involvement. Not enough attention has yet been paid to the issue of who pays and, more importantly, to the sustainability of financing. This fundamental concept in the economics of health policy needs to be reconsidered carefully. In a globalized economy, as the share of labor decreases relative to that of capital, wage income is increasingly insufficient to cover the rising cost of care. At the same time, as the cost of Social Health Insurance through employment contributions rises with medical costs, it imperils the competitiveness of the economy. These reasons explain why spreading health care cost to all factors of production through comprehensive National Health Insurance financed by progressive taxation of income from all sources, instead of employer-employee contributions, protects health system objectives, especially during economic recessions, and ensures health system sustainability.

  16. Whole systems thinking for sustainable water treatment design

    NASA Astrophysics Data System (ADS)

    Huggins, Mitchell Tyler

    Microbial fuel cell (MFC) technology could provide a low cost alternative to conventional aerated wastewater treatment, however there has been little comparison between MFC and aeration treatment using real wastewater substrate. This study attempts to directly compare the wastewater treatment efficiency and energy consumption and generation among three reactor systems, a traditional aeration process, a simple submerged MFC configuration, and a control reactor acting similar as natural lagoons. Results showed that all three systems were able to remove >90% of COD, but the aeration used shorter time (8 days) then the MFC (10 days) and control reactor (25 days). Compared to aeration, the MFC showed lower removal efficiency in high COD concentration but much higher efficiency when the COD is low. Only the aeration system showed complete nitrification during the operation, reflected by completed ammonia removal and nitrate accumulation. Suspended solid measurements showed that MFC reduced sludge production by 52-82% as compared to aeration, and it also saved 100% of aeration energy. Furthermore, though not designed for high power generation, the MFC reactor showed a 0.3 Wh/g COD/L or 24 Wh/m3 (wastewater treated) net energy gain in electricity generation. These results demonstrate that MFC technology could be integrated into wastewater infrastructure to meet effluent quality and save operational cost. The high cost and life-cycle impact of electrode materials is one major barrier to the large scale application of microbial fuel cells (MFC). We also demonstrate that biomass-derived black carbon (biochar), could be a more cost effective and sustainable alternative to granular activated carbon (GAC) and graphite granule (GG) electrodes. In a comparison study, two biochar materials made from lodgepole pine sawdust pellets (BCp) and lodgepole pine woodchips (BCc), gassified at a highest heat temperature (HHT) of 1000°C under a heating rate of 16°C/min, showed a

  17. Is Sustainability Achievable? Exploring the Limits of Sustainability with Model Systems

    EPA Science Inventory

    Successful implementation of sustainability ideas in ecosystem management requires a basic understanding of the often nonlinear and non-intuitive relationships amongst different dimensions of sustainability, particularly the systemwide implications of human actions. This basic un...

  18. Energy optimization system

    DOEpatents

    Zhou, Zhi; de Bedout, Juan Manuel; Kern, John Michael; Biyik, Emrah; Chandra, Ramu Sharat

    2013-01-22

    A system for optimizing customer utility usage in a utility network of customer sites, each having one or more utility devices, where customer site is communicated between each of the customer sites and an optimization server having software for optimizing customer utility usage over one or more networks, including private and public networks. A customer site model for each of the customer sites is generated based upon the customer site information, and the customer utility usage is optimized based upon the customer site information and the customer site model. The optimization server can be hosted by an external source or within the customer site. In addition, the optimization processing can be partitioned between the customer site and an external source.

  19. Guidelines for sustainable building design: Recommendations from the Presidio of San Francisco energy efficiency design charrette

    SciTech Connect

    Brown, K.; Sartor, D.; Greenberg, S.

    1996-05-01

    In 1994, the Bay Chapter of the Association of Energy Engineers{reg_sign} organized a two-day design charrette for energy-efficient redevelopment of buildings by the National Park Services (NPS) at the Presidio of San Francisco. This event brought together engineers, researchers, architects, government officials, and students in a participatory environment to apply their experience to create guidelines for the sustainable redesign of Presidio buildings. The venue for the charrette was a representative barracks building located at the Main Post of the Presidio. Examination of this building allowed for the development of design recommendations, both for the building and for the remainder of the facilities. The charrette was organized into a committee structure consisting of: steering, measurement and monitoring, modeling, building envelope and historic preservation (architectural), HVAC and controls, lighting, and presentation. Prior to the charrette itself, the modeling and measurement/monitoring committees developed substantial baseline data for the other committees during the charrette. An integrated design approach was initiated through interaction between the committees during the charrette. Later, committee reports were cross-referenced to emphasize whole building design and systems integration.

  20. Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas

    NASA Astrophysics Data System (ADS)

    Metzger, Jürgen O.; Hüttermann, Aloys

    2009-02-01

    An important aspect of present global energy scenarios is the assumption that the amount of biomass that can be grown on the available area is so limited that a scenario based on biomass as the major source of energy should be unrealistic. We have been investigating the question whether a Biomass Scenario may be realistic. We found that the global energy demand projected by the International Energy Agency in the Reference Scenario for the year 2030 could be provided sustainably and economically primarily from lignocellulosic biomass grown on areas which have been degraded by human activities in historical times. Moreover, other renewable energies will contribute to the energy mix. There would be no competition with increasing food demand for existing arable land. Afforestation of degraded areas and investment for energy and fuel usage of the biomass are not more expensive than investment in energy infrastructure necessary up to 2030 assumed in the fossil energy based Reference Scenario, probably much cheaper considering the additional advantages such as stopping the increase of and even slowly reducing the CO2 content of the atmosphere, soil, and water conservation and desertification control. Most importantly, investment for a Biomass Scenario would be actually sustainable, in contrast to investment in energy-supply infrastructure of the Reference Scenario. Methods of afforestation of degraded areas, cultivation, and energetic usage of lignocellulosic biomass are available but have to be further improved. Afforestation can be started immediately, has an impact in some few years, and may be realized in some decades.

  1. Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas.

    PubMed

    Metzger, Jürgen O; Hüttermann, Aloys

    2009-02-01

    An important aspect of present global energy scenarios is the assumption that the amount of biomass that can be grown on the available area is so limited that a scenario based on biomass as the major source of energy should be unrealistic. We have been investigating the question whether a Biomass Scenario may be realistic. We found that the global energy demand projected by the International Energy Agency in the Reference Scenario for the year 2030 could be provided sustainably and economically primarily from lignocellulosic biomass grown on areas which have been degraded by human activities in historical times. Moreover, other renewable energies will contribute to the energy mix. There would be no competition with increasing food demand for existing arable land. Afforestation of degraded areas and investment for energy and fuel usage of the biomass are not more expensive than investment in energy infrastructure necessary up to 2030 assumed in the fossil energy based Reference Scenario, probably much cheaper considering the additional advantages such as stopping the increase of and even slowly reducing the CO(2) content of the atmosphere, soil, and water conservation and desertification control. Most importantly, investment for a Biomass Scenario would be actually sustainable, in contrast to investment in energy-supply infrastructure of the Reference Scenario. Methods of afforestation of degraded areas, cultivation, and energetic usage of lignocellulosic biomass are available but have to be further improved. Afforestation can be started immediately, has an impact in some few years, and may be realized in some decades.

  2. Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient utilization of food waste for fuel and chemical production can positively influence both the energy and environmental sustainability. In these studies we investigated use of food waste to produce butanol by Clostridium beijerinckii P260. In control fermentation, 40.5 g/L of glucose (initia...

  3. ARM Best Estimate Data (ARMBE) Products for Climate Science for a Sustainable Energy Future (CSSEF)

    DOE Data Explorer

    Riihimaki, Laura; Gaustad, Krista; McFarlane, Sally

    2014-06-12

    This data set was created for the Climate Science for a Sustainable Energy Future (CSSEF) model testbed project and is an extension of the hourly average ARMBE dataset to other extended facility sites and to include uncertainty estimates. Uncertainty estimates were needed in order to use uncertainty quantification (UQ) techniques with the data.

  4. Moving toward energy security and sustainability in 2050 by reconfiguring biofuel production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To achieve energy security and sustainability by 2050 requires reconfiguring biofuel production both by building on current infrastructure and existing technology and also by making substantial improvements and changes in the feedstocks used, the process technologies applied, and the fuels produced....

  5. Energy Efficient and Sustainable HPC at Pacific Northwest National Laboratory

    SciTech Connect

    Tuma, Phil; Marquez, Andres; Sego, Landon H.; Schmidt, Roger; Cader, Tahir

    2009-09-01

    Power consumption in US data centers has been escalating at an alarming rate. In response to Public Law 109-431, EPA reported that electricity usage by US data centers accounted for 1.5% of the total electricity used in the US in 2006. They projected that if current data center operating practices continue, electricity usage will almost double to 2.9% of the total electricity used in the US in 2011 (EPA, 2007). Consequently EPA issued a call to action to both government and industry to collaborate and set aggressive goals to reduce power consumption in data centers. In the spirit of responding to the findings and recommendations of the EPA report, the Pacific Northwest National Laboratory (PNNL) has teamed with several key organizations including: The Green Grid (TGG), ASHRAE TC9.9, IBM, 3M, and SprayCool. As part of this effort, a highly instrumented liquid-cooled cluster has been installed at PNNL. The cluster is housed in an 800 ft2 data center which resides in a mixed-use data center with a significant amount of instrumentation as well. The eventual objective of the effort is to be able to report the real-time power consumption, energy efficiency, and productivity of the liquid-cooled data center. Preliminary results from the effort at PNNL are reported in this paper. Thermal results are reported for the hottest server components, including the microprocessors and memory DIMMs. Under all conditions tested, the components have not exceeded manufacturers’ specifications. More importantly, the data show that the liquid-cooled servers can be maintained within specifications while rejecting to non-chilled facility water at 78°F (25.6°C). Furthermore, a reasonable extrapolation suggests that the specifications can still be maintained at 86°F (30°C). In an effort to address global warming, work has started on the qualification of a new 3M Fluoroketone fluid that has a Global Warming Potential (GWP) of 1. This GWP is the lowest published value of all commercially

  6. Integrated roof wind energy system

    NASA Astrophysics Data System (ADS)

    Suma, A. B.; Ferraro, R. M.; Dano, B.; Moonen, S. P. G.

    2012-10-01

    Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  7. Ovshinsky Sustainable Energy Fellowship: Excitonics for Transparent Photovoltaics

    NASA Astrophysics Data System (ADS)

    Lunt, Richard

    Room-­temperature excitonic materials offer new opportunities for low­-cost photovoltaic (PV) systems and provide prospects for unique solar harvesting science and applications. In the first part of this talk, I will introduce our pioneering work on developing transparent PVs that are creating a new paradigm for seamless solar harvesting around buildings, automobiles, and mobile electronics. These devices are enabled by the manipulation of excitonic semiconductor materials with selective harvesting in the near­infrared and ultraviolet components of the solar spectrum. I will describe key photophysical properties, outline the thermodynamic and practical limits to these new classes of materials and devices, and briefly discuss their commercial impact for a range of applications. In the second part, I will describe the development of a new series organic salts that allow tunable photoresponse from 900nm to 1600nm, an unprecedented range for small­molecule semiconductors. These organic salts also enable precise tuning of frontier orbital levels and heterojunction interface gaps through anion alloying that result in voltages near the thermodynamic limit. This design strategy can further enable rapid development of efficient and low­cost multijunction devices (both opaque and transparent) with complimentary response across the solar spectrum.

  8. Evaluating the Sustained Performance of COTS-based Messaging Systems

    SciTech Connect

    Tran, Phong; Gosper, Jeff; Gorton, Ian

    2003-12-01

    Messaging systems, which include message brokers built on top of message-oriented middleware, have been used as middleware components in many enterprise application integration projects. There are many COTS-based messaging systems on the market, but there is little concrete understanding in the software industry on the performance of these different technologies. The authors have carried out a scenario-based evaluation of three leading messaging systems to provide insight into performance issues. The evaluation process includes a study of the sustained performance of the system under load. The result of this study is used to derive a generic metric for quantifying a messaging systems performance. The paper describes a synthetic transactional scenario, which is used for load tests and performance measurement. The results from executing this test scenario with three messaging systems are then presented and explained.

  9. A real-time recording model of key indicators for energy consumption and carbon emissions of sustainable buildings.

    PubMed

    Wu, Weiwei; Yang, Huanjia; Chew, David; Hou, Yanhong; Li, Qiming

    2014-05-14

    Buildings' sustainability is one of the crucial parts for achieving urban sustainability. Applied to buildings, life-cycle assessment encompasses the analysis and assessment of the environmental effects of building materials, components and assemblies throughout the entire life of the building construction, use and demolition. Estimate of carbon emissions is essential and crucial for an accurate and reasonable life-cycle assessment. Addressing the need for more research into integrating analysis of real-time and automatic recording of key indicators for a more accurate calculation and comparison, this paper aims to design a real-time recording model of these crucial indicators concerning the calculation and estimation of energy use and carbon emissions of buildings based on a Radio Frequency Identification (RFID)-based system. The architecture of the RFID-based carbon emission recording/tracking system, which contains four functional layers including data record layer, data collection/update layer, data aggregation layer and data sharing/backup layer, is presented. Each of these layers is formed by RFID or network devices and sub-systems that operate at a specific level. In the end, a proof-of-concept system is developed to illustrate the implementation of the proposed architecture and demonstrate the feasibility of the design. This study would provide the technical solution for real-time recording system of building carbon emissions and thus is of great significance and importance to improve urban sustainability.

  10. A Real-Time Recording Model of Key Indicators for Energy Consumption and Carbon Emissions of Sustainable Buildings

    PubMed Central

    Wu, Weiwei; Yang, Huanjia; Chew, David; Hou, Yanhong; Li, Qiming

    2014-01-01

    Buildings' sustainability is one of the crucial parts for achieving urban sustainability. Applied to buildings, life-cycle assessment encompasses the analysis and assessment of the environmental effects of building materials, components and assemblies throughout the entire life of the building construction, use and demolition. Estimate of carbon emissions is essential and crucial for an accurate and reasonable life-cycle assessment. Addressing the need for more research into integrating analysis of real-time and automatic recording of key indicators for a more accurate calculation and comparison, this paper aims to design a real-time recording model of these crucial indicators concerning the calculation and estimation of energy use and carbon emissions of buildings based on a Radio Frequency Identification (RFID)-based system. The architecture of the RFID-based carbon emission recording/tracking system, which contains four functional layers including data record layer, data collection/update layer, data aggregation layer and data sharing/backup layer, is presented. Each of these layers is formed by RFID or network devices and sub-systems that operate at a specific level. In the end, a proof-of-concept system is developed to illustrate the implementation of the proposed architecture and demonstrate the feasibility of the design. This study would provide the technical solution for real-time recording system of building carbon emissions and thus is of great significance and importance to improve urban sustainability. PMID:24831109

  11. Quantitative energy extraction measurements in a photoionization-stabilized self-sustained XeF laser

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Hasson, V.; Rowley, P. D.; Exberger, R.

    1979-01-01

    Detailed time-correlated gain, fluorescence, and laser energy measurements were used to obtain quantitative data on energy extraction efficiencies for a photoionization-stabilized self-sustained XeF laser. A current pulse of 25 ns full width at half-maximum produced an 80-cu-cm XeF plasma in NF3:Xe:He gas mixtures with a maximum output energy of 80 mJ. The results show that the maximum small-signal gain and the maximum specific output energy is proportional to the NF3 content of the gas mixture. This suggests that there is an optimum fractional utilization of the NF3 molecules in the discharge. Under high-gain conditions, 30-40% of the energy stored in XeF(asterisk) can be extracted in a gain-switched pulse. The output energy represents less than 1% of the input energy.

  12. Improving energy efficiency via smart building energy management systems. A comparison with policy measures

    SciTech Connect

    Rocha, Paula; Siddiqui, Afzal; Stadler, Michael

    2014-12-09

    In this study, to foster the transition to more sustainable energy systems, policymakers have been approving measures to improve energy efficiency as well as promoting smart grids. In this setting, building managers are encouraged to adapt their energy operations to real-time market and weather conditions. Yet, most fail to do so as they rely on conventional building energy management systems (BEMS) that have static temperature set points for heating and cooling equipment. In this paper, we investigate how effective policy measures are at improving building-level energy efficiency compared to a smart BEMS with dynamic temperature set points. To this end, we present an integrated optimisation model mimicking the smart BEMS that combines decisions on heating and cooling systems operations with decisions on energy sourcing. Using data from an Austrian and a Spanish building, we find that the smart BEMS results in greater reduction in energy consumption than a conventional BEMS with policy measures.

  13. Sustainability and energy development: influences of greenhouse gas emission reduction options on water use in energy production.

    PubMed

    Cooper, D Craig; Sehlke, Gerald

    2012-03-20

    Climate change mitigation strategies cannot be evaluated solely in terms of energy cost and greenhouse gas (GHG) mitigation potential. Maintaining GHGs at a "safe" level will require fundamental change in the way we approach energy production, and a number of environmental, economic, and societal factors will come into play. Water is an essential component of energy production, and water resource constraints will limit our options for meeting society's growing demand for energy while also reducing GHG emissions. This study evaluates these potential constraints from a global perspective by revisiting the climate wedges proposal of Pacala and Socolow (Science2004, 305 (5686), 968-972) and evaluating the potential water-use impacts of the wedges associated with energy production. GHG mitigation options that improve energy conversion or use efficiency can simultaneously reduce GHG emissions, lower energy costs, and reduce energy impacts on water resources. Other GHG mitigation options (e.g., carbon capture and sequestration, traditional nuclear, and biofuels from dedicated energy crops) increase water requirements for energy. Achieving energy sustainability requires deployment of alternatives that can reduce GHG emissions, water resource impacts, and energy costs.

  14. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production.

    PubMed

    Pant, Deepak; Van Bogaert, Gilbert; Diels, Ludo; Vanbroekhoven, Karolien

    2010-03-01

    Microbial fuel cells (MFCs) have gained a lot of attention in recent years as a mode of converting organic waste including low-strength wastewaters and lignocellulosic biomass into electricity. Microbial production of electricity may become an important form of bioenergy in future because MFCs offer the possibility of extracting electric current from a wide range of soluble or dissolved complex organic wastes and renewable biomass. A large number of substrates have been explored as feed. The major substrates that have been tried include various kinds of artificial and real wastewaters and lignocellulosic biomass. Though the current and power yields are relatively low at present, it is expected that with improvements in technology and knowledge about these unique systems, the amount of electric current (and electric power) which can be extracted from these systems will increase tremendously providing a sustainable way of directly converting lignocellulosic biomass or wastewaters to useful energy. This article reviews the various substrates that have been explored in MFCs so far, their resulting performance, limitations as well as future potential substrates.

  15. Keeping the Future Bright: Department of Defense (DOD) Sustainable Energy Strategy for Installations

    DTIC Science & Technology

    2016-04-04

    goal established by EISA 2007 (See Figure 5))4 The Army continued to employ combined heat and power (CHP) systems to improve its energy efficiency ...progress. DON’s investment in thermal energy from the waste heat of cogeneration systems help to meet reduction goals through source energy credits. In FY...resilience by decreasing overall energy consumption, increasing the energy efficiency of installation systems , increasing the use of viable alternative

  16. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.

    PubMed

    Jeswani, H K; Azapagic, A

    2016-04-01

    Even though landfilling of waste is the least favourable option in the waste management hierarchy, the majority of municipal solid waste (MSW) in many countries is still landfilled. This represents waste of valuable resources and could lead to higher environmental impacts compared to energy recovered by incineration, even if the landfill gas is recovered. Using life cycle assessment (LCA) as a tool, this paper aims to find out which of the following two options for MSW disposal is more environmentally sustainable: incineration or recovery of biogas from landfills, each producing either electricity or co-generating heat and electricity. The systems are compared on a life cycle basis for two functional units: 'disposal of 1 tonne of MSW' and 'generation of 1 kWh of electricity'. The results indicate that, if both systems are credited for their respective recovered energy and recyclable materials, energy from incineration has much lower impacts than from landfill biogas across all impact categories, except for human toxicity. The impacts of incineration co-generating heat and electricity are negative for nine out of 11 categories as the avoided impacts for the recovered energy and materials are higher than those caused by incineration. By improving the recovery rate of biogas, some impacts of landfilling, such as global warming, depletion of fossil resources, acidification and photochemical smog, would be significantly reduced. However, most impacts of the landfill gas would still be higher than the impacts of incineration, except for global warming and human toxicity. The analysis on the basis of net electricity produced shows that the LCA impacts of electricity from incineration are several times lower in comparison to the impacts of electricity from landfill biogas. Electricity from incineration has significantly lower global warming and several other impacts than electricity from coal and oil but has higher impacts than electricity from natural gas or UK grid. At

  17. Hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics.

    PubMed

    Zhang, Kewei; Wang, Xue; Yang, Ya; Wang, Zhong Lin

    2015-01-01

    We report a hybridized electromagnetic-triboelectric nanogenerator for highly efficient scavenging of biomechanical energy to sustainably power wearable electronics by human walking. Based on the effective conjunction of triboelectrification and electromagnetic induction, the hybridized nanogenerator, with dimensions of 5 cm × 5 cm × 2.5 cm and a light weight of 60 g, integrates a triboelectric nanogenerator (TENG) that can deliver a peak output power of 4.9 mW under a loading resistance of 6 MΩ and an electromagnetic generator (EMG) that can deliver a peak output power of 3.5 mW under a loading resistance of 2 kΩ. The hybridized nanogenerator exhibits a good stability for the output performance and a much better charging performance than that of an individual energy-harvesting unit (TENG or EMG). Furthermore, the hybridized nanogenerator integrated in a commercial shoe has been utilized to harvest biomechanical energy induced by human walking to directly light up tens of light-emitting diodes in the shoe and sustainably power a smart pedometer for reading the data of a walking step, distance, and energy consumption. A wireless pedometer driven by the hybrid nanogenerator can work well to send the walking data to an iPhone under the distance of 25 m. This work pushes forward a significant step toward energy harvesting from human walking and its potential applications in sustainably powering wearable electronics.

  18. A budget of energy transfer in a sustained vocal folds vibration in glottis

    NASA Astrophysics Data System (ADS)

    Zhang, Lucy; Yang, Jubiao; Krane, Michael

    2016-11-01

    A set of force and energy balance equations using the control volume approach is derived based on the first principles of physics for a sustained vocal folds vibration in glottis. The control volume analysis is done for compressible airflow in a moving and deforming control volume in the vicinity of the vocal folds. The interaction between laryngeal airflow and vocal folds are successfully simulated using the modified Immersed Finite Element Method (mIFEM), a fully coupled approach to simulate fluid-structure interactions. Detailed mathematical terms are separated out for deeper physical understanding and utilization of mechanical energy is quantified with the derived equation. The results show that majority of energy input is consumed for driving laryngeal airflow, while a smaller portion is for compensating viscous losses in and sustaining the vibration of the vocal folds. We acknowledge the funding support of NIH 2R01DC005642-10A1.

  19. A global conversation about energy from biomass: the continental conventions of the global sustainable bioenergy project.

    PubMed

    Lynd, Lee Rybeck; Aziz, Ramlan Abdul; de Brito Cruz, Carlos Henrique; Chimphango, Annie Fabian Abel; Cortez, Luis Augusto Barbosa; Faaij, Andre; Greene, Nathanael; Keller, Martin; Osseweijer, Patricia; Richard, Tom L; Sheehan, John; Chugh, Archana; van der Wielen, Luuk; Woods, Jeremy; van Zyl, Willem Heber

    2011-04-06

    The global sustainable bioenergy (GSB) project was formed in 2009 with the goal of providing guidance with respect to the feasibility and desirability of sustainable, bioenergy-intensive futures. Stage 1 of this project held conventions with a largely common format on each of the world's continents, was completed in 2010, and is described in this paper. Attended by over 400 persons, the five continental conventions featured presentations, breakout sessions, and drafting of resolutions that were unanimously passed by attendees. The resolutions highlight the potential of bioenergy to make a large energy supply contribution while honouring other priorities, acknowledge the breadth and complexity of bioenergy applications as well as the need to take a systemic approach, and attest to substantial intra- and inter-continental diversity with respect to needs, opportunities, constraints and current practice relevant to bioenergy. The following interim recommendations based on stage 1 GSB activities are offered: - Realize that it may be more productive, and also more correct, to view the seemingly divergent assessments of bioenergy as answers to two different questions rather than the same question. Viewed in this light, there is considerably more scope for reconciliation than might first be apparent, and it is possible to be informed rather than paralysed by divergent assessments.- Develop established and advanced bioenergy technologies such that each contributes to the other's success. That is, support and deploy in the near-term meritorious, established technologies in ways that enhance rather than impede deployment of advanced technologies, and support and deploy advanced technologies in ways that expand rather than contract opportunities for early adopters and investors.- Be clear in formulating policies what mix of objectives are being targeted, measure the results of these policies against these objectives and beware of unintended consequences

  20. A global conversation about energy from biomass: the continental conventions of the global sustainable bioenergy project

    PubMed Central

    Lynd, Lee Rybeck; Aziz, Ramlan Abdul; de Brito Cruz, Carlos Henrique; Chimphango, Annie Fabian Abel; Cortez, Luis Augusto Barbosa; Faaij, Andre; Greene, Nathanael; Keller, Martin; Osseweijer, Patricia; Richard, Tom L.; Sheehan, John; Chugh, Archana; van der Wielen, Luuk; Woods, Jeremy; van Zyl, Willem Heber

    2011-01-01

    The global sustainable bioenergy (GSB) project was formed in 2009 with the goal of providing guidance with respect to the feasibility and desirability of sustainable, bioenergy-intensive futures. Stage 1 of this project held conventions with a largely common format on each of the world's continents, was completed in 2010, and is described in this paper. Attended by over 400 persons, the five continental conventions featured presentations, breakout sessions, and drafting of resolutions that were unanimously passed by attendees. The resolutions highlight the potential of bioenergy to make a large energy supply contribution while honouring other priorities, acknowledge the breadth and complexity of bioenergy applications as well as the need to take a systemic approach, and attest to substantial intra- and inter-continental diversity with respect to needs, opportunities, constraints and current practice relevant to bioenergy. The following interim recommendations based on stage 1 GSB activities are offered: — Realize that it may be more productive, and also more correct, to view the seemingly divergent assessments of bioenergy as answers to two different questions rather than the same question. Viewed in this light, there is considerably more scope for reconciliation than might first be apparent, and it is possible to be informed rather than paralysed by divergent assessments.— Develop established and advanced bioenergy technologies such that each contributes to the other's success. That is, support and deploy in the near-term meritorious, established technologies in ways that enhance rather than impede deployment of advanced technologies, and support and deploy advanced technologies in ways that expand rather than contract opportunities for early adopters and investors.— Be clear in formulating policies what mix of objectives are being targeted, measure the results of these policies against these objectives and beware of unintended consequences