Xu, Fang-Fang; Shi, Wei; Zhang, Hui; Guo, Qing-Ming; Wang Zhen-Zhong; Bi, Yu-An; Wang, Zhi-Min; Xiao, Wei
2015-01-01
In this study, hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata were prepared and the in vitro release behavior were also evaluated. The optimal prescription was achieved by studying the main factor of the type and amount of hydroxypropyl methylcellulose (HPMC) using single factor test and evaluating through cumulative release of three lactones. No burst drug release from the obtained matrix tablets was observed. Drug release sustained to 14 h. The release mechanism of three lactones from A. paniculata was accessed by zero-order, first-order, Higuchi and Peppas equation. The release behavior of total lactones from A. paniculata was better agreed with Higuchi model and the drug release from the tablets was controlled by degradation of the matrix. The preparation of hydrophilic matrix sustained release tablets of total lactones from A. paniculata with good performance of drug release was simple.
Gunjal, P. T.; Shinde, M. B.; Gharge, V. S.; Pimple, S. V.; Gurjar, M. K.; Shah, M. N.
2015-01-01
The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 32 full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:26798171
Gunjal, P T; Shinde, M B; Gharge, V S; Pimple, S V; Gurjar, M K; Shah, M N
2015-01-01
The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 3(2) full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.
Ise, Yuya; Wako, Tetsuya; Miura, Yoshihiko; Katayama, Shirou; Shimizu, Hisanori
2009-12-01
The present study was undertaken to determine the pharmacoeconomics of switching from sustained-release morphine tablet to matrix type (MT) of transdermal fontanel or sustained-release Oxycodone tablet. Cost-effective analysis was performed using a simulation model along with decision analysis. The analysis was done from the payer's perspective. The cost-effective ratio/patient of transdermal MT fontanel (22, 539 yen)was lower than that of sustained -release Oxycodone tablet (23, 630 yen), although a sensitivity analysis could not indicate that this result was reliable. These results suggest the possibility that transdermal MT fontanel was much less expensive than a sustained-release Oxycodone tablet.
Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot
2012-01-01
The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:23960836
Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot
2013-04-01
The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.
Cao, Qing-Ri; Kim, Tae-Wan; Lee, Beom-Jin
2007-07-18
Two types of the carnauba wax-based lipophilic matrix tablet using spray-dried granules (SDT) or directly compressible powdered mixtures (DCT) were prepared for sustained release. The model drug was a highly water-soluble potassium citrate and loaded about 74% of the total tablet weight. The SDT slowly eroded and disintegrated during the release study without showing sustained release when the hydrophilic excipients were added. In contrast, the DCT was more efficient for sustained release. The release rate decreased with increasing carnauba wax concentration. In particular, the sustained release rate was markedly pronounced when the lipophilic stearyl alcohol and stearic acid were combined with the carnauba wax. The surface of the intact DCT appeared to be smooth and rusty. The DCT rose to the surface from the bottom of the vessel during the release test, and numerous pores and cracks with no signs of disintegration were also observed after the release test. The release profile was dependent on the formulation composition and preparation method of the matrix tablet. Diffusion-controlled leaching through the channels of the pores and cracks of the lipophilic matrix tablet (DCT) is a key to the sustained release.
Jamil, Qurratul Ain; Masood, Muhammad Irfan; Jamil, Muhammad Nauman; Masood, Imran; Iqbal, Shahid Muhammad
2017-03-01
Polysaccharide gums because of their biocompatibility, biodegradability and non-immunogenic properties are considered as the best choice for preparing sustained release tablets as compared to their synthetic counterpart. The cross linking of natural gums in matrix tablets increase the sustained release property of matrix tablets. Isoniazid is a first line therapy of tuberculosis, belongs to BCS I with half-life of 3-4 hours. These characteristics make isoniazid a good candidate for sustained release dosage form. Karaya gum crossed linked with trisodium tri metaphosphate was used as release rate retardant for preparing isoniazid cross-linked matrix tablet. Total 8 sustained release formulations were prepared. Both granules and tablets were evaluated under in vitro condition against different parameters. Dissolution studies were performed with all eight formulations for 12 hours using USP apparatus I. Four formulations designated as F1, F2, F3, F4 have drug and karaya gum while other four formulations F5, F6, F7, F8 have drug and crossed linked polymer in ratios of 1:1, 1:2, 1:3 and 1:4 respectively. Dissolution data was analyzed by using different kinetic models. Best fit model for most efficient formulation was zero order while release mechanism was super case I. Formulation 8 showed sufficiently slow release kinetics and about 83% of drug was released in 10 hours, indicating that cross-linked karaya gum proved efficient in preparing sustained release tablets.
Hydroxyethyl Pachyman as a novel excipient for sustained-release matrix tablets.
Zhou, Xiaoju; Wang, Pengyu; Wang, Jiong; Liu, Zhi; Hong, Xuechuan; Xiao, Yuling; Liu, Peng; Hu, Xianming
2016-12-10
This paper addressed the application of hydroxyethyl pachyman (HEP) as a novel matrix for sustained - release tablets, using diclofenac sodium (DS) as a model drug. The studies showed the HEP tablets prepared by wet granulation had much slower drug release as compared to those prepared by direct compression. Meanwhile, increasing the percentage of HEP in the formulations caused a decrease in drug release rates. Moreover, DS release from the HEP tablets was much higher at high pH (6.8) than that at low pH (1.2). Morphology studies proved the HEP tablet formed a continuous gel layer with porous inner structure in the dissolution media. Analysis of DS release profiles revealed that diffusion and matrix erosion occurred in simulated intestinal fluid(SIF, pH=6.8) for all the tablets. The experimental results predict HEP has a potential as a hydrophilic matrix in tablets to prolong drug release. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tajiri, Shinichiro; Kanamaru, Taro; Kamada, Makoto; Makoto, Kamada; Konno, Tsutomu; Nakagami, Hiroaki
2010-01-04
The objective of the present work is to develop an extended-release dosage form of cevimeline. Two types of extended-release tablets (simple matrix tablets and press-coated tablets) were prepared and their potential as extended-release dosage forms were assessed. Simple matrix tablets have a large amount of hydroxypropylcellulose as a rate-controlling polymer and the matrix is homogeneous throughout the tablet. The press-coated tablets consisted of a matrix core tablet, which was completely surrounded by an outer shell containing a large amount of hydroxypropylcellulose. The simple matrix tablets could not sustain the release of cevimeline effectively. In contrast, the press-coated tablets showed a slower dissolution rate compared with simple matrix tablets and the release curve was nearly linear. The dissolution of cevimeline from the press-coated tablets was not markedly affected by the pH of the dissolution medium or by a paddle rotating speed over the range of 50-200 rpm. Furthermore, cevimeline was constantly released from the press-coated tablets in the gastrointestinal tract and the steady-state plasma drug levels were maintained in beagle dogs. These results suggested that the designed PC tablets have a potential for extended-release dosage forms.
Meng, Lingbin; Teng, Zhongqiu; Zheng, Nannan; Meng, Weiwei; Dai, Rongji; Deng, Yulin
2013-01-01
The aim of this study was to develop a derivative of chitosan as pharmaceutical excipient used in sustained-release matrix tablets of poorly soluble drugs. A water-soluble quaternary ammonium carboxymethylchitosan was synthesized by a two-step reaction with carboxymethylchitosan (CMCTS), decylalkyl dimethyl ammonium and epichlorohydrin. The elemental analysis showed that the target product with 10.27% of the maximum grafting degree was obtained. To assess the preliminary safety of this biopolymer, cell toxicity assay was employed. In order to further investigate quaternary ammonium carboxymethylchitosan application as pharmaceutical excipient, aspirin was chosen as model drug. The effect of quaternary ammonium CMCTS on aspirin release rate from sustained-release matrix tablets was examined by in-vitro dissolution experiments. The results showed that this biopolymer had a great potential in increasing the dissolution of poorly soluble drug. With the addition of CMCTS-CEDA, the final cumulative release rate of drug rose up to 90%. After 12 h, at the grade of 10, 20 and 50 cps, the drug release rate increased from 58.1 to 90.7%, from 64.1 to 93.9%, from 69.3 to 96.1%, respectively. At the same time, aspirin release rate from sustainedrelease model was found to be related to the amount of quaternary ammonium CMCTS employed. With the increase of CMCTS-CEDA content, the accumulated release rate increased from 69.1% to 86.7%. The mechanism of aspirin release from sustained-release matrix tablets was also preliminary studied to be Fick diffusion. These data demonstrated that the chitosan derivative has positive effect on drug release from sustained-release matrix tablets. PMID:24250627
Kaleemullah, M; Jiyauddin, K; Thiban, E; Rasha, S; Al-Dhalli, S; Budiasih, S; Gamal, O E; Fadli, A; Eddy, Y
2017-07-01
Currently, the use of natural gums and mucilage is of increasing importance in pharmaceutical formulations as valuable drug excipient. Natural plant-based materials are economic, free of side effects, biocompatible and biodegradable. Therefore, Ketoprofen matrix tablets were formulated by employing Hibiscus rosa-sinensis leaves mucilage as natural polymer and HPMC (K100M) as a synthetic polymer to sustain the drug release from matrix system. Direct compression method was used to develop sustained released matrix tablets. The formulated matrix tablets were evaluated in terms of physical appearance, weight variation, thickness, diameter, hardness, friability and in vitro drug release. The difference between the natural and synthetic polymers was investigated concurrently. Matrix tablets developed from each formulation passed all standard physical evaluation tests. The dissolution studies of formulated tablets revealed sustained drug release up to 24 h compared to the reference drug Apo Keto® SR tablets. The dissolution data later were fitted into kinetic models such as zero order equation, first order equation, Higuchi equation, Hixson Crowell equation and Korsmeyer-Peppas equation to study the release of drugs from each formulation. The best formulations were selected based on the similarity factor ( f 2 ) value of 50% and more. Through the research, it is found that by increasing the polymers concentration, the rate of drug release decreased for both natural and synthetic polymers. The best formulation was found to be F3 which contained 40% Hibiscus rosa-sinensis mucilage polymer and showed comparable dissolution profile to the reference drug with f 2 value of 78.03%. The release kinetics of this formulation has shown to follow non-Fickian type which involved both diffusion and erosion mechanism. Additionally, the statistical results indicated that there was no significant difference (p > 0.05) between the F3 and reference drug in terms of MDT and T50% with p-values of 1.00 and 0.995 respectively.
He, Wei; Wu, Mengmeng; Huang, Shiqing; Yin, Lifang
2015-01-15
Repaglinide (RG) is an efficient antihyperglycemic drug; however, due to its short half-life, patients are required to take the marketed products several times a day, which compromises the therapeutic effects. The present study was conducted to develop a hydrophilic sustained release matrix tablet for RG with the aims of prolonging its action time, reducing the required administration times and side effects and improving patient adherence. The matrix tablets were fabricated by a direct compression method, the optimized formulation for which was obtained by screening the factors that affected the drug release. Moreover, studies of the pharmacokinetics and hypoglycemic activity as measured by glucose assay kits were performed in dogs. Sustained drug releases profiles over 10h and a reduced influence of medium pHs on release were achieved with the optimized formulation; moreover, the in vivo performance of extended release formulation was also examined, and better absorption, a one-fold decrease in Cmax, a two-fold increase of Tmax and a prolonged hypoglycemic effect compared to the marketed product were observed. In conclusion, sustained RG release and prolonged action were observed with present matrix tablets, which therefore provide a promising formulation for T2D patients who require long-term treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
Design of sustained release tablet containing fucoidan.
Tran, Thao Truong-Dinh; Ngo, Dai Kieu-Phuong; Vo, Toi Van; Tran, Phuong Ha-Lien
2015-01-01
The study introduced a new therapeutic agent, fucoidan, which can offer potential medical treatments including anti-inflammatory and anti-coagulant activities, as well as anti-proliferative effects on cancer cells. Fucoidan was included in sustained release formulations expected for an effective plasma drug concentration for approximately 24 h. The matrices based on the two polymers hydroxypropyl methycellulose (HPMC) and polyethylene oxide (PEO) were prepared with various ratios between the polymers and fucoidan. The dissolution profiles of various matrix tablets performed in enzyme-free simulated intestinal fluid (pH 6.8) for 24 h indicated a higher potential of PEO-based matrix tablets in sustaining release of fucoidan. The swelling and erosion of the tablets were also characterized to elucidate the difference among those dissolution profiles.
Phaechamud, T.; Choncheewa, C.
2015-01-01
The objective of this investigation was to prepare the shellac wax matrix tablets by fusion and molding technique incorporated with Lutrol in different ratios to modify the hydrophobicity of matrix tablet. The matrix tablets with single drug were loaded either with propranolol hydrochloride or hydrochlorothiazide as hydrophilic and hydrophobic model drugs, and a dual drug formula was also prepared. The single and dual drug release patterns were studied in a dissolution apparatus using distilled water as medium. Propranolol hydrochloride released from matrix was easier than hydrochlorothiazide. Drug release from shellac wax matrix could be enhanced by incorporation of Lutrol. However retardation of drug release from some matrix tablets was evident for the systems that could form dispersion in the dissolution medium. The gel network from high content of Lutrol was hexagonal which was a dense and more compact structure than the other structures found when low amounts of Lutrol were present in the formula. Therefore, the formulae with high content of Lutrol could prolong drug release more efficiently than those containing low content of Lutrol. Hence shellac wax matrix could modulate the drug release with the addition of Lutrol. Sustainable dual drug release was also obtained from these developed matrix tablets. Thus shellac wax-Lutrol component could be used as a potential matrix tablet prepared with fusion and molding technique with excellent controlled drug release. PMID:25767320
Development of theophylline sustained release dosage form based on Kollidon SR.
Reza, Md Selim; Quadir, Mohiuddin Abdul; Haider, Syed Shabbir
2002-01-01
Sustained release theophylline matrix tablets constituting Kollidon SR (Polyvinyl acetate and povidone based matrix retarding polymer) were developed in this study in an attempt to design a dosage form that manifests desirable release profile and thorough adherence to official monographs. Four matrix tablet formulations were prepared by dry blending and direct compression of Kollidon SR and HPMC-15cps (hydroxypropylmethylcellulose) in varying proportion with fixed percentage of theophylline. Tablets containing only Kollidon SR with the active ingredient demonstrated a rapid rate of drug release with an initial burst effect. Incorporation of HPMC-15cps in the matrix tablet prolonged the release of drug with subsequent minimization of burst effect as confirmed by mean dissolution time, T50 and Higuchi release rate data. Among the batches containing HPMC-15 cps, a direct relationship was obtained between release rate and the percentage of HPMC used. A suitable controlled release profile was obtained with the matrix tablets containing 20% Kollidon SR and 30% HPMC-15cps. The formulation showed close resemblance to commercial products and compliance with USP specification. The results were explored and explained by the difference of physico-chemical property and hydration characteristics of the polymers. In addition to this result, the exponential model was applied to characterize the drug release behaviour from polymeric systems. It was found that, Fickian release is predominant in tablets containing Kollidon SR alone and non-Fickian mechanism plays an important role in the release of drug from HPMC containing tablets with a trend towards zero-order or case II release. In vitro release profile of two commercial brands were also undertaken for comparison and modulation of the experimental batches.
Chaibva, Faith A; Khamanga, Sandile M M; Walker, Roderick B
2010-12-01
Hydrophilic matrix formulations are important and simple technologies that are used to manufacture sustained release dosage forms. Hydroxypropyl methylcellulose-based matrix tablets, with and without additives, were manufactured to investigate the rate of hydration, rate of erosion, and rate and mechanism of drug release. Scanning electron microscopy was used to assess changes in the microstructure of the tablets during drug release testing and whether these changes could be related to the rate of drug release from the formulations. The results revealed that the rate of hydration and erosion was dependent on the polymer combination(s) used, which in turn affected the rate and mechanism of drug release from these formulations. It was also apparent that changes in the microstructure of matrix tablets could be related to the different rates of drug release that were observed from the test formulations. The use of scanning electron microscopy provides useful information to further understand drug release mechanisms from matrix tablets.
Asada, Takumi; Yoshihara, Naoki; Ochiai, Yasushi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru
2018-04-25
Water-soluble polymers with high viscosity are frequently used in the design of sustained-release formulations of poorly water-soluble drugs to enable complete release of the drug in the gastrointestinal tract. Tablets containing matrix granules with a water-soluble polymer are preferred because tablets are easier to handle and the multiple drug-release units of the matrix granules decreases the influences of the physiological environment on the drug. However, matrix granules with a particle size of over 800 μm sometimes cause a content uniformity problem in the tableting process because of the large particle size. An effective method of manufacturing controlled-release matrix granules with a smaller particle size is desired. The aim of this study was to develop tablets containing matrix granules with a smaller size and good controlled-release properties, using phenytoin as a model poorly water-soluble drug. We adapted the recently developed hollow spherical granule granulation technology, using water-soluble polymers with different viscosities. The prepared granules had an average particle size of 300 μm and sharp particle size distribution (relative width: 0.52-0.64). The values for the particle strength of the granules were 1.86-1.97 N/mm 2 , and the dissolution profiles of the granules were not affected by the tableting process. The dissolution profiles and the blood concentration levels of drug released from the granules depended on the viscosity of the polymer contained in the granules. We succeeded in developing the desired controlled-release granules, and this study should be valuable in the development of sustained-release formulations of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.
Silicone adhesive matrix of verapamil hydrochloride to provide pH-independent sustained release.
Tolia, Gaurav; Li, S Kevin
2014-02-01
Providing pH-independent oral release of weakly basic drugs with conventional matrix tablets can be challenging because of the pH-dependent solubility characteristics of the drugs and the changing pH environment along the gastrointestinal tract. The aim of the present study was to use a hydrophobic polymer to overcome the issue of pH-dependent release of weakly basic model drug verapamil hydrochloride from matrix tablets without the use of organic buffers in the matrix formulations. Silicone pressure-sensitive adhesive (PSA) polymer was evaluated because of its unique properties of low surface energy, hydrophobicity, low glass transition temperature, high electrical resistance, and barrier to hydrogen ion diffusion. Drug release, hydrogen ion diffusion, tablet contact angle, and internal tablet microenvironment pH with matrix tablets prepared using PSA were compared with those using water-insoluble ethyl cellulose (EC). Silicone PSA films showed higher resistance to hydrogen ion diffusion compared with EC films. Verapamil hydrochloride tablets prepared using silicone PSA showed higher hydrophobicity and lower water uptake than EC tablets. Silicone PSA tablets also showed pH-independent release of verapamil and decreased in dimensions during drug dissolution. By contrast, verapamil hydrochloride tablets prepared using EC did not achieve pH-independent release.
Nart, Viviane; Beringhs, André O'Reilly; França, Maria Terezinha; de Espíndola, Brenda; Pezzini, Bianca Ramos; Stulzer, Hellen Karine
2017-01-01
Mini-tablets are a new tendency in solid dosage form design for overcoming therapeutic obstacles such as impaired swallowing and polypharmacy therapy. Among their advantages, these systems offer therapeutic benefits such as dose flexibility and combined drug release patterns. The use of lipids in the formulation has also drawn considerable interest as means to modify the drug release from the dosage form. Therefore, this paper aimed at developing sustained release mini-tablets containing the highly soluble drugs captopril and metformin hydrochloride. Carnauba wax was used as a lipid component in melt granulation, targeting the improvement of the drugs poor flowability and tabletability, as well as to sustain the drug release profiles in association with other excipients. To assist sustaining the drug release, Ethocel™ (EC) and Kollicoat® SR 30D associated with Opadry® II were employed as matrix-forming and reservoir-forming materials, respectively. The neat drugs, granules and the bulk formulations were evaluated for their angle of repose, compressibility index, Hausner ratio and tabletability. Mini-tablets were evaluated for their weight variation, hardness, friability, drug content and in-vitro drug release. The results indicated that melt granulation with carnauba wax improved the flow and the tabletability of the drugs, allowing the preparation of mini-tablets with adequate tensile strength under reduced compaction pressures. All mini-tablet formulations showed acceptable hardness (within the range of 1.16 to 3.93Kp) and friability (<0.1%). The melt-granulated captopril in matrix systems containing 50% EC (45P, 100P or 100FP) and the melt-granulated metformin hydrochloride in reservoir systems coated with Kollicoat® SR 30D and Opadry® II (80:20 with 10% weight gain or 70:30 with 20% weight gain) exhibited release profiles adequate to sustained release formulations, for over 450min. Therefore, carnauba wax proved to be a promising excipient in melt granulation targeting the preparation of mini-tablets for sustained release of soluble drugs. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of two hydrophobic polymers on the release of gliclazide from their matrix tablets.
Hussain, Talib; Saeed, Tariq; Mumtaz, Ahmad M; Javaid, Zeeshan; Abbas, Khizar; Awais, Azeema; Idrees, Hafiz Arfat
2013-01-01
Gliclazide is an oral hypoglycemic agent, indicated in non insulin dependent diabetes mellitus and in patients with diabetic retinopathy. It has good tolerability and is a short acting sulfonyl urea that requires large dose to maintain the blood glucose level. So development of a sustained release formulation of gliclazide (GLZ) is required for better patient compliance. This study was conducted to assess the effects of different drug polymer ratios on the release profile of gliclazide from the matrix. Oral matrix tablets of gliclazide were prepared by hot melt method, using pure and blended mixture of glyceryl monostearate (GMS) and stearic acid (SA) in different ratios. In vitro release pattern was studied for 8 h in phosphate buffer media (pH 7.4). Different kinetic models including zero order, first order, Higuchi and Peppas were applied to evaluate drug release behavior. Drug excipient compatibility was evaluated by scanning with DSC and FTIR. Higuchi model was found the most appropriate model for describing the release profile of GLZ and non-Fickian release was found predominant mechanism of drug release. The release of drug from the matrix was greatly controlled by GMS while SA appeared to facilitate the release of drug from matrix tablets. FTIR results showed no chemical interaction between drug and the polymers, and DSC results indicated amorphous state of GLZ and polymers without significant complex formation. The results indicate that matrix tablets of gliclazide using glyceryl monostearate and stearic acid showed marked sustained release properties.
Kikuchi, Shingo; Onuki, Yoshinori; Kuribayashi, Hideto; Takayama, Kozo
2012-01-01
We reported previously that sustained release matrix tablets showed zero-order drug release without being affected by pH change. To understand drug release mechanisms more fully, we monitored the swelling and erosion of hydrating tablets using magnetic resonance imaging (MRI). Three different types of tablets comprised of polyion complex-forming materials and a hydroxypropyl methylcellulose (HPMC) were used. Proton density- and diffusion-weighted images of the hydrating tablets were acquired at intervals. Furthermore, apparent self-diffusion coefficient maps were generated from diffusion-weighted imaging to evaluate the state of hydrating tablets. Our findings indicated that water penetration into polyion complex tablets was faster than that into HPMC matrix tablets. In polyion complex tablets, water molecules were dispersed homogeneously and their diffusivity was relatively high, whereas in HPMC matrix tablets, water molecule movement was tightly restricted within the gel. An optimal tablet formulation determined in a previous study had water molecule penetration and diffusivity properties that appeared intermediate to those of polyion complex and HPMC matrix tablets; water molecules were capable of penetrating throughout the tablets and relatively high diffusivity was similar to that in the polyion complex tablet, whereas like the HPMC matrix tablet, it was well swollen. This study succeeded in characterizing the tablet hydration process. MRI provides profound insight into the state of water molecules in hydrating tablets; thus, it is a useful tool for understanding drug release mechanisms at a molecular level.
Arif, Hasanul; Al-Masum, Abdullah; Sharmin, Florida; Reza, Selim; Sm Islam, Sm Ashraful
2015-05-01
Bi-layer tablets of tramadol hydrochloride were prepared by direct compression technique. Each tablet contains an instant release layer with a sustained release layer. The instant release layer was found to release the initial dose immediately within minutes. The instant release layer was combined with sustained release matrix made of varying quantity of Methocel K4M, Methocel K15MCR and Carbomer 974P. Bi-layer tablets were evaluated for various physical tests including weight variation, thickness and diameter, hardness and percent friability. Drug release from bi-layer tablet was studied in acidic medium and buffer medium for two and six hours respectively. Sustained release of tramadol hydrochloride was observed with a controlled fashion that was characteristic to the type and extent of polymer used. % Drug release from eight-hour dissolution study was fitted with several kinetic models. Mean dissolution time (MDT) and fractional dissolution values (T25%, T50% and T80%) were also calculated as well, to compare the retarding ability of the polymers. Methocel K15MCR was found to be the most effective in rate retardation of freely water-soluble tramadol hydrochloride compared to Methocel K4M and Capbomer 974P, when incorporated at equal ratio in the formulation.
Kar, Rajat; Mohapatra, Snehamayee; Bhanja, Satyabrata; Das, Debjyoti; Barik, Bhaktibhusan
2010-01-01
In the present investigation an attempt has been made to increase therapeutic efficacy, to reduce frequency of administration and to improve patient compliance by developing a sustained release matrix tablets of isosorbide-5-mononitrate. Sustained release matrix tablets of isosorbide-5-mononitrate were developed by using different drug: polymer ratios, such in F1 (1:0.75), F2 (1:1), F3 (1:1.5), F4 (1:1.75) and F6 (1:2). Xanthan gum was used as matrix former and microcrystalline cellulose as diluent. All the lubricated formulations were compressed, using 8mm flat faced punches. Compressed tablets were evaluated for uniformity of weight, content of active ingredient, friability, hardness, thickness, in vitro dissolution study using basket method and swelling index. Each formulation showed compliance with pharmacopoeial standards. Among all formulations, F5 showed a greater sustained release pattern of drug over a 12 h period with 92.12% of drug being released. The kinetic studies showed that drug release follows the Higuchi model (r(2) =0.9851). Korsemeyer and Peppas equation gave an n-value of 0.4566, which was close to 0.5, indicating that drug release follows the Fickian diffusion. Thus, xanthan gum can be used as an effective matrix former to extend the release of isosorbide-5-mononitrate. No significant difference was observed in the dissolution profile of optimized formulation, using basket and paddle apparatus.
Formulation and evaluation of polyelectrolyte complex-based matrix tablet of Isosorbide Mononitrate
Syed, Iizhar Ahmed; Niveditha, P.; Ahmad, Ismail
2014-01-01
Introduction: The polyelectrolyte Complexes (PECs) are based on ionic cross-linking. They have been employed to prepare a sustained release matrix tablets. These systems are based upon the fact that their structure can entrap the drug within them. Isosorbide Mononitrate (ISMN) is an anti-anginal organic nitrate vasodilator used in the treatment of various cardiovascular disorders and prophylaxis of angina Pectoris, which is poorly absorbed from the upper GIT, hence CR formulation is desirable. Materials and Methods: Chitosan (CH)/Sodium alginate (SA), Guar gum (GG), and Xanthan gum (XG) were used as PECs, and were prepared using different proportions i.e., in 1:1 and 1:2 ratio. The optimum ratio of CH: SA, CH: GG and CH: XG was in the ratio was 1:2; these are formed due to electrostatic interaction between oppositely charged poly ions. These normally employ a hydrophilic matrix system. Matrix tablet of ISMN was formulated by using PECs as matrix forming agent by wet granulation technique. Results: The tablets were evaluated for hardness, wt variation, drug content, and in-vitro dissolution studies and found to be within limits. Release kinetics data indicated that ISMN released from the PECs-based matrix tablets of CH-SA, CH-GG and CH-XG CP in 1:1 and 1:2 ratio, followed Fickian and non-Fickian diffusion mechanism respectively. Thus, the drug release rate was extended for over a period of more than 12 h stability studies. There is no significant difference in the mean % drug released from formulation CH-X2 after storing for 3 months at 40°C/75% RH. The FT-IR spectra revealed that there was no interaction between polymers and drug, Statistical analysis showed a significant differences (P < 0.05) for the amount of ISMN released from the formulations (MXG) and formulations (CH-X2). Conclusion: Formulation CH-XG2 (1:2) showed better sustained release of highly water-soluble ISMN with the desired release rate. Thus, the formulated PECs-based matrix tablets seems to be a potential candidate for sustained drug delivery of highly soluble drug ISMN in the symptomatic therapy of angina pectoris. PMID:24678461
Sustaining pattern of phenformin hydrochloride using various polymers and waxes.
Pandey, V P; Kannappan, N; Manavalan, R; Subburaj, T
2002-01-01
The present study was carried out to formulate matrix tablets of phenformin hydrochloride. Granules of phenformin HCl were prepared by using ethyl cellulose, eudragit RS 100, gum acacia, carnauba wax, stearyl alcohol, glyceryl monostearate and triethanol amine. Thus the granules were compressed and fourteen tablets formulations were prepared. All the physical parameters of granules and matrix tablets were studied including compatibility study. One commercial timed disintegration capsule was also included for study and comparison. The results of in vitro studies showed that sustained release matrix tablet might be prepared using carnauba wax, stearyl alcohol, triethanol amine and magnesium stearate.
Tanaka, Nobuyuki; Imai, Keiji; Okimoto, Kazuto; Ueda, Satoshi; Tokunaga, Yuji; Ohike, Atsuo; Ibuki, Rinta; Higaki, Kazutaka; Kimura, Toshikiro
2005-11-28
The goal of this study is to develop a novel sustained-release (SR) system for poorly water-soluble drugs by applying solid dispersion (SD) technique for improving the solubility. The developed SR system, disintegration-controlled matrix tablet (DCMT), consists of hydrogenated soybean oil (HSO) as wax and SD granules containing low-substituted hydroxypropylcellulose (L-HPC) as a disintegrant. In this study, nilvadipine (NiD) was chosen as a model compound. Sustained-release profiles of NiD from DCMT were identically controlled in several dissolution mediums in spite of varying pH and agitation speed. The release of NiD from DCMT was sustained more effectively by increasing the amount of wax or by decreasing the amount of disintegrant, and supersaturation of NiD was achieved without any re-crystallization in dissolution medium. The release rate of NiD from DCMT was controlled by the disintegration rate of tablet. The release profile of NiD was described by the Hixson-Crowell's model better than zero-order kinetics, first-order kinetics and Higuchi's model, which supports that the release of NiD from DCMT is regulated by the disintegration of the tablet. From this study, it was clarified that DCMT was one of the promising SR systems applying SD for the poorly water-soluble drugs.
Dey, Sanjay; Chattopadhyay, Sankha; Mazumder, Bhaskar
2014-01-01
The objective of the present study was to develop bilayer tablets of atorvastatin and atenolol that are characterized by initial fast-release of atorvastatin in the stomach and comply with the release requirements of sustained-release of atenolol. An amorphous, solvent evaporation inclusion complex of atorvastatin with β-cyclodextrin, present in 1 : 3 (drug/cyclodextrin) molar ratio, was employed in the fast-release layer to enhance the dissolution of atorvastatin. Xanthan gum and guar gum were integrated in the sustained-release layer. Bilayer tablets composed of sustained-release layer (10% w/w of xanthan gum and guar gum) and fast-release layer [1 : 3 (drug/cyclodextrin)] showed the desired release profile. The atorvastatin contained in the fast-release layer showed an initial fast-release of more than 60% of its drug content within 2 h, followed by sustained release of the atenolol for a period of 12 h. The pharmacokinetic study illustrated that the fast absorption and increased oral bioavailability of atorvastatin as well as therapeutic concentration of atenolol in blood were made available through adoption of formulation strategy of bilayer tablets. It can be concluded that the bilayer tablets of atorvastatin and atenolol can be successfully employed for the treatment of hypertension and hypercholesterolemia together through oral administration of single tablet. PMID:24527446
Rahim, Safwan Abdel; Carter, Paul A; Elkordy, Amal Ali
2015-01-01
The aim of this work was to design and evaluate effervescent floating gastro-retentive drug delivery matrix tablets with sustained-release behavior using a binary mixture of hydroxyethyl cellulose and sodium alginate. Pentoxifylline was used as a highly water-soluble, short half-life model drug with a high density. The floating capacity, swelling, and drug release behaviors of drug-loaded matrix tablets were evaluated in 0.1 N HCl (pH 1.2) at 37°C±0.5°C. Release data were analyzed by fitting the power law model of Korsmeyer–Peppas. The effect of different formulation variables was investigated, such as wet granulation, sodium bicarbonate gas-forming agent level, and tablet hardness properties. Statistical analysis was applied by paired sample t-test and one-way analysis of variance depending on the type of data to determine significant effect of different parameters. All prepared tablets through wet granulation showed acceptable physicochemical properties and their drug release profiles followed non-Fickian diffusion. They could float on the surface of dissolution medium and sustain drug release over 24 hours. Tablets prepared with 20% w/w sodium bicarbonate at 50–54 N hardness were promising with respect to their floating lag time, floating duration, swelling ability, and sustained drug release profile. PMID:25848220
Petrovic, Aleksandra; Cvetkovic, Nebojsa; Ibric, Svetlana; Trajkovic, Svetlana; Djuric, Zorica; Popadic, Dragica; Popovic, Radmila
2009-12-01
Using mixture experimental design, the effect of carbomer (Carbopol((R)) 971P NF) and hydroxypropylmethylcellulose (Methocel((R)) K100M or Methocel((R)) K4M) combination on the release profile and on the mechanism of drug liberation from matrix tablet was investigated. The numerical optimization procedure was also applied to establish and obtain formulation with desired drug release. The amount of TP released, release rate and mechanism varied with carbomer ratio in total matrix and HPMC viscosity. Increasing carbomer fractions led to a decrease in drug release. Anomalous diffusion was found in all matrices containing carbomer, while Case - II transport was predominant for tablet based on HPMC only. The predicted and obtained profiles for optimized formulations showed similarity. Those results indicate that Simplex Lattice Mixture experimental design and numerical optimization procedure can be applied during development to obtain sustained release matrix formulation with desired release profile.
Krishnaraj, Kaliaperumal; Chandrasekar, Mulla Joghi Nanjan; Nanjan, Mulla Joghi; Muralidharan, Selvadurai; Manikandan, Duraikannu
2011-01-01
A natural polysaccharide was isolated from the seeds of Delonix regia. The isolated polysaccharide could maintain aqueous equilibrium between the dosage form and the surrounding medium due to its massive competence of water absorption (80.72%) and swelling index (266.7%). The Scanning Electron Micrograph of a polysaccharide exhibits rough surface with pores and crevices, hence, the drug release will be retarded because of the drug particles entrapment in the pores and crevices. Further, the surface tension of polysaccharide is higher than that of water, which may facilitate sustained release of drugs from dosage forms. An antipsychotic drug, quetiapine fumarate has a short half-life of 6 h and administered multiple times per day. Hence the quetiapine fumarate oral sustained release tablets were formulated using this polysaccharide in the concentration of 5–30% to avoid the side effects and increase patient compliance. Dissolution of the developed tablets with 25% polysaccharide content showed a better release profile than the other batches (5–20%) at the end of 12 h. The strong matrix complex has low solubility in water, it does not dissolve rapidly and the drug continues to diffuse through the gel layer at a consistent rate. Drug release from the matrix tablets follows matrix type except F-4 and F-5 which follow first order and Hix.crow type. The bioavailability study was carried out using healthy male New Zealand white rabbits that show the AUC(0–inf) value for developed SR tablets is 1.44 times higher than the reference thus, indicating more efficient and sustained drug delivery capable of maintaining plasma drug levels better. PMID:24115903
Lamoudi, Lynda; Chaumeil, Jean Claude; Daoud, Kamel
2012-05-01
The aim of this study was to evaluate physical properties and release from matrix tablets containing different ratios of HPMC 15 M and Acryl-EZE. A further aim is to assess their suitability for pH dependent controlled release. Matrix tablets containing HPMC 15 M and Acryl-EZE were manufactured using a fluidized bed. The release from this matrix using Sodium Diclofenac (SD) as model drug is studied in two dissolution media (0.1 N HCl or pH = 6.8 phosphate buffer solution); the release rate, mechanism, and pH dependence were characterized by fitting four kinetic models and by using a similarity factor analysis. The obtained results revealed that the presence of Acryl-EZE in the matrix tablets is effective in protecting the dosage forms from release in acid environments such as gastric fluid. In pH = 6.8 phosphate buffer, the drug release rate and mechanism of release from all matrices is mainly controlled by HPMC 15 M. The model of Korsmeyer-Peppas was found to fit experimental dissolution results.
Brouillet, F; Bataille, B; Cartilier, L
2008-05-22
High-amylose sodium carboxymethyl starch (HASCA), produced by spray-drying (SD), was previously shown to have interesting properties as a promising pharmaceutical sustained drug-release tablet excipient for direct compression, including ease of manufacture and high crushing strength. This study describes the effects of some important formulation parameters, such as compression force (CF), tablet weight (TW), drug-loading and electrolyte particle size, on acetaminophen-release performances from sustained drug-release matrix tablets based on HASCA. An interesting linear relationship between TW and release time was observed for a typical formulation of the system consisting of 40% (w/w) acetaminophen as model drug and 27.5% NaCl as model electrolyte dry-mixed with HASCA. Application of the Peppas and Sahlin model gave a better understanding of the mechanisms involved in drug-release from the HASCA matrix system, which is mainly controlled by surface gel layer formation. Indeed, augmenting TW increased the contribution of the diffusion mechanism. CFs ranging from 1 to 2.5 tonnes/cm(2) had no significant influence on the release properties of tablets weighing 400 or 600 mg. NaCl particle size did not affect the acetaminophen-release profile. Finally, these results prove that the new SD process developed for HASCA manufacture is suitable for obtaining similar-quality HASCA in terms of release and compression performances.
Kang, Won-Ho; Nguyen, Hien Van; Park, Chulhun; Choi, Youn-Woong; Lee, Beom-Jin
2017-05-01
This study was designed to develop a once-daily controlled-release matrix tablet of aceclofenac 200mg (AFC-CR) with dual release characteristics and to investigate the role of an alkalizer in enhancing drug solubility and reducing the occurrence of gastroduodenal mucosal lesions. Two formulation approaches were employed, namely a monolithic matrix tablet and a bilayered tablet. In vitro dissolution studies of AFC-CR tablets were carried out in simulated intestinal fluid (pH6.8 buffer). The in vivo pharmacokinetic studies and drug safety of the immediate-release reference tablet Airtal® 100mg (Daewoong Co., Korea) and the optimized AFC-CR tablet were compared in beagle dogs under fasted condition. The optimally selected AFC-CR formulation displayed the desired dual release characteristics in simulated intestinal fluid with satisfactory micromeritic properties. The swelling action of the optimal matrix tablet, which was visualized by near-infrared (NIR) chemical imaging, occurred rapidly following hydration. Incorporation of sodium carbonate (Na 2 CO 3 ) was found to enhance the release rate of the AFC-CR bilayered tablets at early stages and increase the microenvironmental pH (pH M ). A pharmacokinetic study in beagle dogs indicated a higher drug plasma concentration and a sustained-release pattern for the AFC-CR tablet compared to the Airtal® tablet. AFC-CR was also superior to Airtal® in terms of in vivo drug safety, since no beagle dog receiving AFC-CR experienced gastrointestinal bleeding. The significant enhancement of drug safety was attributed to the size reduction and the increase of pH M of drug particles by means of incorporation of the alkalizer. These findings provide a scientific rationale for developing a novel controlled-release matrix tablet with enhanced patient compliance and better pain control. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Surini, Silvia; Wati, Dina Risma; Syahdi, Rezi Riadhi
2018-02-01
Sustained release tablet is solid dosage form which is designed to release drugs slowly in the body. This research was intended to prepare and characterize the cross-linked excipients of co-processed xanthan gum-acacia gum (CL-Co-XGGA) as matrices for sustained release tablets with gliclazide as a model drug. CL-Co-XGGA excipients were cross-linked materials of co-processed excipients of xanthan gum-acacia gum (Co-XGGA) using sodium trimetaphosphate. Co-processed excipients of xanthan gum-acacia gum were prepared in the ratio of each excipient 1:2, 1:1 and 2:1. Co-XGGA and CL-Co-XGGA excipients were characterized physically, chemically and functionally. Then, the sustained release (SR) tablets were formulated by wet granulation method using CL-Co-XGGA excipients as matrices. Also, the dissolution study of the gliclazide SR tablets was carried out in phosphate buffer medium pH 7,4 containing sodium lauryl sulphate 0.2% for 12 hours. The results showed that the degree of substitution (DS) of CL-Co-XGGA 1:2, 1:1, 2:1 excipients were respectively 0.067, 0.082 and 0.08. Besides that, the excipients gel strengths were 14.03, 17.27 and 20,70 gF, respectively. The cross-linked excipients had improved flow properties and swelling capability compared to the Co-XGGA excipients. The results of the gliclazide SR tablets evaluations showed that all tablets were passed all tablet requirements. Moreover, the gliclazide release from SR tablets F1 - F6 revealed the sustained release profile, which was following zero order kinetics (F1, F2, F3, F6) and Higuchi kinetics (F4 and F5). It could be concluded that the obtained CL-Co-XGGA excipients might be used as matrices for sustained release tablets and could retard drug release up to 8 until 32 hours.
Evaluation of rate of swelling and erosion of verapamil (VRP) sustained-release matrix tablets.
Khamanga, Sandile M; Walker, Roderick B
2006-01-01
Tablets manufactured in-house were compared to a marketed sustained-release product of verapamil to investigate the rate of hydration, erosion, and drug-release mechanism by measuring the wet and subsequent dry weights of the products. Swelling and erosion rates depended on the polymer and granulating fluid used, which ultimately pointed to their permeability characteristics. Erosion rate of the marketed product was highest, which suggests that the gel layer that formed around these tablets was weak as opposed to the robust and resistant layers of test products. Anomalous and near zero-order transport mechanisms were dominant in tests and commercial product, respectively.
Development of matrix-based theophylline sustained-release microtablets.
Rey, H; Wagner, K G; Wehrlé, P; Schmidt, P C
2000-01-01
Microtablets containing high theophylline content (from 60% to 80%) based on a Eudragit RS PO matrix were produced on a rotary tablet press. The influence of the compaction pressure, the plasticizer content used for the granulation of theophylline particles, and the amount of theophylline on the drug release were investigated. The effects of surface area and the addition of magnesium stearate as a hydrophobic agent on the drug release were studied. The storage stabilities of the release rate at room temperature and at 50 degrees C were also determined. Dissolution profiles expressed as percentage of theophylline dissolved were obtained over 8 hr in 900 ml of purified water at 37 degrees C and 75 rpm. It was observed that the compaction pressure (from 200 MPa to 250 MPa) had no effect on the theophylline release. The use of triethyl citrate (TEC) as a plasticizer in the granulation of theophylline enhanced the physical properties of the microtablets. Theophylline content in the range 60% to 80% did not affect the drug release. The theophylline release obtained was a function of the quotient surface area/tablet weight and therefore was dependent on the tablet diameter. To reduce the dissolution rates, magnesium stearate was added in a concentration up to 50% of the matrix material. Tablets of this hydrophobic formulation fulfilled the requirements of USP 23 for theophylline sustained-release preparations. Storage at room temperature for 3 months and at 50 degrees C for 2 months showed no significant influence on the theophylline release.
Dual release and molecular mechanism of bilayered aceclofenac tablet using polymer mixture.
Van Nguyen, Hien; Nguyen, Van Hong; Lee, Beom-Jin
2016-12-30
The objectives of the present study were to develop a controlled-release bilayered tablet of aceclofenac (AFN) 200mg with dual release and to gain a mechanistic understanding of the enhanced sustained release capability achieved by utilizing a binary mixture of the sustained release materials. Different formulations of the sustained-release layer were formulated by employing hydroxypropyl methylcellulose (HPMC) and hydroxypropyl cellulose (HPC) as the major retarding polymers. The in vitro dissolution studies of AFN bilayered tablets were carried out in intestinal fluid (pH 6.8 buffer). The mechanism of the synergistic rate-retarding effect of the polymer mixture containing HPC and carbomer was elucidated by the rate of swelling and erosion in intestinal fluid and the molecular interactions in the polymer network. The optimized bilayered tablets had similar in vitro dissolution profiles to the marketed tablet Clanza ® CR based on the similarity factor (f2) in combination with their satisfactory micromeritic, physicochemical properties, and stability profiles. Drug release from HPMC-based matrix was controlled by non-Fickian transport, while drug release from HPC-based matrix was solely governed by drug diffusion. The swelling and erosion data exhibited a dramatic increase of water uptake and a reduction of weight loss in the polymer mixture-loaded tablet. Fourier transform infrared (FTIR) spectra revealed strong hydrogen bonding between HPC and carbomer in the polymer mixture. Regarding spatial distribution of polymers in the polymer mixture-loaded tablet, carbomer was found to be the main component of the gel layer during the first 2h of the hydration process, which was responsible for retarding drug release at initial stage. This process was then followed by a gradual transition of HPC from the glassy core to the gel layer for further increasing gel strength. Copyright © 2016 Elsevier B.V. All rights reserved.
Huanbutta, Kampanart; Cheewatanakornkool, Kamonrak; Terada, Katsuhide; Nunthanid, Jurairat; Sriamornsak, Pornsak
2013-08-14
Magnetic resonance imaging (MRI) and gravimetric techniques were used to assess swelling and erosion behaviors of hydrophilic matrix tablets made of chitosan. The impact of salt form, molecular weight (MW) and dissolution medium on swelling behavior and drug (theophylline) release was studied. The matrix tablets made of chitosan glycolate (CGY) showed the greatest swelling in both acid and neutral media, compared to chitosan aspartate, chitosan glutamate and chitosan lactate. MRI illustrated that swelling region of CGY in both media was not different in the first 100 min but glassy region (dry core) in 0.1N HCl was less than in pH 6.8 buffer. The tablets prepared from chitosan with high MW swelled greater than those of low MW. Moreover, CGY can delay drug release in the acid condition due to thick swollen gel and low erosion rate. Therefore, CGY may be suitably applied as sustained drug release polymer or enteric coating material. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lornoxicam gastro retentive floating matrix tablets: Design and in vitro evaluation.
Sathiyaraj, S; Devi, Ramya D; Hari, Vedha B N
2011-07-01
The objective of this present investigation is to prolong the gastric residence time of Lornoxicam by fabricating it into a floating sustained release matrix tablets. Lornoxicam, a potent oxicam group of non-steroidal anti-inflammatory drugs, suffers from relatively short half life of 2 to 3 hrs showing maximal absorption in proximal gastro intestinal tract region necessitating its need to be formulated as a floating sustained release matrix tablets. In this current investigation, hydroxyl propyl methyl cellulose K15M, a high viscous grade polymer with apparent viscosity of 15,000 cps, was kept as a variable (10-50%) and calcium carbonate (13%) was used as a gas generator. The prepared blends were subjected for its pre-formulation characterization. The directly compressed tablets were evaluated for physical parameters such as weight uniformity, hardness, friability, drug content, in-vitro buoyancy with axial and radial enlargement measurement, swelling index. From the investigation it was observed that the buoyancy lasted for up to 24 hrs. Fourier transform infra-red spectroscopy peaks assured the compatibility of the drug with excipients and confirmed the presence of pure drug in the formulation. It was supported by in-vitro dissolution studies; and the dissolution data was subjected to various release kinetic models to understand the mechanism of drug release.
Elzayat, Ehab M; Abdel-Rahman, Ali A; Ahmed, Sayed M; Alanazi, Fars K; Habib, Walid A; Sakr, Adel
2017-11-01
Multiple response optimization is an efficient technique to develop sustained release formulation while decreasing the number of experiments based on trial and error approach. Diclofenac matrix tablets were optimized to achieve a release profile conforming to USP monograph, matching Voltaren ® SR and withstand formulation variables. The percent of drug released at predetermined multiple time points were the response variables in the design. Statistical models were obtained with relative contour diagrams being overlaid to predict process and formulation parameters expected to produce the target release profile. Tablets were prepared by wet granulation using mixture of equivalent quantities of Eudragit RL/RS at overall polymer concentration of 10-30%w/w and compressed at 5-15KN. Drug release from the optimized formulation E4 (15%w/w, 15KN) was similar to Voltaren, conformed to USP monograph and found to be stable. Substituting lactose with mannitol, reversing the ratio between lactose and microcrystalline cellulose or increasing drug load showed no significant difference in drug release. Using dextromethorphan hydrobromide as a model soluble drug showed burst release due to higher solubility and formation of micro cavities. A numerical optimization technique was employed to develop a stable consistent promising formulation for sustained delivery of diclofenac.
Mandal, Uttam; Gowda, Veeran; Ghosh, Animesh; Bose, Anirbandeep; Bhaumik, Uttam; Chatterjee, Bappaditya; Pal, Tapan Kumar
2008-02-01
The aim of the present study was to apply the simultaneous optimization method incorporating Artificial Neural Network (ANN) using Multi-layer Perceptron (MLP) model to the development of a metformin HCl 500 mg sustained release matrix tablets with an optimized in vitro release profile. The amounts of HPMC K15M and PVP K30 at three levels (-1, 0, +1) for each were selected as casual factors. In vitro dissolution time profiles at four different sampling times (1 h, 2 h, 4 h and 8 h) were chosen as output variables. 13 kinds of metformin matrix tablets were prepared according to a 2(3) factorial design (central composite) with five extra center points, and their dissolution tests were performed. Commercially available STATISTICA Neural Network software (Stat Soft, Inc., Tulsa, OK, U.S.A.) was used throughout the study. The training process of MLP was completed until a satisfactory value of root square mean (RSM) for the test data was obtained using feed forward back propagation method. The root mean square value for the trained network was 0.000097, which indicated that the optimal MLP model was reached. The optimal tablet formulation based on some predetermined release criteria predicted by MLP was 336 mg of HPMC K15M and 130 mg of PVP K30. Calculated difference (f(1) 2.19) and similarity (f(2) 89.79) factors indicated that there was no difference between predicted and experimentally observed drug release profiles for the optimal formulation. This work illustrates the potential for an artificial neural network with MLP, to assist in development of sustained release dosage forms.
Evaluation of matrix type mucoadhesive tablets containing indomethacin for buccal application.
Ikeuchi-Takahashi, Yuri; Sasatsu, Masanaho; Onishi, Hiraku
2013-09-10
Nonsteroidal anti-inflammatory drugs (NSAIDs) are administered for pain relief from oral mucositis. However, the systemic administration of NSAIDs is limited due to systemic side effects. To avoid these side effects and treat local lesions effectively, a matrix type mucoadhesive tablet was developed. A mixture of hard fat, ethylcellulose (EC) and polyethylene glycol (PEG) was used as a matrix base, and indomethacin (IMC) was used as the principal agent. In tablets consisting of hard fat, EC and IMC, the drug release was sustained. In tablets consisting of hard fat, EC, considerable amounts of PEG and IMC, the drug release was relatively increased and IMC existed as the molecular phase or in an amorphous state. The in vitro adhesive force of the tablets consisting of hard fat, EC, considerable amounts of PEG and IMC was significantly increased as compared with the tablets consisting of hard fat and IMC. A significantly high tissue concentration and significantly low plasma concentration were observed after buccal administration of this matrix type mucoadhesive tablet as compared with that after oral administration of IMC. Thus, the matrix type mucoadhesive tablet has good potential as a preparation for the treatment of pain due to oral aphtha. Copyright © 2013 Elsevier B.V. All rights reserved.
Desktop 3D printing of controlled release pharmaceutical bilayer tablets.
Khaled, Shaban A; Burley, Jonathan C; Alexander, Morgan R; Roberts, Clive J
2014-01-30
Three dimensional (3D) printing was used as a novel medicine formulation technique for production of viable tablets capable of satisfying regulatory tests and matching the release of standard commercial tablets. Hydroxypropyl methylcellulose (HPMC 2208) (Methocel™ K100M Premium) and poly(acrylic acid) (PAA) (Carbopol(®) 974P NF) were used as a hydrophilic matrix for a sustained release (SR) layer. Hypromellose(®) (HPMC 2910) was used as a binder while microcrystalline cellulose (MCC) (Pharmacel(®) 102) and sodium starch glycolate (SSG) (Primojel(®)) were used as disintegrants for an immediate release (IR) layer. Commercial guaifenesin bi-layer tablets (GBT) were used as a model drug (Mucinex(®)) for this study. There was a favourable comparison of release of the active guaifenesin from the printed hydrophilic matrix compared with the commercially available GBT. The printed formulations were also evaluated for physical and mechanical properties such as weight variation, friability, hardness and thickness as a comparison to the commercial tablet and were within acceptable range as defined by the international standards stated in the United States Pharmacopoeia (USP). All formulations (standard tablets and 3D printed tablets) showed Korsmeyer-Peppas n values between 0.27 and 0.44 which indicates Fickian diffusion drug release through a hydrated HPMC gel layer. Copyright © 2013 Elsevier B.V. All rights reserved.
Patil, Hemlata; Tiwari, Roshan V; Upadhye, Sampada B; Vladyka, Ronald S; Repka, Michael A
2015-12-30
The objective of the present study was to develop pH-independent/dependent sustained release (SR) tablets of ondansetron HCl dihydrate (OND), a selective 5-HT3 receptor antagonist that is used for prevention of nausea and vomiting caused by chemotherapy, radiotherapy and postoperative treatment. The challenge with the OND API is its pH-dependent solubility and relatively short elimination half-life. Therefore, investigations were made to solve these problems in the current study. Formulations were prepared using stearic acid as a binding agent via a melt granulation process in a twin-screw extruder. The micro-environmental pH of the tablet was manipulated by the addition of fumaric acid to enhance the solubility and release of OND from the tablet. The in vitro release study demonstrated sustained release for 24h with 90% of drug release in formulations using stearic acid in combination with ethyl cellulose, whereas 100% drug release in 8h for stearic acid-hydroxypropylcellulose matrices. The formulation release kinetics was correlated to the Higuchi diffusion model and a non-Fickian drug release mechanism. The results of the present study demonstrated for the first time the pH dependent release from hydrophilic-lipid matrices as well as pH independent release from hydrophobic-lipid matrices for OND SR tablets manufactured by means of a continuous melt granulation technique utilizing a twin-screw extruder. Copyright © 2015 Elsevier B.V. All rights reserved.
Negi, Jeetendra Singh; Trivedi, Abhinav; Khanduri, Praveen; Negi, Vandana; Kasliwal, Nikhil
2011-01-01
The purpose of this study was to investigate effect of bioadhesion on the initial in vitro buoyancy behaviour of effervescent matrix tablets of ciprofloxacin HCl (CIPRO). Tablets were prepared by direct compression using HPMC K4M and Carbopol 971P as hydrophilic-controlled release polymers, sodium bicarbonate (NaHCO3) as gas-generating agent, polyplasdone XL, Explotab and Ac-Di-Sol as swelling agents. Tablets were evaluated for normal and modified initial in vitro floating behavior, floating duration, swelling behavior and in vitro drug release studies. A modified buoyancy lag time for tablets was determined in order to include the effect of bioadhesion on initial buoyancy. The initial buoyancy was found depended on bioadhesion ability of tablets. The lowest modified buoyancy lag time of 20 seconds was obtained for Formulation F7 having both NaHCO3 and polyplasdone XL. The floating duration was also found dependent on concentration of NaHCO3 and swelling agents. The drug release of F7 was also sustained up to 12-hr duration with anomalous drug transport mechanism. PMID:22171304
Odeniyi, Michael Ayodele; Oyedokun, Babatunde Mukhtar; Bamiro, Oluyemisi Adebowale
2017-01-01
Hydrophilic polymers provide a means of sustaining drug delivery. Native gums may be limited in function, but modification may improve their activity. The aim of the study was to evaluate native and modified forms of Terminalia mantaly gum for their sustained-release and bioadhesive properties. The native gum (NTM) was modified by microwave irradiation for 20 seconds (MTM20) and 60 seconds (MTM60) and characterized using microscopy, Fourier transform infrared spectroscopy (FTIR) and packing properties. The effects of the thermally induced molecular reorientation were determined. Tablet formulations of naproxen were produced by direct compression. The mechanical, bioadhesive and release properties of the formulations were determined. Irradiation of NTM improved the gum's flow properties, resulting in Carr's Index and Hausner's ratios lower than 16% and 1.25, respectively. Swelling studies showed that MTM20 and MTM60 had lower water absorption capacity and swelling index values, while packing properties improved upon irradiation, as depicted by lower tapped density values. FTIR spectra of samples showed that the irradiated gums were distinct from the native gums and did not interact with naproxen sodium. The gum's mechanical properties improved with MTM20 and MTM60 and sustained-release action of up 12 h was obtained. Inclusion of hydroxypropyl methylcellulose (HPMC) in the tablet formulations proved critical for bioadhesion. Microwave irradiation of native Terminalia mantaly gum improved the flow, mechanical and sustained-release properties of Naproxen tablets, and the addition of HPMC increased bioadhesion properties. The tablet properties of the native gum were significantly improved after 20 s of microwave irradiation.
El Nabarawi, Mohamed A; Teaima, Mahmoud H; Abd El-Monem, Rehab A; El Nabarawy, Nagla A; Gaber, Dalia A
2017-01-01
To prolong the residence time of dosage forms within the gastrointestinal tract until all drug is released at the desired rate is one of the real challenges for oral controlled-release drug delivery systems. This study was designed to develop a controlled-release floating matrix tablet and floating raft system of Mebeverine HCl (MbH) and evaluate different excipients for their floating behavior and in vitro controlled-release profiles. Oral pharmacokinetics of the optimum matrix tablet, raft system formula, and marketed Duspatalin® 200 mg retard as reference were studied in beagle dogs. The optimized tablet formula (FT-10) and raft system formula (FRS-11) were found to float within 34±5 sec and 15±7 sec, respectively, and both remain buoyant over a period of 12 h in simulated gastric fluid. FT-10 (Compritol/HPMC K100M 1:1) showed the slowest drug release among all prepared tablet formulations, releasing about 80.2% of MbH over 8 h. In contrast, FRS-11 (Sodium alginate 3%/HPMC K100M 1%/Precirol 2%) had the greatest retardation, providing sustained release of 82.1% within 8 h. Compared with the marketed MbH product, the Cmax of FT-10 was almost the same, while FRS-11 maximum concentration was higher. The tmax was 3.33, 2.167, and 3.0 h for marketed MbH product, FT-10, and FRS-11, respectively. In addition, the oral bioavailability experiment showed that the relative bioavailability of the MbH was 104.76 and 116.01% after oral administration of FT-10 and FRS-11, respectively, compared to marketed product. These results demonstrated that both controlled-released floating matrix tablet and raft system would be promising gastroretentive delivery systems for prolonging drug action. PMID:28435220
El Nabarawi, Mohamed A; Teaima, Mahmoud H; Abd El-Monem, Rehab A; El Nabarawy, Nagla A; Gaber, Dalia A
2017-01-01
To prolong the residence time of dosage forms within the gastrointestinal tract until all drug is released at the desired rate is one of the real challenges for oral controlled-release drug delivery systems. This study was designed to develop a controlled-release floating matrix tablet and floating raft system of Mebeverine HCl (MbH) and evaluate different excipients for their floating behavior and in vitro controlled-release profiles. Oral pharmacokinetics of the optimum matrix tablet, raft system formula, and marketed Duspatalin ® 200 mg retard as reference were studied in beagle dogs. The optimized tablet formula (FT-10) and raft system formula (FRS-11) were found to float within 34±5 sec and 15±7 sec, respectively, and both remain buoyant over a period of 12 h in simulated gastric fluid. FT-10 (Compritol/HPMC K100M 1:1) showed the slowest drug release among all prepared tablet formulations, releasing about 80.2% of MbH over 8 h. In contrast, FRS-11 (Sodium alginate 3%/HPMC K100M 1%/Precirol 2%) had the greatest retardation, providing sustained release of 82.1% within 8 h. Compared with the marketed MbH product, the C max of FT-10 was almost the same, while FRS-11 maximum concentration was higher. The t max was 3.33, 2.167, and 3.0 h for marketed MbH product, FT-10, and FRS-11, respectively. In addition, the oral bioavailability experiment showed that the relative bioavailability of the MbH was 104.76 and 116.01% after oral administration of FT-10 and FRS-11, respectively, compared to marketed product. These results demonstrated that both controlled-released floating matrix tablet and raft system would be promising gastroretentive delivery systems for prolonging drug action.
Continuous direct compression as manufacturing platform for sustained release tablets.
Van Snick, B; Holman, J; Cunningham, C; Kumar, A; Vercruysse, J; De Beer, T; Remon, J P; Vervaet, C
2017-03-15
This study presents a framework for process and product development on a continuous direct compression manufacturing platform. A challenging sustained release formulation with high content of a poorly flowing low density drug was selected. Two HPMC grades were evaluated as matrix former: standard Methocel CR and directly compressible Methocel DC2. The feeding behavior of each formulation component was investigated by deriving feed factor profiles. The maximum feed factor was used to estimate the drive command and depended strongly upon the density of the material. Furthermore, the shape of the feed factor profile allowed definition of a customized refill regime for each material. Inline NIRs was used to estimate the residence time distribution (RTD) in the mixer and monitor blend uniformity. Tablet content and weight variability were determined as additional measures of mixing performance. For Methocel CR, the best axial mixing (i.e. feeder fluctuation dampening) was achieved when an impeller with high number of radial mixing blades operated at low speed. However, the variability in tablet weight and content uniformity deteriorated under this condition. One can therefore conclude that balancing axial mixing with tablet quality is critical for Methocel CR. However, reformulating with the direct compressible Methocel DC2 as matrix former improved tablet quality vastly. Furthermore, both process and product were significantly more robust to changes in process and design variables. This observation underpins the importance of flowability during continuous blending and die-filling. At the compaction stage, blends with Methocel CR showed better tabletability driven by a higher compressibility as the smaller CR particles have a higher bonding area. However, tablets of similar strength were achieved using Methocel DC2 by targeting equal porosity. Compaction pressure impacted tablet properties and dissolution. Hence controlling thickness during continuous manufacturing of sustained release tablets was crucial to ensure reproducible dissolution. Copyright © 2017 Elsevier B.V. All rights reserved.
Yusif, Rehab Mohammad; Abu Hashim, Irhan Ibrahim; Mohamed, Elham Abdelmonem; El Rakhawy, Mohamed Magdy
2016-01-01
Carbopol (CP) is a biocompatible bioadhesive polymer used as a matrix for gastroretentive (GR) tablets, however, its rapid hydration shortens its bioadhesion and floating when incorporated in effervescent formulae. The interpolymer complexation of CP with polyvinylpyrrolidone (PVP) significantly reduced the excessive hydration of CP, prolonging floating and maintaining the mucoadhesiveness. In early attempts, a lengthy process was followed to prepare such an interpolymer complex. In this study, an in situ interpolymer complexation between CP and two grades of PVP (K25 and K90) in 0.1 N HCl was investigated and characterized by Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). Hence, directly compressed GR tablets of different combinations of PVP and CP with sodium bicarbonate (SB) as an effervescent agent were examined for prolonged gastroretention and sustained release of ranitidine hydrochloride (RHCl) as a model drug. Tablets were evaluated for in vitro buoyancy, bioadhesiveness, swelling, and drug release in 0.1 N HCl. All GR tablets containing PVP-CP combinations achieved more prolonged floating (>24 h) than CP tablets (5.2 h). Their bioadhesiveness, swelling, and drug release were dependent on the PVP molecular weight and its ratio to CP. Drug release profiles of all formulae followed non-Fickian diffusion. Formula containing the PVP K90-CP combination at a respective ratio of 1 : 3 (P90C13) was a promising system, exhibiting good floating and bioadhesive properties as well as sustained drug release. Abdominal X-ray imaging of P90C13 formula, loaded with barium sulfate, in six healthy volunteers showed a mean gastric retention period of 6.8±0.3 h.
Lyophilized mucoadhesive-dendrimer enclosed matrix tablet for extended oral delivery of albendazole.
Mansuri, Shakir; Kesharwani, Prashant; Tekade, Rakesh Kumar; Jain, Narendra Kumar
2016-05-01
Dendrimers are multifunctional carriers widely employed for delivering drugs in a variety of disease conditions including HIV/AIDS and cancer. Albendazole (ABZ) is a commonly used anthelmintic drug in human as well as veterinary medicine. In this investigation, ABZ was formulated as a "muco-dendrimer" based sustained released tablet. The mucoadhesive complex was synthesized by anchoring chitosan to fifth generation PPI dendrimer (Muco-PPI) and characterized by UV, FTIR, (1)H NMR spectroscopy and electron microscopy. ABZ was entrapped inside Muco-PPI followed by lyophilization and tableting as matrix tablet. A half-life (t1/2) of 8.06±0.15, 8.17±0.47, 11.04±0.73, 11.49±0.92, 12.52±1.04 and 16.9±1.18h was noted for ABZ (free drug), conventional ABZ tablet (F1), conventional ABZ matrix tablet (F2), PPI-ABZ complex, PPI-ABZ matrix tablet (F3) and Muco-PPI-ABZ matrix tablet (F4), respectively. Thus the novel mucoadhesive-PPI based formulation of ABZ (F4) increased the t1/2 of ABZ significantly by almost twofold as compared to the administration of free drug. The in vivo drug release data showed that the Muco-PPI based formulations have a significantly higher Cmax (2.40±0.02μg/mL) compared with orally administered free ABZ (0.19±0.07μg/mL) as well as conventional tablet (0.20±0.05μg/mL). In addition, the Muco-PPI-ABZ matrix tablet displayed increased mean residence time (MRT) and is therefore a potential candidate to appreciably improve the pharmacokinetic profile of ABZ. Copyright © 2015 Elsevier B.V. All rights reserved.
Mortazavi, Seyed Alireza; Jafariazar, Zahra; Ghadjahani, Yasaman; Mahmoodi, Hoda; Mehtarpour, Farzaneh
2014-01-01
The purpose of this study was preparation and evaluation of sustained release matrix type ocular mini-tablets of timolol maleate, as a potential formulation for the treatment of glaucoma. Following the initial studies on timolol maleate powder, it was formulated into ocular mini-tablets. The polymers investigated in this study included cellulose derivatives (HEC, CMC, EC) and Carbopol 971P. Mannitol was used as the solubilizing agent and magnesium stearate as the lubricant. Mini-tablets were prepared by through mixing of the ingredients, followed by direct compression. All the prepared formulations were evaluated in terms of physicochemical tests, including uniformity of weight, thickness, crushing strength, friability and in-vitro drug release. Four groups of formulations were prepared. The presence of different amounts of cellulose derivatives or Carbopol 971P, alone, was studied in group A formulations. In group B formulations, the effect of adding Carbopol 971P alongside different cellulose derivatives was investigated. Group C formulations were made by including mannitol as the solubilizing agent, alongside Carbopol 971P and a cellulose derivative. In group D formulations, mini-tablets were made using Carbopol 971P, alongside two different cellulose derivative. The selected formulation (C1) contained ethyl cellulose, Carbopol 971P, mannitol and magnesium stearate, which showed almost 100% drug release over 5 h. Based on kinetic studies, this formulation was found to best fit the zero-order model of drug release. However, the Higuchi and Hixson -Crowell models also showed a good fit. Hence, overall, formulation C1 was chosen as the best formulation. PMID:24734053
Maswadeh, Hamzah A; Al-Hanbali, Othman A; Kanaan, Reem A; Shakya, Ashok K; Maraqa, Anwar
2010-01-01
In vitro release kinetics of three commercially available sustained release tablets (SR) diltiazem hydrochloride were studied at pH 1.1 for 2 h and for another 6 h at pH 6.8 using the USP dissolution apparatus with the paddle assemble. The kinetics of the dissolution process was studied by analyzing the dissolution data using five kinetic equations: the zero-order equation, the first-order equation, the Higuchi square root equation, the Hixson-Crowell cube root law and the Peppas equation. Analyses of the dissolution kinetic data for diltiazem hydrochloride commercial SR tablets showed that both Dilzacard and Dilzem SR tablets released drug by Non-Fickian (Anomalous transport) release with release exponent (n) equal to 0.59 and 0.54, respectively, which indicate the summation of both diffusion and dissolution controlled drug release. Bi-Tildiem SR tablets released drug by super case II (n = 1.29) which indicate zero-order release due to the dissolution of polymeric matrix and relaxation of the polymer chain. This finding was also in agreement with results obtained from application of zero-order and Hixson-Crowell equations. A dissolution profile comparative study was done to test the lyoequivelancy of the three products by using the mean dissolution time (MDT), dissimilarity factor f1 and similarity factor f2. Results showed that the three products are different and not lyoequivalent.
Preparation and evaluation of novel metronidazole sustained release and floating matrix tablets.
Asnaashari, Solmaz; Khoei, Nazaninossadat Seyed; Zarrintan, Mohammad Hosein; Adibkia, Khosro; Javadzadeh, Yousef
2011-08-01
In the present study, metronidazole was used for preparing floating dosage forms that are designed to retain in the stomach for a long time and have developed as a drug delivery system for better eradication of Helicobacter Pylori in peptic ulcer diseases. For this means, various formulations were designed using multi-factorial design. HPMC, psyllium and carbopol in different concentrations were used as floating agents, and sodium bicarbonate was added as a gas-forming agent. Hardness, friability, drug loading, floating ability and release profiles as well as kinetics of release were assessed. Formulations containing HPMC as filler showed prolonged lag times for buoyancy. Adding psyllium to these formulations had reduced relative lag times. Overall, selected formulations were able to float immediately and showed buoyancy for at least 8?h. Meanwhile, sustained profiles of drug release were also obtained. Kinetically, among the 10 assessed models, the release pattern of metronidazole from the tablets fitted best to Power law, Weibull and Higuchi models in respect overall to mean percentage error values of 3.8, 4.73 and 5.77, respectively, for calcium carbonate-based tablets and, 2.95, 6.39 and 3.9, respectively, for calcium silicate-based tablets. In general, these systems can float in the gastric condition and control the drug release from the tablets.
Khatun, Sabera; Sutradhar, Kumar B.
2014-01-01
In recent years natural polymers have been widely used because of their effectiveness and availability over synthetic polymers. In this present investigation matrix tablets of Metformin hydrochloride were formulated using Water hyacinth powder and its rate retardant activity was studied. Tablets were prepared using wet granulation method with 8% starch as granulating agent and 5, 10, 15, 20, 25 and 30% of Water hyacinth powder to the drug. In preformulation study, angle of repose, Carr's Index and Hausner ratio were calculated. Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM) studies were performed and no interactions were found between drug and excipients. Weight variation, friability, hardness, thickness, diameter, and in vitro release study were performed with the prepared matrix tablets. Dissolution studies were conducted using USP type II apparatus at a speed of 100 rpm at 37°C ± 0.5 temperature for 8 h. Though all the formulations comply with both BP and USP requirements, formulation F-1 (5% of Water hyacinth) was the best fitted formula. The drug release patterns were explained in different kinetic models such as Zero order, First order, Higuchi, Hixson Crowell, and Korsmeyer-Peppas equations. The current investigation implies that Water hyacinth has the potential to be used as a rate-retarding agent in sustained release drug formulations. PMID:24966835
Reynolds, Thomas D; Mitchell, Shawn A; Balwinski, Karen M
2002-04-01
The purpose of this study was to investigate the influence of tablet surface area/volume (SA/Vol) on drug release from controlled-release matrix tablets containing hydroxypropylmethylcellulose (HPMC). Soluble drugs (promethazine HCl, diphenhydramine HCl, and propranolol HCl) were utilized in this study to give predominantly diffusion-controlled release. Drug release from HPMC matrix tablets with similar values of SA/Vol was comparable within the same tablet shape (i.e., flat-faced round tablets) and among different shapes (i.e., oval, round concave, flat-faced beveled-edge, and flat-faced round tablets). Tablets having the same surface area but different SA/Vol values did not result in similar drug release; tablets with larger SA/Vol values hadfaster release profiles. Utility of SA/Vol to affect drug release was demonstrated by changing drug doses, and altering tablet shape to adjust SA/Vol. When SA/Vol was held constant, similar release profiles were obtained with f2 metric values greater than 70. Thus, surface area/volume is one of the key variables in controlling drug release from HPMC matrix tablets. Proper use of this variable has practical application by formulators who may need to duplicate drug release profiles from tablets of different sizes and different shapes.
21 CFR 520.2260c - Sulfamethazine sustained-release tablets.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfamethazine sustained-release tablets. 520....2260c Sulfamethazine sustained-release tablets. (a) Sponsor. See No. 053501 in § 510.600(c) of this chapter for use of an 8-gram sulfamethazine sustained-release tablet. (b) Conditions of use—(1) Amount. 8...
Shah, Kifayat Ullah; Khan, Gul Majid
2012-01-01
The design and fabrication of sustained/controlled release dosage forms, employing new excipients capable of extending/controlling the release of drugs from the dosage forms over prolonged periods, has worked well in achieving optimally enhanced therapeutic levels of the drugs. In this sense, the objective of this study was to investigate the suitability of selected cellulose ether derivatives for use in direct compression (DC) and as efficient drug release controlling agents. Controlled release matrix tablets of ciprofloxacin were prepared at different drug-to-polymer (D : P) ratios by direct compression using a fine particle sized ethylcellulose ether derivative (ETHOCEL Standard Premium 7FP) as rate controlling polymer. The tablets obtained were evaluated for various physico-chemical characteristics and in-vitro drug release studies were conducted in phosphate buffer (pH 7.4) using PharmaTest dissolution apparatus at constant temperature of 37°C ± 0.1. Similarity factor f 2 was employed to the release profiles of test formulations and were compared with marketed ciprofloxacin conventional tablets. Drug release mechanism and the kinetics involved were investigated by fitting the release profile data to various kinetic models. It was found that with increasing the proportion of ethylcellulose ether derivative in the matrix, the drug release was significantly extended up to 24 hours. The tablets exhibited zero order or nearly zero order drug transport mechanism. In vivo drug release performance of the developed controlled release tablets and reference conventional tablets containing ciprofloxacin were determined in rabbit serum according to randomized two-way crossover study design using High Performance Liquid Chromatography. Several bioavailability parameters of both the test tablets and conventional tablets including C max, T max and AUC0-t were compared which showed an optimized C max and T max (P < 0.05). A good correlation was obtained between in vitro drug release and in vivo drug absorption with correlation value (R 2 = 0.934). Relative bioavailability was found to be 93%. Reproducibility of manufacturing process and accelerated stability of the developed tablets were performed in stability chamber at 40 ± 2°C and 75 ± 5% relative humidity for a period of 6 months and were found to be stable throughout the stability period. PMID:22649325
Limmatvapirat, Sontaya; Limmatvapirat, Chutima; Puttipipatkhachorn, Satit; Nunthanid, Jurairat; Luangtana-anan, Manee; Sriamornsak, Pornsak
2008-08-01
A new oral-controlled release matrix tablet based on shellac polymer was designed and developed, using metronidazole (MZ) as a model drug. The shellac-based matrix tablets were prepared by wet granulation using different amounts of shellac and lactose. The effect of annealing temperature and pH of medium on drug release from matrix tablets was investigated. The increased amount of shellac and increased annealing temperature significantly affected the physical properties (i.e., tablet hardness and tablet disintegration) and MZ release from the matrix tablets. The in-situ polymerization played a major role on the changes in shellac properties during annealing process. Though the shellac did not dissolve in acid medium, the MZ release in 0.1N HCl was faster than in pH 7.3 buffer, resulting from a higher solubility of MZ in acid medium. The modulation of MZ release kinetics from shellac-based matrix tablets could be accomplished by varying the amount of shellac or annealing temperature. The release kinetics was shifted from relaxation-controlled release to diffusion-controlled release when the amount of shellac or the annealing temperature was increased.
Campiñez, María Dolores; Caraballo, Isidoro; Puchkov, Maxim; Kuentz, Martin
2017-07-01
The aim of the present work was to better understand the drug-release mechanism from sustained release matrices prepared with two new polyurethanes, using a novel in silico formulation tool based on 3-dimensional cellular automata. For this purpose, two polymers and theophylline as model drug were used to prepare binary matrix tablets. Each formulation was simulated in silico, and its release behavior was compared to the experimental drug release profiles. Furthermore, the polymer distributions in the tablets were imaged by scanning electron microscopy (SEM) and the changes produced by the tortuosity were quantified and verified using experimental data. The obtained results showed that the polymers exhibited a surprisingly high ability for controlling drug release at low excipient concentrations (only 10% w/w of excipient controlled the release of drug during almost 8 h). The mesoscopic in silico model helped to reveal how the novel biopolymers were controlling drug release. The mechanism was found to be a special geometrical arrangement of the excipient particles, creating an almost continuous barrier surrounding the drug in a very effective way, comparable to lipid or waxy excipients but with the advantages of a much higher compactability, stability, and absence of excipient polymorphism.
[Study on sustained release preparations of Epimedium component].
Yan, Hong-mei; Ding, Dong-mei; Zhang, Zhen-hai; Sun, E; Song, Jie; Jia, Xiao-bin
2015-04-01
The formulation for sustained release tablet of Epinedium component was selected and the evaluation equation of in vitro release was established. The liquidity of component was improved with the help of colloidal silica aided by spray drying, which would be the main drug in the sustained release tablets. Dissolution was selected as an evaluation index to investigate skeletal material type, fillers, impact porogen, lubricants and other materials on the quality of sustained release tablet. The sustained release tablets were prepared by dry compression. Formulation of sustained release preparations was main drug 35%, HPMC K(4M) 20% and HPMC K(15M) 10% as skeleton material, MCC 31% as filler, PEG6000 2% as porogen and magnesium stearate 2% as lubricant. The sustained release tablets released up to 80% in 8 h. The zero order equation, primary equation and Higuchi equation could simulate the release characteristics of sustained release tablets in vitro, the correlation coefficients r were larger than 0.96. The primary equation was most similar in vitro release characteristics and its correlation coefficient r was 0.9950. The preparation method is simple and the results of formulation selection are reliable. It can be used to guide the production of Epimedium component sustained release preparations.
Formulation and evaluation of floating tablet of H2-receptor antagonist.
Kesarla, Rajesh S; Vora, Pratik Ashwinbhai; Sridhar, B K; Patel, Gunvant; Omri, Abdelwahab
2015-01-01
Conventional sustained dosage form of ranitidine hydrochloride (HCl) does not prevent frequent administration due to its degradation in colonic media and limited absorption in the upper part of GIT. Ranitidine HCl floating tablet was formulated with sublimation method to overcome the stated problem. Compatibility study for screening potential excipients was carried out using Fourier transform infrared spectroscopy (FT-IR) and differential scanning chromatography (DSC). Selected excipients were further evaluated for optimizing the formulation. Preliminary screening of binder, polymer and sublimating material was based on hardness and drug release, drug release with release kinetics and floating lag time with total floatation time, respectively. Selected excipients were subjected to 3(2) factorial design with polymer and sublimating material as independent factors. Matrix tablets were obtained by using 16/32" flat-faced beveled edges punches followed by sublimation. FT-IR and DSC indicated no significant incompatibility with selected excipients. Klucel-LF, POLYOX WSR N 60 K and l-menthol were selected as binder, polymer and sublimating material, respectively, for factorial design batches after preliminary screening. From the factorial design batches, optimum concentration to release the drug within 12 h was found to be 420 mg of POLYOX and 40 mg of l-menthol. Stability studies indicated the formulation as stable. Ranitidine HCl matrix floating tablets were formulated to release 90% of drug in stomach within 12 h. Hence, release of the drug could be sustained within narrow absorption site. Moreover, the dosage form was found to be floating within a fraction of second independent of the pH of media ensuring a robust formulation.
Mucoadhesive Microparticles in a Rapidly Dissolving Tablet for Sustained Drug Delivery to the Eye
Choy, Young Bin; Patel, Samirkumar R.; Park, Jung-Hwan; McCarey, Bernard E.; Edelhauser, Henry F.
2011-01-01
Purpose. To test the hypothesis that mucoadhesive microparticles formulated in a rapidly dissolving tablet can achieve sustained drug delivery to the eye. Methods. Mucoadhesive microparticles, smaller than 5 μm were fabricated with poly(lactic-co-glycolic acid) and poly(ethylene glycol) as a core material and mucoadhesion promoter, respectively, and encapsulated pilocarpine as a model drug. These microparticles were embedded in a poly(vinyl alcohol) matrix to form a dry tablet designed to reduce rapid clearance of the microparticles on initial application to the eye. Results. This in vitro drug release study exhibited that for all formulations, approximately 90% of pilocarpine was released during the first 10 minutes, and the remaining 10% was released slowly for 3 hours. In vivo mucoadhesion test on the rabbit eye indicated that mucoadhesive microparticles adhered significantly better to the preocular surface than other formulations. To assess the pharmacodynamics, the most prolonged pilocarpine-induced pupil constriction was observed in rabbit eyes in vivo using a tablet with mucoadhesive microparticles; it lasted up to 330 minutes. Conclusions. The authors conclude that mucoadhesive microparticles formulated into a dry dosage form is a promising system for sustained drug delivery to the eye. PMID:21245405
Formulation and evaluation of different floating tablets containing metronidazole to target stomach.
Loh, Zhiao C; Elkordy, Amal A
2015-01-01
The purpose of this study is to formulate and develop tablets dosage form containing Metronidazole which has swelling and floating properties as a gastroretentive controlled-release drug delivery system to improve drug bioavailability. Fifteen different formulations of effervescence-forming floating systems were designed using HPMC K15M, xanthan gum, co-povidone, Eudragit® RL PO, pluronic® F-127 and/or polypropylene foam powder as swelling agents and sodium bicarbonate with/ without citric acid as gas-forming agents at different compositions. Six out of these 15 formulations which have satisfactory tablet floating behaviour were further studied with the incorporation of Metronidazole. The tablets were evaluated based on tablet physicochemical properties, floating behaviour, swelling ability and drug dissolution studies which were carried out using 0.1M HCl at 37°C for 8 hours. Furthermore, evaluation of the powder mixtures using Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) and scanning electron microscope (SEM) were investigated. Most of the tablets show good physicochemical properties except for F11 which contains pluronic® F-127 as its release-retarding matrix-forming polymer. Other formulations show high swelling capacity, ability to float for at least 8 hours in vitro and have sustained drug release characteristics. Data obtained indicated that F3 which contains HPMC (12.5%w/w), xanthan gum (25%w/w), co-povidone (12.5%w/w) and sodium bicarbonate (31.7%w/w) is a suitable formulation with short floating lag time, good floating behaviour and sustained drug release for at least 8 hours in vitro with a zero order kinetic. Combinations of HPMC K15M and xanthan gum as swelling agents show synergistic effect in retarding drug release and are suitable in providing the most sustained drug release system.
Gurpreetarora; Malik, Karan; Rana, Vikas; Singh, Inderbir
2012-01-01
The objective of this study was to extend the GI residence time of the dosage form and to control the release of domperidone using directly compressible sustained release mucoadhesive matrix (SRMM) tablets. A 2-factor centre composite design (CCD) was employed to study the influence of independent variables like gum ghatti (GG) (X1) and hydroxylpropylmethyl cellulose K 15M (HPMC K 15M) (X2) on dependent variable like mucoadhesive strength, tensile strength, release exponent (n), t50 (time for 50% drug release), rel(10 h) (release after 10 h) and rel(18 h) (release after 18 h). Tablets were prepared by direct compression technology and evaluated for tablet parametric test (drug assay, diameter, thickness, hardness and tensile strength), mucoadhesive strength (using texture analyzer) and in vitro drug release studies. The tensile strength and mucoadhesive strength were found to be increased from 0.665 +/- 0.1 to 1.591 +/- 0.1 MN/cm2 (Z1 to Z9) and 10.789 +/- 0.985 to 50.924 +/- 1.150 N (Z1 to Z9), respectively. The release kinetics follows first order and Hixson Crowell equation indicating drug release following combination of diffusion and erosion. The n varies between 0.834 and 1.273, indicating release mechanism shifts from non fickian (anomalous release) to super case II, which depict that drug follows multiple drug release mechanism. The t50 time was found to increase from 5 +/- 0.12 to 11.4 +/- 0.14 h (Z1 to Z9) and release after 10 and 18 h decreases with increasing concentration of both polymers concluding with release controlling potential of polymers. The accelerated stability studies were performed on optimized formulation as per ICH guideline and the result showed that there was no significant change in tensile strength, mucoadhesive strength and drug assay.
Gröning, R; Cloer, C; Müller, R S
2006-07-01
The objective of this study was to develop and evaluate new collagen gastroretentive dosage forms (GRDFs) which expand in the stomach after contact with gastric fluids. The GRDFs should remain in the stomach for a prolonged period of time due to their size. The dosage forms were prepared from collagen sponges. The sponges were manufactured by freeze-drying a riboflavin-containing collagen solution. A computer controlled material supply was constructed to transport precompressed collagen into a tablet machine. A second type of tablet was manufactured by combining compressed collagen sponges with hydrophilic matrix layers of hydroxypropylmethylcellulose. Matrix layers containing captopril or aciclovir were developed. In vitro experiments were performed with both types of dosage forms. The collagen tablets expand within a few minutes after contact with artificial gastric juice and form a drug delivery system with a size of 8 mm x 18 mm x 60 mm. Riboflavin is released over 16 h. If two layer tablets are used, the release of aciclovir or captopril can be controlled by the composition of the sustained release layer.
Al-Zein, Hind; Sakeer, Khalil; Alanazi, Fars K.
2011-01-01
Aim The current study aimed to prepare a sustained release tablet for a drug which has poor solubility in alkaline medium using complexation with cyclodextrin. Nicardipine hydrochloride (NC) a weak basic drug was chosen as a model drug for this study. Method Firstly the most suitable binary system NC-HPβCD was selected in order to improve drug solubility in the intestinal media and then embedding the complexed drug into a plastic matrix, by fusion method, consists of glycerol monostearate (GMS) as an inert waxy substance and polyethylene glycol 4000 (PEG4000) as a channeling agent, after that the final solid dispersion [(NC:HPβCD):GMS:PEG4000] which was prepared at different ratios was mixed with other excipients, avicel PH101, lactose, and talc, to get a tablet owning dissolution profile complying with the FDA and USP requirements for the extended release solid dosage forms. Results Infrared spectroscopy (IR), differential scanning colorimetry (DSC), polarized microscopy and X-ray diffractometry proved that the coevaporation technique was effective in preparing amorphous cyclodextrin complexes with NC and trapping of NC within the HPβCD cavity by dissolving both in ethanol and evaporate the solvent using a rotavapor at 65 °C. Dissolution profile of NC enhanced significantly in pH 6.8 from NC:HPβCD inclusion complex prepared by the rotavapor (t-test Student p < 0.05). The release of NC from tablet containing [(NC:HPβCD):GMS:PEG4000] [(1):0.75:0.5] (w/w/w) solid dispersion (F8) was complying with the FDA dissolution requirements for extended release dosage forms, and studying the kinetics of the release showed that the diffusional contribution is the major factor controlling the drug release from that formula. Conclusion The prepared waxy matrix tablet containing NC complexes with CD shows promising results as extended release tablets. PMID:23960765
Obeidat, Wasfy M; Nokhodchi, Ali; Alkhatib, Hatim
2015-10-01
The purpose of this work was to investigate the influence of Eudragit®E100 polymer in modifying the release rates and compaction properties of water soluble model drug paracetamol from Carbopol®971P NF polymer matrix tablets prepared by direct compression. The effects of the ratio of the two polymers, the total polymeric content, and the tablets mechanical strength on paracetamol release rates were investigated. Dissolution studies were conducted using USP XX Π rotating paddle apparatus at 50 rpm and 37°C at three different stages (pH 1.2, 4.8, and 6.8). Results showed that the polymers combination improved significantly the compaction properties of paracetamol tablets as evident by the higher crushing strengths (8.3 ± 0.4 Kp) compared to polymer-free tablets (3.4 ± 0.2 Kp) at intermediate compression pressure of 490 MPa. When combined with Carbopol®971P NF, Eudragit®E100 was found to be capable of extending paracetamol release for more than 12 h compared to 1 h for polymers-free tablets. The combined polymers were able to control paracetamol release in a pH independent pattern. The f2 (similarity factor) analysis showed that the ratio between the polymers and the total polymer concentration exhibited significant impact on drug release rates. In conclusion, Eudragit®E100 when combined with Carbopol®971P NF was capable of improving the compaction and sustained release properties of paracetamol. Korsmeyer-Peppas model was found to be the most suitable for fitting drug release data. The polymer combinations can potentially be used to control the release rates of highly water soluble drugs.
Ofori-Kwakye, Kwabena; Mfoafo, Kwadwo Amanor; Kipo, Samuel Lugrie; Kuntworbe, Noble; Boakye-Gyasi, Mariam El
2016-01-01
The study was aimed at developing extended release matrix tablets of poorly water-soluble diclofenac sodium and highly water-soluble metformin hydrochloride by direct compression using cashew gum, xanthan gum and hydroxypropylmethylcellulose (HPMC) as release retardants. The suitability of light grade cashew gum as a direct compression excipient was studied using the SeDeM Diagram Expert System. Thirteen tablet formulations of diclofenac sodium (∼100 mg) and metformin hydrochloride (∼200 mg) were prepared with varying amounts of cashew gum, xanthan gum and HPMC by direct compression. The flow properties of blended powders and the uniformity of weight, crushing strength, friability, swelling index and drug content of compressed tablets were determined. In vitro drug release studies of the matrix tablets were conducted in phosphate buffer (diclofenac: pH 7.4; metformin: pH 6.8) and the kinetics of drug release was determined by fitting the release data to five kinetic models. Cashew gum was found to be suitable for direct compression, having a good compressibility index (ICG) value of 5.173. The diclofenac and metformin matrix tablets produced generally possessed fairly good physical properties. Tablet swelling and drug release in aqueous medium were dependent on the type and amount of release retarding polymer and the solubility of drug used. Extended release of diclofenac (∼24 h) and metformin (∼8-12 h) from the matrix tablets in aqueous medium was achieved using various blends of the polymers. Drug release from diclofenac tablets fitted zero order, first order or Higuchi model while release from metformin tablets followed Higuchi or Hixson-Crowell model. The mechanism of release of the two drugs was mostly through Fickian diffusion and anomalous non-Fickian diffusion. The study has demonstrated the potential of blended hydrophilic polymers in the design and optimization of extended release matrix tablets for soluble and poorly soluble drugs by direct compression.
Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele; Đurić, Zorica
2012-05-30
The main objective of the study was to develop artificial intelligence methods for optimization of drug release from matrix tablets regardless of the matrix type. Static and dynamic artificial neural networks of the same topology were developed to model dissolution profiles of different matrix tablets types (hydrophilic/lipid) using formulation composition, compression force used for tableting and tablets porosity and tensile strength as input data. Potential application of decision trees in discovering knowledge from experimental data was also investigated. Polyethylene oxide polymer and glyceryl palmitostearate were used as matrix forming materials for hydrophilic and lipid matrix tablets, respectively whereas selected model drugs were diclofenac sodium and caffeine. Matrix tablets were prepared by direct compression method and tested for in vitro dissolution profiles. Optimization of static and dynamic neural networks used for modeling of drug release was performed using Monte Carlo simulations or genetic algorithms optimizer. Decision trees were constructed following discretization of data. Calculated difference (f(1)) and similarity (f(2)) factors for predicted and experimentally obtained dissolution profiles of test matrix tablets formulations indicate that Elman dynamic neural networks as well as decision trees are capable of accurate predictions of both hydrophilic and lipid matrix tablets dissolution profiles. Elman neural networks were compared to most frequently used static network, Multi-layered perceptron, and superiority of Elman networks have been demonstrated. Developed methods allow simple, yet very precise way of drug release predictions for both hydrophilic and lipid matrix tablets having controlled drug release. Copyright © 2012 Elsevier B.V. All rights reserved.
Shin, Sangmun; Choi, Du Hyung; Truong, Nguyen Khoa Viet; Kim, Nam Ah; Chu, Kyung Rok; Jeong, Seong Hoon
2011-04-04
A new experimental design methodology was developed by integrating the response surface methodology and the time series modeling. The major purposes were to identify significant factors in determining swelling and release rate from matrix tablets and their relative factor levels for optimizing the experimental responses. Properties of tablet swelling and drug release were assessed with ten factors and two default factors, a hydrophilic model drug (terazosin) and magnesium stearate, and compared with target values. The selected input control factors were arranged in a mixture simplex lattice design with 21 experimental runs. The obtained optimal settings for gelation were PEO, LH-11, Syloid, and Pharmacoat with weight ratios of 215.33 (88.50%), 5.68 (2.33%), 19.27 (7.92%), and 3.04 (1.25%), respectively. The optimal settings for drug release were PEO and citric acid with weight ratios of 191.99 (78.91%) and 51.32 (21.09%), respectively. Based on the results of matrix swelling and drug release, the optimal solutions, target values, and validation experiment results over time were similar and showed consistent patterns with very small biases. The experimental design methodology could be a very promising experimental design method to obtain maximum information with limited time and resources. It could also be very useful in formulation studies by providing a systematic and reliable screening method to characterize significant factors in the sustained release matrix tablet. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ershadul Haque, S. K.; Sheela, A.
2017-11-01
Development of sustained release formulations of Metformin hydrochloride (Met) having low bioavailability and short half-life is one of the frontier areas of research towards achieving novel drug delivery systems. Towards the same, we have prepared interpolymer complexes (IPCs) of chitosan (CH) and two different viscosity grades of hydroxypropyl methylcellulose - HPMC (K4M and K100M) in various ratios, say, 4:6, 2:8, 1:9, respectively. The IPCs are characterized by Fourier transform infrared spectroscopy (FT-IR) and Thermo gravimetric analysis (TGA) techniques. Drug compatibility study is carried out by FT-IR and powder X-ray diffraction (XRD) techniques. The physical properties and drug content of formulated tablets are evaluated and found to be optimum. In addition, in vitro drug release kinetics is carried out at two different pH, say, 1.2 and 6.8. The release pattern from different polymeric matrices is shown in figure below: a) Chitosan, HPMC K4M and HPMC K100M b) IPCs of CH/HPMC K4M in [2:3, 1:4 and 1:9 ratios] c) IPCs of CH/HPMC K100M in [2:3, 1:4 and 1:9 ratios]. From the study, it has been observed that the drug release is sustained for a period of 12h in 1:9 ratio of CH: K100M IPC due to the formation of complex network matrix.
Li, Mingzhong; Qiu, Shi; Lu, Yan; Wang, Ke; Lai, Xiaojun; Rehan, Mohammad
2014-09-01
The aim of this work was to investigate the influence of hydroxypropyl methylcellulose (HPMC) on the phase transformation and release profile of carbamazepine-nicotinamide (CBZ-NIC) cocrystal in solution and in sustained release matrix tablets. The polymorphic transitions of the CBZ-NIC cocrystal and its crystalline properties were examined by differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Raman spectroscopy, and scanning electron microscopy (SEM). The apparent CBZ solubility and dissolution rate of CBZ-NIC cocrystal were constant in different concentrations of HPMC solutions. In a lower percentage of HPMC in the matrix tablets, the CBZ release profile of the CBZ-NIC cocrystal was nonlinear and declined over time. With an increased HPMC content in the tablets, the CBZ-NIC cocrystal formulation showed a significantly higher CBZ release rate in comparison with the other two formulations of CBZ III and the physical mixture. Because of a significantly improved dissolution rate of the CBZ-NIC cocrystal, the rate of CBZ entering into solution is significantly faster than the rate of formation of the CBZ-HPMC soluble complex in solution, leading to a higher supersaturation level of CBZ and subsequently precipitation of CBZ dihydrate.
Wu, Yunqi; Hussain, Munir; Fassihi, Reza
2005-06-15
A simple spectrophotometric method for determination of glucosamine release from sustained release (SR) hydrophilic matrix tablet based on reaction with ninhydrin is developed, optimized and validated. The purple color (Ruhemann purple) resulted from the reaction was stabilized and measured at 570 nm. The method optimization was essential as many procedural parameters influenced the accuracy of determination including the ninhydrin concentration, reaction time, pH, reaction temperature, purple color stability period, and glucosamine/ninhydrin ratio. Glucosamine tablets (600 mg) with different hydrophilic polymers were formulated and manufactured on a rotary press. Dissolution studies were conducted (USP 26) using deionized water at 37+/-0.2 degrees C with paddle rotation of 50 rpm, and samples were removed manually at appropriate time intervals. Under given optimized reaction conditions that appeared to be critical, glucosamine was quantitatively analyzed and the calibration curve in the range of 0.202-2.020 mg (r=0.9999) was constructed. The recovery rate of the developed method was 97.8-101.7% (n=6). Reproducible dissolution profiles were achieved from the dissolution studies performed on different glucosamine tablets. The developed method is easy to use, accurate and highly cost-effective for routine studies relative to HPLC and other techniques.
Košir, Darjan; Ojsteršek, Tadej; Vrečer, Franc
2018-06-14
Wet granulation is mostly used process for manufacturing matrix tablets. Compared to the direct compression method, it allows for a better flow and compressibility properties of compression mixtures. Granulation, including process parameters and tableting, can influence critical quality attributes (CQAs) of hydrophilic matrix tablets. One of the most important CQAs is the drug release profile. We studied the influence of granulation process parameters (type of nozzle and water quantity used as granulation liquid) and tablet hardness on the drug release profile. Matrix tablets contained HPMC K4M hydrophilic matrix former and carvedilol as a model drug. The influence of selected HPMC characteristics on the drug release profile was also evaluated using two additional HPMC batches. For statistical evaluation, partial least square (PLS) models were generated for each time point of the drug release profile using the same number of latent factors. In this way, it was possible to evaluate how the importance of factors influencing drug dissolution changes in dependence on time throughout the drug release profile. The results of statistical evaluation show that the granulation process parameters (granulation liquid quantity and type of nozzle) and tablet hardness significantly influence the release profile. On the other hand, the influence of HPMC characteristics is negligible in comparison to the other factors studied. Using a higher granulation liquid quantity and the standard nozzle type results in larger granules with a higher density and lower porosity, which leads to a slower drug release profile. Lower tablet hardness also slows down the release profile.
Evaluation of hydrophobic materials as matrices for controlled-release drug delivery.
Quadir, Mohiuddin Abdul; Rahman, M Sharifur; Karim, M Ziaul; Akter, Sanjida; Awkat, M Talat Bin; Reza, Md Selim
2003-07-01
The present study was undertaken to evaluate the effect of different insoluble and erodable wax-lipid based materials and their content level on the release profile of drug from matrix systems. Matrix tablets of theophylline were prepared using carnauba wax, bees wax, stearic acid, cetyl alcohol, cetostearyl alcohol and glyceryl monostearate as rate-retarding agents by direct compression process. The release of theophylline from these hydrophobic matrices was studied over 8-hours in buffer media of pH 6.8. Statistically significant difference was found among the drug release profile from different matrices. The release kinetics was found to be governed by the type and content of hydrophobic materials in the matrix. At lower level of wax matrices (25%), a potential burst release was observed with all the materials being studied. Bees wax could not exert any sustaining action while an extensive burst release was found with carnauba wax at this hydrophobic load. Increasing the concentration of fat-wax materials significantly decreased the burst effect of drug from the matrix. At higher hydrophobic level (50% of the matrix), the rate and extent of drug release was significantly reduced due to increased tortuosity and reduced porosity of the matrix. Cetostearyl alcohol imparted the strongest retardation of drug release irrespective of fat-wax level. Numerical fits indicate that the Higuchi square root of time model was the most appropriate one for describing the release profile of theophylline from hydrophobic matrices. The release mechanism was also explored and explained with biexponential equation. Application of this model indicates that Fickian or case I kinetics is the predominant mechanism of drug release from these wax-lipid matrices. The mean dissolution time (MDT) was calculated for all the formulations and the highest MDT value was obtained with cetostearyl matrix. The greater sustaining activity of cetostearyl alcohol can be attributed to some level of swelling and erosion within this matrix at lower fat-wax level which is also supported by release exponent values and Fickian fraction release against time profile of this agent. The results generated in this study showed that proper selection of these hydrophobic materials based on their physico-chemical properties is important in designing wax matrix tablets with desired dissolution profile.
Study of drug release and tablet characteristics of silicone adhesive matrix tablets.
Tolia, Gaurav; Li, S Kevin
2012-11-01
Matrix tablets of a model drug acetaminophen (APAP) were prepared using a highly compressible low glass transition temperature (T(g)) polymer silicone pressure sensitive adhesive (PSA) at various binary mixtures of silicone PSA/APAP ratios. Matrix tablets of a rigid high T(g) matrix forming polymer ethyl cellulose (EC) were the reference for comparison. Drug release study was carried out using USP Apparatus 1 (basket), and the relationship between the release kinetic parameters of APAP and polymer/APAP ratio was determined to estimate the excipient percolation threshold. The critical points attributed to both silicone PSA and EC tablet percolation thresholds were found to be between 2.5% and 5% w/w. For silicone PSA tablets, satisfactory mechanical properties were obtained above the polymer percolation threshold; no cracking or chipping of the tablet was observed above this threshold. Rigid EC APAP tablets showed low tensile strength and high friability. These results suggest that silicone PSA could eliminate issues related to drug compressibility in the formulation of directly compressed oral controlled release tablets of poorly compressible drug powder such as APAP. No routinely used excipients such as binders, granulating agents, glidants, or lubricants were required for making an acceptable tablet matrix of APAP using silicone PSA. Copyright © 2012 Elsevier B.V. All rights reserved.
Chansanroj, Krisanin; Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele
2011-10-09
Artificial neural networks (ANNs) were applied for system understanding and prediction of drug release properties from direct compacted matrix tablets using sucrose esters (SEs) as matrix-forming agents for controlled release of a highly water soluble drug, metoprolol tartrate. Complexity of the system was presented through the effects of SE concentration and tablet porosity at various hydrophilic-lipophilic balance (HLB) values of SEs ranging from 0 to 16. Both effects contributed to release behaviors especially in the system containing hydrophilic SEs where swelling phenomena occurred. A self-organizing map neural network (SOM) was applied for visualizing interrelation among the variables and multilayer perceptron neural networks (MLPs) were employed to generalize the system and predict the drug release properties based on HLB value and concentration of SEs and tablet properties, i.e., tablet porosity, volume and tensile strength. Accurate prediction was obtained after systematically optimizing network performance based on learning algorithm of MLP. Drug release was mainly attributed to the effects of SEs, tablet volume and tensile strength in multi-dimensional interrelation whereas tablet porosity gave a small impact. Ability of system generalization and accurate prediction of the drug release properties proves the validity of SOM and MLPs for the formulation modeling of direct compacted matrix tablets containing controlled release agents of different material properties. Copyright © 2011 Elsevier B.V. All rights reserved.
Sungthongjeen, Srisagul; Sriamornsak, Pornsak; Pitaksuteepong, Tasana; Somsiri, Atawit; Puttipipatkhachorn, Satit
2004-02-12
The aim of this work was to assess the effect of 2 formulation variables, the pectin type (with different degrees of esterification [DEs]) and the amount of calcium, on drug release from pectin-based matrix tablets. Pectin matrix tablets were prepared by blending indomethacin (a model drug), pectin powder, and various amounts of calcium acetate and then tableting by automatic hydraulic press machine. Differential scanning calorimetry, powder x-ray diffraction, and Fourier transformed-infrared spectroscopy studies of the compressed tablets revealed no drug-polymer interaction and the existence of drug with low crystallinity. The in-vitro release studies in phosphate buffer (United States Pharmacopeia) and tris buffer indicated that the lower the DE, the greater the time for 50% of drug release (T50). This finding is probably because of the increased binding capacity of pectin to calcium. However, when the calcium was excluded, the pectins with different DEs showed similar release pattern with insignificant difference of T50. When the amount of calcium acetate was increased from 0 to 12 mg/tablet, the drug release was significantly slower. However, a large amount of added calcium (ie, 24 mg/tablet) produced greater drug release because of the partial disintegration of tablets. The results were more pronounced in phosphate buffer, where the phosphate ions induced the precipitation of calcium phosphate. In conclusion, both pectin type and added calcium affect the drug release from the pectin-based matrix tablets.
Kadivar, Ali; Kamalidehghan, Behnam; Javar, Hamid Akbari; Davoudi, Ehsan Taghizadeh; Zaharuddin, Nurul Dhania; Sabeti, Bahareh; Chung, Lip Yong; Noordin, Mohamed Ibrahim
2015-01-01
Introduction Imatinib mesylate is an antineoplastic agent which has high absorption in the upper part of the gastrointestinal tract (GIT). Conventional imatinib mesylate (Gleevec) tablets produce rapid and relatively high peak blood levels and requires frequent administration to keep the plasma drug level at an effective range. This might cause side effects, reduced effectiveness and poor therapeutic management. Therefore, floating sustained-release Imatinib tablets were developed to allow the tablets to be released in the upper part of the GIT and overcome the inadequacy of conventional tablets. Methodology Floating sustained-release Imatinib mesylate tablets were prepared using the wet granulation method. Tablets were formulated using Hydroxypropyl Methylcellulose (HPMC K4M), with Sodium alginate (SA) and Carbomer 934P (CP) as release-retarding polymers, sodium bicarbonate (NaHCO3) as the effervescent agent and lactose as a filler. Floating behavior, in vitro drug release, and swelling index studies were conducted. Initial and total drug release duration was compared with a commercial tablet (Gleevec) in 0.1 N HCl (pH 1.2) at 37 ± 0.5°C for 24 hours. Tablets were then evaluated for various physical parameters, including weight variation, thickness, hardness, friability, and drug content. Consequently, 6 months of physical stability studies and in vitro gastro-retentive studies were conducted. Results and Discussion Statistical data analysis revealed that tablets containing a composition of 14.67% w/w HPMC K4M, 10.67%, w/w Na alginate, 1.33%, w/w Carbomer 934P and 9.33%, w/w NaHCO3 produced the most favorable formulation to develop 24-hour sustained-release tablets with optimum floating behavior and satisfactory physicochemical characteristics. Furthermore, in vitro release study revealed that the formulated SR tablet had significantly lower Cmax and higher Tmax compared to the conventional tablet (Gleevec). Thus, formulated SR tablets preserved persistent concentration of plasma up to 24 hours. Conclusion In conclusion, in order to suggest a better drug delivery system with constant favorable release, resulting in optimized absorption and less side effects, formulated CP-HPMC-SA based imatinib mesylate floating sustained-release tablets can be a promising candidate for cancer chemotherapy. PMID:26035710
Razavi, Mahboubeh; Karimian, Hamed; Yeong, Chai Hong; Sarji, Sazilah Ahmad; Chung, Lip Yong; Nyamathulla, Shaik; Noordin, Mohamed Ibrahim
2015-01-01
The purpose of this study is to evaluate the in vitro and in vivo performance of gastro-retentive matrix tablets having Metformin HCl as model drug and combination of natural polymers. A total of 16 formulations were prepared by a wet granulation method using xanthan, tamarind seed powder, tamarind kernel powder and salep as the gel-forming agents and sodium bicarbonate as a gas-forming agent. All the formulations were evaluated for compendial and non-compendial tests and in vitro study was carried out on a USP-II dissolution apparatus at a paddle speed of 50 rpm. MOX2 formulation, composed of salep and xanthan in the ratio of 4:1 with 96.9% release, was considered as the optimum formulation with more than 90% release in 12 hours and short floating lag time. In vivo study was carried out using gamma scintigraphy in New Zealand White rabbits, optimized formulation was incorporated with 10 mg of 153Sm for labeling MOX2 formulation. The radioactive samarium oxide was used as the marker to trace transit of the tablets in the gastrointestinal tract. The in vivo data also supported retention of MOX2 formulation in the gastric region for 12 hours and were different from the control formulation without a gas and gel forming agent. It was concluded that the prepared floating gastro-retentive matrix tablets had a sustained-release effect in vitro and in vivo, gamma scintigraphy played an important role in locating the oral transit and the drug-release pattern. PMID:26124637
Streubel, A; Siepmann, J; Bodmeier, R
2003-01-01
The aim of this study was to develop and physicochemically characterize single unit, floating controlled drug delivery systems consisting of (i). polypropylene foam powder, (ii). matrix-forming polymer(s), (iii). drug, and (iv). filler (optional). The highly porous foam powder provided low density and, thus, excellent in vitro floating behavior of the tablets. All foam powder-containing tablets remained floating for at least 8 h in 0.1 N HCl at 37 degrees C. Different types of matrix-forming polymers were studied: hydroxypropyl methylcellulose (HPMC), polyacrylates, sodium alginate, corn starch, carrageenan, gum guar and gum arabic. The tablets eroded upon contact with the release medium, and the relative importance of drug diffusion, polymer swelling and tablet erosion for the resulting release patterns varied significantly with the type of matrix former. The release rate could effectively be modified by varying the "matrix-forming polymer/foam powder" ratio, the initial drug loading, the tablet geometry (radius and height), the type of matrix-forming polymer, the use of polymer blends and the addition of water-soluble or water-insoluble fillers (such as lactose or microcrystalline cellulose). The floating behavior of the low density drug delivery systems could successfully be combined with accurate control of the drug release patterns.
Komersová, Alena; Lochař, Václav; Myslíková, Kateřina; Mužíková, Jitka; Bartoš, Martin
2016-12-01
The aim of this study is to present the possibility of using of co-processed dry binders for formulation of matrix tablets with drug controlled release. Hydrophilic matrix tablets with tramadol hydrochloride, hypromellose and different co-processed dry binders were prepared by direct compression method. Hypromelloses Methocel™ K4M Premium CR or Methocel™ K100M Premium CR were used as controlled release agents and Prosolv® SMCC 90 or Disintequik™ MCC 25 were used as co-processed dry binders. Homogeneity of the tablets was evaluated using scanning electron microscopy and energy dispersive X-ray microanalysis. The release of tramadol hydrochloride from prepared formulations was studied by dissolution test method. The dissolution profiles obtained were evaluated by non-linear regression analysis, release rate constants and other kinetic parameters were determined. It was found that matrix tablets based on Prosolv® SMCC 90 and Methocel™ Premium CR cannot control the tramadol release effectively for >12h and tablets containing Disintequik™ MCC 25 and Methocel™ Premium CR >8h. Copyright © 2016 Elsevier B.V. All rights reserved.
Chavda, H.V.; Patel, M.S.; Patel, C.N.
2012-01-01
The objective of the present study was to design an oral controlled drug delivery system for sparingly soluble diclofenac sodium (DCL) using guar gum as triple-layer matrix tablets. Matrix tablet granules containing 30% (D1), 40% (D2) or 50% (D3) of guar gum were prepared by the conventional wet granulation technique. Matrix tablets of diclofenac sodium were prepared by compressing three layers one by one. Centre layer of sandwich like structure was incorporated with matrix granules containing DCL which was covered on either side by guar gum granule layers containing either 70, 80 or 87% of guar gum as release retardant layers. The tablets were evaluated for hardness, thickness, drug content, and drug release studies. To ascertain the kinetics of drug release, the dissolution profiles were fitted to various mathematical models. The in vitro drug release from proposed system was best explained by the Hopfenberg model indicating that the release of drug from tablets displayed heterogeneous erosion. D3G3, containing 87% of guar gum in guar gum layers and 50% of guar gum in DCL matrix granule layer was found to provide the release rate for prolonged period of time. The results clearly indicate that guar gum could be a potential hydrophilic carrier in the development of oral controlled drug delivery systems. PMID:23181081
Zhao, Wenchang; Song, Lijun; Deng, Hongzhu; Yao, Hui
2009-05-01
It is a challenge to deliver water-soluble drug based on hydrophilic matrix to colon because of swelling and erosion of polysaccharides in contact with media. In our study, guar-based hydrophilic matrix tablets containing water-soluble total alkaloids of Sophora alopecuroides prepared by wet granulation technique were evaluated. A novel method was established to investigate the changes of swelling and volume for guar-based tablets in undynamic state, which generally showed a rapid swelling and volume change in the first 9 h, then the hydrated speed slowed down. On the other hand, the influence of different pH of the media on water uptake and erosion of various guar-based formulations in dynamic state indicated that the hydrated constants in simulated gastric fluid (SGF) was higher than that in SIF, which followed varied mechanism of water penetration by fitting Davidson and Peppas model. The extent of erosion was between 22.4 and 32.6% in SIF within 360 min. In vitro sophoridine release studies in successive different mimicking media showed that the guar matrix tablets released 13.5-25.6% of sophoridine in the first 6 h; therefore it was necessary to develop the bilayer matrix tablet by direct-compressing coating 100 mg guar granula on core tablet. The initial release of coated tablet was retarded and the bilayer matrix tablet was suitable for colon target.
Song, Hong-Tao; Zhang, Qian; Jiang, Peng; Guo, Tao; Chen, Da-Wei; He, Zhong-Gui
2006-09-01
To prepare a sustained-release formulation of traditional Chinese medicine compound recipe by adopting time-controlled release techniques. Shuxiong tablets were chosen as model drug. The prescription and technique of core tablets were formulated with selecting disintegrating time and swelling volume of core tablets in water as index. The time-controlled release tablets were prepared by adopting press-coated techniques, using PEG6000, HCO and EVA as coating materials. The influences of compositions, preparation process and dissolution conditions in vitro on the lag time (T(lag)) of drug release were investigated. The composition of core tablets was as follow: 30% of drug, 50% MCC and 20% CMS-Na. The T(lag) of time-controlled release tablets was altered remarkably by PEG6000 content of the outer layer, the amount of outer layer and hardness of tablet. The viscosity of dissolution media and basket rotation had less influence on the T(lag) but more on rate of drug release. The core tablets pressed with the optimized composition had preferable swelling and disintegrating properties. The shuxiong sustained-release formulations which contained core tablet and two kinds of time-controlled release tablets with 3 h and 6 h of T(lag) could release drug successively at 0 h, 3 h and 6 h in vitro. The technique made it possible that various components with extremely different physicochemical properties in these preparations could release synchronously.
Ahmed, Sayed M; Ahmed Ali, Adel; Ali, Ahmed Ma; Hassan, Omiya A
2016-01-01
The aim of the present study was to improve the bioavailability of itopride (ITO) and sustain its action by formulating as a floating dosage form. Sustained-release floating tablets of ITO hydrochloride (HCl) were prepared by direct compression using different hydrocolloid polymers such as hydroxypropyl methylcellulose and ethylcellulose and/or methacrylic acid polymers Eudragit RSPM and Carbopol 934P. The floating property was achieved using an effervescent mixture of sodium bicarbonate and anhydrous citric acid (1:1 mol/mol). Hardness, friability, content uniformity, and dissolution rate of the prepared floating tablets were evaluated. The formulation F 10 composed of 28.5% Eudragit RSPM, 3% NaHCO 3 , and 7% citric acid provided sustained drug release. In vitro results showed sustained release of F 10 where the drug release percentage was 96.51%±1.75% after 24 hours ( P =0.031). The pharmacokinetic results indicated that the area under the curve (AUC 0-∞ ) of the prepared sustained-release floating tablets at infinity achieved 93.69 µg·h/mL compared to 49.89 µg·h/mL for the reference formulation (Ganaton ® ) and the relative bioavailability of the sustained-release formulation F 10 increased to 187.80% ( P =0.022). The prepared floating tablets of ITO HCl (F 10 ) could be a promising drug delivery system with sustained-release action and enhanced drug bioavailability.
In vitro studies on guar gum based formulation for the colon targeted delivery of Sennosides.
Momin, Munira; Pundarikakshudu, K
2004-09-24
The objective of the present study is to develop colon targeted drug delivery systems for sennosides using guar gum as a carrier. Matrix tablets containing various proportions of guar gum were prepared by wet granulation technique using starch paste as a binder. The tablets were evaluated for content uniformity and in vitro drug release study as per BP method. T(50) % value from the dissolution studies was taken for selecting the best formulation. Guar gum matrix tablets released 4-18% sennosides in the physiological environment of gastrointestinal tract depending on the proportion of the guar gum used in the formulation. The matrix tablets containing 50% of guar gum were found to be suitable for targeting of sennosides for local action in the colon. Compared to tablets having 30% and 40% of guar gum, those with 50% guar gum gave better T(50)% (11.7 h) le and fewer amounts (5-8%) of drug release in upper GIT. These tablets with 50% guar gum released 43% and 96% sennosides with and without rat caecal fluids. This suggests the susceptibility of matrix to the colonic micro flora. The similarity factor (f2 value) for drug release with and without rat caecal fluids was found to be less than 30. When hydroxy propyl methylcellulose phthalate (10%) was used as a coat material on the matrix tablets, the initial loss of 5-8% sennosides in stomach could be completely averted. These tablets showed no change in physical appearance, content and dissolution profile upon storage at 45 degrees C / 75% relative humidity for 3 months. The results of our study indicates that matrix tablets containing 50% guar gum and coated with 10% hydroxy propyl methylcellulose phthalate are most suitable for drugs like sennosides which are mainly active in the lower GIT.
[Modern polymers in matrix tablets technology].
Zimmer, Łukasz; Kasperek, Regina; Poleszak, Ewa
2014-01-01
Matrix tablets are the most popular method of oral drug administration, and polymeric materials have been used broadly in matrix formulations to modify and modulate drug release rate. The main goal of the system is to extend drug release profiles to maintain a constant in vivo plasma drug concentration and a consistent pharmacological effect. Polymeric matrix tablets offer a great potential as oral controlled drug delivery systems. Cellulose derivatives, like hydroxypropyl methylcellulose (HPMC) are often used as matrix formers. However, also other types of polymers can be used for this purpose including: Kollidon SR, acrylic acid polymers such as Eudragits and Carbopols. Nevertheless, polymers of natural origin like: carragens, chitosan and alginates widely used in the food and cosmetics industry are now coming to the fore of pharmaceutical research and are used in matrix tablets technology. Modern polymers allow to obtain matrix tablets by 3D printing, which enables to develop new formulation types. In this paper, the polymers used in matrix tablets technology and examples of their applications were described.
Al-Hanbali, Othman A; Hamed, Rania; Arafat, Mosab; Bakkour, Youssef; Al-Matubsi, Hisham; Mansour, Randa; Al-Bataineh, Yazan; Aldhoun, Mohammad; Sarfraz, Muhammad; Dardas, Abdel Khaleq Yousef
2018-01-01
In this study, hydrophilic hydroxypropyl methylcellulose matrices with various concentrations of Poloxamer 188 were used in the development of oral controlled release tablets containing diclofenac sodium. Four formulations of hydrophilic matrix tablets containing 16.7% w/w HPMC and 0, 6.7, 16.7 and 25.0% w/w Poloxamer 188, respectively, were developed. Tablets were prepared by direct compression and characterized for diameter, hardness, thickness, weight and uniformity of content. The influence of various blends of hydroxypropyl methylcellulose and Poloxamer 188 on the in vitro dissolution profile and mechanism of drug release of was investigated. In the four formulations, the rate of drug release decreased with increasing the concentration of Poloxamer 188 at the initial dissolution stages due to the increase in the apparent viscosity of the gel diffusion layer. However, in the late dissolution stages, the rate of drug release increased with increasing Poloxamer 188 concentration due to the increase in wettability and dissolution of the matrix. The kinetic of drug release from the tablets followed non-Fickian mechanism, as predicted by Korsmeyer-Peppas model, which involves diffusion through the gel layer and erosion of the matrix system.
Kong, Hua; Yu, Fanglin; Liu, Yan; Yang, Yang; Li, Mingyuan; Cheng, Xiaohui; Hu, Xiaoqin; Tang, Xuemei; Li, Zhiping; Mei, Xingguo
2018-01-01
Frequent administration caused by short half-life and low bioavailability due to poor solubility and low dissolution rate limit the further application of poorly water-soluble nimodipine, although several new indications have been developed. To overcome these shortcomings, sophisticated technologies had to be used since the dose of nimodipine was not too low and the addition of solubilizers could not resolve the problem of poor release. The purpose of this study was to obtain sustained and complete release of nimodipine with a simple and easily industrialized technology. The expandable monolithic osmotic pump tablets containing nimodipine combined with poloxamer 188 and carboxymethylcellulose sodium were prepared. The factors affecting drug release including the amount of solubilizing agent, expanding agent, retarding agent in core tablet and porogenic agent in semipermeable film were optimized. The release behavior was investigated both in vitro and in beagle dogs. It was proved that the anticipant release of nimodipine could be realized in vitro. The sustained and complete release of nimodipine was also realized in beagles because the mean residence time of nimodipine from the osmotic pump system was longer and Cmax was lower than those from the sustained-release tablets in market while there was no difference in AUC(0-t) of the monolithic osmotic pump tablets and the sustained release tablets in market. It was reasonable to believe that the sustained and complete release of poorly watersoluble nimodipine could be realized by using simple expandable monolithic osmotic pump technology combined with surfactant. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
... as a tablet and a sustained-release or extended-release (long-acting) tablet to take by mouth. ... with doses at least 8 hours apart. The extended-release tablet (Aplenzin, Wellbutrin XL) is usually taken ...
Ahmed, Sayed M; Ahmed Ali, Adel; Ali, Ahmed MA; Hassan, Omiya A
2016-01-01
Purpose The aim of the present study was to improve the bioavailability of itopride (ITO) and sustain its action by formulating as a floating dosage form. Materials and methods Sustained-release floating tablets of ITO hydrochloride (HCl) were prepared by direct compression using different hydrocolloid polymers such as hydroxypropyl methylcellulose and ethylcellulose and/or methacrylic acid polymers Eudragit RSPM and Carbopol 934P. The floating property was achieved using an effervescent mixture of sodium bicarbonate and anhydrous citric acid (1:1 mol/mol). Hardness, friability, content uniformity, and dissolution rate of the prepared floating tablets were evaluated. The formulation F10 composed of 28.5% Eudragit RSPM, 3% NaHCO3, and 7% citric acid provided sustained drug release. Results In vitro results showed sustained release of F10 where the drug release percentage was 96.51%±1.75% after 24 hours (P=0.031). The pharmacokinetic results indicated that the area under the curve (AUC0–∞) of the prepared sustained-release floating tablets at infinity achieved 93.69 µg·h/mL compared to 49.89 µg·h/mL for the reference formulation (Ganaton®) and the relative bioavailability of the sustained-release formulation F10 increased to 187.80% (P=0.022). Conclusion The prepared floating tablets of ITO HCl (F10) could be a promising drug delivery system with sustained-release action and enhanced drug bioavailability. PMID:28008229
Statistical Optimization of Sustained Release Venlafaxine HCI Wax Matrix Tablet.
Bhalekar, M R; Madgulkar, A R; Sheladiya, D D; Kshirsagar, S J; Wable, N D; Desale, S S
2008-01-01
The purpose of this research was to prepare a sustained release drug delivery system of venlafaxine hydrochloride by using a wax matrix system. The effects of bees wax and carnauba wax on drug release profile was investigated. A 3(2) full factorial design was applied to systemically optimize the drug release profile. Amounts of carnauba wax (X(1)) and bees wax (X(2)) were selected as independent variables and release after 12 h and time required for 50% (t(50)) drug release were selected as dependent variables. A mathematical model was generated for each response parameter. Both waxes retarded release after 12 h and increases the t(50) but bees wax showed significant influence. The drug release pattern for all the formulation combinations was found to be approaching Peppas kinetic model. Suitable combination of two waxes provided fairly good regulated release profile. The response surfaces and contour plots for each response parameter are presented for further interpretation of the results. The optimum formulations were chosen and their predicted results found to be in close agreement with experimental findings.
Statistical Optimization of Sustained Release Venlafaxine HCI Wax Matrix Tablet
Bhalekar, M. R.; Madgulkar, A. R.; Sheladiya, D. D.; Kshirsagar, S. J.; Wable, N. D.; Desale, S. S.
2008-01-01
The purpose of this research was to prepare a sustained release drug delivery system of venlafaxine hydrochloride by using a wax matrix system. The effects of bees wax and carnauba wax on drug release profile was investigated. A 32 full factorial design was applied to systemically optimize the drug release profile. Amounts of carnauba wax (X1) and bees wax (X2) were selected as independent variables and release after 12 h and time required for 50% (t50) drug release were selected as dependent variables. A mathematical model was generated for each response parameter. Both waxes retarded release after 12 h and increases the t50 but bees wax showed significant influence. The drug release pattern for all the formulation combinations was found to be approaching Peppas kinetic model. Suitable combination of two waxes provided fairly good regulated release profile. The response surfaces and contour plots for each response parameter are presented for further interpretation of the results. The optimum formulations were chosen and their predicted results found to be in close agreement with experimental findings. PMID:20046773
Ikeuchi-Takahashi, Yuri; Kobayashi, Ayaka; Onishi, Hiraku
2017-06-01
Topical drug application has the advantage of avoiding systemic side effects. We attempted to develop a long-acting matrix-type tablet containing indomethacin (IM) with low physical stimulus and potent mucoadhesive force to treat pain caused by oral aphtha. A mixture of polyethylene glycol (PEG) and hard fat was used as the tablet base. Ethylcellulose was added to the base in an attempt to control drug release. Tablets with PEG as a base were also prepared for comparison. Polyvinyl alcohols (PVAs) with various degrees of saponification were added to increase the mucoadhesive force. From the optical microscopic observations, formulations using PEG and hard fat exhibit PEG/hard fat dispersions caused by the stabilizing effects of PVA. Although the tablets using PEG and hard fat showed sufficient adhesiveness and sustained drug release, those using PEG as the base did not. Drug release was controlled by the amount of hard fat and the saponification degree of PVA. The drug release rate was most increased in a tablet containing PVA with an intermediate degree of saponification, PEG and hard fat. From differential scanning calorimetry and powder X-ray diffraction, IM was considered to exist in the molecular phase. From the results of buccal administration of tablets to rats, highest tissue concentrations were observed in the tablet containing PVA with the intermediate degree of saponification using PEG and hard fat, and the plasma concentrations were sufficiently low in comparison.
Wang, Yan-ping; Gan, Yong; Zhang, Xin-xin
2011-10-01
To develop a novel gastroretentive drug delivery system based on a self-microemulsifying (SME) lipid mixture for improving the oral absorption of the immunosuppressant tacrolimus. Liquid SME mixture, composed of Cremophor RH40 and monocaprylin glycerate, was blended with polyethylene oxide, chitosan, polyvinylpyrrolidone and mannitol, and then transformed into tablets via granulation, with ethanol as the wetting agent. The tablets were characterized in respect of swelling, bioadhesive and SME properties. In vitro dissolution was conducted using an HCl buffer at pH 1.2. Oral bioavailability of the tablets was examined in fasted beagle dogs. The tablet could expand to 13.5 mm in diameter and 15 mm in thickness during the initial 20 min of contact with the HCl buffer at pH 1.2. The bioadhesive strength was as high as 0.98±0.06 N/cm(2). The SME gastroretentive sustained-release tablets preserved the SME capability of the liquid SME formations under transmission electron microscope. The drug-release curve was fit to the zero-order release model, which was helpful in reducing fluctuations in blood concentration. Compared with the commercially available capsules of tacrolimus, the relative bioavailability of the SME gastroretentive sustained-release tablets was 553.4%±353.8%. SME gastroretentive sustained-release tablets can enhance the oral bioavailability of tacrolimus with poor solubility and a narrow absorption window.
Kallakunta, Venkata Raman; Tiwari, Roshan; Sarabu, Sandeep; Bandari, Suresh; Repka, Michael A
2018-05-14
The current study's aim is to prepare lipid based sustained release tablets via a twin-screw granulation technique and compare those dosage forms with conventional techniques, namely wet granulation and direct compression. The granules were successfully manufactured in a single-step, continuous twin-screw granulation process with a low proportion of binder (Klucel™ EF, HPC SSL) using Compritol® 888 ATO, Precirol® ATO 5 and Geleol™ as sustained release agents. The granules prepared showed good flow characteristics and compaction properties. DSC and XRD studies were conducted to characterize the granules prepared via a twin-screw granulation method and the results demonstrated the crystalline nature of lipids within the granules. FTIR data indicated that there were no interactions with the formulation components investigated. The formulations developed by all three methods were compressed into tablets with a mechanical strength of 14-16 KP. The tablets formulated were characterized for physicochemical properties, in vitro drug release studies, water uptake and erosion studies. These results showed that the drug was not completely released after 24 h for tablets developed by the wet granulation process using all three lipids. The tablets prepared by the direct compression method demonstrated a burst release within 8 to 10 h from Precirol ATO 5® and Geleol™ formulations compared to Compritol® 888 ATO. However, tablets prepared using twin-screw granulation exhibited sustained release of the drug over 24 h and the water uptake and erosion results were in accordance with dissolution data. Stability data for 45 days at accelerated conditions (40 °C/75% RH) showed similar release profiles with ƒ2 values above 50 for all of the twin screw granulation formulations, indicating the suitability of the process for formulating sustained release tablets. These findings of a single-step, continuous twin-screw granulation process are novel and demonstrate new opportunities for development of sustained release tablets. Copyright © 2017. Published by Elsevier B.V.
Nnamani, Petra Obioma; Ugwu, Agatha Adaora; Ibezim, Emmanuel Chinedu; Kenechukwu, Franklin Chimaobi; Akpa, Paul Achile; Ogbonna, John-Dike Nwabueze; Obitte, Nicholas Chinedu; Odo, Amelia Ngozi; Windbergs, Maike; Lehr, Claus-Michael; Attama, Anthony Amaechi
The present study aimed to develop low-dose liquisolid tablets of two antimalarial drugs artemether-lumefantrine (AL) from a nanostructured lipid carrier (NLC) of lumefantrine (LUM) and estimate the potential of AL as an oral delivery system in malariogenic Wistar mice. LUM-NLCs were prepared by hot homogenization using Precirol ® ATO 5/Transcutol ® HP and tallow fat/Transcutol ® HP optimized systems containing 3:1 ratios of the lipids, respectively, as the matrices. LUM-NLC characteristics, including morphology, particle size, zeta potential, encapsulation efficiency, yield, pH-dependent stability, and interaction studies, were investigated. Optimized LUM-NLCs were mixed with artemether powder and other dry ingredients and the resultant powder evaluated for micromeritics. Subsequent AL liquisolid tablets were tested for in vitro drug release and in vivo antiplasmodial activity in mice infected with Plasmodium berghei berghei (NK 65). Results showed that optimized LUM-NLC were stable, spherical, polydispersed but nanometric. Percentage yield and encapsulation efficiency were ~92% and 93% for Precirol ® ATO 5/Transcutol ® HP batch, then 81% and 95% for tallow fat/Transcutol ® HP batch while LUM was amorphous in NLC matrix. In vitro AL release from liquisolid compacts revealed initial burst release and subsequent sustained release. Liquisolid tablet compacts formulated with Precirol ® ATO 5/Transcutol ® HP-AL4 achieved higher LUM release in simulated intestinal fluid (84.32%) than tallow fat/Transcutol ® HP-BL3 (77.9%). Non-Fickian (anomalous) diffusion and super case II transport were the predominant mechanisms of drug release. Equal parasitemia reduction was observed for both batches of tablet compacts (~92%), superior to the reduction obtained with commercial antimalarial formulations: Coartem ® tablets (86%) and chloroquine phosphate tablets (66%). No significant difference ( P <0.05) in parasite reduction between double (4/24 mg/kg) and single (2/12 mg/kg) strength doses of AL compacts was observed. Our result highlights that AL could be formulated in much lower doses (4/24 mg/kg), for once-in-two days oral administration to improve patient compliance, which is currently not obtainable with conventional AL dosage forms.
Nnamani, Petra Obioma; Ugwu, Agatha Adaora; Ibezim, Emmanuel Chinedu; Kenechukwu, Franklin Chimaobi; Akpa, Paul Achile; Ogbonna, John-Dike Nwabueze; Obitte, Nicholas Chinedu; Odo, Amelia Ngozi; Windbergs, Maike; Lehr, Claus-Michael; Attama, Anthony Amaechi
2016-01-01
The present study aimed to develop low-dose liquisolid tablets of two antimalarial drugs artemether–lumefantrine (AL) from a nanostructured lipid carrier (NLC) of lumefantrine (LUM) and estimate the potential of AL as an oral delivery system in malariogenic Wistar mice. LUM-NLCs were prepared by hot homogenization using Precirol® ATO 5/Transcutol® HP and tallow fat/Transcutol® HP optimized systems containing 3:1 ratios of the lipids, respectively, as the matrices. LUM-NLC characteristics, including morphology, particle size, zeta potential, encapsulation efficiency, yield, pH-dependent stability, and interaction studies, were investigated. Optimized LUM-NLCs were mixed with artemether powder and other dry ingredients and the resultant powder evaluated for micromeritics. Subsequent AL liquisolid tablets were tested for in vitro drug release and in vivo antiplasmodial activity in mice infected with Plasmodium berghei berghei (NK 65). Results showed that optimized LUM-NLC were stable, spherical, polydispersed but nanometric. Percentage yield and encapsulation efficiency were ~92% and 93% for Precirol® ATO 5/Transcutol® HP batch, then 81% and 95% for tallow fat/Transcutol® HP batch while LUM was amorphous in NLC matrix. In vitro AL release from liquisolid compacts revealed initial burst release and subsequent sustained release. Liquisolid tablet compacts formulated with Precirol® ATO 5/Transcutol® HP-AL4 achieved higher LUM release in simulated intestinal fluid (84.32%) than tallow fat/Transcutol® HP-BL3 (77.9%). Non-Fickian (anomalous) diffusion and super case II transport were the predominant mechanisms of drug release. Equal parasitemia reduction was observed for both batches of tablet compacts (~92%), superior to the reduction obtained with commercial antimalarial formulations: Coartem® tablets (86%) and chloroquine phosphate tablets (66%). No significant difference (P<0.05) in parasite reduction between double (4/24 mg/kg) and single (2/12 mg/kg) strength doses of AL compacts was observed. Our result highlights that AL could be formulated in much lower doses (4/24 mg/kg), for once-in-two days oral administration to improve patient compliance, which is currently not obtainable with conventional AL dosage forms. PMID:27932882
Al-Zoubi, Nizar; Al-Obaidi, Ghada; Tashtoush, Bassam; Malamataris, Stavros
2016-01-01
In this work, aqueous diltiazem HCl and polyvinyl-pyrrolidone (PVP) solutions were mixed with Kollicoat SR 30D and spray dried to microparticles of different drug:excipient ratio and PVP content. Co-spray dried products and physical mixtures of drug, Kollidon SR and PVP were tableted. Spray drying process, co-spray dried products and compressibility/compactability of co-spray dried and physical mixtures, as well as drug release and water uptake of matrix-tablets was evaluated. Simple power equation fitted drug release and water uptake (R(2) > 0.909 and 0.938, respectively) and correlations between them were examined. Co-spray dried products with PVP content lower than in physical mixtures result in slower release, while at equal PVP content (19 and 29% w/w of excipient) in similar release (f2 > 50). Increase of PVP content increases release rate and co-spray drying might be an alternative, when physical mixing is inadequate. Co-spray dried products show better compressibility/compatibility but higher stickiness to the die-wall compared to physical mixtures. SEM observations and comparison of release and swelling showed that distribution of tableted component affects only the swelling, while PVP content for both co-spray dried and physical mixes is major reason for release alterations and an aid for drug release control.
The Preparation of Capsaicin-Chitosan Microspheres (CCMS) Enteric Coated Tablets
Chen, Jian; Huang, Gui-Dong; Tan, Si-Rong; Guo, Jiao; Su, Zheng-Quan
2013-01-01
This study aimed to research the preparation and content determination of capsaicin-chitosan microspheres (CCMS) enteric coated tablets. The core tablets were prepared with the method of wet granulation. Nine formulae were designed to determine the optimal formula of the core tablet. Eudragit L100 was used to prepare the CCMS enteric-coated tablets. The effect of enteric coated formulation variables such as content of talc (10%, 25% and 40%), plasticisers (TEC and DBS), dosage of plasticiser (10%, 20% and 30%) and coating weight (2%, 3% and 5%) were evaluated for drug release characteristics. The in vitro release was studied using 0.1 N HCl and pH 6.8 phosphate buffer. Enteric coated tablets without ruptures or swelling behaviour over 2 h in 0.1 N HCl indicated that these tablets showed acid resistance. The accumulated release rate in phosphate buffer (pH 6.8) revealed that the prepared tablets were able to sustain drug release into the intestine and a first-order release was obtained for capsaicin. This research is the first report of the preparation and content determination of CCMS enteric coated tablets. The sustained release behavior of enteric coated formulations in pH 6.8 phosphate buffer demonstrated that it would be a potential drug delivery platform for sustained delivery of gastric irritant drugs. PMID:24351818
Gutsche, S; Krause, M; Kranz, H
2008-12-01
Weakly basic drugs demonstrate higher solubility at lower pH, thus often leading to faster drug release at lower pH. The objective of this study was to achieve pH-independent release of weakly basic drugs from extended release formulations based on the naturally occurring polymer sodium alginate. Three approaches to overcome the pH-dependent solubility of the weakly basic model drug verapamil hydrochloride were investigated. First, matrix tablets were prepared by direct compression of drug substance with different types of sodium alginate only. Second, pH-modifiers were added to the drug/alginate matrix systems. Third, press-coated tablets consisting of an inner pH-modifier tablet core and an outer drug/sodium alginate coat were prepared. pH-Independent drug release was achieved from matrix tablets consisting of selected alginates and drug substance only. Alginates are better soluble at higher pH. Therefore, they are able to compensate the poor solubility of weakly basic drugs at higher pH as the matrix of the tablets dissolves faster. This approach was successful when using alginates that demonstrated fast hydration and erosion at higher pH. The approach failed for alginates with less-pronounced erosion at higher pH. The addition of fumaric acid to drug/alginate-based matrix systems decreased the microenvironmental pH within the tablets thus increasing the solubility of the weakly basic drug at higher pH. Therefore, pH-independent drug release was achieved irrespective of the type of alginate used. Drug release from press-coated tablets did not provide any further advantages as compound release remained pH-dependent.
Viridén, Anna; Abrahmsén-Alami, Susanna; Wittgren, Bengt; Larsson, Anette
2011-08-01
The release of theophylline and carbamazepine from matrix tablets composed of microcrystalline cellulose, lactose and hydroxypropyl methylcellulose (HPMC) was studied. The aim was to investigate the effect of different substituent heterogeneities of HPMC on the drug release from matrix tablets composed of either 35% or 45% HPMC. The release of the poorly soluble carbamazepine was considerably affected by the HPMC heterogeneity, and the time difference at 80% drug release was more than 12h between the formulations of different HPMC batches. This was explained by slower polymer erosion of the heterogeneous HPMC and the fact that carbamazepine was mainly released by erosion. In addition, results from magnetic resonance imaging showed that the rate of water transport into the tablets was similar. This explained the comparable results of the release of the sparingly soluble theophylline from the two formulations even though the polymer erosion and the swelling of the tablets were considerably different. Thus, it can be concluded that the drug release was highly affected by the substituent heterogeneity, especially in the case of carbamazepine, which was released mainly by erosion. Copyright © 2011 Elsevier B.V. All rights reserved.
McConville, Christopher; Major, Ian; Devlin, Brid; Brimer, Andrew
2016-07-01
Multipurpose prevention technologies (MPTs) are preferably single dosage forms designed to simultaneously address multiple sexual and reproductive health needs, such as unintended pregnancy, HIV infection and other sexually transmitted infections (STIs). This manuscript describes the development of a range of multi-layered vaginal tablets, with both immediate and sustained release layers capable of delivering the antiretroviral drug dapivirine, the contraceptive hormone levonorgestrel, and the anti-herpes simplex virus drug acyclovir at independent release rates from a single dosage form. Depending on the design of the tablet in relation to the type (immediate or sustained release) or number of layers, the dose of each drug could be individually controlled. For example one tablet design was able to provide immediate release of all three drugs, while another tablet design was able to provide immediate release of both acyclovir and levonorgestrel, while providing sustained release of Dapivirine for up to 8h. A third tablet design was able to provide immediate release of both acyclovir and levonorgestrel, a large initial burst of Dapivirine, followed by sustained release of Dapivirine for up to 8h. All of the tablets passed the test for friability with a percent friability of less than 1%. The hardness of all tablet designs was between 115 and 153N, while their drug content met the European Pharmacopeia 2.9.40 Uniformity of Dosage units acceptance value at levels 1 and 2. Finally, the accelerated stability of all three actives was significantly enhanced in comparison with a mixed drug control. Copyright © 2016 Elsevier B.V. All rights reserved.
Antovska, Packa; Ugarkovic, Sonja; Petruševski, Gjorgji; Stefanova, Bosilka; Manchevska, Blagica; Petkovska, Rumenka; Makreski, Petre
2017-11-01
Development, experimental design and in vitro in vivo correlation (IVIVC) of controlled-release matrix formulation. Development of novel oral controlled delivery system for indapamide hemihydrate, optimization of the formulation by experimental design and evaluation regarding IVIVC on a pilot scale batch as a confirmation of a well-established formulation. In vitro dissolution profiles of controlled-release tablets of indapamide hemihydrate from four different matrices had been evaluated in comparison to the originator's product Natrilix (Servier) as a direction for further development and optimization of a hydroxyethylcellulose-based matrix controlled-release formulation. A central composite factorial design had been applied for the optimization of a chosen controlled-release tablet formulation. The controlled-release tablets with appropriate physical and technological properties had been obtained with a matrix: binder concentration variations in the range: 20-40w/w% for the matrix and 1-3w/w% for the binder. The experimental design had defined the design space for the formulation and was prerequisite for extraction of a particular formulation that would be a subject for transfer on pilot scale and IVIV correlation. The release model of the optimized formulation has shown best fit to the zero order kinetics depicted with the Hixson-Crowell erosion-dependent mechanism of release. Level A correlation was obtained.
Tajiri, Tomokazu; Morita, Shigeaki; Sakamoto, Ryosaku; Suzuki, Masazumi; Yamanashi, Shigeyuki; Ozaki, Yukihiro; Kitamura, Satoshi
2010-08-16
Release mechanism of acetaminophen (AAP) from extended-release tablets of hydrogel polymer matrices containing polyethylene oxide (PEO) and polyethylene glycol (PEG) were achieved using flow-through cell with magnetic resonance imaging (MRI). The hydrogel forming abilities are observed characteristically and the layer thickness which is corresponding to the diffusion length of AAP has a good correlation with the drug release profiles. In addition, polymeric erosion contribution to AAP releasing from hydrogel matrix tablets was directly quantified using size-exclusion chromatography (SEC). The matrix erosion profile indicates that the PEG erosion kinetic depends primarily on the composition ratio of PEG to PEO. The present study has confirmed that the combination of in situ MRI and SEC should be well suited to investigate the drug release mechanisms of hydrogel matrix such as PEO/PEG. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Khairuzzaman, A; Ahmed, S U; Savva, M; Patel, N K
2006-08-02
A novel hydrocolloidal polymer, methylcellulose glutarate (MC-GA), was prepared by esterifying methylcellulose with glutaric anhydride. The formation of ester was confirmed by FTIR and NMR spectroscopy, DSC and elemental analysis. The physicochemical properties such as, rate of swelling in water, viscosity and hygroscopicity of MC-GA were determined and compared with those of methycellulose A (MC). Aspirin, theophylline and atenolol tablets were compacted on a Carver press using the wet granulation method. Each tablet contained: 200 mg active, 80 mg anhydrous lactose, 8 mg povidone, 4 mg magnesium stearate, 4 mg talc, 50mg MC or MC-GA (drug-to-polymer ratio, 4:1). Contrary to the first-order release profile of all the drugs from the MC matrix tablets, a zero-order release was obtained from the MC-GA matrix tablets in water.
Wang, Yan-ping; Gan, Yong; Zhang, Xin-xin
2011-01-01
Aim: To develop a novel gastroretentive drug delivery system based on a self-microemulsifying (SME) lipid mixture for improving the oral absorption of the immunosuppressant tacrolimus. Methods: Liquid SME mixture, composed of Cremophor RH40 and monocaprylin glycerate, was blended with polyethylene oxide, chitosan, polyvinylpyrrolidone and mannitol, and then transformed into tablets via granulation, with ethanol as the wetting agent. The tablets were characterized in respect of swelling, bioadhesive and SME properties. In vitro dissolution was conducted using an HCl buffer at pH 1.2. Oral bioavailability of the tablets was examined in fasted beagle dogs. Results: The tablet could expand to 13.5 mm in diameter and 15 mm in thickness during the initial 20 min of contact with the HCl buffer at pH 1.2. The bioadhesive strength was as high as 0.98±0.06 N/cm2. The SME gastroretentive sustained-release tablets preserved the SME capability of the liquid SME formations under transmission electron microscope. The drug-release curve was fit to the zero-order release model, which was helpful in reducing fluctuations in blood concentration. Compared with the commercially available capsules of tacrolimus, the relative bioavailability of the SME gastroretentive sustained-release tablets was 553.4%±353.8%. Conclusion: SME gastroretentive sustained-release tablets can enhance the oral bioavailability of tacrolimus with poor solubility and a narrow absorption window. PMID:21927013
Timmins, Peter; Desai, Divyakant; Chen, Wei; Wray, Patrick; Brown, Jonathan; Hanley, Sarah
2016-08-01
Approaches to characterizing and developing understanding around the mechanisms that control the release of drugs from hydrophilic matrix tablets are reviewed. While historical context is provided and direct physical characterization methods are described, recent advances including the role of percolation thresholds, the application on magnetic resonance and other spectroscopic imaging techniques are considered. The influence of polymer and dosage form characteristics are reviewed. The utility of mathematical modeling is described. Finally, how all the information derived from applying the developed mechanistic understanding from all of these tools can be brought together to develop a robust and reliable hydrophilic matrix extended-release tablet formulation is proposed.
Yonezawa, Yorinobu; Ishida, Sumio; Suzuki, Shinobu; Sunada, Hisakazu
2002-09-01
Generalization of the release process through the wax matrix layer was examined by use of a reservoir device tablet. The wax matrix layer of the reservoir device tablet was prepared from a physical mixture of lactose and hydrogenated castor oil to simplify the release properties. Release through the wax matrix layer showed zero-order kinetics in a steady state after a given lag time, and could be divided into two stages. The first stage was the formation process of water channel by dissolving the soluble component in the wax matrix layer. The lag time obtained by applying the square root law equation was well connected with the amount of the matrix layer and mixed weight ratio of components in this layer. The second stage was the zero-order release process of drug in the reservoir through the wax matrix layer, because the effective surface area was fixed. The release rate constants were connected with thickness of the matrix layer and permeability coefficient, and the permeability coefficients were connected with the diffusion coefficient of drug and porosity. Hence the release rate constant could be connected with the amount of matrix layer and the mixed weight ratio of components in the matrix layer. It was therefore suggested that the release process could be generalized using the amount of matrix layer and the mixed weight ratio of components in the matrix layer.
Puri, Vibha; Brancazio, Dave; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Myerson, Allan S; Trout, Bernhardt L
2017-11-01
The combination of hot-melt extrusion and injection molding (HME-IM) is a promising process technology for continuous manufacturing of tablets. However, there has been limited research on its application to formulate crystalline drug-containing immediate-release tablets. Furthermore, studies that have applied the HME-IM process to molded tablets have used a noncontinuous 2-step approach. The present study develops maltodextrin (MDX)-based extrusion-molded immediate-release tablets for a crystalline drug (griseofulvin) using an integrated twin-screw HME-IM continuous process. At 10% w/w drug loading, MDX was selected as the tablet matrix former based on a preliminary screen. Furthermore, liquid and solid polyols were evaluated for melt processing of MDX and for impact on tablet performance. Smooth-surfaced tablets, comprising crystalline griseofulvin solid suspension in the amorphous MDX-xylitol matrix, were produced by a continuous process on a twin-screw extruder coupled to a horizontally opening IM machine. Real-time HME process profiles were used to develop automated HME-IM cycles. Formulation adjustments overcame process challenges and improved tablet strength. The developed MDX tablets exhibited adequate strength and a fast-dissolving matrix (85% drug release in 20 min), and maintained performance on accelerated stability conditions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Cash-Torunarigha, Omonyemen Edoise; Eichie, Florence Egbomonjiade; Arhewoh, Matthew Ikhuoria
2015-03-01
This work was designed to evaluate the influence of various methods such as dry granulation (DG), wet granulation (using the polymer in an ethanolic solution (WGO) or aqueous dispersion (WGA) and solid dispersion (SD) techniques, on properties of paracetamol matrix tablets prepared using varying concentrations of acrylate methacrylate copolymer. Tablet properties were investigated using official and unofficial standards. Drug dissolution profile assessed at pH 1.2 was studied spectrophotometrically at λ(max) of 245 nm. With the use of various kinetic models, the release mechanism of the drug was analyzed. The parameters, maximum amount of drug release (m(∞)) at time t(∞) were obtained, m(∞) was ≥ 91.36 %, while t(∞) was ≥ 4.5 h. The release rate constant (k) for DG tablets was 15.61 h(sup>-1(/sup>, while, WGO, WGA and SD tablets were 12.90, 11.03 and 10.75 h(-1) respectively. The matrix tablets, which exhibited marked retardation in drug release displayed a Higuchi square root of time model (R(2) > 0.98). The mechanism through which the drug was released was governed by Fickian diffusion release (n values < 0.5). The performance of the drug was affected by the formulation technique in the order of SD > WGO > WGA > DG.
Elshafeey, Ahmed H; Sami, Elshaimaa I
2008-01-01
The aim of this study was to formulate extended release compression coated core tablets of fenoterol hydrobromide, a selective beta(2) adrenergic receptor agonist, in an attempt to prevent nocturnal asthma. Two hydrophilic polymers viz Kollidon SR, Polyox WSR 303 and a hydrophobic one (Precirol ATO5) were employed. Compression coated tablets were formulated by preparing a core tablet containing 7.5 mg drug and various amounts of polymer and Emcompress then compressed coated with the same polymeric materials. For comparison purpose different matrix tablets were also prepared employing the same polymers. In-vitro release studies were carried out at different pH (1.2 and 6.8). Pharmacokinetics of extended release tablets as well as commercially available immediate release tablets (Berotec) were studied after oral administration to beagle dogs using a new developed LC-MS/MS method with a lower limit of quantification of 1 ng/ml. Fenoterol release from compression coated tablets was significantly lower than matrix tablets. The mechanism of release was changed with the nature and content of polymer. The release pattern of drug from F16 containing 40 mg Kollidon SR divided in the core tablet (15 mg) and the rest in the compressed coat (25 mg) showed a typical zero order release kinetic that could extend drug release >10 h and reasonable time for 75% to be released (t(75)) (8.92 h). When compared to immediate release Berotec tablet the MRT was significantly extended from 7.03 +/- 0.76 to 10.93 +/- 1.25 h (P < 0.001) and HVD(t 50%Cmax) was also significantly extended from 2.71 +/- 0.68 to 6.81 +/- 0.67 h with expected prevention of nocturnal asthma.
Zeng, Aiguo; Yuan, Bingxiang; Fu, Qiang; Wang, Changhe; Zhao, Guilan
2009-01-01
The effect of sodium dodecyl sulfate (SDS) on the swelling, erosion and release behavior of HPMC matrix tablets was examined. Swelling and erosion of HPMC matrix tablets were determined by measuring the wet and subsequent dry weights of matrices. The rate of uptake of the dissolution medium by the matrix was quantified using a square root relationship whilst the erosion of the polymer was described using the cube root law. The extent of swelling decreased with increasing SDS concentrations in the dissolution medium but the rate of erosion was found to follow a reverse trend. Such phenomena might have been caused by the attractive hydrophobic interaction between HPMC and SDS as demonstrated by the cloud points of the solutions containing both the surfactant and polymer. Release profiles of nimodipine from HPMC tablets in aqueous media containing different concentrations of SDS were finally studied. Increasing SDS concentrations in the medium was shown to accelerate the release of nimodipine from the tablets, possibly due to increasing nimodipine solubility and increasing rate of erosion by increasing SDS concentrations in the dissolution medium.
Development of controlled drug release systems based on thiolated polymers.
Bernkop-Schnürch, A; Scholler, S; Biebel, R G
2000-05-03
The purpose of the present study was to generate mucoadhesive matrix-tablets based on thiolated polymers. Mediated by a carbodiimide, L-cysteine was thereby covalently linked to polycarbophil (PCP) and sodium carboxymethylcellulose (CMC). The resulting thiolated polymers displayed 100+/-8 and 1280+/-84 micromol thiol groups per gram, respectively (means+/-S.D.; n=6-8). In aqueous solutions these modified polymers were capable of forming inter- and/or intramolecular disulfide bonds. The velocity of this process augmented with increase of the polymer- and decrease of the proton-concentration. The oxidation proceeded more rapidly within thiolated PCP than within thiolated CMC. Due to the formation of disulfide bonds within thiol-containing polymers, the stability of matrix-tablets based on such polymers could be strongly improved. Whereas tablets based on the corresponding unmodified polymer disintegrated within 2 h, the swollen carrier matrix of thiolated CMC and PCP remained stable for 6.2 h (mean, n=4) and more than 48 h, respectively. Release studies of the model drug rifampicin demonstrated that a controlled release can be provided by thiolated polymer tablets. The combination of high stability, controlled drug release and mucoadhesive properties renders matrix-tablets based on thiolated polymers useful as novel drug delivery systems.
Properties of hot-melt extruded theophylline tablets containing poly(vinyl acetate).
Zhang, F; McGinity, J W
2000-09-01
The objectives of this study were to investigate the properties of poly(vinyl acetate) (PVAc) as a retardant polymer and to study the drug release mechanism of theophylline from matrix tablets prepared by hot-melt extrusion. A physical mixture of drug, polymer, and drug release modifiers was fed into the equipment and heated inside the barrel of the extruder. The cylindrical extrudates were either cut into tablets or ground into granules and compressed with other excipients into tablets. Due to the low glass transition temperature of the PVAc, the melt extrusion process was conducted at approximately 70 degrees C. Theophylline was used as the model drug in this study. Theophylline was present in the extrudate in its crystalline form and was released from the tablets by diffusion. The Higuchi diffusion model and percolation theories were applied to the dissolution data to explain the drug release properties of the matrix systems. The release rate was shown to be dependent on the granule size, drug particle size, and drug loading in the tablets. Water-soluble polymers were demonstrated to be efficient release rate modifiers for this system.
Release from or through a wax matrix system. I. Basic release properties of the wax matrix system.
Yonezawa, Y; Ishida, S; Sunada, H
2001-11-01
Release properties from a wax matrix tablet was examined. To obtain basic release properties, the wax matrix tablet was prepared from a physical mixture of drug and wax powder (hydrogenated caster oil) at a fixed mixing ratio. Properties of release from the single flat-faced surface or curved side surface of the wax matrix tablet were examined. The applicability of the square-root time law and of Higuchi equations was confirmed. The release rate constant obtained as g/min(1/2) changed with the release direction. However, the release rate constant obtained as g/cm2 x min(1/2) was almost the same. Hence it was suggested that the release property was almost the same and the wax matrix structure was uniform independent of release surface or direction at a fixed mixing ratio. However, these equations could not explain the entire release process. The applicability of a semilogarithmic equation was not as good compared with the square-root time law or Higuchi equation. However, it was revealed that the semilogarithmic equation was available to simulate the entire release process, even though the fit was somewhat poor. Hence it was suggested that the semilogarithmic equation was sufficient to describe the release process. The release rate constant was varied with release direction. However, these release rate constants were expressed by a function of the effective surface area and initial amount, independent of the release direction.
Shahiwala, Aliasgar; Zarar, Aisha
2018-01-01
In order to prove the validity of a new formulation, a considerable amount of effort is required to study bioequivalence, which not only increases the burden of carrying out a number of bioequivalence studies but also eventually increases the cost of the optimization process. The aim of the present study was to develop sustained release matrix tablets containing diclofenac sodium using natural polymers and to demonstrate step by step process of product development till the prediction of in vivo marketed product equivalence of the developed product. Different batches of tablets were prepared by direct compression. In vitro drug release studies were performed as per USP. The drug release data were assessed using model-dependent, modelindependent and convolution approaches. Drug release profiles showed that extended release action were in the following order: Gum Tragacanth > Sodium Alginate > Gum Acacia. Amongst the different batches prepared, only F1 and F8 passed the USP criteria of drug release. Developed formulas were found to fit Higuchi kinetics model with Fickian (case I) diffusion-mediated release mechanism. Model- independent kinetics confirmed that total of four batches were passed depending on the similarity factors based on the comparison with the marketed Diclofenac. The results of in vivo predictive convolution model indicated that predicted AUC, Cmax and Tmax values for batch F8 were similar to that of marketed product. This study provides simple yet effective outline of pharmaceutical product development process that will minimize the formulation development trials and maximize the product success in bioequivalence studies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Yotsawimonwat, Songwut; Charumanee, Suporn; Kaewvichit, Sayam; Sirithunyalug, Jakkapan; Sirisa-Ard, Panee; Piyamongkol, Sirivipa; Siangwong, Kulthawat
2017-05-01
Irvingia malayana wax (IW) is majorly composed of esters of medium chain fatty acids. Its melting point is low and closed to the body temperature. This study aimed at investigating the potential of IW as a matrix-forming agent and evaluate the effect of soluble channeling agents on the release of diclofenac sodium (DS) from IW matrix tablets. The preformulation study by infrared spectroscopy and differential scanning calorimetry showed no incompatibility between IW and DS or soluble channeling agents, namely PEG 4000, PEG 6000 and lactose. IW retarded the release of DS from the matrix tablets more efficiently than carnauba wax due to its greater hydrophobicity and its ability to become partial molten wax at 37° C. Factors affecting the release of DS from IW matrix were drug concentrations, and types and concentrations of channeling agents. The release of DS significantly improved when DS concentration reached approximately 33%. The fast dissolving channeling agent, lactose, could enhance the drug release rate more effectively than PEG 4000 and PEG 6000, respectively. The linear relationship between the DS release rate and the concentration of the chosen channeling agent, PEG 6000, was found (r 2 =0.9866).
Li, Liang; Wang, Linlin; Shao, Yang; Tian, Ye; Li, Conghao; Li, Ying; Mao, Shirui
2013-08-01
The aim of this study was to better understand the underlying drug release characteristics from matrix tablets based on the combination of chitosan (CS) and different types of carrageenans [kappa (κ)-CG, iota (ι)-CG, and lambda (λ)-CG]. Highly soluble trimetazidine hydrochloride (TH) was used as a model drug. First, characteristics of drug release from different formulations were investigated, and then in situ complexation capacity of CG with TH and CS was studied by differential scanning calorimetry and Fourier transform infrared spectroscopy. Erosion and swelling of matrix were also characterized to better understand the drug-release mechanisms. Effects of pH and ionic strength on drug release were also studied. It was found that not only ι-CG and λ-CG could reduce the burst release of TH by the effect of TH-CG interaction, CS-ι-CG- and CS-λ-CG-based polyelectrolyte film could further modify the controlled-release behavior, but not CS-κ-CG. High pH and high ionic strength resulted in faster drug release from CS-κ-CG- and CS-ι-CG-based matrix, but drug release from CS-λ-CG-based matrix was less sensitive to pH and ionic strength. In conclusion, CS-λ-CG-based matrix tablets are quite promising as controlled-release drug carrier based on multiple mechanisms. Copyright © 2013 Wiley Periodicals, Inc.
Elkhodairy, Kadria A.; Elsaghir, Hanna A.; Al-Subayiel, Amal M.
2014-01-01
The present study aimed at the formulation of matrix tablets for colon-specific drug delivery (CSDD) system of indomethacin (IDM) by applying liquisolid (LS) technique. A CSDD system based on time-dependent polymethacrylates and enzyme degradable polysaccharides was established. Eudragit RL 100 (E-RL 100) was employed as time-dependent polymer, whereas bacterial degradable polysaccharides were presented as LS systems loaded with the drug. Indomethacin-loaded LS systems were prepared using different polysaccharides, namely, guar gum (GG), pectin (PEC), and chitosan (CH), as carriers separately or in mixtures of different ratios of 1 : 3, 1 : 1, and 3 : 1. Liquisolid systems that displayed promising results concerning drug release rate in both pH 1.2 and pH 6.8 were compressed into tablets after the addition of the calculated amount of E-RL 100 and lubrication with magnesium stearate and talc in the ratio of 1 : 9. It was found that E-RL 100 improved the flowability and compressibility of all LS formulations. The release data revealed that all formulations succeeded to sustain drug release over a period of 24 hours. Stability study indicated that PEC-based LS system as well as its matrix tablets was stable over the period of storage (one year) and could provide a minimum shelf life of two years. PMID:24971345
Huanbutta, Kampanart; Sriamornsak, Pornsak; Limmatvapirat, Sontaya; Luangtana-anan, Manee; Yoshihashi, Yasuo; Yonemochi, Etsuo; Terada, Katsuhide; Nunthanid, Jurairat
2011-02-01
Magnetic resonance imaging (MRI) was used to assess in situ swelling behaviors of spray-dried chitosan acetate (CSA) in 0.1N HCl, pH 6.8 and pH 5.0 Tris-HCl buffers. The in vitro drug releases from CSA matrix tablets containing the model drugs, diclofenac sodium and theophylline were investigated in all media using USP-4 apparatus. The effect of chitosan molecular weight, especially in pH 6.8 Tris-HCl, was also studied. In 0.1N HCl, the drug release from the matrix tablets was the lowest in relation to the highest swelling of CSA. The swelling kinetics in Tris-HCl buffers are Fickian diffusion according to their best fit to Higuchi's model as well as the drug release kinetics in all the media. The high swelling rate (k(s)(')) was found to delay the drug release rate (k'). The linear relationship between the swelling and fractions of drug release in Tris-HCl buffers was observed, indicating an important role of the swelling on controlling the drug release mechanism. Additionally, CSA of 200 and 800 kDa chitosan did not swell in pH 6.8 Tris-HCl but disintegrated into fractions, and the drug release from the matrix tablets was the highest. Copyright © 2010 Elsevier B.V. All rights reserved.
Arora, Gurpreet; Malik, Karan; Singh, Inderbir; Arora, Sandeep; Rana, Vikas
2011-01-01
The aim of study was to prepare controlled release matrix mucoadhesive tablets of domperidone using Salvia plebeian gum as natural polymer. Tablets were formulated by direct compression technology employing the natural polymer in different concentrations (5, 10, 15 and 20% w/w). The prepared batches were evaluated for drug assay, diameter, thickness, hardness and tensile strength, swelling index, mucoadhesive strength (using texture analyzer) and subjected to in vitro drug release studies. Real-time stability studies were also conducted on prepared batches. In vitro drug release data were fitted in various release kinetic models for studying the mechanism of drug release. Tensile strength was found to increase from 0.808 ± 0.098 to 1.527 ± 0.10 mN/cm2 and mucoadhesive strength increased from 13.673 ± 1.542 to 40.378 ± 2.345 N, with an increase in the polymer concentration from 5 to 20% (A1 to A4). Swelling index was reported to increase with both increase in the concentration of gum and the time duration. The in vitro drug release decreased from 97.76 to 83.4% (A1 to A4) with the increase in polymer concentration. The drug release from the matrix tablets was found to follow zero-order and Higuchi models, indicating the matrix-forming potential of natural polymer. The value of n was found to be between 0.5221 and 0.8992, indicating the involvement of more than one drug release mechanism from the formulation and possibly the combination of both diffusion and erosion. These research findings clearly indicate the potential of S. plebeian gum to be used as binder, release retardant and mucoadhesive natural material in tablet formulations. PMID:22171313
Formulation and evaluation of floating matrix tablet of stavudine
Prajapati, Pankaj H; Nakum, Vijay V; Patel, Chhagan N
2012-01-01
Background/Aim: The purpose of the study was to prolong the gastric residence time of stavudine by designing its floating tablets and to study the influence of different polymers on its release rate. Materials and Methods: The floating mix matrix tablets of stavudine were prepared by melt granulation method. Beeswax was used as hydrophobic meltable material. Hydroxypropyl methylcellulose (HPMC), sodium bicarbonate, and ethyl cellulose were used as matrixing agent, gas generating agent, and floating enhancer, respectively. The prepared tablets were evaluated for physicochemical parameters such as hardness, weight variation, friability, floating properties (floating lag time, total floating time), drug content, stability study, and in vitro drug release. The drug- polymer interaction was studied by Differential Scanning Calorimetry (DSC) thermal analysis and Fourier transform infared (FT-IR). Results: The floating lag time of all the formulations was within the prescribed limit (<3 min). All the formulations showed good matrix integrity and retarded the release of drug for 12 h except the formulation F5.The concentration of beeswax (X1), HPMC K4M (X2), and ethyl cellulose (X3) were selected as independent variables and drug release values at 1 (Q1), at 6 (Q6) and at 12 h (Q12) as dependent variables. Formulation F7 was selected as an optimum formulation as it showed more similarity in dissolution profile with theoretical profile (similarity factor, f2 = 70.91). The dissolution of batch F7 can be described by zero-order kinetics (R2 =0.9936) with anomalous (non-Fickian) diffusion as the release mechanism (n=0.545). There was no difference observed in release profile after temperature sensitivity study at 40°C/75% relative humidity (RH) for 1 month. Conclusion: It can be concluded from this study that the combined mix matrix system containing hydrophobic and hydrophilic polymer minimized the burst release of drug from the tablet and achieved a drug release by zero-order kinetics, which is practically difficult with only hydrophilic matrix. PMID:23119237
Characterization of poly(vinyl acetate) based floating matrix tablets.
Strübing, Sandra; Metz, Hendrik; Mäder, Karsten
2008-03-03
Floating Kollidon SR matrix tablets containing Propranolol HCl were developed and characterized with respect to drug release characteristics and floating strength. Kollidon SR was able to delay Propranolol HCl release efficiently. Drug release kinetics was evaluated using the Korsmeyer-Peppas model and found to be governed by Fickian diffusion. Tablet floating started immediately and continued for 24 h. It was possible to monitor the floating strength of the matrix devices using a simple experimental setup. Floating strength was related to Kollidon SR level with improved floating characteristics for samples with a high polymer/drug ratio. Swelling characteristics of the tablets were analyzed by applying the equation according to Therien-Aubin et al. The influence of the polymer content on swelling characteristics was found to be only marginal. Furthermore, the new method of benchtop MRI was introduced to study the water diffusion and swelling behaviour non-invasively and continuously.
Li, Jin; Chai, Hongyu; Li, Yang; Chai, Xuyu; Zhao, Yan; Zhao, Yunfan; Tao, Tao; Xiang, Xiaoqiang
2016-01-01
Amoxicillin is a commonly used antibiotic which has a short half-life in human. The frequent administration of amoxicillin is often required to keep the plasma drug level in an effective range. The short dosing interval of amoxicillin could also cause some side effects and drug resistance, and impair its therapeutic efficacy and patients' compliance. Therefore, a three-pulse release tablet of amoxicillin is desired to generate sustained release in vivo, and thus to avoid the above mentioned disadvantages. The pulsatile release tablet consists of three pulsatile components: one immediate-release granule and two delayed release pellets, all containing amoxicillin. The preparation of a pulsatile release tablet of amoxicillin mainly includes wet granulation craft, extrusion/spheronization craft, pellet coating craft, mixing craft, tablet compression craft and film coating craft. Box-Behnken design, Scanning Electron Microscope and in vitro drug release test were used to help the optimization of formulations. A crossover pharmacokinetic study was performed to compare the pharmacokinetic profile of our in-house pulsatile tablet with that of commercial immediate release tablet. The pharmacokinetic profile of this pulse formulation was simulated by physiologically based pharmacokinetic (PBPK) model with the help of Simcyp®. Single factor experiments identify four important factors of the formulation, namely, coating weight of Eudragit L30 D-55 (X1), coating weight of AQOAT AS-HF (X2), the extrusion screen aperture (X3) and compression forces (X4). The interrelations of the four factors were uncovered by a Box-Behnken design to help to determine the optimal formulation. The immediate-release granule, two delayed release pellets, together with other excipients, namely, Avicel PH 102, colloidal silicon dioxide, polyplasdone and magnesium stearate were mixed, and compressed into tablets, which was subsequently coated with Opadry® film to produce pulsatile tablet of amoxicillin. In vitro release study firstly indicated a three-pulse release profile of the tablet. Later the pulse tablet was found to generate the sustained release of amoxicillin in beagle dogs. Furthermore, the Simcyp® software was used to simulate the in vivo concentration time curve model of the three-pulse release tablet for amoxicillin in both human and beagle dog. The prediction by PBPK model nicely fitted the observation in human and beagle dog. This study has demonstrated the interrelation of factors affecting the pulsatile formulation of amoxicillin using a Box-Behnken design. The three-pulse release tablets of amoxicillin were proven to generate pulsatile release in vitro and sustained release in vivo. This formulation was also found to extend the effective plasma concentration in human compared to the tablet of immediate release based on the simulation data by PBPK modeling. This study provides an example of using PBPK to guide the development of pulsatile dosage forms.
Haseeb, Muhammad Tahir; Hussain, Muhammad Ajaz; Bashir, Sajid; Ashraf, Muhammad Umer; Ahmad, Naveed
2017-03-01
Advancement in technology has transformed the conventional dosage forms to intelligent drug delivery systems. Such systems are helpful for targeted and efficient drug delivery with minimum side effects. Drug release from these systems is governed and controlled by external stimuli (pH, enzymes, ions, glucose, etc.). Polymeric biomaterial having stimuli-responsive properties has opened a new area in drug delivery approach. Potential of a polysaccharide (rhamnogalacturonan)-based hydrogel from Linseeds (Linum usitatissimum L.) was investigated as an intelligent drug delivery material. Different concentrations of Linseed hydrogel (LSH) were used to prepare caffeine and diacerein tablets and further investigated for pH and salt solution-responsive swelling, pH-dependent drug release, and release kinetics. Morphology of tablets was observed using SEM. LSH tablets exhibited dynamic swelling-deswelling behavior with tendency to swell at pH 7.4 and in deionized water while deswell at pH 1.2, in normal saline and ethanol. Consequently, pH controlled release of the drugs was observed from tablets with lower release (<10%) at pH 1.2 and higher release at pH 6.8 and 7.4. SEM showed elongated channels in swollen then freeze-dried tablets. The drug release was greatly influenced by the amount of LSH in the tablets. Drug release from LSH tablets was governed by the non-Fickian diffusion. These finding indicates that LSH holds potential to be developed as sustained release material for tablet.
Nellore, R V; Rekhi, G S; Hussain, A S; Tillman, L G; Augsburger, L L
1998-01-02
This research study was designed to develop model extended-release (ER) matrix tablet formulations for metoprolol tartrate (100 mg) sufficiently sensitive to manufacturing variable and to serve as the scientific basis for regulatory policy development on scale-up and post approval changes for modified-release dosage forms (SUPAC-MR). Several grades and levels of hydroxypropyl methylcellulose (Methocel K4M, K15M, K100M and K100LV), fillers and binders and studied. Three granulation processes were evaluated; direct compression, fluid-bed or high-shear granulation. Lubrication was performed in a V-blender and tablets were compressed on an instrumented rotary tablet press. Direct compression formulations exhibited poor flow, picking and sticking problems during tableting. High-shear granulation resulted in the formation of hard granules that were difficult to mill but yielded good tablets. Fluid-bed granulations were made using various binders and appeared to be satisfactory in terms of flow and tableting performance. In vitro drug release testing was performed in pH 6.8 phosphate buffer using USP apparatus 2 (paddle) at 50 rpm. At a fixed polymer level, drug release from the higher viscosity grades (K100M) was slower as compared to the lower viscosity grades (K100LV). In addition, release from K100LV was found to be more sensitive to polymer level changes. Increased in polymer level from 10 to 40% and/or filler change from lactose to dicalcium phosphate resulted in about 25-30% decrease in the amount of metoprolol release after 12 h. The results of this study led to the choice of Methocel K100LV as the hydrophilic matrix polymer and fluid-bed granulation as the process of choice for further evaluation of critical and non-critical formulation and processing variables.
Laser Printing of PCL/Progesterone Tablets for Drug Delivery Applications in Hormone Cancer Therapy
NASA Astrophysics Data System (ADS)
Salmoria, G. V.; Klauss, P.; Kanis, L. A.
2017-09-01
In this study, polycaprolactone (PCL) and progesterone (PG) tablets were produced by selective laser sintering (SLS) using different particle sizes and laser energy. The sintered PCL/PG tablets presented uniform morphology, coalescence of particles and interconnected pores distributed in the polymeric matrix. The EDS analysis confirmed the presence of progesterone recrystallized on the surface of the porous PCL matrix. The crystallinity values for the PCL/PG tablets were lower than that for the pure PCL, suggesting the interaction of components at the molecular level. The PCL/PG tablets fabricated with small particles and high laser energy presented a higher value for the flexural modulus compared with the other specimens. The glass transition temperature (Tg) was -37 °C for the PCL/PG tablet with a high degree of sintering. The fatigue test showed that the PCL/PG blend tablets have high fatigue strength. The drug release mechanism of all tablets studied followed a zero-order kinetics, and drug release rates were dependent on sintering degree and, consequently, on matrix erosion, showing a potential application to controlled drug delivery in hormone cancer therapy.
Zaharuddin, Nurul Dhania; Noordin, Mohamed Ibrahim; Kadivar, Ali
2014-01-01
The effectiveness of Okra gum in sustaining the release of propranolol hydrochloride in a tablet was studied. Okra gum was extracted from the pods of Hibiscus esculentus using acetone as a drying agent. Dried Okra gum was made into powder form and its physical and chemical characteristics such as solubility, pH, moisture content, viscosity, morphology study using SEM, infrared study using FTIR, crystallinity study using XRD, and thermal study using DSC and TGA were carried out. The powder was used in the preparation of tablet using granulation and compression methods. Propranolol hydrochloride was used as a model drug and the activity of Okra gum as a binder was compared by preparing tablets using a synthetic and a semisynthetic binder which are hydroxylmethylpropyl cellulose (HPMC) and sodium alginate, respectively. Evaluation of drug release kinetics that was attained from dissolution studies showed that Okra gum retarded the release up to 24 hours and exhibited the longest release as compared to HPMC and sodium alginate. The tensile and crushing strength of tablets was also evaluated by conducting hardness and friability tests. Okra gum was observed to produce tablets with the highest hardness value and lowest friability. Hence, Okra gum was testified as an effective adjuvant to produce favourable sustained release tablets with strong tensile and crushing strength.
Noordin, Mohamed Ibrahim; Kadivar, Ali
2014-01-01
The effectiveness of Okra gum in sustaining the release of propranolol hydrochloride in a tablet was studied. Okra gum was extracted from the pods of Hibiscus esculentus using acetone as a drying agent. Dried Okra gum was made into powder form and its physical and chemical characteristics such as solubility, pH, moisture content, viscosity, morphology study using SEM, infrared study using FTIR, crystallinity study using XRD, and thermal study using DSC and TGA were carried out. The powder was used in the preparation of tablet using granulation and compression methods. Propranolol hydrochloride was used as a model drug and the activity of Okra gum as a binder was compared by preparing tablets using a synthetic and a semisynthetic binder which are hydroxylmethylpropyl cellulose (HPMC) and sodium alginate, respectively. Evaluation of drug release kinetics that was attained from dissolution studies showed that Okra gum retarded the release up to 24 hours and exhibited the longest release as compared to HPMC and sodium alginate. The tensile and crushing strength of tablets was also evaluated by conducting hardness and friability tests. Okra gum was observed to produce tablets with the highest hardness value and lowest friability. Hence, Okra gum was testified as an effective adjuvant to produce favourable sustained release tablets with strong tensile and crushing strength. PMID:24678512
Mikac, U; Sepe, A; Kristl, J; Baumgartner, I
2012-01-01
Modified-release matrix tablets have been extensively used by the pharmaceutical industry as one of the most successful oral drug-delivery systems. The key element in drug release from hydrophilic matrix tablets is the gel layer that regulates the penetration of water and controls drug dissolution and diffusion. Magnetic resonance imaging (MRI) is a powerful, non-invasive technique that can help improve our understanding of the gel layer formed on swellable, polymer-matrix tablets, as well as the layer's properties and its influence on the drug release. The aim was to investigate the effects of pH and ionic strength on swelling and to study the influence of structural changes in xanthan gel on drug release. For this purpose a combination of different MRI methods for accurate determination of penetration, swelling and erosion fronts was used. The position of the penetration and swelling fronts were the same, independently of the different xanthan gel structures formed under different conditions of pH and ionic strength. The position of the erosion front, on the other hand, is strongly dependent on pH and ionic strength, as reflected in different thicknesses of the gel layers.
Duque, Marcelo Dutra; Kreidel, Rogério Nepomuceno; Taqueda, Maria Elena Santos; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles; Consiglieri, Vladi Olga
2013-01-01
A tablet formulation based on hydrophilic matrix with a controlled drug release was developed, and the effect of polymer concentrations on the release of primaquine diphosphate was evaluated. To achieve this purpose, a 20-run, four-factor with multiple constraints on the proportions of the components was employed to obtain tablet compositions. Drug release was determined by an in vitro dissolution study in phosphate buffer solution at pH 6.8. The polynomial fitted functions described the behavior of the mixture on simplex coordinate systems to study the effects of each factor (polymer) on tablet characteristics. Based on the response surface methodology, a tablet composition was optimized with the purpose of obtaining a primaquine diphosphate release closer to a zero order kinetic. This formulation released 85.22% of the drug for 8 h and its kinetic was studied regarding to Korsmeyer-Peppas model, (Adj-R(2) = 0.99295) which has confirmed that both diffusion and erosion were related to the mechanism of the drug release. The data from the optimized formulation were very close to the predictions from statistical analysis, demonstrating that mixture experimental design could be used to optimize primaquine diphosphate dissolution from hidroxypropylmethyl cellulose and polyethylene glycol matrix tablets.
Bolourchian, Noushin; Rangchian, Maryam; Foroutan, Seyed Mohsen
2012-07-01
The aim of this study was to design and optimize a prolonged release matrix formulation of pyridostigmine bromide, an effective drug in myasthenia gravis and poisoning with nerve gas, using hydrophilic - hydrophobic polymers via D-optimal experimental design. HPMC and carnauba wax as retarding agents as well as tricalcium phosphate were used in matrix formulation and considered as independent variables. Tablets were prepared by wet granulation technique and the percentage of drug released at 1 (Y(1)), 4 (Y(2)) and 8 (Y(3)) hours were considered as dependent variables (responses) in this investigation. These experimental responses were best fitted for the cubic, cubic and linear models, respectively. The optimal formulation obtained in this study, consisted of 12.8 % HPMC, 24.4 % carnauba wax and 26.7 % tricalcium phosphate, had a suitable prolonged release behavior followed by Higuchi model in which observed and predicted values were very close. The study revealed that D-optimal design could facilitate the optimization of prolonged release matrix tablet containing pyridostigmine bromide. Accelerated stability studies confirmed that the optimized formulation remains unchanged after exposing in stability conditions for six months.
Huang, Jinheng; Lin, Huaqing; Peng, Bingxin; Huang, Qianfeng; Shuai, Fangzhou; Xie, Yanxian
2018-04-30
The aim of this research was to design and evaluate a hydrophilic matrix system for sustained release of glipizide, a weakly acidic poor soluble drug. A combination of inclusion complexation and microenvironmental pH modification techniques was utilized to improve the dissolution and pH-independent release of glipizide. Hydroxypropyl-β-cyclodextrin (HP-β-CD) was used as the complexation agent while sodium citrate and magnesium oxide (MgO) were used as model pH modifiers. The hydrophilic matrix tablets were prepared by powder direct compression and evaluated by in vitro dissolution study respectively in pH 6.8 and pH 1.2 dissolution media. The formulations containing MgO exhibited increased cumulative drug release from less than 40% in the reference formulation to 90% within 24 h in acidic media (pH 1.2). The release profile in acidic media was similar to the alkaline media (pH 6.8) with a similarity factor (f 2 ) of 55.0, suggesting the weakening of the effect of pH on the dissolution efficiency of glipizide. The release profile fitted well into the Higuchi model and the dominant mechanism of drug release was Fickian diffusion while case II transport/polymer relaxation occurred. In conclusion, combining inclusion complexation agents and pH modifiers had improved the dissolution of glipizide as well as achieved the pH-independent release profile.
Li, Jin; Chai, Hongyu; Li, Yang; Chai, Xuyu; Zhao, Yan; Zhao, Yunfan; Tao, Tao; Xiang, Xiaoqiang
2016-01-01
Background Amoxicillin is a commonly used antibiotic which has a short half-life in human. The frequent administration of amoxicillin is often required to keep the plasma drug level in an effective range. The short dosing interval of amoxicillin could also cause some side effects and drug resistance, and impair its therapeutic efficacy and patients’ compliance. Therefore, a three-pulse release tablet of amoxicillin is desired to generate sustained release in vivo, and thus to avoid the above mentioned disadvantages. Methods The pulsatile release tablet consists of three pulsatile components: one immediate-release granule and two delayed release pellets, all containing amoxicillin. The preparation of a pulsatile release tablet of amoxicillin mainly includes wet granulation craft, extrusion/spheronization craft, pellet coating craft, mixing craft, tablet compression craft and film coating craft. Box–Behnken design, Scanning Electron Microscope and in vitro drug release test were used to help the optimization of formulations. A crossover pharmacokinetic study was performed to compare the pharmacokinetic profile of our in-house pulsatile tablet with that of commercial immediate release tablet. The pharmacokinetic profile of this pulse formulation was simulated by physiologically based pharmacokinetic (PBPK) model with the help of Simcyp®. Results and Discussion Single factor experiments identify four important factors of the formulation, namely, coating weight of Eudragit L30 D-55 (X1), coating weight of AQOAT AS-HF (X2), the extrusion screen aperture (X3) and compression forces (X4). The interrelations of the four factors were uncovered by a Box–Behnken design to help to determine the optimal formulation. The immediate-release granule, two delayed release pellets, together with other excipients, namely, Avicel PH 102, colloidal silicon dioxide, polyplasdone and magnesium stearate were mixed, and compressed into tablets, which was subsequently coated with Opadry® film to produce pulsatile tablet of amoxicillin. In vitro release study firstly indicated a three-pulse release profile of the tablet. Later the pulse tablet was found to generate the sustained release of amoxicillin in beagle dogs. Furthermore, the Simcyp® software was used to simulate the in vivo concentration time curve model of the three-pulse release tablet for amoxicillin in both human and beagle dog. The prediction by PBPK model nicely fitted the observation in human and beagle dog. Conclusions This study has demonstrated the interrelation of factors affecting the pulsatile formulation of amoxicillin using a Box–Behnken design. The three-pulse release tablets of amoxicillin were proven to generate pulsatile release in vitro and sustained release in vivo. This formulation was also found to extend the effective plasma concentration in human compared to the tablet of immediate release based on the simulation data by PBPK modeling. This study provides an example of using PBPK to guide the development of pulsatile dosage forms. PMID:27479702
Matrix-mini-tablets of lornoxicam for targeting early morning peak symptoms of rheumatoid arthritis
Mohd, Abdul Hadi; Raghavendra Rao, Nidagurthi Guggilla; Avanapu, Srinivasa Rao
2014-01-01
Objective(s): The aim of present research was to develop matrix-mini-tablets of lornoxicam filled in capsule for targeting early morning peak symptoms of rheumatoid arthritis. Materials and Methods: Matrix-mini-tablets of lornoxicam were prepared by direct compression method using microsomal enzyme dependent and pH-sensitive polymers which were further filled into an empty HPMC capsule. To assess the compatibility, FT-IR and DSC studies for pure drug, polymers and their physical mixture were performed. The formulated batches were subjected to physicochemical studies, estimation of drug content, in vitro drug release, drug release kinetics, and stability studies. Results: When FTIR and DSC studies were performed it was found that there was no interaction between lornoxicam and polymers which used. All the physicochemical properties of prepared matrix-mini-tablets were found to be in normal limits. The percentage of drug content was found to be 99.60±0.07%. Our optimized matrix mini-tablets-filled-capsule formulation F30 released lornoxicam after a lag time of 5.02±0.92 hr, 95.48±0.65 % at the end of 8 hr and 99.90±0.83 % at the end of 12 hr. Stability was also found for this formulation as per the guidelines of International Conference on Harmonisation of Technical Requirements of Pharmaceuticals for Human Use. Conclusion: A novel colon targeted delivery system of lornoxicam was successfully developed by filling matrix-mini-tablets into an empty HPMC capsule shell for targeting early morning peak symptoms of rheumatoid arthritis. PMID:24967065
Fayed, Mohamed H; Mahrous, Gamal M; Ibrahim, Mohamed A; Sakr, Adel
2013-01-01
The objective of this study was to evaluate the potential of Carbopol(®) 71G-NF on the release of dextromethorphan hydrobromide (DM) from matrix tablets in comparison with hydroxypropyl methylcellulose (HPMC(®) K15M) and Eudragit(®) L100-55 polymers. Controlled release DM matrix tablets were prepared using Carbopol 71G-NF, HPMC K15M, and Eudragit L100-55 at different drug to polymer ratios by direct compression technique. The mechanical properties of the tablets as tested by crushing strength and friability tests were improved as the concentration of Carbopol, HPMC, and Eudragit increased. However, Carbopol-based tablets showed a significantly (P<0.05) higher crushing strength and a lower friability than HPMC and Eudragit tablets. No significant differences in weight uniformity and thickness values were observed between the different formulations. It was also found that Carbopol significantly (P<0.05) delayed the release of DM in comparison with HPMC K15M and Eudragit L100-55. A combination of HPMC K15M and Eudragit L100-55 in a 1:1 ratio at 20 and 30% significantly (P<0.05) delayed the release of DM than Eudragit L100-55 alone. Moreover, blends of Carbopol and HPMC at a 1:1 ratio at the 10, 20, and 30% total polymer concentration were investigated. The blend of Carbopol and HPMC at 10% level significantly (P<0.05) slowed the release of DM than Carbopol or HPMC alone, whereas blends at 20 and 30% level significantly (P<0.05) delayed the release of DM compared with HPMC or Carbopol alone. The results with these polymer blends showed that it was possible to reduce the total amount of polymers when used as a combination in formulation.
Chitinosans as tableting excipients for modified release delivery systems.
Rege, P R; Shukla, D J; Block, L H
1999-04-20
The term 'chitinosans' embraces the spectrum of acetylated poly(N-glucosamines) ranging from chitin to chitosan. Chitinosans (I), at acidic pH, have protonated amines which can interact with oppositely charged drug ions and, thereby, modify drug release from drug delivery systems. Tablets were compressed from a physical mixture containing salicylic acid (II) as the model drug, I, and magnesium stearate. Five commercial I compounds, varying in degree of deacetylation and molecular weight, were selected. Tablets were compressed at 5000, 10 000, and 15 000 psig using a Carver and a single punch tablet press. The differential scanning calorimetry thermograms provided evidence of I-II interaction in the powder blend. Analysis of variance (ANOVA) indicated that the compression pressure did not significantly affect the crushing strength (CS) or the release profile of II from the I-matrix tablets (P?0.05). Furthermore, the ANOVA also indicated that the tablet press used during manufacture did not affect the above properties (P?0.05); however, the chitinosans significantly affected the CS as well as the release profile of II from I-matrix tablets (P<0.05). This study provides further evidence for the use of commercial I compounds as excipients for use in modified release drug delivery systems. Copyright.
Huang, Yuh-Tyng; Tsai, Tong-Rong; Cheng, Chun-Jen; Cham, Thau-Ming; Lai, Tsun-Fwu; Chuo, Wen-Ho
2007-11-01
Pyridostigmine bromide (PB), a highly hygroscopic drug was selected as the model drug. A sustained-release (SR) tablet prepared by direct compression of wet-extruded and spheronized core pellets with HPMC excipients and exhibited a zero-order sustained release (SR) profile. The 2(3) full factorial design was utilized to search an optimal SR tablet formulation. This optimal formulation was followed zero-order mechanism and had specific release rate at different time intervals (released % of 1, 6, and 12 hr were 15.84, 58.56, and 93.10%). The results of moisture absorption by Karl Fischer meter showed the optimum SR tablet could improve the hygroscopic defect of the pure drug (PB). In the in vivo study, the results of the bioavailability data showed the T(max) was prolonged (from 0.65 +/- 0.082 hr to 4.83 +/- 1.60 hr) and AUC(0-t) (from 734.88 +/- 230.68 ng/ml.hr to 1153.34 +/- 488.08 ng/ml.hr) and was increased respectively for optimum PB-SR tablets when compared with commercial immediate release (IR) tablets. Furthermore, the percentages of in vitro dissolution and in vivo absorption in the rabbits have good correlation. We believe that PB-SR tablets designed in our study would improve defects of PB, decrease the frequency of administration and enhance the retention period of drug efficacy in vivo for personnel exposed to contamination situations in war or terrorist attacks in the future.
Senyigit, Zeynep Ay; Vetter, Anja; Guneri, Tamer; Bernkop-Schnürch, Andreas
2011-08-01
The aim of this study was to investigate the potential of thiolated matrix tablets for gastroretentive delivery systems. Poly(acrylic acid)-cysteine (PAA-Cys) and chitosan-4-thiobuthylamidine (chitosan-TBA) were evaluated as anionic and cationic thiolated polymers and riboflavin was used as a model drug. Tablets were prepared by direct compression and each formulation was characterized in terms of disintegration, swelling, mucoadhesion, and drug release properties. Thereafter, the gastric residence times of tablets were determined with in vivo study in rats. The resulting PAA-Cys and chitosan-TBA conjugates displayed 172.80 ± 30.33 and 371.11 ± 72.74 µmol free thiol groups, respectively. Disintegration studies demonstrated the stability of thiolated tablets up to 24 h, whereas tablets prepared with unmodified PAA and chitosan disintegrated within a time period of 1 h. Mucoadhesion studies showed that mucoadhesion work of PAA-Cys and chitosan-TBA tablets were 1.341- and 2.139-times higher than unmodified ones. The mucoadhesion times of PAA, PAA-Cys, chitosan, and chitosan-TBA tablets were 1.5 ± 0.5, 21 ± 1, 1 ± 0.5, 17 ± 1 h, respectively. These results confirm the theory that thiol groups react with mucin glycoproteins and form covalent bonds to the mucus layer. Release studies indicated that a controlled release was provided with thiolated tablets up to 24 h. These promising in vitro results of thiolated tablets were proved with in vivo studies. The thiolated tablets showed a gastroretention time up to 6 h, whereas unmodified tablets completely disintegrated within 1 h in rat stomach. Consequently, the study suggests that thiolated matrix tablets might be promising formulations for gastroretentive delivery systems.
Kos, Petra; Pavli, Matej; Baumgartner, Saša; Kogej, Ksenija
2017-08-30
The polyelectrolyte matrix tablets loaded with an oppositely charged drug exhibit complex drug-release mechanisms. In this study, the release mechanism of a cationic drug doxazosin mesylate (DM) from matrix tablets based on an anionic polyelectrolyte λ-carrageenan (λ-CARR) is investigated. The drug release rates from λ-CARR matrices are correlated with binding results based on potentiometric measurements using the DM ion-sensitive membrane electrode and with molecular characteristics of the DM-λ-CARR-complex particles through hydrodynamic size measurements. Experiments are performed in solutions with different ionic strength and with the addition of an anionic surfactant sodium dodecyl sulphate (SDS). It is demonstrated that in addition to swelling and erosion of tablets, the release rates depend strongly on cooperative interactions between DM and λ-CARR. Addition of SDS at concentrations below its critical micelle concentration (CMC) slows down the DM release through hydrophobic binding of SDS to the DM-λ-CARR complex. On the contrary, at concentrations above the CMC SDS pulls DM from the complex by forming mixed micelles with it and thus accelerates the release. Results involving SDS show that the concentration of surfactants that are naturally present in gastrointestinal environment may have a great impact on the drug release process. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of hydrophobic inclusions on polymer swelling kinetics studied by magnetic resonance imaging.
Gajdošová, Michaela; Pěček, Daniel; Sarvašová, Nina; Grof, Zdeněk; Štěpánek, František
2016-03-16
The rate of drug release from polymer matrix-based sustained release formulations is often controlled by the thickness of a gel layer that forms upon contact with dissolution medium. The effect of formulation parameters on the kinetics of elementary rate processes that contribute to gel layer formation, such as water ingress, polymer swelling and erosion, is therefore of interest. In the present work, gel layer formation has been investigated by magnetic resonance imaging (MRI), which is a non-destructive method allowing direct visualization of effective water concentration inside the tablet and its surrounding. Using formulations with Levetiracetam as the active ingredient, HPMC as a hydrophilic matrix former and carnauba wax (CW) as a hydrophobic component in the matrix system, the effect of different ratios of these two ingredients on the kinetics of gel formation (MRI) and drug release (USP 4 like dissolution test) has been investigated and interpreted using a mathematical model. Copyright © 2016 Elsevier B.V. All rights reserved.
Sun, Jin; Shi, Jie-Ming; Zhang, Tian-Hong; Gao, Kun; Mao, Jing-Jing; Li, Bing; Sun, Ying-Hua; He, Zhong-Gui
2005-01-01
AIM: To investigate the effect of release behavior of sustained-release dosage forms of sinomenine hydrochloride (SM•HCl) on its pharmacokinetics in beagle dogs. METHODS: The in vitro release behavior of two SM•HCl dosage forms, including commercial 12-h sustained-release tablets and 24-h sustained-release pellets prepared in our laboratory, was examined. The two dosage forms were orally administrated to beagle dogs, and then the in vivo SM•HCl pharmacokinetics was investigated and compared. RESULTS: The optimal SM•HCl sustained-release formulation was achieved by mixing slow- and rapid-release pellets (9:1, w/w). The SM•HCl release profiles of the sustained-release pellets were scarcely influenced by the pH of the dissolution medium. Release from the 12-h sustained-release tablets was markedly quicker than that from the 24-h sustained-release pellets, the cumulative release up to 12-h was 99.9% vs 68.7%. From a pharmacokinetic standpoint, the 24-h SM•HCl sustained-release pellets had longer tmax and lower Cmax compared to the 12-h sustained-release tablets, the tmax being 2.67×0.52 h vs 9.83×0.98 h and the Cmax being 1 334.45±368.76 ng/mL vs 893.12±292.55 ng/mL, respectively. However, the AUC0-tn of two SM•HCl dosage forms was comparable and both preparations were statistically bioequivalent. Furthermore, the two preparations had good correlations between SM•HCl percentage absorption in vivo and the cumulative percentage release in vitro. CONCLUSION: The in vitro release properties of the dosage forms strongly affect their pharmacokinetic behavior in vivo. Therefore, managing the in vitro release behavior of dosage forms is a promising strategy for obtaining the optimal in vivo pharmacokinetic characteristics and safe therapeutic drug concentration-time curves. PMID:16052686
Jindal, A. B.; Wasnik, M. N.; Nair, Hema A.
2010-01-01
Modification of polymers by covalent attachment of thiol bearing pendant groups is reported to impart many beneficial properties to them. Hence in the present study, sodium alginate–cysteine conjugate was synthesized by carbodiimide mediated coupling under varying reaction conditions and the derivatives characterized for thiol content. The thiolated alginate species synthesized had bound thiol content ranging from 247.8±11.03–324.54±10.107 ΅mol/g of polymer depending on the reaction conditions. Matrix tablets based on sodium alginate-cysteine conjugate and native sodium alginate containing tramadol hydrochloride as a model drug were prepared and mucoadhesive strength and in vitro drug release from the tablets were compared. Tablets containing 75 mg sodium alginate-cysteine conjugate could sustain release of 10 mg of model drug for 3 h, whereas 90% of the drug was released within 1 h from corresponding tablets prepared using native sodium alginate. An approximately 2-fold increase in the minimal detachment force of the tablets from an artificial mucin film was observed for sodium alginate–cysteine conjugate as compared to native sodium alginate. In vitro cytotoxicity studies in L-929 mouse fibroblast cells studied using an MTT assay revealed that at low concentrations of polymer, sodium alginate–cysteine conjugate was less toxic to L-929 mouse fibroblast cell line when compared to native sodium alginate. Hence, thiolation is found to be a simple route to improving polymer performance. The combination of improved controlled drug release and mucoadhesive properties coupled with the low toxicity of these new excipients builds up immense scope for the use of thiolated polymers in mucoadhesive drug delivery systems. PMID:21969750
Verstraete, G; Mertens, P; Grymonpré, W; Van Bockstal, P J; De Beer, T; Boone, M N; Van Hoorebeke, L; Remon, J P; Vervaet, C
2016-11-20
During this project 3 techniques (twin screw melt granulation/compression (TSMG), hot melt extrusion (HME) and injection molding (IM)) were evaluated for the manufacturing of thermoplastic polyurethane (TPU)-based oral sustained release matrices, containing a high dose of the highly soluble metformin hydrochloride. Whereas formulations with a drug load between 0 and 70% (w/w) could be processed via HME/(IM), the drug content of granules prepared via melt granulation could only be varied between 85 and 90% (w/w) as these formulations contained the proper concentration of binder (i.e. TPU) to obtain a good size distribution of the granules. While release from HME matrices and IM tablets could be sustained over 24h, release from the TPU-based TSMG tablets was too fast (complete release within about 6h) linked to their higher drug load and porosity. By mixing hydrophilic and hydrophobic TPUs the in vitro release kinetics of both formulations could be adjusted: a higher content of hydrophobic TPU was correlated with a slower release rate. Although mini-matrices showed faster release kinetics than IM tablets, this observation was successfully countered by changing the hydrophobic/hydrophilic TPU ratio. In vivo experiments via oral administration to dogs confirmed the versatile potential of the TPU platform as intermediate-strong and low-intermediate sustained characteristics were obtained for the IM tablets and HME mini-matrices, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Toyama, Kaoru; Uchida, Naoki; Ishizuka, Hitoshi; Sambe, Takehiko; Kobayashi, Shinichi
2015-09-01
This single dose, open-label study investigated the safety, tolerability and pharmacokinetics of single oral doses of newly formulated immediate-release (IR) and hydrophilic matrix extended-release (ER) hydromorphone tablets in healthy Japanese subjects without co-administration of an opioid antagonist under fasting and fed conditions. Plasma and urinary concentrations of hydromorphone and metabolites were measured by liquid-chromatography tandem mass-spectroscopy. Following administration of the ER tablet, plasma concentrations of hydromorphone slowly increased with a median tmax of 5.0 h and the Cmax decreased to 37% of the IR tablet, while the AUC0-inf was comparable with that of the IR tablet when administered at the same dose. The degree of fluctuation in the plasma concentration for the ER tablet was much lower than that of the IR tablet and certain levels of plasma concentrations were maintained after 24 h of ER dosing. The AUC0-inf and Cmax increased with food for both IR and ER tablets. The AUC0-inf of hydromorphone-3-glucoside was one-tenth of that of hydromorphone-3-glucuronide. A single oral administration of the hydromorphone tablets would be well-tolerated in healthy Japanese subjects despite a lack of co-administration of an opioid antagonist and the newly developed ER hydromorphone tablets may have the appropriate PK characteristics for once-daily dosing. © 2015, The American College of Clinical Pharmacology.
Newton, A M J; Lakshmanan, Prabakaran
2014-04-01
The study was designed to investigate the in vitro dissolution profile and compression characteristics of colon targeted matrix tablets prepared with HPMC E15 LV in combination with pectin and Chitosan. The matrix tablets were subjected to two dissolution models in various simulated fluids such as pH 1.2, 6, 6.8, 7.2, 5.5. The fluctuations in colonic pH conditions during IBD (inflammatory bowel disease) and the nature of less fluid content in the colon may limit the expected drug release in the polysaccharide-based matrices when used alone. The Hydrophilic hydroxyl propyl methylcellulose ether premium polymer (HPMC E15 LV) of low viscosity grade was used in the formulation design, which made an excellent modification in physical and compression characteristics of the granules. The release studies indicated that the prepared matrices could control the drug release until the dosage form reaches the colon and the addition HPMC E15 LV showed the desirable changes in the dissolution profile by its hydrophilic nature since the colon is known for its less fluid content. The hydrophilic HPMC E15 LV allowed the colonic fluids to enter into the matrix and confirmed the drug release at the target site from a poorly water soluble polymer such as Chitosan and also from water soluble Pectin. The dramatic changes occurred in the drug release profile and physicochemical characteristics of the Pectin, Chitosan matrix tablets when a premium polymer HPMC E15 LV added in the formulation design in the optimized concentration. Various drug release mechanisms used for the examination of drug release characteristics. Drug release followed the combined mechanism of diffusion, erosion, swelling and polymer entanglement. In recent decade, IBD attracts many patents in novel treatment methods by using novel drug delivery systems.
New release cell for NMR microimaging of tablets. Swelling and erosion of poly(ethylene oxide).
Abrahmsén-Alami, Susanna; Körner, Anna; Nilsson, Ingvar; Larsson, Anette
2007-09-05
A small release cell, in the form of a rotating disc, has been constructed to fit into the MRI equipment. The present work show that both qualitative and quantitative information of the swelling and erosion behavior of hydrophilic extended release (ER) matrix tablets may be obtained using this release cell and non-invasive magnetic resonance imaging (MRI) studies at different time-points during matrix dissolution. The tablet size, core size and the gel layer thickness of ER matrix formulations based on poly(ethylene oxide) have been determined. The dimensional changes as a function of time were found to correspond well to observations made with texture analysis (TA) methodology. Most importantly, the results of the present study show that both the erosion (displacement of the gel-dissolution media interface) and the swelling (decrease of dry tablet core size) proceed with a faster rate in radial than in axial direction using the rotating disk set-up. This behavior was attributed to the higher shear forces experienced in the radial direction. The results also indicate that front synchronization (constant gel layer thickness) is associated with the formation of an almost constant polymer concentration profile through the gel layer at different time-points.
Guzmán, M L; Romañuk, C B; Sanchez, M F; Luciani Giacobbe, L C; Alarcón-Ramirez, L P; Battistini, F D; Alovero, F L; Jimenez-Kairuz, A F; Manzo, R H; Olivera, María Eugenia
2018-02-01
This paper builds on a previous paper in which new ciprofloxacin extended-release tablets were developed based on a ciprofloxacin-based swellable drug polyelectrolyte matrix (SDPM-CIP). The matrix contains a molecular dispersion of ciprofloxacin ionically bonded to the acidic groups of carbomer, forming the polyelectrolyte-drug complex CB-CIP. This formulation showed that the release profile of the ciprofloxacin bilayer tablets currently commercialised can be achieved with a simpler strategy. Thus, since ciprofloxacin urine concentrations are associated with the clinical cure of urinary tract infections, the goal of this work was to compare the urinary excretion of SDPM-CIP tablets with those of the CIPRO XR® bilayer tablets. A batch of SDPM-CIP tablets was manufactured by the wet granulation method and the CB-CIP ionic complex was obtained in situ. Fasted healthy volunteers received a single oral dose of 500 mg ciprofloxacin of either formulation in a randomised crossover study. Urinary concentrations were assessed by HPLC at intervals up to 36 h. Pharmacokinetic parameters (rate of urinary excretion, maximum urine excretion rate, t max , area under the curve, amount and percentage of the ciprofloxacin dose excreted in urine) showed no statistical differences between both formulations at any of the time intervals of collection. The processing conditions to obtain SDPM-CIP tablets are easy to scale up since they involve technology currently employed in the pharmaceutical industry and the process is less challenging to implement. In addition, SDPM-CIP tablets met pharmacopoeial quality specifications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borin, M.T.; Khare, S.; Beihn, R.M.
1990-03-01
The GI transit of radiolabeled sustained-release ibuprofen 800-mg tablets in eight healthy, fed volunteers was monitored using external gamma scintigraphy. Ibuprofen serum concentrations were determined from blood samples drawn over 36 hr following dosing. Sustained-release ibuprofen tablets containing 0.18% of 170Er2O3 (greater than 96% 170Er) in the bulk formulation were manufactured under pilot-scale conditions and were radiolabeled utilizing a neutron activation procedure which converted stable 170Er to radioactive 171Er (t1/2 = 7.5 hr). At the time of dosing, each tablet contained 50 mu Ci of 171Er. Dosage form position were reported at various time intervals. In five subjects the sustained-releasemore » tablet remained in the stomach and eroded slowly over 7-12 hr, resulting in gradual increases in small bowel radioactivity. In the remaining three subjects, the intact tablet was ejected from the stomach and a gastric residence time of approximately 4 hr was measured. This is in marked contrast to a previous study conducted in fasted volunteers in which gastric retention time ranged from 10 to 60 min. Differences in GI transit between fed and fasted volunteers had little effect on ibuprofen bioavailability. AUC and Tmax were unaltered and Cmax was increased by 24%, which is in agreement with results from a previous, crossover-design food effect study.« less
Danckwerts, M P
2000-07-01
A triple-layer core-in-cup tablet that can release theophylline in simulated gastrointestinal (GI) fluids at three distinct rates has been developed. The first layer is an immediate-release layer; the second layer is a sustained-release layer; and the last layer is a boost layer, which was designed to coincide with a higher nocturnal dose of theophylline. The study consisted of two stages. The first stage optimized the sustained-release layer of the tablet to release theophylline over a period of 12 hr. Results from this stage indicated that 30% w/w acacia gum was the best polymer and concentration to use when compressed to a hardness of 50 N/m2. The second stage of the study involved the investigation of the final triple-layer core-in-cup tablet to release theophylline at three different rates in simulated GI fluids. The triple-layer modulated core-in-cup tablet successfully released drug in simulated fluids at an initial rate of 40 mg/min, followed by a rate of 0.4085 mg/min, in simulated gastric fluid TS, 0.1860 mg/min in simulated intestinal fluid TS, and finally by a boosted rate of 0.6952 mg/min.
Ngwuluka, Ndidi C; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Khan, Riaz A; Pillay, Viness
2015-03-01
This study was undertaken in order to apply a synthesized interpolyelectrolyte complex (IPEC) of polymethacrylate and carboxymethylcellulose as a controlled release oral tablet matrix for the delivery of the model neuroactive drug levodopa. The IPEC (synthesized in Part I of this work) was characterized by techniques such as Fourier Transform Infra-Red (FTIR) spectroscopy, Differential Scanning Calorimetry (DSC), Advanced DSC (ADSC), and Scanning Electron Microscopy (SEM). The tablet matrices were formulated and characterized for their drug delivery properties and in vitro drug release. FTIR confirmed the interaction between the two polymers. The IPEC composite generated tablet matrices with a hardness ranging from 19.152-27.590 N/mm and a matrix resilience ranging between 42 and 46%. An IPEC of polymethacrylate and carboxymethylcellulose was indeed an improvement on the inherent properties of the native polymers providing a biomaterial with the ability to release poorly soluble drugs such as levodopa at a constant rate over a prolonged period of time. © 2014 Wiley Periodicals, Inc.
Kim, Jeong Soo; Cha, Kwang Ho; Kang, Seung Yeob; Won, Donghan; Jang, Sun Woo; Son, Miwon; Son, Moon Ho; Choi, Ho Jung; Lee, Young Won; Kang, Myung Joo
2016-01-01
Objective DA-9601, an extract of Artemisia asiatica containing eupatilin and jaceosidin as active compounds, has been prescribed to treat gastritis in Asia. In recent times, sustained-release, floating gastroretentive (GR) tablets of DA-9601 are available on the market. In the present study, the physical properties and in vitro drug release profile, in vivo gastric residence time, and gastroprotective effect of GR tablet were compared to those of immediate release (IR) tablets of DA-9601. Method In vitro buoyancy behavior (floating lag time and duration) and release profile of eupatilin were assessed in acidic medium. The in vivo intragastric behaviors of the barium sulfate-loaded IR and GR tablets were evaluated in beagle dogs by radiographic studies. Local gastroprotective effect was compared in an experimentally induced gastric lesion in beagle dogs after oral administration of IR (three times per day) or GR (twice daily) tablets for 15 days. Results Upon contact with gastric juice, a low-density floating tablet (apparent density of 0.93 g/cm3) was buoyant on the medium and was upheld for 14 hours, providing sustained drug release profile, whereas the IR tablet disintegrated within 10 minutes, showing complete drug release within 2 hours. In vivo radiographic studies showed that the GR tablet was retained for >4 hours in the stomach. Both DA-9601 formulations remarkably alleviated gastric mucosal injury compared to placebo group, when observed by gastric endoscopy. Conclusion Twice-daily GR tablets exhibited a prolonged gastric residence time and a remarkable mucosal restoration effect in animal models. Therefore, the GR system of DA-9601 could be a substitute dosage form for the treatment of gastritis, while reducing the dosing frequency and thus improving patient compliance. PMID:27354765
Kim, Jeong Soo; Cha, Kwang Ho; Kang, Seung Yeob; Won, Donghan; Jang, Sun Woo; Son, Miwon; Son, Moon Ho; Choi, Ho Jung; Lee, Young Won; Kang, Myung Joo
2016-01-01
DA-9601, an extract of Artemisia asiatica containing eupatilin and jaceosidin as active compounds, has been prescribed to treat gastritis in Asia. In recent times, sustained-release, floating gastroretentive (GR) tablets of DA-9601 are available on the market. In the present study, the physical properties and in vitro drug release profile, in vivo gastric residence time, and gastroprotective effect of GR tablet were compared to those of immediate release (IR) tablets of DA-9601. In vitro buoyancy behavior (floating lag time and duration) and release profile of eupatilin were assessed in acidic medium. The in vivo intragastric behaviors of the barium sulfate-loaded IR and GR tablets were evaluated in beagle dogs by radiographic studies. Local gastroprotective effect was compared in an experimentally induced gastric lesion in beagle dogs after oral administration of IR (three times per day) or GR (twice daily) tablets for 15 days. Upon contact with gastric juice, a low-density floating tablet (apparent density of 0.93 g/cm(3)) was buoyant on the medium and was upheld for 14 hours, providing sustained drug release profile, whereas the IR tablet disintegrated within 10 minutes, showing complete drug release within 2 hours. In vivo radiographic studies showed that the GR tablet was retained for >4 hours in the stomach. Both DA-9601 formulations remarkably alleviated gastric mucosal injury compared to placebo group, when observed by gastric endoscopy. Twice-daily GR tablets exhibited a prolonged gastric residence time and a remarkable mucosal restoration effect in animal models. Therefore, the GR system of DA-9601 could be a substitute dosage form for the treatment of gastritis, while reducing the dosing frequency and thus improving patient compliance.
Uhumwangho, M U; Okor, R S
2006-04-01
Matrix granules of acetaminophen have been formed by a melt granulation process whereby the acetaminophen powder was triturated with the melted wax--goat wax, glyceryl monostearate or carnuba wax. The compressibility of the matrix granules and their admixture, with diluent granules (lactose, alpha-cellulose or microcrystalline cellulose) was investigated. The granules were compressed to tablets at a constant load (30 arbitrary units on the load scale) of a manesty single punch machine. Resulting tablets were evaluated for tensile strength (T) and disintegration times (DT). Granule flow was determined by measuring their angle of repose when allowed to fall freely on a level surface. Matrix granules prepared by melt granulation with goat wax or glyceryl monostearate were too sticky and therefore did not flow at all. They were also poorly compressible (T values = 0.20MN/m2). Inclusion of the diluent remarkably improved granule flow property and compressibility. The T values of the tablets (measure of compressibility) increased from about 0.24 to 0.65 MN/m2 during increase in diluent (lactose) content from 20 to 80 %w/w. Microcrystalline cellulose and alpha-cellulose were more effective than lactose in promoting compressibility of the granules. By contrast the matrix granules formed with carnuba wax were free flowing (angle of repose, 18.60). Addition of the diluent further improved flowability slightly. The matrix granules (without a diluent) were readily compressible (T value, 1.79MN/m2). Addition of the diluent (80%w/w) reduced T values (MN/m2) slightly to 1.32 (lactose), 1.48 (alpha-cellulose) and 1.74 (microcrystalline cellulose). Tablets of the matrix granules only, disintegrated rapidly within 3 minutes. DT was further reduced to <30 s by addition of any of the diluents. The indication is that the inclusion of the diluents studied can be used to improve the compressibility of the otherwise poorly compressible matrix granules. Based on the flowability, compressibility, and disintegration data, carnuba wax proved most promising in the melt granulation of the test drug for sustained release applications.
Tak, Jin Wook; Gupta, Biki; Thapa, Raj Kumar; Woo, Kyu Bong; Kim, Sung Yub; Go, Toe Gyeong; Choi, Yongjoo; Choi, Ju Yeon; Jeong, Jee-Heon; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh
2017-05-01
The aim of our current study was to characterize and optimize loxoprofen immediate release (IR)/sustained release (SR) tablet utilizing a three-factor, three-level Box-Behnken design (BBD) combined with a desirability function. The independent factors included ratio of drug in the IR layer to total drug (X 1 ), ratio of HPMC to drug in the SR layer (X 2 ), and ratio of Eudragit RL PO to drug in the SR layer (X 3 ). The dependent variables assessed were % drug released in distilled water at 30 min (Y 1 ), % drug released in pH 1.2 at 2 h (Y 2 ), and % drug released in pH 6.8 at 12 h (Y 3 ). The responses were fitted to suitable models and statistical validation was performed using analysis of variance. In addition, response surface graphs and contour plots were constructed to determine the effects of different factor level combinations on the responses. The optimized loxoprofen IR/SR tablets were successfully prepared with the determined amounts of ingredients that showed close agreement in the predicted and experimental values of tablet characterization and drug dissolution profile. Therefore, BBD can be utilized for successful optimization of loxoprofen IR/SR tablet, which can be regarded as a suitable substitute for the current marketed formulations.
Effect of drug particle size in ultrasound compacted tablets. Continuum percolation model approach.
Millán, Mónica; Caraballo, Isidoro
2006-03-09
The main objective of this work is to study the influence of the drug particle size on the pharmaceutical availability of ultrasound compacted tablets. Inert matrix systems containing different drug particle sizes were prepared using both, an ultrasound-assisted press and a traditional eccentric machine. Potassium chloride was used as drug model and Eudragit RS-PM as matrix forming excipient. The excipient particle size was kept constant. The cross-sectional microphotographs of ultrasound tablets show the existence of a quasi-continuum medium. Keeping constant the drug load, US-tablets showed very similar release rates, whereas for traditional tablets, an increase in the particle size resulted in a clear decrease in the release rate. In these tablets, the excipient forms an almost continuum medium. In an infinite theoretical system of these characteristics, the size of the drug particles will not modify the percolation threshold. The percolation of the excipient in this system can be assimilated to a continuum percolation model. In accordance with the proposed model, a lower influence of the drug particle size on the drug release rate was obtained for the US-tablets in comparison with traditional tablets. This fact can be indicative of the similarity of the drug percolation thresholds in these systems.
Choi, Du Hyung; Shin, Sangmun; Khoa Viet Truong, Nguyen; Jeong, Seong Hoon
2012-09-01
A robust experimental design method was developed with the well-established response surface methodology and time series modeling to facilitate the formulation development process with magnesium stearate incorporated into hydrophilic matrix tablets. Two directional analyses and a time-oriented model were utilized to optimize the experimental responses. Evaluations of tablet gelation and drug release were conducted with two factors x₁ and x₂: one was a formulation factor (the amount of magnesium stearate) and the other was a processing factor (mixing time), respectively. Moreover, different batch sizes (100 and 500 tablet batches) were also evaluated to investigate an effect of batch size. The selected input control factors were arranged in a mixture simplex lattice design with 13 experimental runs. The obtained optimal settings of magnesium stearate for gelation were 0.46 g, 2.76 min (mixing time) for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The optimal settings for drug release were 0.33 g, 7.99 min for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The exact ratio and mixing time of magnesium stearate could be formulated according to the resulting hydrophilic matrix tablet properties. The newly designed experimental method provided very useful information for characterizing significant factors and hence to obtain optimum formulations allowing for a systematic and reliable experimental design method.
Risperidone mucoadhesive buccal tablets: formulation design, optimization and evaluation
Çelik, Burak
2017-01-01
The aim of this study was to design and optimize risperidone (RIS) mucoadhesive buccal tablets for systemic delivery as an alternative route. Direct compression method was used for the preparation of buccal tablets, and screening studies were conducted with different polymers to determine their effects on tablet characteristics. Carbopol® (CP) and sodium alginate (SA) were selected as two polymer types for further optimization studies by applying response surface methodology. Tablet hardness (TH), ex vivo residence time (RT), and peak detachment force (DF) from buccal mucosa were selected as three important responses. Physicochemical compatibility of formulation excipients and RIS was evaluated by using Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) analysis. In vitro drug release profiles and release kinetics were investigated; swelling index and matrix erosion studies were conducted. Optimum formulation consisted of 16.4% CP and 20.3% SA, which provided 7.67±0.29 hour ex vivo RT, 45.52±4.85 N TH, and 2.12±0.17 N DF. FT-IR spectroscopy and DSC analysis revealed that there was no chemical interaction present between tablet ingredients. Cumulative RIS release of >90% was achieved after 8 hours of in vitro dissolution studies, which was supported by swelling and matrix erosion analysis. Mechanism of RIS release was fitted best to zero-order model, while release exponent (n) value of 0.77 demonstrated an anomalous (non-Fickian) release, indicating combined erosion and swelling mechanism. The results suggested that optimized buccal tablets of RIS would be a promising and alternative delivery system for the treatment of schizophrenia. PMID:29225461
Optimization of propranolol HCl release kinetics from press coated sustained release tablets.
Ali, Adel Ahmed; Ali, Ahmed Mahmoud
2013-01-01
Press-coated sustained release tablets offer a valuable, cheap and easy manufacture alternative to the highly expensive, multi-step manufacture and filling of coated beads. In this study, propranolol HCl press-coated tablets were prepared using hydroxylpropylmethylcellulose (HPMC) as tablet coating material together with carbopol 971P and compressol as release modifiers. The prepared formulations were optimized for zero-order release using artificial neural network program (INForm, Intelligensys Ltd, North Yorkshire, UK). Typical zero-order release kinetics with extended release profile for more than 12 h was obtained. The most important variables considered by the program in optimizing formulations were type and proportion of polymer mixture in the coat layer and distribution ratio of drug between core and coat. The key elements found were; incorporation of 31-38 % of the drug in the coat, fixing the amount of polymer in coat to be not less than 50 % of coat layer. Optimum zero-order release kinetics (linear regression r2 = 0.997 and Peppas model n value > 0.80) were obtained when 2.5-10 % carbopol and 25-42.5% compressol were incorporated into the 50 % HPMC coat layer.
Modeling drug release from PVAc/PVP matrix tablets.
Siepmann, F; Eckart, K; Maschke, A; Kolter, K; Siepmann, J
2010-01-25
Kollidon SR-based matrix tablets containing various amounts of diprophylline were prepared and thoroughly characterized in vitro. This includes drug release measurements in 0.1M HCl and phosphate buffer pH 7.4, monitoring of changes in the tablet's height and diameter, morphology as well as dry mass upon exposure to the release media. Based on these experimental results, a mechanistic realistic mathematical theory is proposed, taking into account the given initial and boundary conditions as well as radial and axial mass transport in cylinders. Importantly, good agreement between theory and experiment was obtained in all cases, indicating that drug diffusion with constant diffusivity is the dominant mass transport mechanism in these systems. Furthermore, the proposed theory was used to quantitatively predict the effects of the initial tablet height and diameter on the resulting drug release patterns. These theoretical predictions were compared with independently measured drug release kinetics. Good agreement was observed in all cases, proving the validity of the mathematical theory and illustrating the latter's practical benefit: The model can help to significantly facilitate the recipe optimization of this type of advanced drug delivery systems in order to achieve a desired release profile. Copyright 2009 Elsevier B.V. All rights reserved.
Synchronous delivery of felodipine and metoprolol tartrate using monolithic osmotic pump technology.
Zhao, Shiqing; Yu, Fanglin; Liu, Nan; Di, Zhong; Yan, Kun; Liu, Yan; Li, Ying; Zhang, Hui; Yang, Yang; Yang, Zhenbo; Li, Zhiping; Mei, Xingguo
2016-11-01
The synchronous sustained-release of two drugs was desired urgently for patients needing combination therapy in long term. However, sophisticated technologies were used generally to realize the simultaneous delivery of two drugs especially those with different physico-chemical properties. The purpose of this study was to obtain the concurrent release of felodipine and metoprolol tartrate, two drugs with completely different solubilities, in a simple monolithic osmotic pump system (FMOP). Two types of blocking agents were used in monolithic osmotic pump tablets and the synchronous sustained-release of FMOP was acquired in vitro. The tablets were also administered to beagle dogs and the plasma levels of FMOP were determined by HPLC-MS/MS. The pharmacokinetic parameters were calculated using a non-compartmental model. Cmax of both felodipine and metoprolol from the osmotic pump tablets were lower, tmax and mean residence time of both felodipine and metoprolol from the osmotic pump tablets were longer significantly than those from immediate release tablets. These results verified prolonged release of felodipine and metoprolol tartrate from osmotic pump formulations. The similar absorption rate between felodipine and metoprolol in beagles was also obtained by this osmotic pump formulation. Therefore, it could be supposed that the accordant release of two drugs with completely different solubilities may be realized just by using monolithic osmotic pump technology.
Govender, Mershen; Choonara, Yahya Essop; van Vuuren, Sandy; Kumar, Pradeep; du Toit, Lisa Claire; Pillay, Viness
2015-07-01
The viability of probiotic bacteria during formulation processes and delivery is vital to ensure health benefits. This study focuses on the use of gastro-resistant denatured ovalbumin for the targeted delivery of probiotic Lactobacillus acidophilus to simulated human intestinal and colon conditions through a bi-layered mini-tablet-in-tablet system (BMTTS). The BMTTS consists of two gastro-resistant ovalbumin mini-tablets containing L. acidophilus suspended in lactose and eudragit S100 for targeted intestinal and colonic delivery respectively. Luminescence has been utilized to ensure probiotic viability during formulation processes in addition to determining all probiotic release profiles. The mechanism of probiotic release from the ovalbumin matrix was ascertained using mathematical modelling and molecular docking studies. Magnetic resonance imaging and differential scanning calorimetry are also included as part of the in-vitro characterization of the ovalbumin system. The BMTTS was effective in the delivery of L. acidophilus to simulated human intestinal and colon conditions. Formulation processes were furthermore determined to maintain probiotic viability. Statistical analysis of the release data noted a significant effect of pH denaturation on the release properties of ovalbumin. Magnetic resonance imaging results have indicated a decrease in ovalbumin matrix size upon exposure to simulated intestinal fluid. Molecular docking studies carried out depicted the interaction and binding positions inherent to the ovalbumin-pancreatic trypsin interaction complex indicating the possible enzymatic degradation of ovalbumin leading to the release of the probiotic from the protein matrix. The BMTTS has been determined to be effective in the protection and delivery of probiotic L. acidophilus to simulated human intestinal and colonic conditions. Molecular docking analysis has noted that pancreatin exerts a significant effect on probiotic release from the gastro-resistant ovalbumin matrix. © 2015 Royal Pharmaceutical Society.
Formulation and evaluation of bilayer tablets of metoclopramide hydrochloride and diclofenac sodium.
Gattani, Surendra G; Khabiya, Sohan S; Amrutkar, Jitendra R; Kushare, Sachin S
2012-01-01
The main objective of the present research work was to develop a bilayer tablet of metoclopramide hydrochloride (MTH) and diclofenac sodium (DS) in separate layers to avoid incompatibility and thus to maximize the efficacy of both drugs in combination for the effective treatment of migraine headaches. MTH and DS were formulated as immediate and sustained release layers respectively. In vitro dissolution kinetic studies of an optimized (D10) batch of DS in both sustained release layer and bilayer tablet forms show good linearity of regression coefficient 0.9773 (first order equation). The results reveal that an optimized immediate release layer (M5) of MTH and a sustained release layer (D10) of DS might be suitable for the treatment of migraine by sequential release of the two drugs in a bilayer tablet. Migraine is a type of recurring headache of moderate to severe intensity associated with gastrointestinal, neurological, and autonomic symptoms. In migraine, a combination of pretreatment with antiemetics is required for symptomatic treatment, when nausea and vomiting are severe. In our present research, we have selected the metoclopramide hydrochloride (MTH) active ingredient for study because it has an antiemetic effect and is a prokinetic agent. MTH is more effective to counteract gastric stasis associated with migraine, and it enhances the rate of absorption of non-steroidal anti-inflammatory drugs (NSAIDs). In the present investigation we combine MTH and a second active ingredient, diclofenac sodium, as a formulated bilayer tablet to prevent degradation of MTH.
Marinich, J A; Ferrero, C; Jiménez-Castellanos, M R
2012-04-01
A previous paper deals with the physicochemical and technological characterization of novel graft copolymers of ethyl methacrylate (EMA) on waxy maize starch (MS) and hydroxypropylstarch (MHS). The results obtained suggested the potential application of these copolymers as excipients for compressed non-disintegrating matrix tablets. Therefore, the purpose of the present study was to investigate the mechanism governing drug release from matrix systems prepared with the new copolymers and anhydrous theophylline or diltiazem HCl as model drugs with different solubility. The influence of the carbohydrate nature, drying procedure and initial pore network on drug release kinetics was also evaluated. Drug release experiments were performed from free tablets. Radial drug release and fronts movement kinetics were also analysed, and several mathematical models were employed to ascertain the drug release mechanisms. The drug release markedly depends on the drug solubility and the carbohydrate nature but is practically not affected by the drying process and the initial matrix porosity. A faster drug release is observed for matrices containing diltiazem HCl compared with those containing anhydrous theophylline, in accordance with the higher drug solubility and the higher friability of diltiazem matrices. In fact, although diffusion is the prevailing drug release mechanism for all matrices, the erosion mechanism seems to have some contribution in several formulations containing diltiazem. A reduction in the surface exposed to the dissolution medium (radial release studies) leads to a decrease in the drug release rate, but the release mechanism is not essentially modified. The nearly constant erosion front movement confirms the behaviour of these systems as inert matrices where the drugs are released mainly by diffusion through the porous structure. Copyright © 2011 Elsevier B.V. All rights reserved.
Senjoti, Faria Gias; Mahmood, Syed; Jaffri, Juliana Md; Mandal, Uttam Kumar
2016-01-01
An oral sustained-release floating tablet formulation of metformin HCl was designed and developed. Effervescence and swelling properties were attributed on the developed tablets by sodium bicarbonate and HPMC-PEO polymer combination, respectively. Tablet composition was optimized by response surface methodology (RSM). Seventeen (17) trial formulations were analyzed according to Box-Behnken design of experiment where polymer content of HPMC and PEO at 1: 4 ratio (A), amount of sodium bi-carbonate (B), and amount of SSG (C) were adopted as independent variables. Floating lag time in sec (Y1), cumulative percent drug released at 1 h (Y2) and 12 h (Y3) were chosen as response variables. Tablets from the optimized formulation were also stored at accelerated stability condition (40°C and 75% RH) for 3 months to assess their stability profile. RSM could efficiently optimize the tablet composition with excellent prediction ability. In-vitro drug release until 12 h, floating lag time, and duration of floating were dependent on the amount of three selected independent variables. Optimized tablets remained floating for more than 24 h with a floating lag time of less than 4 min. Based on best fitting method, optimized formulation was found to follow Korsmeyer-Peppas release kinetic. Accelerated stability study revealed that optimized formulation was stable for three months without any major changes in assay, dissolution profile, floating lag time and other physical properties. PMID:27610147
Fujiki, Sadahiro; Watanabe, Narumi; Iwao, Yasunori; Noguchi, Shuji; Mizoguchi, Midori; Iwamura, Takeru; Itai, Shigeru
2015-08-01
The pharmaceutical properties of clarithromycin (CAM) tablets containing the metastable form I of crystalline CAM were investigated. Although the dissolution rate of form I was higher than that of stable form II, the release of CAM from form I tablet was delayed. Disintegration test and liquid penetration test showed that the disintegration of the tablet delayed because of the slow penetration of an external solution into form I tablet. Investigation by scanning electron microscopy revealed that the surface of form I tablet was covered with fine needle-shaped crystals following an exposure to the external solution. These crystals were identified as form IV crystals by powder X-ray diffraction. The phenomenon that CAM releases from tablet was inhibited by fine crystals spontaneously formed on the tablet surface could be applied to the design of sustained-release formulation systems with high CAM contents by minimizing the amount of functional excipients. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Saurí, J; Suñé-Negre, J M; Díaz-Marcos, J; Vilana, J; Millán, D; Ticó, J R; Miñarro, M; Pérez-Lozano, P; García-Montoya, E
2015-01-15
The study of controlled release and drug release devices has been dominated by considerations of the bulk or average properties of material or devices. Yet the outermost surface atoms play a central role in their performance. The objective of this article has been to characterize the surface of hydrophilic matrix tablets using the contact angle (CA) method to ascertain the surface free energy, and atomic force microscopy (AFM) and confocal microscopy (CM) for the physical characterization of the surface of the hydrophilic matrix. The surface free energy results obtained show that hydroxypropylmethylcellulose K15M hinders the spreading of water on the surface of the tablet, such that the concentration of HPMC K15M increases the reaction rate of the hydrophobic interactions between the chains of HPMC K15M which increases with respect to the rate of penetration of water into the tablet. In this study, we developed a new method to characterize the swelling of the tablets and established a relationship between the new method based on microswelling and the swelling ratio parameter. The surface texture parameters have been determined and the morphology of the tablets of the different formulations and the evolution of the surface morphology after interacting with the water, swelling and forming a gel layer were characterized. This work represents significant progress in the characterization of matrix tablets. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parr, A.F.; Beihn, R.M.; Franz, R.M.
1987-12-01
External gamma scintigraphy was used to monitor the gastrointestinal (GI) transit of radiolabeled sustained-release tablets containing 800 mg ibuprofen in eight fasted healthy volunteers. Ibuprofen serum concentrations were determined from blood samples drawn sequentially over a 24-hr period. Serum concentrations and related parameters were correlated to the position of the dosage form in the GI tract from the scintiphotos. The sustained-release tablets were radiolabeled intact utilizing a neutron activation procedure, by incorporating 0.18% of /sup 170/Er2O3 (enriched to greater than 96% /sup 170/Er) into the bulk formulation. After manufacture of the final dosage forms, the tablets were irradiated in amore » neutron flux (4.4 x 10(13) n/cm2.sec) for 2 min, converting the stable /sup 170/Er to radioactive /sup 171/Er (t1/2 = 7.5 hr). Each tablet contained 50 microCi of /sup 171/Er at the time of administration. The scintigraphy studies suggested that the greatest proportion of ibuprofen was absorbed from this dosage form while the tablet was in the large bowel. The dosage forms eroded slowly in the small bowel and appeared to lose their integrity in the large bowel. In vitro studies showed only minimal effects of the neutron irradiation procedure on the dosage form performance.« less
Modulation of venlafaxine hydrochloride release from press coated matrix tablet.
Gohel, M C; Soni, C D; Nagori, S A; Sarvaiya, K G
2008-01-01
The aim of present study was to prepare novel modified release press coated tablets of venlafaxine hydrochloride. Hydroxypropylmethylcellulose K4M and hydroxypropylmethylcellulose K100M were used as release modifier in core and coat, respectively. A 3(2) full factorial design was adopted in the optimization study. The drug to polymer ratio in core and coat were chosen as independent variables. The drug release in the first hour and drug release rate between 1 and 12 h were chosen as dependent variables. The tablets were characterized for dimension analysis, crushing strength, friability and in vitro drug release. A check point batch, containing 1:2.6 and 1:5.4 drug to polymer in core and coat respectively, was prepared. The tablets of check point batch were subjected to in vitro drug release in dissolution media with pH 5, 7.2 and distilled water. The kinetics of drug release was best explained by Korsmeyer and Peppas model (anomalous non-Fickian diffusion). The systematic formulation approach enabled us to develop modified release venlafaxine hydrochloride tablets.
Predictability of drug release from water-insoluble polymeric matrix tablets.
Grund, Julia; Körber, Martin; Bodmeier, Roland
2013-11-01
The purpose of this study was to extend the predictability of an established solution of Fick's second law of diffusion with formulation-relevant parameters and including percolation theory. Kollidon SR (polyvinyl acetate/polyvinylpyrrolidone, 80/20 w/w) matrix tablets with various porosities (10-30% v/v) containing model drugs with different solubilities (Cs=10-170 mg/ml) and in different amounts (A=10-90% w/w) were prepared by direct compression and characterized by drug release and mass loss studies. Drug release was fitted to Fick's second law to obtain the apparent diffusion coefficient. Its changes were correlated with the total porosity of the matrix and the solubility of the drug. The apparent diffusion coefficient was best described by a cumulative normal distribution over the range of total porosities. The mean of the distribution coincided with the polymer percolation threshold, and the minimum and maximum of the distribution were represented by the diffusion coefficient in pore-free polymer and in aqueous medium, respectively. The derived model was verified, and the applicability further extended to a drug solubility range of 10-1000 mg/ml. The developed mathematical model accurately describes and predicts drug release from Kollidon SR matrix tablets. It can efficiently reduce experimental trials during formulation development. Copyright © 2013 Elsevier B.V. All rights reserved.
Claeys, Bart; Vervaeck, Anouk; Hillewaere, Xander K D; Possemiers, Sam; Hansen, Laurent; De Beer, Thomas; Remon, Jean Paul; Vervaet, Chris
2015-02-01
This study evaluated thermoplastic polyurethanes (TPUR) as matrix excipients for the production of oral solid dosage forms via hot melt extrusion (HME) in combination with injection molding (IM). We demonstrated that TPURs enable the production of solid dispersions - crystalline API in a crystalline carrier - at an extrusion temperature below the drug melting temperature (Tm) with a drug content up to 65% (wt.%). The release of metoprolol tartrate was controlled over 24h, whereas a complete release of diprophylline was only possible in combination with a drug release modifier: polyethylene glycol 4000 (PEG 4000) or Tween 80. No burst release nor a change in tablet size and geometry was detected for any of the formulations after dissolution testing. The total matrix porosity increased gradually upon drug release. Oral administration of TPUR did not affect the GI ecosystem (pH, bacterial count, short chain fatty acids), monitored via the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). The high drug load (65 wt.%) in combination with (in vitro and in vivo) controlled release capacity of the formulations, is noteworthy in the field of formulations produced via HME/IM. Copyright © 2014 Elsevier B.V. All rights reserved.
Continuous manufacturing of extended release tablets via powder mixing and direct compression.
Ervasti, Tuomas; Simonaho, Simo-Pekka; Ketolainen, Jarkko; Forsberg, Peter; Fransson, Magnus; Wikström, Håkan; Folestad, Staffan; Lakio, Satu; Tajarobi, Pirjo; Abrahmsén-Alami, Susanna
2015-11-10
The aim of the current work was to explore continuous dry powder mixing and direct compression for manufacturing of extended release (ER) matrix tablets. The study was span out with a challenging formulation design comprising ibuprofen compositions with varying particle size and a relatively low amount of the matrix former hydroxypropyl methylcellulose (HPMC). Standard grade HPMC (CR) was compared to a recently developed direct compressible grade (DC2). The work demonstrate that ER tablets with desired quality attributes could be manufactured via integrated continuous mixing and direct compression. The most robust tablet quality (weight, assay, tensile strength) was obtained using high mixer speed and large particle size ibuprofen and HPMC DC2 due to good powder flow. At low mixer speed it was more difficult to achieve high quality low dose tablets. Notably, with HPMC DC2 the processing conditions had a significant effect on drug release. Longer processing time and/or faster mixer speed was needed to achieve robust release with compositions containing DC2 compared with those containing CR. This work confirms the importance of balancing process parameters and material properties to find consistent product quality. Also, adaptive control is proven a pivotal means for control of continuous manufacturing systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Barmpalexis, Panagiotis; Kachrimanis, Kyriakos; Georgarakis, Emanouil
2011-01-01
The present study investigates the use of nimodipine-polyethylene glycol solid dispersions for the development of effervescent controlled release floating tablet formulations. The physical state of the dispersed nimodipine in the polymer matrix was characterized by differential scanning calorimetry, powder X-ray diffraction, FT-IR spectroscopy and polarized light microscopy, and the mixture proportions of polyethylene glycol (PEG), polyvinyl-pyrrolidone (PVP), hydroxypropylmethylcellulose (HPMC), effervescent agents (EFF) and nimodipine were optimized in relation to drug release (% release at 60 min, and time at which the 90% of the drug was dissolved) and floating properties (tablet's floating strength and duration), employing a 25-run D-optimal mixture design combined with artificial neural networks (ANNs) and genetic programming (GP). It was found that nimodipine exists as mod I microcrystals in the solid dispersions and is stable for at least a three-month period. The tablets showed good floating properties and controlled release profiles, with drug release proceeding via the concomitant operation of swelling and erosion of the polymer matrix. ANNs and GP both proved to be efficient tools in the optimization of the tablet formulation, and the global optimum formulation suggested by the GP equations consisted of PEG=9%, PVP=30%, HPMC=36%, EFF=11%, nimodipine=14%. Copyright © 2010 Elsevier B.V. All rights reserved.
Controlled release hydrophilic matrix tablet formulations of isoniazid: design and in vitro studies.
Hiremath, Praveen S; Saha, Ranendra N
2008-01-01
The aim of the present investigation was to develop oral controlled release matrix tablet formulations of isoniazid using hydroxypropyl methylcellulose (HPMC) as a hydrophilic release retardant polymer and to study the influence of various formulation factors like proportion of the polymer, polymer viscosity grade, compression force, and release media on the in vitro release characteristics of the drug. The formulations were developed using wet granulation technology. The in vitro release studies were performed using US Pharmacopoeia type 1 apparatus (basket method) in 900 ml of pH 7.4 phosphate buffer at 100 rpm. The release kinetics was analyzed using Korsmeyer-Peppas model. The release profiles were also analyzed using statistical method (one-way analysis of variance) and f (2) metric values. The release profiles found to follow Higuchi's square root kinetics model irrespective of the polymer ratio and the viscosity grade used. The results in the present investigation confirm that the release rate of the drug from the HPMC matrices is highly influenced by the drug/HPMC ratio and viscosity grade of the HPMC. Also, the effect of compression force and release media was found to be significant on the release profiles of isoniazid from HPMC matrix tablets. The release mechanism was found to be anomalous non-Fickian diffusion in all the cases. In the present investigation, a series of controlled release formulations of isoniazid were developed with different release rates and duration so that these formulations could further be assessed from the in vivo bioavailability studies. The formulations were found to be stable and reproducible.
Baloglu, Esra; Ay Senyıgıt, Zeynep; Karavana, Sinem Yaprak; Vetter, Anja; Metın, Dilek Yesim; Hilmioglu Polat, Suleyha; Guneri, Tamer; Bernkop-Schnurch, Andreas
2011-01-01
The main objective of this work was to develop antifungal matrix tablet for vaginal applications using mucoadhesive thiolated polymer. Econazole nitrate (EN) and miconazole nitrate (MN) were used as antifungal drugs to prepare the vaginal tablet formulations. Thiolated poly(acrylic acid)-cysteine (PAA-Cys) conjugate was synthesized by the covalent attachment of L-cysteine to PAA with the formation of amide bonds between the primary amino group of L-cysteine and the carboxylic acid group of the polymer. Vaginal mucoadhesive matrix tablets were prepared by direct compression technique. The investigation focused on the influence of modified polymer on water uptake behavior, mucoadhesive property and release rate of drug. Thiolated polymer increased the water uptake ratio and mucoadhesive property of the formulations. A new simple dissolution technique was developed to simulate the vaginal environment for the evaluation of release behavior of vaginal tablets. In this technique, daily production amount and rate of the vaginal fluid was used without any rotational movement. The drug release was found to be slower from PAA-Cys compared to that from PAA formulations. The similarity study results confirmed that the difference in particle size of EN and MN did not affect their release profile. The release process was described by plotting the fraction released drug versus time and n fitting data to the simple exponential model: M(t)/M(∞)=kt(n). The release kinetics were determined as Super Case II for all the formulations prepared with PAA or PAA-Cys. According to these results the mucoadhesive vaginal tablet formulations prepared with PAA-Cys represent good example for delivery systems which prolong the residence time of drugs at the vaginal mucosal surface.
Modeling the modified drug release from curved shape drug delivery systems - Dome Matrix®.
Caccavo, D; Barba, A A; d'Amore, M; De Piano, R; Lamberti, G; Rossi, A; Colombo, P
2017-12-01
The controlled drug release from hydrogel-based drug delivery systems is a topic of large interest for research in pharmacology. The mathematical modeling of the behavior of these systems is a tool of emerging relevance, since the simulations can be of use in the design of novel systems, in particular for complex shaped tablets. In this work a model, previously developed, was applied to complex-shaped oral drug delivery systems based on hydrogels (Dome Matrix®). Furthermore, the model was successfully adopted in the description of drug release from partially accessible Dome Matrix® systems (systems with some surfaces coated). In these simulations, the erosion rate was used asa fitting parameter, and its dependence upon the surface area/volume ratio and upon the local fluid dynamics was discussed. The model parameters were determined by comparison with the drug release profile from a cylindrical tablet, then the model was successfully used for the prediction of the drug release from a Dome Matrix® system, for simple module configuration and for module assembled (void and piled) configurations. It was also demonstrated that, given the same initial S/V ratio, the drug release is independent upon the shape of the tablets but it is only influenced by the S/V evolution. The model reveals itself able to describe the observed phenomena, and thus it can be of use for the design of oral drug delivery systems, even if complex shaped. Copyright © 2017 Elsevier B.V. All rights reserved.
Franek, Frans; Holm, Per; Larsen, Frank; Steffansen, Bente
2014-01-30
The aim of the study was to investigate caffeine release in fed and fasted state media from three controlled release matrix tablets containing different HPMC viscosity grades. The biorelevant in vitro dissolution methods utilize the USP 3 dissolution apparatus and biorelevant media to simulate fed and fasted gastro-intestinal dissolution conditions. The effect of tablet reciprocation rate (dip speed) in dissolution media (10 and 15 dips per minute) and media (water, fed and fasted) on caffeine release rate from - and erosion rate of - 100, 4000 and 15,000 mPa s HPMC viscosity tablets was investigated using factorial designed experiments. Furthermore, the mechanism of release in Ensure Plus(®), a nutrition drink similar in composition to the FDA standard meal, was investigated by studying tablet swelling using texture analysis. Altering dip speed has negligible effect on release and erosion rates. Using fasted media instead of water slightly decreases caffeine release from 100 and 4000 mPa s HPMC viscosity tablets as well as erosion rates, while 15,000 mPa s tablets remain unaffected. Fed compared to fasted media decreases caffeine release rate, and the food effect is greater for the 100 mPa s viscosity tablets compared to the 4000 and 15,000 mPa s viscosity tablets. The investigation using texture analysis indicates that Ensure Plus(®) becomes rate-limiting for caffeine release from HPMC tablets by forming a hydrophobic barrier around the tablets. The barrier decreases tablet water permeation, which decreases erosion rate in 100 mPa s viscosity tablets, swelling in 15,000 mPa s viscosity tablets and caffeine release from both tablets. This observed interaction between Ensure Plus(®) and the HPMC tablets may translate into decreased drug release rate in the fed stomach, which may decrease the amount of drug available for absorption in the small intestine and thus reduce systemic drug exposure and maximum plasma concentration. Copyright © 2013 Elsevier B.V. All rights reserved.
Formulation and characterization of sustained release dosage form of moisture sensitive drug
Patel, Priya; Dave, Abhishek; Vasava, Amit; Patel, Paresh
2015-01-01
Objective: The purpose of this study was to prepare sustained release tablet of moisture sensitive drug like Ranitidine Hydrochloride for treatment of gastroesophageal reflux disease along with the improvement of moisture stability to get better therapeutic efficacy. Materials and Methods: Pan coating technique was used for coating of the tablet. Film coating was done using Eudragit RLPO and Eugragit EPO as coating polymer. 32 full factorial design was applied for optimization purpose, and 9 runs were conducted. In that Eudragit RLPO and Eudragit EPO taken as an independent variables and moisture gain and Cummulative Drug Release (CDR) were taken as dependent variables. Drug and excipient compatibility was done using differential scanning calorimetry and Fourier transform infrared spectroscopy study. The tablet was evaluated for precompression parameter and all postcompression parameter. Stability study was carried out at room temperature (30°C ± 2°C/65% ± 5% relative humidity). Final formulation was compared with marketed formulation RANTEC 300. Result: Tablets were passing out all precompression parameter along with postcompression parameter. Stability study shows that the parameter such as hardness, friability, and dissolution are in the range. Hence, there is no significant change shown after stability study. Our final formulation was compared with marketed formulation RANTEC 300 and result demonstrates that our final formulation have less moisture gain and give release up to 12 h. Conclusion: The result of present study demonstrates that final formulation has less moisture gain and getting desired CDR for sustained release of drug. On the basis of all study, it was concluded that the tablet was coated by combination of Eudragit RLPO 10% and Eudragit EPO 10% give better result. This formation provided promising approach for the drug release up to 12 h for moisture sensitive drug like ranitidine hydrochloride. PMID:25838994
Jacob, Shery; Nair, Anroop B; Patil, Pandurang N
2010-01-01
An inert hydrophobic buoyant coated–core was developed as floating drug delivery system (FDDS) for sustained release of cisapride using direct compression technology. Core contained low density, porous ethyl cellulose, which was coated with an impermeable, insoluble hydrophobic coating polymer such as rosin. It was further seal coated with low viscosity hydroxypropyl methyl cellulose (HPMC E15) to minimize moisture permeation and better adhesion with an outer drug layer. It was found that stable buoyant core was sufficient to float the tablet more than 8 h without the aid of sodium bicarbonate and citric acid. Sustained release of cisapride was achieved with HPMC K4M in the outer drug layer. The floating lag time required for these novel FDDS was found to be zero, however it is likely that the porosity or density of the core is critical for floatability of these tablets. The in vitro release pattern of these tablets in simulated gastric fluid showed the constant and controlled release for prolonged time. It can be concluded that the hydrophobic coated buoyant core could be used as FDDS for gastroretentive delivery system of cisapride or other suitable drugs. PMID:24825997
Akhlaq, Muhammad; Khan, Gul Majid; Jan, Syed Umer; Wahab, Abdul; Hussain, Abid; Nawaz, Asif; Abdelkader, Hamdy
2014-11-01
Diclofenac sodium (DCL-Na) conventional oral tablets exhibit serious side effects when given for a longer period leading to noncompliance. Controlled release matrix tablets of diclofenac sodium were formulated using simple blending (F-1), solvent evaporation (F-2) and co-precipitation techniques (F-3). Ethocel® Standard 7 FP Premium Polymer (15%) was used as a release controlling agent. Drug release study was conducted in 7.4 pH phosphate buffer solutions as dissolution medium in vitro. Pharmacokinetic parameters were evaluated using albino rabbits. Solvent evaporation technique was found to be the best release controlling technique thereby prolonging the release rate up to 24 hours. Accelerated stability studies of the optimized test formulation (F-2) did not show any significant change (p<0.05) in the physicochemical characteristics and release rate when stored for six months. A simple and rapid method was developed for DCL-Na active moiety using HPLC-UV at 276nm. The optimized test tablets (F-2) significantly (p<0.05) exhibited peaks plasma concentration (cmax=237.66±1.98) and extended the peak time (tmax=4.63±0.24). Good in-vitro in vivo correlation was found (R(2)=0.9883) against drug absorption and drug release. The study showed that once-daily controlled release matrix tablets of DCL-Na were successfully developed using Ethocel® Standard 7 FP Premium.
Release kinetics of papaverine hydrochloride from tablets with different excipients.
Kasperek, Regina; Polski, Andrzej; Zimmer, Łukasz; Poleszak, Ewa
2014-01-01
The influence of excipients on the disintegration times of tablets and the release of papaverine hydrochloride (PAP) from tablets were studied. Ten different formulations of tablets with PAP were prepared by direct powder compression. Different binders, disintegrants, fillers, and lubricants were used as excipients. The release of PAP was carried out in the paddle apparatus using 0.1 N HCl as a dissolution medium. The results of the disintegration times of tablets showed that six formulations can be classified as fast dissolving tablets (FDT). FDT formulations contained Avicel PH 101, Avicel PH 102, mannitol, (3-lactose, PVP K 10, gelatinized starch (CPharmGel), Prosolv Easy Tab, Prosolv SMCC 90, magnesium stearate, and the addition of disintegrants such as AcDiSol and Kollidon CL. Drug release kinetics were estimated by the zero- and first-order, Higuchi release rate, and Korsmeyer-Peppas models. Two formulations of the tablets containing PVP (K10) (10%), CPharmGel (10% and 25%), and Prosolv Easy Tab (44% and 60%) without the addition of a disintegrant were well-fitted to the kinetics models such as the Higuchi and zero-order, which are suitable for controlled- or sustained-release.
Release Kinetics of Papaverine Hydrochloride from Tablets with Different Excipients
Kasperek, Regina; Polski, Andrzej; Zimmer, Łukasz; Poleszak, Ewa
2014-01-01
Abstract The influence of excipients on the disintegration times of tablets and the release of papaverine hydrochloride (PAP) from tablets were studied. Ten different formulations of tablets with PAP were prepared by direct powder compression. Different binders, disintegrants, fillers, and lubricants were used as excipients. The release of PAP was carried out in the paddle apparatus using 0.1 N HCl as a dissolution medium. The results of the disintegration times of tablets showed that six formulations can be classified as fast dissolving tablets (FDT). FDT formulations contained Avicel PH 101, Avicel PH 102, mannitol, (3-lactose, PVP K 10, gelatinized starch (CPharmGel), Prosolv Easy Tab, Prosolv SMCC 90, magnesium stearate, and the addition of disintegrants such as AcDiSol and Kollidon CL. Drug release kinetics were estimated by the zero- and first-order, Higuchi release rate, and Korsmeyer-Peppas models. Two formulations of the tablets containing PVP (K10) (10%), CPharmGel (10% and 25%), and Prosolv Easy Tab (44% and 60%) without the addition of a disintegrant were well-fitted to the kinetics models such as the Higuchi and zero-order, which are suitable for controlled- or sustained-release. PMID:25853076
Cantor, Stuart L; Hoag, Stephen W; Augsburger, Larry L
2009-05-01
The purpose was to investigate the effectiveness of an ethylcellulose (EC) bead matrix and different film-coating polymers in delaying drug release from compacted multiparticulate systems. Formulations containing theophylline or cimetidine granulated with Eudragit RS 30D were developed and beads were produced by extrusion-spheronization. Drug beads were coated using 15% wt/wt Surelease or Eudragit NE 30D and were evaluated for true density, particle size, and sphericity. Lipid-based placebo beads and drug beads were blended together and compacted on an instrumented Stokes B2 rotary tablet press. Although placebo beads were significantly less spherical, their true density of 1.21 g/cm(3) and size of 855 mum were quite close to Surelease-coated drug beads. Curing improved the crushing strength and friability values for theophylline tablets containing Surelease-coated beads; 5.7 +/- 1.0 kP and 0.26 +/- 0.07%, respectively. Dissolution profiles showed that the EC matrix only provided 3 h of drug release. Although tablets containing Surelease-coated theophylline beads released drug fastest overall (t(44.2%) = 8 h), profiles showed that coating damage was still minimal. Size and density differences indicated a minimal segregation potential during tableting for blends containing Surelease-coated drug beads. Although modified release profiles >8 h were achievable in tablets for both drugs using either coating polymer, Surelease-coated theophylline beads released drug fastest overall. This is likely because of the increased solubility of theophylline and the intrinsic properties of the Surelease films. Furthermore, the lipid-based placebos served as effective cushioning agents by protecting coating integrity of drug beads under a number of different conditions while tableting.
Zhang, Xitong; Zhang, Yue; Han, Han; Yang, Jun; Xu, Benliang; Wang, Bing; Zhang, Tong
2017-08-01
This study aims to develop a gastroretentive sustained-release drug delivery system of paeonol using floating properties and to investigate its therapeutic effects in rat models. The gastric retention tablets of paeonol (GRT-Ps) were prepared by a direct compression method, and the Box-Behnken design was used to optimize its formulation. The optimized formulation containing 15% NaHCO 3 and a 2 : 1 ratio of paeonol and HPMC-K4M floated within 1 min and remained afloat for more than 8 h in the simulated gastric fluid (200 mL, pH=1.2) and simultaneously showed the desired sustained drug release. Moreover, small tablets (3 mm) were prepared according to the same formulation and the process technology of big tablets (8 mm). A similar drug release behavior was observed between two kinds of tablets (f 2 =52), and then the evaluations of efficacy and retention capacity in vivo were conducted with small tablets. In vivo retention studies showed that the T max (2 h) of GRT-P in rat stomachs was significantly extended compared with the T max (0.5 h) of normal reference preparation. Compared with the model group, low and high doses of GRT-P could significantly inhibit the increase of malondialdehyde (MDA) in serum. Studies showed that the higher MDA content in inflammation tissue increases the inflammatory response. The ulcer inhibition rates of GRT-P in the high-dose group were 59.0 and 64.1% in the ranitidine group. Results indicated that GRT-Ps had the potential for a sustained drug release and an enhanced gastric residence time with relatively high drug concentrations in the tissue distribution.
Hiremath, Praveen S; Saha, Ranendra N
2008-10-01
The aim of the present investigation was to develop controlled release (C.R.) matrix tablet formulations of rifampicin and isoniazid combination, to study the design parameters and to evaluate in vitro release characteristics. In the present study, a series of formulations were developed with different release rates and duration using hydrophilic polymers hydroxypropyl methylcellulose (HPMC) and hydroxypropyl cellulose (HPC). The duration of rifampicin and isoniazid release could be tailored by varying the polymer type, polymer ratio and processing techniques. Further, Eudragit L100-55 was incorporated in the matrix tablets to compensate for the pH-dependent release of rifampicin. Rifampicin was found to follow linear release profile with time from HPMC formulations. In case of formulations with HPC, there was an initial higher release in simulated gastric fluid (SGF) followed by zero order release profiles in simulated intestinal fluid (SIFsp) for rifampicin. The release of isoniazid was found to be predominantly by diffusion mechanism in case of HPMC formulations, and with HPC formulations release was due to combination of diffusion and erosion. The initial release was sufficiently higher for rifampicin from HPC thus ruling out the need to incorporate a separate loading dose. The initial release was sufficiently higher for isoniazid in all formulations. Thus, with the use of suitable polymer or polymer combinations and with the proper optimization of the processing techniques it was possible to design the C.R. formulations of rifampicin and isoniazid combination that could provide the sufficient initial release and release extension up to 24h for both the drugs despite of the wide variations in their physicochemical properties.
Bonferoni, Maria Cristina; Colombo, Paolo; Zanelotti, Laura; Caramella, Carla
2014-01-01
In this work we investigated the moving boundaries and the associated drug release kinetics in matrix tablets prepared with two complexes between λ-carrageenan and two soluble model drugs, namely, diltiazem HCl and metoprolol tartrate aiming at clarifying the role played by drug/polymer interaction on the water uptake, swelling, drug dissolution, and drug release performance of the matrix. The two studied complexes released the drug with different mechanism indicating two different drug/polymer interaction strengths. The comparison between the drug release behaviour of the complexes and the relevant physical mixtures indicates that diltiazem gave rise to a less soluble and more stable complex with carrageenan than metoprolol. The less stable metoprolol complex afforded an erodible matrix, whereas the stronger interaction between diltiazem and carrageenan resulted in a poorly soluble, slowly dissolving matrix. It was concluded that the different stability of the studied complexes affords two distinct drug delivery systems: in the case of MTP, the dissociation of the complex, as a consequence of the interaction with water, affords a classical soluble matrix type delivery system; in the case of DTZ, the dissolving/diffusing species is the complex itself because of the very strong interaction between the drug and the polymer. PMID:25045689
Bettini, Ruggero; Bonferoni, Maria Cristina; Colombo, Paolo; Zanelotti, Laura; Caramella, Carla
2014-01-01
In this work we investigated the moving boundaries and the associated drug release kinetics in matrix tablets prepared with two complexes between λ-carrageenan and two soluble model drugs, namely, diltiazem HCl and metoprolol tartrate aiming at clarifying the role played by drug/polymer interaction on the water uptake, swelling, drug dissolution, and drug release performance of the matrix. The two studied complexes released the drug with different mechanism indicating two different drug/polymer interaction strengths. The comparison between the drug release behaviour of the complexes and the relevant physical mixtures indicates that diltiazem gave rise to a less soluble and more stable complex with carrageenan than metoprolol. The less stable metoprolol complex afforded an erodible matrix, whereas the stronger interaction between diltiazem and carrageenan resulted in a poorly soluble, slowly dissolving matrix. It was concluded that the different stability of the studied complexes affords two distinct drug delivery systems: in the case of MTP, the dissociation of the complex, as a consequence of the interaction with water, affords a classical soluble matrix type delivery system; in the case of DTZ, the dissolving/diffusing species is the complex itself because of the very strong interaction between the drug and the polymer.
Maity, Siddhartha; Sa, Biswanath
2014-08-01
The objective of this work was to study the release behavior of prednisolone from calcium-cross-linked carboxymethyl xanthan gum (CMXG) tablets in dissolution medium having different pH values prevailing in the gastrointestinal lumen. Xanthan gum (XG) was derivatized to CMXG which was then cross-linked in situ with Ca(+2) ion during wet massing step of tablet preparation. Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry studies did not show any drug-polymer interaction although the drug underwent solid-state transformation during compression as evident from X-ray diffraction analysis. In vitro release study demonstrated that increase in the amount of Ca(+2) ion decreased the drug release, and beyond a certain amount, the drug release increased. While increase in both drug load and tablet crushing strength decreased the drug release, increase in exposure time in acid solution of pH 1.2 increased the overall release of the drug. The mechanism of drug release was non-Fickian/anomalous. The results indicated that variation in the amount of Ca(+2) ion can modulate the drug release from CMXG matrix tablets as needed.
He, Shuang; Li, Feng; Zhou, Dan; Du, Junrong; Huang, Yuan
2012-10-01
A novel coated gastric floating drug-delivery system (GFDDS) of bergenin (BN) and cetirizine dihydrochloride (CET) was developed. First, the pharmacodynamic studies were performed and the results revealed that the new compounds of bergenin/cetirizine dihydrochloride had comparative efficacy as commercial products (bergenin/chlorphenamine maleate) but with fewer side effects on central nervous system (CNS). Subsequently, bergenin was formulated as an extended-release core tablet while cetirizine dihydrochloride was incorporated into the gastric coating film for immediate release. The formulation of GFDDS was optimized by CET content uniformity test, in vitro buoyancy and drug release. Herein, the effects of sodium bicarbonate (effervescent), hydroxypropyl methylcellulose (HPMC, matrix polymer) and coating weight gain were investigated respectively. The optimized GFDDS exhibited good floating properties (buoyancy lag time < 2 min; floating duration > 10 h) and satisfactory drug-release profiles (immediate release of CET in 10 min and sustained release of BN for 12 h). In vivo gamma scintigraphy proved that the optimized GFDDS could retain in the stomach with a prolonged gastric retention time (GRT) of 5 h, and the coating layer showed no side effect for gastric retention. The novel coated gastric floating drug-delivery system offers a new approach to enhance BN's absorption at its absorption site and the efficacy of both CET and BN.
Release and diffusional modeling of metronidazole lipid matrices.
Ozyazici, Mine; Gökçe, Evren H; Ertan, Gökhan
2006-07-01
In this study, the first aim was to investigate the swelling and relaxation properties of lipid matrix on diffusional exponent (n). The second aim was to determine the desired release profile of metronidazole lipid matrix tablets. We prepared metronidazole lipid matrix granules using Carnauba wax, Beeswax, Stearic acid, Cutina HR, Precirol ATO 5, and Compritol ATO 888 by hot fusion method and pressed the tablets of these granules. In vitro release test was performed using a standard USP dissolution apparatus I (basket method) with a stirring rate of 100 rpm at 37 degrees C in 900 ml of 0.1 N hydrochloric acid, adjusted to pH 1.2, as medium for the formulations' screening. Hardness, diameter-height ratio, friability, and swelling ratio were determined. Target release profile of metronidazole was also drawn. Stearic acid showed the highest and Carnauba wax showed the lowest release rates in all formulations used. Swelling ratios were calculated after the dissolution of tablets as 9.24%, 6.03%, 1.74%, and 1.07% for Cutina HR, Beeswax, Precirol ATO 5, and Compritol ATO 888, respectively. There was erosion in Stearic acid, but neither erosion nor swelling in Carnauba wax, was detected. According to the power law analysis, the diffusion mechanism was expressed as pure Fickian for Stearic acid and Carnauba wax and the coupling of Fickian and relaxation contributions for other Cutina HR, Beeswax, Compritol ATO 888, and Precirol ATO 5 tablets. It was found that Beeswax (kd=2.13) has a very close drug release rate with the target profile (kt=1.95). Our results suggested that swelling and relaxation properties of lipid matrices should be examined together for a correct evaluation on drug diffusion mechanism of insoluble matrices.
Makar, Rana Refaat; Latif, Randa; Hosni, Ehab Ahmed; El Gazayerly, Omaima Naim
2017-01-01
Purpose: Triple solid dispersion adsorbates (TSDads) and spherical agglomerates (SA) present new techniques that extensively enhance dissolution of poorly soluble drugs. The aim of the present study is to hasten the onset of hypoglycemic effect of glimepiride through enhancing its rate of release from tablet formulation prepared from either technique. Methods: Drug release from TSDads or SA tablets with different added excipients was explored. Scanning electron microscopy (SEM) and effect of compression on dissolution were illustrated. Pharmacodynamic evaluation was performed on optimized tablets. Results: TSDads & SA tablets with Cross Povidone showed least disintegration times of 1.48 and 0.5 min. respectively. Kinetics of drug release recorded least half-lives (54.13 and 59.83min for both techniques respectively). Cross section in tablets displayed an organized interconnected matrix under SEM, accounting for the rapid access of dissolution media to the tablet core. Components of tablets filled into capsules showed a similar release profile to that of tablets after compression as indicated by similarity factor. The onset time of maximum reduction in blood glucose in male albino rabbits was hastened to 2h instead of 3h for commercial tablets. Conclusion: After optimization of tablet excipients that interacted differently with respect to their effect on drug release, we could conclude that both amorphisation and spheronization were equally successful in promoting in vitro dissolution enhancement as well as providing a more rapid onset time for drug action in vivo. PMID:29399545
Yanfei, Miao; Guoguang, Chen; Lili, Ren; Pingkai, Ouyang
2017-03-01
The purpose of this study was to develop a new formulation to enhance the bioavailability simultaneously with controlled release of glaucocalyxin A (GLA). In this study, controlled release of GLA was achieved by the osmotic release strategy taking advantage of the bioavailability enhancing capacity of self-nanoemulsifying drug delivery systems (SNEDDS). The formulation of GLA-SNEDDS was selected by the solubility and pseudoternary-phase diagrams studies. The prepared GLA-SNEDDS formulations were characterized for self-emulsification time, effect of pH and robustness to dilution, droplet size analysis and zeta potential. The optimized GLA-SNEDDS were used to prepare GLA-SNEDDS osmotic pump tablet via direct powder compression method. The effect of formulation variables on the release characteristic was investigated. GLA-SNEDDS osmotic pump tablets were administered to beagle dogs and their pharmacokinetics were compared to GLA and GLA-SNEDDS as a control. In vitro drug release studies indicated that the GLA-SNEDDS osmotic pump tablet showed sustained release profiles with 90% released within 12 h. Pharmacokinetic study showed steady blood GLA with prolonged T max and mean residence time (MRT), and enhanced bioavailability for GLA-SNEDDS osmotic pump tablet. It was concluded that simultaneous controlling on GLA release and enhanced bioavailability had been achieved by a combination of osmotic pump tablet and SNEDDS.
Ahmed, Tarek A; Suhail, Mohammad A A; Hosny, Khaled M; Abd-Allah, Fathy I
2018-01-01
Implementation of a new pharmaceutical technique to improve aqueous solubility and thus dissolution, enhancement of drug permeation, and finally formulation of a controlled release tablet loaded with glimepiride (GLMP). Improve GLMP bioavailability and pharmacokinetics in type II diabetic patients. Different polymers were used to enhance aqueous GLMP solubility of which a saturated polymeric drug solution was prepared and physically adsorbed onto silica. An experimental design was employed to optimize the formulation parameters affecting the preparation of GLMP matrix tablets. A compatibility study was conducted to study components interactions. Scanning electron microscope (SEM) was performed before and after the tablets were placed in the dissolution medium. An in vivo study in human volunteers was performed with the optimized GLMP tablets, which were compared to pure and marketed drug products. Enhancement of GLMP aqueous solubility, using the polymeric drug solution technique, by more than 6-7 times when compared with the binary system. All the studied formulation factors significantly affected the studied variables. No significant interaction was detected among components. SEM illustrated the surface and inner tablet structure, and confirmed the drug release which was attributed to diffusion mechanism. The volunteer group administered the optimized GLMP tablet exhibited higher drug plasma concentration (147.4 ng/mL), longer time to reach maximum plasma concentration (4 h) and longer t 1/2 (7.236 h) compared to other groups. Matrix tablet loaded with a physically modified drug form could represent a key solution for drugs with inconsistent dissolution and absorption profiles.
Terahertz Pulsed Imaging and Magnetic Resonance Imaging as Tools to Probe Formulation Stability
Zhang, Qilei; Gladden, Lynn F.; Avalle, Paolo; Zeitler, J. Axel; Mantle, Michael D.
2013-01-01
Dissolution stability over the entire shelf life duration is of critical importance to ensure the quality of solid dosage forms. Changes in the drug release profile during storage may affect the bioavailability of drug products. This study investigated the stability of a commercial tablet (Lescol® XL) when stored under accelerated conditions (40 °C/75% r.h.). Terahertz pulsed imaging (TPI) was used to investigate the structure of the tablet coating before and after the accelerated aging process. The results indicate that the coating was reduced in thickness and exhibited a higher density after being stored under accelerated conditions for four weeks. In situ magnetic resonance imaging (MRI) of the water penetration processes during tablet dissolution in a USP-IV dissolution cell equipped with an in-line UV-vis analyzer was carried out to study local differences in water uptake into the tablet matrix between the stressed and unstressed state. The drug release profiles of the Lescol® XL tablet before and after the accelerated storage stability testing were compared using a “difference” factor f1 and a “similarity” factor f2. The results reveal that even though the physical properties of the coating layers changed significantly during the stress testing, the coating protected the tablet matrix and the densification of the coating polymer had no adverse effect on the drug release performance. PMID:24300564
Membrane formation and drug loading effects in high amylose starch tablets studied by NMR imaging.
Thérien-Aubin, Héloïse; Zhu, X X; Ravenelle, François; Marchessault, Robert H
2008-04-01
Cross-linked high amylose starch is used as an excipient in the preparation of pharmaceutical tablets for the sustained release of drugs. NMR imaging with contrast enhanced by proton density and by self-diffusion coefficient was used to follow the water uptake and swelling, two critical parameters controlling the drug release of the cross-linked starch tablets containing 10 wt % of ciprofloxacin and of acetaminophen, respectively. The drug-loaded tablets were studied in a H2O/D2O mixture at 37 degrees C in comparison to the tablets without any drug loading. The diffusion of water in the tablets all showed a Fickian behavior, but the kinetics of water uptake was faster in the case of the drug-loaded tablets. The formation of a membrane at the water/tablet interface was observed.
Shergill, Mandip; Patel, Mina; Khan, Siraj; Bashir, Ayesha; McConville, Christopher
2016-01-30
Administration of drugs via the oral route is the most common and preferred route due to its ease of administration, cost-effectiveness and flexibility in design. However, if the drug being administered has limited aqueous solubility it can result in poor bioavailability. Furthermore, the low pH of the stomach as well as enzymatic activity can result in drugs delivered via the oral route being rapidly metabolised and degraded. Here we demonstrate the development and characterisation of sustained release solid dispersion oral tablets, containing the poorly water-soluble drug disulfiram (DSF). The tablets, which are manufactured from two different polymers (Kolliphor(®) P 188 and P 237) specifically designed for the manufacture of solid dispersions and two different polymers (Kollidon(®) SR and HPMC) specifically designed to provide sustained release, can enhance the solubility of DSF, sustain its release, while protecting it from degradation in simulated gastric fluid (SGF). The paper demonstrates that when using the hot melt method at 80°C the DSF loading capacity of the Kolliphor(®) P 188 and P 237 polymers is approximately 43 and 46% respectively, with the DSF completely in an amorphous state. The addition of 80% Kollidon(®) SR to the formulation completely protected the DSF in SGF for up to 70 min with 16% degradation after 120 min, while 75% degradation occurred after 120 min with the addition of 80% HPMC. The release rate of DSF can be manipulated by both the loading and type of sustained release polymer used, with HPMC providing for a much faster release rate compared to Kollidon(®) SR. Copyright © 2015 Elsevier B.V. All rights reserved.
Effects of processing on the release profiles of matrix systems containing 5-aminosalicylic acid.
Korbely, Anita; Kelemen, András; Kása, Péter; Pintye-Hódi, Klára
2012-12-01
The aim of this study was to investigate the influence of different processing methods on the profiles of 5-aminosalicylic acid dissolution from controlled-release matrix systems based on Eudragit® RL and Eudragit® RS water-insoluble polymers. The pure polymers and their mixtures were studied as matrix formers using different processing methods, i.e., direct compression, wet granulation of the active ingredient with the addition of polymer(s) to the external phase, wet granulation with water, and wet granulation with aqueous dispersions. In comparison with the directly compressed tablets, tablets made by wet granulation with water demonstrated a 6-19% increase in final drug dissolution, whereas when polymers were applied in the external phase during compression, a 0-13% decrease was observed in the amount of drug released. Wet granulation with aqueous polymer dispersions delayed the release of the drug; this was especially marked (a 54-56% decrease in drug release) in compositions, which contained a high amount of Eudragit RL 30D. The release profiles were mostly described by the Korsmeyer-Peppas model or the Hopfenberg model.
[Application of an artificial neural network in the design of sustained-release dosage forms].
Wei, X H; Wu, J J; Liang, W Q
2001-09-01
To use the artificial neural network (ANN) in Matlab 5.1 tool-boxes to predict the formulations of sustained-release tablets. The solubilities of nine drugs and various ratios of HPMC: Dextrin for 63 tablet formulations were used as the ANN model input, and in vitro accumulation released at 6 sampling times were used as output. The ANN model was constructed by selecting the optimal number of iterations (25) and model structure in which there are one hidden layer and five hidden layer nodes. The optimized ANN model was used for prediction of formulation based on desired target in vitro dissolution-time profiles. ANN predicted profiles based on ANN predicted formulations were closely similar to the target profiles. The ANN could be used for predicting the dissolution profiles of sustained release dosage form and for the design of optimal formulation.
Abduljabbar, Hana N; Badr-Eldin, Shaimaa M; Aldawsari, Hibah M
2015-01-01
Ranitidine HCl is an H2-antagonist that suffers from low oral bioavailability of 50%. The site-specific absorption from the upper part of the small intestine and the colonic metabolism of the drug could partially contribute to its reduced bioavailability. To surmount these drawbacks, this work aimed at the formulation of Ranitidine HCl gastroretentive floating-biaodhesive tablets. A 3(2) factorial design was applied to assess the effects of matrix former (HPMC K100M): drug ratio, and the release retardant (Carbopol 971) amount on the characteristics of the tablets prepared using direct compression technique. The prepared tablets were thoroughly evaluated for physical properties, floating, swelling, bioadhesive and in vitro release behaviors. Statistical analysis of the results revealed significant effects for both formulation variables on the swelling index, maximum detachment force and cumulative percent drug released after 6 hours. In addition, the matrix- former: drug ratio showed a statistically significant effect on the floating lag time. Kinetic analysis of the release data indicated Higuchi diffusion kinetics and anomalous transport mechanism for all formulations. Scanning electron micrographs of the selected tablet formulation; F8, revealed intact surface without any perforations or channels in the dry state, while polymer expansion (relaxation) with some perforated areas were observed on the surface of the tablets after 12 hours dissolution in 0.1 N HCl. Furthermore, in vivo abdominal x-ray imaging showed good floating behavior of the selected formulation; F8, for up to 6 hours with appropriate bioadhesive property. In conclusion, the selected ranitidine HCl floating-bioadhesive tablets could be regarded as a promising gastroretentive drug delivery system that could deliver the drug at a controlled rate.
Modified release matrix prepared by compaction of spheres containing waxy material.
Bado, L; Ghaly, E S
1995-09-01
In this study, chlorpheniramine maleate spheres were prepared by the extruder/marumerizer. A new waxy material, Gelucire 50/02 at three levels (10%, 30% and 50%) was added and Avicel PH-101 was used as spheronizing material. The drug was incorporated into the waxy material by two methods. The first was the direct method, in which the drug (10%), wax and Avicel PH-101 were mixed together. The second was the fusion method, in which the drug was dispersed in the melted wax and the solidified mass was milled and mixed with Avicel PH-101. The data obtained indicated that simple addition of waxy material into chlorpheniramine maleate-Avicel PH-101 spheres interrupted matrix formation and increased drug release. Also in this study, a multiparticulate delivery system was prepared successfully by compaction of spheres into tablets. Tablets compacted from spheres prepared by fusion method gave less drug release than those compacted from spheres of the same composition but prepared with direct method. As the level of wax was increased in tablet formulation, drug release was decreased.
Arafat, Basel; Wojsz, Magdalena; Isreb, Abdullah; Forbes, Robert T; Isreb, Mohammad; Ahmed, Waqar; Arafat, Tawfiq; Alhnan, Mohamed A
2018-06-15
Fused deposition modelling (FDM) 3D printing has shown the most immediate potential for on-demand dose personalisation to suit particular patient's needs. However, FDM 3D printing often involves employing a relatively large molecular weight thermoplastic polymer and results in extended release pattern. It is therefore essential to fast-track drug release from the 3D printed objects. This work employed an innovative design approach of tablets with unique built-in gaps (Gaplets) with the aim of accelerating drug release. The novel tablet design is composed of 9 repeating units (blocks) connected with 3 bridges to allow the generation of 8 gaps. The impact of size of the block, the number of bridges and the spacing between different blocks was investigated. Increasing the inter-block space reduced mechanical resistance of the unit, however, tablets continued to meet pharmacopeial standards for friability. Upon introduction into gastric medium, the 1 mm spaces gaplet broke into mini-structures within 4 min and met the USP criteria of immediate release products (86.7% drug release at 30 min). Real-time ultraviolet (UV) imaging indicated that the cellulosic matrix expanded due to swelling of hydroxypropyl cellulose (HPC) upon introduction to the dissolution medium. This was followed by a steady erosion of the polymeric matrix at a rate of 8 μm/min. The design approach was more efficient than a comparison conventional formulation approach of adding disintegrants to accelerate tablet disintegration and drug release. This work provides a novel example where computer-aided design was instrumental at modifying the performance of solid dosage forms. Such an example may serve as the foundation for a new generation of dosage forms with complicated geometric structures to achieve functionality that is usually achieved by a sophisticated formulation approach. Copyright © 2018 Elsevier B.V. All rights reserved.
Dorożyński, Przemysław; Kulinowski, Piotr; Jamróz, Witold; Juszczyk, Ewelina
2014-12-30
The objectives of the work included: presentation of magnetic resonance imaging (MRI) and fractal analysis based approach to comparison of dosage forms of different composition, structure, and assessment of the influence of the compositional factors i.e., matrix type, excipients etc., on properties and performance of the dosage form during drug dissolution. The work presents the first attempt to compare MRI data obtained for tablet formulations of different composition and characterized by distinct differences in hydration and drug dissolution mechanisms. The main difficulty, in such a case stems from differences in hydration behavior and tablet's geometry i.e., swelling, cracking, capping etc. A novel approach to characterization of matrix systems i.e., quantification of changes of geometrical complexity of the matrix shape during drug dissolution has been developed. Using three chosen commercial modified release tablet formulations with diclofenac sodium we present the method of parameterization of their geometrical complexity on the base of fractal analysis. The main result of the study is the correlation between the hydrating tablet behavior and drug dissolution - the increase of geometrical complexity expressed as fractal dimension relates to the increased variability of drug dissolution results. Copyright © 2014 Elsevier B.V. All rights reserved.
Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery
Moodley, Kovanya; Pillay, Viness; Choonara, Yahya E.; du Toit, Lisa C.; Ndesendo, Valence M. K.; Kumar, Pradeep; Cooppan, Shivaan; Bawa, Priya
2012-01-01
Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments. PMID:22312236
Substituted amylose matrices for oral drug delivery
NASA Astrophysics Data System (ADS)
Moghadam, S. H.; Wang, H. W.; Saddar El-Leithy, E.; Chebli, C.; Cartilier, L.
2007-03-01
High amylose corn starch was used to obtain substituted amylose (SA) polymers by chemically modifying hydroxyl groups by an etherification process using 1,2-epoxypropanol. Tablets for drug-controlled release were prepared by direct compression and their release properties assessed by an in vitro dissolution test (USP XXIII no 2). The polymer swelling was characterized by measuring gravimetrically the water uptake ability of polymer tablets. SA hydrophilic matrix tablets present sequentially a burst effect, typical of hydrophilic matrices, and a near constant release, typical of reservoir systems. After the burst effect, surface pores disappear progressively by molecular association of amylose chains; this allows the creation of a polymer layer acting as a diffusion barrier and explains the peculiar behaviour of SA polymers. Several formulation parameters such as compression force, drug loading, tablet weight and insoluble diluent concentration were investigated. On the other hand, tablet thickness, scanning electron microscope analysis and mercury intrusion porosimetry showed that the high crushing strength values observed for SA tablets were due to an unusual melting process occurring during tabletting although the tablet external layer went only through densification, deformation and partial melting. In contrast, HPMC tablets did not show any traces of a melting process.
Khan, Kamran Ahmad; Khan, Gul Majid; Zeeshan Danish, Muhammad; Akhlaq; Khan, Haroon; Rehman, Fazal; Mehsud, Saifullah
2015-12-30
Current study was aimed to develop 200mg controlled release matrix tablets of Losartan Potassium using Ethocel 100 Premium and Ethocel 100 FP Premium as rate controlling polymer. In-vitro studies were performed according to USP Method-I in phosphate buffer (PH 6.8) using pharma test dissolution apparatus. The temperature of the dissolution medium was kept constant at 37±0.5°C at 100rpm. Flow properties, physical quality control tests, effect of polymer size and drug-to-polymers ratios were studied using different kinetics models such as 1st-order, zero-order, Hixon Crowell model, Highuchi model and Power law. Difference factor f1 and similarity factor f2 were applied for dissolution profiles against Cardaktin® tablets used as a reference formulation. The matrices with polymer ethocel 100 FP Premiums have prolonged the drug release rate as compared to polymer ethocel 100 Premiums. The n values matrices with polymer ethocel grade 100 ranged from 0.603 to 0.857 indicating that the drug release occurred by anomalous non fickian diffusion kinetics while then value of reference Cardaktin® tablet was measured as 0.125 indicating that these tablets do not follow power law. The dissolution profiles of test formulations were different than that of reference Cardaktin®. This suggests the polymer Ethocel grade 100 can be proficiently incorporated in fabrication and development of once a day controlled release matrix tablets. Copyright © 2015. Published by Elsevier B.V.
Charest, Ken; Mak-Jurkauskas, Melody L; Cinicola, Daniel; Clausen, Andrew M
2013-02-01
The release profile of active pharmaceutical ingredient (API) from its solid dosage form is an important aspect of drug development as it is often used to predict potential drug release characteristics of a product in vivo. In recent years, magnetic resonance imaging has emerged as a nondestructive technique that captures the physical changes of solid dosage forms during dissolution. An example that highlights this application is in the dissolution of modified-release tablet studies. As the tablet dissolves, API disperses in a hydrogel matrix within the tablet, and swelling of the hydrogel layer eventually leads to release of API over time. To achieve optimum signal-to-noise ratios, the tablet should be placed in the most homogeneous region of the magnet and remain there throughout the dissolution experiment. Moreover, the tablet holder must maintain the tablet position without interfering with the natural dissolution process, such as by crushing the softened tablet. This can be difficult because the size, shape, and rigidity of the tablet change during dissolution. This article describes the process, material, and manufacture of a novel device that meets these challenges, with emphasis on how additive manufacturing on a 3D printer enabled an efficient and inexpensive process of design improvements.
Campos, Michel Leandro; Rosa, Talita Atanazio; Padilha, Elias Carvalho; Alzate, Alejandro Henao; Rolim, Larissa Araújo; Rolim-Neto, Pedro José
2016-01-01
Benznidazole (BNZ) is the first-line drug for the treatment of Chagas disease. The drug is available in the form of immediate-release tablets for 100-mg (adult) and 12.5-mg (pediatric) doses. The drug is administered two or three times daily for 60 days. The high frequency of daily administrations and the long period of treatment are factors that significantly contribute to the abandonment of therapy, affecting therapeutic success. Accordingly, this study aimed to evaluate the preclinical pharmacokinetics of BNZ administered as extended-release tablets (200-mg dose) formulated with different types of polymers (hydroxypropyl methylcellulose K4M and K100M), compared to the tablets currently available. The studies were conducted with rabbits, and BNZ quantification was performed in plasma and urine by ultraperformance liquid chromatography methods previously validated. The bioavailability of BNZ was adequate in the administration of extended-release tablets; however, with the administration of the pediatric tablet, the bioavailability was lower than with other tablets, which showed that the clinical use of this formulation should be monitored. The pharmacokinetic parameters demonstrated that the extended-release tablets prolonged drug release from the pharmaceutical matrix and provided an increase in the maintenance of the drug concentration in vivo, which would allow the frequency of administration to be reduced. Thus, a relative bioavailability study in humans will be planned for implementation of a new product for the treatment of Chagas disease. PMID:26883698
Pharmaceutical Applications of Ion-Exchange Resins
NASA Astrophysics Data System (ADS)
Elder, David P.
2005-04-01
The historical uses of ion-exchange resins and a summary of the basic chemical principles involved in the ion-exchange process are discussed. Specific applications of ion-exchange resins are provided. The utility of these agents to stabilize drugs are evaluated. Commonly occurring chemical and physical incompatibilities are reviewed. Ion-exchange resins have found applicability as inactive pharmaceutical constituents, particularly as disintegrants (inactive tablet ingredient whose function is to rapidly disrupt the tablet matrix on contact with gastric fluid). One of the more elegant approaches to improving palatability of ionizable drugs is the use of ion-exchange resins as taste-masking agents. The selection, optimization of drug:resin ratio and particle size, together with a review of scaleup of typical manufacturing processes for taste-masked products are provided. Ion-exchange resins have been extensively utilized in oral sustained-release products. The selection, optimization of drug:resin ratio and particle size, together with a summary of commonly occurring commercial sustained-release products are discussed. Ion-exchange resins have also been used in topical products for local application to the skin, including those where drug flux is controlled by a differential electrical current (ionotophoretic delivery). General applicability of ion-exchange resins, including ophthalmic delivery, nasal delivery, use as drugs in their own right (e.g., colestyramine, formerly referred to as cholestyramine), as well as measuring gastrointestinal transit times, are discussed. Finally, pharmaceutical monographs for ion-exchange resins are reviewed.
Salehi, Ali; Zhao, Jin; Cabelka, Tim D; Larson, Ronald G
2016-02-28
We propose a new transport model of drug release from hydrophilic polymeric matrices, based on Stefan-Maxwell flux laws for multicomponent transport. Polymer stress is incorporated in the total mixing free energy, which contributes directly to the diffusion driving force while leading to time-dependent boundary conditions at the tablet interface. Given that hydrated matrix tablets are dense multicomponent systems, extended Stefan-Maxwell (ESM) flux laws are adopted to ensure consistency with the Onsager reciprocity principle and the Gibbs-Duhem thermodynamic constraint. The ESM flux law for any given component takes into account the friction exerted by all other species and is invariant with respect to reference velocity, thus satisfying Galilean translational invariance. Our model demonstrates that penetrant-induced plasticization of polymer chains partially or even entirely offsets the steady decline of chemical potential gradients at the tablet-medium interface that drive drug release. Utilizing a Flory-Huggins thermodynamic model, a modified form of the upper convected Maxwell constitutive equation for polymer stress and a Fujita-type dependence of mutual diffusivities on composition, depending on parameters, Fickian, anomalous or case II drug transport arises naturally from the model, which are characterized by quasi-power-law release profiles with exponents ranging from 0.5 to 1, respectively. A necessary requirement for non-Fickian release in our model is that the matrix stress relaxation time is comparable to the time scale for water diffusion. Mutual diffusivities and their composition dependence are the most decisive factors in controlling drug release characteristics in our model. Regression of the experimental polymer dissolution and drug release profiles in a system of Theophylline/cellulose (K15M) demonstrate that API-water mutual diffusivity in the presence of excipient cannot generally be taken as a constant. Copyright © 2016 Elsevier B.V. All rights reserved.
Marinich, J A; Ferrero, C; Jiménez-Castellanos, M R
2009-05-01
Nowadays, graft copolymers are being used as an interesting option when developing a direct compression excipient for controlled release matrix tablets. New graft copolymers of ethyl methacrylate (EMA) on waxy maize starch (MS) and hydroxypropylstarch (MHS) were synthesised by free radical polymerization and alternatively dried in a vacuum oven (OD) or freeze-dried (FD). This paper evaluates the performance of these new macromolecules and discusses the effect of the carbohydrate nature and drying process on their physicochemical and technological properties. Grafting of EMA on the carbohydrate backbone was confirmed by IR and NMR spectroscopy, and the grafting yields revealed that graft copolymers present mainly a hydrophobic character. The graft copolymerization also leads to more amorphous materials with larger particle size and lower apparent density and water content than carbohydrates (MS, MHS). All the products show a lack of flow, except MHSEMA derivatives. MSEMA copolymers underwent much plastic flow and less elastic recovery than MHSEMA copolymers. Concerning the effect of drying method, FD derivatives were characterised by higher plastic deformation and less elasticity than OD derivatives. Tablets obtained from graft copolymers showed higher crushing strength and disintegration time than tablets obtained from raw starches. This behaviour suggests that these copolymers could be used as excipients in matrix tablets obtained by direct compression and with a potential use in controlled release.
Formulation and characterization of cetylpyridinium chloride bioadhesive tablets.
Akbari, Jafar; Saeedi, Majid; Morteza-Semnani, Katayoun; Kelidari, Hamidreza; Lashkari, Maryam
2014-12-01
Bioadhesive polymers play an important role in biomedical and drug delivery applications. The aim of this study is to develop a sustained- release tablet for local application of Cetylpyridinium Chloride (CPC). This delivery system would supply the drug at an effective level for a long period of time, and thereby overcome the problem of the short retention time of CPC and could be used for buccal delivery as a topical anti-infective agent. CPC bioadhesive tablets were directly prepared using 7 mm flat-faced punches on a hydraulic press. The materials for each tablet were weighted, introduced into the die and compacted at constant compression pressure. The dissolution tests were performed to the rotation paddle method and the bioadhesive strength of the tablets were measured. The results showed that as the concentration of polymer increased, the drug release rate was decreased. Also the type and ratio of polymers altered the release kinetic of Cetylpyridinium Chloride from investigated tablets. The bioadhesion strength increased with increasing the concentration of polymer and maximum bioadhesion strength was observed with HPMC K100M. The selected formulation of CPC bioadhesive tablet can be used as a suitable preparation for continuous release of CPC with appropriate bioadhesion strength.
A study on maize proteins as a potential new tablet excipient.
Georget, Dominique M R; Barker, Susan A; Belton, Peter S
2008-06-01
This investigation has examined the use of zein proteins from maize as the major component in oral controlled-release tablets, such formulations often being required to improve patient compliance. Tablets containing ground zein proteins, calcium hydrogen orthophosphate, polyvinyl pyrrolidone, theophylline and magnesium stearate were produced by wet granulation and compression on a single station tablet press and were compared to directly compressed tablets based on zein proteins, calcium hydrogen orthophosphate and theophylline. Non invasive techniques such as Fourier Transform infrared spectroscopy and Fourier Transform Raman spectroscopy were employed to investigate any changes in the secondary structure of zein proteins during tablet production. Random coils, alpha helices and beta sheets predominated and their relative content remained unaffected during grinding, wet granulation and compression, indicating that formulations based on zeins will be robust, i.e. insensitive to minor changes in the production conditions. Drug release from the tablets was studied using a standard pharmacopoeial dissolution test. Dissolution profiles in water, 0.1M HCl (pH=1) and phosphate buffer (pH=6.8) show that only a limited amount of theophylline was released after 4.5h, suggesting that zein proteins could act as a potential vehicle for oral controlled drug release. Analysis of the theophylline release profiles using the Peppas and Sahlin model reveals that diffusion and polymer relaxation occurred in acidic (pH=1) and buffered (pH=6.8) conditions for wet granulated tablets, whereas diffusion was predominant in directly compressed tablets. In conclusion, the present study has shown that zeins can be successfully used as a pharmaceutical excipient, and in particular as a matrix in monolithic controlled release tablets.
Dave, Vivek S; Fahmy, Raafat M; Hoag, Stephen W
2015-06-01
The aim of this study was to investigate the feasibility of near-infrared (NIR) spectroscopy for the determination of the influence of sintering temperature and plasticizer levels on the breaking force of extended-release matrix tablets prepared via roller-compaction. Six formulations using theophylline as a model drug, Eudragit® RL PO or Eudragit® RS PO as a matrix former and three levels of TEC (triethyl citrate) as a plasticizer were prepared. The powder blend was roller compacted using a fixed roll-gap of 1.5 mm, feed screw speed to roller speed ratio of 5:1 and roll pressure of 4 MPa. The granules, after removing fines, were compacted into tablets on a Stokes B2 rotary tablet press at a compression force of 7 kN. The tablets were thermally treated at different temperatures (Room Temperature, 50, 75 and 100 °C) for 5 h. These tablets were scanned in reflectance mode in the wavelength range of 400-2500 nm and were evaluated for breaking force. Tablet breaking force significantly increased with increasing plasticizer levels and with increases in the sintering temperature. An increase in tablet hardness produced an upward shift (increase in absorbance) in the NIR spectra. The principle component analysis (PCA) of the spectra was able to distinguish samples with different plasticizer levels and sintering temperatures. In addition, a 9-factor partial least squares (PLS) regression model for tablets containing Eudragit® RL PO had an r(2) of 0.9797, a standard error of calibration of 0.6255 and a standard error of cross validation (SECV) of 0.7594. Similar analysis of tablets containing Eudragit® RS PO showed an r(2) of 0.9831, a standard error of calibration of 0.9711 and an SECV of 1.192.
Villanova, J C O; Ayres, E; Carvalho, S M; Patrício, P S; Pereira, F V; Oréfice, R L
2011-03-18
Direct compression is one of the most popular techniques to prepare tablets but only a few commercial excipients are well adapted for this process into controlled release formulations. In the last years, the introduction of new materials for drug delivery matrix tablets has become more important. This paper evaluated the physicochemical and flow properties of new polymeric excipient of ethyl acrylate, methyl methacrylate and butyl metacrylate, synthesized by suspension polymerization using cellulose nanowhiskers as co-stabilizer, to be used as direct compression for modified release tablets. Infrared spectroscopy (FTIR) confirmed the success of the copolymerization reaction. Scanning electron microscopy (SEM) showed that excipient was obtained how spherical beads. Thermal properties of the beads were characterized by thermogravimetric (TG) analysis. Particle size analysis of the beads with cellulose nanowhiskers (CNWB) indicated that the presence of the nanowhiskers led to a reduction of particle size and to a narrower size distribution. In vitro test showed that the nanowhiskers and beads produced are nontoxic. Parameters such as Hausner ratio, Carr's index and cotangent of angle α were employed to characterize the flow properties of CNWB beads. Furthermore, the beads are used to produce tablets by direct compression contained propranolol hydrochloride as model drug. Dissolution tests performed suggested that beads could be used as excipient in matrix tablets with a potential use in drug controlled release. Copyright © 2011 Elsevier B.V. All rights reserved.
Application of halloysite clay nanotubes as a pharmaceutical excipient.
Yendluri, Raghuvara; Otto, Daniel P; De Villiers, Melgardt M; Vinokurov, Vladimir; Lvov, Yuri M
2017-04-15
Halloysite nanotubes, a biocompatible nanomaterial of 50-60nm diameter and ca. 15nm lumen, can be used for loading, storage and sustained release of drugs either in its pristine form or with additional polymer complexation for extended release time. This study reports the development composite tablets based on 50wt.% of the drug loaded halloysite mixed with 45wt.% of microcrystalline cellulose. Powder flow and compressibility properties of halloysite (angle of repose, Carr's index, Hausner ratio, Brittle Fracture Index, tensile strength) indicate that halloysite is an excellent tablet excipient. Halloysite tubes can also be filled with nifedipine with ca. 6wt.% loading efficiency and sustained release from the nanotubes. Tablets prepared with drug loaded halloysite allowed for almost zero order nifedipine release for up to 20h. Nifedipine trapped in the nanotubes also protect the drug against light and significantly increased the photostability of the drug. All of these demonstrate that halloysite has the potential to be an excellent pharmaceutical excipient that is also an inexpensive, natural and abundantly available material. Copyright © 2017 Elsevier B.V. All rights reserved.
Tenjarla, Srini; Abinusawa, Adeyinka
2011-01-01
Substantial variability in gastrointestinal pH is observed in patients with ulcerative colitis (UC). We characterized the effect of pH on 5-aminosalicylic acid (5-ASA) release from MMX mesalamine tablets (Shire Pharmaceuticals Inc., Wayne, PA, USA), examined thickness/uniformity of tablet film coatings, and explored the influence of simulating altered gastrointestinal motility. Nondestructive, three-dimensional, terahertz pulse imaging (TPI) was used to characterize the film coating of three lots of MMX mesalamine tablets (n=36). Thereafter, 5-ASA release from these tablets was evaluated using United States Pharmacopeia (USP) apparatus II at pH 6.8 and 7.2. Onset of tablet film-coat breach and mean dissolution time were determined for each lot. 5-ASA release was also assessed at three different paddle rotation speeds (50, 75, and 100 rpm) at pH 7.2. The mean ± SD film-coating thickness of the three lots of MMX mesalamine tablets were 109.2 ± 16.8, 113.1 ± 19.5, and 113.8 ± 19.8 μM, respectively. At pH 6.8 (100 rpm), the onset of film-coat breach was 10-30 minutes, whereas at pH 7.2 this was observed within 10 minutes. 5-ASA release was uniform at both pH conditions, with minimal lot-to-lot variability. Complete drug release was achieved within 6 hours under both pH conditions. 5-ASA release increased in proportion with paddle speed, but remained prolonged at all speeds. 5-ASA release from MMX mesalamine is unaffected by normal variations in simulated intracolonic pH. The dissolution profile of 5-ASA from MMX mesalamine tablets may be attributed to consistent outer film coatings and the hydrogel-forming matrix that controls the drug release after dissolution of the film coating.
3D printing of high drug loaded dosage forms using thermoplastic polyurethanes.
Verstraete, G; Samaro, A; Grymonpré, W; Vanhoorne, V; Van Snick, B; Boone, M N; Hellemans, T; Van Hoorebeke, L; Remon, J P; Vervaet, C
2018-01-30
It was the aim of this study to develop high drug loaded (>30%, w/w), thermoplastic polyurethane (TPU)-based dosage forms via fused deposition modelling (FDM). Model drugs with different particle size and aqueous solubility were pre-processed in combination with diverse TPU grades via hot melt extrusion (HME) into filaments with a diameter of 1.75 ± 0.05 mm. Subsequently, TPU-based filaments which featured acceptable quality attributes (i.e. consistent filament diameter, smooth surface morphology and good mechanical properties) were printed into tablets. The sustained release potential of the 3D printed dosage forms was tested in vitro. Moreover, the impact of printing parameters on the in vitro drug release was investigated. TPU-based filaments could be loaded with 60% (w/w) fine drug powder without observing severe shark skinning or inconsistent filament diameter. During 3D printing experiments, HME filaments based on hard TPU grades were successfully converted into personalized dosage forms containing a high concentration of crystalline drug (up to 60%, w/w). In vitro release kinetics were mainly affected by the matrix composition and tablet infill degree. Therefore, this study clearly demonstrated that TPU-based FDM feedstock material offers a lot of formulation freedom for the development of personalized dosage forms. Copyright © 2017 Elsevier B.V. All rights reserved.
Shinde, Viraj Ashok; Kalikar, Mrunalini; Jagtap, Satyajeet; Dakhale, Ganesh N; Bankar, Mangesh; Bajait, Chaitali S; Motghare, Vijay M; Pashilkar, Ashlesha A; Raghute, Latesh B; Khamkar, Ajita D
2017-01-01
To compare the efficacy, safety, and tolerability of transdermal patches of diclofenac sodium with oral diclofenac sustained release (SR) in patients of chronic musculoskeletal MSK pain conditions. The eligible patients were given either transdermal diclofenac patch or tablet diclofenac SR. Pain was assessed at 2 and 4 weeks using a visual analog scale. Adverse events were recorded. Patients with 18-65 years old of either gender with score of ≥4 on a 11-item numeric rating scale-numeric version of visual analog scale for pain with diagnosis of primary osteoarthritis (OA) of the knee or hand of at least 3 months duration, with independent radiological confirmation of OA or having pain associated with other MSK conditions such as soft-tissue rheumatism, cervical and lumbar back pain, and fibromyalgia, of at least 3 months duration were included in this study. Transdermal diclofenac diethylamine patch and tablet diclofenac sodium sustained release (SR) do not significantly differ in the reduction of numerical rating scores at the end of 4 weeks (P = 0.8393). Transdermal diclofenac was equi-efficacious as tablet diclofenac sodium SR in reducing pain due to chronic MSK pain conditions.
Hamed, Rania; AlJanabi, Reem; Sunoqrot, Suhair; Abbas, Aiman
2017-08-01
The objective of this study was to investigate the effect of the different physiological parameters of the gastrointestinal (GI) fluid (pH, buffer capacity, and ionic strength) on the in vitro release of the weakly basic BCS class II drug quetiapine fumarate (QF) from two once-a-day matrix tablet formulations (F1 and F2) developed as potential generic equivalents to Seroquel ® XR. F1 tablets were prepared using blends of high and low viscosity grades of hydroxypropyl methylcellulose (HPMC K4M and K100LV, respectively), while F2 tablets were prepared from HPMC K4M and PEGylated glyceryl behenate (Compritol ® HD5 ATO). The two formulations attained release profiles of QF over 24 h similar to that of Seroquel ® XR using the dissolution medium published by the Food and Drug Administration (FDA). A series of solubility and in vitro dissolution studies was then carried out using media that simulate the gastric and intestinal fluids and cover the physiological pH, buffer capacity and ionic strength range of the GIT. Solubility studies revealed that QF exhibits a typical weak base pH-dependent solubility profile and that the solubility of QF increases with increasing the buffer capacity and ionic strength of the media. The release profiles of QF from F1, F2 and Seroquel ® XR tablets were found to be influenced by the pH, buffer capacity and ionic strength of the dissolution media to varying degrees. Results highlight the importance of studying the physiological variables along the GIT in designing controlled release formulations for more predictive in vitro-in vivo correlations.
Dual crosslinked pectin-alginate network as sustained release hydrophilic matrix for repaglinide.
Awasthi, Rajendra; Kulkarni, Giriraj T; Ramana, Malipeddi Venkata; de Jesus Andreoli Pinto, Terezinha; Kikuchi, Irene Satiko; Molim Ghisleni, Daniela Dal; de Souza Braga, Marina; De Bank, Paul; Dua, Kamal
2017-04-01
Repaglinide, an oral antidiabetic agent, has a rapid onset of action and short half-life of approximately 1h. Developing a controlled and prolonged release delivery system is required to maintain its therapeutic plasma concentration and to eliminate its adverse effects particularly hypoglycemia. The present study aimed to develop controlled release repaglinide loaded beads using sodium alginate and pectin with dual cross-linking for effective control of drug release. The prepared beads were characterized for size, percentage drug entrapment efficiency, in vitro drug release and the morphological examination using scanning electron microscope. For the comparative study, the release profile of a marketed conventional tablet of repaglinide (Prandin ® tablets 2mg, Novo Nordisk) was determined by the same procedure as followed for beads. The particle size of beads was in the range of 698±2.34-769±1.43μm. The drug entrapment efficiency varied between 55.24±4.61 to 82.29±3.42%. The FTIR results suggest that there was no interaction between repaglinide and excipients. The XRD and DSC results suggest partial molecular dispersion and amorphization of the drug throughout the system. These results suggest that repaglinide did not dissolve completely in the polymer composition and seems not to be involved in the cross-linking reaction. The percent drug release was decreased with higher polymer concentrations. In conclusion, the developed beads could enhance drug entrapment efficiency, prolong the drug release and enhance bioavailability for better control of diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.
Sirisha, Pathuri Lakshmi; Babu, Govada Kishore; Babu, Puttagunta Srinivasa
2014-01-01
Ambulatory blood pressure monitoring is regarded as the gold standard for hypertensive therapy in non-dipping hypertension patients. A novel compression coated formulation of captopril and hydrochlorothiazide (HCTZ) was developed in order to improve the efficacy of antihypertensive therapy considering the half-life of both drugs. The synergistic action using combination therapy can be effectively achieved by sustained release captopril (t1/2= 2.5 h) and fast releasing HCTZ (average t1/2= 9.5 h). The sustained release floating tablets of captopril were prepared by using 23 factorial design by employing three polymers i.e., ethyl cellulose (EC), carbopol and xanthan gum at two levels. The formulations (CF1-CF8) were optimized using analysis of variance for two response variables, buoyancy and T50%. Among the three polymers employed, the coefficients and P values for the response variable buoyancy and T50% using EC were found to be 3.824, 0.028 and 0.0196, 0.046 respectively. From the coefficients and P values for the two response variables, formulation CF2 was optimized, which contains EC polymer alone at a high level. The CF2 formulation was further compression coated with optimized gastric dispersible HCTZ layer (HF9). The compression coated tablet was further evaluated using drug release kinetics. The Q value of HCTZ layer is achieved within 20 min following first order release whereas the Q value of captopril was obtained at 6.5 h following Higuchi model, from which it is proved that rapid release HCTZ and slow release of captopril is achieved. The mechanism of drug release was analyzed using Peppas equation, which showed an n >0.90 confirming case II transportation mechanism for drug release. PMID:25006552
3D printing of tablets containing multiple drugs with defined release profiles.
Khaled, Shaban A; Burley, Jonathan C; Alexander, Morgan R; Yang, Jing; Roberts, Clive J
2015-10-30
We have employed three-dimensional (3D) extrusion-based printing as a medicine manufacturing technique for the production of multi-active tablets with well-defined and separate controlled release profiles for three different drugs. This 'polypill' made by a 3D additive manufacture technique demonstrates that complex medication regimes can be combined in a single tablet and that it is viable to formulate and 'dial up' this single tablet for the particular needs of an individual. The tablets used to illustrate this concept incorporate an osmotic pump with the drug captopril and sustained release compartments with the drugs nifedipine and glipizide. This combination of medicines could potentially be used to treat diabetics suffering from hypertension. The room temperature extrusion process used to print the formulations used excipients commonly employed in the pharmaceutical industry. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and X-ray powder diffraction (XRPD) were used to assess drug-excipient interaction. The printed formulations were evaluated for drug release using USP dissolution testing. We found that the captopril portion showed the intended zero order drug release of an osmotic pump and noted that the nifedipine and glipizide portions showed either first order release or Korsmeyer-Peppas release kinetics dependent upon the active/excipient ratio used. Copyright © 2015. Published by Elsevier B.V.
Development of Bilayer Tablets with Modified Release of Selected Incompatible Drugs.
Dhiman, Neha; Awasthi, Rajendra; Jindal, Shammy; Khatri, Smriti; Dua, Kamal
2016-01-01
The oral route is considered to be the most convenient and commonly-employed route for drug delivery. When two incompatible drugs need to be administered at the same time and in a single formulation, bilayer tablets are the most appropriate dosage form to administer such incompatible drugs in a single dose. The aim of the present investigation was to develop bilayered tablets of two incompatible drugs; telmisartan and simvastatin. The bilayer tablets were prepared containing telmisartan in a conventional release layer using croscarmellose sodium as a super disintegrant and simvastatin in a slow-release layer using HPMC K15M, Carbopol 934P and PVP K 30 as matrix forming polymers. The tablets were evaluated for various physical properties, drug-excipient interactions using FTIR spectroscopy and in vitro drug release using 0.1M HCl (pH 1.2) for the first hour and phosphate buffer (pH 6.8) for the remaining period of time. The release kinetics of simvastatin from the slow release layer were evaluated using the zero order, first order, Higuchi equation and Peppas equation. All the physical parameters (such as hardness, thickness, disintegration, friability and layer separation tests) were found to be satisfactory. The FTIR studies indicated the absence of interactions between the components within the individual layers, suggesting drug-excipient compatibility in all the formulations. No drug release from the slow-release layer was observed during the first hour of the dissolution study in 0.1M HCl. The release-controlling polymers had a significant effect on the release of simvastatin from the slow-release layer. Thus, the formulated bilayer tablets avoided incompatibility issues and proved the conventional release of telmisartan (85% in 45 min) and slow release of simvastatin (80% in 8 h). Stable and compatible bilayer tablets containing telmisartan and simvastatin were developed with better patient compliance as an alternative to existing conventional dosage forms.
Misra, Raghvendra; Bhardwaj, Peeyush
2016-01-01
The present investigation is concerned about the development of floating bioadhesive drug delivery system of venlafaxine hydrochloride which after oral administration exhibits a unique combination of floating and bioadhesion to prolong gastric residence time and increase drug bioavailability within the stomach. The floating bioadhesive tablets were prepared by the wet granulation method using different ratios of hydroxypropyl methyl cellulose (HPMC K4MCR) and Carbopol 934PNF as polymers. Sodium bicarbonate (NaHCO3) and citric acid were used as gas (CO2) generating agents. Tablets were characterized for floating properties, in vitro drug release, detachment force, and swelling index. The concentration of hydroxypropyl methyl cellulose and Carbopol 934PNF significantly affects the in vitro drug release, floating properties, detachment force, and swelling properties of the tablets. The optimized formulation showed the floating lag time 72 ± 2.49 seconds and duration of floating 24.50 ± 0.74 hr. The in vitro release studies and floating behavior were studied in simulated gastric fluid (SGF) at pH 1.2. Different drug release kinetics models were also applied. The in vitro drug release from tablets was sufficiently sustained (more than 18 hr) and the Fickian transports of the drug from the tablets were confirmed. The radiological evidence suggests that the tablets remained buoyant and altered position in the stomach of albino rabbit and mean gastric residence time was prolonged (more than > 6 hr).
Development of novel fast-dissolving tacrolimus solid dispersion-loaded prolonged release tablet.
Cho, Jung Hyun; Kim, Yong-Il; Kim, Dong-Wuk; Yousaf, Abid Mehmood; Kim, Jong Oh; Woo, Jong Soo; Yong, Chul Soon; Choi, Han-Gon
2014-04-11
The goal of this research was to develop a novel prolonged release tablet bioequivalent to the commercial sustained release capsule. A number of tacrolimus-loaded fast-dissolving solid dispersions containing various amounts of DOSS were prepared using the spray drying technique. Their solubility, dissolution and pharmacokinetics in rats were studied. DOSS increased drug solubility and dissolution in the solid dispersions. Compared with the drug powder, the solubility, dissolution and bioavailability of tacrolimus with the fast-dissolving solid dispersion containing tacrolimus/HP-β-CD/DOSS in the weight ratio of 5:40:4 were boosted by approximately 700-, 30- and 2-fold, respectively. Several tablet formulations were accomplished with this solid dispersion in combination with various ratios of HPMC/ethylcellulose. The release behaviour and pharmacokinetic studies in beagle dogs were assessed compared with the commercial prolonged release capsule. A decrease in HPMC/ethylcellulose ratios reduced the dissolution of tacrolimus from the tablets. Particularly, the tacrolimus-loaded prolonged release tablet consisting of fast-dissolving tacrolimus solid dispersion, HPMC, ethylcellulose and talc at the weight ratio of 20:66:112:2 exhibited a dissolution profile similar to that produced by the commercial prolonged release capsule. Furthermore, there were no significant differences in the AUC, Cmax, Tmax and MRT values between them in beagle dogs. Consequently, this tacrolimus-loaded prolonged release tablet might be bioequivalent to the tacrolimus-loaded commercial capsule. Copyright © 2013 Elsevier B.V. All rights reserved.
Ullah, Majeed; Ullah, Hanif; Murtaza, Ghulam; Mahmood, Qaisar; Hussain, Izhar
2015-01-01
The aim of current study was to explore the influence of three commonly used polymers, that is, cellulosics and noncellulosics, for example, Methocel K4M, Kollidon VA/64, and Soluplus, on the phase disproportionation and drug release profile of carbamazepine-succinic acid (CBZ-SUC) cocrystal at varying drug to polymer ratios (1 : 1 to 1 : 0.25) in matrix tablets. The polymorphic phase disproportionation during in-depth dissolution studies of CBZ-SUC cocrystals and its crystalline properties were scrutinized by X-ray powder diffractrometry and Raman spectroscopy. The percent drug release from HPMC formulations (CSH) showed inverse relation with the concentration of polymer; that is, drug release increased with decrease in polymer concentration. On contrary, direct relation was observed between percent drug release and polymer concentrations of Kollidon VA 64/Soluplus (CSK, CSS). At similar polymer concentration, drug release from pure carbamazepine was slightly lower with HPMC formulations than that of cocrystal; however, opposite trend in release rate was observed with Kollidon VA/64 and Soluplus. The significant increase in dissolution rate of cocrystal occurred with Kollidon VA/64 and Soluplus at higher polymer concentration. Moreover, no phase change took place in Methocel and Kollidon formulations. No tablet residue was left for Soluplus formulation so the impact of polymer on cocrystal integrity cannot be predicted.
Ullah, Majeed; Ullah, Hanif; Mahmood, Qaisar; Hussain, Izhar
2015-01-01
The aim of current study was to explore the influence of three commonly used polymers, that is, cellulosics and noncellulosics, for example, Methocel K4M, Kollidon VA/64, and Soluplus, on the phase disproportionation and drug release profile of carbamazepine-succinic acid (CBZ-SUC) cocrystal at varying drug to polymer ratios (1 : 1 to 1 : 0.25) in matrix tablets. The polymorphic phase disproportionation during in-depth dissolution studies of CBZ-SUC cocrystals and its crystalline properties were scrutinized by X-ray powder diffractrometry and Raman spectroscopy. The percent drug release from HPMC formulations (CSH) showed inverse relation with the concentration of polymer; that is, drug release increased with decrease in polymer concentration. On contrary, direct relation was observed between percent drug release and polymer concentrations of Kollidon VA 64/Soluplus (CSK, CSS). At similar polymer concentration, drug release from pure carbamazepine was slightly lower with HPMC formulations than that of cocrystal; however, opposite trend in release rate was observed with Kollidon VA/64 and Soluplus. The significant increase in dissolution rate of cocrystal occurred with Kollidon VA/64 and Soluplus at higher polymer concentration. Moreover, no phase change took place in Methocel and Kollidon formulations. No tablet residue was left for Soluplus formulation so the impact of polymer on cocrystal integrity cannot be predicted. PMID:26380301
El-Bagory, Ibrahim; Barakat, Nahla; Ibrahim, Mohamed A.; El-Enazi, Fouza
2011-01-01
The deformation mechanism of pharmaceutical powders, used in formulating directly compressed matrix tablets, affects the characteristics of the formed tablets. Three polymers of different deformation mechanisms were tested for their impact on theophylline directly compressed tablets namely Kollidon SR (KL SR, plastic deformation), Ethylcellulose (EC, elastic deformation) and Carnauba wax (CW, brittle deformation) at different compression forces. However, tablets based mainly on KL SR, the plastically deformed polymer (TN1) exhibited the highest hardness values compared to the other formulae which are based on either blends of KL SR with CW, the very brittle deformed polymer. The upper detected force for TN formulae and the lower punch force were found to dependent mainly on the powder deformation. This difference is attributed to the work done during the compression phase as well as the work lost during the decompression phase. Furthermore, the release profiles of TN from formulae TN2 and TN4 that are based on the composition (2KL SR:1EC) and (1KL SR:2EC), respectively, were consistent with different deformation mechanisms of KL SR and EC and on the physicochemical properties like the water absorptive capacity of EC. Upon increasing the weight ratio of KL SR (TN2), the release rate was greatly retarded (39.4%, 37.1%, 35.0% and 33.6% released after 8 h at 5, 10, 15 and 20 kN. PMID:24115902
Park, Sang-In; Lee, Howard; Oh, Jaeseong; Lim, Kyoung Soo; Jang, In-Jin; Kim, Jeong-Ae; Jung, Jong Hyuk; Yu, Kyung-Sang
2015-01-01
In type 2 diabetes mellitus, fixed-dose combination (FDC) can provide the complementary benefits of correction of multiple pathophysiologic defects such as dysfunctions in glycemic or metabolic control while improving compliance compared with separate tablets taken together. The objective of the study reported here was to compare the pharmacodynamic (PD), pharmacokinetic (PK), and tolerability profiles of gemigliptin and extended-release metformin (metformin XR) between FDC and separate tablets. A randomized, open-label, single-dose, two-way, two-period, crossover study was conducted in 28 healthy male volunteers. Two FDC tablets of gemigliptin/metformin 25/500 mg or separate tablets of gemigliptin (50 mg ×1) and metformin XR (500 mg ×2) were orally administered in each period. Serial blood samples were collected up to 48 hours post-dose to determine dipeptidyl peptidase 4 (DPP-4) activity using spectrophotometric assay and concentrations of gemigliptin and metformin using tandem mass spectrometry. Geometric mean ratios (GMRs) of FDC to separate tablet formulations and their 90% confidence intervals (CIs) were calculated to compare the PD and PK parameters between the two formulations. Tolerability was assessed throughout the study. The plasma DPP-4 activity-time curves of the FDC and the separate tablets almost overlapped, leading to a GMR (90% CI) of the FDC to separate tablets for the plasma DPP-4 activity and its maximum inhibition of 1.00 (0.97-1.04) and 0.92 (0.82-1.05), respectively. Likewise, all of the GMRs (90% CIs) of FDC to separate tablets for the area under the plasma concentration-time curve and maximum plasma concentration of gemigliptin and metformin fell entirely within the conventional bioequivalence range of 0.80-1.25. Both the FDC and separate tablets were well tolerated. The PD, PK, and tolerability profiles of gemigliptin and metformin XR in FDC and separate tablets were found to be comparable. The FDC tablet of gemigliptin and metformin sustained release can be a convenient therapeutic option in patients with type 2 diabetes mellitus requiring a combination approach.
Formulation and evaluation of non-effervescent floating tablets of losartan potassium.
Getyala, Anil; Gangadharappa, H V; Prasad, M Sarat Chandra; Reddy, M Praveen Kumar; Kumar, T M Pramod
2013-10-01
The aim of the work is to modify the solubility and bioavailability of Losartan potassium, by employing noneffervescent floating drug delivery (tablet dosage forms). Non-effervescent systems are a type of floating drug delivery systems, that have been used to boost the gastric residence and the floatation time in the gastro intestinal tract. The study included formulation of floating tablets using polymers like Chitosan and Karaya gum as matrix forming agents. Accurel(®) MP 1000 was used as floating agent. The tablets were prepared by direct compression technique. FTIR, DSC studies conformed that there was no incompatibility between the polymer and the drug. Tablet preformulation parameters were within the Pharmacopoeial limit. Tablet showed zero lag time, contisnuance of buoyancy for >12 h. The tablet showed good in vitro release. Drug release was through swelling and abided by the gellation mechanism. In vivo X-ray studies depicted that tablets continued to float in the GIT for 12 h. Accelerated stability showed that, tablets were stable for over 6 month. Thus the prepared non-effervescent floating tablet of Losartan potassium can be used for the treatment of hypertension for more than 12 h with single dose administration.
NASA Astrophysics Data System (ADS)
Hernawan; Nur Hayati, Septi; Nisa, Khoirun; Wheni Indrianingsih, Anastasia; Darsih, Cici; Kismurtono, Muhammad
2017-12-01
Propranolol hydrochloride is a nonselective β-adrenergic drug and has been used as angina pectoris, antihypertensive, and that of many other cardiovascular disorders. It has a relatively short plasma half-life and duration of action are considered too short in certain circumstances. Thus, it’s fascinating to elongate the action. The tablet formula was based on extended-release by a propranolol hydrochloride based carboxymethyl chitosan matrix. Here we used direct compression technique with internal wet granulation to prepare the tablets. The tablets were evaluated for physical properties (hardness, weight variation test, friability) and in vitro release studies. There was no interaction observed between propranolol hydrochloride and excipients. Dissolution profiles of each formulation were followed zero order model. In conclusion, these results strongly suggest that in appropriate proportions carboxymethyl chitosan with internal granulation is suitable for formulating propranolol hydrochloride controlled release.
Spray-dried high-amylose sodium carboxymethyl starch: impact of α-amylase on drug-release profile.
Nabais, Teresa; Zaraa, Sarra; Leclair, Grégoire
2016-11-01
Spray-dried high-amylose sodium carboxymethyl starch (SD HASCA) is a promising pharmaceutical excipient for sustained-release (SR) matrix tablets produced by direct compression. The presence of α-amylase in the gastrointestinal tract and the variations of the gastric residence time of non-disintegrating dosage forms may affect the presystemic metabolism of this excipient and, consequently, the drug-release profile from formulations produced with SD HASCA. In this study, the influence of α-amylase and the residence time in acidic conditions on the drug-release profile was evaluated for a once-daily acetaminophen formulation (Acetaminophen SR) and a once-daily tramadol hydrochloride formulation (Tramadol SR). Both formulations were based on SD HASCA. α-Amylase concentrations ranging from 0 IU/L to 20000 IU/L did not significantly affect the drug-release profiles of acetaminophen and tramadol hydrochloride from SD HASCA tablets (f2 > 50) for all but only one of the studied conditions (f2 = 47). Moreover, the drug-release properties from both SD HASCA formulations were not significantly different when the residence time in acidic medium was 1 h or 3 h. An increase in α-amylase concentration led to an increase in the importance of polymer erosion as the main mechanism of drug-release instead of drug diffusion, for both formulations and both residence times, even if release profiles remained comparable. As such, it is expected that α-amylase concentration and residence time in the stomach will not clinically affect the performance of both SD HASCA SR formulations, even if the mechanism of release itself may be affected.
Novel swellable polymer of orchidaceae family for gastroretentive drug delivery of famotidine
Razavi, Mahboubeh; Nyamathulla, Shaik; Karimian, Hamed; Noordin, Mohamed Ibrahim
2014-01-01
This study aimed to develop hydrophilic, gastroretentive matrix tablets of famotidine with good floating and swelling properties. A novel gastroretentive drug delivery formulation was designed using salep, also known as salepi, a flour obtained from grinding dried palmate tubers of Orchis morio var mascula (Orchidaceae family). The main polysaccharide content of salep is glucomannan, highly soluble in cold and hot water, which forms a viscous solution. Salep was characterized for physicochemical properties, thermal stability, chemical interaction, and surface morphology using X-ray diffraction analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Ten different formulations (S1–S10) were prepared using famotidine to salep ratios from 1:0.5 to 1:5. Results demonstrated that all formulations were able to sustain the drug release for more than 24 hours. The S5 formulation, with a famotidine to salep ratio of 1:2.5, had the shortest floating lag time of 35 seconds and 100% drug release within 24 hours. The dissolution data were fitted into popular mathematical models to assess the mechanism of drug release. S5 showed Zero order release (R=0.9746) with Higuchi diffusion (R=0.9428). We conclude that salep, a novel polymer, can be used in controlled release formulations to sustain release for 24 hours, due to inherent swelling and gelling properties. PMID:25246773
Xing, Chang; Xing, Jin-Feng; Ge, Zhi-Qiang
2017-10-01
α-Chymotrypsin (α-CT) and trypsin are important components of the enzymatic barrier. They could degrade the therapeutic proteins and peptides, inhibit their activity consequently, and thereby reduce their oral bioavailability. Acidic agents, as one type of indirect protease inhibitors, have shown proof of concept in clinical trials. We report here the inactivated proteases due to acid influence can be reactivated immediately by environmental pH recovery regardless of how long the inactivation last. To keep the inactivation time of proteases for 4-5 h, we designed and prepared a sustained-release tablet containing citric acid (CA) which can effectively reduce the pH below 5.0 and maintain it for 5 h in the dissolution-reaction medium. The activity of α-CT and trypsin was quantified by analyzing the residual amount of their respective substrates BTEE and TAME. More than 80% of the substrates were survived in 5.0 h of incubation, whereas the common tablet inhibited the proteases activity for only two hours in the same experimental medium. It indicates that the sustained-release tablet loaded with CA can efficiently inhibit the α-CT and trypsin activity longer than the common tablet. The results will be beneficial for designing and formulating the peroral administration of peptide and protein drugs.
Shinde, Viraj Ashok; Kalikar, Mrunalini; Jagtap, Satyajeet; Dakhale, Ganesh N.; Bankar, Mangesh; Bajait, Chaitali S.; Motghare, Vijay M.; Pashilkar, Ashlesha A.; Raghute, Latesh B.; Khamkar, Ajita D.
2017-01-01
Introduction: To compare the efficacy, safety, and tolerability of transdermal patches of diclofenac sodium with oral diclofenac sustained release (SR) in patients of chronic musculoskeletal MSK pain conditions. Materials and Methods: The eligible patients were given either transdermal diclofenac patch or tablet diclofenac SR. Pain was assessed at 2 and 4 weeks using a visual analog scale. Adverse events were recorded. Patients with 18–65 years old of either gender with score of ≥4 on a 11-item numeric rating scale-numeric version of visual analog scale for pain with diagnosis of primary osteoarthritis (OA) of the knee or hand of at least 3 months duration, with independent radiological confirmation of OA or having pain associated with other MSK conditions such as soft-tissue rheumatism, cervical and lumbar back pain, and fibromyalgia, of at least 3 months duration were included in this study. Results: Transdermal diclofenac diethylamine patch and tablet diclofenac sodium sustained release (SR) do not significantly differ in the reduction of numerical rating scores at the end of 4 weeks (P = 0.8393). Conclusion: Transdermal diclofenac was equi-efficacious as tablet diclofenac sodium SR in reducing pain due to chronic MSK pain conditions. PMID:29472748
Polymer mobilization and drug release during tablet swelling. A 1H NMR and NMR microimaging study.
Dahlberg, Carina; Fureby, Anna; Schuleit, Michael; Dvinskikh, Sergey V; Furó, István
2007-09-26
The objective of this study was to investigate the swelling characteristics of a hydroxypropyl methylcellulose (HPMC) matrix incorporating the hydrophilic drug antipyrine. We have used this matrix to introduce a novel analytical method, which allows us to obtain within one experimental setup information about the molecular processes of the polymer carrier and its impact on drug release. Nuclear magnetic resonance (NMR) imaging revealed in situ the swelling behavior of tablets when exposed to water. By using deuterated water, the spatial distribution and molecular dynamics of HPMC and their kinetics during swelling could be observed selectively. In parallel, NMR spectroscopy provided the concentration of the drug released into the aqueous phase. We find that both swelling and release are diffusion controlled. The ability of monitoring those two processes using the same experimental setup enables mapping their interconnection, which points on the importance and potential of this analytical technique for further application in other drug delivery forms.
Yom-Tov, Ortal; Seliktar, Dror; Bianco-Peled, Havazelet
2015-10-01
The use of buoyant or floating hydrogel tablets is of particular interest in the sustained release of drugs to the stomach. They have an ability to slow the release rates of drugs by prolonging their absorption window in the upper part of the gastrointestinal (GI) tract. In this study we synthesized bioactive hydrogels that have sustainable release rates for drugs in the stomach based on a hydrogel preparation technique that employs emulsifying surfactants. The emulsion gelation technique, which encapsulates oil droplets within the hydrogels during crosslinking, was used to decrease their specific gravity in aqueous environments, resulting in floating drug release depots. Properties such as swelling, buoyancy, density and drug release were manipulated by changing the polymer concentrations, surfactant percentages and the oil:polymer ratios. The relationship between these properties and the hydrogel's floating lag time was documented. The potential for this material to be used as a floating drug delivery system was demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.
Ijaz, Hira; Qureshi, Junaid; Danish, Zeeshan; Zaman, Muhammad; Abdel-Daim, Mohamed; Hanif, Muhammad; Waheed, Imran; Mohammad, Imran Shair
2015-11-01
The purpose of this study was to introduce the technology for the development of rate-controlled oral drug delivery system to overcome various physiological problems. Several approaches are being used for the purpose of increasing the gastric retentive time, including floating drug delivery system. Gastric floating lisinopril maleate and metoprolol tartrate bilayer tablets were formulated by direct compression method using the sodium starch glycolate, crosscarmellose sodium for IR layer. Eudragit L100, pectin, acacia as sustained release polymers in different ratios for SR metoprolol tartrate layer and sodium bicarbonate, citric acid as gas generating agents for the floating extended release layer. The floating bilayer tablets of lisinopril maleate and metoprolol tartrate were designed to overcome the various problems associated with conventional oral dosage form. Floating tablets were evaluated for floating lag time, drug contents and in-vitro dissolution profile and different kinetic release models were applied. It was clear that the different ratios of polymers affected the drug release and floating time. L2 and M4 showed good drug release profile and floating behavior. The linear regression and model fitting showed that all formulation followed Higuchi model of drug release model except M4 that followed zero order kinetic. From the study it is evident that a promising controlled release by floating bilyer tablets of lisinopril maleate and metoprolol tartrate can be developed successfully.
Bani-Jaber, Ahmad; Hamdan, Imad; Alkawareek, Mahmoud
2012-07-01
The aim of this study was to prepare fatty acid salts of chitosan (CS) and to evaluate the salts as matrices for sustained drug release and prolonged gastric retention. CS-laurate and CS-palmitate were formed by mixing saturated CS solution and aqueous solutions of sodium laurate and sodium palmitate, respectively, and collected by centrifugation. They were characterized using Fourier-transform infrared spectroscopy and differential scanning calorimetry. Different matrices as effervescent tablets were prepared using each of these CS-salts, CS and the corresponding physical mixtures of CS and the fatty acids. Sodium bicarbonate as an effervescent agent and ranitidine HCl as a model drug were incorporated into these matrices. In vitro buoyancy and drug dissolution were studied for the matrices in 0.1 M HCl. Tablets with fatty acid salts of CS showed both rapid and prolonged buoyancy (> 8 h). Comparatively, CS tablets exhibited a short floatation period (< 2 h) and tablets were completely disintegrated within 1 h of soaking. In addition, slow and prolonged drug release was achieved from tablets of fatty acid salts of CS with average drug release of 80.1 and 71.8% for CS-laurate and CS-palmitate, respectively. Rapid drug release (> 80% at 1 h) was exhibited by tablets with CS or the physical mixtures.
Heiman, Johanna; Tajarobi, Farhad; Gururajan, Bindhumadhavan; Juppo, Anne; Abrahmsén-Alami, Susanna
2015-04-01
The present study shows that roller compaction (RC) can successfully be used as a granulation method to prepare hydroxypropyl methylcellulose (HPMC)-based extended release matrix tablets containing a high drug load, both for materials deforming mainly by fragmentation (paracetamol) as for those having mainly plastic deformation (ibuprofen). The combined effect of RC process variables and composition on the manufacturability of HPMC tablets was investigated. Standard wet granulation grade HPMC was compared with a larger particle size direct compressible HPMC grade. Higher roll pressure was found to result in larger paracetamol granules and narrower granule particle size distributions, especially for formulations containing smaller size HPMC. However, for ibuprofen, no clear effect of roll pressure was observed. High roll pressure also resulted in denser ribbon and less bypass fines during RC. Loss of compactibility was observed for granules compared to powder blends, which was found to be related to differences in granule porosity and morphology. Using the large-sized HPMC grade did in some cases result in lower tensile strength tablets but had the advantage to improve the powder flow into the roller compactor. This work also indicates that when the HPMC level lies near the percolation threshold, significant changes can occur in the drug release rate due to changes in other factors (raw material characteristics and processing).
Oral Delivery of Probiotics in Poultry Using pH-Sensitive Tablets.
Jiang, Tao; Li, Hui-Shan; Han, Geon Goo; Singh, Bijay; Kang, Sang-Kee; Bok, Jin-Duck; Kim, Dae-Duk; Hong, Zhong-Shan; Choi, Yun-Jaie; Cho, Chong-Su
2017-04-28
As alternatives to antibiotics in livestocks, probiotics have been used, although most of them in the form of liquid or semisolid formulations, which show low cell viability after oral administration. Therefore, suitable dry dosage forms should be developed for livestocks to protect probiotics against the low pH in the stomach such that the products have higher probiotics survivability. Here, in order to develop a dry dosage forms of probiotics for poultry, we used hydroxypropyl methylcellulose phthalate 55 (HPMCP 55) as a tablet-forming matrix to develop probiotics in a tablet form for poultry. Here, we made three different kinds of probiotics-loaded tablet under different compression forces and investigated their characteristics based on their survivability, morphology, disintegration time, and kinetics in simulated gastrointestinal fluid. The results indicated that the probiotics formulated in the tablets displayed higher survival rates in acidic gastric conditions than probiotics in solution. Rapid release of the probiotics from the tablets occurred in simulated intestinal fluid because of fast swelling of the tablets in neutral pH. As a matrix of tablet, HPMCP 55 provided good viability of probiotics after 6 months under refrigeration. Moreover, after oral administration of probiotics-loaded tablets to chicken, more viable probiotics were observed, than with solution type, through several digestive areas of chicken by the tablets.
Cevher, Erdal; Açma, Ayşe; Sinani, Genada; Aksu, Buket; Zloh, Mire; Mülazımoğlu, Lütfiye
2014-08-01
Itraconazole (ITR) is commonly used in the treatment of Candida infections. It has a nephrotoxic effect and low bioavailability in patients who suffer from renal insufficiency, and its poor solubility in water makes ITR largely unavailable. Cyclodextrins (CyDs) are used to form inclusion complexes with drugs to improve their aqueous solubility and to reduce their side effects. In this study, ITR was complexed with γ-cyclodextrin (γ-CyD), hydroxypropyl-β-cyclodextrin (HP-β-CyD), methyl-β-cyclodextrin (Met-β-CyD) and sulphobutyl ether-β-cyclodextrin (SBE7-β-CyD) to increase its water solubility and to reduce the side effects of the drug without decreasing antifungal activity. Complex formation between ITR and CyDs was evaluated using SEM, (1)H NMR and XRD studies. The antifungal activity of the complexes was analyzed on Candida albicans strains, and the susceptibility of the strains was found to be higher for the ITR-SBE7-β-CyD complex than for the complexes that were prepared with other CyDs. Vaginal bioadhesive sustained release tablet formulations were developed using the ITR-SBE7-β-CyD inclusion complex to increase the residence time of ITR in the vagina, thereby boosting the efficacy of the treatment. The swelling, matrix erosion and bioadhesion properties of formulations and the drug release rate of these tablets were analyzed, and the most therapeutically effective vaginal formulation was determined. Copyright © 2014 Elsevier B.V. All rights reserved.
Baumgartner, Sasa; Lahajnar, Gojmir; Sepe, Ana; Kristl, Julijana
2005-02-01
Many pharmaceutical tablets are based on hydrophilic polymers, which, after exposure to water, form a gel layer around the tablet that limits the dissolution and diffusion of the drug and provides a mechanism for controlled drug release. Our aim was to determine the thickness of the swollen gel layer of matrix tablets and to develop a method for calculating the polymer concentration profile across the gel layer. MR imaging has been used to investigate the in situ swelling behaviour of cellulose ether matrix tablets and NMR spectroscopy experiments were performed on homogeneous hydrogels with known polymer concentration. The MRI results show that the thickest gel layer was observed for hydroxyethylcellulose tablets, followed by definitely thinner but almost equal gel layer for hydroxypropylcellulose and hydroxypropylmethylcellulose of both molecular weights. The water proton NMR relaxation parameters were combined with the MRI data to obtain a quantitative description of the swelling process on the basis of the concentrations and mobilities of water and polymer as functions of time and distance. The different concentration profiles observed after the same swelling time are the consequence of the different polymer characteristics. The procedure developed here could be used as a general method for calculating polymer concentration profiles on other similar polymeric systems.
Intestinal Targeting of Ganciclovir Release Employing a Novel HEC-PAA Blended Lyomatrix.
Mabrouk, Mostafa; Mulla, Jameel A S; Kumar, Pradeep; Chejara, Dharmesh R; Badhe, Ravindra V; Choonara, Yahya E; du Toit, Lisa C; Pillay, Viness
2016-10-01
A hydroxyethylcellulose-poly(acrylic acid) (HEC-PAA) lyomatrix was developed for ganciclovir (GCV) intestine targeting to overcome its undesirable degradation in the stomach. GCV was encapsulated within the HEC-PAA lyomatrix prepared by lyophilization. Conventional tablets were also prepared with identical GCV concentrations in order to compare the GCV release behavior from the lyomatrix and tablets. GCV incorporation (75.12%) was confirmed using FTIR, DSC, and TGA. The effect of GCV loading on the microstructure properties of the lyomatrix was evaluated by SEM, AFM, and BET surface area measurements. The in vitro drug release study showed steady and rapid release profiles from the GCV-loaded lyomatrix compared with the tablet formulation at identical pH values. Minimum GCV release was observed at acidic pH (≤40%) and maximum release occurred at intestinal pH values (≥90%) proving the intestinal targeting ability of the lyomatrix. Kinetic modeling revealed that the GCV-loaded lyomatrix exhibited zero-order release kinetics (n = 1), while the tablets were best described via the Peppas model. Textural analysis highlighted enhanced matrix resilience and rigidity gradient (12.5%, 20 Pa) for the GCV-loaded lyomatrix compared to the pure (7%, 9.5 Pa) HEC-PAA lyomatrix. Bench-top MRI imaging was used to confirm the mechanism of GCV release behavior by monitoring the swelling and erosion rates. The swelling and erosion rate of the tablets was not sufficient to achieve rapid zero-order GCV release as with the lyomatrix. These combined results suggest that the HEC-PAA lyomatrix may be suitable for GCV intestinal targeting after oral administration.
Gareb, Bahez; Eissens, Anko C; Kosterink, Jos G W; Frijlink, Hendrik W
2016-06-01
Ulcerative colitis (UC) and Crohn's disease (CD) are diseases affecting the gastrointestinal tract. Treatment depends on the severity of the disease, site of inflammation, and patient's response. The aim of this study was to develop a zero-order sustained-release tablet containing both the anti-inflammatory drugs mesalazine and budesonide as a new treatment option for ileo-colonic CD and UC. Tablets were attained by wet granulation with hydroxypropyl methylcellulose and direct compression. Our newly developed tablet core was coated with different ColoPulse® coating thicknesses and the mesalazine and budesonide release profiles were investigated in a 600-min gastrointestinal simulation system (GISS) experiment, together with commercially available MMX®-mesalazine and MMX®-budesonide. Lag-time, release rate (k0), completeness of release, and zero-order correlation coefficient (R(2)0) could be manipulated by varying ColoPulse® coating thickness. Our newly developed combination preparation (C[4.92]) complied with all conducted European Pharmacopoeia tests as well as an accelerated 6-month stability test and had a lag-time of 250min (simulated ileum targeted), a linear release profile (mesalazine R(2)0=0.9002; budesonide R(2)0=0.9481), and drug release of 100% mesalazine and 77% budesonide. Like C[4.92], MMX®-mesalazine had a linear (R(2)0=0.9883) and complete release profile (96%). However, C[4.92] lag-time was longer (250 vs. 210min), assuring simulated ileum specificity. Remarkably, MMX®-budesonide lag-time was 480min and release was only 7% with a linear character (R(2)0=0.9906). The in vitro results suggest that MMX®-budesonide effectiveness may be improved if budesonide release in the aqueous phase would be increased and that C[4.92] is a potential, new treatment option for ileo-colonic CD and UC. Copyright © 2016 Elsevier B.V. All rights reserved.
Young, Christopher R; Dietzsch, Caroline; Cerea, Matteo; Farrell, Thomas; Fegely, Kurt A; Rajabi-Siahboomi, Ali; McGinity, James W
2005-09-14
The purpose of the current study was to investigate the physicochemical properties of melt-extruded dosage forms based on Acryl-EZE and to determine the influence of gelling agents on the mechanisms and kinetics of drug release from thermally processed matrices. Acryl-EZE is a pre-mixed excipient blend based on a methacrylic acid copolymer that is optimized for film-coating applications. Powder blends containing theophylline, Acryl-EZE, triethyl citrate and an optional gelling agent, Methocel K4M Premium (hydroxypropyl methylcellulose, HPMC, hypromellose 2208) or Carbopol 974P (carbomer), were thermally processed using a Randcastle single-screw extruder. The physical and chemical stability of materials during processing was determined using thermal gravimetric analysis and HPLC. The mechanism of drug release was determined using the Korsmeyer-Peppas model and the hydration and erosion of tablets during the dissolution studies were investigated. The excipient blends were physically and chemically stable during processing, and the resulting dosage forms exhibited pH-dependent dissolution properties. Extrusion of blends containing HPMC or carbomer changed the mechanism and kinetics of drug release from the thermally processed dosage forms. At concentrations of 5% or below, carbomer was more effective than HPMC at extending the duration of theophylline release from matrix tablets. Furthermore, carbomer containing tablets were stable upon storage for 3 months at 40 degrees C/75% RH. Thus, hot-melt extrusion was an effective process for the preparation of controlled release matrix systems based on Acryl-EZE.
Lu, Cheng; Lu, Yi; Chen, Jian; Zhang, Wentong; Wu, Wei
2007-05-01
Development of sustained delivery systems for herbal medicines was very difficult because of their complexity in composition. The concept of synchronized release from sustained release systems, which is characterized by release of multiple components in their original ratio that defines a herbal medicine, served as the basis for keeping the original pharmacological activity. In this study, erodible matrix systems based on glyceryl monostearate and polyethylene glycol 6000 or poloxamer 188 were prepared to perform strict control on synchronized release of the five active components of silymarin, i.e. taxifolin, silychrystin, silydianin, isosilybin and silybin. The matrix system was prepared by a melt fusion method. Synchronized release was achieved with high similarity factor f(2) values between each two of the five components. Erosion profiles of the matrix were in good correlation with release profiles of the five components, showing erosion-controlled release mechanisms. Through tuning some of the formulation variables, the system can be adjusted for synchronized and sustained release of silymarin for oral administration. In vitro hemolysis study indicated that the synchronized release samples showed a much better stabilizing effect on erythrocyte membrane.
Knöös, Patrik; Topgaard, Daniel; Wahlgren, Marie; Ulvenlund, Stefan; Piculell, Lennart
2013-11-12
A new technique has been developed using NMR chemical shift imaging (CSI) to monitor water penetration and molecular transport in initially dry polymer tablets that also contain small low-molecular weight compounds to be released from the tablets. Concentration profiles of components contained in the swelling tablets could be extracted via the intensities and chemical shift changes of peaks corresponding to protons of the components. The studied tablets contained hydrophobically modified poly(acrylic acid) (HMPAA) as the polymer component and griseofulvin and ethanol as hydrophobic and hydrophilic, respectively, low-molecular weight model compounds. The water solubility of HMPAA could be altered by titration with NaOH. In the pure acid form, HMPAA tablets only underwent a finite swelling until the maximum water content of the polymer-rich phase, as confirmed by independent phase studies, had been reached. By contrast, after partial neutralization with NaOH, the polyacid became fully miscible with water. The solubility of the polymer affected the water penetration, the polymer release, and the releases of both ethanol and griseofulvin. The detailed NMR CSI concentration profiles obtained highlighted the clear differences in the disintegration/dissolution/release behavior for the two types of tablet and provided insights into their molecular origin. The study illustrates the potential of the NMR CSI technique to give information of importance for the development of pharmaceutical tablets and, more broadly, for the general understanding of any operation that involves the immersion and ultimate disintegration of a dry polymer matrix in a solvent.
Successful treatment of mixed (mainly cancer) pain by tramadol preparations.
Kawahito, Shinji; Soga, Tomohiro; Mita, Naoji; Satomi, Shiho; Kinoshita, Hiroyuki; Arase, Tomoko; Kondo, Akira; Miki, Hitoshi; Takaishi, Kazumi; Kitahata, Hiroshi
2017-01-01
The patient, a 70-year-old Japanese woman diagnosed with parotid gland cancer, underwent wide excision and reconstruction (facial nerve ablation, nerve transposition). At 1 month after the surgery, she was brought to our hospital's pain medicine department because her postoperative pain and cancer-related pain were poorly controlled. She had already been prescribed a tramadol (37.5 mg)/acetaminophen (325 mg) combination tablet (5 tablets/day). However, in addition to the continuous pain in her face and lower limbs, she was troubled by a trigeminal neuralgia-like prominence ache. Because this pain could not be controlled by an increase to eight combination tablets per day, we switched her medication to a tramadol capsule. At 11 months post-surgery, we then switched her medication to an orally disintegrating tramadol tablet to improve medication adherence of the drug. From 14 months post-surgery, the patient also used a sustained-release tramadol preparation, and she was then able to sleep well. Her current regimen is an orally disintegrating sustained-release tablet combination (total 300 mg tramadol) per day, and she achieved sufficient pain relief. Because tramadol is not classified as a medical narcotic drug, it widely available and was shown here to be extremely useful for the treatment of our patient's mixed (mainly cancer) pain. J. Med. Invest. 64: 311-312, August, 2017.
NMR imaging of high-amylose starch tablets. 2. Effect of tablet size.
Malveau, Cédric; Baille, Wilms E; Zhu, Xiao Xia; Marchessault, Robert H
2002-01-01
Carbohydrate polymers are widely used for pharmaceutical applications such as the controlled release of drugs. The swelling and water mobility in high-amylose starch tablets are important parameters to be determined for these applications. They have been studied at different time intervals by nuclear magnetic resonance imaging (NMRI) after the immersion of the samples in water. These tablets have a hydrophilic matrix, which swells anisotropically and forms a hydrogel in water. NMRI shows clearly the anisotropy of the water penetration and the swelling along the radial and axial dimensions of the tablets. Empirical relationships are established to describe the kinetics of water penetration and swelling of the tablets. Results show that water uptake and tablet swelling strongly depend on the size of the tablets. Gravimetric measurements of water uptake were also performed in comparison with the NMRI results.
Notario-Pérez, Fernando; Martín-Illana, Araceli; Cazorla-Luna, Raúl; Ruiz-Caro, Roberto; Bedoya, Luis-Miguel; Tamayo, Aitana; Rubio, Juan; Veiga, María-Dolores
2017-01-01
The main challenges facing efforts to prevent the transmission of human immunodeficiency virus (HIV) are the lack of access to sexual education services and sexual violence against young women and girls. Vaginal formulations for the prevention of sexually transmitted infections are currently gaining importance in drug development. Vaginal mucoadhesive tablets can be developed by including natural polymers that have good binding capacity with mucosal tissues, such as chitosan or guar gum, semisynthetic polymers such as hydroxypropylmethyl cellulose, or synthetic polymers such as Eudragit® RS. This paper assesses the potential of chitosan for the development of sustained-release vaginal tablets of Tenofovir and compares it with different polymers. The parameters assessed were the permanence time of the bioadhesion—determined ex vivo using bovine vaginal mucosa as substrate—the drug release profiles from the formulation to the medium (simulated vaginal fluid), and swelling profiles in the same medium. Chitosan can be said to allow the manufacture of tablets that remain adhered to the vaginal mucosa and release the drug in a sustained way, with low toxicity and moderate swelling that ensures the comfort of the patient and may be useful for the prevention of sexual transmission of HIV. PMID:28230790
Notario-Pérez, Fernando; Martín-Illana, Araceli; Cazorla-Luna, Raúl; Ruiz-Caro, Roberto; Bedoya, Luis-Miguel; Tamayo, Aitana; Rubio, Juan; Veiga, María-Dolores
2017-02-21
The main challenges facing efforts to prevent the transmission of human immunodeficiency virus (HIV) are the lack of access to sexual education services and sexual violence against young women and girls. Vaginal formulations for the prevention of sexually transmitted infections are currently gaining importance in drug development. Vaginal mucoadhesive tablets can be developed by including natural polymers that have good binding capacity with mucosal tissues, such as chitosan or guar gum, semisynthetic polymers such as hydroxypropylmethyl cellulose, or synthetic polymers such as Eudragit ® RS. This paper assesses the potential of chitosan for the development of sustained-release vaginal tablets of Tenofovir and compares it with different polymers. The parameters assessed were the permanence time of the bioadhesion-determined ex vivo using bovine vaginal mucosa as substrate-the drug release profiles from the formulation to the medium (simulated vaginal fluid), and swelling profiles in the same medium. Chitosan can be said to allow the manufacture of tablets that remain adhered to the vaginal mucosa and release the drug in a sustained way, with low toxicity and moderate swelling that ensures the comfort of the patient and may be useful for the prevention of sexual transmission of HIV.
Leng, Xiaomei; Li, Zhanguo; Lv, Houshan; Zheng, Yi; Liu, Yi; Dai, Kerong; Yao, Chen; Yan, Xiaoyan; Zeng, Xiaofeng
2015-07-01
The aim of this noninferiority study was to investigate clinical effectiveness and safety of buprenorphine transdermal system (BTDS) in patients with moderate to severe musculoskeletal pain inadequately controlled with nonsteroidal anti-inflammatory drugs, compared with sustained-release tramadol tablets. Eligible patients were randomized (1:1) to receive low-dose 7-day BTDS (5, 10, and 20 μg/h, maximum dosage of 20 μg/h) or sustained-release tramadol tablets (100 mg, maximum dosage of 400 mg/d) over an 8-week double-blind treatment period (3-week titration, 5-week maintenance). The primary endpoint was the difference in the visual analogue scale (VAS) pain scores from baseline to treatment completion. Noninferiority was assumed if the treatment difference on the VAS scale was within ±1.5 cm, this threshold indicating a clinically meaningful result. ClinicalTrials.gov identifier: NCT01476774. Two hundred eighty patients were randomized to BTDS (n=141) or to tramadol (n=139). Both treatments were associated with a significant reduction in pain by the end of the treatment. The least squares mean difference of the change from baseline in VAS scores between the BTDS and tramadol groups were 0.45 (95% confidence interval, -0.02 to 0.91), which was within the ±1.5 cm predefined threshold, indicating that the effectiveness of BTDS was not inferior to the effectiveness of sustained-release tramadol tablets. The incidence of adverse events was comparable between the 2 treatment groups. Our results suggest that BTDS is a good therapeutic option for patients experiencing chronic musculoskeletal pain of moderate to severe intensity that is insufficiently controlled by nonsteroidal anti-inflammatory drugs.
In vitro release kinetics of Tolmetin from tabletted Eudragit microparticles.
Pignatello, R; Consoli, P; Puglisi, G
2000-01-01
In a previous paper the preparation has been described, by three different techniques, of microparticles made of Eudragit RS 100 and RL 100 containing a NSAI agent, Tolmetin. Freely flowing microparticles failed to affect significantly the in vitro drug release, which displayed a similar dissolution profile after micro-encapsulation to the free drug powder. Microparticles were then converted into tablets and the effect of compression on drug delivery, as well as that of the presence of co-additives, was studied in the present work. Furthermore, microparticles were also prepared by adding MgO to the polymer matrix, to reduce the sensitivity of the drug to pH changes during its dissolution. Similarly, magnesium stearate was also used for microparticle formation as a droplet stabilizer, in order to reduce particle size and hinder rapid drug release. A mathematical evaluation, by using two semi-empirical equations, was applied to evaluate the influence of dissolution and diffusion phenomena upon drug release from microparticle tablets.
Kriangkrai, Worawut; Puttipipatkhachorn, Satit; Sriamornsak, Pornsak; Pongjanyakul, Thaned; Sungthongjeen, Srisagul
2014-12-01
Tackiness caused by the gas-entrapped membrane (Eudragit(®)RL 30D) was usually observed during storage of the effervescent floating tablets, leading to failure in floatation and sustained release. In this work, common anti-tacking agents (glyceryl monostearate (GMS) and talc) were used to solve this tackiness problem. The impact of anti-tacking agent on the properties of free films and corresponding floating tablets was investigated. GMS was more effective than talc in reducing tackiness of the film. Addition and increasing amount of anti-tacking agents lowered the film mechanical strength, but the coating films were still strong and flexible enough to resist the generated gas pressure inside the floating tablet. Wettability and water vapor permeability of the film decreased with increasing level of anti-tacking agents as a result of their hydrophobicity. No interaction between anti-tacking agents and polymer was observed as confirmed by Fourier transform infrared spectroscopy, powder X-ray diffractometry, and differential scanning calorimetry studies. Increasing amount of anti-tacking agents decreased time to float and tended to retard drug release of the floating tablets. Floating properties and drug release were also influenced by type of anti-tacking agents. The obtained floating tablets still possessed good floating properties and controlled drug release even though anti-tacking agent had some effects. The results demonstrated that the tackiness problem of the floating tablets could be solved by incorporating anti-tacking agent into the gas-entrapped membrane.
Multi-unit dosage formulations of theophylline for controlled release applications.
Uhumwangho, Michael U; Okor, Roland S
2007-01-01
The study was carried out to investigate the drug release profiles of multi-unit dosage formulations of theophylline consisting of both the fast and slow release components in a unit dose. The fast release component consisted of conventional granules of theophylline formed by mixing the drug powder with starch mucilage (20% w/v) while the slow release component consisted of wax granulations of theophylline formed by triturating the drug powder with a melted Carnauba wax (drug:wax ratio, 4:1). The granules were either filled into capsules or tabletted. In the study design, the drug release characteristics of the individual fast or slow release particles were first determined separately and then mixed in various proportions for the purpose of optimizing the drug release profiles. The evaluating parameters were the prompt release in the first 1 h (mp), the maximum release (m infinity) and the time to attain it (t infinity). Total drug content in each capsule or tablet was 300 mg and two of such were used in dissolution studies. The release kinetics and hence the release mechanism was confirmed by measuring the linear regression coefficient (R2 values) of the release data. The release kinetics was generally most consistent with the Higuchi square root of time relationship (R2 = 0.95). indicating a diffusion-controlled mechanism. The mp (mg) and t infinity (h) values for capsules and tablets of the conventional granules were (420 mg, 3 h) and (348 mg, 5 h), respectively, while for the capsules and tablets of the wax granulations mp and t infinity values were (228 mg, 9 h) and (156 mg, 12 h), respectively, indicating that a combination of wax granulation and tableting markedly retarded drug release. In the multi-unit dose formulations where the conventional and wax granulations were mixed in the ratios 2:1, 1:1 and 1:2 (conventional: matrix), the m infinity and t infinity values for the capsules were (378 mg, 6 h), (326 mg, 6 h) and (272 mg, 7 h), reSpectively. The corresponding values of m infinity and t infinity for the tablets were (240 mg, 9 h), (180 mg, 11 h) and (128 mg, 12 h) against the set target (200 mg, 12 h). The indication is that tableting rather than encapsulation can more effectively control drug release from the systems.
Avgerinos, Theodoros; Kantiranis, Nikolaos; Panagopoulou, Athanasia; Malamataris, Stavros; Kachrimanis, Kyriakos; Nikolakakis, Ioannis
2018-02-01
Objective/significance: To elucidate the role of plasticizers in different mini matrices and correlate mechanical properties with drug release. Cylindrical pellets were prepared by hot-melt extrusion (HME) and mini tablets by hot (HC) and ambient compression (AC). Venlafaxine HCl was the model drug, Eudragit ® RSPO the matrix former and citric acid or Lutrol ® F127 the plasticizers. The matrices were characterized for morphology, crystallinity, and mechanical properties. The influence of plasticizer's type and content on the extrusion pressure (P e ) during HME and ejection during tableting was examined and the mechanical properties were correlated with drug release parameters. Resistance to extrusion and tablet ejection force were reduced by Lutrol ® F127 which also produced softer and weaker pellets with faster release, but harder and stronger HC tablets with slower release. HME pellets showed greater tensile strength (T) and 100 times slower release than tablets. P e correlated with T and resistance to deformation of the corresponding pellets (r 2 = 0.963 and 0.945). For both HME and HC matrices the decrease of drug release with T followed a single straight line (r 2 = 0.990) and for HME the diffusion coefficient (D e ) and retreat rate constant (k b ) decreased linearly with T (r 2 = 0.934 and 0.972). Lutrol ® F127 and citric acid are efficient plasticizers and Lutrol ® F127 is a thermal binder/lubricant in HC compression. The different bonding mechanisms of the matrices were reflected in the mechanical strength and drug release. Relationships established between T and drug release parameters for HME and HC matrices may be useful during formulation work.
Kulinowski, Piotr; Woyna-Orlewicz, Krzysztof; Obrał, Jadwiga; Rappen, Gerd-Martin; Haznar-Garbacz, Dorota; Węglarz, Władysław P; Jachowicz, Renata; Wyszogrodzka, Gabriela; Klaja, Jolanta; Dorożyński, Przemysław P
2016-02-29
The purpose of the research was to investigate the effect of the manufacturing process of the controlled release hydrophilic matrix tablets on their hydration behavior, internal structure and drug release. Direct compression (DC) quetiapine hemifumarate matrices and matrices made of powders obtained by dry granulation (DG) and high shear wet granulation (HS) were prepared. They had the same quantitative composition and they were evaluated using X-ray microtomography, magnetic resonance imaging and biorelevant stress test dissolution. Principal results concerned matrices after 2 h of hydration: (i) layered structure of the DC and DG hydrated tablets with magnetic resonance image intensity decreasing towards the center of the matrix was observed, while in HS matrices layer of lower intensity appeared in the middle of hydrated part; (ii) the DC and DG tablets retained their core and consequently exhibited higher resistance to the physiological stresses during simulation of small intestinal passage than HS formulation. Comparing to DC, HS granulation changed properties of the matrix in terms of hydration pattern and resistance to stress in biorelevant dissolution apparatus. Dry granulation did not change these properties-similar hydration pattern and dissolution in biorelevant conditions were observed for DC and DG matrices. Copyright © 2015 Elsevier B.V. All rights reserved.
Eggenreich, K; Windhab, S; Schrank, S; Treffer, D; Juster, H; Steinbichler, G; Laske, S; Koscher, G; Roblegg, E; Khinast, J G
2016-05-30
The objective of the present study was to develop a one-step process for the production of tablets directly from primary powder by means of injection molding (IM), to create solid-dispersion based tablets. Fenofibrate was used as the model API, a polyvinyl caprolactame-polyvinyl acetate-polyethylene glycol graft co-polymer served as a matrix system. Formulations were injection-molded into tablets using state-of-the-art IM equipment. The resulting tablets were physico-chemically characterized and the drug release kinetics and mechanism were determined. Comparison tablets were produced, either directly from powder or from pre-processed pellets prepared via hot melt extrusion (HME). The content of the model drug in the formulations was 10% (w/w), 20% (w/w) and 30% (w/w), respectively. After 120min, both powder-based and pellet-based injection-molded tablets exhibited a drug release of 60% independent of the processing route. Content uniformity analysis demonstrated that the model drug was homogeneously distributed. Moreover, analysis of single dose uniformity also revealed geometric drug homogeneity between tablets of one shot. Copyright © 2016 Elsevier B.V. All rights reserved.
Wren, S A C; Alhusban, F; Barry, A R; Hughes, L P
2017-08-30
The impact of varying Sodium Starch Glycolate (SSG) grade and wet granulation intensity on the mechanism of disintegration and dissolution of mannitol-based Immediate Release (IR) placebo tablets was investigated. MRI and 1 H NMR provided mechanistic insight, and revealed a four-fold range in both tablet disintegration and dissolution rates. MRI was used to quantify the rates of change in tablet volumes and the data fitted to a hydration/erosion model. Reduced levels of cross-linking change SSG from a swelling to a gelling matrix. The tablet hydration and dissolution rates are related to the viscosity at the tablet-solution interface, with high viscosities limiting mass transport. Copyright © 2017 Elsevier B.V. All rights reserved.
Claeys, Bart; De Coen, Ruben; De Geest, Bruno G; de la Rosa, Victor R; Hoogenboom, Richard; Carleer, Robert; Adriaensens, Peter; Remon, Jean Paul; Vervaet, Chris
2013-11-01
Polymethacrylates such as Eudragit® polymers are well established as drug delivery matrix. Here, we synthesize several Eudragit E PO (n-butyl-, dimethylaminoethyl-, methyl-methacrylate-terpolymer) analogues via free radical polymerization. These polymers are processed via hot melt extrusion, followed by injection molding and evaluated as carriers to produce immediate release solid solution tablets. Three chemical modifications increased the glass transition temperature of the polymer: (a) substitution of n-butyl by t-butyl groups, (b) reduction of the dimethylaminoethyl methacrylate (DMAEMA) content, and (c) incorporation of a bulky isobornyl repeating unit. These structural modifications revealed the possibility to increase the mechanical stability of the tablets via altering the polymer Tg without influencing the drug release characteristics and glassy solid solution forming properties. The presence of DMAEMA units proved to be crucial with respect to API/polymer interaction (essential in creating glassy solid solutions) and drug release characteristics. Moreover, these chemical modifications accentuate the need for a more rational design of (methacrylate) polymer matrix excipients for drug formulation via hot melt extrusion and injection molding. Copyright © 2013 Elsevier B.V. All rights reserved.
Okwuosa, Tochukwu C; Pereira, Beatriz C; Arafat, Basel; Cieszynska, Milena; Isreb, Abdullah; Alhnan, Mohamed A
2017-02-01
Individualizing gastric-resistant tablets is associated with major challenges for clinical staff in hospitals and healthcare centres. This work aims to fabricate gastric-resistant 3D printed tablets using dual FDM 3D printing. The gastric-resistant tablets were engineered by employing a range of shell-core designs using polyvinylpyrrolidone (PVP) and methacrylic acid co-polymer for core and shell structures respectively. Filaments for both core and shell were compounded using a twin-screw hot-melt extruder (HME). CAD software was utilized to design a capsule-shaped core with a complementary shell of increasing thicknesses (0.17, 0.35, 0.52, 0.70 or 0.87 mm). The physical form of the drug and its integrity following an FDM 3D printing were assessed using x-ray powder diffractometry (XRPD), thermal analysis and HPLC. A shell thickness ≥0.52 mm was deemed necessary in order to achieve sufficient core protection in the acid medium. The technology proved viable for incorporating different drug candidates; theophylline, budesonide and diclofenac sodium. XRPD indicated the presence of theophylline crystals whilst budesonide and diclofenac sodium remained amorphous in the PVP matrix of the filaments and 3D printed tablets. Fabricated tablets demonstrated gastric resistant properties and a pH responsive drug release pattern in both phosphate and bicarbonate buffers. Despite its relatively limited resolution, FDM 3D printing proved to be a suitable platform for a single-process fabrication of delayed release tablets. This work reveals the potential of dual FDM 3D printing as a unique platform for personalising delayed release tablets to suit an individual patient's needs.
Gavini, E; Alamanni, M C; Cossu, M; Giunchedi, P
2005-08-01
Controlled release dosage forms based on tabletted microspheres containing fresh artichoke Cynara scolymus extract were performed for the oral administration of a nutritional supplement. Microspheres were prepared using a spray-drying technique; lactose or hypromellose have been chosen as excipients. Microspheres were characterized in terms of encapsulated extract content, size and morphology. Qualitative and quantitative composition of the extract before and after the spray process was determined. Compressed matrices (tablets) were prepared by direct compression of the spray-dried microspheres. In vitro release tests of microparticles and tablets prepared were carried out in both acidic and neutral media. Spray-drying is a good method to prepare microspheres containing the artichoke extract. The microspheres encapsulate an amount of extract close to the theoretical value. Particle size analyses indicate that the microparticles have dvs of approximately 6-7 microm. Electronic microscopy observations reveal that particles based on lactose have spherical shape and particles containing hypromellose are almost collapsed. The hydroalcoholic extract is stable to the microsphere production process: its polyphenolic composition (qualitative and quantitative) did not change after spraying. In vitro release studies show that microparticles characterized by a quick polyphenolic release both in acidic and neutral media due to the high water solubility of the carrier lactose. On the contrary, microspheres based hypromellose release only 20% of the loaded extract at pH 1.2 in 2 h and the total amount of polyphenols is released only after about further 6 h at pH 6.8. Matrices prepared tabletting lactose microspheres and hypromellose microparticles in the weight ratio 1:1 show a slow release rate, that lasts approximately 24 h. This one-a-day sustained release formulation containing Cynara scolymus extract could be proposed as a nutraceutical controlled release dosage form for oral administration.
Sonvico, Fabio; Conti, Chiara; Colombo, Gaia; Buttini, Francesca; Colombo, Paolo; Bettini, Ruggero; Barchielli, Marco; Leoni, Barbara; Loprete, Luca; Rossi, Alessandra
2017-09-28
In this work, a fixed-dose combination of gabapentin and flurbiprofen formulated as multilayer tablets has been designed, developed and studied in vitro and in vivo. The aim was to construct a single dosage form of the two drugs, able to perform a therapeutic program involving three release kinetics and two delivery sites, i.e., immediate release of gabapentin, intra-gastric prolonged release of gabapentin and intestinal (delayed) release of flurbiprofen. An oblong three-layer tablet was manufactured having as top layer a floating hydrophilic polymeric matrix for gastric release of gabapentin, as middle layer a disintegrating formulation for immediate release of a gabapentin loading dose and as bottom layer, an uncoated hydrophilic polymeric matrix, swellable but insoluble in gastric fluids, for delayed and prolonged release of flurbiprofen in intestinal environment. The formulations were studied in vitro and in vivo in healthy volunteers. The in vitro release rate assessment confirmed the programmed delivery design. A significant higher bioavailability of gabapentin administered 30min after meal, compared to fasting conditions or to dose administration 10min before meal, argued in favor of the gastro-retention of gabapentin prolonged release layer. The two drugs were delivered at different anatomical sites, since the food presence prolonged the gastric absorption of gabapentin from the floating layer and delayed the flurbiprofen absorption. The attainment of a successful delayed release of flurbiprofen was realized by a matrix based on a polymers' combination. The combined use of three hydrophilic polymers with different pH sensitivity provided the dosage form layer containing flurbiprofen with gastro-resistant characteristics without the use of film coating. Copyright © 2017 Elsevier B.V. All rights reserved.
Choi, Hee Youn; Noh, Yook-Hwan; Kim, Yo Han; Kim, Mi Jo; Lee, Shi Hyang; Kim, Jeong-Ae; Kim, Bogyeong; Lim, Hyeong-Seok; Bae, Kyun-Seop
2014-05-01
For patient convenience, a gemigliptin/metformin sustainedrelease fixed-dose combination (FDC) tablet was developed. This study was conducted to investigate the effects of food on the pharmacokinetic (PK) profile of the FDC tablets. This was an open-label, randomized, single dose, 2-period, 2-sequence crossover study in 24 healthy male volunteers. The FDC tablets (25/500 mg × 2 tablets) were administered in high-fat fed and fasted states on separate occasions, and each subject was randomly allocated to each sequence with a 7-day washout period. PK blood samplings were conducted from predose to 48 hours after dosing. Tolerability assessments were performed throughout the study. Nine adverse events (AEs) of mild intensity were reported from 8 subjects after study drug administration, and the AE frequency was similar between treatments. No serious AEs were reported. The PK parameters of gemigliptin and metformin were compared between fasting and fed states. For gemigliptin, the geometric mean ratios (GMRs) (fed : fasted state) of the Cmax and AUClast were 0.886 (90% confidence interval (CI) 0.781 - 1.006) and 1.021 (90% CI 0.949 - 1.099), respectively. For metformin, the GMRs of the Cmax and AUClast were 0.811 (90% CI 0.712 - 0.923) and 1.144 (90% CI 1.013 - 1.291), respectively. A prolonged tmax for metformin was observed. These results are similar to the effects of food on each component. The FDC tablet may have a similar PK profile as that of individual drugs and is generally tolerable when administered with food. These results indicate that the FDC tablet can be administered in the same dosing regimen as each component, especially that of metformin sustained-release.
Sabale, V; Patel, V; Paranjape, A
2014-01-01
Mucoadhesive drug delivery systems were developed to sustain drug delivery via various mucus membranes for either local or systemic delivery of poorly absorbed drugs such as peptides and proteins as well as drugs that are subjected to high first-pass metabolism. The present study was undertaken to use isolated Calendula mucilage as a mucoadhesive agent and to formulate controlled release buccoadhesive tablets with an intention to avoid hepatic first-pass metabolism as well as to enhance residence time of drug in the buccal cavity. The mucilage was isolated from the Calendula petals by aqueous extraction method and characterized for various physiochemical parameters as well as for its adhesive properties. By using direct compression technique, tablets were prepared containing dried mucilage and chlorpheniramine maleate (CPM) as a model drug. Three batches of tablets were prepared and evaluated containing three mucoadhesive components namely Methocel K4M, Carbopol 974P and isolated Calendula mucilage in 16.66%, 33.33 % and 50 % (1:2:3 ratio) resulting in 9 different formulations. FTIR studies between mucilage and CPM suggested the absence of a chemical interaction between CPM and Calendula mucilage. The results of the study showed that the isolated mucilage had good physicochemical and morphological characteristics and tablets conformed to the pharmacopoeial specifications. Also in vitro release studies showed controlled action of drug with increasing the concentration of the isolated Calendula mucilage as a mucoadhesive agent in the formulations. Permeability studies indicated that permeability behavior was not statistically different (P>0.05) by changing the mucoadhesive component. The formulated mucoadhesive tablets for buccal administration containing 75 mg Calendula mucilage showed controlled drug release. Thus, mucoadhesive natural Calendula mucilage based buccal tablets for controlled release were successfully formulated.
Sabale, V.; Patel, V.; Paranjape, A.
2014-01-01
Mucoadhesive drug delivery systems were developed to sustain drug delivery via various mucus membranes for either local or systemic delivery of poorly absorbed drugs such as peptides and proteins as well as drugs that are subjected to high first-pass metabolism. The present study was undertaken to use isolated Calendula mucilage as a mucoadhesive agent and to formulate controlled release buccoadhesive tablets with an intention to avoid hepatic first-pass metabolism as well as to enhance residence time of drug in the buccal cavity. The mucilage was isolated from the Calendula petals by aqueous extraction method and characterized for various physiochemical parameters as well as for its adhesive properties. By using direct compression technique, tablets were prepared containing dried mucilage and chlorpheniramine maleate (CPM) as a model drug. Three batches of tablets were prepared and evaluated containing three mucoadhesive components namely Methocel K4M, Carbopol 974P and isolated Calendula mucilage in 16.66%, 33.33 % and 50 % (1:2:3 ratio) resulting in 9 different formulations. FTIR studies between mucilage and CPM suggested the absence of a chemical interaction between CPM and Calendula mucilage. The results of the study showed that the isolated mucilage had good physicochemical and morphological characteristics and tablets conformed to the pharmacopoeial specifications. Also in vitro release studies showed controlled action of drug with increasing the concentration of the isolated Calendula mucilage as a mucoadhesive agent in the formulations. Permeability studies indicated that permeability behavior was not statistically different (P>0.05) by changing the mucoadhesive component. The formulated mucoadhesive tablets for buccal administration containing 75 mg Calendula mucilage showed controlled drug release. Thus, mucoadhesive natural Calendula mucilage based buccal tablets for controlled release were successfully formulated. PMID:25598798
Pinto, Colin A; Saripella, Kalyan K; Loka, Nikhil C; Neau, Steven H
2018-04-01
Certain issues with the use of particles of chitosan (Ch) cross-linked with tripolyphosphate (TPP) in sustained release formulations include inefficient drug loading, burst drug release, and incomplete drug release. Acetaminophen was added to Ch:TPP particles to test for advantages of drug addition extragranularly over drug addition made during cross-linking. The influences of Ch concentration, Ch:TPP ratio, temperature, ionic strength, and pH were assessed. Design of experiments allowed identification of factors and 2-factor interactions that have significant effects on average particle size and size distribution, yield, zeta potential, and true density of the particles, as well as drug release from the directly compressed tablets. Statistical model equations directed production of a control batch that minimized span, maximized yield, and targeted a t 50 of 90 min (sample A); sample B that differed by targeting a t 50 of 240-300 min to provide sustained release; and sample C that differed from sample B by maximizing span. Sample B maximized yield and provided its targeted t 50 and the smallest average particle size, with the higher zeta potential and the lower span of samples B and C. Extragranular addition of a drug to Ch:TPP particles achieved 100% drug loading, eliminated a burst drug release, and can accomplish complete drug release. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
The physicochemical properties of a spray dried glutinous rice starch biopolymer.
Laovachirasuwan, Pornpun; Peerapattana, Jomjai; Srijesdaruk, Voranuch; Chitropas, Padungkwan; Otsuka, Makoto
2010-06-15
Glutinous rice starch (GRS) is a biopolymer used widely in the food industry but not at all in the pharmaceutical industry. There are several ways to modify this biopolymer. Physical modification is simple and cheap because it requires no chemicals or biological agents. The aim of this study was to characterize the physicochemical properties of a spray dried glutinous rice starch (SGRS) produced from pregelatinized GRS. The surface morphology changed from an irregular to concave spherical shape as revealed by Scanning Electron Microscopy (SEM). SGRS was almost amorphous as determined by X-ray Diffraction (XRD) spectroscopy. The water molecules became linked through hydrogen bonds to the exposed hydroxyl group of amorphous SGRS as determined by Near Infrared (NIR) spectroscopy. Then, SGRS formed a colloid gel matrix with water and developed a highly viscous gelatinous form as determined using Differential Scanning Calorimetry (DSC) and a stress control type rheometer. In addition, SGRS can swell and produce a gelatinous surface barrier like a hydrophilic matrix biopolymer which controls drug release. Therefore, a novel application of SGRS is as a sustained release modifier for direct compression tablets in the pharmaceutical industry. Copyright 2010 Elsevier B.V. All rights reserved.
Benninger, Michael S
2003-10-01
Community-acquired bacterial respiratory tract infections are among the most common health disorders requiring medical care and are associated with substantial morbidity, mortality, and direct and indirect costs. Recent increases in the prevalence of antimicrobial resistance have resulted in reduced susceptibility of the most common respiratory tract bacterial pathogens to a number of antimicrobials. Amoxicillin/clavulanate potassium extended release (ER) tablets (Augmentin XR, GlaxoSmithKline) is a new formulation of amoxicillin/clavulanate that retains activity against betalactamase-producing organisms whilst increasing the activity against Streptococcus pneumoniae through elevated and sustained plasma amoxicillin concentrations. The bilayer tablet provides immediate release of clavulanate and both immediate and sustained release of amoxicillin to maintain therapeutic concentrations of amoxicillin over longer periods of the dosing interval. In clinical trials of acute bacterial sinusitis (ABS) and community-acquired pneumonia (CAP), amoxicillin/clavulanate ER was shown to have excellent bacteriological and clinical success rates, even in patients infected with antimicrobial-resistant pathogens, and was found to be generally well tolerated. Amoxicillin/clavulanate ER is approved in the US for the treatment of patients with ABS or CAP caused by beta-lactamase-producing pathogens (ie, Haemophilus influenzae, Moraxella catarrhalis, Haemophilus parainfluenzae, Klebsiella pneumoniae, or methicillin-susceptible Staphylococcus aureus) and S. pneumoniae with reduced susceptibility to penicillin (penicillin minimum inhibitory concentration = 2.0 microg/ml).
Kast, Constantia E; Guggi, Davide; Langoth, Nina; Bernkop-Schnürch, Andreas
2003-06-01
It was the purpose of this study to develop a new oral drug delivery system for low molecular weight heparin (LMWH) providing an improved bioavailability and a prolonged therapeutic effect. The permeation enhancing polycarbophil-cysteine conjugate (PCP-Cys) used in this study displayed 111.4 +/- 6.4 microM thiol groups per gram polymer. Permeation studies on freshly excised intestinal mucosa were performed in Ussing chambers demonstrating a 2-fold improved uptake of heparin as a result of the addition of 0.5% (w/v) PCP-Cys and the permeation mediator glutathione (GSH). Tablets containing PCP-Cys, GSH, and 279 IU of LMWH showed a sustained drug release over 4 h. To guarantee the swelling of the polymeric carrier matrix in the small intestine tablets were enteric coated. They were orally given to rats. For tablets being based on the thiomer/GSH system an absolute bioavailability of 19.9 +/- 9.3% (means +/- SD; n = 5) vs. intravenous injection could be achieved. whereas tablets comprising unmodified PCP did not lead to a significant (p < 0.01) heparin concentration in plasma. The permeation enhancing effect and subsequently a therapeutic heparin level was maintained for 24 h after a single dose. Because of the strong and prolonged lasting permeation enhancing effect of the thiomer/GSH system, the oral bioavailability of LMWH could be significantly improved. This new delivery system represents therefore a promising tool for the oral administration of heparin.
Implementation of Quality by Design for Formulation of Rebamipide Gastro-retentive Tablet.
Ha, Jung-Myung; Seo, Jeong-Woong; Kim, Su-Hyeon; Kim, Ju-Young; Park, Chun-Woong; Rhee, Yun-Seok; Park, Eun-Seok
2017-11-01
The purpose of the present study was to develop a rebamipide (RBM) gastro-retentive (GR) tablet by implementing quality by design (QbD). RBM GR tablets were prepared using a sublimation method. Quality target product profile (QTPP) and critical quality attributes (CQAs) of the RBM GR tablets were defined according to the preliminary studies. Factors affecting the CQAs were prioritized using failure mode and effects analysis (FMEA). Design space and optimum formulation were established through a mixture design. The validity of the design space was confirmed using runs within the area. The QTPP of the RBM GR tablets was the orally administered GR tablet containing 300 mg of RBM taken once daily. Based on the QTPP, dissolution rate, tablet friability, and floating property were chosen as CQAs. According to the risk assessment, the amount of sustained-release agent, sublimating material, and diluent showed high-risk priority number (RPN) values above 40. Based on the RPN, these factors were further investigated using mixture design methodology. Design space of formulations was depicted as an overlaid contour plot and the optimum formulation to satisfy the desired responses was obtained by determining the expected value of each response. The similarity factor (f2) of the release profile between predicted response and experimental response was 89.463, suggesting that two release profiles are similar. The validity of the design space was also confirmed. Consequently, we were able to develop the RBM GR tablets by implementing the QbD concept. These results provide useful information for development of tablet formulations using the QbD.
Morovati, Amirhosein; Ghaffari, Alireza; Erfani Jabarian, Lale; Mehramizi, Ali
2017-01-01
Guaifenesin, a highly water-soluble active (50 mg/mL), classified as a BCS class I drug. Owing to its poor flowability and compressibility, formulating tablets especially high-dose one, may be a challenge. Direct compression may not be feasible. Bilayer tablet technology applied to Mucinex®, endures challenges to deliver a robust formulation. To overcome challenges involved in bilayer-tablet manufacturing and powder compressibility, an optimized single layer tablet prepared by a binary mixture (Two-in-one), mimicking the dual drug release character of Mucinex ® was purposed. A 3-factor, 3-level Box-Behnken design was applied to optimize seven considered dependent variables (Release "%" in 1, 2, 4, 6, 8, 10 and 12 h) regarding different levels of independent one (X 1 : Cetyl alcohol, X 2 : Starch 1500 ® , X 3 : HPMC K100M amounts). Two granule portions were prepared using melt and wet granulations, blended together prior to compression. An optimum formulation was obtained (X 1 : 37.10, X 2 : 2, X 3 : 42.49 mg). Desirability function was 0.616. F2 and f1 between release profiles of Mucinex® and the optimum formulation were 74 and 3, respectively. An n-value of about 0.5 for both optimum and Mucinex® formulations showed diffusion (Fickian) control mechanism. However, HPMC K100M rise in 70 mg accompanied cetyl alcohol rise in 60 mg led to first order kinetic (n = 0.6962). The K values of 1.56 represented an identical burst drug releases. Cetyl alcohol and starch 1500 ® modulated guaifenesin release from HPMC K100M matrices, while due to their binding properties, improved its poor flowability and compressibility, too.
Morovati, Amirhosein; Ghaffari, Alireza; Erfani jabarian, Lale; Mehramizi, Ali
2017-01-01
Guaifenesin, a highly water-soluble active (50 mg/mL), classified as a BCS class I drug. Owing to its poor flowability and compressibility, formulating tablets especially high-dose one, may be a challenge. Direct compression may not be feasible. Bilayer tablet technology applied to Mucinex®, endures challenges to deliver a robust formulation. To overcome challenges involved in bilayer-tablet manufacturing and powder compressibility, an optimized single layer tablet prepared by a binary mixture (Two-in-one), mimicking the dual drug release character of Mucinex® was purposed. A 3-factor, 3-level Box-Behnken design was applied to optimize seven considered dependent variables (Release “%” in 1, 2, 4, 6, 8, 10 and 12 h) regarding different levels of independent one (X1: Cetyl alcohol, X2: Starch 1500®, X3: HPMC K100M amounts). Two granule portions were prepared using melt and wet granulations, blended together prior to compression. An optimum formulation was obtained (X1: 37.10, X2: 2, X3: 42.49 mg). Desirability function was 0.616. F2 and f1 between release profiles of Mucinex® and the optimum formulation were 74 and 3, respectively. An n-value of about 0.5 for both optimum and Mucinex® formulations showed diffusion (Fickian) control mechanism. However, HPMC K100M rise in 70 mg accompanied cetyl alcohol rise in 60 mg led to first order kinetic (n = 0.6962). The K values of 1.56 represented an identical burst drug releases. Cetyl alcohol and starch 1500® modulated guaifenesin release from HPMC K100M matrices, while due to their binding properties, improved its poor flowability and compressibility, too. PMID:29552045
Compacted Multiparticulate Systems for Colon-Specific Delivery of Ketoprofen.
de Alencar, Rodrigo Gomes; de Oliveira, Aline Carlos; Lima, Eliana Martins; da Cunha-Filho, Marcílio Sérgio Soares; Taveira, Stephânia Fleury; Marreto, Ricardo Neves
2017-08-01
Pellet-containing tablets for colon-specific drug delivery present higher targeting efficiency and lower costs when compared with monolithic tablets and pellet-filled capsules, respectively. In this study, pellets containing ketoprofen were coated with different acrylic polymers and submitted to compaction. The influence of formulation and process factors on film integrity was then evaluated. Pellets were prepared via extrusion-spheronization and coated using two acrylic polymers (Eudragit® FS 30 D and Opadry® 94 k28327, PMMA and PMA, respectively). The resulting pellets were mixed with placebo granules and compressed in a hydraulic press. Multiple regression showed that ketoprofen release from pellet-containing tablets is predominantly influenced by pellet content, hardness, friability, and disintegration time. PMA-containing tablets prepared under low compaction force or with low pellet content showed rapid disintegration (<1 min) and ketoprofen release similar to those of uncompressed coated pellets (∼30% at 360 min of experiment). On the other hand, PMMA-containing tablets showed a higher rupture level, and those prepared with higher pellet content gave rise to a non-disintegrating matrix. Coated pellets were shown to be able to target ketoprofen to the colonic region. Targeting capacity was dependent on the physicochemical characteristics of the tablets.
Evaluation of the resistance of a geopolymer-based drug delivery system to tampering.
Cai, Bing; Engqvist, Håkan; Bredenberg, Susanne
2014-04-25
Tamper-resistance is an important property of controlled-release formulations of opioid drugs. Tamper-resistant formulations aim to increase the degree of effort required to override the controlled release of the drug molecules from extended-release formulations for the purpose of non-medical use. In this study, the resistance of a geopolymer-based formulation to tampering was evaluated by comparing it with a commercial controlled-release tablet using several methods commonly used by drug abusers. Because of its high compressive strength and resistance to heat, much more effort and time was required to extract the drug from the geopolymer-based formulation. Moreover, in the drug-release test, the geopolymer-based formulation maintained its controlled-release characteristics after milling, while the drug was released immediately from the milled commercial tablets, potentially resulting in dose dumping. Although the tampering methods used in this study does not cover all methods that abuser could access, the results obtained by the described methods showed that the geopolymer matrix increased the degree of effort required to override the controlled release of the drug, suggesting that the formulation has improved resistance to some common drug-abuse tampering methods. The geopolymer matrix has the potential to make the opioid product less accessible and attractive to non-medical users. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Y J; Assaad, E; Ispas-Szabo, P; Mateescu, M A; Zhu, X X
2011-10-31
The hydration and swelling properties of the tablets made of chitosan, carboxymethyl starch, and a polyelectrolyte complex of these two polysaccharides have been studied by NMR imaging. We studied the effect of pH and ionic strength on the swelling of the tablets and on the diffusion of fluid into the tablets in water and simulated physiological fluids. The pH value of the fluids exerts a more significant effect than their ionic strengths on the swelling of the tablets. The tablets are compared also with those made of cross-linked high amylose starch. The formation of complex helps to keep the integrity of the tablets in various media and render a slow and restricted swelling similar to that of the tablets of the cross-linked high amylase starch, which is significantly lower than the swelling of chitosan and of carboxymethyl starch. The capacities to modulate the release rate of drugs in different media are discussed by comparing the matrices and evaluating the preparation process of the complex. A sustained release of less soluble drugs such as aspirin in gastrointestinal fluids can be provided by the complex, due to the ionic interaction and hydrogen bonding between the drug and the biopolymer complex. Copyright © 2011 Elsevier B.V. All rights reserved.
Chowdary, Y. Ankamma; Raparla, Ramakrishna; Madhuri, Muramshetty
2014-01-01
In the treatment of type 2 diabetes mellitus a continuous therapy is required which is a more complex one. As in these patients there may be a defect in both insulin secretion and insulin action exists. Hence, the treatment depends on the pathophysiology and the disease state. In the present study, multilayered tablets of pioglitazone hydrochloride 15 mg and metformin hydrochloride 500 mg were prepared in an attempt for combination therapy for the treatment of type 2 diabetes mellitus. Pioglitazone HCl was formulated as immediate release layer to show immediate action by direct compression method using combination of superdisintegrants, namely, crospovidone and avicel PH 102. Crospovidone at 20% concentration showed good drug release profile at 2 hrs. Metformin HCl was formulated as controlled release layer to prolong the drug action by incorporating hydrophilic polymers such as HPMC K4M by direct compression method and guar gum by wet granulation method in order to sustain the drug release from the tablets and maintain its integrity so as to provide a suitable formulation. The multilayered tablets were prepared after carrying out the optimization of immediate release layer and were evaluated for various precompression and postcompression parameters. Formulation F13 showed 99.97% of pioglitazone release at 2 hrs in 0.1 N HCl and metformin showed 98.81% drug release at 10 hrs of dissolution in 6.8 pH phosphate buffer. The developed formulation is equivalent to innovator product in view of in vitro drug release profile. The results of all these evaluation tests are within the standards. The procedure followed for the formulation of these tablets was found to be reproducible and all the formulations were stable after accelerated stability studies. Hence, multilayered tablets of pioglitazone HCl and metformin HCl can be a better alternative way to conventional dosage forms. PMID:26556204
Magnetic modulation of release of macromolecules from polymers.
Hsieh, D S; Langer, R; Folkman, J
1981-01-01
Sustained-release systems were made by incorporating bovine serum albumin and magnetic steel beads in an ethylene-vinyl acetate copolymer matrix. When exposed to aqueous medium, the polymer matrix released the albumin slowly and continuously. Application of an oscillating magnetic field increased the release rate by as much as 100%. Intervals of 6-hr periods of magnetic exposure and nonexposure were alternated over a 5-day period, resulting in corresponding increases and decreases in release and establishing a pattern of modulated sustained release. Images PMID:6940193
Design and in vivo evaluation of a patch system based on thiolated polymers.
Hoyer, Herbert; Greindl, Melanie; Bernkop-Schnürch, Andreas
2009-02-01
A new oral patch delivery system has been designed to increase the overall oral bioavailability of drugs within the gastrointestinal tract. The patch system consists of four layered films: a mucoadhesive matrix layer, a water insoluble backing layer, a middle layer and an enteric surface layer. The separation layer between the two matrix layers contained lactose, starch and confectioners' sugar. The matrix layer, exhibiting a diameter of 2.5 mm and a weight of 5 mg, comprised Polycarbophil-cysteine conjugate (49%), fluoresceine isothiocyanate-dextran (26%), glutathione (5%), and mannitol (20%). A standard tablet formulation consisting of the same matrix served as control. Entire fluoresceine isothiocyanate-dextran (FD(4)) was released from the delivery system within 2 h. For in vivo studies patch systems were administered orally to male Sprague-Dawley rats. Maximum FD(4) concentration in blood of the patch system was 46.1 +/- 8.9 ng/mL and was reached 3 h after administration. In contrast c(max) of control tablets displayed 50.5 +/- 14.9 ng/mL after 2 h and the absorption of FD(4) after administration in oral solution was negligible. The absolute bioavailability of orally administered patch systems and control tablets was 0.54% and 0.32% respectively. Results of this study indicate that a prolonged and higher oral bioavailability of FD(4) is obtained with patches than with tablets.
Mikac, Urša; Sepe, Ana; Baumgartner, Saša; Kristl, Julijana
2016-03-07
The formation of a gel coat around xanthan (Xan) tablets, empty or loaded with pentoxifylline (PF), and its release in media differing in pH and ionic strength by NMR, MR imaging, and two release methods were studied. The T1 and T2 NMR relaxation times in gels depend predominantly on Xan concentration; the presence of PF has negligible influence on them. It is interesting that the matrix swelling is primarily regulated by Xan despite high drug loading (25%, 50%). The gastric pH and high ionic strength of the media do not influence the position of the penetration and swelling fronts but do affect the erosion front and gel thickness. The different release profiles obtained in mixing and nonmixing in vitro methods are the consequence of matrix hydration level and erosion at the surface. In water and in diluted acid medium with low ionic strength, the main release mechanism is erosion, whereas in other media (pH 1.2, μ ≥ 0.20 M), anomalous transport dominates as was found out by fitting of measured data with theoretical model. Besides the in vitro investigation that mimics gastric conditions, mathematical modeling makes the product development more successful.
Continuous twin screw granulation of controlled release formulations with various HPMC grades.
Vanhoorne, V; Janssens, L; Vercruysse, J; De Beer, T; Remon, J P; Vervaet, C
2016-09-25
HPMC is a popular matrix former to formulate tablets with extended drug release. Tablets with HPMC are preferentially produced by direct compression. However, granulation is often required prior to tableting to overcome poor flowability of the formulation. While continuous twin screw granulation has been extensively evaluated for granulation of immediate release formulations, twin screw granulation of controlled release formulations including the dissolution behavior of the formulations received little attention. Therefore, the influence of the HPMC grade (viscosity and substitution degree) and the particle size of theophylline on critical quality attributes of granules (continuously produced via twin screw granulation) and tablets was investigated in the current study. Formulations with 20 or 40% HPMC, 20% theophylline and lactose were granulated with water at fixed process parameters via twin screw granulation. The torque was influenced by the viscosity and substitution degree of HPMC, but was not a limiting factor for the granulation process. An optimal L/S ratio was selected for each formulation based on the granule size distribution. The granule size distributions were influenced by the substitution degree and concentration of HPMC and the particle size of theophylline. Raman and UV spectroscopic analysis on 8 sieve fractions of granules indicated an inhomogeneous distribution of theophylline over the size fractions. However, this phenomenon was not correlated with the hydration rate or viscosity of HPMC. Controlled release of theophylline could be obtained over 24h with release profiles close to zero-order. The release of theophylline could be tailored via selection of the substitution degree and viscosity of HPMC. Copyright © 2016 Elsevier B.V. All rights reserved.
Multi-Drug-Loaded Microcapsules with Controlled Release for Management of Parkinson's Disease.
Baek, Jong-Suep; Choo, Chee Chong; Qian, Cheng; Tan, Nguan Soon; Shen, Zexiang; Loo, Say Chye Joachim
2016-07-01
Parkinson's disease (PD) is a progressive disease of the nervous system, and is currently managed through commercial tablets that do not sufficiently enable controlled, sustained release capabilities. It is hypothesized that a drug delivery system that provides controlled and sustained release of PD drugs would afford better management of PD. Hollow microcapsules composed of poly-l-lactide (PLLA) and poly (caprolactone) (PCL) are prepared through a modified double-emulsion technique. They are loaded with three PD drugs, i.e., levodopa (LD), carbidopa (CD), and entacapone (ENT), at a ratio of 4:1:8, similar to commercial PD tablets. LD and CD are localized in both the hollow cavity and PLLA/PCL shell, while ENT is localized in the PLLA/PCL shell. Release kinetics of hydrophobic ENT is observed to be relatively slow as compared to the other hydrophilic drugs. It is further hypothesized that encapsulating ENT into PCL as a surface coating onto these microcapsules can aid in accelerating its release. Now, these spray-coated hollow microcapsules exhibit similar release kinetics, according to Higuchi's rate, for all three drugs. The results suggest that multiple drug encapsulation of LD, CD, and ENT in gastric floating microcapsules could be further developed for in vivo evaluation for the management of PD. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Notario-Pérez, Fernando; Cazorla-Luna, Raúl; Martín-Illana, Araceli; Ruiz-Caro, Roberto; Tamayo, Aitana; Rubio, Juan; Veiga, María-Dolores
2018-01-01
The use of sustained-release mucoadhesive vaginal tablets of antiretroviral drugs as microbicidal formulations can be an effective strategy for reducing the sexual transmission of HIV from men to women, which is a main problem particularly in low- and middle-income countries. Different polymers (hydroxypropylmethyl cellulose (HPMC), chitosan, guar gum and Eudragit ® RS) have proven some good features for this purpose. At this work, these polymers have been combined in pairs in different proportions to enhance the advantages offered by each one individually. The in vitro release of tenofovir from the matrices, ex vivo mucoadhesive capacity (evaluated on vaginal mucosa) and the degree of swelling in simulated vaginal fluid have been assessed. A multimodal pore size distribution is observed in porosimetry studies -carried out with swelling witnesses-, due to the contribution of polymers with different swelling behaviour to the pore formation, and it is corroborated by scanning electron microscopy. X-ray diffraction technique confirms the changes in crystallinity of the formulation after swelling. We can report that the combination of HPMC and chitosan in the same formulation may be useful for the prevention of sexual transmission of HIV, since tablets can be obtained that remain adhered to the vaginal mucosa for 96h, so the drug is released in a sustained manner for 72h. When the formulation contains more chitosan than HPMC the swelling is moderate, making it more comfortable for women to apply. Copyright © 2017. Published by Elsevier Ltd.
Mikac, Urša; Kristl, Julijana; Baumgartner, Saša
2011-05-01
Magnetic resonance imaging is a powerful, non-invasive technique that can help improve our understanding of the hydrogel layer formed on swellable, polymer-matrix tablets, as well as the layer's properties and its influence on drug release. In this paper, the authors review the NMR and MRI investigations of hydrophilic, swellable polymers published since 1994. The review covers NMR studies on the properties of water and drugs within hydrated polymers. In addition, MRI studies using techniques for determining the different moving-front positions within the swollen tablets, the polymer concentration profiles across them, the influence of the incorporated drug, and so on, are presented. Some complementary methods are also briefly presented and discussed. Using MRI, the formation of a hydrogel along with simultaneous determination of the drug's position within it can be observed non-invasively. However, the MRI parameters can influence the signal's intensity and therefore they need to be considered carefully in order to prevent any misinterpretation of the results. MRI makes possible an in situ investigation of swollen-matrix tablets and provides valuable information that can lead, when combined with other techniques, to a better understanding of polymeric systems and a more effective development of optimal dosage forms.
Huang, Yuh-Tyng; Cheng, Chun-Jen; Lai, Tsun-Fwu; Tsai, Tong-Rong; Tsai, Tung-Hu; Chuo, Wen-Ho; Cham, Thau-Ming
2007-04-18
Pyridostigmine bromide (PB) is a reversible acetylcholinesterase inhibitor that has been used as a pretreatment drug for "Soman" nerve gas poisoning in combat to increase survival. The once-daily PB-sustained-release (SR) pellets were developed by extrusion-spheronization and fluid-bed methods in our laboratory, which was followed by zero-order release mechanism. The results showed that the released concentration of acetylcholine (ACh) in skeletal muscle and the released concentration of protein unbound drug in blood were determined by microdialysis technique to have significant differences (P<0.05) among the three dosage forms (IV injection, commercial IR tablets and the PB-SR pellet). The released concentrations of ACh and protein unbound drug for PB-SR pellets were slower than IV injection and commercial IR tablets; this phenomenon indicating that the retention period of drug efficacy in vivo for PB-SR pellet was longer than the others, that is to say, the PB-SR pellets provided with SR effect in vivo as well. We believe that once-daily administered PB-SR pellets would improve limitations of post-exposure antidotes, decrease the frequency of administration and enhance the retention period of drug efficacy in vivo for personnel exposed to contamination situations in wars or terrorist attacks in the future.
Role of cellulose ether polymers on ibuprofen release from matrix tablets.
Vueba, M L; Batista de Carvalho, L A E; Veiga, F; Sousa, J J; Pina, Maria Eugénia
2005-08-01
Cellulose derivatives are the most frequently used polymers in formulations of pharmaceutical products for controlled drug delivery. The main aim of the present work was to evaluate the effect of different cellulose substitutions on the release rate of ibuprofen (IBP) from hydrophilic matrix tablets. Thus, the release mechanism of IBP with methylcellulose (MC25), hydroxypropylcellulose (HPC), and hydroxypropylmethylcellulose (HPMC K15M or K100M) was studied. In addition, the influence of the diluents lactose monohydrate (LAC) and beta-cyclodextrin (beta-CD) was evaluated. Distinct test formulations were prepared containing: 57.14% of IBP, 20.00% of polymer, 20.29% of diluent, 1.71% of talc lubricants, and 0.86% of magnesium stearate as lubricants. Although non-negligible drug-excipient interactions were detected from DSC studies, these were found not to constitute an incompatibility effect. Tablets were examined for their drug content, weight uniformity, hardness, thickness, tensile strength, friability, porosity, swelling, and dissolution performance. Polymers MC25 and HPC were found to be unsuitable for the preparation of this kind of solid dosage form, while HPMC K15M and K100M showed to be advantageous. Dissolution parameters such as the area under the dissolution curve (AUC), the dissolution efficiency (DE(20 h)), dissolution time (t 50%), and mean dissolution time (MDT) were calculated for all the formulations, and the highest MDT values were obtained with HPMC indicating that a higher value of MDT signifies a higher drug retarding ability of the polymer and vice-versa. The analysis of the drug release data was performed in the light of distinct kinetic mathematical models-Kosmeyer-Peppas, Higuchi, zero-, and first-order. The release process was also found to be slightly influenced by the kind of diluent used.
Rajan, Sekar; Colaco, Socorrina; Ramesh, N; Meyyanathan, Subramania Nainar; Elango, K
2014-02-01
This study describes the development and validation of dissolution tests for sustained release Dextromethorphan hydrobromide tablets using an HPLC method. Chromatographic separation was achieved on a C18 column utilizing 0.5% triethylamine (pH 7.5) and acetonitrile in the ratio of 50:50. The detection wavelength was 280 nm. The method was validated and response was found to be linear in the drug concentration range of 10-80 microg mL(-1). The suitable conditions were clearly decided after testing sink conditions, dissolution medium and agitation intensity. The most excellent dissolution conditions tested, for the Dextromethorphan hydrobromide was applied to appraise the dissolution profiles. The method was validated and response was found to be linear in the drug concentration range of 10-80 microg mL(-1). The method was established to have sufficient intermediate precision as similar separation was achieved on another instrument handled by different operators. Mean Recovery was 101.82%. Intra precisions for three different concentrations were 1.23, 1.10 0.72 and 1.57, 1.69, 0.95 and inter run precisions were % RSD 0.83, 1.36 and 1.57%, respectively. The method was successfully applied for dissolution study of the developed Dextromethorphan hydrobromide tablets.
Suberin Fatty Acids from Outer Birch Bark: Isolation and Physical Material Characterization.
Heinämäki, Jyrki; Pirttimaa, Minni M; Alakurtti, Sami; Pitkänen, H Pauliina; Kanerva, Heimo; Hulkko, Janne; Paaver, Urve; Aruväli, Jaan; Yliruusi, Jouko; Kogermann, Karin
2017-04-28
The isolation and physical material properties of suberin fatty acids (SFAs) were investigated with special reference to their potential applications as novel pharmaceutical excipients. SFAs were isolated from outer birch bark (OBB) with a new extractive hydrolysis method. The present simplified isolation process resulted in a moderate batch yield and chemical purity of SFAs, but further development is needed for establishing batch-to-batch variation. Cryogenic milling was the method of choice for the particle size reduction of SFAs powder. The cryogenically milled SFAs powder exhibited a semicrystalline structure with apparent microcrystalline domains within an amorphous fatty acids matrix. The thermogravimetric analysis (TGA) of SFAs samples showed a good thermal stability up to 200 °C, followed by a progressive weight loss, reaching a plateau at about 95% volatilization at about 470 °C. The binary blends of SFAs and microcrystalline cellulose (MCC; Avicel PH 101) in a ratio of 25:75 (w/w) displayed good powder flow and tablet compression properties. The corresponding theophylline-containing tablets showed sustained or prolonged-release characteristics. The physicochemical and bulk powder properties of SFAs isolated from OBB are auspicious in terms of potential pharmaceutical excipient applications.
Preparation and evaluation of enteric coated tablets of hot melt extruded lansoprazole
Alsulays, Bader B.; Kulkarni, Vijay; Alshehri, Sultan M.; Almutairy, Bjad K.; Ashour, Eman A.; Morott, Joseph T.; Alshetaili, Abdullah S.; Park, Jun-Bom; Tiwari, Roshan V.; Repka, Michael A.
2017-01-01
The objective of this work was to use hot-melt extrusion (HME) technology to improve the physiochemical properties of lansoprazole (LNS) to prepare stable enteric coated LNS tablets. For the extrusion process, we chose Kollidon® 12 PF (K12) polymeric matrix. Lutrol® F 68 was selected as the plasticizer and magnesium oxide (MgO) as the alkalizer. With or without the alkalizer, LNS at 10% drug load was extruded with K12 and F68. LNS changed to the amorphous phase and showed better release compared to that of the pure crystalline drug. Inclusion of MgO improved LNS extrudability and release and resulted in over 80% drug release in the buffer stage. Hot-melt extruded LNS was physically and chemically stable after 12 months of storage. Both formulations were studied for compatibility with Eudragit® L 100-55. The optimized formulation was compressed into a tablet followed by coating process utilizing a pan coater using L 100-55 as an enteric coating polymer. In a two-step dissolution study, the release profile of the enteric coated LNS tablets in the acidic stage was less than 10% of the LNS, while that in the buffer stage was more than 80%. Drug content analysis revealed the LNS content to be 97%, indicating the chemical stability of the enteric coated tablet after storage for 6 months. HME, which has not been previously used for LNS, is a valuable technique to reduce processing time in the manufacture of enteric coated formulations of an acid-sensitive active pharmaceutical ingredient as compared to the existing methods. PMID:27486807
Gök, Mehmet Koray; Özgümüş, Saadet; Demir, Kamber; Cirit, Ümüt; Pabuccuoğlu, Serhat; Cevher, Erdal; Özsoy, Yıldız; Bacınoğlu, Süleyman
2016-01-20
The aim of this study was to prepare and evaluate the mucoadhesive, biocompatible and biodegradable progesterone containing vaginal tablets based on modified starch copolymers for the estrus synchronization of ewes. Starch-graft-poly(acrylic acid) copolymers (S-g-PAA) were synthesized and characterized. The vaginal tablets were fabricated with S-g-PAA and their equilibrium swelling degree (Qe) and matrix erosion (ME%) were determined in lactate buffer solution. In vitro, mucoadhesive properties of the tablets were investigated by using ewe vaginal mucosa and in vivo residence time were also investigated. In vitro and in vivo progesterone release profiles from the tablets were compared with two commercial products. Tablet formulation containing wheat starch based grafted copolymer (WS-g-PAA)gc indicated promising results and might be convenient as an alternative product to the commercial products in veterinary medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reddy, Arun B; Reddy, Narendar D
2017-07-01
Clarithromycin (CM), a broad spectrum macrolide antibiotic used to eradicate H. pylori in peptic ulcer. Clarithromycin (CM) is well absorbed from the gastrointestinal tract, but has a bioavailability of 50% due to rapid biodegradation. The aim of this investigation was to increase the gastric residence time, and to control the drug release of clarithromycin by formulating into multiple unit floating mini-tablets. Floating tablets were prepared by using direct compression method with HPMC K 4 M and Polyox WSR 1105 as release retarded polymers and sodium bicarbonate as gas generating agent. The prepared mini-tablets were evaluated for thickness, weight variation, friability, hardness, drug content, in vitro buoyancy, swelling studies, in vitro dissolution studies by using modified Rossett-Rice test and in vivo radiographic studies in healthy human volunteers in fasting conditions. DSC analysis revealed that no interaction between drug and excipients. All the physical parameters of the tablets were within the acceptable limits. The optimized formulation (F6) had showed controlled drug release of 99.16±3.22% in 12 h, by zero-order release kinetics, along with floating lag time of 9.5±1.28 s and total floating time of 12±0.14 h. X-ray imaging studies revealed that in vivo gastric residence time of clarithromycin floating mini-tablet in the stomach was about 3.5 h. The results demonstrated that the developed floating mini-tablets of clarithromycin caused significant enhancement in gastric retention time along with sustained effect and increased oral bioavailability. © Georg Thieme Verlag KG Stuttgart · New York.
Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu
2002-11-01
The release properties of phenylpropanolamine hydrochloride (PPA) from ethylcellulose (EC, ethylcellulose 10 cps (EC#10) and/or 100 cps (EC#100)) matrix granules prepared by the extrusion granulation method were examined. The release process could be divided into two parts, and was well analyzed by applying square-root time law and cube root law equations, respectively. The validity of the treatments was confirmed by the fitness of the simulation curve with the measured curve. At the initial stage, PPA was released from the gel layer of swollen EC in the matrix granules. At the second stage, the drug existing below the gel layer dissolved, and was released through the gel layer. Also, the time and release ratio at the connection point of the simulation curves was examined to determine the validity of the analysis. Comparing the release properties of PPA from the two types of EC matrix granules, EC#100 showed more effective sustained release than EC#10. On the other hand, changes in the release property of the EC#10 matrix granule were relatively more clear than that of the EC#100 matrix granule. Thus, it was supposed that EC#10 is more available for controlled and sustained release formulations than EC#100.
Melocchi, Alice; Loreti, Giulia; Del Curto, Maria Dorly; Maroni, Alessandra; Gazzaniga, Andrea; Zema, Lucia
2015-06-01
The exploitation of hot-melt extrusion and injection molding for the manufacturing of immediate-release (IR) tablets was preliminarily investigated in view of their special suitability for continuous manufacturing, which represents a current goal of pharmaceutical production because of its possible advantages in terms of improved sustainability. Tablet-forming agents were initially screened based on processability by single-screw extruder and micromolding machine as well as disintegration/dissolution behavior of extruded/molded prototypes. Various polymers, such as low-viscosity hydroxypropylcellulose, polyvinyl alcohol, polyvinyl alcohol-polyethylene glycol graft copolymer, various sodium starch glycolate grades (e.g., Explotab(®) CLV) that could be processed with no need for technological aids, except for a plasticizer, were identified. Furthermore, the feasibility of both extruded and molded IR tablets from low-viscosity hydroxypropylcellulose or Explotab(®) CLV was assessed. Explotab(®) CLV, in particular, showed thermoplastic properties and a very good aptitude as a tablet-forming agent, starting from which disintegrating tablets were successfully obtained by either techniques. Prototypes containing a poorly soluble model drug (furosemide), based on both a simple formulation (Explotab(®) CLV and water/glycerol as plasticizers) and formulations including dissolution/disintegration adjuvants (soluble and effervescent excipients) were shown to fulfill the USP 37 dissolution requirements for furosemide tablets. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Yedurkar, Pramod; Dhiman, Munish Kumar; Petkar, Kailash; Sawant, Krutika
2013-05-01
Mucoadhesive bilayer buccal patch has been developed to improve the bioavailability and therapeutic efficacy along with providing sustained release of pravastatin sodium. Buccal patches comprising of varying composition of Carbopol 934P and HPMC K4M were designed and characterized for surface pH, swelling index, in vitro bioadhesion, mechanical properties, in vitro drug release and in vivo pharmacokinetic and pharmacodynamics performance. All formulations exhibited satisfactory technological parameters and followed non-fickian drug release mechanism. Bilayer buccal patch containing Carbopol 934P and HPMC K4M in 4:6 ratio (PBP5) was considered optimum in terms of swelling, mucoadhesion, mechanical properties and in vitro release profile. Pharmacokinetic studies in rabbits showed significantly higher (p < 0.05) Cmax (75.63 ± 6.98 ng/mL), AUC(0-8) (311.10 ± 5.89 ng/mL/h) and AUC(0-∞) (909.42 ± 5.89 ng/mL/h) than pravastatin oral tablet (Cmax - 67.40 ± 9.23 ng/mL, AUC(0-8)-130.33 ± 10.25 ng/mL/h and AUC(0-∞)-417.17 ± 5.89 ng/mL/h)). While, increased tmax of buccal patch indicated its sustained release property in comparison to oral tablet. Pharmacodynamic studies in rabbits showed statistically significant difference (p < 0.005) in the reduction of TG (131.10 ± 10.23 mg/dL), VLDL (26.00 ± 2.56 mg/dL) and LDL level (8.99 ± 3.01 mg/dL) as compared to oral conventional tablet. In conclusion, bioavailability from the developed buccal patch of pravastatin was 2.38 times higher than the oral dosage form, indicating its therapeutic potential in the treatment of atherosclerosis.
Kulinowski, Piotr; Woyna-Orlewicz, Krzysztof; Rappen, Gerd-Martin; Haznar-Garbacz, Dorota; Węglarz, Władysław P; Dorożyński, Przemysław P
2015-04-30
Motivation for the study was the lack of dedicated and effective research and development (R&D) in vitro methods for oral, generic, modified release formulations. The purpose of the research was to assess multimodal in vitro methodology for further bioequivalence study risk minimization. Principal results of the study are as follows: (i) Pharmaceutically equivalent quetiapine fumarate extended release dosage form of Seroquel XR was developed using a quality by design/design of experiment (QbD/DoE) paradigm. (ii) The developed formulation was then compared with originator using X-ray microtomography, magnetic resonance imaging and texture analysis. Despite similarity in terms of compendial dissolution test, developed and original dosage forms differed in micro/meso structure and consequently in mechanical properties. (iii) These differences were found to be the key factors of failure of biorelevant dissolution test using the stress dissolution apparatus. Major conclusions are as follows: (i) Imaging methods allow to assess internal features of the hydrating extended release matrix and together with the stress dissolution test allow to rationalize the design of generic formulations at the in vitro level. (ii) Technological impact on formulation properties e.g., on pore formation in hydrating matrices cannot be overlooked when designing modified release dosage forms. Copyright © 2015 Elsevier B.V. All rights reserved.
Pharmacokinetics of propafenone hydrochloride sustained-release capsules in male beagle dogs.
Pan, Liping; Qian, Yafang; Cheng, Minlu; Gu, Pan; He, Yanna; Xu, Xiaowen; Ding, Li
2015-01-01
This paper describes the development and validation of a liquid chromatography-mass spectrometric assay for propafenone and its application to a pharmacokinetic study of propafenone administered as a new propafenone hydrochloride sustained-release capsule (SR-test), as an instant-release tablet (IR-reference) and as the market leader sustained-release capsule (Rythmol, SR-reference) in male beagle dogs (n=8). In Study A comparing SR-test with IR-reference in a crossover design T max and t 1/2 of propafenone for SR-test were significantly higher than those for IR-reference while C max and AUC were lower demonstrating the sustained release properties of the new formulation. In Study B comparing SR-test with SR-reference the observed C max and AUC of propafenone for SR-test (124.5±140.0 ng/mL and 612.0±699.2 ng·h/mL, respectively) were higher than for SR-reference (78.52±72.92 ng/mL and 423.6±431.6 ng·h/mL, respectively) although the differences were not significant. Overall, the new formulation has as good if not better sustained release characteristics to the market leader formulation.
Scheidel, Bernhard; Maritz, Martina A; Gschwind, Yves J; Steigerwald, Kerstin; Guth, Volker; Kovacs, Peter; Rey, Helene
2017-11-01
To evaluate and to compare the bioavailability, the influence of food intake on the bioavailability, and the safety and tolerability of a newly-developed oxycodone once-daily (OOD) prolonged-release tablet with an established oxycodone twice-daily (OTD) prolonged-release tablet after single-dose administration under fasting or fed conditions as well as after multiple-dose administration. Three single-center, open-label, randomized, balanced, two-treatment, two-period, two-sequence crossover studies were conducted. In each study, 36 healthy volunteers were randomized to receive 10 mg oxycodone daily as OOD (oxycodone HCL 10-mg PR tablets XL (Develco Pharma Schweiz AG, Pratteln, Switzerland); administration of 1 tablet in the morning) or as OTD (reference formulation: oxygesic 5-mg tablets (Mundipharma GmbH, Limburg an der Lahn, Germany); administration of 1 tablet in the morning and 1 tablet in the evening). Tablets were administered once daily or twice daily under fasting conditions (study 1) or under fed conditions (study 2) as well as after multiple-dose administration (study 3). A sufficient number of blood samples were taken for describing plasma profiles and for calculation of pharmacokinetic parameters. Plasma concentrations of oxycodone were determined by LC-MS/MS. Safety and tolerability were monitored and assessed in all three studies. Plasma profiles of OOD reveal sustained concentrations of oxycodone over the complete dosing interval of 24 hours. In comparison to the OTD reference formulation, the OOD test formulation showed a slightly slower increase of concentrations within the absorption phase and similar plasma concentrations at the maximum and at the end of the dosing interval (24 hours). Extent of bioavailability (AUC), maximum plasma concentrations (Cmax), and plasma concentrations at the end of the dosing interval (Cτ,ss,24h) of OOD could be classified as comparable to OTD considering 90% confidence intervals (CIs) and acceptance limits of 80.00 - 125.00%. Bioavailability of OOD was not influenced by concomitant food intake. OOD and OTD were generally well tolerated, a difference between the two products could not be observed. The new 10-mg OOD formulation provides sustained oxycodone plasma concentrations over the dosing interval of 24 hours and is suitable for once-daily administration. Bioavailability of OOD could be classified as comparable to the twice-daily administration of the OTD reference formulation. The new formulation widens and optimizes the range of strong opioid drug products in patient-centered therapy of chronic pain with simplified dosing and better compliance. .
NASA Astrophysics Data System (ADS)
Fernández-Sanjurjo, M. J.; Alvarez-Rodríguez, E.; Núñez-Delgado, A.; Fernández-Marcos, M. L.; Romar-Gasalla, A.
2014-12-01
The objective of this work was to study nutrients release from two compressed nitrogen-potassium-phosphorous (NPK) fertilizers. In the Lourizán Forest Center, tablet-type controlled-release fertilizers (CRF) were prepared by compressing various mixtures of fertilizers without covers or binders. We used soil columns (50 cm long and 7.3 cm inner diameter) that were filled with soil from the surface layer (0-20 cm) of an A horizon corresponding to a Cambic Umbrisol. Tablets of two slow-release NPK fertilizers (11-18-11 or 8-8-16) were placed into the soil (within the first 3 cm), and then water was percolated through the columns in a saturated regime for 80 days. Percolates were analyzed for N, P, K+, Ca2+ and Mg2+. These elements were also determined in soil and fertilizer tablets at the end of the trials. Nutrient concentrations were high in the first leachates and reached a steady state when 1426 mm of water had been percolated, which is equivalent to approximately 1.5 years of rainfall in this geographic area. In the whole trial, both tablets lost more than 80% of their initial N, P and K contents. However, K+, Ca2+ and Mg2+ were the most leached, whereas N and P were lost in leachates to a lesser extent. Nutrient release was slower from the tablet with a composition of 8-8-16 than from the 11-18-11 fertilizer. In view of that, the 8-8-16 tablet can be considered more adequate for crops with a nutrient demand sustained over time. At the end of the trial, the effects of these fertilizers on soil chemical parameters were still evident, with a significant increase of pH, available Ca2+, Mg2+, K+, P and effective cation exchange capacity (eCEC) in the fertilized columns, as well as a significant decrease in exchangeable Al3+, reaching values < 0.08 cmol (+) kg-1.
Chen, Yin-xia; Du, Jiang-bo; Zhang, Yi-fan; Chen, Xiao-yan; Zhong, Da-fang
2015-04-01
A chiral LC-MS/MS method for the simultaneous analysis of desvenlafaxine (DVS) enantiomers in human plasma was developed and applied to a pharmacokinetic study on 12 Chinese healthy volunteers. d6-Desvenlafaxine was used as internal standard (IS). Chromatographic separation was performed on the Astec Chirobiotic V chiral column (150 mm x 4.6 mm, 5 μm). The assay was linear over the concentration range of 0.500-150 ng x mL(-1) for both enantiomers (r2 > 0.99). The method was successfully applied to a stereoselective pharmacokinetic study of 100 mg desvenlafaxine sustained release tablets on 12 Chinese healthy volunteers under fasting conditions. The results showed that the pharmacokinetic parameters were similar to both enantiomers in Chinese healthy volunteers. The AUC(0-t), and C(max) of the two enantiomers were about 1.5 times higher than those of blacks and whites reported in the literature.
Mechanistic modelling of drug release from a polymer matrix using magnetic resonance microimaging.
Kaunisto, Erik; Tajarobi, Farhad; Abrahmsen-Alami, Susanna; Larsson, Anette; Nilsson, Bernt; Axelsson, Anders
2013-03-12
In this paper a new model describing drug release from a polymer matrix tablet is presented. The utilization of the model is described as a two step process where, initially, polymer parameters are obtained from a previously published pure polymer dissolution model. The results are then combined with drug parameters obtained from literature data in the new model to predict solvent and drug concentration profiles and polymer and drug release profiles. The modelling approach was applied to the case of a HPMC matrix highly loaded with mannitol (model drug). The results showed that the drug release rate can be successfully predicted, using the suggested modelling approach. However, the model was not able to accurately predict the polymer release profile, possibly due to the sparse amount of usable pure polymer dissolution data. In addition to the case study, a sensitivity analysis of model parameters relevant to drug release was performed. The analysis revealed important information that can be useful in the drug formulation process. Copyright © 2013 Elsevier B.V. All rights reserved.
Vanhoorne, V; Vanbillemont, B; Vercruysse, J; De Leersnyder, F; Gomes, P; Beer, T De; Remon, J P; Vervaet, C
2016-05-30
The aim of this study was to evaluate the potential of twin screw granulation for the continuous production of controlled release formulations with hydroxypropylmethylcellulose as hydrophilic matrix former. Metoprolol tartrate was included in the formulation as very water soluble model drug. A premix of metoprolol tartrate, hydroxypropylmethylcellulose and filler (ratio 20/20/60, w/w) was granulated with demineralized water via twin screw granulation. After oven drying and milling, tablets were produced on a rotary Modul™ P tablet press. A D-optimal design (29 experiments) was used to assess the influence of process (screw speed, throughput, barrel temperature and screw design) and formulation parameters (starch content of the filler) on the process (torque), granule (size distribution, shape, friability, density) and tablet (hardness, friability and dissolution) critical quality attributes. The torque was dominated by the number of kneading elements and throughput, whereas screw speed and filling degree only showed a minor influence on torque. Addition of screw mixing elements after a block of kneading elements improved the yield of the process before milling as it resulted in less oversized granules and also after milling as less fines were present. Temperature was also an important parameter to optimize as a higher temperature yielded less fines and positively influenced the aspect ratio. The shape of hydroxypropylmethylcellulose granules was comparable to that of immediate release formulations. Tensile strength and friability of tablets were not dependent on the process parameters. The use of starch as filler was not beneficial with regard to granule and tablet properties. Complete drug release was obtained after 16-20h and was independent of the design's parameters. Copyright © 2016 Elsevier B.V. All rights reserved.
Guziewicz, Nicholas; Best, Annie; Perez-Ramirez, Bernardo; Kaplan, David L.
2011-01-01
The development of sustained delivery systems compatible with protein therapeutics continues to be a significant unmet need. A lyophilized silk fibroin hydrogel matrix (lyogel) for the sustained release of pharmaceutically relevant monoclonal antibodies is described. Sonication of silk fibroin prior to antibody incorporation avoids exposing the antibody to the sol-gel transition inducing shear stress. Fourier Transform Infrared (FTIR) analysis showed no change in silk structural composition between hydrogel and lyogel or with increasing silk fibroin concentration. Antibody release from hydrogels occurred rapidly over 10 days regardless of silk concentration. Upon lyophilization, sustained antibody release was observed over 38 days from lyogels containing 6.2% (w/w) silk fibroin and above. In 3.2% (w/w) silk lyogels, antibody release was comparable to hydrogels. Swelling properties of lyogels followed a similar threshold behavior. Lyogels at 3.2% (w/w) silk recovered approximately 90% of their fluid mass upon rehydration, while approximately 50% fluid recovery was observed at 6.2% (w/w) silk and above. Antibody release was primarily governed by hydrophobic/hydrophilic silk-antibody interactions and secondarily altered by the hydration resistance of the lyogel. Hydration resistance was controlled by altering β-sheet (crystalline) density of the matrix. The antibody released from lyogels maintained biological activity. Silk lyogels offer an advantage as a delivery matrix over other hydrogel materials for the slow release of the loaded protein, making lyogels suitable for long-term sustained release applications. PMID:21216004
Effect of Antiadherents on the Physical and Drug Release Properties of Acrylic Polymeric Films.
Ammar, Hussein O; Ghorab, Mamdouh M; Felton, Linda A; Gad, Shadeed; Fouly, Aya A
2016-06-01
Antiadherents are used to decrease tackiness of a polymer coating during both processing and subsequent storage. Despite being a common excipient in coating formulae, antiadherents may affect mechanical properties of the coating film as well as drug release from film-coated tablets, but how could addition of antiadherents affect these properties and to what extent and is there a relation between the physical characteristics of the tablet coat and the drug release mechanisms? The aim of this study was to evaluate physical characteristics of films containing different amounts of the antiadherents talc, glyceryl monostearate, and PlasACRYL(TM) T20. Eudragit RL30D and Eudragit RS30D as sustained release polymers and Eudragit FS30D as a delayed release material were used. Polymer films were characterized by tensile testing, differential scanning calorimetry (DSC), microscopic examination, and water content as calculated from loss on drying. The effect of antiadherents on in vitro drug release for the model acetylsalicylic acid tablets coated with Eudragit FS30D was also determined. Increasing talc concentration was found to decrease the ability of the polymer films to resist mechanical stress. In contrast, glyceryl monostearate (GMS) and PlasACRYL produced more elastic films. Talc at concentrations higher than 25% caused negative effects, which make 25% concentration recommended to be used with acrylic polymers. All antiadherents delayed the drug release at all coating levels; hence, different tailoring of drug release may be achieved by adjusting antiadherent concentration with coating level.
Transit of pharmaceutical dosage forms through the small intestine.
Davis, S S; Hardy, J G; Fara, J W
1986-01-01
The gastrointestinal transit of pharmaceutical dosage forms has been measured in 201 studies in normal subjects using gamma scintigraphy. Solutions, small pellets, and single units (matrix tablets and osmotic pumps) were administered with different amounts of food in the stomach, ranging from fasted state to heavy breakfast. Gastric emptying was affected by the nature of the dosage form and the presence of food in the stomach. Solutions and pellets were emptied even when the stomach was in the digestive mode, while single units were retained for long periods of time, depending on the size of the meal. In contrast, measured intestinal transit times were independent of the dosage form and fed state. The small intestinal transit time of about three hours (mean +/- 1 h SEM) has implications for the design of dosage forms for the sustained release of drugs in specific positions in the gastrointestinal tract. PMID:3732895
Shao, Z J; Farooqi, M I; Diaz, S; Krishna, A K; Muhammad, N A
2001-01-01
A new commercially available sustained-release matrix material, Kollidon SR, composed of polyvinylacetate and povidone, was evaluated with respect to its ability to modulate the in vitro release of a highly water-soluble model compound, diphenhydramine HCl. Kollidon SR was found to provide a sustained-release effect for the model compound, with certain formulation and processing variables playing an important role in controlling its release kinetics. Formulation variables affecting the release include the level of the polymeric material in the matrix, excipient level, as well as the nature of the excipients (water soluble vs. water insoluble). Increasing the ratio of a water-insoluble excipient, Emcompress, to Kollidon SR enhanced drug release. The incorporation of a water-soluble excipient, lactose, accelerated its release rate in a more pronounced manner. Stability studies conducted at 40 degrees C/75% RH revealed a slow-down in dissolution rate for the drug-Kollidon SR formulation, as a result of polyvinylacetate relaxation. Further studies demonstrated that a post-compression curing step effectively stabilized the release pattern of formulations containing > or = 47% Kollidon SR. The release mechanism of Kollidon-drug and drug-Kollidon-Emcompress formulations appears to be diffusion controlled, while that of the drug-Kollidon-lactose formulation appears to be controlled predominantly by diffusion along with erosion.
Soft nanocomposites of gelatin and poly(3-hydroxybutyrate) nanoparticles for dual drug release.
Bini, Rafael A; Silva, Mônica F; Varanda, Laudemir C; da Silva, Marcelo A; Dreiss, Cécile A
2017-09-01
We developed a nanocomposite gel composed of gelatin and poly(3-hydroxybutyrate) polymeric nanoparticles (PNP) to be used as an injectable gel for the contemporaneous, dual sustained release of bioactive molecules. The hydrogel matrix was formed by a very simple process, using either the physical gelation of gelatin or the natural enzyme transglutaminase to covalently cross-link the gelatin chains in the presence of embedded PNP. Oscillatory rheological measurements showed that the addition of the PNP induced an increase in the storage modulus compared to pure gelatin gels, for both physical and chemical gels. Micrographs from scanning electron microscopy revealed that the presence of PNP disrupted the native structure of the gelatin chains in the hydrogel matrix. Dual drug encapsulation was achieved with curcumin (CM) in the PNP and naproxen sodium(NS) in the gelatin matrix. In vitro release studies showed that the hydrogel matrix acts both as a physical and chemical barrier, delaying the diffusion of the drugs. An initial burst release was observed in the first hours of the measurement, and around 90% was released on the third day for naproxen sodium. In free PNP, 82% of curcumin was relased after four days, while when PNP were embedded in the gelatin matrix only 40% was released over the same time period. Overall, these simple, sustainable soft nanocomposites show potential as an injectable co-sustained drug release system. Copyright © 2017 Elsevier B.V. All rights reserved.
Jannin, V; Pochard, E; Chambin, O
2006-02-17
Lipid excipients are usually used for the development of sustained-release formulations. When used in relatively high quantities, Precirol ATO 5 imparts sustained-release properties to solid oral dosage forms, by forming a lipid matrix. To control or adjust the drug release kinetics from such lipid matrix however, one must often resort to complementary ingredients or techniques. This study investigates the influence of poloxamers (Lutrol) included in lipid matrices composed of glyceryl palmitostearate (Precirol ATO 5) on their dissolution performance and their stability. The addition of these hydrophilic polymers in the lipid matrix increased the amount of theophylline released thanks to the swelling of the hydrophilic polymer and the creation of a porous network into the inert lipid matrix. The grade and the quantity of Lutrol could modulate the extent of drug release. Theophylline was released mainly by the matrix erosion but also by diffusion through the pores as suggested by the Peppas' model. Moreover, the addition of Lutrol enhanced the stability during storage. The theophylline release was quite steady after 6 months in different conditions (temperature and humidity). Thus, the mixture of glyceryl palmitostearate and poloxamers is an approach with many advantages for the development of controlled-release formulations by capsule molding.
Effects of Dextroamphetamine on Helicopter Pilot Performance: A UH-60 Simulator Study
1994-08-01
dextroamphetamine sulfate, supplied in 5, 10, and 15 mg Spansule sustained-release capsules, 5 mg tablets, and an elixir supplying 5 mg amphetamine per 5...Reference, 1993). Adverse reactions The most common cardiovascular adverse effects are palpitations, tachycardia, and elevated blood pressure. The most
Kulinowski, Piotr; Hudy, Wiktor; Mendyk, Aleksander; Juszczyk, Ewelina; Węglarz, Władysław P; Jachowicz, Renata; Dorożyński, Przemysław
2016-06-01
In the last decade, imaging has been introduced as a supplementary method to the dissolution tests, but a direct relationship of dissolution and imaging data has been almost completely overlooked. The purpose of this study was to assess the feasibility of relating magnetic resonance imaging (MRI) and dissolution data to elucidate dissolution profile features (i.e., kinetics, kinetics changes, and variability). Commercial, hydroxypropylmethyl cellulose-based quetiapine fumarate controlled-release matrix tablets were studied using the following two methods: (i) MRI inside the USP4 apparatus with subsequent machine learning-based image segmentation and (ii) dissolution testing with piecewise dissolution modeling. Obtained data were analyzed together using statistical data processing methods, including multiple linear regression. As a result, in this case, zeroth order release was found to be a consequence of internal structure evolution (interplay between region's areas-e.g., linear relationship between interface and core), which eventually resulted in core disappearance. Dry core disappearance had an impact on (i) changes in dissolution kinetics (from zeroth order to nonlinear) and (ii) an increase in variability of drug dissolution results. It can be concluded that it is feasible to parameterize changes in micro/meso morphology of hydrated, controlled release, swellable matrices using MRI to establish a causal relationship between the changes in morphology and drug dissolution. Presented results open new perspectives in practical application of combined MRI/dissolution to controlled-release drug products.
Sánchez, María Teresa; Ruiz, María Adolfina; Castán, Herminia; Morales, María Encarnación
2018-01-15
Vulvovaginal candidosis caused by Candida spp. is the most prevalent vaginal infection in Europe and the second one in EE.UU, so it has become a major female concern. Probiotics bacteria have been proposed as an alternative treatment with the aim of avoiding the adverse effects associated with conventional therapies including antibiotics and other aggressive drugs for the vaginal mucosa and microbiota. The purpose of this work was to design and develop a novel vaginal tablet that contained Lactobacillus spp. bacteria as a treatment against vulvovaginal infections. A total of 21 two-layers vaginal tablets, which contained different polymeric ratios, were proposed. However, formulation F4 (20mg Na-CMC; 50mg Carbopol® 934; 20mg chitosan) was selected as optimal according to its swelling index and dissolution/erosion capability. F4 tablets showed suitable technological properties for vaginal administration as well as mucoadhesion time (24.36±0.88h) and force (0.0941N). Disintegration assay in simulated vaginal fluid (SVF, pH5.5) showed that effervescent layer disappeared in 27.48±0.05s whilst matrix layer was totally gelled in 1h. Two different release profiles were achieved; on the one hand, a promptly release due to the dissolution of both effervescent layer and matrix layer's surface (1.10×10 8 CFU/g), on the second hand, a prolonged released of the remaining bacteria until 24h (5.48×10 7 CFU/g). For stability and storage study, it was found that bacteria viability was constant until 90days in both ways of storage, in a desiccator and at room temperature, with a final dosage of 10 8 CFU/g which was considered appropriate for vaginal therapy (10 8 -10 10 CFU/g). Copyright © 2017 Elsevier B.V. All rights reserved.
Cai, Yangping; Li, Youshan; Li, Shu; Gao, Tian; Zhang, Lu; Yang, Zhe; Fan, Zhengfu; Bai, Chujie
2016-09-01
The objective of this article is to develop and validate the level A in vitro-in vivo correlation (IVIVC) for three different formulations of tramadol hydrochloride. The formulations included were Tramazac® (Ml, conventional tablet) and TRD CONTIN® (M2, sustained release tablet), and a new controlled release tablet prepared on the basis of osmotic technology (formulation IVB). To develop level A IVIVC, in vivo data were deconvoluted into absorption data by using Wagner-Nelson equation. The absorption data (percent drug absorbed) was plotted against percent drug dissolved keeping the former along x-axis and the later along y-axis. The highest determination coefficient (R² = 0.9278) of the level A IVIVC was observed for formulation MI, and then for M2 (R² = 0.9046) and IVB (R² = 0.8796). Additionally, plasma drug levels were approximated from in vitio dissolution data using convolution approach to calculate the prediction error (%), which was found to be < 10%.
Storage and sustained release of volatile substances from a hollow silica matrix
NASA Astrophysics Data System (ADS)
Wang, Jiexin; Ding, Haomin; Tao, Xia; Chen, Jianfeng
2007-06-01
Porous hollow silica nanospheres (PHSNSs) prepared by adopting a nanosized CaCO3 template were utilized for the first time as a novel carrier for the storage and sustained release of volatile substances. Two types of volatile substances, Indian pipal from perfumes and peroxyacetic acid from disinfectants, were selected and then tested by one simple adsorption process with two separate comparative carriers, i.e. activated carbon and solid porous silica. It was demonstrated that a high storage capacity (9.6 mlperfume/mgcarrier) of perfume could be achieved in a PHSNS matrix, which was almost 14 times as much as that of activated carbon. The perfume release profiles showed that PHSNSs exhibited sustained multi-stage release behaviour, while the constant release of activated carbon at a low level was discerned. Further, a Higuchi model study proved that the release process of perfume in both carriers followed a Fickian diffusion mechanism. For peroxyacetic acid as a disinfectant model, PHSNSs also displayed a much better delayed-delivery process than a solid porous silica system owing to the existence of unique hollow frameworks. Therefore, the aforementioned excellent sustained-release behaviours would make PHSNSs a promising carrier for storage and sustained delivery applications of volatile substances.
Qiu, Shi; Li, Mingzhong
2015-02-01
The aim of this study was to investigate the effects of coformers on phase transformation and release profiles of carbamazepine (CBZ) cocrystals in hydroxypropyl methylcellulose (HPMC) based matrix tablets. It has been found that selection of different coformers of saccharin (SAC) and cinnamic acid (CIN) can affect the stability of CBZ cocrystals in solution, resulting in significant differences in the apparent solubility of CBZ. The dissolution advantage of CBZ-SAC cocrystals can only be shown for a short period during dissolution because of the fast conversion to its dihydrate form (DH). HPMC can partially inhibit the crystallisation of CBZ DH during dissolution of CBZ-SAC cocrystal. However, the increased viscosity of HPMC dissolution medium reduced the dissolution rate of CBZ-SAC cocrystals. Therefore the CBZ-SAC cocrystal formulation did not show any significant advantage in CBZ release rate. In contrast the improved CBZ dissolution rate of CBZ-CIN cocrystal can be realised in both solution and formulation due to its high stability. In conclusion, exploring and understanding the mechanisms of the phase transformation of pharmaceutical cocrystals in aqueous medium for selection of lead cocrystals is the key for success of product development. Copyright © 2014 Elsevier B.V. All rights reserved.
Application of ion exchange resin in floating drug delivery system.
Upadhye, Abhijeet A; Ambike, Anshuman A; Mahadik, Kakasaheb R; Paradkar, Anant
2008-10-01
The purpose of this study was to explore the application of low-density ion exchange resin (IER) Tulsion(R) 344, for floating drug delivery system (FDDS), and study the effect of its particle size on rate of complexation, water uptake, drug release, and in situ complex formation. Batch method was used for the preparation of complexes, which were characterized by physical methods. Tablet containing resin with high degree of crosslinking showed buoyancy lag time (BLT) of 5-8 min. Decreasing the particle size of resin showed decrease in water uptake and drug release, with no significant effect on the rate of complexation and in situ complex formation for both preformed complexes (PCs) and physical mixtures (PMs). Thus, low-density and high degree of crosslinking of resin and water uptake may be the governing factor for controlling the initial release of tablet containing PMs but not in situ complex formation. However, further sustained release may be due to in situ complex formation.
Gioumouxouzis, Christos I; Chatzitaki, Aikaterini-Theodora; Karavasili, Christina; Katsamenis, Orestis L; Tzetzis, Dimitrios; Mystiridou, Emmanouela; Bouropoulos, Nikolaos; Fatouros, Dimitrios G
2018-06-14
Three-dimensional printing is being steadily deployed as manufacturing technology for the development of personalized pharmaceutical dosage forms. In the present study, we developed a hollow pH-responsive 3D printed tablet encapsulating drug loaded non-coated and chitosan-coated alginate beads for the targeted colonic delivery of 5-fluorouracil (5-FU). A mixture of Eudragit® L100-55 and Eudragit® S100 was fabricated by means of hot-melt extrusion (HME) and the produced filaments were printed utilizing a fused deposition modeling (FDM) 3D printer to form the pH-responsive layer of the tablet with the rest comprising of a water-insoluble poly-lactic acid (PLA) layer. The filaments and alginate particles were characterized for their physicochemical properties (thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction), their surface topography was visualized by scanning electron microscopy and the filaments' mechanical properties were assessed by instrumented indentation testing and tensile testing. The optimized filament formulation was 3D printed and the structural integrity of the hollow tablet in increasing pH media (pH 1.2 to pH 7.4) was assessed by means of time-lapsed microfocus computed tomography (μCT). In vitro release studies demonstrated controlled release of 5-FU from the alginate beads encapsulated within the hollow pH-sensitive tablet matrix at pH values corresponding to the colonic environment (pH 7.4). The present study highlights the potential of additive manufacturing in fabricating controlled-release dosage forms rendering them pertinent formulations for further in vivo evaluation.
Skak, Nikolaj; Elhauge, Torben; Dayno, Jeffrey M; Lindhardt, Karsten
A novel technology platform (Guardian™ Technology, Egalet Corporation, Wayne, PA) was used to manufacture morphine abuse-deterrent (AD), extended-release (ER), injection-molded tablets (morphine-ADER-IMT; ARYMO® ER [morphine sulfate] ER tablets; Egalet Corporation), a recently approved morphine product with AD labeling. The aim of this article is to highlight how the features of Guardian™ Technology are linked to the ER profile and AD characteristics of morphine-ADER-IMT. The ER profile of morphine-ADER-IMT is attributed to the precise release of morphine from the polymer matrix. The approved dosage strengths of morphine-ADER-IMT are bioequivalent to corresponding dosage strengths of morphine ER (MS Contin®; Purdue Pharma LP, Stamford, CT). Morphine-ADER-IMT was very resistant to physical manipulations intended to reduce particle size, with <10 percent of particles being reduced to <500µm, regarded by the US Food and Drug Administration as a relevant cutoff for potential insufflation in their generic solid oral AD opioid guidance. Furthermore, morphine was not readily extracted from the polymer matrix of morphine-ADER-IMT in small- or large-volume solvent extraction studies that evaluated the potential for intravenous and oral abuse. The ER profile and AD characteristics of morphine-ADER-IMT are a result of Guardian™ Technology. The combination of the polyethylene oxide matrix and the use of injection molding differentiate morphine-ADER-IMT from other approved AD opioids that deter abuse using physical and chemical barriers. The high degree of flexibility of the Guardian™ Technology enables the development of products that can be tailored to almost any desired release profile; as such, it is a technology platform that may be useful for the development of a wide range of pharmaceutical products.
Kasperek, Regina; Polski, Andrzej; Sobótka-Polska, Karolina; Poleszak, Ewa
2014-01-01
Polymers are widely used in drug manufacturing. Researchers studied their impact on the bioavailability of active substances or on physical properties of tablets for many years. To study the influence of polymer excipients, such as microcrystalline cellulose (Avicel PH 101, Avicel PH 102), croscarmellose sodium, crospovidone or polyvinylpyrrolidone, on the release profile of papaverine hydrochloride from tablets and on the physical properties of tablets. Six series of uncoated tablets were prepared by indirect method, with previous wet granulation. Tablets contained papaverine hydrochloride and various excipients. The physical properties of the prepared granules, tablets and the release profile of papaverine hydrochloride from tablets were examined. The content of papaverine hydrochloride from the release study were determined spectrophotometrically. All tablets met the pharmacopoeia requirements during following tests: the disintegration time of tablets, uncoated tablets resistance to abrasion, the weight uniformity and dose formulations, their dimensions, the resistance to crushing of tablets and the drug substance content in the tablet. In four cases more than 80% of papaverine was released up to 2 min, in one formula it was up to 5 min, and in last one up to 10 min. Tablets containing crospovidone disintegrated faster than tablets with croscarmellose sodium. Adding gelatinized starch to the tablet composition increased the disintegration time, hardness and delayed the release of papaverine. During the wet granulation process, granules containing polyvinylpyrrolidone were characterized by a suitable flow properties and slightly prolonged disintegration time. Tablets containing Avicel PH 102 compared to tablets with Avicel PH 101 had less weight loss during the test of mechanical resistance, improved hardness and faster release profile of papaverine from tablets.
Claeys, Bart; Vervaeck, Anouk; Vervaet, Chris; Remon, Jean Paul; Hoogenboom, Richard; De Geest, Bruno G
2012-10-15
Here we evaluate poly(2-ethyl-2-oxazoline)s (PEtOx) as a matrix excipient for the production of oral solid dosage forms by hot melt extrusion (HME) followed by injection molding (IM). Using metoprolol tartrate as a good water-soluble model drug we demonstrate that drug release can be delayed by HME/IM, with the release rate controlled by the molecular weight of the PEtOx. Using fenofibrate as a lipophilic model drug we demonstrate that relative to the pure drug the dissolution rate is strongly enhanced by formulation in HME/IM tablets. For both drug molecules we find that solid solutions, i.e. molecularly dissolved drug in a polymeric matrix, are obtained by HME/IM. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Joo-Il; Park, Sang-Wook; Lim, Jhong-Jae; Sohn, Se-Il; Shin, Ji-Su; Park, Sang Cheol; Jang, Young Pyo; Chung, Eun Kyoung; Lee, Hong-Woo; Lee, Kyung-Tae
2017-12-20
In this study, we investigated the gastroprotective effect of an isopropanol extract from the aerial parts of Artemisia princeps (IPAP) and developed a gastroretentive floating tablet of IPAP (IPAP-FR) for maximized local gastroprotective effects. Pre-treatment with IPAP ameliorated the gastric mucosal hemorrhagic lesions in ethanol/HCl- or indomethacin- treated rats. IPAP decreased mucosal hemorrhage of gastric ulcers induced by ethanol or indomethacin plus pyloric ligation in rats. The optimized floating tablet, IPAP-FR, floated on medium surface with more sustained eupatilin release compared to the non-floating control tablet. X-ray photographs in beagle dogs showed that IPAPFR was retained for > 2 h in the stomach. In the ethanol-induced gastric ulcer rat model, the gastric hemorrhagic lesion was improved more substantially with IPAP-FR compared to the non-floating control tablet. Based on these data, our data suggest that IPAP-FR has an improved therapeutic potential for the treatment of gastric ulcer.
Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing.
Goyanes, Alvaro; Chang, Hanah; Sedough, Daniel; Hatton, Grace B; Wang, Jie; Buanz, Asma; Gaisford, Simon; Basit, Abdul W
2015-12-30
The aim of this work was to explore the feasibility of using fused deposition modelling (FDM) 3D printing (3DP) technology with hot melt extrusion (HME) and fluid bed coating to fabricate modified-release budesonide dosage forms. Budesonide was sucessfully loaded into polyvinyl alcohol filaments using HME. The filaments were engineered into capsule-shaped tablets (caplets) containing 9mg budesonide using a FDM 3D printer; the caplets were then overcoated with a layer of enteric polymer. The final printed formulation was tested in a dynamic dissolution bicarbonate buffer system, and two commercial budesonide products, Cortiment® (Uceris®) and Entocort®, were also investigated for comparison. Budesonide release from the Entocort® formulation was rapid in conditions of the upper small intestine while release from the Cortiment® product was more delayed and very slow. In contrast, the new 3D printed caplet formulation started to release in the mid-small intestine but release then continued in a sustained manner throughout the distal intestine and colon. This work has demonstrated the potential of combining FDM 3DP with established pharmaceutical processes, including HME and film coating, to fabricate modified release oral dosage forms. Copyright © 2015. Published by Elsevier B.V.
Phase transitions of antibiotic clarithromycin forms I, IV and new form VII crystals.
Ito, Masataka; Shiba, Rika; Watanabe, Miteki; Iwao, Yasunori; Itai, Shigeru; Noguchi, Shuji
2018-06-01
Metastable crystal form I of the antibiotic clarithromycin has a pharmaceutically valuable characteristic that its crystalline phase transition can be applied for its sustained release from tablets. The phase transition of form I was investigated in detail by single crystal and powder X-ray analyses, dynamic vapor sorption analysis and thermal analysis. The single crystal structure of form I revealed that form I was not an anhydrate crystal but contained a partially occupied water molecule in the channel-like void space. Dynamic vapor sorption (DVS) analysis demonstrated that form I crystals reversibly sorbed water molecules in two steps when the relative humidity (RH) increased and finally transited to hydrate form IV at 95% RH. DVS analysis also showed that when the RH decreased form IV crystals lost water molecules at 40% RH and transited to the newly identified anhydrate crystal form VII. Form VII reversibly transited to form IV at lower RH than form I, suggesting that form I is more suitable for manufacturing a sustained-release tablet of CAM utilizing the crystalline phase transition. Copyright © 2018 Elsevier B.V. All rights reserved.
Amador Ríos, Zoriely; Ghaly, Evone Shehata
2015-01-01
Multiparticulate systems are used in the development of controlled release systems. The objective of this study was to determine the effect of the wax level, the type of excipient, and the exposure of the tablets to thermal treatment on drug release. Spheres from multiparticulate system with different wax levels and excipients were developed using the drug Lisinopril and compressed into tablets; these tablets were analyzed to determine the drug release. All tablets contained constant level of Lisinopril (10% w/w) and Compritol (30% and 50% w/w). Also, as a diluent, all of them contained 30% w/w Avicel and 30% w/w dibasic calcium phosphate or lactose, or 60% Avicel. Tablets compacted from spheres prepared by extruder/marumerizer and using 30% w/w lipid and 60% Avicel released 84% of drug at six hours of dissolution testing, while tablets of the same composition but prepared using 30% dibasic calcium phosphate and 30% Avicel released 101%. When the tablets were thermally treated, the drug release reduced. As the percent of lipid increased in the formulation, the drug release decreased. Compaction of tablets prepared from spheres with wax has potential for controlling the drug release.
NASA Astrophysics Data System (ADS)
Geng, Hongquan; Song, Hua; Qi, Jun; Cui, Daxiang
2011-12-01
We fabricated a novel vascular endothelial growth factor (VEGF)-loaded poly(lactic- co-glycolic acid) (PLGA)-nanoparticles (NPs)-embedded thermo-sensitive hydrogel in porcine bladder acellular matrix allograft (BAMA) system, which is designed for achieving a sustained release of VEGF protein, and embedding the protein carrier into the BAMA. We identified and optimized various formulations and process parameters to get the preferred particle size, entrapment, and polydispersibility of the VEGF-NPs, and incorporated the VEGF-NPs into the (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic®) F127 to achieve the preferred VEGF-NPs thermo-sensitive gel system. Then the thermal behavior of the system was proven by in vitro and in vivo study, and the kinetic-sustained release profile of the system embedded in porcine bladder acellular matrix was investigated. Results indicated that the bioactivity of the encapsulated VEGF released from the NPs was reserved, and the VEGF-NPs thermo-sensitive gel system can achieve sol-gel transmission successfully at appropriate temperature. Furthermore, the system can create a satisfactory tissue-compatible environment and an effective VEGF-sustained release approach. In conclusion, a novel VEGF-loaded PLGA NPs-embedded thermo-sensitive hydrogel in porcine BAMA system is successfully prepared, to provide a promising way for deficient bladder reconstruction therapy.
The use of thiolated polymers as carrier matrix in oral peptide delivery--proof of concept.
Bernkop-Schnürch, Andreas; Pinter, Yvonne; Guggi, Davide; Kahlbacher, Hermann; Schöffmann, Gudrun; Schuh, Maximilian; Schmerold, Ivo; Del Curto, Maria Dorly; D'Antonio, Mauro; Esposito, Pierandrea; Huck, Christian
2005-08-18
It was the aim of this study to develop an oral delivery system for the peptide drug antide. The stability of the therapeutic peptide towards gastrointestinal peptidases was evaluated. The therapeutic agent and the permeation mediator glutathione were embedded in the thiolated polymer chitosan-4-thio-butylamidine conjugate (chitosan-TBA conjugate) and compressed to tablets. Drug release studies were performed in the dissolution test apparatus according to the Pharmacopoeia Europea using the paddle method and demineralized water as release medium. In order to avoid mucoadhesion of these delivery systems already in the oral cavity and oesophagus tablets were coated with a triglyceride. These tablets were orally given to pigs (weight: 50+/-2 kg; Edelschwein Pietrain). Moreover, antide was administered intravenously, subcutaneously and orally in solution. Results showed stability of antide towards pepsin, trypsin and chymotrypsin. In contrast, antide was rapidly degraded by elastase. Consequently a stomach-targeted delivery system was designed. Drug release studies demonstrated an almost zero-order controlled release of antide over 8 h. In vivo studies demonstrated a relative bioavailability of 34.4% for the subcutaneous administration. Oral administration of antide in solution led to no detectable concentrations of the drug in plasma at all. In contrast, administering antide being incorporated in the thiolated polymer resulted in a significant uptake of the peptide. The absolute and relative bioavailability was determined to be 1.1% and 3.2%, respectively.
Razavi, Mahboubeh; Karimian, Hamed; Yeong, Chai Hong; Chung, Lip Yong; Nyamathulla, Shaik; Noordin, Mohamed Ibrahim
2015-01-01
The present research was aimed at formulating a metformin HCl sustained-release formulation from a combination of polymers, using the wet granulation technique. A total of 16 formulations (F1–F16) were produced using different combinations of the gel-forming polymers: tamarind kernel powder, salep (palmate tubers of Orchis morio), and xanthan. Post-compression studies showed that there were no interactions between the active drug and the polymers. Results of in vitro drug-release studies indicated that the F10 formulation which contained 5 mg of tamarind kernel powder, 33.33 mg of xanthan, and 61.67 mg of salep could sustain a 95% release in 12 hours. The results also showed that F2 had a 55% similarity factor with the commercial formulation (C-ER), and the release kinetics were explained with zero order and Higuchi models. The in vivo study was performed in New Zealand White rabbits by gamma scintigraphy; the F10 formulation was radiolabeled using samarium (III) oxide (153Sm2O3) to trace transit of the tablets in the gastrointestinal tract. The in vivo data supported the retention of F10 formulation in the gastric region for 12 hours. In conclusion, the use of a combination of polymers in this study helped to develop an optimal gastroretentive drug-delivery system with improved bioavailability, swelling, and floating characteristics. PMID:26273196
Abou el Ela, Amal El Sayeh F.; Hassan, Maha A.; El- Maraghy, Dalia A.
2013-01-01
The floating beads have been employed to make a sustained release of the drug in the stomach and to decrease the dose of the drug and hence overcome its side effects. The common benefits of the floating beads were it is easy preparation, without the need of a high temperature, and high percentage of the drug entrapment. In the present work, the Ketorolac tromethamine (KT) floating beads were prepared by extrusion congealing method utilizing calcium carbonate as a gas forming agent. The physical characters of the produced beads were investigated such as KT yield, KT loading, and entrapment efficiency of the drug. In addition, floating behavior, swelling, particle size, morphology and KT stability were also evaluated. In vitro drug release study was carried out, and the kinetics of the release was evaluated using the linear regression method. Furthermore, the in vivo analgesic effect of KT after oral administration of the selected formula of floating beads (F10) was carried out using hot plate and tail flick methods. Oral commercial KT tablets and KT solution were used for the comparison. The prepared beads remained floated for more than 8 h. The optimized formulation (F10) exhibited prolonged drug release (more than 8 h) and the drug release follows the Higuchi kinetic model, with a Fickian diffusion mechanism according to Korsmeyer-Peppas (n = 0.466). Moreover, F10 showed a sustained analgesic effect as compared to the commercial tablet. PMID:25161380
Zolpidem comes as a tablet (Ambien) and an extended-release (long-acting) tablet (Ambien CR) to take ... the tongue. If you are taking the tablets, extended-release tablets, sublingual tablets (Edluar), or oral spray, ...
Chen, Muwan; Le, Dang Q S; Hein, San; Li, Pengcheng; Nygaard, Jens V; Kassem, Moustapha; Kjems, Jørgen; Besenbacher, Flemming; Bünger, Cody
2012-01-01
Bone tissue engineering implants with sustained local drug delivery provide an opportunity for better postoperative care for bone tumor patients because these implants offer sustained drug release at the tumor site and reduce systemic side effects. A rapid prototyped macroporous polycaprolactone scaffold was embedded with a porous matrix composed of chitosan, nanoclay, and β-tricalcium phosphate by freeze-drying. This composite scaffold was evaluated on its ability to deliver an anthracycline antibiotic and to promote formation of mineralized matrix in vitro. Scanning electronic microscopy, confocal imaging, and DNA quantification confirmed that immortalized human bone marrow-derived mesenchymal stem cells (hMSC-TERT) cultured in the scaffold showed high cell viability and growth, and good cell infiltration to the pores of the scaffold. Alkaline phosphatase activity and osteocalcin staining showed that the scaffold was osteoinductive. The drug-release kinetics was investigated by loading doxorubicin into the scaffold. The scaffolds comprising nanoclay released up to 45% of the drug for up to 2 months, while the scaffold without nanoclay released 95% of the drug within 4 days. Therefore, this scaffold can fulfill the requirements for both bone tissue engineering and local sustained release of an anticancer drug in vitro. These results suggest that the scaffold can be used clinically in reconstructive surgery after bone tumor resection. Moreover, by changing the composition and amount of individual components, the scaffold can find application in other tissue engineering areas that need local sustained release of drug.
Chen, Muwan; Le, Dang QS; Hein, San; Li, Pengcheng; Nygaard, Jens V; Kassem, Moustapha; Kjems, Jørgen; Besenbacher, Flemming; Bünger, Cody
2012-01-01
Bone tissue engineering implants with sustained local drug delivery provide an opportunity for better postoperative care for bone tumor patients because these implants offer sustained drug release at the tumor site and reduce systemic side effects. A rapid prototyped macroporous polycaprolactone scaffold was embedded with a porous matrix composed of chitosan, nanoclay, and β-tricalcium phosphate by freeze-drying. This composite scaffold was evaluated on its ability to deliver an anthracycline antibiotic and to promote formation of mineralized matrix in vitro. Scanning electronic microscopy, confocal imaging, and DNA quantification confirmed that immortalized human bone marrow-derived mesenchymal stem cells (hMSC-TERT) cultured in the scaffold showed high cell viability and growth, and good cell infiltration to the pores of the scaffold. Alkaline phosphatase activity and osteocalcin staining showed that the scaffold was osteoinductive. The drug-release kinetics was investigated by loading doxorubicin into the scaffold. The scaffolds comprising nanoclay released up to 45% of the drug for up to 2 months, while the scaffold without nanoclay released 95% of the drug within 4 days. Therefore, this scaffold can fulfill the requirements for both bone tissue engineering and local sustained release of an anticancer drug in vitro. These results suggest that the scaffold can be used clinically in reconstructive surgery after bone tumor resection. Moreover, by changing the composition and amount of individual components, the scaffold can find application in other tissue engineering areas that need local sustained release of drug. PMID:22904634
Tomassini, L; Michailova, D; Naplatanova, D; Slavtschev, P
1979-12-01
The authors investigated the release of isoniazid from repository tablets as related to form, processing technology, strength constant and storage for 5 years. On determining the diffusion coefficient (D), the initial dissolution rate (Vo) and the time required for the diffusion of the releasing medium to the middle of the tablet (t1/2), it was found that the difference in release rate between the flat and the biconvex tablets is small. Furthermore, it was stated that the three-layer tablets have very high D and Vo values and very low t1/2 values, for what reason they are unsuited for repository tablets of the composition under investigation. Moreover, it was found that an increase of the strength constant does not affect the D, t1/2 and Vo values, and that the release of isoniazid is retarded only in flat tablets with the highest strength constant. Storage exerts no effect on the drug release from these tablets. The industrial production of these tablets is under way.
Hosny, Khaled M; Aljaeid, Bader M
2014-07-01
The aim of this study was to prepare sildenafil citrate as solid lipid nanoparticles (SLNs), in order to find an innovative way for alleviating the disadvantages associated with commercially available sildenafil citrate tablets. These limitations include poor solubility and extensive first-pass metabolism, resulting in low (40%) bioavailability and short elimination half-life (4 h). SLNs were prepared by hot homogenization followed by ultrasonication. Solubility of sildenafil citrate in different solid lipids was measured, effect of process variables as surfactant type and concentration, homogenization time, ultrasonication time and charge-inducing agent on the particle size, zeta potential and encapsulation efficiency were also determined. Furthermore, in vitro drug release, stability and in vivo pharmacokinetics were studied in rabbits Results: The best SLN formula consisted of 2% precirol ATO5, 0.5% phosphatidylcholine, 2.5% gelucire 44/14, 0.125% stearylamine, had an average particle size of 28.5 nm with 95.34% entrapment efficiency and demonstrated a controlled drug release over 24 h. An in vivo pharmacokinetic study revealed enhanced bioavailability by > 1.87 fold, and the mean residence time was longer than that for the commercially available tablet. SLN could be a promising carrier for sustained/prolonged sildenafil citrate release with enhanced oral bioavailability.
El Maghraby, Gamal Mohamed; Elzayat, Ehab Mostafa; Alanazi, Fars Kaed
2014-03-01
Alginate vehicles are capable of forming a gel matrix in situ when they come into contact with gastric medium in the presence of calcium ions. However, the gel structure is pH dependent and can break after gastric emptying, leading to dose dumping. The aim of this work was to develop modified in situ gelling alginate formulations capable of sustaining dextromethorphan release throughout the gastrointestinal tract. Alginate solution (2 %, m/m) was used as a vehicle for the tested formulations. Solid matrix of the drug and Eudragit S 100 was prepared by dissolving the drug and polymer in acetone. The organic solvent was then evaporated and the deposited solid matrix was micronized, sieved and dispersed in alginate solution to obtain candidate formulations. The release behavior of dextromethorphan was monitored and evaluated in a medium simulating the gastric and intestinal pH. Drug-polymer compatibility and possible solid-state interactions suggested physical interaction through hydrogen bonding between the drug and the polymer. A significant decrease in the rate and extent of dextromethorphan release was observed with increasing Eudragit S 100 concentration in the prepared particles. Most formulations showed sustained release profiles similar to that of a commercial sustained-release liquid based on ion exchange resin. The release pattern indicated strict control of drug release both under gastric and intestinal conditions, suggesting the potential advantage of using a solid dispersion of drug-Eudragit S 100 to overcome the problem of dose dumping after the rupture of the pH dependent alginate gels.
Controlled-release tablet formulation of isoniazid.
Jain, N K; Kulkarni, K; Talwar, N
1992-04-01
Guar (GG) and Karaya gums (KG) alone and in combination with hydroxy-propylmethylcellulose (HPMC) were evaluated as release retarding materials to formulate a controlled-release tablet dosage form of isoniazid (1). In vitro release of 1 from tablets followed non-Fickian release profile with rapid initial release. Urinary excretion studies in normal subjects showed steady-state levels of 1 for 13 h. In vitro and in vivo data correlated (r = 0.9794). The studies suggested the potentiality of GG and KG as release retarding materials in formulating controlled-release tablet dosage forms of 1.
NASA Astrophysics Data System (ADS)
Honarbakhsh, Sara
A biodegradable and controlled drug delivery system has been developed herein composed of electrospun polymeric nanofibers impregnated with cargo loaded Red clover necrotic mosaic virus (RCNMV)---a robust plant virus---as the drug carrier nanoparticle. In this system, controlled drug release is achieved by altering the porosity of the biodegradable matrix as well as controlling the position and distribution of the cargo loaded nanocarriers in the matrix. Solution electrospinning as well as dipping method are used to create and to impregnate the matrix (the fibers of which possess uniformly distributed nano-size surface pores) with cargo loaded nanocarriers. Prior to the impregnation stage of cargo loaded nanocarriers into the matrix, compatibility of a group of candidate cargos (Ampicillin, Novanthrone, Doxorubicin and Ethidium Bromide) and RCNMV functionality with potential electrospinning solvents were investigated and a solvent with the least degradative effect was selected. In order to achieve both sustained and immediate drug release profiles, cargo loaded nanocarriers were embedded into the matrix---through co-spinning process---as well as on the surface of matrix fibers---through dipping method. SEM, TEM and Fluorescent Light Microscopy images of the medicated structures suggested that the nanocarriers were incorporated into/on the matrix. In vitro release assays were also carried out the results of which confirmed having obtained sustained release in the co-spun medicated structures where as dipped samples showed an immediate release profile.
Rekhi, G S; Nellore, R V; Hussain, A S; Tillman, L G; Malinowski, H J; Augsburger, L L
1999-06-02
The objective of this study, was to examine the influence of critical formulation and processing variables as described in the AAPS/FDA Workshop II report on scale-up of oral extended-release dosage forms, using a hydrophilic polymer hydroxypropyl methylcellulose (Methocel K100LV). A face-centered central composite design (26 runs+3 center points) was selected and the variables studied were: filler ratio (lactose:dicalcium phosphate (50:50)), polymer level (15/32.5/50%), magnesium stearate level (1/1.5/2%), lubricant blend time (2/6/10 min) and compression force (400/600/800 kg). Granulations (1.5 kg, 3000 units) were manufactured using a fluid-bed process, lubricated and tablets (100 mg metoprolol tartrate) were compressed on an instrumented Manesty D3B rotary tablet press. Dissolution tests were performed using USP apparatus 2, at 50 rpm in 900 ml phosphate buffer (pH 6.8). Responses studied included percent drug released at Q1 (1 h), Q4, Q6, Q12. Analysis of variance indicated that change in polymer level was the most significant factor affecting drug release. Increase in dicalcium phosphate level and compression force were found to affect the percent released at the later dissolution time points. Some interaction effects between the variables studied were also found to be statistically significant. The drug release mechanism was predominantly found to be Fickian diffusion controlled (n=0.46-0.59). Response surface plots and regression models were developed which adequately described the experimental space. Three formulations having slow-, medium- and fast-releasing dissolution profiles were identified for a future bioavailability/bioequivalency study. The results of this study provided the framework for further work involving both in vivo studies and scale-up.
Feng, Yi-Geng; Chen, Lei; Zhou, Zhi-Heng
2013-11-01
To investigate the clinical efficacy of Shuganyiyang Capsule combined with conventional Western medicine (tamsulosin hydrochloride sustained release tablets + prostat tablets) for the treatment of type III prostatitis complicated by erectile dysfunction (ED). Eighty patients with type III prostatitis complicated by ED were equally randomized to an experimental and a control group, the former treated with Shuganyiyang Capsule combined with tamsulosin hydrochloride sustained release tablets and prostat tablets, while the latter with tamsulosin hydrochloride and prostat only, both for 8 weeks. Then the prostatitis symptoms, erectile function and psychological conditions of the patients were evaluated using NIH-CPSI, IIEF-5, and hospital anxiety and depression scale (HADA and HADD) respectively. The rates of recovery, excellence, effectiveness and ineffectiveness were calculated. The scores on NIH-CPSI, IIEF-5, HADA and HADD obtained at 4 and 8 weeks after treatment showed statistically significant differences between the two time points as well as from the baseline (P < 0.01). At 8 weeks, the scores on NIH-CPSI, IIEF-5, HADA and HADD were 6.83 +/- 4.96, 21.03 +/- 2.54, 6.05 +/- 1.62, and 5.35 +/- 3.30 in the experimental group, as compared with 7.55 +/- 4.89, 17.68 +/- 4.15, 6.88 +/- 2.45, and 7.85 +/- 3.77 in the control (P < 0.05). The rate of effectiveness was significantly higher in the experimental than in the control group (90% [36/40] vs 70% [28/40], P < 0.05). Shuganyiyang Capsule combined with conventional Western medicine, such as alpha blockers and galenica, produces definite effect on chronic prostatitis complicated by ED, improves the psychological conditions of the patient, and enhances the therapeutic efficiency of chronic prostatits.
Shivakumar, H N; Desai, B G; Pandya, Saumyak; Karki, S S
2007-01-01
Glipizide was complexed with beta-cyclodextrin in an attempt to enhance the drug solubility. The phase solubility diagram was classified as A(L) type, which was characterized by an apparent 1:1 stability constant that had a value of 413.82 M(-1). Fourier transform infrared spectrophotometry, differential scanning calorimetry, powder x-ray diffractometry and proton nuclear magnetic resonance spectral analysis indicated considerable interaction between the drug and beta-cyclodextrin. A 2(3) factorial design was employed to prepare hydroxypropyl methylcellulose (HPMC) matrix tablets containing the drug or its complex. The effect of the total polymer loads (X1), levels of HPMC K100LV (X9), and complexation (X3) on release at first hour (Y1), 24 h (Y2), time taken for 50% release (Y3), and diffusion exponent (Y4) was systematically analyzed using the F test. Mathematical models containing only the significant terms (P < 0.05) were generated for each parameter by multiple linear regression analysis and analysis of variance. Complexation was found to exert a significant effect on Y1, Y2, and Y3, whereas total polymer loads significantly influenced all the responses. The models generated were validated by developing two new formulations with a combination of factors within the experimental domain. The experimental values of the response parameters were in close agreement with the predicted values, thereby proving-the validity of the generated mathematical models.
Kulinowski, Piotr; Młynarczyk, Anna; Dorożyński, Przemysław; Jasiński, Krzysztof; Gruwel, Marco L H; Tomanek, Bogusław; Węglarz, Władysław P
2012-12-01
To resolve contradictions found in morphology of hydrating hydroxypropylmethyl cellulose (HPMC) matrix as studied using Magnetic Resonance Imaging (MRI) techniques. Until now, two approaches were used in the literature: either two or three regions that differ in physicochemical properties were identified. Multiparametric, spatially and temporally resolved T(2) MR relaxometry in situ was applied to study the hydration progress in HPMC matrix tablets using a 11.7 T MRI system. Two spin-echo based pulse sequences-one of them designed to specifically study short T(2) signals-were used. Two components in the T(2) decay envelope were estimated and spatial distributions of their parameters, i.e. amplitudes and T(2) values, were obtained. Based on the data, five different regions and their temporal evolution were identified: dry glassy, hydrated solid like, two interface layers and gel layer. The regions were found to be separated by four evolving fronts identified as penetration, full hydration, total gelification and apparent erosion. The MRI results showed morphological details of the hydrating HPMC matrices matching compound theoretical models. The proposed method will allow for adequate evaluation of controlled release polymeric matrix systems loaded with drug substances of different solubility.
Notario-Pérez, Fernando; Martín-Illana, Araceli; Cazorla-Luna, Raúl; Ruiz-Caro, Roberto; Peña, Juan; Veiga, María-Dolores
2018-05-30
Sustained-release vaginal microbicides hold out great hope for the prevention of sexual transmission of HIV from men to women. Tenofovir (TFV) -an antiretroviral drug- sustained-release vaginal compacts combining two release control systems (by drug-loading granules with hydrophobic polymers and incorporating them in a hydrophilic matrix) are proposed in this work as a possible microbicide. The polymers used for the drug granules are Eudragit® RS (ERS), an acrylic derivative, and Zein, a maize protein. The hydrophilic matrix is composed of a mixture of hydroxypropylmethyl cellulose (HPMC) and chitosan (CH). The thermal, microscopic, spectrophotometric and X-ray diffraction analysis showed that the drug was not altered during the granulation process. Studies of TFV release, swelling and ex vivo mucoadhesion were subsequently performed on simulated vaginal fluid. The formulation whereby TFV is granulated using twice its weight in ERS, and then including these granules in a matrix in which the CH predominates over HPMC, allows the sustained release of TFV for 144 h, mucoadhesion to the vaginal mucosa for 150 h and a moderate swelling, making it the most suitable formulation of all those studied. These compacts would therefore offer women protection against the sexual acquisition of HIV. Copyright © 2018 Elsevier B.V. All rights reserved.
Kojima, Masazumi; Nakagami, Hiroaki
2002-12-01
The water mobility and diffusivity in the gel-layer of hydrating low-substituted hydroxypropyl cellulose (LH41) tablets with or without a drug were investigated by magnetic resonance imaging (MRI) and compared with those properties in the gel-layer of hydroxypropylmethyl cellulose (HPMC) and hydroxypropyl cellulose (HPC) tablets. For this purpose, a localized image-analysis method was newly developed, and the spin-spin relaxation time (T(2)) and apparent self-diffusion coefficient (ADC) of water in the gel-layer were visualized in one-dimensional maps. Those maps showed that the extent of gel-layer growth in the tablets was in the order of HPC>HPMC>LH41, and there was a water mobility gradient across the gel-layers of all three tablet formulations. The T(2) and ADC in the outer parts of the gel-layers were close to those of free water. In contrast, these values in the inner parts of the gel-layer decreased progressively; suggesting that the water mobility and diffusivity around the core interface were highly restricted. Furthermore, the correlation between the T(2) of (1)H proton in the gel-layer of the tablets and the drug release rate from the tablets was observed.
... a condition that causes facial nerve pain). Carbamazepine extended-release capsules (Equetro brand only) are also used ... comes as a tablet, a chewable tablet, an extended-release (long-acting) tablet, an extended-release capsule, ...
Chua, Hui Ming; Hauet Richer, Nathalie; Swedrowska, Magda; Ingham, Stephen; Tomlin, Stephen; Forbes, Ben
2016-01-07
Circadin 2 mg prolonged-release tablet is the only licensed melatonin product available in the UK. Circadin is indicated for patients with primary insomnia aged 55 and over, but is more widely used "off-label" to treat sleep disorders especially in the paediatric population. Children and older people often have difficulty swallowing tablets and dividing the tablet is sometimes required to ease administration. The aim of this study was to measure the release profile of melatonin from Circadin tablets when divided or crushed, and compare this with release from intact tablets. Dissolution testing was also performed for unlicensed melatonin products for comparison. Dissolution tests were performed using the pharmacopoeial paddle apparatus, with melatonin release analyzed by high performance liquid chromatography. Melatonin content, hardness, friability, and disintegration of the products were also evaluated. The prolonged release of melatonin from Circadin tablets was unlike that of any other product tested. When divided into halves, Circadin preserved most of the prolonged-release characteristic (f2 = 58), whereas quarter-cut and crushed tablet had a more immediate melatonin release profile. Circadin is significantly less expensive and should be preferred to unlicensed medicines which are not pharmaceutically equivalent and offer less quality assurance.
[Production and assessing release of imipramine and magnesium from tablets].
Kasperek, Regina; Zimmer, Łukasz; Szalast-Pietrzak, Agnieszka; Marzec, Zbigniew; Poleszak, Ewa
2014-01-01
In the pharmaceutical technology there is a trend to produce tablets composed of several medicinal substances to increase therapeutic effect and reduce the frequency of drug administration. In the literature there are reports concerning pharmacological studies in which a potentiation of the effects has been observed after a co-administration of antidepressant imipramine and magnesium. Currently, there is no formulation on the market comprising imipramine and magnesium, therefore, it was decided to produce uncoated tablets. In order to prepare the tablets by direct compression, it was necessary to select suitable excipients. The aim of the study was to elaborate the composition and to prepare the tablets with imipramine and magnesium, as well as to assess the quality of the tablets by physical characteristics and by the release study of the active substances. In order to prepare the tablets, compositions of different polymers and other excipients were added. The tablets were produced by direct compression method in a tablet press. Physical properties of the obtained tablets and the release of the active substances into an acidic medium in a paddle apparatus were tested. The contents of imipramine and magnesium were determined by different methods: spectrophotometrically and atomic absorption spectrometry, respectively. The composition of excipients necessary to produce tablets comprising imipramine and magnesium was established. All of prepared tablets were in compliance with the pharmacopoeial requirements. The release tests showed that above 80% of imipramine was released within 20-35 min and 80-76% of magnesium up to 45 min from the composed tablets and one-ingredient tablets, respectively. The compositions of excipients for tablets consisting of imipramine and magnesium were presented. The active substances were released within 45 min in the acidic medium, and the administration of these substances in the composed tablets did not affect pharmaceutical availability.
3D printed, controlled release, tritherapeutic tablet matrix for advanced anti-HIV-1 drug delivery.
Siyawamwaya, Margaret; du Toit, Lisa C; Kumar, Pradeep; Choonara, Yahya E; Kondiah, Pierre P P D; Pillay, Viness
2018-04-12
A 3D-Bioplotter® was employed to 3D print (3DP) a humic acid-polyquaternium 10 (HA-PQ10) controlled release fixed dose combination (FDC) tablet comprising of the anti-HIV-1 drugs, efavirenz (EFV), tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC). Chemical interactions, surface morphology and mechanical strength of the FDC were ascertained. In vitro drug release studies were conducted in biorelevant media followed by in vivo study in the large white pigs, in comparison with a market formulation, Atripla®. In vitro-in vivo correlation of results was undertaken. EFV, TDF and FTC were successfully entrapped in the 24-layered rectangular prism-shaped 3DP FDC with a loading of ∼12.5 mg/6.3 mg/4 mg of EFV/TDF/FTC respectively per printed layer. Hydrogen bonding between the EFV/TDF/FTC and HA-PQ10 was detected which was indicative of possible drug solubility enhancement. The overall surface of the tablet exhibited a fibrilla structure and the 90° inner pattern was determined to be optimal for 3DP of the FDC. In vitro and in vivo drug release profiles from the 3DP FDC demonstrated that intestinal-targeted and controlled drug release was achieved. A 3DP FDC was successfully manufactured with the aid of a 3D-Bioplotter in a single step process. The versatile HA-PQ10 entrapped all drugs and achieved an enhanced relative bioavailability of EFV, TDF, and FTC compared to the market formulation for potentially enhanced HIV treatment. Copyright © 2018 Elsevier B.V. All rights reserved.
Zeeshan, Farrukh; Bukhari, Nadeem Irfan
2010-06-01
Modified-release multiple-unit tablets of loratadine and pseudoephedrine hydrochloride with different release profiles were prepared from the immediate-release pellets comprising the above two drugs and prolonged-release pellets containing only pseudoephedrine hydrochloride. The immediate-release pellets containing pseudoephedrine hydrochloride alone or in combination with loratadine were prepared using extrusion-spheronization method. The pellets of pseudoephedrine hydrochloride were coated to prolong the drug release up to 12 h. Both immediate- and prolonged-release pellets were filled into hard gelatin capsule and also compressed into tablets using inert tabletting granules of microcrystalline cellulose Ceolus KG-801. The in vitro drug dissolution study conducted using high-performance liquid chromatography method showed that both multiple-unit capsules and multiple-unit tablets released loratadine completely within a time period of 2 h, whereas the immediate-release portion of pseudoephedrine hydrochloride was liberated completely within the first 10 min of dissolution study. On the other hand, the release of pseudoephedrine hydrochloride from the prolonged release coated pellets was prolonged up to 12 hr and followed zero-order release kinetic. The drug dissolution profiles of multiple-unit tablets and multiple-unit capsules were found to be closely similar, indicating that the integrity of pellets remained unaffected during the compression process. Moreover, the friability, hardness, and disintegration time of multiple-unit tablets were found to be within BP specifications. In conclusion, modified-release pellet-based tablet system for the delivery of loratadine and pseudoephedrine hydrochloride was successfully developed and evaluated.
Lamotrigine extended-release (long-acting) tablets are used with other medications to treat certain types of seizures in patients ... disintegrating tablets, and chewable tablets) other than the extended-release tablets are used alone or with other ...
Development and in vivo evaluation of an oral insulin-PEG delivery system.
Calceti, P; Salmaso, S; Walker, G; Bernkop-Schnürch, A
2004-07-01
Insulin-monomethoxypoly(ethylene glycol) derivatives were obtained by preparation of mono- and di-terbutyl carbonate insulin derivatives, reaction of available protein amino groups with activated 750 Da PEG and, finally, amino group de-protection. This procedure allowed for obtaining high yield of insulin-1PEG and insulin-2PEG. In vivo studies carried out by subcutaneous injection into diabetic mice demonstrated that the two bioconjugates maintained the native biological activity. In vitro, PEGylation was found to enhance the hormone stability towards proteases. After 1 h incubation with elastase, native insulin, insulin-1PEG and insulin-2PEG undergo about 70, 30 and 10% degradation, respectively, while in the presence of pepsin protein degradation was 100, 70 and 50%, respectively. The attachment of low molecular weight PEG did not significantly (P >0.05) alter insulin permeation behavior across the intestinal mucosa. Insulin-1PEG was formulated into mucoadhesive tablets constituted by the thiolated polymer poly(acrylic acid)-cysteine. The therapeutic agent was sustained released from these tablets within 5 h. In vivo, by oral administration to diabetic mice, the glucose levels were found to decrease of about 40% since the third hour from administration and the biological activity was maintained up to 30 h. According to these results, the combination of PEGylated insulin with a thiolated polymer used as drug carrier matrix might be a promising strategy for oral insulin administration.
Sadia, Muzna; Sośnicka, Agata; Arafat, Basel; Isreb, Abdullah; Ahmed, Waqar; Kelarakis, Antonios; Alhnan, Mohamed A
2016-11-20
This work aims to employ fused deposition modelling 3D printing to fabricate immediate release pharmaceutical tablets with several model drugs. It investigates the addition of non-melting filler to methacrylic matrix to facilitate FDM 3D printing and explore the impact of (i) the nature of filler, (ii) compatibility with the gears of the 3D printer and iii) polymer: filler ratio on the 3D printing process. Amongst the investigated fillers in this work, directly compressible lactose, spray-dried lactose and microcrystalline cellulose showed a level of degradation at 135°C whilst talc and TCP allowed consistent flow of the filament and a successful 3D printing of the tablet. A specially developed universal filament based on pharmaceutically approved methacrylic polymer (Eudragit EPO) and thermally stable filler, TCP (tribasic calcium phosphate) was optimised. Four model drugs with different physicochemical properties were included into ready-to-use mechanically stable tablets with immediate release properties. Following the two thermal processes (hot melt extrusion (HME) and fused deposition modelling (FDM) 3D printing), drug contents were 94.22%, 88.53%, 96.51% and 93.04% for 5-ASA, captopril, theophylline and prednisolone respectively. XRPD indicated that a fraction of 5-ASA, theophylline and prednisolone remained crystalline whilst captopril was in amorphous form. By combining the advantages of thermally stable pharmaceutically approved polymers and fillers, this unique approach provides a low cost production method for on demand manufacturing of individualised dosage forms. Copyright © 2016 Elsevier B.V. All rights reserved.
Baek, Jong-Suep; Tee, Jie Kai; Pang, Yi Yun; Tan, Ern Yu; Lim, Kah Leong; Ho, Han Kiat; Loo, Say Chye Joachim
2018-06-01
Oral administration of levodopa (LD) is the gold standard in managing Parkinson's disease (PD). Although LD is the most effective drug in treating PD, chronic administration of LD induces levodopa-induced dyskinesia. A continuous and sustained provision of LD to the brain could, therefore, reduce peak-dose dyskinesia. In commercial oral formulations, LD is co-administrated with an AADC inhibitor (carbidopa) and a COMT inhibitor (entacapone) to enhance its bioavailability. Nevertheless, patients are known to take up to five tablets a day because of poor sustained-releasing capabilities that lead to fluctuations in plasma concentrations. To achieve a prolonged release of LD with the aim of improving its bioavailability, floatable spray-coated microcapsules containing all three PD drugs were developed. This gastro-retentive delivery system showed sustained release of all PD drugs, at similar release kinetics. Pharmacokinetics study was conducted and this newly developed formulation showed a more plateaued delivery of LD that is void of the plasma concentration fluctuations observed for the control (commercial formulation). At the same time, measurements of LD and dopamine of mice administered with this formulation showed enhanced bioavailability of LD. This study highlights a floatable, sustained-releasing delivery system in achieving improved pharmacokinetics data compared to a commercial formulation.
Pharmacokinetics of ketorolac tromethamine compression-coated tablets for colon delivery.
Vemula, Sateesh Kumar; Veerareddy, Prabhakar Reddy; Devadasu, Venkat Ratnam
2014-08-01
Present research efforts are focused in developing compression-coated ketorolac tromethamine tablets to improve the drug levels in colon by retarding the drug release in the stomach and small intestine. To achieve this objective, core tablets containing ketorolac tromethamine were prepared by direct compression and compression coated with sodium alginate. The developed tablets were evaluated for physical properties, in vitro drug release, X-ray imaging, and pharmacokinetic studies in human volunteers. Based on the in vitro drug release study, the optimized formulation showed very little drug release (6.75 ± 0.49 %) in the initial lag period of 5 h, followed by progressive release up to 97.47 ± 0.93 % within 24 h. The X-ray imaging of tablets in human volunteers showed that the tablets reached the colon without disintegrating in the upper gastrointestinal tract. From the pharmacokinetic study, the C max of colon-targeted tablets was 3,486.70 ng/ml at T max 10 h, whereas in the case of immediate-release tablets, the C max of 4,506.31 ng/ml at T max 2 h signifies the ability of compression-coated tablets to target the colon. In conclusion, compression-coated tablets are suitable to deliver ketorolac tromethamine to the colon.
Mechanisms of monoclonal antibody stabilization and release from silk biomaterials
Guziewicz, Nicholas A.; Massetti, Andrew J.; Perez-Ramirez, Bernardo J.; Kaplan, David L.
2013-01-01
The availability of stabilization and sustained delivery systems for antibody therapeutics remains a major clinical challenge, despite the growing development of antibodies for a wide range of therapeutic applications due to their specificity and efficacy. A mechanistic understanding of protein-matrix interactions is critical for the development of such systems and is currently lacking as a mode to guide the field. We report mechanistic insight to address this need by using well-defined matrices based on silk gels, in combination with a monoclonal antibody. Variables including antibody loading, matrix density, charge interactions, hydrophobicity and water access were assessed to clarify mechanisms involved in the release of antibody from the biomaterial matrix. The results indicate that antibody release is primarily governed by hydrophobic interactions and hydration resistance, which are controlled by silk matrix chemistry, peptide domain distribution and protein density. Secondary ionic repulsions are also critical in antibody stabilization and release. Matrix modification by free methionine incorporation was found to be an effective strategy for mitigating encapsulation induced antibody oxidation. Additionally, these studies highlight a characterization approach to improve the understanding and development of other protein sustained delivery systems, with broad applicability to the rapidly developing monoclonal antibody field. PMID:23859659
Cheboyina, Sreekhar; Wyandt, Christy M
2008-07-09
A novel freeze pelletization technique was evaluated for the preparation of wax-based sustained release matrix pellets. Pellets containing water-soluble drugs were successfully prepared using a variety of waxes. The drug release significantly depended on the wax type used and the aqueous drug solubility. The drug release decreased as the hydrophobicity of wax increased and the drug release increased as the aqueous drug solubility increased. In glyceryl monostearate (GMS) pellets, drug release rate decreased as the loading of theophylline increased. On the contrary, the release rate increased as the drug loading of diltiazem HCl increased in Precirol pellets. Theophylline at low drug loads existed in a dissolved state in GMS pellets and the release followed desorption kinetics. At higher loads, theophylline existed in a crystalline state and the release followed dissolution-controlled constant release for all the waxes studied. However, with the addition of increasing amounts of Brij 76, theophylline release rate increased and the release mechanism shifted to diffusion-controlled square root time kinetics. But the release of diltiazem HCl from Precirol pellets at all drug loads, followed diffusion-controlled square root time kinetics. Therefore, pellets capable of providing a variety of release profiles for different drugs can be prepared using this freeze pelletization technique by suitably modifying the pellet forming matrix compositions.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-18
...] Impax Laboratories, Inc.; Withdrawal of Approval of Bupropion Hydrochloride Extended-Release Tablets... Administration (FDA) is withdrawing approval of Bupropion Hydrochloride (HCl) Extended-Release Tablets, 300 Milligrams (mg) (Bupropion HCl Extended-Release Tablets 300 mg), under Abbreviated New Drug Application (ANDA...
Tan, Qunyou; Jiang, Rong; Xu, Meiling; Liu, Guodong; Li, Songlin; Zhang, Jingqing
2013-01-01
Background Pyridostigmine bromide (3-[[(dimethylamino)-carbonyl]oxy]-1-methylpyridinium bromide), a reversible inhibitor of cholinesterase, is given orally in tablet form, and a treatment schedule of multiple daily doses is recommended for adult patients. Nanotechnology was used in this study to develop an alternative sustained-release delivery system for pyridostigmine, a synthetic drug with high solubility and poor oral bioavailability, hence a Class III drug according to the Biopharmaceutics Classification System. Novel nanosized pyridostigmine-poly(lactic acid) microcapsules (PPNMCs) were expected to have a longer duration of action than free pyridostigmine and previously reported sustained-release formulations of pyridostigmine. Methods The PPNMCs were prepared using a double emulsion-solvent evaporation method to achieve sustained-release characteristics for pyridostigmine. The preparation process for the PPNMCs was optimized by single-factor experiments. The size distribution, zeta potential, and sustained-release behavior were evaluated in different types of release medium. Results The optimal volume ratio of inner phase to external phase, poly(lactic acid) concentration, polyvinyl alcohol concentration, and amount of pyridostigmine were 1:10, 6%, 3% and 40 mg, respectively. The negatively charged PPNMCs had an average particle size of 937.9 nm. Compared with free pyridostigmine, PPNMCs showed an initial burst release and a subsequent very slow release in vitro. The release profiles for the PPNMCs in four different types of dissolution medium were fitted to the Ritger-Peppas and Weibull models. The similarity between pairs of dissolution profiles for the PPNMCs in different types of medium was statistically significant, and the difference between the release curves for PPNMCs and free pyridostigmine was also statistically significant. Conclusion PPNMCs prepared by the optimized protocol described here were in the nanometer range and had good uniformity, with significantly slower pyridostigmine release than from free pyridostigmine. This novel sustained-release delivery nanosystem for pyridostigmine might alleviate the need to identify new acetylcholinesterase inhibitors. PMID:23459707
Tan, Qunyou; Jiang, Rong; Xu, Meiling; Liu, Guodong; Li, Songlin; Zhang, Jingqing
2013-01-01
Pyridostigmine bromide (3-[[(dimethylamino)-carbonyl]oxy]-1-methylpyridinium bromide), a reversible inhibitor of cholinesterase, is given orally in tablet form, and a treatment schedule of multiple daily doses is recommended for adult patients. Nanotechnology was used in this study to develop an alternative sustained-release delivery system for pyridostigmine, a synthetic drug with high solubility and poor oral bioavailability, hence a Class III drug according to the Biopharmaceutics Classification System. Novel nanosized pyridostigmine-poly(lactic acid) microcapsules (PPNMCs) were expected to have a longer duration of action than free pyridostigmine and previously reported sustained-release formulations of pyridostigmine. The PPNMCs were prepared using a double emulsion-solvent evaporation method to achieve sustained-release characteristics for pyridostigmine. The preparation process for the PPNMCs was optimized by single-factor experiments. The size distribution, zeta potential, and sustained-release behavior were evaluated in different types of release medium. The optimal volume ratio of inner phase to external phase, poly(lactic acid) concentration, polyvinyl alcohol concentration, and amount of pyridostigmine were 1:10, 6%, 3% and 40 mg, respectively. The negatively charged PPNMCs had an average particle size of 937.9 nm. Compared with free pyridostigmine, PPNMCs showed an initial burst release and a subsequent very slow release in vitro. The release profiles for the PPNMCs in four different types of dissolution medium were fitted to the Ritger-Peppas and Weibull models. The similarity between pairs of dissolution profiles for the PPNMCs in different types of medium was statistically significant, and the difference between the release curves for PPNMCs and free pyridostigmine was also statistically significant. PPNMCs prepared by the optimized protocol described here were in the nanometer range and had good uniformity, with significantly slower pyridostigmine release than from free pyridostigmine. This novel sustained-release delivery nanosystem for pyridostigmine might alleviate the need to identify new acetylcholinesterase inhibitors.
Xu, Min; Heng, Paul Wan Sia; Liew, Celine Valeria
2016-02-29
Compaction of multiple-unit pellet system (MUPS) tablets has been extensively studied in the past few decades but with marginal success. This study aims to investigate the formulation and process strategies for minimizing pellet coat damage caused by compaction and elucidate the mechanism of damage sustained during the preparation of MUPS tablets in a rotary tablet press. Blends containing ethylcellulose-coated pellets and cushioning agent (spray dried aggregates of micronized lactose and mannitol), were compacted into MUPS tablets in a rotary tablet press. The effects of compaction pressure and dwell time on the physicomechanical properties of resultant MUPS tablets and extent of pellet coat damage were systematically examined. The coated pellets from various locations at the axial and radial peripheral surfaces and core of the MUPS tablets were excavated and assessed for their coat damage individually. Interestingly, for a MUPS tablet formulation which consolidates by plastic deformation, the tablet mechanical strength could be enhanced without exacerbating pellet coat damage by extending the dwell time in the compaction cycle during rotary tableting. However, the increase in compaction pressure led to faster drug release rate. The location of the coated pellets in the MUPS tablet also contributed to the extent of their coat damage, possibly due to uneven force distribution within the compact. To ensure viability of pellet coat integrity, the formation of a continuous percolating network of cushioning agent is critical and the applied compaction pressure should be less than the pellet crushing strength. Copyright © 2015 Elsevier B.V. All rights reserved.
Wu, Gui; Wu, Weigang; Zheng, Qixin; Li, Jingfeng; Zhou, Jianbo; Hu, Zhilei
2014-07-19
Local slow release implant provided long term and stable drug release in the lesion. The objective of this study was to fabricate biodegradable slow release INH/PLLA tablet via 3 dimensional printing technique (3DP) and to compare the drug release characteristics of three different structured tablets in vitro. Three different drug delivery systems (columnar-shaped tablet (CST), doughnut-shaped tablet (DST) and multilayer doughnut-shaped tablet (MDST)) were manufactured by the three dimensional printing machine and isoniazid was loaded into the implant. Dynamic soaking method was used to study the drug release characteristics of the three implants. MTT cytotoxicity test and direct contact test were utilized to study the biocompatibility of the implant. The microstructures of the implants' surfaces were observed with electron microscope. The PLLA powder in the tablet could be excellently combined through 3DP without disintegration. Electron microscope observations showed that INH distributed evenly on the surface of the tablet in a "nest-shaped" way, while the surface of the barrier layer in the multilayer doughnut shaped tablet was compact and did not contain INH. The concentration of INH in all of the three tablets were still higher than the effective bacteriostasis concentration (Isoniazid: 0.025 ~ 0.05 μg/ml) after 30 day's release in vitro. All of the tablets showed initial burst release of the INH in the early period. Drug concentration of MDST became stable and had little fluctuation starting from the 6th day of the release. Drug concentration of DST and CST decreased gradually and the rate of decrease in concentration was faster in DST than CST. MTT cytotoxicity test and direct contact test indicated that the INH-PLLA tablet had low cytotoxicity and favorable biocompatibility. Three dimensional printing technique was a reliable technique to fabricate complicated implants. Drug release pattern in MDST was the most stable among the three implants. It was an ideal drug delivery system for the antibiotics. Biocompatibility tests demonstrated that the INH-PLLA implant did not have cytotoxicity. The multilayer donut-shaped tablet provided a new constant slow release method after an initial burst for the topical application of the antibiotic.
2014-01-01
Background Local slow release implant provided long term and stable drug release in the lesion. The objective of this study was to fabricate biodegradable slow release INH/PLLA tablet via 3 dimensional printing technique (3DP) and to compare the drug release characteristics of three different structured tablets in vitro. Methods Three different drug delivery systems (columnar-shaped tablet (CST), doughnut-shaped tablet (DST) and multilayer doughnut-shaped tablet (MDST)) were manufactured by the three dimensional printing machine and isoniazid was loaded into the implant. Dynamic soaking method was used to study the drug release characteristics of the three implants. MTT cytotoxicity test and direct contact test were utilized to study the biocompatibility of the implant. The microstructures of the implants’ surfaces were observed with electron microscope. Results The PLLA powder in the tablet could be excellently combined through 3DP without disintegration. Electron microscope observations showed that INH distributed evenly on the surface of the tablet in a “nest-shaped” way, while the surface of the barrier layer in the multilayer doughnut shaped tablet was compact and did not contain INH. The concentration of INH in all of the three tablets were still higher than the effective bacteriostasis concentration (Isoniazid: 0.025 ~ 0.05 μg/ml) after 30 day’s release in vitro. All of the tablets showed initial burst release of the INH in the early period. Drug concentration of MDST became stable and had little fluctuation starting from the 6th day of the release. Drug concentration of DST and CST decreased gradually and the rate of decrease in concentration was faster in DST than CST. MTT cytotoxicity test and direct contact test indicated that the INH-PLLA tablet had low cytotoxicity and favorable biocompatibility. Conclusions Three dimensional printing technique was a reliable technique to fabricate complicated implants. Drug release pattern in MDST was the most stable among the three implants. It was an ideal drug delivery system for the antibiotics. Biocompatibility tests demonstrated that the INH-PLLA implant did not have cytotoxicity. The multilayer donut-shaped tablet provided a new constant slow release method after an initial burst for the topical application of the antibiotic. PMID:25038793
Dissolution Studies of Papaverine Hydrochloride from Tablets in Three Pharmacopoeia Apparatuses.
Polski, Andrzej; Kasperek, Regina; Rogowska, Magdalena; Iwaniak, Karol; Sobòtka-Polska, Karolina; Poleszak, Ewa
2015-01-01
In tablet production, the most important aspects are the physical properties of the tablets and their dissolution studies, which can be performed in four pharmacopoeial apparatuses. There are differences between them in construction and action, so differences in the results obtained are possible. The aim of the study was to compare the release of a model drug substance (papaverine hydrochloride) from tablets in three pharmacopoeial dissolution apparatus: a basket, a paddle (closed system) and flow-through cell (open system). The one series of tablets were produced by direct compression in a tablet press. The physical properties of the tablets (weight and size uniformity test, friability and hardness tests, disintegration time test), drug content and the release study of papaverine hydrochloride from tablets were studied in three dissolution apparatuses. The content of the active substance was studied spectrophotometrically. All tablets met the pharmacopoeic requirements. Over 80% of the model substance released from the tablets after 14 min in flow through the cell apparatus, while in the basket and paddle apparatuses after about 7 min 30 sec. After 20 min, the amount of the substance released in all apparatuses was over 90%. The release profiles of the drug substance in paddle and basket apparatuses were similar, while in the flow-through cell apparatus it was slightly slower. When the study conditions and composition of the tablets are the same, the release profile of the drug can be affected by the type of dissolution apparatus.
Tagami, Tatsuaki; Nagata, Noriko; Hayashi, Naomi; Ogawa, Emi; Fukushige, Kaori; Sakai, Norihito; Ozeki, Tetsuya
2018-05-30
3D-printed tablets are a promising new approach for personalized medicine. In this study, we fabricated composite tablets consisting of two components, a drug and a filler, by using a fused deposition modeling-type 3D printer. Polyvinylalcohol (PVA) polymer containing calcein (a model drug) was used as the drug component and PVA or polylactic acid (PLA) polymer without drug was used as the water-soluble or water-insoluble filler, respectively. Various kinds of drug-PVA/PVA and drug-PVA/PLA composite tablets were designed, and the 3D-printed tablets exhibited good formability. The surface area of the exposed drug component is highly correlated with the initial drug release rate. Composite tablets with an exposed top and a bottom covered with a PLA layer were fabricated. These tablets showed zero-order drug release by maintaining the surface area of the exposed drug component during drug dissolution. In contrast, the drug release profile varied for tablets whose exposed surface area changed. Composite tablets with different drug release lag times were prepared by changing the thickness of the PVA filler coating the drug component. These results which used PVA and PLA filler will provide useful information for preparing the tablets with multi-components and tailor-made tablets with defined drug release profiles using 3D printers. Copyright © 2018 Elsevier B.V. All rights reserved.
Colon targeted curcumin delivery using guar gum.
Elias, Edwin J; Anil, Singhal; Ahmad, Showkat; Daud, Anwar
2010-06-01
Curcumin is used in the treatment of colon cancer, but its very poor absorption in the upper part of the GIT is a major concern. As a site for drug delivery, the colon offers a near neutral pH, reduced digestive enzymatic activity, a long transit time and an increased responsiveness to absorption enhancers. The aim of the present study was to identify a suitable polymer (guar gum) based matrix tablet for curcumin with sufficient mechanical strength and promising in vitro mouth-to-colon release profile. Three formulations of curcumin were prepared using varying concentrations of guar gum containing 50 mg curcumin by the wet granulation method. Tablets were subjected to evaluation by studying parameter like hardness, friability, drug content uniformity, and in-vitro drug release. In vitro drug release was evaluated using simulated stomach, intestinal and colonic fluids. The susceptibility of guar gum to colonic bacteria was also assessed by a drug release study with rat caecal contents. The 40% guar gum containing formulation (F-1) showed better drug release (91.1%) after 24 hours in the presence of rat caecal contents in comparison with the 50% guar gum containing formulation (F-2) (82.1%). Curcumin could, thus, be positively delivered to the colon for effective colon cancer treatment using guar gum.
Watanabe, Yoshiteru; Mukai, Baku; Kawamura, Ken-ichi; Ishikawa, Tatsuya; Namiki, Michihiro; Utoguchi, Naoki; Fujii, Makiko
2002-02-01
In an attempt to achieve chronopharmacotherapy for asthma, press-coated tablets (250 mg), which contained aminophylline in the core tablet in the form of low-substituted hydroxypropylcellulose (L-HPC) and coated with crystalline cellulose (PH-102) and polyethylene glycol (PEG) at various molecular weights and mixing ratios in the amounts of PH-102 and PEG as the outer shell (press-coating material), were prepared (chronopharmaceutics). Their applicability as timed-release (delayed-release) tablets with a lag time of disintegration and a subsequent rapid drug release phase was investigated. Various types of press-coated tablets were prepared using a tableting machine, and their aminophylline dissolution profiles were evaluated by the JP paddle method. Tablets with the timed-release characteristics could be prepared, and the lag time of disintegration was prolonged as the molecular weight and the amount of PEG, for example PEG 500,000, in the outer shell were increased. The lag time of disintegration could be controlled by the above-mentioned method, however, the pH of the medium had no effect on disintegration of the tablet and dissolution behavior of theophylline. The press-coated tablet (core tablet:aminophylline 50 mg, L-HPC and PEG 6000; outer shell:PH-102:PEG = 8:2 200 mg) with the timed-release characteristics was administered orally to rabbits for an in vivo test. Theophylline was first detected in plasma more than 2 h after administration; thus, this tablet showed a timed-release characteristics in the gastrointestinal tract. The time (tmax) required to reach the maximum plasma theophylline concentration (Cmax) observed after administration of the press-coated tablet was significantly (p < 0.05) delayed compared with that observed after administration of aminophylline solution in the control experiment. However, there was no difference in Cmax and area under the plasma theophylline concentration-time curve (AUC0-->24) between the press-coated tablet and aminophylline solution. These results suggest that the press-coated aminophylline tablet (with the timed-release characteristic) offers a promising forms of theophylline chronotherapy for asthma.
... types of seizures in adults and children. Oxcarbazepine extended-release tablets (Oxtellar XR) are used in combination ... Oxcarbazepine comes as a tablet, an extended-release tablet, and a suspension (liquid) to take by mouth. The tablet and suspension are usually taken every 12 hours (twice a ...
Production of extended release mini-tablets using directly compressible grades of HPMC.
Mohamed, Faiezah A A; Roberts, Matthew; Seton, Linda; Ford, James L; Levina, Marina; Rajabi-Siahboomi, Ali R
2013-11-01
Hypromellose (HPMC) has been previously used to control drug release from mini-tablets. However, owing to poor flow, production of mini-tablets containing high HPMC levels is challenging. Directly compressible (DC) HPMC grades have been developed by Dow Chemical Company. To compare the properties of HPMC DC (METHOCEL™ K4M and K100M) with regular (REG) HPMC grades. Particle size distribution and flowability of HPMC REG and DC were evaluated. 3 mm mini-tablets, containing hydrocortisone or theophylline as model drugs and 40% w/w HPMC DC or REG were produced. Mini-tablets containing HPMC DC grades were manufactured using a rotary press simulator at forces between 2-4 kN and speeds of 5, 10, 15 or 20 rpm. Mini-tablets containing HPMC REG were produced manually. The improved flowability of HPMC DC grades, which have a narrower particle size distribution and larger particle sizes, meant that simulated large scale production of mini-tablets with good weight uniformity (CV 1.79-4.65%) was feasible. It was not possible to automatically manufacture mini-tablets containing HPMC REG due to the poor flowability of the formulations. Drug release from mini-tablets comprising HPMC DC and REG were comparable. Mini-tablets containing HPMC DC illustrated a higher tensile strength compared to mini-tablets made with HPMC REG. Mini-tablets produced with HPMC DC at different compression speeds had similar drug release profiles. Production of extended release mini-tablets was successfully achieved when HPMC DC was used. Drug release rate was not influenced by the different HPMC DC grades (K4M or K100M) or production speed.
Mohammed, Noorullah Naqvi; Majumdar, Soumyajit; Singh, Abhilasha; Deng, Weibin; Murthy, Narasimha S; Pinto, Elanor; Tewari, Divya; Durig, Thomas; Repka, Michael A
2012-12-01
The objective of this research work was to evaluate Klucel™ hydroxypropylcellulose (HPC) EF and ELF polymers, for solubility enhancement as well as to address some of the disadvantages associated with solid dispersions. Ketoprofen (KPR), a Biopharmaceutics Classification System class II drug with poor solubility, was utilized as a model compound. Preliminary thermal studies were performed to confirm formation of a solid solution/dispersion of KPR in HPC matrix and also to establish processing conditions for hot-melt extrusion. Extrudates pelletized and filled into capsules exhibited a carrier-dependent release with ELF polymer exhibiting a faster release. Tablets compressed from milled extrudates exhibited rapid release owing to the increased surface area of the milled extrudate. Addition of mannitol (MNT) further enhanced the release by forming micro-pores and increasing the porosity of the extrudates. An optimized tablet formulation constituting KPR, MNT, and ELF in a 1:1:1 ratio exhibited 90% release in 15 min similar to a commercial capsule formulation. HPC polymers are non-ionic hydrophilic polymers that undergo polymer-chain-length-dependent solubilization and can be used to enhance solubility or dissolution rate of poorly soluble drugs. Dissolution/release rate could be tailored for rapid-release applications by selecting a suitable HPC polymer and altering the final dosage form. The release obtained from pellets was carrier-dependent and not drug-dependent, and hence, such a system can be effectively utilized to address solubility or precipitation issues with poorly soluble drugs in the gastrointestinal environment.
Guguloth, Mohan; Bomma, Ramesh; Veerabrahma, Kishan
2011-01-01
Norfloxacin is a drug with an absorption window. Its oral bioavailability is 30-40% and is a case for improvement by appropriate formulation design. In our previous study, gastroretentive floating tablets for norfloxacin were developed employing three different polymers such as HPMC K4M, HPMC K100M, and xanthan gum. The purpose of this investigation is to further improve and evaluate the in vitro and in vivo performance of the prepared floating tablets by inclusion of citric acid as an acidifier, which is also useful in a fed state. The prepared tablets were characterized and found to exhibit satisfactory physico-chemical characteristics. The effects of citric acid at different concentrations on drug release and floating properties were studied. All the prepared batches showed good in vitro buoyancy. It was observed that the tablets remained buoyant for 24 h. The best formulation (F4c), consisting of 1.5% citric acid and 18% HPMC K4M, was selected based on in vitro characteristics and used in vivo radiographic studies by incorporating barium sulphate. These studies revealed that the tablets remained in the stomach for 205 ± 8.4 min in fasting human volunteers. In vivo studies were carried out for the best formulation in eight healthy male human volunteers, and the pharmacokinetic parameters of the developed formulation were compared with marketed conventional (Norbid) tablets. Based on the in vivo performance in a two-way, crossover study design in healthy subjects, the developed floating tablets showed superior bioavailability than the Norbid tablets. The increased bioavailability of developed formulation was found to be 16.27%. Norfloxacin is a broad-spectrum antibiotic used to treat bacterial infections such as respiratory and urinary tract infections. Conventional norfloxacin tablets show incomplete drug absorption resulting in lower bioavailabilty. Norfloxacin is better absorbed in the stomach. The dosage forms that remain in the stomach are referred to as gastroretentive drug delivery systems. Gastroretentive floating tablets of norfloxcin were developed by employing three different polymers, which prolonged the drug release from the dosage forms. Tablet floatation was achieved by an effervescent mechanism. Citric acid at different concentrations was used in formulations to provide an acidic microenvironment. The prepared tablets were characterized for hardness, weight variation, thickness, friability, floating lag time, and dissolution. Around 12 tablet formulations were prepared as a continuation of the previous work. The best formulation (F4c) was selected based on in vitro characteristics and used in vivo radiographic studies by incorporating barium sulphate as a radio-opaque agent. The tablets remained in the stomach for about 205 ± 8.4 min. Bioavailability studies were conducted in healthy male human volunteers, and the pharmacokinetic parameters of the best formulation were compared with that of the marketed conventional (Norbid) tablet. The increased bioavailability of the developed formulation was found to be 16.27%.
Knöös, Patrik; Wahlgren, Marie; Topgaard, Daniel; Ulvenlund, Stefan; Piculell, Lennart
2014-08-14
A combination of NMR chemical shift imaging and self-diffusion experiments is shown to give a detailed molecular picture of the events that occur when tablets of hydrophobically modified poly(acrylic acid) loaded with a drug (griseofulvin) swell in water in the presence or absence of surfactant (sodium octylbenzenesulfonate). The hydrophobic substituents on the polymer bind and trap the surfactant molecules in mixed micelles, leading to a slow effective surfactant transport that occurs via a small fraction of individually dissolved surfactant molecules in the water domain. Because of the efficient binding of surfactant, the penetrating water is found to diffuse past the penetrating surfactant into the polymer matrix, pushing the surfactant front outward as the matrix swells. The added surfactant has little effect on the transport of drug because both undissolved solid drug and surfactant-solubilized drug function as reservoirs that essentially follow the polymer as it swells. However, the added surfactant nevertheless has a strong indirect effect on the release of griseofulvin, through the effect of the surfactant on the solubility and erosion of the polymer matrix. The surfactant effectively solubilizes the hydrophobically modified polymer, making it fully miscible with water, leading to a more pronounced swelling and a slower erosion of the polymer matrix.
Cheng, Lizhen; Gai, Xiumei; Wen, Haoyang; Liu, Dandan; Tang, Xin; Wang, Yanyan; Wang, Tuanjie; Pan, Weisan; Yang, Xinggang
2018-01-01
The objective of this study was to investigate the fundamental properties of propranolol hydrochloride osmotic pump tablets coated by aqueous polymer dispersion, simultaneously exploring the in vitro and in vivo correlation of the tablet. The physicochemical properties and parameters of aqueous polymer dispersion membranes (SEM, water uptake, and water vapor transmission coefficient) were investigated. In addition, the release behavior and the in vitro release and in vivo absorption profiles of the tablets coated by aqueous polymer dispersion were investigated by comparing with propranolol hydrochloride osmotic pump tablets coated by an organic solvent. Results showed that the similarity factor (f 2 ) between cellulose acetate-coated tablet and Eudragit-coated tablet was 78.1, and f 2 between cellulose acetate-coated tablet and Kollicoat-coated tablet was 77.6. The linear IVIVC of Eudragit-coated and Kollicoat-coated osmotic pump tablets was determined, which confirmed excellent correlation between the absorption in vivo and the drug release in vitro. Consequently, the membrane coated by aqueous polymer dispersion or organic solvent has similar in vitro release rates of controlled release. Also, compared with organic solvent coating, aqueous polymer dispersion has numerous advantages, such as reduced toxicity and no environmental damage. Therefore, the aqueous polymer dispersion technology has enormous potential as a replacement of organic solvent coating.
Kasperek, Regina; Trebacz, Hanna; Zimmer, Łukasz; Poleszak, Ewa
2014-01-01
For increased analgesic effect, new composed tablets containing diclofenac sodium (DIC) with an addition of papaverine hydrochloride (PAP) were prepared to investigate the mechanism of release of the active substances from tablets with different excipients in eight different formulations. To detect the possible interactions between active substances and excipients differential scanning calorimetry (DSC) was used. A shift of the melting point and enthalpy values of the physical mixtures of tablets components suggested a kind of interaction between components in certain formulations, however, the tabletting process was not disturbed in any of them. Kinetics of drug release from formulations was estimated by zero order, first order and Higuchi and Korsmeyer-Peppas models using results of dissolution of DIC and PAP from tablets. The study revealed that the mechanism of release of active substances was dependent on the excipients contained in tablets and the best fitted kinetics models were obtained for formulations with potentially prolonged release of DIC and PAP.
Cui, Qi-Hua; Cui, Jing-Hao; Zhang, Jin-Jin
2008-10-01
To prepare coated tablets of glycyrrhetinic acid and hydroxypropyl-beta-cyclodextrin (GTA-HP-beta-CYD) inclusion complex tablets for colon-specific release. In order to improve the solubility of GTA, the GTA-HP-beta-CYD inclusion complex was prepared by ultrasonic-lyophilization technique and its formation were characterized by X-ray powder diffraction profiles and infrared spectrometry. The effects of inclusion condition on the inclusion efficiency and stability coefficient of inclusion complex were investigated, respectively. After prepared GTA-HP-beta-CYD tablets by powder direct compression, the pH dependant polymer Eudragit III and/or mixed with Eudragit II were used for further coating materials in fluid-bed coater. The influences of coating weight on the GTA release in different pH conditions were evaluated to establish the method for prepering colon specific delivery tablets with pulsed release properties. The formation of inclusion complexes were proved by X-ray powder diffraction profile and phase solubility curve. The effect of pH value of solvent was played critical role on the preparation of GTA- HP-beta-CYD inclusion complex. And the inclusion efficiency of GTA was 9. 3% and the solubility was increased to 54. 6 times at optimized method. The Eudragit III coated GTA- HP-beta-CYD tablets with coating weight 10% and 16% were showed pH dependant colon specific release profiles with slow release rate. The release profile of tablets coated with the mixture of Eudragit II and Eudragit III (1:2) were indicated typical pH dependant colon specific and pulsed release properties while the coating weight was 17%. The preliminary method for preparation of colon specific release tablets containing glycyrrhetinic acid with improved solubility was established for further in vivo therapeutic experiment.
Bendas, Ehab R; Christensen, J Mark; Ayres, James W
2010-04-01
The basic objective of this study was to develop a novel technique that aids in compaction of coated pellets into tablets and obtain a release pattern from compressed pellets resembling the same pattern before compression. Multi-unit dosage forms of mesalamine targeted to the colon were formulated by extrusion-spheronization, and then coated with Eudragit S (30%). These pellets were filled into gelatin capsules or further formulated and compressed into tablets. Tablets for colonic delivery of mesalamine were prepared by mixing the coated beads with cushioning agents like stearic acid and Explotab, or by applying an additional coat of gelatin (4% weight gain) onto the Eudragit S coated pellets, and then compressing into tablets (tableted reservoir-type pellets). Then additional coating of the tablets prepared by the coating technique was applied utilizing Eudragit L 100-55 (5% weight gain). This technique provides additive protection for the coated beads to withstand the compression force during tableting. Excellent in vitro dissolution results were obtained, which were comparable to the results of the release of mesalamine from uncompressed beads filled in capsules. Mesalamine release from the capsules was 0.3% after 2 hours in gastric pH, 0.37% was released after an additional 1 hour in pH 6, and 89% was released after 1.5 hours in colonic pH 7.2. Various formulation and process parameters have to be optimized in order to obtain tableted reservoir-type pellets having the same release properties as the uncompressed pellets. The coating technique delays the release of mesalamine until the beads reach the terminal ileum and colon. Once released in the colon, mesalamine is minimally absorbed and can act locally to treat ulcerative colitis.
Akhtar, M F; Rabbani, M; Sharif, A; Akhtar, B; Saleem, A; Murtaza, G
2011-01-01
The aim of this work was to develop swellable modified release (MR) isoniazid tablets using different combinations of polyvinyl acetate (PVAc) and sodium-carboxymethylcellulose (Na-CMC). Granules were prepared by moist granulation technique and then compressed into tablets. In vitro release studies for 12 hr were carried out in dissolution media of varying pH i.e. pH 1.2, 4.5, 7.0 and 7.5. Tablets of all formulations were found to be of good physical quality with respect to appearance (width and thickness), content uniformity, hardness, weight variation and friability. In vitro release data showed that increasing total polymer content resulted in more retarding effect. Formulation with 35% polymer content exhibited zero order release profile and it released 35% of the drug in first hr, later on, controlled drug release was observed upto the 12(th) hour. Formulations with PVAc to Na-CMC ratio 20:80 exhibited zero order release pattern at levels of studied concentrations, which suggested that this combination can be used to formulate zero order release tablets of water soluble drugs like isoniazid. Korsmeyer-Peppas modeling of drug release showed that non-Fickian transport is the primary mechanism of isoniazid release from PVAc and Na-CMC based tablets. The value of mean dissolution time decreased with the increase in the release rate of drug clearly showing the retarding behavior of the swellable polymers. The application of a mixture of PVAc to Na-CMC in a specific ratio may be feasible to formulate zero order release tablets of water soluble drugs like isoniazid.
Inlay osmotic pump tablets containing metformin and glipizide.
Patel, R B; Patel, G N; Patel, H R; Patel, M M
2011-10-01
The goal of diabetes therapy today is to achieve and maintain as near normal glycemia as possible to prevent the long-term microvascular and macrovascular complications of an elevated blood glucose. A newly developed inlay osmotic pump tablet (IOPT) can deliver glipizide (GLZ) and metformin HCl (MET) gradually in controlled manner. The aim of present investigation was to prepare the IOPT that can deliver >75% of GLZ in 2 h, whereas MET released after 2 h and sustained up to 12 h. In the present work, HP-β-CD was used to modify the solubility of GLZ before incorporating in the osmotic system and MET was spray-dried with HPMC A15C to modify its release profile, flow property, and compressibility. Various parameters mainly G(75%) (75% GLZ release), t(LMET) (lag time of MET release from device), Q(10 h) (percent of MET released within 10 h), and RSQ(ZERO) (R(2) of release data fitted to zero-order equation) were used to compare different formulations. The effects of different formulation variables, that is, osmagents, concentration of hydrophilic polymer, diameter of drug releasing orifice, and coating composition on the drug release profile were investigated. The release rate of GLZ could be effectively modified by the addition of sodium carbonate and sodium chloride, whereas the release rate of MET was adjusted by dual-coating system and by addition of hydrophilic polymer. The developed inlay osmotic system could be effective in the multidrug therapy of diabetes by delivering both drugs in a controlled manner.
Monitoring of internal pH gradients within multi-layer tablets by optical methods and EPR imaging.
Eisenächer, Friederike; Schädlich, Andreas; Mäder, Karsten
2011-09-30
The high variability of gastrointestinal pH is a general challenge regarding constant release from oral drug delivery systems, especially for ionisable drugs. These drugs often show a pH-dependent solubility and therewith associated intra- and inter-individual variability of emerging drug plasma levels. Several strategies have been investigated with the intention to influence the microenvironmental pH (pH(M)) within solid formulations and therefore achieve pH-independent release profiles. Because of the heterogeneity of solid systems, a precise prediction of the occurring pH(M) is rather difficult. It is therefore important to monitor the pH(M) within the formulations to achieve requested release as well as to minimise pH-dependent degradation processes of the active compound. The purpose of the current study was the analysis of pH(M) gradients within 2- and 3-layer tablets during hydration using 3 different techniques for comparison intensions, in particular a pH indicator dye, fluorescence imaging and EPR imaging. The influence of the presence or absence of pH modifying substances and of an additional lipophilic inter layer on the pH(M) was investigated as well as the variation of matrix forming excipient and buffer pH. The influence of the pH(M) on drug release was analysed as well. In addition, benchtop MRI was accomplished to gain a deeper insight on the hydration and erosion behaviour of 2- and 3-layer tablets. Copyright © 2010 Elsevier B.V. All rights reserved.
Tang, Meiqiong; Hu, Ping; Huang, Shigui; Zheng, Qiang; Yu, Hao; He, Yun
2016-11-01
The primary objective of the present study was to develop extended-release matrix formulations of apremilast for the oral delivery and to study their in vitro and in vivo correlation. Five extended-release formulations containing hydroxypropylmethylcellulose (HPMC) as the retarding excipient with different release rate of apremilast were prepared. Dissolution tests of all the formulated tablets were performed in water, pH 4.0 and 6.8 buffer solutions. The in vitro release kinetics was studied and supported by Korsmeyer-Peppas's equation as it presented highest values of correlation coefficients (r 2 up to 0.966). Among all formulated tablets, F2 (HPMC 25%) and F4 (HPMC 35%) were selected to perform an in vivo study in beagle dogs to obtain various pharmacokinetic parameters, i.e., peak plasma concentration (C max ), time to peak plasma concentration (t max ), area under the plasma-concentration vs. time curve (AUC). Higher t max and t 1/2 , lower C max and elimination coefficient (K e ) were observed for both extended formulations compared to marketed immediate-release products (Otezla ® ). Level A in vitro-in vivo correlations were created with the help of Wagner-Nelson and numeric deconvolution methods. Both formulations showed good in vitro-in vivo correlations whose accuracies were further verified by an internal validation.
Crystal growth formation in melt extrudates.
Bruce, Caroline; Fegely, Kurt A; Rajabi-Siahboomi, Ali R; McGinity, James W
2007-08-16
The purpose of the study was to investigate the physical state of hot-melt extruded guaifenesin tablets containing either Acryl-EZE or Eudragit L100-55 and to study the physicochemical factors influencing crystal growth of guaifenesin on the surface of the extrudates. The powder mixtures containing Acryl-EZE were extruded on a single-screw Randcastle Microtruder at 20rpm and at temperatures of 90, 95, 110 degrees C (zones 1, 2, 3, respectively) and 115 degrees C (die), before being manually cut into tablets (250+/-5mg). Extrudates containing Eudragit L100-55, TEC and guaifenesin were extruded at temperatures ranging from 60 to 115 degrees C. Modulated differential calorimetry (DSC) was used to demonstrate the plasticizing effect of guaifenesin on Eudragit L100-55. Powder X-ray diffraction (PXRD) showed that while the drug powder is crystalline, extrudates containing up to 25% drug exhibited an amorphous diffraction profile. Extrudates containing higher drug concentrations showed an amorphous profile with some crystalline peaks corresponding to guaifenesin, indicating that the limit of solubility of drug in the matrix had been exceeded. Scanning electron microscopy was used to demonstrate that drug crystallization was a surface phenomenon and dependent on the drug concentration. In vitro dissolution testing showed no effect of surface crystallization of guaifenesin on drug release rates of extruded matrix tablets. The influence of hydrophilic polymeric additives including PVP K25, polycarbophil, PEG 3,350, poloxamer 188 or poly(ethylene oxide) as crystal growth inhibitors was investigated at a level of 10% based on the drug content. The extent of crystal growth was reduced for all additives. Complete drug release in pH 6.8 phosphate buffer was prolonged from 4h in extrudates containing Acryl-EZE and guaifenesin to 8h in extrudates containing Eudragit L100-55, TEC and guaifenesin. Drug release in extrudates containing Eudragit L100-55 and guaifenesin was not affected by the presence of hydrophilic additives present at 10% based on the drug content. In vitro drug release studies showed no significant change during storage for up to 6 months at 25 degrees C/60% relative humidity and 40 degrees C/75% relative humidity.
NASA Astrophysics Data System (ADS)
Mesquita, Philippe C.; Oliveira, Alice R.; Pedrosa, Matheus F. Fernandes; de Oliveira, Anselmo Gomes; da Silva-Júnior, Arnóbio Antônio
2015-06-01
Spray dried methotrexate (MTX) loaded chitosan microparticles were prepared using different drug/copolymer ratios (9%, 18%, 27% and 45% w/w). The physicochemical aspects were assessed in order to select particles that were able to induce a sustained drug release effect. Particles were successfully produced which exhibited desired physicochemical aspects such as spherical shape and high drug loading. XRD and FT-IR analysis demonstrated that drug is not bound to copolymer and is only homogeneously dispersed in an amorphous state into polymeric matrix. Even the particles with higher drug loading levels presented a sustained drug release profile, which were mathematically modeled using adjusted Higuchi model. The drug release occurred predominantly with drug dissolution and diffusion through swollen polymeric matrix, with the slowest release occurring with particles containing 9% of drug, demonstrating an interesting and promising drug delivery system for MTX.
In vitro dissolution kinetic study of theophylline from hydrophilic and hydrophobic matrices.
Maswadeh, Hamzah M; Semreen, Mohammad H; Abdulhalim, Abdulatif A
2006-01-01
Oral dosage forms containing 300 mg theophylline in matrix type tablets, were prepared by direct compression method using two kinds of matrices, glycerylbehenate (hydrophobic), and (hydroxypropyl)methyl cellulose (hydrophilic). The in vitro release kinetics of these formulations were studied at pH 6.8 using the USP dissolution apparatus with the paddle assemble. The kinetics of the dissolution process were studied by analyzing the dissolution data using four kinetic equations, the zero-order equation, the first-order equation, the Higuchi square root equation and the Hixson-Crowell cube root law. The analysis of the dissolution kinetic data for the theophylline preparations in this study shows that it follows the first order kinetics and the release process involves erosion / diffusion and an alteration in the surface area and diameter of the matrix system, as well as in the diffusion path length from the matrix drug load during the dissolution process. This relation is best described by the use of both the first-order equation and the Hixson-Crowell cube root law.
Cantor, Stuart L; Hoag, Stephen W; Augsburger, Larry L
2009-03-01
The aim of this study was to characterize and evaluate a modified release, multiparticulate tablet formulation consisting of placebo beads and drug-loaded beads. Acetaminophen (APAP) bead formulations containing ethylcellulose (EC) from 40-60% and placebo beads containing 30% calcium silicate and prepared using 0-20% alcohol were developed using extrusion-spheronization and studied using a central composite experimental design. Particle size and true density of beads were measured. Segregation testing was performed using the novel ASTM D6940-04 method on a 50:50 blend of uncoated APAP beads (60%EC) : calcium silicate placebo beads (10% alcohol). Tablets were prepared using an instrumented Stokes-B2 rotary tablet press and evaluated for crushing strength and dissolution rate. Compared with drug beads (60%EC), placebo beads (10% alcohol) were smaller but had higher true densities: 864.8 mum and 1.27 g/cm(3), and 787.1 mum and 1.73 g/cm(3), respectively. Segregation testing revealed that there was approximately a 20% difference in drug content (as measured by the coefficient of variation) between initial and final blend samples. Although calcium silicate-based placebo beads were shown to be ineffective cushioning agents in blends with Surelease(R)-coated APAP beads, they were found to be very compactibile when used alone and gave tablet crushing strength values between 14 and 17 kP. The EC in the APAP bead matrix minimally suppressed the drug release from uncoated beads (t(100%) = 2 h). However, while tablets containing placebo beads reformulated with glycerol monostearate (GMS) showed a slower release rate (t(60%)= 5 h) compared with calcium silicate-based placebos, some coating damage ( approximately 30%) still occurred on compression as release was faster than coated APAP beads alone. While tablets containing coated drug beads can be produced with practical crushing strengths (>8 kP) and low compression pressures (10-35 MPa), dissolution studies revealed that calcium silicate-based placebos are ineffective as cushioning agents. Blend segregation was likely observed due to the particle size and the density differences between APAP beads and calcium silicate-based placebo beads; placebo bead percolation can perhaps be minimized by increasing their size during the extrusion-spheronization process. The GMS- based placebos offer greater promise as cushioning agents for compacted, coated drug beads; however, this requires an optimized compression pressure range and drug bead : placebo bead ratio (i.e., 50:50).
Pharmacokinetics of colon-specific pH and time-dependent flurbiprofen tablets.
Vemula, Sateesh Kumar; Veerareddy, Prabhakar Reddy; Devadasu, Venkat Ratnam
2015-09-01
Present research deals with the development of compression-coated flurbiprofen colon-targeted tablets to retard the drug release in the upper gastro intestinal system, but progressively release the drug in the colon. Flurbiprofen core tablets were prepared by direct compression method and were compression coated using sodium alginate and Eudragit S100. The formulation is optimized based on the in vitro drug release study and further evaluated by X-ray imaging and pharmacokinetic studies in healthy humans for colonic delivery. The optimized formulation showed negligible drug release (4.33 ± 0.06 %) in the initial lag period followed by progressive release (100.78 ± 0.64 %) for 24 h. The X-ray imaging in human volunteers showed that the tablets reached the colon without disintegrating in the upper gastrointestinal tract. The C max of colon-targeted tablets was 12,374.67 ng/ml at T max 10 h, where as in case of immediate release tablets the C max was 15,677.52 ng/ml at T max 3 h, that signifies the ability of compression-coated tablets to target the colon. Development of compression-coated tablets using combination of time-dependent and pH-sensitive approaches was suitable to target the flurbiprofen to colon.
Lacasa, J M; Jiménez, J A; Ferrás, V; Bossom, M; Sóla-Morales, O; García-Rey, C; Aguilar, L; Garau, J
2007-04-01
The most common complications after surgical extraction of the third mandibular molar are trismus, oedema or swelling, local pain, dysphagia and infection. The aim of this comparative, double-blind, randomized clinical trial was to evaluate the efficacy of two sustained release amoxicillin/clavulanate regimens in the reduction of infection after third molar extractive surgery. A total of 225 patients were randomized into three equal groups: placebo, prophylaxis with single pre-surgical dose of two tablets amoxicillin/clavulanate 1000/62.5 mg, and pre-emptive post-surgery therapy with two tablets amoxicillin/clavulanate 1000/62.5 mg BID for 5 days. A higher rate of infection (P=0.006) was found among patients receiving placebo (16%) than those receiving single-dose prophylaxis (5.3%) or 5-day pre-emptive therapy (2.7%). A relationship between both the duration (13.8% for long versus 7.4% for medium versus 1.6% for short) and difficulty (12.7% with ostectomy versus 3.5% without ostectomy; P=0.011) of surgical procedure and incidence of subsequent infection was also observed. Both prophylactic and therapeutic regimens versus placebo achieved greater reduction of pain after surgery on day 3 (P=0.001). Logistic regression analysis revealed a risk of infection of 24%, 9% and 4% for ostectomy with placebo, prophylaxis and pre-emptive treatment, respectively, whereas it was 7%, 2% and 1% if ostectomy was not performed. Pre-emptive therapy with the oral sustained release amoxicillin/clavulanate formulation reduced the rate of subsequent infection in patients undergoing ostectomy. Prophylaxis was beneficial in simpler procedures and may be indicated in cases where ostectomy is not performed.
Spray-dried nanofibrillar cellulose microparticles for sustained drug release.
Kolakovic, Ruzica; Laaksonen, Timo; Peltonen, Leena; Laukkanen, Antti; Hirvonen, Jouni
2012-07-01
Nanofibrillar cellulose (also referred to as cellulose nanofibers, nanocellulose, microfibrillated or nanofibrillated cellulose) has gained a lot of attention in recent years in different research areas including biomedical applications. In this study we have evaluated the applicability of nanofibrillar cellulose (NFC) as a material for the formation of matrix systems for sustained drug delivery. For that purpose, drug loaded NFC microparticles were produced by a spray drying method. The microparticles were characterized in terms of size and morphology, total drug loading, and physical state of the encapsulated drug. Drug release from the microparticles was assessed by dissolution tests, and suitable mathematical models were used to explain the drug releasing kinetics. The particles had spherical shapes with diameters of around 5 μm; the encapsulated drug was mainly in amorphous form. The controlled drug release was achieved. The drug releasing curves were fitted to a mathematical model describing the drug releasing kinetics from a spherical matrix. Different drugs had different release kinetics, which was a consequence of several factors, including different solubilities of the drugs in the chosen medium and different affinities of the drugs to the NFC. It can be concluded that NFC microparticles can sustain drug release by forming a tight fiber network and thus limit drug diffusion from the system. Copyright © 2012 Elsevier B.V. All rights reserved.
Mikac, Ursa; Sepe, Ana; Kristl, Julijana; Baumgartner, Sasa
2010-08-03
The key element in drug release from hydrophilic matrix tablets is the gel layer that regulates the penetration of water and controls drug dissolution and diffusion. We have selected magnetic resonance imaging (MRI) as the method of choice for visualizing the dynamic processes occurring during the swelling of xanthan tablets in a variety of media. The aims were (i) to develop a new method using MRI for accurate determination of penetration, swelling and erosion fronts, (ii) to investigate the effects of pH and ionic strength on swelling, and (iii) to study the influence of structural changes in xanthan gel on drug release. Two dimensional (2D) MRI and one dimensional single point imaging (SPI) of swollen xanthan tablets were recorded, together with T(2) mapping. The border between dry and hydrated glassy xanthan-the penetration front-was determined from 1D SPI signal intensity profiles. The erosion front was obtained from signal intensity profiles of 2D MR images. The swelling front, where xanthan is transformed from a glassy to a rubbery state (gel formation), was determined from T(2) profiles. Further, the new combination of MRI methods for swelling front determination enables to explain the appearance of the unusual "bright front" observed on 2D MR images in tablets swollen in HCl pH 1.2 media, which represents the position of swelling front. All six media studied, differing in pH and ionic strength, penetrate through the whole tablet in 4h+/-0.3h, but formation of the gel layer is significantly delayed. Unexpectedly, the position of the swelling front was the same, independently of the different xanthan gel structures formed under different conditions of pH and ionic strength. The position of the erosion front, on the other hand, is strongly dependent on pH and ionic strength, as reflected in different thicknesses of the gel layers. The latter are seen to be the consequence of the different hydrodynamic radii of the xanthan molecules, which affect the drug release kinetics. The slowest release of pentoxifylline was observed in water where the thickest gel was formed, whereas the fastest release was observed in HCl pH 1.2, in which the gel layer was thinnest. Moreover, experiments simulating physiological conditions showed that changes of pH and ionic strength influence the xanthan gel structure relatively quickly, and consequently the drug release kinetics. It is therefore concluded that drug release is greatly influenced by changes in the xanthan molecular conformation, as reflected in changed thickness of the gel layer. A new method utilizing combination of SPI, multi-echo MRI and T(2) mapping eliminates the limitations of standard methods used in previous studies for determining moving fronts and improves current understanding of the dynamic processes involved in polymer swelling. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Heck, Rouven; Hermann, Sabrina; Lunter, Dominique J; Daniels, Rolf
2016-11-01
The purpose of this study was to develop film-forming formulations facilitating long-term treatment of chronic pruritus with capsaicinoids. To this end, an oily solution of nonivamide was loaded into porous silica particles which were then suspended in the dispersion of a sustained release polymer. Such formulations form a film when applied to the skin and encapsulate the drug loaded silica particles in a dry polymeric matrix. Dermal delivery and permeation of the antipruritic drug nonivamide (NVA) are controlled by the matrix. The film-forming formulations were examined regarding homogeneity, storage stability, substantivity and ex vivo skin permeation. Confocal Raman spectral imaging proved the stability of silica-based film-forming formulations over a period of 6 months. Substantivity was found to be enhanced substantially compared to a conventional semisolid formulation. Permeation rates of nonivamide from film-forming formulations through the skin are much lower compared to those achieved with a conventional immediate release formulation with the same drug amount. Due to the drug reservoir in the polymer matrix, a sustained permeation is enabled. Film-forming formulations may therefore improve the treatment of chronic pruritus with capsaicinoids by enhancing patient compliance through a sustained release regime. Copyright © 2016 Elsevier B.V. All rights reserved.
Vemula, Sateesh Kumar
2015-12-01
A significant plan is executed in the present study to study the effect of double-compression coating on flurbiprofen core mini-tablets to achieve the pulsatile colonic delivery to deliver the drug at a specific time as per the patho-physiological need of the disease that results in improved therapeutic efficacy. In this study, pulsatile double-compression-coated tablets were prepared based on time-controlled hydroxypropyl methylcellulose K100M inner compression coat and pH-sensitive Eudragit S100 outer compression coat. Then, the tablets were evaluated for both physical evaluation and drug-release studies, and to prove these results, in vivo pharmacokinetic studies in human volunteers were conducted. From the in vitro drug-release studies, F6 tablets were considered as the best formulation, which retarded the drug release in the stomach and small intestine (3.42 ± 0.12% in 5 h) and progressively released to the colon (99.78 ± 0.74% in 24 h). The release process followed zero-order release kinetics, and from the stability studies, similarity factor between dissolution data before and after storage was found to be 88.86. From the pharmacokinetic evaluation, core mini-tablets producing peak plasma concentration (C max) was 14,677.51 ± 12.16 ng/ml at 3 h T max and pulsatile colonic tablets showed C max = 12,374.67 ± 16.72 ng/ml at 12 h T max. The area under the curve for the mini and pulsatile tablets was 41,238.52 and 72,369.24 ng-h/ml, and the mean resident time was 3.43 and 10.61 h, respectively. In conclusion, development of double-compression-coated tablets is a promising way to achieve the pulsatile colonic release of flurbiprofen.
Eberle, Veronika A; Häring, Armella; Schoelkopf, Joachim; Gane, Patrick A C; Huwyler, Jörg; Puchkov, Maxim
2016-01-01
Development of floating drug delivery systems (FDDS) is challenging. To facilitate this task, an evaluation method was proposed, which allows for a combined investigation of drug release and flotation. It was the aim of the study to use functionalized calcium carbonate (FCC)-based lipophilic mini-tablet formulations as a model system to design FDDS with a floating behavior characterized by no floating lag time, prolonged flotation and loss of floating capability after complete drug release. Release of the model drug caffeine from the mini-tablets was assessed in vitro by a custom-built stomach model. A cellular automata-based model was used to simulate tablet dissolution. Based on the in silico data, floating forces were calculated and analyzed as a function of caffeine release. Two floating behaviors were identified for mini-tablets: linear decrease of the floating force and maintaining of the floating capability until complete caffeine release. An optimal mini-tablet formulation with desired drug release time and floating behavior was developed and tested. A classification system for a range of varied floating behavior of FDDS was proposed. The FCC-based mini-tablets had an ideal floating behavior: duration of flotation is defined and floating capability decreases after completion of drug release.
Bioavailability and stability of erythromycin delayed release tablets.
Ogwal, S; Xide, T U
2001-12-01
Erythromycin is available as the free base, ethylsuccinate, estolate, stearate, gluceptate, and lactobionate derivatives. When given orally erythromycin and its derivatives except the estolate are inactivated to some extent by the gastric acid and poor absorption may result. To establish whether delayed release erythromycin tablets meet the bioequivalent requirement for the market. Sectrophotometric analysis was used to determine the dissolution percentage of the tablets in vitro. High performance liquid chromatography and IBM/XT microcomputer was used to determine the bioavailability and pharmacokinetic parameters in vivo. Dissolution percentage in thirty minutes reached 28.9% and in sixty minutes erythromycin was completely released. The parameters of the delayed release tablets were Tlag 2.3 hr, Tmax.4.5 hr, and Cmax 2.123 g/ml Ka 0.38048 hr(-1) T (1/2) 1.8 hr, V*C/F 49.721 AUC 12.9155. The relative bioavailability of erythromycin delayed release tablet to erythromycin capsules was 105.31% The content, appearance, and dissolution bioavailability of delayed release erythromycin tablets conforms to the United States pharmacopoeia standards. The tablets should be stored in a cool and dry place in airtight containers and the shelf life is temporarily assigned two years.
Siddique, Sabahuddin; Khanam, Jasmina; Bigoniya, Papiya
2010-09-01
The objective of this investigation was to prepare sustained release capsule containing coated matrix granules of metoprolol tartrate and to study its in vitro release and in vivo absorption. The design of dosage form was performed by choosing hydrophilic hydroxypropyl methyl cellulose (HPMC K100M) and hydrophobic ethyl cellulose (EC) polymers as matrix builders and Eudragit® RL/RS as coating polymers. Granules were prepared by composing drug with HPMC K100M, EC, dicalcium phosphate by wet granulation method with subsequent coating. Optimized formulation of metoprolol tartrate was formed by using 30% HPMC K100M, 20% EC, and ratio of Eudragit® RS/RL as 97.5:2.5 at 25% coating level. Capsules were filled with free flowing optimized granules of uniform drug content. This extended the release period upto 12 h in vitro study. Similarity factor and mean dissolution time were also reported to compare various dissolution profiles. The network formed by HPMC and EC had been coupled satisfactorily with the controlled resistance offered by Eudragit® RS. The release mechanism of capsules followed Korsemeyer-Peppas model that indicated significant contribution of erosion effect of hydrophilic polymer. Biopharmaceutical study of this optimized dosage form in rabbit model showed 10 h prolonged drug release in vivo. A close correlation (R(2) = 0.9434) was established between the in vitro release and the in vivo absorption of drug. The results suggested that wet granulation with subsequent coating by fluidized bed technique, is a suitable method to formulate sustained release capsules of metoprolol tartrate and it can perform therapeutically better than conventional immediate release dosage form.
Sustained release of antimicrobial drugs from polyvinylalcohol and gum arabica blend matrix.
Kushwaha, V; Bhowmick, A; Behera, B K; Ray, A R
1998-03-01
Synthetic polymers are widely used in biomedical applications. Polymer blends have recently paved their way in this field. An attempt to prepare blend of synthetic polymer polyvinylalcohol and natural macromolecule gum arabica is made in this paper. Characterization of these blends by NMR, DSC and viscoelastic studies reveal preparation of a blend composition with synergistic properties. The blend composition with synergistic properties was used to release various antimicrobial drugs. The duration and release of the drug depends on the amount of drug loaded in the matrix and solubility of the drug in the matrix and release medium. The advantage of this system is that the release kinetics of the drug from the system can be tailored by adjusting plasticizer, homopolymer and crosslinker composition depending on the drug to be released.
Inoue, Satoshi; Saito, Yoji; Tsuneto, Satoru; Aruga, Etsuko; Ide, Azusa; Kakurai, Yasuyuki
2017-01-01
In Japan, there are limited options for switching opioid analgesics. Hydromorphone is an opioid analgesic that is routinely used instead of morphine for cancer pain; however, it is not yet available in Japan. The aim of this study was to assess the efficacy and safety of hydromorphone (DS-7113b) extended-release tablets in opioid-naïve patients with cancer pain not relieved by non-opioid analgesics. This was a multicenter, randomized, double-blind, parallel-group trial. A double-dummy method was used for blinding. Each randomized subject received either hydromorphone extended-release tablets plus placebo oxycodone hydrochloride extended-release tablets 4 mg/day (n=88) or placebo hydromorphone extended-release tablets plus oxycodone hydrochloride extended-release tablets 10 mg/day (n=93) orally for 7 days (once-daily dosing for hydromorphone and twice-daily dosing for oxycodone). The doses were adjusted as necessary. Efficacy was evaluated by change in visual analog scale (VAS) score from baseline to completion of treatment. The between-group difference in least squares mean changes in VAS score from baseline to completion or discontinuation of treatment was -0.4 mm (95% CI -5.9 to 5 mm) by analysis of covariance where the baseline VAS score was used as a covariate. The upper limit of the 95% CI was below 10 mm, which was predefined as the noninferiority limit. This verified the noninferiority of hydromorphone tablets relative to oxycodone tablets. The incidence of adverse events was 80.7% (71 of 88) in the hydromorphone group and 83.7% (77 of 93) in the oxycodone group. The most common adverse events were nausea, vomiting, somnolence, diarrhea, and constipation, most of which are commonly observed with opioid analgesics. The efficacy and safety of hydromorphone extended-release tablets were equivalent to those of the oxycodone extended-release formulation.
Verstraete, G; Van Renterghem, J; Van Bockstal, P J; Kasmi, S; De Geest, B G; De Beer, T; Remon, J P; Vervaet, C
2016-06-15
Hydrophilic aliphatic thermoplastic polyurethane (Tecophilic™ grades) matrices for high drug loaded oral sustained release dosage forms were formulated via hot melt extrusion/injection molding (HME/IM). Drugs with different aqueous solubility (diprophylline, theophylline and acetaminophen) were processed and their influence on the release kinetics was investigated. Moreover, the effect of Tecophilic™ grade, HME/IM process temperature, extrusion speed, drug load, injection pressure and post-injection pressure on in vitro release kinetics was evaluated for all model drugs. (1)H NMR spectroscopy indicated that all grades have different soft segment/hard segment ratios, allowing different water uptake capacities and thus different release kinetics. Processing temperature of the different Tecophilic™ grades was successfully predicted by using SEC and rheology. Tecophilic™ grades SP60D60, SP93A100 and TG2000 had a lower processing temperature than other grades and were further evaluated for the production of IM tablets. During HME/IM drug loads up to 70% (w/w) were achieved. In addition, Raman mapping and (M)DSC results confirmed the homogenous distribution of mainly crystalline API in all polymer matrices. Besides, hydrophilic TPU based formulations allowed complete and sustained release kinetics without using release modifiers. As release kinetics were mainly affected by drug load and the length of the PEO soft segment, this polymer platform offers a versatile formulation strategy to adjust the release rate of drugs with different aqueous solubility. Copyright © 2016 Elsevier B.V. All rights reserved.
Posaconazole delayed-release tablets and oral suspension are used to prevent serious fungal infections in adults and teenagers 13 years of age and ... break-down of the medication by stomach acids) tablet to take by mouth. The delayed-release tablets ...
Guerra, Aurélie; Denis, Sylvain; le Goff, Olivier; Sicardi, Vincent; François, Olivier; Yao, Anne-Françoise; Garrait, Ghislain; Manzi, Aimé Pacifique; Beyssac, Eric; Alric, Monique; Blanquet-Diot, Stéphanie
2016-06-01
For ethical, regulatory, and economic reasons, in vitro human digestion models are increasingly used as an alternative to in vivo assays. This study aims to present the new Engineered Stomach and small INtestine (ESIN) model and its validation for pharmaceutical applications. This dynamic computer-controlled system reproduces, according to in vivo data, the complex physiology of the human stomach and small intestine, including pH, transit times, chyme mixing, digestive secretions, and passive absorption of digestion products. Its innovative design allows a progressive meal intake and the differential gastric emptying of solids and liquids. The pharmaceutical behavior of two model drugs (paracetamol immediate release form and theophylline sustained release tablet) was studied in ESIN during liquid digestion. The results were compared to those found with a classical compendial method (paddle apparatus) and in human volunteers. Paracetamol and theophylline tablets showed similar absorption profiles in ESIN and in healthy subjects. For theophylline, a level A in vitro-in vivo correlation could be established between the results obtained in ESIN and in humans. Interestingly, using a pharmaceutical basket, the swelling and erosion of the theophylline sustained release form was followed during transit throughout ESIN. ESIN emerges as a relevant tool for pharmaceutical studies but once further validated may find many other applications in nutritional, toxicological, and microbiological fields. Biotechnol. Bioeng. 2016;113: 1325-1335. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Rajkumar, Arthi D; Reynolds, Gavin K; Wilson, David; Wren, Stephen; Hounslow, Michael J; Salman, Agba D
2016-09-01
Tablet disintegration is a fundamental parameter that is tested in vitro before a product is released to the market, to give confidence that the tablet will break up in vivo and that active drug will be available for absorption. Variations in tablet properties cause variation in disintegration behaviour. While the standardised pharmacopeial disintegration test can show differences in the speed of disintegration of different tablets, it does not give any mechanistic information about the underlying cause of the difference. With quantifiable disintegration data, and consequently an improved understanding into tablet disintegration, a more knowledge-based approach could be applied to the research and development of future tablet formulations. The aim of the present research was to introduce an alternative method which will enable a better understanding of tablet disintegration using a particle imaging approach. A purpose-built flow cell was employed capable of online observation of tablet disintegration, which can provide information about the changing tablet dimensions and the particles released with time. This additional information can improve the understanding of how different materials and process parameters affect tablet disintegration. Standard USP analysis was also carried out to evaluate and determine whether the flow cell method can suitably differentiate the disintegration behaviour of tablets produced using different processing parameters. Placebo tablets were produced with varying ratios of insoluble and soluble filler (mannitol and MCC, respectively) so that the effect of variation in the formulation can be investigated. To determine the effect of the stress applied during granulation and tableting on tablet disintegration behaviour, analysis was carried out on tablets produced using granular material compressed at 20 or 50bar, where a tableting load of either 15 or 25kN was used. By doing this the tablet disintegration was examined in terms of the tablet porosity by monitoring the tablet area and particle release. It was found that when 20 and 50bar roller compaction pressure was used the USP analysis showed almost identical disintegration times for the consequent tablets. With the flow cell method a greater tablet swelling was observed for the lower pressure followed by steady tablet erosion. Additionally, more particles were released during disintegration due to the smaller granule size distribution within the tablet. When a higher tableting pressure was applied the tablet exhibited a delay in the time taken to reach the maximum swelling area, and slower tablet erosion and particle release were also observed, largely due to the tablet being much denser causing slower water uptake. This was in agreement with the USP analysis data. Overall it was confirmed by using both the standard USP analysis and flow cell method that the tablet porosity affects the tablet disintegration, whereby a more porous tablet disintegrates more slowly. But a more in-depth understanding was obtained using the flow cell method as it was determined that tablets will swell to varying degrees and release particles at different rates depending on the roller compaction and tableting pressure used. Copyright © 2016 Elsevier B.V. All rights reserved.
NMR imaging of high-amylose starch tablets. 1. Swelling and water uptake.
Baille, Wilms E; Malveau, Cédric; Zhu, Xiao Xia; Marchessault, Robert H
2002-01-01
Pharmaceutical tablets made of modified high-amylose starch have a hydrophilic polymer matrix into which water can penetrate with time to form a hydrogel. Nuclear magnetic resonance imaging was used to study the water penetration and the swelling of the matrix of these tablets. The tablets immersed in water were imaged at different time intervals on a 300 MHz NMR spectrometer. Radial images show clearly the swelling of the tablets and the water concentration profile. The rate constants for water diffusion and the tablet swelling were extracted from the experimental data. The water diffusion process was found to follow case II kinetics at 25 degrees C. NMR imaging also provided spin density profiles of the water penetrating inside the tablets.
Diffusion and Swelling Measurements in Pharmaceutical Powder Compacts Using Terahertz Pulsed Imaging
Yassin, Samy; Su, Ke; Lin, Hungyen; Gladden, Lynn F; Zeitler, J Axel
2015-01-01
Tablet dissolution is strongly affected by swelling and solvent penetration into its matrix. A terahertz-pulsed imaging (TPI) technique, in reflection mode, is introduced as a new tool to measure one-dimensional swelling and solvent ingress in flat-faced pharmaceutical compacts exposed to dissolution medium from one face of the tablet. The technique was demonstrated on three tableting excipients: hydroxypropylmethyl cellulose (HPMC), Eudragit RSPO, and lactose. Upon contact with water, HPMC initially shrinks to up to 13% of its original thickness before undergoing expansion. HPMC and lactose were shown to expand to up to 20% and 47% of their original size in 24 h and 13 min, respectively, whereas Eudragit does not undergo dimensional change. The TPI technique was used to measure the ingress of water into HPMC tablets over a period of 24 h and it was observed that water penetrates into the tablet by anomalous diffusion. X-ray microtomography was used to measure tablet porosity alongside helium pycnometry and was linked to the results obtained by TPI. Our results highlight a new application area of TPI in the pharmaceutical sciences that could be of interest in the development and quality testing of advanced drug delivery systems as well as immediate release formulations. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:1658–1667, 2015 PMID:25645509
Yassin, Samy; Su, Ke; Lin, Hungyen; Gladden, Lynn F; Zeitler, J Axel
2015-05-01
Tablet dissolution is strongly affected by swelling and solvent penetration into its matrix. A terahertz-pulsed imaging (TPI) technique, in reflection mode, is introduced as a new tool to measure one-dimensional swelling and solvent ingress in flat-faced pharmaceutical compacts exposed to dissolution medium from one face of the tablet. The technique was demonstrated on three tableting excipients: hydroxypropylmethyl cellulose (HPMC), Eudragit RSPO, and lactose. Upon contact with water, HPMC initially shrinks to up to 13% of its original thickness before undergoing expansion. HPMC and lactose were shown to expand to up to 20% and 47% of their original size in 24 h and 13 min, respectively, whereas Eudragit does not undergo dimensional change. The TPI technique was used to measure the ingress of water into HPMC tablets over a period of 24 h and it was observed that water penetrates into the tablet by anomalous diffusion. X-ray microtomography was used to measure tablet porosity alongside helium pycnometry and was linked to the results obtained by TPI. Our results highlight a new application area of TPI in the pharmaceutical sciences that could be of interest in the development and quality testing of advanced drug delivery systems as well as immediate release formulations. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.
Correlation of dissolution and disintegration results for an immediate-release tablet.
Nickerson, Beverly; Kong, Angela; Gerst, Paul; Kao, Shangming
2018-02-20
The drug release rate of a rapidly dissolving immediate-release tablet formulation with a highly soluble drug is proposed to be controlled by the disintegration rate of the tablet. Disintegration and dissolution test methods used to evaluate the tablets were shown to discriminate manufacturing process differences and compositionally variant tablets. In addition, a correlation was established between disintegration and dissolution. In accordance with ICH Q6A, this work demonstrates that disintegration in lieu of dissolution is suitable as the drug product quality control method for evaluating this drug product. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Xi; Yi, Yueneng; Qi, Jianping; Lu, Yi; Tian, Zhiqiang; Xie, Yunchang; Yuan, Hailong; Wu, Wei
2013-08-16
It is very important to enhance the absorption simultaneously while designing controlled release delivery systems for poorly water-soluble and poorly permeable drugs (BCS IV). In this study, controlled release of cyclosporine (CyA) was achieved by the osmotic release strategy taking advantage of the absorption-enhancing capacity of self-nanoemulsifying drug delivery systems (SNEDDSs). The liquid SNEDDS consisting of Labrafil M 1944CS, Transcutol P and Cremophor EL was absorbed by the osmotic tablet core excipients (sucrose, lactose monohydrate, polyethylene oxide, and partly pregelatinized starch) and then transformed into osmotic tablets. Near zero-order release could be achieved for CyA-loaded nanoemulsions reconstituted from the SNEDDS. In general, the influencing factor study indicated that the release rate increased with increase of inner osmotic pressure, ratio of osmotic agent to suspending agent, content of pore-forming agent, and size of release orifice, whereas the thickness of the membrane impeded the release of CyA nanoemulsion. Pharmacokinetic study showed steady blood CyA profiles with prolonged Tmax and MRT, and significantly reduced Cmax for self-nanoemulsifying osmotic pump tablet (SNEOPT) in comparison with highly fluctuating profiles of the core tablet and Sandimmune Neoral(®). However, similar oral bioavailability was observed for either controlled release or non-controlled release formulations. It was concluded that simultaneous controlling on CyA release and absorption-enhancing had been achieved by a combination of osmotic tablet and SNEDDS. Copyright © 2013 Elsevier B.V. All rights reserved.
Jackson, J Mark; Kircik, Leon H; Lorenz, Douglas J
2013-03-01
Rosacea is one of the most commonly occurring dermatoses treated by dermatologists. There are multiple therapeutic options available for the treatment of papulopustular rosacea. Rosacea is an inflammatory condition, classically presenting with flushing and/or blushing along with erythema, edema, telangiectasia, papules, pustules, and nodules of the face. Minocycline, a member of the tetracycline family, has demonstrated benefit in the treatment of inflammatory lesions in patients with rosacea. This manuscript highlights the use of a new sustained-release low-dose minocycline 45 mg tablet, with or without azelaic acid, for the treatment of papulopustular rosacea.
NASA Astrophysics Data System (ADS)
Kim, Y.; Kang, J. H.; Yeum, Y.; Han, K. J.; Kim, D. W.; Park, C. W.
2015-12-01
Nitric nitrogen could be the one of typical pollution source such asNO3-through domestic sewage, livestock and agricultural wastewater. Resident microflorain aquifer has known to remove the nitric nitrogen spontaneously following the denitration process with the carbon source (CS) as reactant. However, it could be reacted very slowly with the rack of CS and there have been some studies for controlled addition of CS (Ref #1-3). The aim of this study was to prepare the controlled-release carbon source (CR-CS) tablet and to evaluate in vitro release profile for groundwater in situ denitrification. CR-CS tablet could be manufactured by direct compression method using hydraulic laboratory press (Caver® 3850) with 8 mm rounded concave punch/ die.Seven kinds of CR-CS tablet were prepared to determine the nature of the additives and their ratio such as sodium silicate, dicalcium phosphate, bentonite and sand#8.For each formulation, the LOD% and flowability of pre-mixed powders and the hardness of compressed tablets were analyzed. In vitro release study was performed to confirm the dissolution profiles following the USP Apparatus 2 method with Distilled water of 900mL, 20 °C. As a result, for each lubricated powders, they were compared in terms of ability to give an acceptable dry pre-mixed powder for tableting process. The hardness of the compressed tablets is acceptable whatever the formulations tested. After in vitro release study, it could confirm that the different formulations of CR-CS tablet have a various release rate patterns, which could release 100% at 3 hrs, 6 hrs and 12 hrs. The in vitro dissolution profiles were in good correlation of Higuchi release kinetic model. In conclusion, this study could be used as a background for development and evaluation of the controlled-release carbon source (CR-CS) tablet for the purification of groundwater following the in situ denitrification.
Novel mesalamine-loaded beads in tablets for delayed release of drug to the colon.
Nguyen, Chien; Christensen, J Mark; Ayres, James W
2012-01-01
Novel 'beads-in-a-tablet' formulations (total weight ∼740-780 mg) have been prepared that meet USP 31 requirements for Delayed Release of mesalamine. Several methods are presented that overcome breakage of beads during tablet compaction were explored. Bead formulations comprise a combination of extrusion and spheronization to produce a relatively high drug load (80%), followed by coating (25%) with a colonic-targeted drug release polymer (polymethacrylates, Eudragit(®) S100), overcoated (3%) with hydroxypropyl methylcellulose (Opadry(®)) to improve bead binding and compactability, and using 20% coat of lactose/sodium starch glycolate (Explotab(®)) as binder/disintegrant/cushioning agent, thus allowing a sufficiently thick coating to be uniform and without being broken during tablet compaction. Then, the aforementioned beads were compressed into tablets at 1500 pounds of pressure containing 400 mg of mesalamine, and finally coating the compressed tablets with Surelease(®) (ethylcellulose):Opadry(®) = 1:0.5 ranging from 1.5-2.5% weight gain; the resulting tablets met USP 31 dissolution requirements for delayed release tablets.
3D printing of tablets using inkjet with UV photoinitiation.
Clark, Elizabeth A; Alexander, Morgan R; Irvine, Derek J; Roberts, Clive J; Wallace, Martin J; Sharpe, Sonja; Yoo, Jae; Hague, Richard J M; Tuck, Chris J; Wildman, Ricky D
2017-08-30
Additive manufacturing (AM) offers significant potential benefits in the field of drug delivery and pharmaceutical/medical device manufacture. Of AM processes, 3D inkjet printing enables precise deposition of a formulation, whilst offering the potential for significant scale up or scale out as a manufacturing platform. This work hypothesizes that suitable solvent based ink formulations can be developed that allow the production of solid dosage forms that meet the standards required for pharmaceutical tablets, whilst offering a platform for flexible and personalized manufacture. We demonstrate this using piezo-activated inkjetting to 3D print ropinirole hydrochloride. The tablets produced consist of a cross-linked poly(ethylene glycol diacrylate) (PEGDA) hydrogel matrix containing the drug, photoinitiated in a low oxygen environment using an aqueous solution of Irgacure 2959. At a Ropinirole HCl loading of 0.41mg, drug release from the tablet is shown to be Fickian. Raman and IR spectroscopy indicate a high degree of cross-linking and formation of an amorphous solid dispersion. This is the first publication of a UV inkjet 3D printed tablet. Consequently, this work opens the possibility for the translation of scalable, high precision and bespoke ink-jet based additive manufacturing to the pharmaceutical sector. Copyright © 2017. Published by Elsevier B.V.
Liu, Longxiao; Wang, Jinchao; Zhu, Suyan
2007-04-01
The preparation of an osmotic pump tablet was simplified by elimination of laser drilling using prazosin hydrochloride as the model drug. The osmotic pump system was obtained by coating the indented core tablet compressed by the punch with a needle. A multiple regression equation was achieved with the experimental data of core tablet formulations, and then the formulation was optimized. The influences of the indentation size of the core tablet, environmental media, and agitation rate on drug release profile were investigated. The optimal osmotic pump tablet was found to deliver prazosin hydrochloride at an approximately constant rate up to 24 hr, and independent on both release media and agitation rate. Indentation size of core tablet hardly affected drug release in the range of 0.80-1.15 mm. The method that is simplified by elimination of laser drilling may be promising for preparation of an osmotic pump tablet.
Xue, Li'an; Li, Yuanbo; Guo, Dandan; Yin, Jianhua; Liu, Yanchun; Hou, Shixiang
2009-04-01
To prepare effervescent osmotic pump tablet (EOPTs) according to the rhythm of coronary heart disease based on efficacy material and the mechanism of compound Danshen and to study the mechanism of drug released of that tablets. Since compound Danshen consist of compounds with polyphenolic groups or carboxyl groups, such as phenolic acids, flavonoids, and triterpenoids that they were acidic. EOPTs were prepared from tablet cores which containing NaHCO3 as effervescent, NaCL and manitol as osmotic agents, HPMC as retarding agents coating with CA membrane. And study the mechanism of drug released according to the change of tablet osmotic pressure. The results of in vitro experiments showed that no difference was observed among the profiles of Danshensu, protocatechuic aldehyde, ginsenoside Rg1, Rb1, notoginsenoside R1 release EOPTs. The drug was completely released from the device with a zero-order release rate over 12 h. EOPTs are Successfully obtained EOPT which the drug is released from the device over 12 h and the release mechanism of EOPTs is explained.
Supramolecular gelation of a polymeric prodrug for its encapsulation and sustained release.
Ma, Dong; Zhang, Li-Ming
2011-09-12
A polymeric prodrug, PEGylated indomethacin (MPEG-indo), was prepared and then used to interact with α-cyclodextrin (α-CD) in their aqueous mixed system. This process could lead to the formation of supramolecular hydrogel under mild conditions and simultaneous encapsulation of MPEG-indo in the hydrogel matrix. For the formed supramolecular hydrogel, its gelation kinetics, mechanical strength, shear-thinning behavior and thixotropic response were investigated with respect to the effects of MPEG-indo and α-CD amounts by dynamic and steady rheological tests. Meanwhile, the possibility of using this hydrogel matrix as injectable drug delivery system was also explored. By in vitro release and cell viability tests, it was found that the encapsulated MPEG-indo could exhibit a controlled and sustained release behavior as well as maintain its biological activity.
Development, evaluation and pharmacokinetics of time-dependent ketorolac tromethamine tablets.
Vemula, Sateesh Kumar; Veerareddy, Prabhakar Reddy
2013-01-01
The present study was intended to develop a time-dependent colon-targeted compression-coated tablets of ketorolac tromethamine (KTM) using hydroxypropyl methylcellulose (HPMC) that release the drug slowly but completely in the colonic region by retarding the drug releases in stomach and small intestine. KTM core tablets were prepared by direct compression method and were compression coated with HPMC. The formulation is optimized based on the in vitro drug release studies and further evaluated by X-ray imaging technique in healthy humans to ensure the colonic delivery. To prove these results, in vivo pharmacokinetic studies in human volunteers were designed to study the in vitro-in vivo correlation. From the in vitro dissolution study, optimized formulation F3 showed negligible drug release (6.75 ± 0.49%) in the initial lag period followed by slow release (97.47 ± 0.93%) for 24 h which clearly indicates that the drug is delivered to the colon. The X-ray imaging studies showed that the tablets reached the colon without disintegrating in upper gastrointestinal system. From the pharmacokinetic evaluation, the immediate-release tablets producing peak plasma concentration (C(max)) was 4482.74 ng/ml at 2 h T(max) and colon-targeted tablets showed C(max) = 3562.67 ng/ml at 10 h T(max). The area under the curve for the immediate-release and compression-coated tablets was 10595.14 and 18796.70 ng h/ml and the mean resident time was 3.82 and 10.75 h, respectively. Thus, the compression-coated tablets based on time-dependent approach were preferred for colon-targeted delivery of ketorolac.
Järvinen, Maiju A; Paaso, Janne; Paavola, Marko; Leiviskä, Kauko; Juuti, Mikko; Muzzio, Fernando; Järvinen, Kristiina
2013-11-01
Continuous processing is becoming popular in the pharmaceutical industry for its cost and quality advantages. This study evaluated the mechanical properties, uniformity of dosage units and drug release from the tablets prepared by continuous direct compression process. The tablet formulations consisted of acetaminophen (3-30% (w/w)) pre-blended with 0.25% (w/w) colloidal silicon dioxide, microcrystalline cellulose (69-96% (w/w)) and magnesium stearate (1% (w/w)). The continuous tableting line consisted of three loss-in-weight feeders and a convective continuous mixer and a rotary tablet press. The process continued for 8 min and steady state was reached within 5 min. The effects of acetaminophen content, impeller rotation rate (39-254 rpm) and total feed rate (15 and 20 kg/h) on tablet properties were examined. All the tablets complied with the friability requirements of European Pharmacopoeia and rapidly released acetaminophen. However, the relative standard deviation of acetaminophen content (10% (w/w)) increased with an increase in impeller rotation rate at a constant total feed rate (20 kg/h). A compression force of 12 kN tended to result in greater tablet hardness and subsequently a slower initial acetaminophen release from tablets when compared with those made with the compression force of about 8 kN. In conclusion, tablets could be successfully prepared by a continuous direct compression process and process conditions affected to some extent tablet properties.
Evaluation of Gum of Moringa oleifera as a Binder and Release Retardant in Tablet Formulation
Panda, D. S.; Choudhury, N. S. K.; Yedukondalu, M.; Si, S.; Gupta, R.
2008-01-01
The present study was undertaken to find out the potential of gum from Moringa oleifera to act as a binder and release retardant in tablet formulations. The effect of calcium sulphate dihydrate (water insoluble) and lactose (water soluble) diluent on the release of propranolol hydrochloride was studied. The DSC thermograms of drug, gum and mixture of gum/drug indicated no chemical interaction. Tablets (F1, F2, F3, and F4) were prepared containing calcium sulphate dihydrate as diluent, propranolol hydrochloride as model drug using 10%, 8%, 6% and 4% w/v of gum solution as binder. Magnesium stearate was used as lubricant. Physical and technological properties of granules and tablets like flow rate, Carr index, Hausner ratio, angle of repose, hardness, friability and disintegration time were determined and found to be satisfactory. Tablets were prepared by wet granulation method containing calcium sulphate dihydrate as excipient, propranolol hydrochloride as model drug using 10%, 20% and 30% of gum as release retardant, magnesium stearate was used as lubricant. Similarly tablets were prepared replacing lactose with calcium sulphate dihydrate. Despite of the widely varying physico-chemical characteristics of the excipients, the drug release profiles were found to be similar. The drug release increased with increasing proportions of the excipient and decreased proportion of the gum irrespective of the solubility characteristics of the excipient. The values of release exponent ‘n’ are between 0.37 and 0.54. This implies that the release mechanism is Fickian. There is no evidence that the dissolution or erosion of the excipient has got any effect on the release of the drug. The t50% values for tablets containing calcium sulphate dihydrate were on an average 10%-15% longer than the tablets containing lactose as excipient. These relatively small differences in t50% values suggest that the nature of excipient used appeared to play a minor role in regulating the release, while the gum content was a major factor. PMID:21394258
Bernardo-Escudero, Roberto; Alonso-Campero, Rosalba; Francisco-Doce, María Teresa de Jesús; Cortés-Fuentes, Myriam; Villa-Vargas, Miriam; Angeles-Uribe, Juan
2012-12-01
The study aimed to assess the pharmacokinetics of a new, modified-release metoclopramide tablet, and compare it to an immediate-release tablet. A single and multiple-dose, randomized, open-label, parallel, pharmacokinetic study was conducted. Investigational products were administered to 26 healthy Hispanic Mexican male volunteers for two consecutive days: either one 30 mg modified-release tablet every 24 h, or one 10 mg immediate-release tablet every 8 h. Blood samples were collected after the first and last doses of metoclopramide. Plasma metoclopramide concentrations were determined by high-performance liquid chromatography. Safety and tolerability were assessed through vital signs measurements, clinical evaluations, and spontaneous reports from study subjects. All 26 subjects were included in the analyses [mean (SD) age: 27 (8) years, range 18-50; BMI: 23.65 (2.22) kg/m², range 18.01-27.47)]. Peak plasmatic concentrations were not statistically different with both formulations, but occurred significantly later (p < 0.05) with the modified-release form [tmax: 3.15 (1.28) vs. 0.85 (0.32) h and tmax-ss: 2.92 (1.19) vs. 1.04 (0.43) h]. There was no difference noted in the average plasma concentrations [Cavgτ: 23.90 (7.90) vs. 20.64 (7.43) ng/mL after the first dose; and Cavg-ss: 31.14 (9.64) vs. 35.59 (12.29) ng/mL after the last dose, (p > 0.05)]. One adverse event was reported in the test group (diarrhea), and one in the reference group (headache). This study suggests that the 30 mg modified-release metoclopramide tablets show features compatible with slow-release formulations when compared to immediate-release tablets, and is suitable for once-a-day administration.
Physical solid-state properties and dissolution of sustained-release matrices of polyvinylacetate.
Gonzalez Novoa, Gelsys Ananay; Heinämäki, Jyrki; Mirza, Sabir; Antikainen, Osmo; Colarte, Antonio Iraizoz; Paz, Alberto Suzarte; Yliruusi, Jouko
2005-02-01
Solid-state compatibility and in vitro dissolution of direct-compressed sustained-release matrices of polyvinylacetate (PVAc) and polyvinylpyrrolidone (PVP) containing ibuprofen as a model drug were studied. Polyvinylalcohol (PVA) was used as an alternative water-soluble polymer to PVP. Differential scanning calorimetry (DSC) and powder X-ray diffractometry (PXRD) were used for characterizing solid-state polymer-polymer and drug-polymer interactions. The mechanical treatment for preparing physical mixtures of polyvinyl polymers and the drug (i.e. simple blending or stressed cogrinding) was shown not to affect the physical state of the drug and the polymers. With the drug-polymer mixtures the endothermic effect due to drug melting was always evident, but a considerable modification of the melting point of the drug in physical binary mixtures (drug:PVP) was observed, suggesting some interaction between the two. On the other hand, the lack of a significant shift of the melting endothermic peak of the drug in physical tertiary drug-polymer mixtures revealed no evidence of solid-state interaction between the drug and the present polymers. Sustained-release dissolution profiles were achieved from the direct-compressed matrices made from powder mixtures of the drug and PVAc combined with PVP, and the proportion of PVAc in the mixture clearly altered the drug release profiles in vitro. The drug release from the present matrix systems is controlled by both diffusion of the drug through the hydrate matrix and the erosion of the matrix itself.
Gavin, Amy; Pham, Jimmy TH; Wang, Dawei; Brownlow, Bill; Elbayoumi, Tamer A
2015-01-01
Oral cavity and oropharyngeal cancers are considered the eighth most common cancer worldwide, with relatively poor prognosis (62% of patients surviving 5 years, after diagnosis). The aim of this study was to develop a proof-of-concept mucoadhesive lozenge/buccal tablet, as a potential platform for direct sustained delivery of therapeutic antimitotic nanomedicines. Our system would serve as an adjuvant therapy for oral cancer patients undergoing full-scale diagnostic and operative treatment plans. We utilized lipid-based nanocarriers, namely nanoemulsions (NEs), containing mixed-polyethoxylated emulsifiers and a tocopheryl moiety–enriched oil phase. Prototype NEs, loaded with the proapoptotic lipophilic drug genistein (Gen), were further processed into buccal tablet formulations. The chitosan polyelectrolyte solution overcoat rendered NE droplets cationic, by acting as a mucoadhesive interfacial NE layer. With approximate size of 110 nm, the positively charged chitosan-layered NE (+25 mV) vs negatively charged chitosan-free/primary aqueous NE (−28 mV) exhibited a controlled-release profile and effective mucoadhesion for liquid oral spray prototypes. When punch-pressed, porous NE-based buccal tablets were physically evaluated for hardness, friability, and swelling in addition to ex vivo tissue mucoadhesion force and retention time measurements. Chitosan-containing NE tablets were found equivalent to primary NE and placebo tablets in compression tests, yet significantly superior in all ex vivo adhesion and in vitro release assays (P≤0.05). Following biocompatibility screening of prototype chitosan-layered NEs, substantial anticancer activity of selected cationic Gen-loaded NE formulations, against two oropahryngeal carcinomas, was observed. The data strongly indicate the potential of such nanomucoadhesive systems as maintenance therapy for oral cancer patients awaiting surgical removal, or postresection of identified cancerous lesions. PMID:25759580
21 CFR 343.90 - Dissolution and drug release testing.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...
21 CFR 343.90 - Dissolution and drug release testing.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...
21 CFR 343.90 - Dissolution and drug release testing.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...
21 CFR 343.90 - Dissolution and drug release testing.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...
21 CFR 343.90 - Dissolution and drug release testing.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...
Gaber, Dina M; Nafee, Noha; Abdallah, Osama Y
2015-07-05
Whether mini-tablets (tablets, diameters ≤6mm) belong to single- or multiple-unit dosage forms is still questionable. Accordingly, Pharmacopoeial evaluation procedures for mini-tablets are lacking. In this study, the aforementioned points were discussed. Moreover, their potential for oral controlled delivery was assessed. The antidepressant venlafaxine hydrochloride (Vx), a highly soluble drug undergoing first pass effect, low bioavailability and short half-life was selected as a challenging payload. In an attempt to weigh up mini-tablets versus pellets as multiparticulate carriers, Vx-loaded mini-tablets were compared to formulated pellets of the same composition and the innovator Effexor(®)XR pellets. Formulations were prepared using various polymer hydrogels in the core and ethyl cellulose film coating with increasing thickness. Mini-tablets (diameter 2mm) showed extended Vx release (<60%, 8h). Indeed, release profiles comparable to Effexor(®)XR pellets were obtained. Remarkably higher coating thickness was required for pellets to provide equivalent retardation. Ethyl cellulose in the core ensured faster release due to polymer migration to the surface and pore formation in the coat. mini-tablets showed higher stability to pellets upon storage. Industrially speaking, mini-tablets proved to be superior to pellets in terms of manufacturing, product quality and economical aspects. Results point out the urgent need for standardized evaluation procedures for mini-tablets. Copyright © 2015. Published by Elsevier B.V.
Effect of crospovidone and hydroxypropyl cellulose on carbamazepine in high-dose tablet formulation.
Flicker, Felicia; Betz, Gabriele
2012-06-01
The aim of this study was to develop a high-dose tablet formulation of the poorly soluble carbamazepine (CBZ) with sufficient tablet hardness and immediate drug release. A further aim was to investigate the influence of various commercial CBZ raw materials on the optimized tablet formulation. Hydroxypropyl cellulose (HPC-SL) was selected as a dry binder and crospovidone (CrosPVP) as a superdisintegrant. A direct compacted tablet formulation of 70% CBZ was optimized by a 3² full factorial design with two input variables, HPC (0--10%) and CrosPVP (0--5%). Response variables included disintegration time, amount of drug released at 15 and 60 min, and tablet hardness, all analyzed according to USP 31. Increasing HPC-SL together with CrosPVP not only increased tablet hardness but also reduced disintegration time. Optimal condition was achieved in the range of 5--9% HPC and 3--5% CrosPVP, where tablet properties were at least 70 N tablet hardness, less than 1 min disintegration, and within the USP requirements for drug release. Testing the optimized formulation with four different commercial CBZ samples, their variability was still observed. Nonetheless, all formulations conformed to the USP specifications. With the excipients CrosPVP and HPC-SL an immediate release tablet formulation was successfully formulated for high-dose CBZ of various commercial sources.
Rehman, K; Amin, M C I M; Muda, S
2013-12-01
The increase in diseases of the colon underscores the need to develop cost-effective site-directed therapies. We formulated a polysaccharide-based matrix system that could release ibuprofen under conditions simulating those in the colon by employing a wet granulation method. Tablets were prepared in a series of formulations containing a polysaccharide (beta-cyclodextrin and chitosan) matrix system along with ethylcellulose. We characterized physicochemical properties and performed an in vitro drug release assay in the absence and presence of digestive enzymes to assess the ability of the polysaccharides to function as a protective barrier against the upper gastrointestinal environment. Fourier transform infrared spectroscopy studies revealed no chemical interaction between ibuprofen and polysaccharides; however, spectrum analysis suggested the formation of an inclusion complex of beta-cyclodextrin with ibuprofen. The formulations contained 50% ethylcellulose and 50% beta-cyclodextrins (1:1) were proven to be the better formulation that slowly released the drug until 24 h (101.04 ± 0.65% maximum drug release in which 83.08 ± 0.89% drug was released in colonic medium) showed better drug release profiles than the formulations containing chitosan. We conclude that a beta-cyclodextrin drug carrier system may represent an effective approach for treatment of diseases of the colon. © Georg Thieme Verlag KG Stuttgart · New York.
Parejiya, Punit B; Barot, Bhavesh S; Patel, Hetal K; Shelat, Pragna K; Shukla, Arunkumar
2013-11-01
The study was aimed toward development of modified release oral drug delivery system for highly water soluble drug, Milnacipran HCl (MH). Novel Tablet in Tablet system (TITs) comprising immediate and extended release dose of MH in different parts was fabricated. The outer shell was composed of admixture of MH, lactose and novel herbal disintegrant obtained from seeds of Lepidium sativum. In the inner core, MH was matrixed with blend of hydrophilic (Benecel®) and hydrophobic (Compritol®) polymers. 3² full factorial design and an artificial neuron network (ANN) were employed for correlating effect of independent variables on dependent variables. The TITs were characterized for pharmacopoeial specifications, in vitro drug release, SEM, drug release kinetics and FTIR study. The release pattern of MH from batch A10 containing 25.17% w/w Benecel® and 8.21% w/w of Compritol® exhibited drug release pattern close proximal to the ideal theoretical profile (t(50%) = 5.92 h, t(75%) = 11.9 h, t(90%) = 18.11 h). The phenomenon of drug release was further explained by concept of percolation and the role of Benecel® and Compritol® in drug release retardation was studied. The normalized error obtained from ANN was less, compared with the multiple regression analysis, and exhibits the higher accuracy in prediction. The results of short-term stability study revealed stable chataracteristics of TITs. SEM study of TITs at different dissolution time points confirmed both diffusion and erosion mechanisms to be operative during drug release from the batch A10. Novel TITs can be a succesful once a day delivery system for highly water soluble drugs.
Wu, Li; Yin, Xianzhen; Guo, Zhen; Tong, Yajun; Feng, Jing; York, Peter; Xiao, Tiqiao; Chen, Min; Gu, Jingkai; Zhang, Jiwen
2016-03-10
Osmotic pump tablets are reliable oral controlled drug delivery systems based on their semipermeable membrane coating. This research used synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy and imaging to investigate the hydration induced material transfer in the membranes of osmotic pump tablets. SR-FTIR was applied to record and map the chemical information of a micro-region of the membranes, composed of cellulose acetate (CA, as the water insoluble matrix) and polyethylene glycol (PEG, as the soluble pore forming agent and plasticizing agent). The microstructure and chemical change of membranes hydrated for 0, 5, 10 and 30min were measured using SR-FTIR, combined with scanning electronic microscopy and atom force microscopy. The SR-FTIR microspectroscopy results indicated that there was a major change at the absorption range of 2700-3100cm(-1) in the membranes after different periods of hydration time. The absorption bands at 2870-2880cm(-1) and 2950-2960cm(-1) were assigned to represent CA and PEG, respectively. The chemical group signal distribution illustrated by the ratio of PEG to CA demonstrated that the trigger of drug release in the preliminary stage was due to the rapid transfer of PEG into liquid medium with a sharp decrease of PEG in the membranes. The SR-FTIR mapping results have demonstrated the hydration induced material transfer in the membranes of osmotic pump tablets and enabled reassessment of the drug release mechanism of membrane controlled osmotic pump systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Okwuosa, Tochukwu C; Stefaniak, Dominika; Arafat, Basel; Isreb, Abdullah; Wan, Ka-Wai; Alhnan, Mohamed A
2016-11-01
The fabrication of ready-to-use immediate release tablets via 3D printing provides a powerful tool to on-demand individualization of dosage form. This work aims to adapt a widely used pharmaceutical grade polymer, polyvinylpyrrolidone (PVP), for instant on-demand production of immediate release tablets via FDM 3D printing. Dipyridamole or theophylline loaded filaments were produced via processing a physical mixture of API (10%) and PVP in the presence of plasticizer through hot-melt extrusion (HME). Computer software was utilized to design a caplet-shaped tablet. The surface morphology of the printed tablet was assessed using scanning electron microscopy (SEM). The physical form of the drugs and its integrity following an FDM 3D printing were assessed using x-ray powder diffractometry (XRPD), thermal analysis and HPLC. In vitro drug release studies for all 3D printed tablets were conducted in a USP II dissolution apparatus. Bridging 3D printing process with HME in the presence of a thermostable filler, talc, enabled the fabrication of immediate release tablets at temperatures as low as 110°C. The integrity of two model drugs was maintained following HME and FDM 3D printing. XRPD indicated that a portion of the loaded theophylline remained crystalline in the tablet. The fabricated tablets demonstrated excellent mechanical properties, acceptable in-batch variability and an immediate in vitro release pattern. Combining the advantages of PVP as an impeding polymer with FDM 3D printing at low temperatures, this approach holds a potential in expanding the spectrum of drugs that could be used in FDM 3D printing for on demand manufacturing of individualised dosage forms.
Fukui, E; Uemura, K; Kobayashi, M
2000-08-10
Press-coated tablets, containing diltiazem hydrochloride (DIL) in the core tablet and coated with hydroxypropylcellulose (HPC) as the outer shell, were examined for applicability as timed-release tablets with a predetermined lag time and subsequent rapid drug release phase. Various types of press-coated tablets were prepared using a rotary tabletting machine and their DIL dissolution behavior was evaluated by the JP paddle method. The results indicated that tablets with the timed-release function could be prepared, and that the lag times were prolonged as the viscosity of HPC and the amount of the outer shell were increased. The lag times could be controlled widely by the above method, however, the compression load had little effect. Two different kinds of timed-release press-coated tablets that showed lag times of 3 and 6 h in the in vitro test (denoted PCT(L3) and PCT(L6), respectively) were administered to beagle dogs. DIL was first detected in the plasma more than 3 h after administration, and both tablets showed timed-release. The lag times showed a good agreement between the in vivo and in vitro tests in PCT(L3). However, the in vivo lag times were about 4 h in PCT(L6) and were much shorter than the in vitro lag time. The dissolution test was performed at different paddle rotation speeds, and good agreement was obtained between the in vivo and in vitro lag times at 150 rpm. This suggested that the effects of gastrointestinal peristalsis and contraction should also be taken into consideration for the further development of drug delivery systems.
Skowyra, Justyna; Pietrzak, Katarzyna; Alhnan, Mohamed A
2015-02-20
Rapid and reliable tailoring of the dose of controlled release tablets to suit an individual patient is a major challenge for personalized medicine. The aim of this work was to investigate the feasibility of using a fused deposition modelling (FDM) based 3D printer to fabricate extended release tablet using prednisolone loaded poly(vinyl alcohol) (PVA) filaments and to control its dose. Prednisolone was loaded into a PVA-based (1.75 mm) filament at approximately 1.9% w/w via incubation in a saturated methanolic solution of prednisolone. The physical form of the drug was assessed using differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). Dose accuracy and in vitro drug release patterns were assessed using HPLC and pH change flow-through dissolution test. Prednisolone loaded PVA filament demonstrated an ability to be fabricated into regular ellipse-shaped solid tablets using the FDM-based 3D printer. It was possible to control the mass of printed tablet through manipulating the volume of the design (R(2) = 0.9983). On printing tablets with target drug contents of 2, 3, 4, 5, 7.5 and 10mg, a good correlation between target and achieved dose was obtained (R(2) = 0.9904) with a dose accuracy range of 88.7-107%. Thermal analysis and XRPD indicated that the majority of prednisolone existed in amorphous form within the tablets. In vitro drug release from 3D printed tablets was extended up to 24h. FDM based 3D printing is a promising method to produce and control the dose of extended release tablets, providing a highly adjustable, affordable, minimally sized, digitally controlled platform for producing patient-tailored medicines. Copyright © 2015. Published by Elsevier B.V.
Preparation of monolithic osmotic pump system by coating the indented core tablet.
Liu, Longxiao; Che, Binjie
2006-10-01
A method for the preparation of monolithic osmotic pump tablet was obtained by coating the indented core tablet compressed by the punch with a needle. Atenolol was used as the model drug, sodium chloride as osmotic agent and polyethylene oxide as suspending agent. Ethyl cellulose was employed as semipermeable membrane containing polyethylene glycol 400 as plasticizer for controlling membrane permeability. The formulation of atenolol osmotic pump tablet was optimized by orthogonal design and evaluated by similarity factor (f2). The optimal formulation was evaluated in various release media and agitation rates. Indentation size of core tablet hardly affected drug release in the range of (1.00-1.14) mm. The optimal osmotic tablet was found to be able to deliver atenolol at an approximately constant rate up to 24h, independent of both release media and agitation rate. The method that is simplified by coating the indented core tablet with the elimination of laser drilling may be promising in the field of the preparation of osmotic pump tablet.
Varum, F J O; Hatton, G B; Freire, A C; Basit, A W
2013-08-01
The in vivo proof of concept of a novel double-coating system, based on enteric polymers, which accelerated drug release in the ileo-colonic region, was investigated in humans. Prednisolone tablets were coated with a double-coating formulation by applying an inner layer composed of EUDRAGIT S neutralised to pH 8.0 and a buffer salt (10% KH₂PO₄), which was overcoated with layer of standard EUDRAGIT S organic solution. For comparison, a single coating system was produced by applying the same amount of EUDRAGIT S organic solution on the tablet cores. Dissolution tests on the tablets were carried out using USP II apparatus in 0.1N HCl for 2 h and subsequently in pH 7.4 Krebs bicarbonate buffer. For comparison, tablets were also tested under the USP method established for modified release mesalamine formulations. Ten fasted volunteers received the double-coated and single-coated tablets in a two-way crossover study. The formulations were radiolabelled and followed by gamma scintigraphy; the disintegration times and positions were recorded. There was no drug release from the single-coated or double-coated tablets in 0.1N HCl for 2h. The single-coated tablets showed slow release in subsequent Krebs bicarbonate buffer with a lag time of 120 min, while in contrast drug release from the double-coated tablets was initiated at 60 min. In contrast, using the USP dissolution method, normally employed for modified release mesalamine products, no discrimination was attained. The in vivo disintegration of the single-coated EUDRAGIT S tablets in the large intestine was erratic. Furthermore, in 2 volunteers, the single-coated tablet was voided intact. Double-coated tablets disintegrated in a more consistent way, mainly in the ileo-caecal junction or terminal ileum. The accelerated in vivo disintegration of the double-coating EUDRAGIT S system can overcome the limitations of conventional enteric coatings targeting the colon and avoid the pass-through of intact tablets. Moreover, Krebs bicarbonate buffer has the ability to discriminate between formulations designed to target the ileo-colonic region. Copyright © 2013 Elsevier B.V. All rights reserved.
Johannsson, G; Nilsson, A G; Bergthorsdottir, R; Burman, P; Dahlqvist, P; Ekman, B; Engström, B E; Olsson, T; Ragnarsson, O; Ryberg, M; Wahlberg, J; Biller, B M K; Monson, J P; Stewart, P M; Lennernäs, H; Skrtic, S
2012-02-01
Patients with treated adrenal insufficiency (AI) have increased morbidity and mortality rate. Our goal was to improve outcome by developing a once-daily (OD) oral hydrocortisone dual-release tablet with a more physiological exposure-time cortisol profile. The aim was to compare pharmacokinetics and metabolic outcome between OD and the same daily dose of thrice-daily (TID) dose of conventional hydrocortisone tablets. We conducted an open, randomized, two-period, 12-wk crossover multicenter trial with a 24-wk extension at five university hospital centers. The trial enrolled 64 adults with primary AI; 11 had concomitant diabetes mellitus (DM). The same daily dose of hydrocortisone was administered as OD dual-release or TID. We evaluated cortisol pharmacokinetics. Compared with conventional TID, OD provided a sustained serum cortisol profile 0-4 h after the morning intake and reduced the late afternoon and the 24-h cortisol exposure. The mean weight (difference = -0.7 kg, P = 0.005), systolic blood pressure (difference = -5.5 mm Hg, P = 0.0001) and diastolic blood pressure (difference: -2.3 mm Hg; P = 0.03), and glycated hemoglobin (absolute difference = -0.1%, P = 0.0006) were all reduced after OD compared with TID at 12 wk. Compared with TID, a reduction in glycated hemoglobin by 0.6% was observed in patients with concomitant DM during OD (P = 0.004). The OD dual-release tablet provided a more circadian-based serum cortisol profile. Reduced body weight, reduced blood pressure, and improved glucose metabolism were observed during OD treatment. In particular, glucose metabolism improved in patients with concomitant DM.
Shenderovich, Julia; Feldman, Mark; Kirmayer, David; Al-Quntar, Abed; Steinberg, Doron; Lavy, Eran; Friedman, Michael
2015-05-15
Thiazolidinedione-8 (TZD-8) is an anti-quorum-sensing molecule that has the potential to effectively prevent catheter-associated urinary tract infections, a major healthcare challenge. Sustained-release drug-delivery systems can enhance drugs' therapeutic potential, by maintaining their therapeutic level and reducing their side effects. Varnishes for sustained release of TZD-8 based on ethylcellulose or ammonio methacrylate copolymer type A (Eudragit(®) RL) were developed. The main factors affecting release rate were found to be film thickness and presence of a hydrophilic or swellable polymer in the matrix. The release mechanism of ethylcellulose-based systems matched the Higuchi model. Selected varnishes were retained on catheters for at least 8 days. Sustained-release delivery systems of TZD-8 were active against Candida albicans biofilms. The present study demonstrates promising results en route to developing applications for the prevention of catheter-associated infections. Copyright © 2015 Elsevier B.V. All rights reserved.
Biswas, Nikhil
2017-03-01
The aim was to improve the oral bioavailability and antihypertensive activity of poorly soluble drug valsartan (VAL) by modifying the design and delivery of mesoporous silica nanoparticles (MSNs). The synthesized MSNs were functionalized with aminopropyl groups (AP-MSN) through postsynthesis and coated with pH sensitive polymer Eudragit L100-55 (AP-MSN-L100-55) for pH dependant sustain release of anionic VAL. MSNs were characterized by Brauner-Emmett-Teller (BET) surface area analyzer, zeta sizer, Field Emission Scanning Electron Microscope (FESEM), Powder X-Ray Diffraction (PXRD) and Differential Scanning Calorimetry (DSC). Functionalized MSNs showed highest entrapment efficiency (59.77%) due to strong ionic interaction with VAL. In vitro dissolution of M-MSN [MSN-VAL and AP-MSN-VAL-L100-55 mixed equally] at physiological conditions demonstrated immediate release (MSN-VAL fraction) followed by sustained release (AP-MSN-VAL-L100-55 fraction) of 96% VAL in 960min. The dramatic improvement in dissolution was attributed to the amorphization of crystalline VAL by MSNs as evidenced by DSC and PXRD studies. No noticeable cytotoxicity was observed for MSN, AP-MSN and AP-MSN-L100-55 in MTT assay. Pharmacokinetic study of M-MSN confirmed 1.82 fold increases in bioavailability compared to commercial Diovan tablet in fasted male rabbits. Blood pressure monitoring in rats showed that the morning dosing of Diovan tablet efficiently controlled BP for just over 360min whereas the effect of M-MSN lasted for >840min. Copyright © 2016 Elsevier B.V. All rights reserved.
Design and characterization of sustained release ketoprofen entrapped carnauba wax microparticles.
Oliveira, Rodinelli B; Nascimento, Thais L; Lima, Eliana M
2012-01-01
Ketoprofen is a non-steroid anti-inflammatory drug (NSAID) used in the treatment of rheumatic diseases and in mild to moderate pain. Ketoprofen has a short biological half-life and the commercially available conventional release formulations require dosages to be administered at least 2-3 times a day. Due to these characteristics, ketoprofen is a good candidate for the preparation of controlled release formulations. In this work, a multiparticulate-sustained release dosage form containing ketoprofen in a carnauba wax matrix was developed. Particles were prepared by an emulsion congealing technique. System variables were optimized using fractional factorial and response surface experimental design. Characterization of the particles included size and morphology, flow rate, drug loading and in vitro drug release. Spherical particles were obtained with high drug load and sustained drug release profile. The optimized particles had an average diameter of approximately 200 µm, 50% (w/w) drug load, good flow properties and prolonged ketoprofen release for more than 24 h. Carnauba wax microspheres prepared in this work represent a new multiparticulate-sustained release system for the NSAID ketoprofen, exhibiting good potential for application in further pharmaceutical processes.
The application of halloysite tubule nanoclay in drug delivery.
Lvov, Yuri M; DeVilliers, Melgardt M; Fakhrullin, Rawil F
2016-07-01
Natural and biocompatible clay nanotubes are among the best inorganic materials for drug nanoformulations. These halloysite tubes with SiO2 on the outermost surface have diameter of ca. 50 nm, length around 1 micrometer and may be loaded with drugs at 10-30 wt. %. Narrow tube openings allow for controllable sustained drug release for hours, days or even weeks. Physical-chemical properties of these nanotubes are described followed by examples of drug-loading capabilities, release characteristics, and control of duration of release through the end tube capping with polymers. Development of halloysite-polymer composites such as tissue scaffolds and bone cement/dentist resin formulations with enhanced mechanical properties and extension of the drug release to 2-3 weeks are described. Examples of the compression properties of halloysite in tablets and capsules are also shown. We expect that clay nanotubes will be used primarily for non-injectable drug formulations, such as topical and oral dosage forms, cosmetics, as well as for composite materials with enhanced therapeutic effects. These include tissue scaffolds, bone cement and dentist resins with sustained release of antimicrobial and cell growth-promoting medicines (including proteins and DNA) as well as other formulations such as compounds for antiseptic treatment of hospitals.
Li, Wei; Shi, Cai-Hong; Sheng, Yi-Ling; Cui, Ping; Zhao, Yu-Qing; Zhang, Xiang-Rong
2013-12-01
The aim of this study was to investigate the in vitro and in vivo performance of salbutamol sulfate press-coated tablets for delayed release. The in vitro release behavior of press-coated tablets with the outer layer of PEG 6000/ Eudragit S100 blends (2:1) in pH 1.2 (0.1 mol L-1 HCl) and then pH 6.8 buffer solution was examined. Morphological change of the press-coated tablet during in vitro release was recorded with a digital camera. Release of salbutamol sulfate from press-coated tablets was less than 5 % before 3 h and was completed after 8 h in pH 6.8 phosphate buffer solution. In vivo gamma scintigraphy study carried out on healthy men indicated that the designed system released the drug in lower parts of the GI tract after a lag time of 5 hours. The results showed the capability of the system of achieving delayed release of the drug in both in vitro and in vivo gamma scintigraphy studies.
3D extrusion printing of high drug loading immediate release paracetamol tablets.
Khaled, Shaban A; Alexander, Morgan R; Wildman, Ricky D; Wallace, Martin J; Sharpe, Sonja; Yoo, Jae; Roberts, Clive J
2018-03-01
The manufacture of immediate release high drug loading paracetamol oral tablets was achieved using an extrusion based 3D printer from a premixed water based paste formulation. The 3D printed tablets demonstrate that a very high drug (paracetamol) loading formulation (80% w/w) can be printed as an acceptable tablet using a method suitable for personalisation and distributed manufacture. Paracetamol is an example of a drug whose physical form can present challenges to traditional powder compression tableting. Printing avoids these issues and facilitates the relatively high drug loading. The 3D printed tablets were evaluated for physical and mechanical properties including weight variation, friability, breaking force, disintegration time, and dimensions and were within acceptable range as defined by the international standards stated in the United States Pharmacopoeia (USP). X-ray Powder Diffraction (XRPD) was used to identify the physical form of the active. Additionally, XRPD, Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC) were used to assess possible drug-excipient interactions. The 3D printed tablets were evaluated for drug release using a USP dissolution testing type I apparatus. The tablets showed a profile characteristic of the immediate release profile as intended based upon the active/excipient ratio used with disintegration in less than 60 s and release of most of the drug within 5 min. The results demonstrate the capability of 3D extrusion based printing to produce acceptable high-drug loading tablets from approved materials that comply with current USP standards. Copyright © 2018 Elsevier B.V. All rights reserved.
Design and in vivo evaluation of oxycodone once-a-day controlled-release tablets
Kim, Ju-Young; Lee, Sung-Hoon; Park, Chun-Woong; Rhee, Yun-Seok; Kim, Dong-Wook; Park, Junsang; Lee, Moonseok; Seo, Jeong-Woong; Park, Eun-Seok
2015-01-01
The aim of present study was to design oxycodone once-a-day controlled-release (CR) tablets and to perform in vitro/in vivo characterizations. Release profiles to achieve desired plasma concentration versus time curves were established by using simulation software and reported pharmacokinetic parameters of the drug. Hydroxypropyl methylcellulose (HPMC) 100,000 mPa·s was used as a release modifier because the polymer was found to be resistant to changes in conditions of the release study, including rotation speed of paddle and ion strength. The burst release of the drug from the CR tablets could be suppressed by applying an additional HPMC layer as a physical barrier. Finally, the oxycodone once-a-day tablet was comprised of two layers, an inert HPMC layer and a CR layer containing drug and HPMC. Commercial products, either 10 mg bis in die (bid [twice a day]) or once-a-day CR tablets (20 mg) were administered to healthy volunteers, and calculated pharmacokinetic parameters indicated bioequivalence of the two different treatments. The findings of the present study emphasize the potential of oxycodone once-a-day CR tablets for improved patient compliance, safety, and efficacy, which could help researchers to develop new CR dosage forms of oxycodone. PMID:25678774
Bontha, Vijaya Kumar
2013-01-01
The rationale of the present study is to formulate flurbiprofen colon targeted compression coated tablets using guar gum to improve the therapeutic efficacy by increasing drug levels in colon, and also to reduce the side effects in upper gastrointestinal tract. Direct compression method was used to prepare flurbiprofen core tablets, and they were compression coated with guar gum. Then the tablets were optimized with the support of in vitro dissolution studies, and further it was proved by pharmacokinetic studies. The optimized formulation (F4) showed almost complete drug release in the colon (99.86%) within 24 h without drug loss in the initial lag period of 5 h (only 6.84% drug release was observed during this period). The pharmacokinetic estimations proved the capability of guar gum compression coated tablets to achieve colon targeting. The C max of colon targeted tablets was 11956.15 ng/mL at T max of 10 h whereas it was 15677.52 ng/mL at 3 h in case of immediate release tablets. The area under the curve for the immediate release and compression coated tablets was 40385.78 and 78214.50 ng-h/mL and the mean resident time was 3.49 and 10.78 h, respectively. In conclusion, formulation of guar gum compression coated tablets was appropriate for colon targeting of flurbiprofen. PMID:24260738
Vemula, Sateesh Kumar; Bontha, Vijaya Kumar
2013-01-01
The rationale of the present study is to formulate flurbiprofen colon targeted compression coated tablets using guar gum to improve the therapeutic efficacy by increasing drug levels in colon, and also to reduce the side effects in upper gastrointestinal tract. Direct compression method was used to prepare flurbiprofen core tablets, and they were compression coated with guar gum. Then the tablets were optimized with the support of in vitro dissolution studies, and further it was proved by pharmacokinetic studies. The optimized formulation (F4) showed almost complete drug release in the colon (99.86%) within 24 h without drug loss in the initial lag period of 5 h (only 6.84% drug release was observed during this period). The pharmacokinetic estimations proved the capability of guar gum compression coated tablets to achieve colon targeting. The C(max) of colon targeted tablets was 11956.15 ng/mL at T max of 10 h whereas it was 15677.52 ng/mL at 3 h in case of immediate release tablets. The area under the curve for the immediate release and compression coated tablets was 40385.78 and 78214.50 ng-h/mL and the mean resident time was 3.49 and 10.78 h, respectively. In conclusion, formulation of guar gum compression coated tablets was appropriate for colon targeting of flurbiprofen.
Linka, Wojciech Andrzej; Golenia, Ewa; Zgoda, Marian Mikołaj; Kołodziejczyk, Michał Krzysztof
2014-01-01
Halitosis and gingivitis are most common pathologies (15-60% of population) which, if left untreated, lead to periodontal diseases and tooth loss. The aim of this study was to develop, based on polymers of dry sage extract and zinc gluconate, tablets intended for sucking and chewing that can be applied in the treatment of halitosis and gingivitis. Dried aqueous sage extract, zinc gluconate, Pharmagum M, Prosolv SMCC90 and SMCCHD90, Vivapur 102, sorbitol, mannitol, ludipress. Direct tableting. Testing pharmacopeial parameters and pharmaceutical availability (using basket and rotating disk methods) of tablets intended for sucking and chewing. Approximation of the obtained results. Grey and green color tablets were obtained with smooth and uniform surface, without stains, spalls or mechanical damage. The determined average mass (weight) of a tablet complied with the standard. The friability and crushing strength test revealed that tablets containing Prosolv SMCCHD90, Vivapur 102 and mannitol demonstrated the highest mechanical strength. Tablets containing these substances and intended for sucking had prolonged disintegration and release time. Tablets intended for chewing had a hardness at the level of 124 N.They demonstrated compressibility, low friability and prolonged release. The release profiles of tablets intended for sucking (v2) and those for chewing, obtained by basket and rotating disk methods, were similar. The addition of Prosolv SMCCHD90, Vivapur 102 and mannitol increased significantly the mechanical strength (higher hardness, lower friability), prolonged the disintegration time and slowed the release from the obtained tablets intended for sucking and chewing. The application of Prosolv SMCCHD90 in the formulation of tablets for chewing carries the risk for sorption of active components to the polymer structure. This process takes place in the early stage of the release. Rotating disk method used in pharmaceutical availability testing gives better results while analyzing the phenomenon than the standard basket method. The suggested and tested formulations of tablets intended for sucking and chewing may be used as an alternative to formulations containing dried titrated extracts from plants of antimicrobial activity (sage - Salvia officinalis) in combination with substances binding volatile sulfur compounds (zinc gluconate).
Cyclodextrin modified hydrogels of PVP/PEG for sustained drug release.
Nielsen, Anne Louise; Madsen, Flemming; Larsen, Kim Lambertsen
2009-02-01
Hydrogels are water swollen networks of polymers and especially hydrogels consisting of poly vinylpyrrolidone/poly ethyleneglycol-dimethacrylate (PVP/PEG-DMA) blends show promising wound care properties. Enhanced functionality of the hydrogels can be achieved by incorporating drugs and other substances that may assist wound healing into the gel matrix. Controlling the release of active compounds from the hydrogels may be possible by carefully modifying the polymer matrix. For this purpose, cyclodextrins (CD) were grafted to the polymer matrix in 4-5 w/w% in an attempt to retard the release of water-soluble drugs. Ibuprofenate (IBU) was chosen as model drug and loaded in IBU/CD ratios of 0.6, 1.2, and 2.5. Vinyl derivatives of alpha-, beta- and gamma-CD were produced, added to the prepolymer blend and cured by UV-light. During this curing process the CD derivatives were covalently incorporated into the hydrogel matrix. The modified hydrogels were loaded with ibuprofenate by swelling. The release of the model drug from CD modified hydrogels show that especially covalently bonded beta-cyclodextrin can change both the release rate and the release profile of ibuprofen.
Influence of Differing Analgesic Formulations of Aspirin on Pharmacokinetic Parameters.
Kanani, Kunal; Gatoulis, Sergio C; Voelker, Michael
2015-08-03
Aspirin has been used therapeutically for over 100 years. As the originator and an important marketer of aspirin-containing products, Bayer's clinical trial database contains numerous reports of the pharmacokinetics of various aspirin formulations. These include evaluations of plain tablets, effervescent tablets, granules, chewable tablets, and fast-release tablets. This publication seeks to expand upon the available pharmacokinetic information concerning aspirin formulations. In the pre-systemic circulation, acetylsalicylic acid (ASA) is rapidly converted into its main active metabolite, salicylic acid (SA). Therefore, both substances are measured in plasma and reported in the results. The 500 mg strength of each formulation was chosen for analysis as this is the most commonly used for analgesia. A total of 22 studies were included in the analysis. All formulations of 500 mg aspirin result in comparable plasma exposure to ASA and SA as evidenced by AUC. Tablets and dry granules provide a consistently lower Cmax compared to effervescent, granules in suspension and fast release tablets. Effervescent tablets, fast release tablets, and granules in suspension provide a consistently lower median Tmax compared to dry granules and tablets for both ASA and SA. This report reinforces the importance of formulation differences and their impact on pharmacokinetic parameters.
Influence of Differing Analgesic Formulations of Aspirin on Pharmacokinetic Parameters
Kanani, Kunal; Gatoulis, Sergio C.; Voelker, Michael
2015-01-01
Aspirin has been used therapeutically for over 100 years. As the originator and an important marketer of aspirin-containing products, Bayer’s clinical trial database contains numerous reports of the pharmacokinetics of various aspirin formulations. These include evaluations of plain tablets, effervescent tablets, granules, chewable tablets, and fast-release tablets. This publication seeks to expand upon the available pharmacokinetic information concerning aspirin formulations. In the pre-systemic circulation, acetylsalicylic acid (ASA) is rapidly converted into its main active metabolite, salicylic acid (SA). Therefore, both substances are measured in plasma and reported in the results. The 500 mg strength of each formulation was chosen for analysis as this is the most commonly used for analgesia. A total of 22 studies were included in the analysis. All formulations of 500 mg aspirin result in comparable plasma exposure to ASA and SA as evidenced by AUC. Tablets and dry granules provide a consistently lower Cmax compared to effervescent, granules in suspension and fast release tablets. Effervescent tablets, fast release tablets, and granules in suspension provide a consistently lower median Tmax compared to dry granules and tablets for both ASA and SA. This report reinforces the importance of formulation differences and their impact on pharmacokinetic parameters. PMID:26247959
Development of modified-release tablets of zolpidem tartrate by biphasic quick/slow delivery system.
Mahapatra, Anjan Kumar; Sameeraja, N H; Murthy, P N
2015-06-01
Zolpidem tartrate is a non-benzodiazepine analogue of imidazopyridine of sedative and hypnotic category. It has a short half-life with usual dosage regimen being 5 mg, two times a day, or 10 mg, once daily. The duration of action is considered too short in certain circumstances. Thus, it is desirable to lengthen the duration of action. The formulation design was implemented by preparing extended-release tablets of zolpidem tartrate using the biphasic delivery system technology, where sodium starch glycolate acts as a superdisintegrant in immediate-release part and hydroxypropyl methyl cellulose as a release retarding agent in extended-release core. Tablets were prepared by direct compression. Both the core and the coat contained the drug. The pre-compression blends were evaluated for angle of repose, bulk density, and compressibility index. The tablets were evaluated for thickness, hardness, weight variation test, friability, and in vitro release studies. No interaction was observed between zolpidem tartrate and excipients from the Fourier transform infrared spectroscopy and differential scanning calorimetry analysis. The results of all the formulations prepared were compared with reference product Stilnoct®. Optimized formulations showed release patterns that match the United States Pharmacopeia (USP) guidelines for zolpidem tartrate extended-release tablets. The mechanism of drug release was studied using different mathematical models, and the optimized formulation has shown Fickian diffusion. Accelerated stability studies were performed on the optimized formulation.
Design of Chronomodulated Drug Delivery System of Valsartan: In Vitro Characterization.
Sokar, M; Hanafy, A; Elkamel, A; El-Gamal, S
2015-01-01
The aim of the present study was to design and evaluate a chronomodulated time-clock pulsatile tablets of valsartan to release it after a certain lag time, independent of the gastrointestinal pH, in its absorption window to cope with the circadian rhythm of human body for blood pressure elevation. Core tablets were prepared by direct compression of a homogenous mixture of valsartan, Avicel PH101, croscarmellose sodium, magnesium stearate and Aerosil. The core tablets were then sprayed coated with a sealing layer formed of ethyl cellulose that was subsequently coated with a release-controlling layer. Three different aqueous dispersions namely; carnauba wax or beeswax or a mixture in a ratio of 2.5:1, respectively, were used to form five time-clock tablet formulations having the release controlling layer with different thickness {B5, B10, B20, BW5 and CW5}. Quality control testing were carried out to the core tablets. Differential scanning calorimetry was also performed to detect the possible drug excipient interaction in the core tablet formulation. The release was carried out, for the prepared time-clock tablet formulations, in 0.1 N hydrochloric acid for the first 2 h, followed by phosphate buffer (pH 6.8) for 4.5 h. The effect of pH on valsartan release was studied through a release study in 0.1 N hydrochloric acid for 6.5 h. Two phase dissolution study was performed to the selected time-clock tablet formulation to predict the drug permeation through the gastrointestinal tract. Stability study of the selected formula was performed at 25°/60% RH and at 40°/75% RH for 3 months. Results showed that a release-controlling layer composed of a mixture of carnauba wax and beeswax in a ratio of 2.5:1 showed a reasonable release lag time. The release lag time of the tablets increased with the increase of the coat thickness, thus B20>B10>B5 with corresponding lag time values of 4.5, 3 and 2.5 h, respectively. Selected B5 tablet formula exhibited a reasonable lag time after which the highest, complete % drug release at pH 6.8 was obtained. In addition, a good partitioning of valsartan, between the aqueous and organic phases in a ratio of 1:7, was observed. The selected formula was stable for at least 3 months under standard long-term and accelerated storage conditions. In conclusion, in vitro studies revealed that the novel time-clock system could be used successfully to deliver valsartan in a pulsatile pH-independent manner. It provided a desirable lag time followed by a rapid and complete drug release accompanied by an expected effective permeation through the biological membranes upon release in the duodenum; the window of absorption, as indicated by the two phase release study.
Design of Chronomodulated Drug Delivery System of Valsartan: In Vitro Characterization
Sokar, M.; Hanafy, A.; Elkamel, A.; El-Gamal, S.
2015-01-01
The aim of the present study was to design and evaluate a chronomodulated time-clock pulsatile tablets of valsartan to release it after a certain lag time, independent of the gastrointestinal pH, in its absorption window to cope with the circadian rhythm of human body for blood pressure elevation. Core tablets were prepared by direct compression of a homogenous mixture of valsartan, Avicel PH101, croscarmellose sodium, magnesium stearate and Aerosil. The core tablets were then sprayed coated with a sealing layer formed of ethyl cellulose that was subsequently coated with a release-controlling layer. Three different aqueous dispersions namely; carnauba wax or beeswax or a mixture in a ratio of 2.5:1, respectively, were used to form five time-clock tablet formulations having the release controlling layer with different thickness {B5, B10, B20, BW5 and CW5}. Quality control testing were carried out to the core tablets. Differential scanning calorimetry was also performed to detect the possible drug excipient interaction in the core tablet formulation. The release was carried out, for the prepared time-clock tablet formulations, in 0.1 N hydrochloric acid for the first 2 h, followed by phosphate buffer (pH 6.8) for 4.5 h. The effect of pH on valsartan release was studied through a release study in 0.1 N hydrochloric acid for 6.5 h. Two phase dissolution study was performed to the selected time-clock tablet formulation to predict the drug permeation through the gastrointestinal tract. Stability study of the selected formula was performed at 25°/60% RH and at 40°/75% RH for 3 months. Results showed that a release-controlling layer composed of a mixture of carnauba wax and beeswax in a ratio of 2.5:1 showed a reasonable release lag time. The release lag time of the tablets increased with the increase of the coat thickness, thus B20>B10>B5 with corresponding lag time values of 4.5, 3 and 2.5 h, respectively. Selected B5 tablet formula exhibited a reasonable lag time after which the highest, complete % drug release at pH 6.8 was obtained. In addition, a good partitioning of valsartan, between the aqueous and organic phases in a ratio of 1:7, was observed. The selected formula was stable for at least 3 months under standard long-term and accelerated storage conditions. In conclusion, in vitro studies revealed that the novel time-clock system could be used successfully to deliver valsartan in a pulsatile pH-independent manner. It provided a desirable lag time followed by a rapid and complete drug release accompanied by an expected effective permeation through the biological membranes upon release in the duodenum; the window of absorption, as indicated by the two phase release study. PMID:26664064
Kaul, Goldi; Huang, Jun; Chatlapalli, Ramarao; Ghosh, Krishnendu; Nagi, Arwinder
2011-12-01
The role of poloxamer 188, water and binder addition rate, on retarding dissolution in immediate-release tablets of a model drug from BCS class II was investigated by means of multivariate data analysis (MVDA) combined with design of experiments (DOE). While the DOE analysis yielded important clues into the cause-and-effect relationship between the responses and design factors, multivariate data analysis of the 40+ variables provided additional information on slowdown in tablet dissolution. A steep dependence of both tablet dissolution and disintegration on the poloxamer and less so on other design variables was observed. Poloxamer was found to increase dissolution rates in granules as expected of surfactants in general but retard dissolution in tablets. The unexpected effect of poloxamer in tablets was accompanied by an increase in tablet-disintegration-time-mediated slowdown of tablet dissolution and by a surrogate binding effect of poloxamer at higher concentrations. It was additionally realized through MVDA that poloxamer in tablets either acts as a binder by itself or promotes binder action of the binder povidone resulting in increased intragranular cohesion. Additionally, poloxamer was found to mediate tablet dissolution on stability as well. In contrast to tablet dissolution at release (time zero), poloxamer appeared to increase tablet dissolution in a concentration-dependent manner on accelerated open-dish stability. Substituting polysorbate 80 as an alternate surfactant in place of poloxamer in the formulation was found to stabilize tablet dissolution.
Fukui, E; Miyamura, N; Uemura, K; Kobayashi, M
2000-08-25
As a new oral drug delivery system for colon targeting, enteric coated timed-release press-coated tablets (ETP tablets) were developed by coating enteric polymer on timed-release press-coated tablets composed of an outer shell of hydroxypropylcellulose and core tablet containing diltiazem hydrochloride (DIL) as a model drug. The results of the in vitro dissolution tests in JP 1st fluid (pH 1.2) and JP 2nd fluid (pH 6.8) indicated that these tablets showed both acid resistance and timed-release. To clarify whether ETP tablets could have been of use in the gastrointestinal tract, ETP tablets with a layer of phenylpropanolamine hydrochloride (PPA) (a marker of gastric emptying) between the enteric coating layer and outer shell were prepared, and were administered to beagle dogs. The gastric emptying time and lag time after gastric emptying were evaluated by determining the times at which PPA and DIL first appeared in the plasma (TFA(PPA) and TFA(DIL), respectively). TFA(PPA) and TFA(DIL) were about 4 and 7 h, respectively. This value of TFA(PPA) indicated that ETP tablets displayed acid resistance in the stomach as well as in JP Ist fluid. Subtraction of TFA(PPA) from TFA(DIL) gave a value of about 3 h which agreed well with the lag time determined by in vitro dissolution test in JP 2nd fluid. Also, the results seemed to be in accordance with the time at which the tablets reached the colon after gastric emptying. Therefore, ETP tablets seemed to be an effective tool for oral site-specific delivery including targeting of the colon.
Naltrexone/bupropion: Contrave(R); naltrexone SR/bupropion SR.
2010-01-01
In March 2010, Orexigen(R) Therapeutics submitted a new drug application (NDA) for approval of naltrexone sustained release (SR)/bupropion SR (Contrave(R)) for the treatment of obesity in the US. The tablet contains naltrexone SR 32 mg and bupropion SR 360 mg. The drug has been tested in four randomized, double-blind, placebo-controlled, phase III trials and the co-primary endpoints were met in each case. This review discusses the key development milestones and clinical trial program to date.
Dünnhaupt, Sarah; Barthelmes, Jan; Iqbal, Javed; Perera, Glen; Thurner, Clemens C; Friedl, Heike; Bernkop-Schnürch, Andreas
2012-06-28
The aim of the present study was the development and evaluation in vitro as well as in vivo of an oral delivery system based on a novel type of thiolated chitosan, so-called S-protected thiolated chitosan, for the peptide drug antide. The sulfhydryl ligand thioglycolic acid (TGA) was covalently attached to chitosan (CS) in the first step of modification. In the second step, these thiol groups of thiolated chitosan were protected by disulfide bond formation with the thiolated aromatic residue 6-mercaptonicotinamide (6-MNA). Absorptive transport studies of antide were evaluated ex vivo using rat intestinal mucosa. Matrix tablets of each polymer sample were prepared and their effect on the absorption of antide evaluated in vivo in male Sprague-Dawley rats. In addition, tablets were examined in terms of their disintegration, swelling and drug release behavior. The resulting S-protected thiomer (TGA-MNA) exhibited 840μmol of covalently linked 6-MNA per gram thiomer. Based on the implementation of this hydrophobic ligand on the thiolated backbone, the disintegration behavior was reduced greatly and a controlled release of the peptide could be achieved. Furthermore, permeation studies with TGA-MNA on rat intestine revealed a 4.5-fold enhanced absorptive transport of the peptide in comparison to antide in solution. Additional in vivo studies confirmed the potential of this novel conjugate. Oral administration of antide in solution led to only very small detectable quantities in plasma with an absolute and relative bioavailability (BA) of 0.003 and 0.03%, only. In contrast, with antide incorporated in TGA-MNA matrix tablets an absolute and relative BA of 1.4 and 10.9% could be reached, resulting in a 421-fold increased area under the plasma concentration time curve (AUC) compared to the antide solution. According to these results, S-protected thiolated chitosan as oral drug delivery system might be a valuable tool for improving the bioavailability of peptides. Copyright © 2012 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Urea pearls were encapsulated in cloisite-based matrices using different natural materials (lignin, beeswax and latex) to control the release of urea over time. It was found that all cloisite-based fertilizer tablets showed better release profiles than neat urea tablets. The best release profile was...
... the cause of the pain is healed). Tapentadol extended-release tablets are used to treat severe neuropathic ... nerve damage) in people who have diabetes. Tapentadol extended-release tablets are only used to treat people ...
Formulation and evaluation of atenolol floating bioadhesive system using optimized polymer blends
Siddam, Haritha; Kotla, Niranjan G.; Maddiboyina, Balaji; Singh, Sima; Sunnapu, Omprakash; Kumar, Anil; Sharma, Dinesh
2016-01-01
Introduction: Oral sustained release gastro retentive dosage forms offer several advantages for drugs having absorption from the upper gastrointestinal tract to improve the bioavailability of medications which have narrow absorption window. The aim of the study was to develop a floating bioadhesive drug delivery system exhibiting a unique combination of floatation and bioadhesion to prolong the residence in the stomach using atenolol as a model drug. Methods: Prior to compression, polymeric blend(s) were evaluated for flow properties. The tablets were prepared by direct compression method using bioadhesive polymer like Carbopol 934P and hydrophilic polymers like HPMC K4M, HPMC K15M, and HPMC K100M. The prepared tablets were evaluated for physical characteristics, bioadhesive strength, buoyancy lag time, swelling index and in vitro drug release studies. Results: The mean bioadhesive strength was found to be in the range of 16.2 to 52.1 gm. The optimized blend (F11) showed 92.3% drug releases after 24 hrs. Whilst, increase in concentration of carbopol 934P, bioadhesive strength and swelling index was increased with slow release. The n values of optimized formulations were found in the range of 0.631-0.719 indicating non-fickian anomalous type transport mechanism. Conclusion: The study aided in developing an ideal once-a-day gastro retentive floating drug delivery system with improved floating, swelling and bioadhesive characteristics with better bioavailability. PMID:27051631
Subramanian, Kaliappa gounder; Vijayakumar, Vediappan
2011-01-01
Chitosan-graft-poly (2-hydroxyethyl methacrylate-co-itaconic acid) has been synthesized for different feed ratios of 2-hydroxyethyl methacrylate and itaconic acid and characterized by FT-IR, thermogravimetry and swelling in simulated biological fluids (SBF) and evaluated as a drug carrier with model drug, tramadol hydrochloride (TRM). Grafting decreased the thermal stability of chitosan. FT-IR spectra of tablet did not reveal any molecular level (i.e. at <10 nm scale) drug–polymer interaction. But differential scanning calorimetric studies indicated a probable drug–polymer interaction at a scale >100 nm level. The observed Korsmeyer–Peppas’s power law exponents (0.19–1.21) for the in vitro release profiles of TRM in SBF and other drugs such as 5-fluorouracil (FU), paracetamol (PCM) and vanlafaxine hydrochloride (VNF) with the copolymer carriers revealed an anomalous drug release mechanism. The decreased release rates for the grafted chitosan and the enhanced release rate for the grafts with increasing itaconic acid content in the feed were more likely attributed to the enhanced drug–matrix interaction and polymer–SBF interactions, respectively. The different release profiles of FU, PCM, TRM and VNF with the copolymer matrix are attributed to the different chemical structures of drugs. The above features suggest the graft copolymer’s candidature for use as a promising oral drug delivery system. PMID:23960799
Yuan, Wei; Zheng, Jun; Qian, Jinyu; Zhou, Xiaoxiao; Wang, Minghui; Wang, Xiuhui
2017-07-01
To observe the effect of stromal vascular fraction cells (SVFs) from rat fat tissue combined with sustained release of recombinant human bone morphogenetic protein-2 (rhBMP-2) in promoting the lumbar fusion in rat model. SVFs were harvested from subcutaneous fat of bilateral inguinal region of 4-month-old rat through the collagenase I digestion. The sustained release carrier was prepared via covalent bond of the rhBMP-2 and β-tricalcium phosphate (β-TCP) by the biominetic apatite coating process. The sustained release effect was measured by BCA method. Thirty-two rats were selected to establish the posterolateral lumbar fusion model and were divided into 4 groups, 8 rats each group. The decalcified bone matrix (DBX) scaffold+PBS, DBX scaffold+rhBMP-2/β-TCP sustained release carrier, DBX scaffold+SVFs, and DBX scaffold+rhBMP-2/β-TCP sustained release carrier+SVFs were implanted in groups A, B, C, and D respectively. X-ray films, manual spine palpation, and high-resolution micro-CT were used to evaluate spinal fusion at 8 weeks after operation; bone mineral density (BMD) and bone volume fraction were analyzed; the new bone formation was evaluated by HE staining and Masson's trichrome staining, osteocalcin (OCN) was detected by immunohistochemical staining. The cumulative release amount of rhBMP-2 was about 40% at 2 weeks, indicating sustained release effect of rhBMP-2; while the control group was almost released within 2 weeks. At 8 weeks, the combination of manual spine palpation, X-ray, and micro-CT evaluation showed that group D had the strongest bone formation (100%, 8/8), followed by group B (75%, 6/8), group C (37.5%, 3/8), and group A (12.5%, 1/8). Micro-CT analysis showed BMD and bone volume fraction were significantly higher in group D than groups A, B, and C ( P <0.05), and in group B than groups A and C ( P <0.05). HE staining, Masson's trichrome staining, and immunohistochemistry staining for OCN staining exhibited a large number of cartilage cells with bone matrix deposition, and an active osteogenic process similar to the mineralization of long bones in group D. The bone formation of group B was weaker than that of group D, and there was no effective new bone formation in groups A and C. The combination of sustained release of rhBMP-2 and freshly SVFs can significantly promote spinal fusion in rat model, providing a theoretical basis for further clinical applications.
Ferrari, Priscileila Colerato; dos Santos Grossklauss, Dany Bruno Borella; Alvarez, Matheus; Paixão, Fabiano Carlos; Andreis, Uilian; Crispim, Alexandre Giordano; de Castro, Ana Dóris; Evangelista, Raul Cesar; de Arruda Miranda, José Ricardo
2014-08-01
Alternating Current Biosusceptometry is a magnetically method used to characterize drug delivery systems. This work presents a system composed by an automated ACB sensor to acquire magnetic images of floating tablets. The purpose of this study was to use an automated Alternating Current Biosusceptometry (ACB) to characterize magnetic floating tablets for controlled drug delivery. Floating tablets were prepared with hydroxypropyl methylcellulose (HPMC) as hydrophilic gel material, sodium bicarbonate as gas-generating agent and ferrite as magnetic marker. ACB was used to characterize the floating lag time and the tablet hydration rate, by quantification of the magnetic images to magnetic area. Besides the buoyancy, the floating tablets were evaluated for weight uniformity, hardness, swelling and in vitro drug release. The optimized tablets were prepared with equal amounts of HPMC and ferrite, and began to float within 4 min, maintaining the flotation during more than 24 h. The data of all physical parameters lied within the pharmacopeial limits. Drug release at 24 h was about 40%. The ACB results showed that this study provided a new approach for in vitro investigation of controlled-release dosage forms. Moreover, using automated ACB will also be possible to test these parameters in humans allowing to establish an in vitro.in vivo correlation (IVIVC).
Vraníková, Barbora; Gajdziok, Jan; Doležel, Petr
2017-03-01
The preparation of liquisolid systems (LSS) represents a promising method for enhancing a dissolution rate and bioavailability of poorly soluble drugs. The release of the drug from LSS tablets is affected by many factors, including the disintegration time. The evaluation of differences among LSS containing varying amounts and types of commercially used superdisintegrants (Kollidon® CL-F, Vivasol® and Explotab®). LSS were prepared by spraying rosuvastatin solution onto Neusilin® US2 and further processing into tablets. Varying amounts of superdisintegrants were used and the differences among LSS were evaluated. The multiple scatter plot method was used to visualize the relationships within the obtained data. All disintegrants do not showed negative effect on the flow properties of powder blends. The type and concentration of superdisintegrant had an impact on the disintegration time and dissolution profiles of tablets. Tablets with Explotab® showed the longest disintegration time and the smallest amount of released drug. Fastest disintegration and dissolution rate were observed in tablets containing Kollidon® CL-F (≥2.5% w/w). Also tablets with Vivasol® (2.5-4.0% w/w) showed fast disintegration and complete drug release. Kollidon® CL-F and Vivasol® in concentration ≥2.5% are suitable superdisintegrants for LSS with enhanced release of drug.
Kasperek, Regina; Zimmer, Lukasz; Poleszak, Ewa
2016-01-01
The release study of diclofenac sodium (DIC) and papaverine hydrochloride (PAP) from two formulations of the tablets in the paddle apparatus using different rotation speeds to characterize the process of mass transfer on the solid-liquid boundary layer was carried out. The dissolution process of active substances was described by values of mass transfer coefficients, the diffusion boundary layer thickness and dimensionless numbers (Sh and Re). The values of calculated parameters showed that the release of DIC and PAP from tablets comprising potato starch proceeded faster than from tablets containing HPMC and microcrystalline cellulose. They were obtained by direct dependencies between Sh and Re in the range from 75 rpm to 125 rpm for both substances from all tablets. The description of the dissolution process with the dimensionless numbers make it possible to plan the drug with the required release profile under given in vitro conditions.
Barilla, Denise; Prasad, Pratapa; Hubert, Martine; Gumbhir-Shah, Kavita
2004-03-01
This was an open-label, randomized, three-period, three-treatment, multiple dose, crossover study in 12 healthy male and female subjects. This study evaluated single dose and steady-state pharmacokinetics of fluvastatin following single and multiple dose administrations of a new extended release fluvastatin 8 h matrix tablet, Lescol XL 80 mg and 160 mg doses once a day. The study also included a twice a day administration of an immediate release (IR) form of fluvastatin capsule, Lescol, for comparative purposes. All doses were administered for 7 days. The safety and tolerability were also assessed. The pharmacokinetics of fluvastatin were evaluated on days 1 and 7 following each treatment. Fluvastatin systemic exposure was 50% less when administered as Lescol XL 80 mg qd compared with Lescol IR 40 mg bid. Conversely, fluvastatin systemic exposure was 22% higher when administered as Lescol XL 160 mg qd compared with Lescol IR 40 mg bid. Single doses of Lescol XL 80 mg and 160 mg were dose proportional but, deviation (30%) from dose proportionality was observed for the Lescol XL 160 mg at steady-state. There appeared to be moderate (20%-40%) accumulation of serum fluvastatin maximal concentrations and exposure after multiple doses of Lescol XL tablets. Both Lescol XL 80 mg and 160 mg showed delayed absorption and longer apparent elimination half-life compared with fluvastatin IR capsule. Single and multiple doses of fluvastatin were generally well tolerated in this healthy volunteer population. Adverse event profiles were consistent with the published safety profile of the marketed formulations. Aside from one incidence of creatine phosphokinase (CPK) elevation (following Lescol XL 160 mg qd treatment), there were no safety concerns with any of the treatments when administered acutely (7 days). Copyright 2004 John Wiley & Sons, Ltd.
Khan, Arshad Bashir; Thakur, Ram Sharnagat
2018-03-01
To design and evaluate novel, feasible, safe, mucoadhesive intravaginal tablets of tenofovir disoproxil fumarate (TDF). It may provide pre-exposure prophylaxis for women against HIV. TDF intravaginal tablets were formulated employing poylvinylpyrrolidone (PVP) as the matrix forming polymer and various mucoadhesive polymers such as carbopol 934, 940, chitosan, and sodium carboxymethylcellulose (SCMC). Wet granulation was used. The evaluation involved testing drug-excipient compatibility, precompression parameters such as percentage yield, bulk density and tapped density of the granules, Carr's index, Hausner ratio, angle of repose, post compression parameters such as color, shape, physical dimensions, weight variation, hardness, friability, swelling index, assay, in vitro dissolution study and ex vivo mucoadhesion studies. Based on in vitro evaluation, C1 was selected as the best formulation and evaluated further for release kinetics, curve fitting analysis, absorption studies using liquid chromatography-mass spectrometry (LC-MS) technique and histopathological assessment in female Sprague-Dawley rats. C1 followed Higuchi model kinetics. Accelerated stability study was as per ICH guidelines by keeping C1 at 40 ± 2 °C and 75 ± 5% RH for six months. C1 was selected as the best formulation due to better swelling index (65.93% at 24 h), prolonged release of 100.62% cumulative drug release (CDR) at 24 h, superior mucoadhesion force (35.93 × 10 2 dynes/cm 2 ) and retention time (16 h). The study revealed that C1 remained stable for six months. C1 showed nil systemic absorption which is desirable and according to histopathological study, C1, exhibited minimal damage on the rat vaginal epithelium indicating safety.
Advanced polymeric matrix for valvular complications.
Acharya, Gayathri; Hopkins, Richard A; Lee, Chi H
2012-05-01
Poly(L-lactic acid) (PLLA) matrix systems incorporated with poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) containing nitric oxide (NO) donors (DETA NONOate) were developed for prevention of heart valve complications through sustained and controlled release of NO. PLLA matrices were prepared using the salt leaching method and the properties and drug release profiles were characterized. For assessment of the effects of PLLA systems on the pharmacological responses and cytotoxicity, various factors, such as calcium content, alkaline phosphatase (ALP) activity, cyclic guanosine monophosphate (cGMP) expression, intercellular adhesion molecule (ICAM-1) expression and cell viability of porcine aortic valve interstitial cells (PAVICs), were evaluated. PLLA matrices embedded with PLGA- NPs demonstrated its usefulness in alleviating the calcification rate of the VICs. The cGMP levels under osteoblastic conditions significantly increased, supporting that anticalcification activity of NO is mediated through NO-cGMP signaling pathway. The level of ICAM-1 expression in cells exposed to NO was lowered, suggesting that NO has an inhibitory activity against tissue inflammation. NO releases from PLLA matrix embedded with PLGA NPs prevented valvular calcification and inflammation without causing any cytotoxic activities. PLLA matrix system loaded with NPs containing NO donors could provide a new platform for sustained and controlled delivery of NO, significantly reducing valvular complications. Copyright © 2012 Wiley Periodicals, Inc.
Pi, Chao; Feng, Ting; Liang, Jing; Liu, Hao; Huang, Dongmei; Zhan, Chenglin; Yuan, Jiyuan; Lee, Robert J; Zhao, Ling; Wei, Yumeng
2018-06-01
Felodipine (FD) has been widely used in anti-hypertensive treatment. However, it has extremely low aqueous solubility and poor bioavailability. To address these problems, FD hollow microspheres as multiple-unit dosage forms were synthesized by a solvent diffusion evaporation method. Particle size of the hollow microspheres, types of ethylcellulose (EC), amounts of EC, polyvinyl pyrrolidone (PVP) and FD were investigated based on an orthogonal experiment of three factors and three levels. In addition, the release kinetics in vitro and pharmacokinetics in beagle dogs of the optimized FD hollow microspheres was investigated and compared with Plendil (commercial FD sustained-release tablets) as a single-unit dosage form. Results showed that the optimal formulation was composed of EC 10 cp :PVP:FD (0.9:0.16:0.36, w/w). The FD hollow microspheres were globular with a hollow structure and have high drug loading (17.69±0.44%) and floating rate (93.82±4.05%) in simulated human gastric fluid after 24h. Pharmacokinetic data showed that FD hollow microspheres exhibited sustained-release behavior and significantly improved relative bioavailability of FD compared with the control. Pharmacodynamic study showed that the FD hollow microspheres could effectively lower blood pressure. Therefore, these findings demonstrated that the hollow microspheres were an effective sustained-release delivery system for FD. Copyright © 2018 Elsevier B.V. All rights reserved.
... 4 hours as needed for pain. MS Contin brand and Arymo ER brand are extended-release tablets that are usually taken every 8 or every 12 hours. Morphabond brand extended-release tablets are usually taken every 12 ...
El-Zahaby, Sally A; AbouGhaly, Mohamed H H; Abdelbary, Ghada A; El-Gazayerly, Omaima N
2017-06-08
Solid self-nanoemulsifying (S-SNEDDS) asymmetrically coated osmotic tablets of the poorly water-soluble drug Vinpocetine (VNP) were designed. The aim was to control the release of VNP by the osmotic technology taking advantage of the solubility and bioavailability-enhancing capacity of S-SNEDDS. Liquid SNEDDS loaded with 2.5 mg VNP composed of Maisine™ 35-1, Transcutol ® HP, and Cremophor ® EL was adsorbed on the solid carrier Aeroperl ® . S-SNEDDS was mixed with the osmotic tablet excipients (sodium chloride, Avicel ® , HPMC-K4M, PVP-K30, and Lubripharm ® ), then directly compressed to form the core tablet. The tablets were dip coated and mechanically drilled. A 3 2 *2 1 full factorial design was adopted. The independent variables were: type of coating material (X 1 ), concentration of coating solution (X 2 ), and number of drills (X 3 ). The dependent variables included % release at 2 h (Y 1 ), at 4 h (Y 2 ), and at 8 h (Y 3 ). The in vivo performance of the optimum formula was assessed in rabbits. Zero-order VNP release was obtained by the single drilled 1.5% Opadry ® CA coated osmotic tablets and twofold increase in VNP bioavailability was achieved. The combination of SNEDDS and osmotic pump tablet system was successful in enhancing the solubility and absorption of VNP as well as controlling its release.
Mohana Raghava Srivalli, K.; Lakshmi, P.K.; Balasubramaniam, J.
2012-01-01
Lamotrigine is a BCS class II drug with pH dependent solubility. The bilayered gastric mucoadhesive tablets of lamotrigine were designed such that the drug and controlled release polymers were incorporated in the upper layer and the lower layer had the mucoadhesive polymers. The major ingredients selected for the upper layer were the drug and control release polymer (either HPMC K15M or polyox) while the lower MA layer predominantly comprised of Carbopol 974P. A 23 full factorial design was constructed for this study and the tablets were optimized for parameters like tablet size, shape, ex vivo mucoadhesive properties and unidirectional drug release. Oval tablets with an average size of 14 mm diameter were set optimum. Maximum mucoadhesive bond strength of 79.3 ± 0.91 * 103 dyn/cm2 was achieved with carbopol when used in combination with a synergistic resin polymer. All the tested formulations presented a mucoadhesion time of greater than 12 h. The incorporation of methacrylic polymers in the lower layer ensured unidirectional drug release from the bilayered tablets. The unidirectional drug release was confirmed after comparing the dissolution results of paddle method with those of a modified basket method. Model independent similarity and dissimilarity factor methods were used for the comparison of dissolution results. Controlled drug release profiles with zero order kinetics were obtained with polyox and HPMC K15M which reported t90% at 6th and 12th hours, respectively. The “n” value with polyox was 0.992 and that with HPMC K15M was 0.946 indicating an approximate case II transport. These two formulations showed the potential for oral administration of lamotrigine as bilayered gastric mucoadhesive tablets by yielding highest similarity factor values, 96.06 and 92.47, respectively, between the paddle and modified basket method dissolution release profiles apart from reporting the best tablet physical properties and maximum mucoadhesive strength. PMID:24109205
Magnetic resonance imaging for the in vivo evaluation of gastric-retentive tablets.
Steingoetter, Andreas; Weishaupt, Dominik; Kunz, Patrick; Mäder, Karsten; Lengsfeld, Hans; Thumshirn, Miriam; Boesiger, Peter; Fried, Michael; Schwizer, Werner
2003-12-01
To develop a magnetic resonance imaging (MRI) technique for assessing in vivo properties of orally ingested gastric-retentive tablets under physiologic conditions. Tablets with different floating characteristics (tablet A-C) were marked with superparamagnetic Fe3O4 particles to analyze intragastric tablet position and residence time in human volunteers. Optimal Fe3O4 concentration was determined in vitro. Intragastric release characteristic of one slow-release tablet (tablet D) was analyzed by embedding gadolinium chelates (Gd-DOTA) as a drug model into the tablet. All volunteers underwent MRI in the sitting position. Tablet performance was analyzed in terms of relative position of tablet to intragastric meal level (with 100% at meal surface), intragastric residence time (min) and Gd-DOTA distribution volume (% of meal volume). Intragastric tablet floating performance and residence time of tablets (tablet A-D) as well as the intragastric Gd-DOTA distribution of tablet D could be monitored using MRI. Tablet floating performance was different between the tablets (A, 93%(95 - 9%); B, 80%(80 - 68%): C, 38%(63 - 32%); p < 0.05). The intragastric distribution volume of Gd-DOTA was 19.9% proximally and 35.5% distally. The use of MRI allows the assessment of galenic properties of orally ingested tablets in humans in seated position.
Dasabuvir, Ombitasvir, Paritaprevir, and Ritonavir
... of dasabuvir, ombitasvir, paritaprevir, and ritonavir comes as extended-release (long-acting) tablets to take by mouth. ... more often than prescribed by your doctor.The extended-release tablets come in a package with 28 ...
Development of sustained and dual drug release co-extrusion formulations for individual dosing.
Laukamp, Eva Julia; Vynckier, An-Katrien; Voorspoels, Jody; Thommes, Markus; Breitkreutz, Joerg
2015-01-01
In personalized medicine and patient-centered medical treatment individual dosing of medicines is crucial. The Solid Dosage Pen (SDP) allows for an individual dosing of solid drug carriers by cutting them into tablet-like slices. The aim of the present study was the development of sustained release and dual release formulations with carbamazepine (CBZ) via hot-melt co-extrusion for the use in the SDP. The selection of appropriate coat- and core-formulations was performed by adapting the mechanical properties (like tensile strength and E-modulus) for example. By using different excipients (polyethyleneglycols, poloxamers, white wax, stearic acid, and carnauba wax) and drug loadings (30-50%) tailored dissolution kinetics was achieved showing cube root or zero order release mechanisms. Besides a biphasic drug release, the dose-dependent dissolution characteristics of sustained release formulations were minimized by a co-extruded wax-coated formulation. The dissolution profiles of the co-extrudates were confirmed during short term stability study (six months at 21.0 ± 0.2 °C, 45%r.h.). Due to a good layer adhesion of core and coat and adequate mechanical properties (maximum cutting force of 35.8 ± 2.0 N and 26.4 ± 2.8 N and E-modulus of 118.1 ± 8.4 and 33.9 ± 4.5 MPa for the dual drug release and the wax-coated co-extrudates, respectively) cutting off doses via the SDP was precise. While differences of the process parameters (like the barrel temperature) between the core- and the coat-layer resulted in unsatisfying content uniformities for the wax-coated co-extrudates, the content uniformity of the dual drug release co-extrudates was found to be in compliance with pharmacopoeial specification. Copyright © 2015 Elsevier B.V. All rights reserved.
Berner-Strzelczyk, Aneta; Kołodziejska, Justyna; Zgoda, Marian Mikołaj
2006-01-01
The increasing interest of the technology of drug form in natural biopolymers has become the reason for undertaking investigations on the possibility of guar gum application in the prescription of oral solid form of a drug. Alternative compositions and technology of the production of tablets of regulated in time sodium ibuprofen release were worked out for children. Two series of tablets were prepared with guar gum (5 and 10% content) and a series without the biopolymer. The tablet mass in each case contained keryostatic sorbitol and bioadhesive polyvinylpyrrolidone. All tablets were tested as regards the quality of production, compliance with the requirements of Polish Pharmacopoeia VI and potential therapeutic usefulness, manifestation of which is pharmaceutical availability of the therapeutic agent (sodium ibuprofen). The tests demonstrated that the produced tablets with sodium ibuprofen have proper physicochemical properties, in compliance with Polish Pharmacopoeia VI requirements. Application of biopolymer of guar gum type as adjuvant substance contributes to the improvement of the tablet hardness parameters and prevents technological problems (lining mixture of powders to tableting machine punch). The designed tablets demonstrate proper pharmaceutical availability of over 80%. Introduction of guar gum into their prescription prolonged their disintegration time and the rate of sodium ibuprofen release, which predisposes the produced form of a drug to have the function of a tablet with slowed-down release.
Xu, Lishuang; Luo, Yanfei; Feng, Jia; Xu, Ming; Tao, Xiaoguang; He, Haibing; Tang, Xing
2012-01-17
The objective of this study was to develop none gastric resident sustained-release pellets loaded with dipyridamole with a high bioavailability. Two different kinds of core pellets, one containing citric acid as a pH-modifier (CAP) and, the other without pH-modifier (NCAP) were prepared by extrusion-spheronization and then coated with mixtures of enteric soluble and insoluble polymers (referred to as CAP(1) and NCAP(1)) or insoluble polymer alone (referred to as CAP(2) and NCAP(2)). The relative bioavailability of the sustained-release pellets was studied in fasted beagle dogs after oral administration using a commercially available immediate release tablet (IRT) as a reference. The in vitro release, in vivo absorption and in vitro-in vivo correlation were also evaluated. Results revealed that the plasma drug concentrations after administration of CAP(2), NCAP(1) and NCAP(2) were undetectable, indicating that the drug release was almost zero from the preparations throughout the gastro-intestinal tract. The C(max), T(max) and AUC((0→24)) of CAP(1) were 0.78 ± 0.23 (μg/ml), 3.80 ± 0.30 (h), and 6.74 ± 0.47 (μg/mlh), respectively. While the corresponding values were 2.23 ± 0.32 (μg/ml), 3.00 ± 0.44 (h) and 9.42 ± 0.69 (μg/mlh) for IRT. The relative bioavailability of CAP(1) was 71.55% compared with IRT. By combined incorporation of a pH-modifier into the core of pellets to modify the inner micro-environment and employing mixtures of enteric soluble and insoluble polymers as a retarding layer, drugs with high solubility in stomach and limited solubility in small intestine, such as DIP, could be successfully formulated as sustained release preparations with no pH-dependence in drug release and enhanced bioavailability. Copyright © 2011 Elsevier B.V. All rights reserved.
High aspect ratio template and method for producing same for central and peripheral nerve repair
NASA Technical Reports Server (NTRS)
Sakamoto, Jeff S. (Inventor); Chan, Christina (Inventor); Tuszynski, Mark Henry (Inventor); Mehrotra, Sumit (Inventor); Gros, Thomas (Inventor)
2011-01-01
Millimeter to nano-scale structures manufactured using a multi-component polymer fiber matrix are disclosed. The use of dissimilar polymers allows the selective dissolution of the polymers at various stages of the manufacturing process. In one application, biocompatible matrixes may be formed with long pore length and small pore size. The manufacturing process begins with a first polymer fiber arranged in a matrix formed by a second polymer fiber. End caps may be attached to provide structural support and the polymer fiber matrix selectively dissolved away leaving only the long polymer fibers. These may be exposed to another product, such as a biocompatible gel to form a biocompatible matrix. The polymer fibers may then be selectively dissolved leaving only a biocompatible gel scaffold with the pores formed by the dissolved polymer fibers. The scaffolds may be used in, among other applications, the repair of central and peripheral nerves. Scaffolds for the repair of peripheral nerves may include a reservoir for the sustained release of nerve growth factor. The scaffolds may also include a multifunctional polyelectrolyte layer for the sustained release of nerve growth factor and enhance biocompatibility.
Shibata, Nobuhito; Nishumura, Asako; Naruhashi, Kazumasa; Nakao, Yurie; Miura, Rieko
2010-05-01
The focus of current study was to demonstrate a new sustained-release capsule including starch-sponge matrix (SSM) and to investigate how the pharmaceutical properties of SSM affect the drug release or its pharmacokinetic properties. Three representative drugs (uranine [UN], indomethacin [IMC] and nifedipine [NFP]) with different physicochemical properties (LogP(ow): 0.10, 1.18 and 3.23, respectively) were selected as model drugs. Model drug was dispersioned in pastelike cornstarch (starch glue) after heating 2.0-3.0% cornstarch suspension with electromagnetic wave at 2450 MHz (700 W) for l min. Then the drug mixture was encapsulated into a gratin capsule by a syringe, and the SSM including drug was prepared by means of a freeze-dried method. Essentially, drug-free SSM has a porous and netlike structure, and the distribution aspect of model drugs in the SSM depends on physicochemical properties between cornstarch glue and drugs. UN with much lower lipophilicity exists in continues phase of SSM, and IMC or NFP with a moderate or a higher lipophilicity exist in continues phase or porous space of the SSM. In the in vitro dissolution study, the release rate of drug from the SSM was mainly dependent on the lipophilicities of drugs, showing a rank order of the release rate of UN>IMC>NFP. In addition, the in vitro release rate for each drug was well regulated by changing the initial concentration of cornstarch suspension. In vivo absorption studies after intraduodenal administration of SSM capsule including model drug revealed that the sustained-release effects also could be regulated by the initial concentration of starch suspension. Moreover, the sustained-release effect of SSM capsule was enhanced with an increase in the lipophilicity of drug, and local-residential and mucoadhesive properties of SSM in the intestine provided stable supply of drugs from the SSM. The SSM capsule we developed here shows promising results as an oral drug delivery system for sustained-release regulation or target specificity. 2009 Elsevier Masson SAS. All rights reserved.
Wu, Ting-Ting; Wang, Zhi-Gang; Ou, Wu-Ling; Wang, Jun; Yao, Guo-Qing; Yang, Bo; Rao, Zhi-Guo; Gao, Jian-Fei; Zhang, Bi-Cheng
2014-01-01
The study aimed to investigate the analgesic effect of a combination of intravenous flurbiprofen axetil and opioids, and evaluate the relationship between refractory pain relief and plasma β-endorphin levels in cancer patients. A total of 120 cancer patients was randomly divided into two groups, 60 patients took orally morphine sulfate sustained-release tablets in group A, and another 60 patients receiving the combination treatment of intravenous flurbiprofen axetil and opioid drugs in group B. After 7 days, pain relief, quality of life improvement and side effects were evaluated. Furthermore, plasma β-endorphin levels were measured by radioimmunoassay. With the combination treatment of intravenous intravenous flurbiprofen axetil and opioids, the total effective rate of pain relief rose to 91.4%, as compared to 82.1% when morphine sulfate sustained-release tablet was used alone. Compared with that of group A, the analgesic effect increased in group B (p=0.031). Moreover, satisfactory pain relief was associated with a significant increase in plasma β-endorphin levels. After the treatment, plasma β-endorphin level in group B was 62.4±13.5 pg/ml, which was higher than that in group A (45.8±11.2 pg/ml) (p<0.05). Our results suggest the combination of intravenous flurbiprofen axetil and opioids can enhance the analgesic effect of opioid drugs by increasing plasma β-endorphin levels, which would offer a selected and reliable strategy for refractory cancer pain treatment.
Park, Sang-Hyug; Kim, Moon Suk; Kim, Young Jick; Choi, Byung Hyune; Lee, Chun Tek; Park, So Ra; Min, Byoung-Hyun
2016-01-01
Recombinant human transforming growth factor beta-3 (rhTGF-β3) is a key regulator of chondrogenesis in stem cells and cartilage formation. We have developed a novel drug delivery system that continuously releases rhTGF-β3 using a multilayered extracellular matrix (ECM) membrane. We hypothesize that the sustained release of rhTGF-β3 could activate stem cells and result in enhanced repair of cartilage defects. The properties and efficacy of the ECM multilayer-based delivery system (EMLDS) are investigated using rhTGF-β3 as a candidate drug. The bioactivity of the released rhTGF-ß3 was evaluated through chondrogenic differentiation of mesenchymal stem cells (MSCs) using western blot and circular dichroism (CD) analyses in vitro. The cartilage reparability was evaluated through implanting EMLDS with endogenous and exogenous MSC in both in vivo and ex vivo models, respectively. In the results, the sustained release of rhTGF-ß3 was clearly observed over a prolonged period of time in vitro and the released rhTGF-β3 maintained its structural stability and biological activity. Successful cartilage repair was also demonstrated when rabbit MSCs were treated with rhTGF-β3-loaded EMLDS ((+) rhTGF-β3 EMLDS) in an in vivo model and when rabbit chondrocytes and MSCs were treated in ex vivo models. Therefore, the multilayer ECM membrane could be a useful drug delivery system for cartilage repair. PMID:27258120
Comparative drug release measurements in limited amounts of liquid: a suppository formulation study.
Welch, Ken; Ek, Ragnar; Strømme, Maria
2006-07-01
A novel method for the investigation of drug formulations in limited liquid volumes is presented. The experimental setup consists of a measurement cell containing an absorbent sponge cloth placed between two parallel electrodes. Conductivity measurements are used to monitor the drug release from the dosage form. By varying the amount of water contained in the absorbent cloth surrounding the dosage form, it is possible to measure the drug release performance of the dosage form in very limited amounts of water. The method was employed to test four different tablet formulations consisting of the model drug NaCl incorporated in excipient matrices of hard fat, polyethylene glycol, microcrystalline cellulose and a mixture of microcrystalline cellulose and croscarmellose sodium (Ac-Di-Sol). The drug release rates of the different formulations in limited water volumes differed markedly from the release rates in an excess of water. Whereas the release rates from all tablet types in an excess of water showed only minor differences among the tablet types, the release rates from the tablets formulated with disintegrating excipients were clearly superior in limited water volumes. The developed method for drug release in limited volumes of liquid should be suitable for evaluation of rectal dosage forms.
Makino, Chisato; Ninomiya, Nobutaka; Sakai, Hidetoshi; Orita, Haruo; Okano, Akira; Yabuki, Akira
2006-04-01
Nateglinide is a new quick action/short duration (QRSD) type of oral blood glucose regulator, and nateglinide immediate release tablets are used for patients with mild diabetes under the trade name of Fastic((R)) tablets. In this study, we attempted to determine if it was possible to control both post-prandial blood glucose level (PBG) and fasting blood glucose level (FBG) for moderate or severe diabetes through controlled release of nateglinide. Enteric coated granules were selected for the administration form for controlled release of nateglinide, and three types of enteric coated granules were prepared having dissolution pH values of 5.5, 6.5 and 7.2. The three types of enteric coated granules were each administered separately or the enteric coated granules having an dissolution pH of 6.5 were administered simultaneous to administration of nateglinide immediate release tablets to normal beagle dogs just before feeding followed by measurement of plasma nateglinide concentration, plasma insulin concentration and blood glucose level. In the case of administering enteric coated granules alone (nateglinide: 9 mg/kg), the absorption of nateglinide was confirmed to tend to be delayed as the dissolution pH increased. In the case of an dissolution pH of 5.5, decreases in both PBG and FBG were observed. In the case of dissolution pH values of 6.5 and 7.2, only decrease in FBG was observed. In case of nateglinide immediate release tablets (nateglinide: 9 mg/kg), only decrease in PBG was observed. Decreases in both PBG and FBG were observed in the case of simultaneous administration of dissolution pH 6.5 enteric coated granules and nateglinide immediate release tablets just before feeding (nateglinide: 90 mg/head+60 mg/head). A correlation was observed between plasma nateglinide concentrations and blood glucose levels. On the other hand, there were no correlations observed between changes in plasma insulin concentrations and blood glucose levels. In case of nateglinide immediate release tablets (nateglinide: 150 mg/head), Decreases in both PBG and FBG were observed. However, the nateglinide controlled release formulation is more useful than the nateglinide immediate release tablets from the view point of avoidance of side effect, or of easy control of both PBG and FBG. On the basis of these results, the design of a controlled release formulation that contains nateglinide was suggested to enable control of both PBG and FBG for moderate and severe diabetes patients.
Darwish, Mona; Bond, Mary; Tracewell, William; Robertson, Philmore; Yang, Ronghua
2015-01-01
A hydrocodone extended-release (ER) formulation employing the CIMA(®) Abuse-Deterrence Technology platform was developed to provide resistance against rapid release of hydrocodone when tablets are comminuted or taken with alcohol. This study evaluated the pharmacokinetics of three hydrocodone ER tablet prototypes with varying levels of polymer coating to identify the prototype expected to have the greatest abuse deterrence potential based on pharmacokinetic characteristics that maintain systemic exposure to hydrocodone comparable to that of a commercially available hydrocodone immediate-release (IR) product. In this four-period crossover study, healthy subjects aged 18-45 years were randomized to receive a single intact, oral 45-mg tablet of one of three hydrocodone ER prototypes (low-, intermediate-, or high-level coating) or an intact, oral tablet of hydrocodone IR/acetaminophen (APAP) 10/325 mg every 6 h until four tablets were administered, with each of the four treatments administered once over the four study periods. Dosing periods were separated by a minimum 5-day washout. Naltrexone 50 mg was administered to block opioid receptors. Blood samples for pharmacokinetic assessments were collected predose and through 72 h postdose. Parameters assessed included maximum observed plasma hydrocodone concentration (C(max)), time to C(max) (t(max)), and area under the concentration-time curve from time 0 to infinity (AUC(0-∞)). Mean C(max) values were 49.2, 32.6, and 28.4 ng/mL for the low-, intermediate-, and high-level coating hydrocodone ER tablet prototypes, respectively, and 37.3 ng/mL for the hydrocodone IR/APAP tablet; respective median t(max) values were 5.9, 8.0, 8.0, and 1.0 h. Total systemic exposure to hydrocodone (AUC(0-∞)) was comparable between hydrocodone ER tablet prototypes (640, 600, and 578 ng·h/mL, respectively) and hydrocodone IR/APAP (581 ng·h/mL). No serious adverse events or deaths were reported. The most common adverse events included headache (26%) and nausea (18%). All three hydrocodone ER tablet prototypes (low-, intermediate-, and high-level polymer coating) demonstrated ER pharmacokinetic characteristics. The hydrocodone ER tablet prototype with the high-level coating was selected for development because of its comparable exposure to the hydrocodone IR/APAP formulation and potentially increased ability to resist rapid drug release upon product tampering because of a higher polymer coating level. All study medications were well tolerated in healthy naltrexone-blocked volunteers.
Alhusein, Nour; Blagbrough, Ian S; De Bank, Paul A
2012-12-01
We report the controlled release of tetracycline (Tet) HCl from a three-layered electrospun matrix for the first time. Five formulations of electrospun poly-ε-caprolactone (PCL) and poly(ethylene-co-vinyl acetate) (PEVA) have been designed, prepared as micro/nanofibre layers, and assayed for the controlled release of the clinically useful antibiotic Tet HCl with potential applications in wound healing and especially in complicated skin and skin-structure infections. Tet HCl was also chosen as a model drug possessing a good ultraviolet (UV) chromophore and capable of fluorescence together with limited stability. Tet HCl was successfully incorporated (essentially quantitatively at 3 %, w/w) and provided controlled release from multilayered electrospun matrices. The Tet HCl release test was carried out by a total immersion method on 2 × 2 cm(2) electrospun fibrous mats in Tris or phosphate-buffered saline heated to 37 °C. The formulation PCL/PEVA/PCL with Tet HCl in each layer gave a large initial (burst) release followed by a sustained release. Adding a third layer to the two-layered formulations led to release being sustained from 6 days to more than 15 days. There was no detectable loss of Tet chemical stability (as shown by UV and NMR) or bioactivity (as shown by a modified Kirby-Bauer disc assay). Using Tet HCl-sensitive bacteria, Staphylococcus aureus (ATCC 25923), the Tet HCl-loaded three-layered matrix formulations were still showing significantly higher antibacterial effects on days 4 and 5 than commercially available Antimicrobial Susceptibility Test Discs of Tet HCl. Electrospinning provides good encapsulation efficiency of Tet HCl within PCL/PEVA/PCL polymers in micro/nanofibre layers which display sustained antibiotic release.
Cortese, Samuele; D'Acunto, Giulia; Konofal, Eric; Masi, Gabriele; Vitiello, Benedetto
2017-02-01
Psychostimulants are the recommended first-line pharmacological treatment for attention-deficit/hyperactivity disorder (ADHD). Methylphenidate is one of the most commonly used psychostimulants worldwide. Given that immediate-release and/or tablet/capsule formulations may decrease adherence to methylphenidate treatment, several drug companies have been developing novel long-acting and/or liquid/chewable formulations that may improve adherence as well as (for long-acting formulations) reduce abuse potential, decrease stigma associated with multiple administrations per day, and decrease the potential for adverse effects related to dosage peak. Here, we review the pharmacokinetics, efficacy, and tolerability of novel formulations of methylphenidate that are in development or have been approved by the US FDA or European Medicines Agency (EMA) in the last 5 years. We searched the websites of the FDA, EMA, ClinicalTrials.gov, and the pertinent drug companies. We also searched PubMed, Ovid databases (MEDLINE, PsycINFO, Embase + Embase classic), and ISI Web of Knowledge (Web of Science [Science Citation Index Expanded], Biological Abstracts, Biosis, Food Science and Technology Abstracts) to retrieve any additional pertinent information. We found data from trials for the following compounds: (1) methylphenidate extended-release oral suspension (MEROS; NWP06, Quillivant™); (2) methylphenidate extended-release chewable capsules (NWP09, QuilliChew ER™); (3) methylphenidate hydrochloride extended-release capsules (Aptensio XR™); (4) methylphenidate extended-release orally disintegrating tablets (XR-ODT; NT-0102, Cotempla™); (5) ORADUR technology (once-daily tamper-resistant formulation) methylphenidate sustained release (SR); and (6) methylphenidate modified-release (HLD-200; Bejorna™). Overall, available evidence based on trials suggests these compounds have good efficacy and tolerability. Future research should further explore the effectiveness and tolerability of these new formulations as well as their potential to improve adherence to treatment in the 'real world' via pragmatic trials.
Microtomographic studies of subdivision of modified-release tablets.
Wilczyński, Sławomir; Koprowski, Robert; Duda, Piotr; Banyś, Anna; Błońska-Fajfrowska, Barbara
2016-09-25
The uniformity of dosage units within a certain batch is ensured when each unit contains the active pharmaceutical ingredient (API) within a narrow range around the label claim. For tablets containing a score-line authorised for dose reductions, the European Pharmacopoeia (Ph. Eur.) considers that the uniformity of the tablet parts may be based on weight measurements regardless of the tablet type (immediate or modified release). This is because it is up to the regulatory authorities first to assess whether the tablet may contain a score-line for such use. X-ray microtomography was applied to assess the symmetry of 36 modified release tablets, containing 300mg of theophylline. The sum of the volume and surface area of the pellets in the subdivided tablets were compared. Simulations were carried out to identify the optimal amount of pellets in the tablet mass. The maximum difference in the API content between two subdivided halves was 165.18mg vs 133.83mg. If the amount of pellets in the tablet mass would drop below 13% on the basis of the pellet surface area, then the Ph. Eur. requirements would be exceeded. The amount of pellets in the tablet halves resulting in the greatest variability in API content was 38%. The results of this study indicate that the pellets were not distributed uniformly in the tablet mass. Thus, the uniformity of the dose in both halves of a tablet containing pellets cannot be based on the weight measurements i.e. it is necessary to develop further standards for tablet subdivision. Microtomographic methods are a very interesting alternative to expensive and time-consuming pharmacokinetic studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Hydrophilic excipients modulate the time lag of time-controlled disintegrating press-coated tablets.
Lin, Shan-Yang; Li, Mei-Jane; Lin, Kung-Hsu
2004-08-16
An oral press-coated tablet was developed by means of direct compression to achieve the time-controlled disintegrating or rupturing function with a distinct predetermined lag time. This press-coated tablet containing sodium diclofenac in the inner core was formulated with an outer shell by different weight ratios of hydrophobic polymer of micronized ethylcellulose (EC) powder and hydrophilic excipients such as spray-dried lactose (SDL) or hydroxypropyl methylcellulose (HPMC). The effect of the formulation of an outer shell comprising both hydrophobic polymer and hydrophilic excipients on the time lag of drug release was investigated. The release profile of the press-coated tablet exhibited a time period without drug release (time lag) followed by a rapid and complete release phase, in which the outer shell ruptured or broke into 2 halves. The lag phase was markedly dependent on the weight ratios of EC/SDL or EC/HPMC in the outer shell. Different time lags of the press-coated tablets from 1.0 to 16.3 hours could be modulated by changing the type and amount of the excipients. A semilogarithmic plot of the time lag of the tablet against the weight ratios of EC/SDL or EC/HPMC in the outer shell demonstrated a good linear relationship, with r = 0.976 and r = 0.982, respectively. The predetermined time lag prior to the drug release from a press-coated tablet prepared by using a micronized EC as a retarding coating shell can be adequately scheduled with the addition of hydrophilic excipients according to the time or site requirements.
Manrique, Yady J; Lee, Danielle J; Islam, Faiza; Nissen, Lisa M; Cichero, Julie A Y; Stokes, Jason R; Steadman, Kathryn J
2014-01-01
To evaluate the influence of co-administered vehicles on in vitro dissolution in simulated gastric fluid of crushed immediate release tablets as an indicator for potential drug bioavailability compromise. Release and dissolution of crushed amlodipine, atenolol, carbamazepine and warfarin tablets were tested with six foods and drinks that are frequently used in the clinical setting as mixers for crushed medications (water, orange juice, honey, yoghurt, strawberry jam and water thickened with Easythick powder) in comparison to whole tablets. Five commercial thickening agents (Easythick Advanced, Janbak F, Karicare, Nutilis, Viscaid) at three thickness levels were tested for their effect on the dissolution of crushed atenolol tablets. Atenolol dissolution was unaffected by mixing crushed tablets with thin fluids or food mixers in comparison to whole tablets or crushed tablets in water, but amlodipine was delayed by mixing with jam. Mixing crushed warfarin and carbamazepine tablets with honey, jam or yoghurt caused them to resemble the slow dissolution of whole tablets rather than the faster dissolution of crushed tablets in water or orange juice. Crushing and mixing any of the four medications with thickened water caused a significant delay in dissolution. When tested with atenolol, all types of thickening agents at the greatest thickness significantly restricted dissolution, and products that are primarily based on xanthan gum also delayed dissolution at the intermediate thickness level. Dissolution testing, while simplistic, is a widely used and accepted method for comparing drug release from different formulations as an indicator for in vivo bioavailability. Thickened fluids have the potential to retard drug dissolution when used at the thickest levels. These findings highlight potential clinical implications of the addition of these agents to medications for the purpose of dose delivery and indicate that further investigation of thickened fluids and their potential to influence therapeutic outcomes is warranted.
Qi, Xiaole; Chen, Haiyan; Rui, Yao; Yang, Fengjiao; Ma, Ning; Wu, Zhenghong
2015-07-15
To prolong the residence time of dosage forms within gastrointestinal trace until all drug released at desired rate was one of the real challenges for oral controlled-release drug delivery system. Herein, we developed a fine floating tablet via compression coating of hydrophilic polymer (hydroxypropyl cellulose) combined with effervescent agent (sodium bicarbonate) to achieve simultaneous control of release rate and location of ofloxacin. Sodium alginate was also added in the coating layer to regulate the drug release rate. The effects of the weight ratio of drug and the viscosity of HPC on the release profile were investigated. The optimized formulations were found to immediately float within 30s and remain lastingly buoyant over a period of 12 h in simulated gastric fluid (SGF, pH 1.2) without pepsin, indicating a satisfactory floating and zero-order drug release profile. In addition, the oral bioavailability experiment in New Zealand rabbits showed that, the relative bioavailability of the ofloxacin after administrated of floating tablets was 172.19%, compared to marketed common release tablets TaiLiBiTuo(®). These results demonstrated that those controlled-released floating tables would be a promising gastro-retentive delivery system for drugs acting in stomach. Copyright © 2015 Elsevier B.V. All rights reserved.
Pereira de Souza, Tatiane; Martínez-Pacheco, Ramón; Gómez-Amoza, José Luiz; Petrovick, Pedro Ros
2007-04-27
The aim of this study was to investigate the feasibility of using Eudragit E as a granulating agent for a spray-dried extract from Phyllanthus niruri to obtain tablets containing a high dose of this product. The granules were developed by wet granulation and contained 2.5%, 5.0%, and 10.0% Eudragit E in the final product concentration. The tablets were produced on a single-punch tablet press by direct compression of granules using 0.5% magnesium stearate as a lubricant. The tablets were elaborated following a 2 x 3 factorial design, where Eudragit E concentration and compression force were the independent variables, and tensile strength and the extract release of the tablets were the dependent variables. All granules showed better technological properties than the spray-dried extract, including less moisture sorption. The characteristics of the granules were directly dependent on the proportion of Eudragit E in the formulation. In general, all tablets showed high mechanical resistance with less than 1% friability, less moisture sorption, and a slower extract release profile. The Eudragit E concentration and compression force of the tablets significantly influenced both dependent variables studied. In conclusion, Eudragit E was efficient as a granulating agent for the spray-dried extract, but additional studies are needed to further optimize the formulations in order to achieve less water sorption and improve the release of the extract from the tablets.
Comparative evaluation of single and bilayered lamotrigine floating tablets
Lakshmi, PK; Sridhar, M; Shruthi, B
2013-01-01
Aim: The purpose of this study was to prepare lamotrigine (LM) bilayered and single layered floating tablets and to compare their release profiles. Materials and Methods: LM floating tablets were prepared by direct compression method. Drug, hydroxy propyl methyl cellulose K4M, lactose monohydrate and polyvinylpyrrolidone K30 constitute controlled release layer components and floating layer components includes polymers and sodium bicarbonate. The prepared tablets were evaluated for physicochemical parameters such as hardness, friability, weight variation, thickness, floating lag time (FLT), floating time, in vitro buoyancy study, in vitro release studies. The drug-polymer interaction was studied by fourier transform infrared and differential scanning calorimetry. Results and Discussion: The FLT of all the formulations were within the prescribed limits (<3 min). When ethyl cellulose was used as floating layer component, tablets showed good buoyancy effect but eroded within 6-8 h. Hence it was replaced with hydroxypropyl cellulose -M hydrophilic polymer, which showed good FLT and floating duration for 16 h. Formulation LFC4 was found to be optimized with dissolution profile of zero order kinetics showing fickian diffusion. A comparative study of bilayered and single layered tablets of LM showed a highest similarity factor of 83.03, difference factor of 2.74 and t-test (P < 0.05) indicates that there is no significant difference between them. Conclusion: Though bilayered tablet possess many advantages, single layered tablet would be economical, cost-effective and reproducible for large scale production in the industry. However, the results of present study demonstrated that the in vitro development of bilayered gastro retentive floating tablets with controlled drug release profile for LM is feasible. PMID:24167788
Design, Development and Rationalization of Sarpagandha Ghanvati
Pundarikakshudu, K.; Bhatt, C. J.
2015-01-01
Sarpagandha ghanvati is a classical Ayurvedic formulation widely prescribed for anxiety and insomnia. It contains Sarpagandha (roots of Rauwolfia serpentina L. (Benth.) Ex Kurz; Family: Apocyanaceae), Khurasani ajowan (Hyocyamus niger L.; Family: Solanaceae) seeds, Jatamansi (Nardostachys jatamansi DC. Family: Valerianaceae) roots and Pipplamul (root of Piper longum L.; Family: Piperaceae). The objective of this study was to make a comparative evaluation of Ghanvatis and tablets of this formulation. Two tablet formulations were prepared; one incorporating only powders of all ingredients; the other with ethanol extracts of the first three ingredients and powder of Piper longum root. Similarly, two types of Sarpagandha ghanvati pills were prepared; one as per Ayurvedic Formulary of India; the other with ethanol extracts of the first three ingredients and powder of Piper longum root. Alcohol extracted 0.22% w/w of total alkaloids as against 0.061% w/w extracted by water. Tablets prepared with powders of all the ingredients had friability more than 3.0% where as those prepared with ethanol extract had very low friability. Ghanvatis, prepared as per the Ayurvedic formulary, did not show reserpine although other alkaloids were present. They showed less content uniformity and lower drug release. Ethanol extracted reserpine along with other alkaloids. Ghanvatis made with the alcoholic extracts exhibited better content uniformity and drug release than the traditional formulation. Tablets prepared with powders or extracts of the ingredients exhibited good content uniformity but the release of alkaloids from the tablets of powders was only 80%. Tablets of the extracts had good content uniformity with 90% release of the total alkaloids. Tablets prepared with alcoholic extracts using 1% polyvinylpyrrolidone as binder and 5% dried starch powder as disintegrating agent confirmed to all the requirements. Thus, the study shows tablets made with the extracts are superior to Ghanvatis and powder tablets. PMID:26798180
Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets.
Sadia, Muzna; Arafat, Basel; Ahmed, Waqar; Forbes, Robert T; Alhnan, Mohamed A
2018-01-10
Conventional immediate release dosage forms involve compressing the powder with a disintegrating agent that enables rapid disintegration and dissolution upon oral ingestion. Among 3D printing technologies, the fused deposition modelling (FDM) 3D printing technique has a considerable potential for patient-specific dosage forms. However, the use of FDM 3D printing in tablet manufacturing requires a large portion of polymer, which slows down drug release through erosion and diffusion mechanisms. In this study, we demonstrate for the first time the use of a novel design approach of caplets with perforated channels to accelerate drug release from 3D printed tablets. This strategy has been implemented using a caplet design with perforating channels of increasing width (0.2, 0.4, 0.6, 0.8 or 1.0mm) and variable length, and alignment (parallel or at right angle to tablet long axis). Hydrochlorothiazide (BCS class IV drug) was chosen as the model drug as enhanced dissolution rate is vital to guarantee oral bioavailability. The inclusion of channels exhibited an increase in the surface area/volume ratio, however, the release pattern was also influenced by the width and the length of the channel. A channel width was ≥0.6mm deemed critical to meet the USP criteria of immediate release products. Shorter multiple channels (8.6mm) were more efficient at accelerating drug release than longer channels (18.2mm) despite having comparable surface area/mass ratio. This behaviour may be linked to the reduced flow resistance within the channels and the faster fragmentation during dissolution of these tablets. In conclusion, the width and length of the channel should be carefully considered in addition to surface area/mass when optimizing drug release from 3D printed designs. The incorporation of short channels can be adopted in the designs of dosage forms, implants or stents to enhance the release rate of eluting drug from polymer-rich structures. Copyright © 2017 Elsevier B.V. All rights reserved.
Study of controlled-release floating tablets of dipyridamole using the dry-coated method.
Chen, Kai; Wen, Haoyang; Yang, Feifei; Yu, Yibin; Gai, Xiumei; Wang, Haiying; Li, Pingfei; Pan, Weisan; Yang, Xinggang
2018-01-01
Dipyridamole (DIP), having a short biological half-life, has a narrow absorption window and is primarily absorbed in the stomach. So, the purpose of this study was to prepare controlled-release floating (CRF) tablets of dipyridamole by the dry-coated method. The influence of agents with different viscosity, hydroxypropylmethylcellulose (HPMC) and polyvinylpyrollidon K30 (PVP K30) in the core tablet and low-viscosity HPMC and PVP K30 in the coating layer on drug release, were investigated. Then, a study with a three-factor, three-level orthogonal experimental design was used to optimize the formulation of the CRF tablets. After data processing, the optimized formulation was found to be: 80 mg HPMC K4M in the core tablet, 80 mg HPMC E15 in core tablet and 40 mg PVP K30 in the coating layer. Moreover, an in vitro buoyancy study showed that the optimized formulation had an excellent floating ability and could immediately float without a lag time and this lasted more than 12 h. Furthermore, an in vivo gamma scintigraphic study showed that the gastric residence time of the CRF tablet was about 8 h.
S-protected thiolated chitosan: Synthesis and in vitro characterization
Dünnhaupt, Sarah; Barthelmes, Jan; Thurner, Clemens C.; Waldner, Claudia; Sakloetsakun, Duangkamon; Bernkop-Schnürch, Andreas
2012-01-01
Purpose of the present study was the generation and evaluation of novel thiolated chitosans, so-named S-protected thiolated chitosans as mucosal drug delivery systems. Stability of all conjugates concerning swelling and disintegration behavior as well as drug release was examined. Mucoadhesive properties were evaluated in vitro on intestinal mucosa. Different thiolated chitosans were generated displaying increasing amounts of attached free thiol groups on the polymer, whereby more than 50% of these thiol groups were linked with 6-mercaptonicotinamide. Based on the implementation of this hydrophobic residue, the swelling behavior was 2-fold decreased, whereas stability was essentially improved. Their mucoadhesive properties were 2- and 14-fold increased compared to corresponding thiolated and unmodified chitosans, respectively. Release studies out of matrix tablets comprising the novel conjugates revealed a controlled release of a model peptide. Accordingly, S-protected thiomers represent a promising type of mucoadhesive polymers for the development of various mucosal drug delivery systems. PMID:22839999
Eğri, Sinan; Eczacıoğlu, Numan
2017-03-01
Biodegradable PLA-PEG-PLA block copolymers were synthesized with desired backbone structures and molecular weights using PEG20000. Rectangular scaffolds were prepared by freeze drying with or without using NaCl particles. Bone morphogenetic protein (BMP)-2 was loaded to the matrix after the scaffold formation for sustained release while vascular endothelial growth factor (VEGF) was loaded within the pores with gelatin solution. VEGF release was quite fast and almost 60% of it was released in 2 d. However, sequential - sustained released was observed for BMP-2 in the following few months. Corporation of VEGF/BMP-2 couple into the scaffolds increased the cell adhesion and proliferation. Neither significant cytotoxicity nor apoptosis/necrosis were observed.
NASA Astrophysics Data System (ADS)
Sun, Ping; Song, Hua; Cui, Daxiang; Qi, Jun; Xu, Mousheng; Geng, Hongquan
2012-07-01
Matrix metalloproteases are key regulatory molecules in the breakdown of extracellular matrix and in inflammatory processes. Matrix metalloproteinase-1 (MMP-1) can significantly enhance muscle regeneration by promoting the formation of myofibers and degenerating the fibrous tissue. Herein, we prepared novel MMP-1-loaded poly(lactide-co-glycolide-co-caprolactone) (PLGA-PCL) nanoparticles (NPs) capable of sustained release of MMP-1. We established quadratic equations as mathematical models and employed rotatable central composite design and response surface methodology to optimize the preparation procedure of the NPs. Then, characterization of the optimized NPs with respect to particle size distribution, particle morphology, drug encapsulation efficiency, MMP-1 activity assay and in vitro release of MMP-1 from NPs was carried out. The results of mathematical modeling show that the optimal conditions for the preparation of MMP-1-loaded NPs were as follows: 7 min for the duration time of homogenization, 4.5 krpm for the agitation speed of homogenization and 0.4 for the volume ratio of organic solvent phase to external aqueous phase. The entrapment efficiency and the average particle size of the NPs were 38.75 ± 4.74% and 322.7 ± 18.1 nm, respectively. Further scanning electron microscopy image shows that the NPs have a smooth and spherical surface, with mean particle size around 300 nm. The MMP-1 activity assay and in vitro drug release profile of NPs indicated that the bioactivity of the enzyme can be reserved where the encapsulation allows prolonged release of MMP-1 over 60 days. Taken together, we reported here novel PLGA-PCL NPs for sustained release of MMP-1, which may provide an ideal MMP-1 delivery approach for tissue reconstruction therapy.
Etodolac tablets, capsules, and extended-release (long-acting) tablets are used to relieve pain, tenderness, swelling, and stiffness caused ... swelling of the lining of the joints). Etodolac tablets and capsules are also used to relieve pain ...
Tawfik, Mai Ahmed; Tadros, Mina Ibrahim; Mohamed, Magdy Ibrahim
2018-05-21
Vardenafil hydrochloride (VAR) is an erectile dysfunction treating drug. VAR has a short elimination half-life (4-5 h) and suffers low oral bioavailability (15%). This work aimed to explore the dual potential of VAR-dendrimer complexes as drug release modulators and oral bioavailability enhancers. VAR-dendrimer complexes were prepared by solvent evaporation technique using four dendrimer generations (G4.5, G5, G5.5 and G6) at three concentrations (190 nM, 380 nM and 950 nM). The systems were evaluated for intermolecular interactions, particle size, zeta potential, drug entrapment efficiency percentages (EE%) and drug released percentages after 2 h (Q 2h ) and 24 h (Q 24h ). The results were statistically analyzed, and the system showing the highest desirability was selected for further pharmacokinetic studies in rabbits, in comparison to Levitra ® tablets. The highest desirability (0.82) was achieved with D10 system comprising VAR (10 mg) and G6 (190 nM). It possessed small particle size (113.85 nm), low PDI (0.19), positive zeta potential (+21.53), high EE% (75.24%), promising Q 2 h (41.45%) and Q 24 h (74.05%). Compared to Levitra ® tablets, the significantly (p < 0.01) delayed T max , prolonged MRT (0-∞) and higher relative bioavailability (3.7-fold) could clarify the dual potential of D10 as a sustained release system capable of enhancing VAR oral bioavailability.
Novikova, Anna; Carstensen, Jens M; Rades, Thomas; Leopold, Prof Dr Claudia S
2016-12-30
In the present study the applicability of multispectral UV imaging in combination with multivariate image analysis for surface evaluation of MUPS tablets was investigated with respect to the differentiation of the API pellets from the excipients matrix, estimation of the drug content as well as pellet distribution, and influence of the coating material and tablet thickness on the predictive model. Different formulations consisting of coated drug pellets with two coating polymers (Aquacoat ® ECD and Eudragit ® NE 30 D) at three coating levels each were compressed to MUPS tablets with various amounts of coated pellets and different tablet thicknesses. The coated drug pellets were clearly distinguishable from the excipients matrix using a partial least squares approach regardless of the coating layer thickness and coating material used. Furthermore, the number of the detected drug pellets on the tablet surface allowed an estimation of the true drug content in the respective MUPS tablet. In addition, the pellet distribution in the MUPS formulations could be estimated by UV image analysis of the tablet surface. In conclusion, this study revealed that UV imaging in combination with multivariate image analysis is a promising approach for the automatic quality control of MUPS tablets during the manufacturing process. Copyright © 2016 Elsevier B.V. All rights reserved.
Sabale, Vidya; Paranjape, Archana; Patel, Vandana; Sabale, Prafulla
2017-02-01
Identification and physiochemical parameters such as solubility, loss on drying, viscosity, pH, swelling index, starch and gum constituents were determined in natural polymers and showed satisfactory results. Spectral studies established the compatibility of natural polymers. The drug release kinetics in preliminary trial batches showed that tablets containing natural mucilages and gum showed a prolonged drug release comparable to Carbopol 974P and Methocel K4M. Also, all tablets showed a satisfactory drug permeability flux. Acute toxicity studies confirmed the safety of natural polymers. Using response surface method supported by 2 3 factorial design, the optimized buccoadhesive tablets (C1) with drug release at 8h (R8h, %) of 53.48±0.048% showed controlled release over ≥8h and followed the Korsmeyer-Peppas model with anomalous (non-Fickian) diffusion mechanism. Mucoadhesive strength was found to be 42.71±0.49g. Comparative dissolution study between prepared and marketed formulation showed that there was no significant difference in drug release profile having similarity factor 82.97. In vivo study for optimized formulation of the buccoadhesive tablets showed the better absolute bioavailability (71.26%) against the oral solution (51.22%). Histological study confirmed non-irritant nature and stability study indicated stability of the formulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Drabant, S; Klebovich, I; Gachályi, B; Renczes, G; Farsang, C
1998-09-01
Due to several mechanism, meals may modify the pharmacokinetics of drug products, thereby eliciting to clinically significant food interaction. Food interactions with the drug substance and with the drug formulation should be distinguished. Food interaction of different drug products containing the same active ingredient can be various depending on the pharmaceutical formulation technology. Particularly, in the case of modified release products, the food/formulation interaction can play an important role in the development of food interaction. Well known example, that bioavailability of theophylline can be influenced in different way (either increased, decreased or unchanged) by concomitant intake of food in the case of different sustained release products. The role and methods of food interaction studies in the different kinds of drug development (new chemical entity, modified release products, generics) are reviewed. Prediction of food effect response on the basis of the physicochemical and pharmacokinetic characteristics of the drug molecule or formulations is discussed. The results of three food interaction studies carried out the products of EGIS Pharmaceuticals Ltd. are also reviewed. The pharmacokinetic parameters of theophyllin 400 mg retard tablet were practically the same in both fasting condition and administration after consumption of a high fat containing standard breakfast. The ingestion of a high fat containing breakfast, increased the AUC of nifedipine from 259.0 +/- 101.2 ng h/ml to 326.7 +/- 122.5 ng h/ml and Cmax from 34.5 +/- 15.9 ng/ml to 74.3 +/- 23.9 ng/ml in case of nifedipine 20 mg retard tablet, in agreement with the data of literature. The statistical evaluation indicated significant differences between the pharmacokinetic parameters in the case of two administrations (before and after meal). The effect of a high fat containing breakfast for a generic version of buspiron 10 mg tablet and the bioequivalence after food consumption were studied in a single-dose, three-way (test and reference products administered after consumption of standard breakfast, as well as test product in fasting condition), cross-over, food effect bioequivalence study. According to the results, the test product--which, in a former study proved to be bioequivalent with the reference product in fasting state--is bioequivalent with the reference product under feeding conditions and the food intake influenced the pharmacokinetics of the test tablets.
Berner, Todd; Thomson, Heather; Hartry, Ann; Puenpatom, R Amy; Ben-Joseph, Rami; Szeinbach, Sheryl L
2011-03-01
Our goal was to examine the daily average consumption (DACON) of oxycodone controlled-release tablets (OxyContin CR)and oxymorphone extended-release tablets (Opana ER) in patients with low back pain. An observational, retrospective cohort study enrolled patients with multiple prescriptions for oxycodone CR or oxymorphone ER tablets. These patients also had International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes for low back pain. Pharmacy prescription medication claims data were obtained from a large commercially insured health plan in the U.S. Mean daily consumption was calculated for a 90-day period. We used descriptive statistics to evaluate patient demographics and health plan characteristics. Univariate analyses were used to examine the data as observed. A generalized linear model with a gamma distribution and log-link function provided a sensitivity measure, adjusting for heterogeneity among patients and the skewed nature of the DACON variable. A total of 4,023 patients received oxycodone CR, and 374 patients received oxymorphone ER. The mean age of patients (standard deviation, SD) was 49.0 (11.6) years for oxycodone CR and 47.3 (10.6) years for oxymorphone ER. DACON of oxycodone CR was 3.2 tablets per day, and DACON of oxymorphone ER was 2.7 tablets per day (P < 0.01). Utilization of maximum-strength tablets of oxycodone CR 80 mg was 3.9 tablets per day, which was significantly higher, by one tablet per day, than the utilization of equipotent oxymorphone ER maximum-strength tablets of 40 mg at 2.9 tablets per day (P < 0.01). The use of oxycodone CR, measured as mean daily consumption over a 90-day period, was significantly higher than that for oxymorphone ER in these patients, a finding that could have financial implications for health care systems.