Sample records for swales

  1. Grassed swales for stormwater pollution control during rain and snowmelt.

    PubMed

    Bäckström, M

    2003-01-01

    The retention of suspended solids, particles and heavy metals in different grassed swales during rain events and snowmelt is discussed. The experimental results derived from investigations performed in existing grassed swales in the Luleå region, Northern Sweden. During high pollutant loading rates, grassed swales retain significant amounts of pollutants, mainly due to sedimentation of particulate matter. Low to moderate removal efficiencies could be expected for heavy metals, especially metals in solution (i.e. the dissolved phase). When grassed swales receive urban runoff with low pollutant concentrations, they may release rather than retain pollutants. Swales are important snow deposit areas in the city and particle bound pollutants do to a large extent remain in the swale after snowmelt. However, dissolved pollutants (i.e. dissolved heavy metals) are likely to escape the swale with the melt water. Grassed swales may be regarded as facilities that even out the peaks in pollutant loads without being capable of producing consistent high removal rates. This suggests that swales should be considered as primary treatment devices. Possible design parameters for grassed swales are mean hydraulic detention time, surface loading rate or specific swale area.

  2. SWALE RESEARCH AT NRMRL’S URBAN WATERSHED RESEARCH FACILITY

    EPA Science Inventory

    Swales are “engineered ditches” that provide stable routing for stormwater runoff. Swales are green infrastructure, a low-cost drainage option for highways, farms, industrial, and commercial areas. Beyond enhancing local aesthetics, swales mitigate the pollutants carried by the...

  3. Evaluating the Capability of Grass Swale for the Rainfall Runoff Reduction from an Urban Parking Lot, Seoul, Korea

    PubMed Central

    Shafique, Muhammad; Kim, Reeho; Kyung-Ho, Kwon

    2018-01-01

    This field study elaborates the role of grass swale in the management of stormwater in an urban parking lot. Grass swale was constructed by using different vegetations and local soil media in the parking lot of Mapu-gu Seoul, Korea. In this study, rainfall runoff was first retained in soil and the vegetation layers of the grass swale, and then infiltrated rainwater was collected with the help of underground perforated pipe, and passed to an underground storage trench. In this way, grass swale detained a large amount of rainwater for a longer period of time and delayed peak discharge. In this field study, various real storm events were monitored and the research results were analyzed to evaluate the performance of grass swale for managing rainfall runoff in an urban area. From the analysis of field experiments, grass swale showed the significant rainfall runoff retention in different rain events. Grass swale markedly reduced total rainfall runoff volume and peak flow during the small storm events of intensity about 30 mm/h. From the analysis, on average rainfall runoff retention from the grass swale was found around 40 to 75% during the various small rain events. From the results, we can say that grass swale is a stormwater mitigation practice which can help avoid flash flooding problems in urban areas. PMID:29547567

  4. Evaluating the Capability of Grass Swale for the Rainfall Runoff Reduction from an Urban Parking Lot, Seoul, Korea.

    PubMed

    Shafique, Muhammad; Kim, Reeho; Kyung-Ho, Kwon

    2018-03-16

    This field study elaborates the role of grass swale in the management of stormwater in an urban parking lot. Grass swale was constructed by using different vegetations and local soil media in the parking lot of Mapu-gu Seoul, Korea. In this study, rainfall runoff was first retained in soil and the vegetation layers of the grass swale, and then infiltrated rainwater was collected with the help of underground perforated pipe, and passed to an underground storage trench. In this way, grass swale detained a large amount of rainwater for a longer period of time and delayed peak discharge. In this field study, various real storm events were monitored and the research results were analyzed to evaluate the performance of grass swale for managing rainfall runoff in an urban area. From the analysis of field experiments, grass swale showed the significant rainfall runoff retention in different rain events. Grass swale markedly reduced total rainfall runoff volume and peak flow during the small storm events of intensity about 30 mm/h. From the analysis, on average rainfall runoff retention from the grass swale was found around 40 to 75% during the various small rain events. From the results, we can say that grass swale is a stormwater mitigation practice which can help avoid flash flooding problems in urban areas.

  5. Compost-amended biofiltration swale evaluation.

    DOT National Transportation Integrated Search

    2011-09-01

    From May 2009 through June 2010, Herrera Environmental Consultants conducted hydrologic : and water quality monitoring of a compost-amended biofiltration swale and a standard (control) : biofiltration swale in the median of State Route 518 for the Wa...

  6. APPROACHES FOR DETERMINING SWALE PERFORMANCE FOR STORMWATER RUNOFF

    EPA Science Inventory

    Swales are “engineered vegetated ditches” that provide stable routing for stormwater runoff and a low-cost drainage option for highways, farms, industrial sites, and commercial areas. It is reported in the literature that swales mitigate runoff-carried pollutants, red...

  7. APPROACHES FOR DETERMINING SWALE PERFORMANCE FOR STORMWATER RUNOFF

    EPA Science Inventory

    Swales are “engineered vegetated ditches” that provide stable routing for stormwater runoff and a low-cost drainage option for highways, farms, industrial sites, and commercial areas. It is reported in the literature that swales mitigate runoff-carried pollutants, reduce runoff v...

  8. APPROACHES FOR DETERMINING SWALE PERFORMANCE FOR STORMWATER RUNOFF - Wilmington, NC

    EPA Science Inventory

    Swales are “engineered vegetated ditches” that provide stable routing for stormwater runoff and a low-cost drainage option for highways, farms, industrial sites, and commercial areas. It is reported in the literature that swales mitigate runoff-carried pollutants, reduce runoff ...

  9. Redox potential dynamics in a grassed swale used for storage and treatment

    NASA Astrophysics Data System (ADS)

    Vorenhout, Michel; Boogaard, Floris Cornelis

    2016-04-01

    Treatment wetlands are used to remove pollutants from water. Most swales are designed to infiltrate stormwater into the subsurface. A combination of both functions can help to enhance water quality and reduce flooding risks in urban areas. The chemical forms and possible removal of pollutants such as nitrate and heavy metals in wetlands are highly dependent on the redox conditions. The redox conditions are expected to be highly dynamic and dependent on water levels and flow. We studied the correlation between these factors in an urban grassed swale system, and show that more factors play a role in these systems than water levels alone. The study system is located in the World Heritage site "Bryggen" in the city of Bergen, Norway. It consists of a series of SUDS, a socalled treatment train. The system is fed by storm water, which is at first stored in a rain garden then led to grassed swales. Water infiltrates into the subsurface in the swales. The reason for implementation of the system at this site is the protection of the highly organic archaeological layers at the site, which requires reduced conditions. Swales 1 and 2 were equipped with pressure loggers and multi-level redox and temperature probes (-2, -5, -10 and -20cm from surface). Redox and temperature probes were connected to a HYPNOS system. Measurements were taken for more than 1 year at 15 minute interval. A weather station supplemented the dataset with precipitation measurements. The redox potential in the swales show a strong correlation with water level. The regularly flooded swale 2 shows frequent anoxic events (Eh < 200mV) where as swale 1 shows oxic conditions (Eh = 650mV) throughout the same measurement period. Swale 1 has fewer flooding events than Swale 2 and a more coarse soil with less organic matter than swale 2. These redox results are as expected given the local conditions, and show that redox conditions are localised phenomena that depend on local soil conditions. Analysis of the redox conditions during single events reveal a time lag in response to flooding events. The lag period depends on the occurrence of previous events, as does the depth of anoxia. Even a short period with moist conditions without flooding could reduce the soil enough to obtain anoxic conditions at the depths -10 and -20cm. These results show that the microbial community, responsible for reduction in the soil, might not be homogeneous through time. The community will exhibit a certain level of conditioning after previous reducing or oxidizing events. Treatment systems that depend on a certain redox condition should therefor not be kept in another state too long, or given enough time to restore its function again.

  10. Effect of logging on subsurface pipeflow and erosion: coastal northern California, USA

    Treesearch

    R. R. Ziemer

    1992-01-01

    Abstract - Three zero-order swales, each with a contributing drainage area of about 1 ha, were instrumented to measure pipeflows within the Caspar Creek Experimental Watershed in northwestern California, USA. After two winters of data collection, the second-growth forest on two of the swales was clearcut logged. The third swale remained as an uncut control. After...

  11. Effects of Mechanical Soil Disturbance on Rill Connectivity and Soil Erosion Following Logging on Burned Hillslopes in Central California

    NASA Astrophysics Data System (ADS)

    Olsen, W.; Wagenbrenner, J. W.; Demirtas, I.; Robichaud, P. R.

    2016-12-01

    Soil erosion rates in forests increase after severe fires and may pose a threat to aquatic resources. While research has shown that the harvest of burned trees ("salvage logging") may elevate post-fire erosion, it is less clear how disturbance from logging affects rill erosion and sediment yields. We studied 14 catchments (900-7400 m2 "swales") in the area burned by the 2013 Rim Fire in the California Sierra Nevada, nine of which were burned and logged, and five that were burned and unlogged. We installed silt fences, surveyed mechanical disturbance and rill networks, and measured ground cover following logging that occurred between fall 2014 and fall 2015. The logged swales had 20-162 trees ha-1 removed, and high traffic skid trails covered 8-28% of the swale area while low traffic skid trails covered 0-13% of the area. Feller-buncher tracks were minimal at 0-6% of the swale area. Following logging, wood cover increased, while vegetation cover remained about the same. Rills densities ranged from 0.3-22 m m-2 in logged swales and 2.2-16 m m-2 in unlogged swales. Higher bare soil percentages led to increased rill density in all swales. Rills that initiated in high traffic skid trails averaged 42 m in the swales, while rills from untrafficked burned soil averaged 26 m. The number of rills from high traffic skid trails increased with the amount of skid trail area, and often were diverted by waterbars toward the swale outlets. Sediment yields increased with rill density, and did not appear to respond to the modest increase in wood cover post-logging. Results indicate that rill erosion is a dominant sediment transport mechanism for both burned forests and salvage logged forests at the hillslope to small catchment scale. Mitigating skidding disturbance, appropriate placement of waterbars, and reducing the connectivity of bare soil after logging will be important to reduce rilling and sediment yields related to salvage logging.

  12. Field infiltration measurements in grassed roadside drainage ditches: Spatial and temporal variability

    NASA Astrophysics Data System (ADS)

    Ahmed, Farzana; Gulliver, John S.; Nieber, J. L.

    2015-11-01

    Roadside drainage ditches (grassed swales) are an attractive stormwater control measure (SCM) since they can reduce runoff volume by infiltrating water into the soil, filter sediments and associated pollutants out of the water, and settle solids onto the soil surface. In this study a total of 722 infiltration measurements were collected in five swales located in Twin-Cities, MN and one swale located in Madison, WI to characterize the field-saturated hydraulic conductivity (Kfs) derived from the infiltration measurements of these swales. Measurements were taken with a falling head device, the Modified Philip Dunne (MPD) infiltrometer, which allows the collection of simultaneous infiltration measurements at multiple locations with several infiltrometers. Field-saturated hydraulic conductivity was higher than expected for different soil texture classes. We hypothesize that this is due to plant roots creating macropores that break up the soil for infiltration. Statistical analysis was performed on the Kfs values to analyze the effect of initial soil moisture content, season, soil texture class and distance in downstream direction on the geometric mean Kfs value of a swale. Because of the high spatial variation of Kfs in the same swale no effect of initial soil moisture content, season and soil texture class was observed on the geometric mean Kfs value. But the distance in downstream direction may have positive or negative effect on the Kfs value. An uncertainty analysis on the Kfs value indicated that approximately twenty infiltration measurements is the minimum number to obtain a representative geometric mean Kfs value of a swale that is less than 350 m long within an acceptable level of uncertainty.

  13. Assessment of existing roadside swales with engineered filter soil: I. Characterization and lifetime expectancy.

    PubMed

    Ingvertsen, Simon T; Cederkvist, Karin; Régent, Yoann; Sommer, Harald; Magid, Jakob; Jensen, Marina B

    2012-01-01

    Roadside infiltration swales with well-defined soil mixtures (filter soil) for the enhancement of both infiltration and treatment of stormwater runoff from roads and parking areas have been common practice in Germany for approximately two decades. Although the systems have proven hydraulically effective, their treatment efficiency and thus lifetime expectancies are not sufficiently documented. The lack of documentation restricts the implementation of new such systems in Germany as well as other countries. This study provides an assessment of eight roadside infiltration swales with filter soil from different locations in Germany that have been operational for 6 to16 yr. The swales were assessed with respect to visual appearance, infiltration rate, soil pH, and soil texture, as well as soil concentration of organic matter, heavy metals (Cd, Cr, Cu, Pb, Zn), and phosphorus. Visually, the swales appeared highly variable with respect to soil color and textural layering as well as composition of plants and soil-dwelling organisms. Three swales still comply with the German design criteria for infiltration rate (10 m/s), while the remaining swales have lower, yet acceptable, infiltration rates around 10 m/s. Six of the eight studied soils have heavy metal concentrations exceeding the limit value for unpolluted soil. Provided that the systems are able to continuously retain existing and incoming pollutants, our analysis indicates that the soils can remain operational for another 13 to 136 yr if the German limit values for unrestricted usage in open construction works are applied. However, no official guidelines exist for acceptable soil quality in existing infiltration facilities. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Evaluation of the relative roles of a vegetative filter strip and a biofiltration swale in a treatment train for road runoff.

    PubMed

    Flanagan, Kelsey; Branchu, Philippe; Ramier, David; Gromaire, Marie-Christine

    2017-02-01

    In order to determine the relative importance of a vegetative filter strip and a biofiltration swale in a treatment train for road runoff, US EPA Storm Water Management Model was used to model infiltration and runoff from the filter strip. The model consisted of a series of subcatchments representing the road, the filter strip and the side-slopes of the swale. Simulations were carried out for different rain scenarios representing a variety of climatic conditions. In addition, a sensitivity analysis was conducted for the model's different parameters (soil characteristics and initial humidity, roughness, geometry, etc.). This exercise showed that for the system studied, the majority of road runoff is treated by the filter strip rather than the biofiltration swale, an effect observed especially during periods of low-intensity rainfall. Additionally, it was observed that the combination of infiltration of road runoff in the filter strip and direct rainfall on the system leads to a significant and variable dilution of the runoff reaching the swale. This result has important implications for evaluating the treatment efficiency of the system.

  15. Non-uniform overland flow-infiltration model for roadside swales

    NASA Astrophysics Data System (ADS)

    García-Serrana, María; Gulliver, John S.; Nieber, John L.

    2017-09-01

    There is a need to quantify the hydrologic performance of vegetated roadside swales (drainage ditches) as stormwater control measures (SCMs). To quantify their infiltration performance in both the side slope and the channel of the swale, a model has been developed for coupling a Green-Ampt-Mein-Larson (GAML) infiltration submodel with kinematic wave submodels for both overland flow down the side slope and open channel flow for flow in the ditch. The coupled GAML submodel and overland flow submodel has been validated using data collected in twelve simulated runoff tests in three different highways located in the Minneapolis-St. Paul metropolitan area, MN. The percentage of the total water infiltrated into the side slope is considerably greater than into the channel. Thus, the side slope of a roadside swale is the main component contributing to the loss of runoff by infiltration and the channel primarily conveys the water that runs off the side slope, for the typical design found in highways. Finally, as demonstrated in field observations and the model, the fraction of the runoff/rainfall infiltrated (Vi∗) into the roadside swale appears to increase with a dimensionless saturated hydraulic conductivity (Ks∗), which is a function of the saturated hydraulic conductivity, rainfall intensity, and dimensions of the swale and contributing road surface. For design purposes, the relationship between Vi∗ and Ks∗ can provide a rough estimate of the fraction of runoff/rainfall infiltrated with the few essential parameters that appear to dominate the results.

  16. A case study demonstrating analysis of stormflows, concentrations, and loads of nutrients in highway runoff and swale discharge with the Stochastic Empirical Loading and Dilution Model (SELDM)

    USGS Publications Warehouse

    Granato, Gregory E.; Jones, Susan C.

    2015-01-01

    The case study is hypothetical, but was formulated by using actual data from selected monitoring sites in New England. Data representing streamflow and water-quality were collected at U.S. Geological Survey (USGS) streamgage 01208950 Sasco Brook near Southport, CT, which has a drainage area of 7.38 square miles. In this hypothetical case study a 4-lane highway would replace the current 2-lane road and would have a contributing area of 2.2 acres between the topographic basin divides. Concentrations of TN and TP in highway runoff were simulated with data from USGS highway-runoff monitoring station 423027071291301 along State Route 2 in Littleton Massachusetts. Results of a highway-runoff analysis are shown in relation to three hypothetical discharge criteria for TN and two hypothetical discharge criteria for TP. The risks for exceeding TN discharge criteria of 3, 5, and 8 mg/L for highway runoff are 7.4, 0.83, and 0.13 percent of 1,721 runoff events that may occur during a stochastic 30-year simulation. If a grassy swale is used to treat the runoff, the risks for TN exceedances are reduced to 3.2, 0.33 and 0.03 percent, respectively. The risks for exceeding TP discharge criteria of 0.1 and 0.5 mg/L for highway runoff are 49 and 1.2 percent, respectively. If a grassy swale is used to treat the runoff, the risks for TP exceedances are 57 and 0.8 percent, respectively. The risks for the 0.1 mg/L criterion increase because swales can be a source of TP if pavement concentrations are low. The risks for the 0.5 mg/L criterion decrease because the swale is effective for reducing high TP concentrations. Although the results are mixed for storm-event concentrations, the grassy swale effectively reduces annual loads. Annual loads from the swale are, on average, about 49 percent of highway loads for TN and 62 percent of highway loads of TP because the swale reduces high runoff concentrations and stormflow volumes. Analysis of upstream and downstream concentrations indicates that runoff from the site of interest does not have a substantial effect on instream stormflow concentrations in this example simulation.

  17. STORMWATER BEST MANAGEMENT PRACTICES TEST FACILITY - SWALES

    EPA Science Inventory

    The NRMRL swale evaluation is part of a larger collection of long-term research projects that evaluates many Best Management Practices. EPA has ongoing research examining the performance of constructed wet lands, and detention and retention ponds. Other projects will evaluate ra...

  18. 77 FR 21516 - Proposed Flood Elevation Determinations; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ..., Deer Creek, Erickson Creek, Fanno Creek, Glencoe Swale, Golf Creek, Gordon Creek, Hall Creek, Hall... Tributary, Council Creek, Dairy Creek, Dawson Creek, Deer Creek, Erickson Creek, Glencoe Swale, Golf Creek... drive. Approximately 90 feet None +202 upstream of Northwest 174th Avenue. Erickson Creek Approximately...

  19. Camas Swale Research Natural Area: guidebook supplement 42

    Treesearch

    Reid Schuller

    2011-01-01

    This guidebook describes Camas Swale Research Natural Area, a 127-ha (314-ac) area that supports dry site, old-growth Douglas-fir (Pseudotsuga menziesii) forest. Major plant associations present within the area include the Douglas-fir/salal/western swordfern (Pseudotsuga menziesii/Gaultheria shallon/Polystichummunitum) plant...

  20. Evaluation of permeable friction course (PFC), roadside filter strips, dry swales, and wetland swales for treatment of highway stormwater runoff.

    DOT National Transportation Integrated Search

    2011-01-07

    Stormwater runoff from roadways is a source of surface water pollution in North Carolina. The North Carolina Department of Transportation (NCDOT) is required to implement stormwater control measures (SCMs) in the linear environment. NCDOT has specifi...

  1. Research Article Introductions in Chinese and English: A Comparative Genre-Based Study

    ERIC Educational Resources Information Center

    Loi, Chek Kim

    2010-01-01

    This study investigates the rhetorical organisation of English and Chinese research article introductions in the field of educational psychology using (Swales, 1990) and (Swales, 2004) framework of move analysis. A corpus of 40 research articles (20 Chinese and 20 English) was selected. The English research articles, written by first-language…

  2. [Performance of Grass Swales for Controlling Pollution of Roadway Runoff in Field Experiments].

    PubMed

    Huang, Jun-jie; Shen, Qing-ran; Li, Tian

    2015-06-01

    Two different styles of grass swales were built in new Binhu region of Hefei city to monitor the flux and quality of the influent and effluent water under actual precipitation conditions, in order to evaluate the performance of water quality purification and pollution load control for roadway runoff. The results showed that both of the grass swales could effectively remove the pollutants such as TSS, COD, Pb, Cu, Cd, Zn in roadway runoff; the median EMC removal efficiencies of TSS and COD were 67.1%, 46.7% respectively,for facility I, and the median EMC removal efficiencies of TSS and COD were 78.6%, 58.6% respectively, for facility II; the concentrations of Pb, Cu, Zn in the effluent of facility II could meet the requirements of the surface water quality class V; release of nitrogen and phosphorus occurred in both facilities I and I[ in several rainfall events, mainly in heavy storms; the removal efficiencies of TP in the two grass swales were improved with the increase of influent concentration; the mean removal efficiencies of TP in facilities I and II were 14.7% and 45.4%, respectively; the load control performance of facility II for pollutants such as TSS, COD, TP, TN, NH4+ -N and NO3- -N was better than that of facility I; in the district with poor soil permeability and low ground slope, application of dry swale could achieve better performance in water quality control and pollution load reduction of roadway runoff.

  3. Subsurface pipeflow dynamics of north-coastal California swale systems

    Treesearch

    Robert R. Ziemer; Jeffrey S. Albright

    1987-01-01

    Abstract - Pipeflow dynamics are being studied at Caspar Creek Experimental Watershed in north-coastal California near Ft. Bragg. Pipes have been observed at depths to 2 m within trenched swales and at the heads of gullied channels in small (0.8 to 2 ha) headwater drainages. Digital data loggers connected to pressure transducers monitor discharge using calibrated...

  4. A Pragmatic Approach to the Macro-Structure and Metadiscoursal Features of Research Article Introductions in the Field of Agricultural Sciences

    ERIC Educational Resources Information Center

    Rubio, M. Milagros del Saz

    2011-01-01

    Using (Swales, 1990) and (Swales, 2004) Create-A-Research-Space model (CARS) as an investigative tool and Hyland's (2005) model of metadiscourse, this article reports on a pragmatic two-level rhetorical analysis of the constituent moves and steps of research article introductions and focuses on the identification and mapping of the metadiscoursal…

  5. Changes in soil moisture and pore pressure after harvesting a forested hillslope in northern California

    Treesearch

    Elizabeth T. Keppeler; Robert R. Ziemer; Peter H. Cafferata

    1994-01-01

    Abstract - In 1987, a 0.83-ha zero-order swale was instrumented with 58 pierometers and 25 tensiometers along several hillslope transects. Through 1993, soil moisture conditions were measured by pressure transducers connected to a digital data logger recording at 15-minute intervals. In August 1989, the 100-year-old second-growth forest in the swale was felled. Logs...

  6. Ground penetrating radar examination of thin tsunami beds - A case study from Phra Thong Island, Thailand

    NASA Astrophysics Data System (ADS)

    Gouramanis, Chris; Switzer, Adam D.; Polivka, Peter M.; Bristow, Charles S.; Jankaew, Kruawun; Dat, Pham T.; Pile, Jeremy; Rubin, Charles M.; Yingsin, Lee; Ildefonso, Sorvigenaleon R.; Jol, Harry M.

    2015-11-01

    Coastal overwash deposits from tsunamis and storms have been identified and characterised from many coastal environments. To date, these investigations have utilised ad-hoc time, energy and cost intensive invasive techniques, such as, pits and trenches or taking core samples. Here, we present the application of high-frequency ground penetrating radar (GPR) to identify and characterise the 2004 Indian Ocean Tsunami (IOT) and palaeotsunami deposits from Phra Thong Island, Thailand. This site is one of the most intensively studied palaeotsunami sites globally and preserves a series of late-Holocene stacked sandy tsunami deposits within an organic, muddy low-energy backbeach environment. Using 100, 500 and 1000 MHz GPR antennas, 29 reflection profiles were collected from two swales (X and Y) inland of the modern beach, and two common mid-point (CMP) profiles using the 200 MHz antennas were collected from Swale Y. Detailed examination of the CMPs allowed accurate velocity estimates to be applied to each profile. The reflection profiles included across-swale profiles and a high-resolution grid in Swale X, and were collected to investigate the feasibility of GPR to image the palaeotsunami deposits, and two profiles from Swale Y where the tsunami deposits are poorly known. The 500 MHz antennas provided the best stratigraphic resolution which was independently validated from the stratigraphy and sedimentology recovered from 17 auger cores collected along the profiles. It is clear from the augers and GPR data, that the different dielectric properties of the individual layers allow the identification of the IOT and earlier tsunami deposits on Phra Thong Island. Although applied in a coastal setting here, this technique can be applied to other environments where thin sand beds are preserved, in order to prioritise sites for detailed examination.

  7. Coupled Modeling and Field Approach to Explore Patterns of Barrier Ridge and Swale Development

    NASA Astrophysics Data System (ADS)

    Ciarletta, D. J.; Lorenzo-Trueba, J.; Shawler, J. L.; Hein, C. J.

    2017-12-01

    Previous work has suggested the morphologies of barrier ridge and swale systems potentially reflect the environmental conditions under which they developed, especially in response to sediment budget. We use this inference to examine progradational dune systems on barriers along the USA Mid-Atlantic coast, constructing a simple morphodynamic model to capture the magnitude of changes in key processes affecting the pattern of ridge and swale development. Based on our initial investigation, we demonstrate a range of potential morphological patterns generated by the interaction of longshore transport, accommodation, overwash, aeolian sand flux, and vegetation controls. The patterns are based on three basic cross-sectional morphologies describing the spacing and width of ridges. Regularly spaced ridges of roughly equal width are defined as washboards; wide platform-like ridges or complex multi-ridge dunes are described as tables; and wide swaths of open sand or poorly developed dunes are identified as pans. The inclusion of overwash, in competition with the other processes, further allows the creation of infilled swales, or baffled structures, as well as inter-ridge and backbarrier fans/flats. Model outcomes are validated via comparison to observations from barriers in Virginia, Maryland, and New Jersey. In particular, historical (post-1850) mapping of the evolution of the Fishing Point spit (Assateague Island) reveals the ability of the model to approximate the growth of structures seen in the field. We then apply the model to the development of a prehistoric progradational system on Parramore Island, VA, using field stratigraphic/chronologic data to supply input parameters and begin predictively quantifying past changes in longshore transport and accommodation. Our investigations suggest that modeling patterns of ridge and swale development preserved on modern coasts could result in novel approaches to employ barriers as archives of past environmental/climate forcing.

  8. Research Article Abstracts and Introductions: A Comparative Genre-Based Study of Arabic and English in the Fields of Educational Psychology and Sociology

    ERIC Educational Resources Information Center

    Alotaibi, Hmoud

    2013-01-01

    The genre of the research article has attracted the attention of researchers, particularly after the research conducted by Swales (1981). In 1990, Swales introduced the Create a Research Space (CARS) model which consists of three rhetorical moves (i.e. units): Move 1: creating a research territory, Move 2: establishing a niche, and Move 3:…

  9. Chesapeake Bay Protection and Restoration: Improvements and Lessons Learned at Craney Island and Southgate Annex, Norfolk, Virginia

    DTIC Science & Technology

    2011-05-01

    Annex Case Study Bay Impairment  Low Dissolved Oxygen  Poor Water Clarity  Too Much Bad Algae 3 Impaired Water Note: Representation of 303(d...Bioretention Regional pond Grass Channels Dry swale Level spreader Soils compost amendments Wet swale Underground detention Vegetated Roofs Filtering...practice Oil/grit separator Rainwater harvesting Constructed wetlands Tree box filter Permeable pavement Wet ponds Other: ________________ Existing

  10. Simulation of partially saturated - saturated flow in the Caspar Creek E-road groundwater system

    Treesearch

    Jason C. Fisher

    2000-01-01

    Abstract - Over the past decade, the U.S. Forest Service has monitored the subsurface hillslope flow of the E-road swale. The swale is located in the Caspar Creek watershed near Fort Bragg, California. In hydrologic year 1990 a logging road was built across the middle section of the hillslope followed by a total clearcut of the area during the following year....

  11. Performance of vegetated swales for improving road runoff quality in a moderate traffic urban area.

    PubMed

    Leroy, Marie-Charlotte; Portet-Koltalo, Florence; Legras, Marc; Lederf, Franck; Moncond'huy, Vincent; Polaert, Isabelle; Marcotte, Stéphane

    2016-10-01

    In recent years, due to their economic and ecological advantages, green infrastructures for stormwater management have been widely implemented. The present study focused on vegetated swales and compared two vegetated covers, grassed or planted with macrophytes in order to evaluate their performance in terms of water quality improvement. These swales collected runoff of a moderately busy road (<2500vehday(-1)) in a commercial area. Twelve storm events were analyzed over a two year period with measurement of total suspended solids (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total hydrocarbons (THC), total phosphorous (TP), total Kjeldahl nitrogen (TKN), trace elements and 16 polycyclic aromatic hydrocarbons (PAHs). The grass cover led to poor results due to lower retention of soil particles on which trace elements and PAHs are bounded. The swales planted with macrophytes, with a deeper root system more capable of retaining soil particles, led to reductions of concentrations from 17 to 45% for trace elements such as lead, zinc and copper and 30% for the 16 PAHs in infiltrated waters. In addition, the macrophyte cover showed lower variability of pollutant concentrations in infiltrated waters compared to incoming waters. This buffering capacity is interesting to mitigate the impact of moderate peak pollution on surface water or ground water quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Birds of Swale Marshes on John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Breininger, David R.

    1992-01-01

    Birds were surveyed in several isolated freshwater wetlands on John F. Kennedy Space Center to determine species composition and the importance of these wet- lands to birds. The Red-winged Blackbird and Green-backed Heron were the two most abundant breeders in the swale marshes. The Common Yellowthroat was the most common winter resident but was rare in summer. These marshes are important features within landscapes dominated by uplands particularly because of their significance to amphibians and reptiles.

  13. Community succession of bacteria and eukaryotes in dune ecosystems of Gurbantünggüt Desert, Northwest China.

    PubMed

    Li, Ke; Bai, Zhihui; Zhang, Hongxun

    2015-01-01

    Pyrosequencing and quantitative polymerase chain reaction of small subunit rRNA genes were used to provide a comprehensive examination of bacterial, cyanobacterial, and eukaryotic communities in the biological soil crusts (BSCs) of Gurbantünggüt Desert sand dunes (China). Three succession stages were recognized based on the analyses of eukaryotic communities: a late succession stage of BSCs in a swale with eukaryotes mainly related to the Bryophyta clade, an initial succession stage in a slope with barely any eukaryotic phototrophic microorganisms detected, and an intermediate succession type detected from both the swale and slope BSCs dominated by the phylum Chlorophyta. Moreover, the cyanobacterial community dominated all of the BSCs (48.2-69.5% of the total bacteria) and differed among the three succession stages: sequences related to Microcoleus steenstrupii and the genus Scytonema were abundant in the later succession stage, whereas both the initial and intermediate stages were dominated by Microcoleus vaginatus. Compared with swales, BSCs from slopes are exposed to a harsher environment, e.g., higher irradiance and lower water availability, and thus may be restricted from developing to a higher succession stage. Other disturbances such as wind and grazing may explain the different succession stages observed in swales or slopes. However, no clear differences were detected from non-phototrophic bacterial communities of the three succession stages, and sequences related to Alphaproteobacteria and Actinobacteria were most abundant in all the BSCs. The closest matches for the most frequent non-phototrophic bacterial genera were mainly derived from harsh environments, indicating the robustness of these genera.

  14. Downstream change in leucine aminopeptidase activity and leucine assimilation by epilithic microbiota along the River Swale, northern England.

    PubMed

    Ainsworth, A M; Goulder, R

    2000-05-05

    Parallel determinations of epilithic extracellular leucine aminopeptidase activity and leucine assimilation were made at five sites along 112 km of the River Swale and also in two tributaries, the River Wiske and Cod Beck. Epilithic leucine aminopeptidase activity along the Swale increased with distance downstream; this increase was gradual, rather than stepwise in response to specific sewage-works outfalls. Epilithic leucine assimilation, in contrast, did not consistently increase along the river. Epilithic leucine aminopeptidase activity and leucine assimilation were both potentially controlled by epilithic microbial variables (bacterial abundance and chlorophyll a) while leucine aminopeptidase activity was also strongly related to water-quality variables, especially temperature, pH and conductivity. Epilithic leucine aminopeptidase activity and leucine assimilation were coupled, but the magnitude of aminopeptidase activity was always substantially greater than that of leucine assimilation. Arguments are presented, however, which suggest that this did not necessarily indicate the constant availability of excess leucine, and by inference amino-acid nitrogen, to epilithic bacteria. Values of epilithic leucine aminopeptidase activity and leucine assimilation, expressed relative to rates in overlying water, suggested that most activity and assimilation was epilithic rather than planktonic, although the planktonic contribution was proportionately greater at the deeper, more downstream, sites. In the tributaries, River Wiske and Cod Beck, values of epilithic leucine aminopeptidase activity and epilithic microbial abundance, as well as those of many water-quality variables, resembled values in the middle and lower Swale. Thus, these tributaries were essentially lowland, enriched watercourses being very different from the headstreams of the main river.

  15. Hydrologic Linkages Between Floodplain Wetlands and Adjacent Agricultural Lands

    NASA Astrophysics Data System (ADS)

    Matteson, C.; Jackson, C. R.; Wilde, S. B.; Batzer, D.; Shelton, J.; Jeffers, J. B.

    2017-12-01

    Depending on wetland position relative to dominant flow pathways, wetlands can provide biogeochemical processing and water quality improvement in agricultural settings, particularly with respect to nutrients. Here we evaluate field-to-stream water quality gradients across a forested alluvial swamp and through a ditched wetland swale on the same site. During 2016 and 2017, water samples collected on a farm from shallow piezometers and surface water were analyzed for total oxidized nitrogen (TOxN), total phosphorus (TP), and microbial abundance. A 54-acre alluvial swamp borders the northern side of the study farm. Toeslope nutrient concentrations in shallow groundwater and surfacewater are elevated relative to background levels, with median values of 13.25 mg/l/TOxN and 47.60 µg/l/TP. Shallow groundwater and surfacewater concentrations are substantially lower only a few meters into the floodplain wetland and lower still (0.13 mg/l/TOxN and 29.67 µg/l/TP) at discharge points to an adjacent creek. Across the farm, an 18-acre wetland swale has been ditched, drained, and cropped. TOxN levels entering and exiting the ditched swale do not mitigate as efficiently, median values of 3.91 mg/l/TOxN reduce to 1.45 mg/l/TOxN, while TP input and reduction exceed the alluvial swamp by starting at 141.67 µg/l/TP at the inflow and discharging into a large river at 57.40 µg/l/TP. Microbial communities in seeps and surfacewater also vary systematically with geographic position. Higher proportions of Cyanobacteria, Turbidity indicators, and Diatom communities are observed in the ditched swale, and input areas of the alluvial swamp. ANOVA tests of TOxN (P<0.001) and TP (P=0.9) change across the alluvial swamp suggest effective processing of TOxN. While P values for TOxN and TP in the ditched swale, yield P=0.9 for TOxN and P=1.0 for TP indicating reduced efficiency of mitigation. Though values of both TOxN and TP do decrease before discharge into the river, they are not statistically significant and still greater values than the alluvial swamp. Dissipation of microbial indicators shows pollution mitigation further into the alluvial swamp. Though pollutant additions have been similar into both wetland types, water quality improvements are distinct in the alluvial swamp.

  16. Geomorphology and dynamics of a traveling cuspate foreland, Authie estuary, France

    NASA Astrophysics Data System (ADS)

    Hesp, Patrick A.; Ruz, Marie-Hélène; Hequette, Arnaud; Marin, Denis; Miot da Silva, Graziela

    2016-02-01

    Cuspate forelands or salients occur all over the world in lakes, estuaries and on ocean shores, yet there have been few studies conducted on traveling cuspate forelands (or salients), that is, forelands that migrate or travel alongshore. This paper presents a study of a traveling foreland in the Authie estuary, France, termed the Bec du Perroquet. Historical shoreline changes may be traced from the 1200's AD and the region has experienced both marked intertidal-subtidal accretion extending from the south, and massive erosion in the north since this period. An analysis of aerial photographs from 1947 until the present shows that the original Bec foreland was established at the mouth of the Authie estuary, but gradually disappeared by the 1960's and a new foreland developed in the middle of the northern-central portion of the bay. This foreland was composed of a suite of foredune ridges which have been successively eroded on the northern margin and initiated on the southern margin as the foreland traveled or migrated southwards. As the foreland traveled south, from 1947 to 2009 the northern part of the bay retreated more than 350 m, while mid-bay, the coastline retreated ~ 215 m. As the foreland evolves and migrates, incipient foredunes can develop rapidly (e.g. 18 ridges formed in an 11 week period), while at other times the ridges form slowly and may be eroded and disappear. Two or more foredune ridges may blend into a single ridge over time depending on the initial degree of vegetation cover on the ridge and swale set. Aeolian processes in dune swales are much more important in this system than in typical prograding foredune plain systems due to the sometimes marked lack of vegetation colonization in the swales following foredune ridge development, and aeolian deflation of the swales (along with blowout development) is important particularly when they become open conduits to the beach as erosion of the NW foreland proceeds. The ages of each of the surviving ridges on the foreland in 2009 have been determined, and the evolutionary path of the ridges ascertained. Formerly intact, relatively stable, continuous ridges evolve to erosional knobs, turrets and nebkha over time. Foredune ridges (and swales) can be extremely arcuate to semi-circular in form where the foreland and especially the spit extension are exposed to a wide range of wind directions and where the shoreline trends through an arc of at least 270°. This study illustrates a remarkable cycling of the formation, destruction and reformation (travel) of a cuspate foreland over a ~ 50 + year period.

  17. Siting, design and operational controls for snow disposal sites.

    PubMed

    Wheaton, S R; Rice, W J

    2003-01-01

    The Municipality of Anchorage (MOA), at 61 degrees north latitude, ploughs and hauls snow from urban streets throughout the winter, incorporating grit and chloride applied to street surfaces for traffic safety. Hauled snow is stored at snow disposal facilities, where it melts at ambient spring temperatures. MOA studies performed from 1998 through 2001 show that disposal site melt processes can be manipulated, through site design and operation practices, to control chloride and turbidity in meltwater. An experimental passive "V-swale" pad configuration tested by MOA investigators reduced site meltwater turbidity by an order of magnitude (to about 50 NTU from the 500 NTU typical of more conventional planar pad geometry). The MOA has developed new siting, design and operational criteria for snow disposal facilities to conform to the tested V-swale pad configuration.

  18. Bioretention storm water control measures decrease the toxicity of copper roof runoff.

    PubMed

    LaBarre, William J; Ownby, David R; Rader, Kevin J; Lev, Steven M; Casey, Ryan E

    2017-06-01

    The present study evaluated the ability of 2 different bioretention storm water control measures (SCMs), planter boxes and swales, to decrease the toxicity of sheet copper (Cu) roofing runoff to Daphnia magna. The present study quantified changes in storm water chemistry as it passed through the bioretention systems and utilized the biotic ligand model (BLM) to assess whether the observed D. magna toxicity could be predicted by variations found in water chemistry. Laboratory toxicity tests were performed using select storm samples with D. magna cultured under low ionic strength conditions that were appropriate for the low ionic strength of the storm water samples being tested. The SCMs decreased toxicity of Cu roof runoff in both the BLM results and the storm water bioassays. Water exiting the SCMs was substantially higher than influent runoff in pH, ions, alkalinity, and dissolved organic carbon and substantially lower in total and dissolved Cu. Daphnids experienced complete mortality in untreated runoff from the Cu roof (the SCM influent); however, for planter and swale effluents, survival averaged 86% and 95%, respectively. The present study demonstrated that conventional bioretention practices, including planter boxes and swales, are capable of decreasing the risk of adverse effects from sheet Cu roof runoff to receiving systems, even before considering dilution of effluents in those receiving systems and associated further reductions in copper bioavailability. Environ Toxicol Chem 2017;36:1680-1688. © 2016 SETAC. © 2016 SETAC.

  19. NPDES Permit for Charlo Wastewater Treatment Facility in Montana

    EPA Pesticide Factsheets

    Under NPDES permit MT-0022551, the Consolidated Charlo-Lake County Water & Sewer District is authorized to discharge from its wastewater treatment facility located in Lake County, Montana to an unnamed swale that runs to Dublin Gulch.

  20. GENERAL DESIGN CONSIDERATIONS IN BMP DESIGN

    EPA Science Inventory

    Today, many municipalities are implementing best management practices (BMPs) for
    wet-weather flow. The most commonly used structural treatment BMPs that will be discussed in the presentation are ponds (detention/retention) and vegetated biofilters (swales and filter/buffer...

  1. GENERAL DESIGN CONSIDERATIONS IN BMP DESIGN

    EPA Science Inventory

    Today, many municipalities are implementing best management practices (BMPs). The most commonly used structural treatment BMPs that will be discussed in the presentation are ponds (detention/retention) and vegetated biofilters (swales and filter/buffer strips).

    Historical...

  2. Exploring the role of trees in the evolution of meander bends: The Tagliamento River, Italy

    NASA Astrophysics Data System (ADS)

    Zen, Simone; Gurnell, Angela M.; Zolezzi, Guido; Surian, Nicola

    2017-07-01

    To date, the role of riparian trees in the formation of scroll bars, ridges, and swales during the evolution of meandering channels has been inferred largely from field observations with support from air photographs. In situ field observations are usually limited to relatively short periods of time, whereas the evolution of these morphological features may take decades. By combining field observations of inner bank morphology and overlying riparian woodland structure with a detailed historical analysis of airborne LiDAR data, panchromatic, and color images, we reconstruct the spatial and temporal evolution of the morphology and vegetation across four meander bends of the Tagliamento River, Italy. Specifically we reveal (i) the appearance of deposited trees and elongated vegetated patches on the inner bank of meander bends following flood events; (ii) temporal progression from deposited trees, through small to larger elongated vegetated patches (pioneer islands), to their coalescence into long, linear vegetated features that eventually become absorbed into the continuous vegetation cover of the riparian forest; and (iii) a spatial correspondence between the resulting scrolls and ridge and swale topography, and tree cover development and persistence. We provide a conceptual model of the mechanisms by which vegetation can contribute to the formation of sequence of ridges and swales on the convex bank of meander bends. We discuss how these insights into the biomorphological processes that control meander bends advance can inform modeling activities that aim to describe the lateral and vertical accretion of the floodplain during the evolution of vegetated river meanders.

  3. Lick Run: Green Infrastructure in Cincinnati and Beyond

    EPA Science Inventory

    By capturing and redistributing rain water or runoff in plant-soil systems such as green roofs, rain gardens or swales, green infrastructure restores natural hydrologic cycles and reduces runoff from overburdened gray infrastructure. Targeted ecosystem restoration, contaminant fi...

  4. NPDES Permit for Woodcock Home Addition Wastewater Treatment Facility in Montana

    EPA Pesticide Factsheets

    Under NPDES permit MT-0030554, the Salish and Kootenai Housing Authority is authorized to discharge from its Woodcock Home Addition Wastewater Treatment Facility in Lake County, Montana, to a swale draining to Middle Crow Creek.

  5. COST ESTIMATING EQUATIONS FOR BEST MANAGEMENT PRACTICES

    EPA Science Inventory

    This paper describes the development of an interactive internet-based cost-estimating tool for commonly used urban storm runoff best management practices (BMP), including: retention and detention ponds, grassed swales, and constructed wetlands. The paper presents the cost data, c...

  6. Retrofitting with bioretention and a swale to treat bridge deck stormwater runoff.

    DOT National Transportation Integrated Search

    2010-07-28

    Stormwater runoff from roadways is a source of surface water pollution in North Carolina. The North Carolina Department of Transportation (NCDOT) is required to implement stormwater control measures (SCMs) in the linear environment. NCDOT has specifi...

  7. COST ESTIMATING EQUATIONS FOR BEST MANAGEMENT PRACTICES (BMP)

    EPA Science Inventory

    This paper describes the development of an interactive internet-based cost-estimating tool for commonly used urban storm runoff best management practices (BMP), including: retention and detention ponds, grassed swales, and constructed wetlands. The paper presents the cost data, c...

  8. Research on the effect of rainfall flood regulation and control of wetland park based on SWMM model—a case study of wetland park in Yuanjia village, Qishan county, Shaanxi province

    NASA Astrophysics Data System (ADS)

    Xu, Da; Liu, Yijie

    2018-02-01

    Taking the wetland park of Yuan Village in Qishan County of Shaanxi Province as the research object, this paper makes a reasonable generalization of the study area, and establishes two models of low impact development (LID) and traditional development in the park. Meantime, rainwater in the surrounding built up area is introduced to into the park for digestion. SWMM model is used to simulate the variation of the total runoff, peak flow and peak time of two development models in Wetland Park under one-hour rainfall at different recurrence periods.The runoff control effect in each single LID facility in the one-hour rainfall once during five years in the built-up area is simulated. The simulation results show that the SWMM model can not only quantify the runoff reduction effect of different LID facilities, but also provide theoretical basis and data support for the urban rainfall flood problem. LID facilities have effects on runoff reduction and peak delay. However, the combined LID facility has obvious advantages for the peak time delay and peak flow control. A single LID facility is more efficient in a single runoff volume control. The order of runoff reduction by various LID facilities is as follows: Rain garden>combined LID facility> vegetative swale> bio-retention cell > permeable pavement. The order of peak time delay effect by the LID facilities is as follows: combined LID facility> Rain garden> vegetative swale> bio-retention cell > permeable pavement. The order of peak flow reduction efficiency by various LID facilities is: combined LID facility> Rain garden> bio-retention cell > vegetative swale> permeable pavement.

  9. Citation Analysis and Discourse Analysis Revisited

    ERIC Educational Resources Information Center

    White, Howard D.

    2004-01-01

    John Swales's 1986 article "Citation analysis and discourse analysis" was written by a discourse analyst to introduce citation research from other fields, mainly sociology of science, to his own discipline. Here, I introduce applied linguists and discourse analysts to citation studies from information science, a complementary tradition not…

  10. Introductions in Research Articles: Variation across Disciplines.

    ERIC Educational Resources Information Center

    Samraj, B.

    2002-01-01

    Reports on an analysis of research article introductions from two related fields, Wildlife Behavior and Conservation Biology, using Swales' (1990), "Genre Analysis. English in Academic and Research Settings." Results of the analysis reveal disciplinary variation in the structure of this genre, which has important pedagogical implications.…

  11. TREATMENT BY FILTRATION OF STORMWATER RUNOFF PRIOR TO GROUNDWATER RECHARGE

    EPA Science Inventory

    Generally, dry ponds, trenches and swales do not have the same pollutant removal capacity as wet detention ponds. Their pollutant removal ability results from the straining of particulate matter out of the water. However, infiltration ceases when the bottom of the pond, trench or...

  12. Rhetorical Structure of Biochemistry Research Articles

    ERIC Educational Resources Information Center

    Kanoksilapatham, Budsaba

    2005-01-01

    This paper reports on the results of a move analysis [Swales, J. (1990). "Genre analysis." Cambridge: Cambridge University Press] of 60 biochemistry research articles. First, a corpus was systematically compiled to ensure that it represents core journals in the focused discipline. Then, coding reliability analysis was conducted to…

  13. 76 FR 40322 - Mt. Hood Meadows Ski Resort Parking Improvements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ... additional 4.5 acres would be cleared for access roads, cut/fill slopes, storm water swales, snow storage, and an equipment maintenance yard. In addition, the proposed action includes the construction of the new Sunrise Vehicle Maintenance Shop on the north side of the Sunrise parking lot. DATES: Comments...

  14. Predicting Debris-Slide Locations in Northwestern California

    Treesearch

    Mark E. Reid; Stephen D. Ellen; Dianne L. Brien; Juan de la Fuente; James N. Falls; Billie G. Hicks; Eric C. Johnson

    2007-01-01

    We tested four topographic models for predicting locations of debris-slide sources: 1) slope; 2) proximity to stream; 3) SHALSTAB with "standard" parameters; and 4) debris-slide-prone landforms, which delineates areas similar to "inner gorge" and "headwall swale" using experience-based rules. These approaches were compared in three diverse...

  15. Rhetorical Structure of Education Research Article Methods Sections

    ERIC Educational Resources Information Center

    Zhang, Baoya; Wannaruk, Anchalee

    2016-01-01

    This study investigated the rhetorical move structure of the education research article genre within the framework of Swales' (1981, 1990, 2004) move analysis. A corpus of 120 systematically sampled empirical education research articles served as data input for the analysis. The results indicate that the education research article methods section…

  16. Generic Patterns in Application Letters: The Context of Pakistan

    ERIC Educational Resources Information Center

    Khan, Ajmal; Tin, Tan Bee

    2012-01-01

    An increasing number of researchers rely on genre to analyse academic and professional communication and to see how members of a discourse community use language. Since Swales' (1990) seminal genre analysis of research article introductions, many researchers have carried out genre analysis of various types of professional and academic documents…

  17. A Genre Analysis of Preface Sections of Textbook

    ERIC Educational Resources Information Center

    Asghar, Samina Ali; Asghar, Zobina Muhammad; Mahmood, Muhammad Asim

    2015-01-01

    This study aims to analyze the preface section of the fifteen English academic text book related to the field of linguistics. Researcher adapted the move structure pattern proposed by Abdollahzadeh & Salarvan (2013) on the notion of Swales (1990) and Bhatia (1993). Fourteen moves were identified employed by preface authors to indicate…

  18. How Much Is Enough? Minimal Responses of Water Quality and Stream Biota to Partial Retrofit Stormwater Management in a Suburban Neighborhood

    EPA Science Inventory

    Decentralized stormwater management approaches (e.g., biofiltration swales, pervious pavement, green roofs, rain gardens) that capture, detain, infiltrate, and filter runoff are now commonly used to minimize the impacts of stormwater runoff from impervious surfaces on aquatic eco...

  19. Business and Legal Case Genre Networks: Two Case Studies

    ERIC Educational Resources Information Center

    Uhrig, Karl

    2012-01-01

    The framework of genre systems (Bazerman, 1994; Bhatia, 2004; Swales, 2004) offers an opportunity to illuminate the ways in which students enculturate into their disciplinary cultures (Berkenkotter & Huckin, 1995). To explore the ways in which genre chains are constructed through engagement in specific tasks, this study investigates two…

  20. Effects of two stormwater management methods on the quality of water in the upper Biscayne aquifer at two commercial areas in Dade County, Florida

    USGS Publications Warehouse

    McKenzie, D.J.; Irwin, G.A.

    1988-01-01

    This study is part of a continued effort to assess the effects of urban stormwater recharge on the water quality of the Biscayne aquifer in southeast Florida. In this report, the water-quality effects on shallow ground water resulting from stormwater disposal by exfiltration trench and grassy swale were investigated at two small commercial areas in Dade County, Florida. One study area (airport ) was located near the Miami International Airport and had a drainage area of about 10 acres overlying a sandy soil; the other study area ( free zone ) was located at the Miami International Free Trade Zone and had a drainage area of about 20 acres overlying limestone. The monitoring design for each study area consisted of seven sites and included water-quality sampling of the stormwater in the catch basin of the exfiltration trench, ground water from two wells 1 foot from the trench (trench wells), two wells 20 feet from the trench, and ground water from two wells at the swale from April 1985 through May 1986. Eleven water-quality variables (target variables) commonly found in high levels in urban stormwater runoff were used as tracers to estimate possible changes in ground-water quality that may have been caused by stormwater recharge. Comparison of the distribution of target variables indicated that the concentrations tended to be greater in the stormwater in the exfiltration trench than in water from the two wells 1 foot from the trench at both study areas. The concentration difference for several target variables was statistically significant at the 5-percent level. Lead, for example, had median concentrations of 23 and 4 micrograms per liter, respectively, in stormwater and water from the two trench wells at the airport study area, and 38 and 2 micrograms per liter, respectively, in stormwater and groundwater at the free zone. Similar reductions in concentrations between stormwater and water from the two trench wells were indicated for zinc at both study areas and also for nitrogen, phosphorus, and organic content at the free zone. This trend suggested that the exfiltration trench at both study areas may function as a partial trap for some chemical substances present in stormwater. A comparison of the distribution of the 11 target variables and major ionic composition in water from the two trench wells and the two wells 20 feet from the trench did not indicate a notable horizontal stratification at either study area. A vertical difference between 10 and 15 feet, however, was indicated at the free zone with major ions in greater concentrations at 15 feet. The vertical variability in groundwater near the trench at the free zone may have been the result of stormwater dilution in the upper (10-foot ) zone. The groundwater quality at the swale was quite dissimilar to that near the exfiltration trench at both the airport and free zone study areas. Data indicated that the groundwater environment at both sales was anaerobic as evidenced by abundant ammonia nitrogen and iron and trace levels of sulfate. Anaerobic conditions at the swale may have been the result of poor drainage and high organic content of soils. Significant biochemical cycling in the ground water at the swales precluded any assessment of quality effects that may result from storm-water infiltration.

  1. A Genre Analysis of English and Turkish Research Article Introductions

    ERIC Educational Resources Information Center

    Kafes, Hüseyin

    2018-01-01

    This corpus-based exploratory study investigates the rhetorical organization of research article (RA) introductions in the field of social sciences, using an adapted version of Swales' (1990) framework of move analysis. A corpus of 75 research article introductions in English by American academic writers and in English and Turkish by Turkish…

  2. A Move-Analytic Contrastive Study on the Introductions of American and Philippine Master's Theses in Architecture

    ERIC Educational Resources Information Center

    Lintao, Rachelle B.; Erfe, Jonathan P.

    2012-01-01

    This study purports to foster the understanding of profession-based academic writing in two different cultural conventions by examining the rhetorical moves employed by American and Philippine thesis introductions in Architecture using Swales' 2004 Revised CARS move-analytic model as framework. Twenty (20) Master's thesis introductions in…

  3. Undergraduate ESL Students' Difficulties in Writing the Introduction for Research Reports

    ERIC Educational Resources Information Center

    Maznun, Mirrah Diyana Binti; Monsefi, Roya; Nimehchisalem, Vahid

    2017-01-01

    This study was conducted to investigate the difficulties encountered by undergraduate ESL students in writing the introduction section of their project reports. Five introduction sections of bachelor of arts students, majoring in English language, were analyzed and a lecturer was interviewed regarding the areas of the students' weaknesses. Swales'…

  4. Research Article Introductions in English for Specific Purposes: A Comparison between Brazilian Portuguese and English

    ERIC Educational Resources Information Center

    Hirano, Eliana

    2009-01-01

    This paper compares the rhetorical organization of research article introductions in Brazilian Portuguese and in English within a subfield of Applied Linguistics. Using Swales' (1990) CARS model as an analytical tool, this exploratory study investigated 20 research articles. The findings indicate that introductions in Brazilian Portuguese tend to…

  5. Rhetorical Analysis of the Doctoral Abstracts on English Language Teaching in Turkey

    ERIC Educational Resources Information Center

    Özmen, Kemal Sinan

    2016-01-01

    Doctoral dissertation has an important role to embark on an academic career confidently. The case is much more challenging for the early career doctorate who strives to contribute to the wider academic community. Using Swale's IMRD model, this study analyzed the rhetorical organization of English abstracts of 147 doctoral dissertations written…

  6. GOES Type III Loop Heat Pipe Life Test Results

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura

    2011-01-01

    The GOES Type III Loop Heat Pipe (LHP) was built as a life test unit for the loop heat pipes on the GOES N-Q series satellites. This propylene LHP was built by Dynatherm Corporation in 2000 and tested continuously for approximately 14 months. It was then put into storage for 3 years. Following the storage period, the LHP was tested at Swales Aerospace to verify that the loop performance hadn t changed. Most test results were consistent with earlier results. At the conclusion of testing at Swales, the LHP was transferred to NASA/GSFC for continued periodic testing. The LHP has been set up for testing in the Thermal Lab at GSFC since 2006. A group of tests consisting of start-ups, power cycles, and a heat transport limit test have been performed every six to nine months since March 2006. Tests results have shown no change in the loop performance over the five years of testing. This presentation will discuss the test hardware, test set-up, and tests performed. Test results to be presented include sample plots from individual tests, along with conductance measurements for all tests performed.

  7. Improving water quality through California's Clean Beach Initiative: an assessment of 17 projects.

    PubMed

    Dorsey, John H

    2010-07-01

    California's Clean Beach Initiative (CBI) funds projects to reduce loads of fecal indicator bacteria (FIB) impacting beaches, thus providing an opportunity to judge the effectiveness of various CBI water pollution control strategies. Seventeen initial projects were selected for assessment to determine their effectiveness on reducing FIB in the receiving waters along beaches nearest to the projects. Control strategies included low-flow diversions, sterilization facilities, sewer improvements, pier best management practices (BMPs), vegetative swales, and enclosed beach BMPs. Assessments were based on statistical changes in pre- and postproject mean densities of FIB at shoreline monitoring stations targeted by the projects. Most low-flow diversions and the wetland swale project were effective in removing all contaminated runoff from beaches. UV sterilization was effective when coupled with pretreatment filtration and where effluent was released within a few hundred meters of the beach to avoid FIB regrowth. Other BMPs were less effective because they treated only a portion of contaminant sources impacting their target beach. These findings should be useful to other coastal states and agencies faced with similar pollution control problems.

  8. Quantifying Hillslope to Watershed Erosional Response Following Wildfire

    NASA Astrophysics Data System (ADS)

    Vega, S.; Pierson, F. B.; Williams, C. J.; Brooks, E. S.; Pierce, J. L.; Roehner, C.

    2016-12-01

    The frequency and severity of wildfires is increasing across western US sagebrush steppe rangelands as the result of warming climate conditions and invasive plant species. Following wildfire, the soil surface is left with little vegetation, exposing it to erosion by wind and water. Erosion following wildfires is a concern among land managers due to the threat it poses to resources, infrastructure, and human health. Most post-fire erosion research has used artificial rainfall. This study uses natural rainfall and a network of silt fences to quantify hillslope to watershed scale erosion response following the 2015 Soda Fire that burned 113,300 ha in southwestern Idaho and southeastern Oregon. In this study, we will evaluate the drivers of erosion over multiple spatial scales and assess the recovery of vegetation and soil water repellency for a two year period post-fire. We installed a network of silt fences over long and short hillslope distances and in swales within a 130 ha catchment within the Reynolds Creek Experimental Watershed in southwestern Idaho, USA. The overall study design consists of thirty silt fences spanning north and south facing aspects, an existing weir measuring watershed streamflow and sediment discharge, and two meteorological stations. The erosional response following the fire was mainly driven by wind and snowmelt. The swales produced the most sediment compared to the long and short hillslopes. On the south facing aspect the long and short hillslopes did not produce any sediment whereas on the north facing aspect the swales produced the most sediment. This presentation summarizes these preliminary first year hydrologic and erosion responses. The results provide data for determining the drivers for erosion at different spatial scales, advance understanding of post-fire hillslope to watershed erosional responses, and offer insight into recovery of vegetation and soil water repellency post-fire. This study will aid land management agencies throughout the western US with predicting post-fire erosion responses as well as determining appropriate erosion mitigation strategies.

  9. The application of Ground Penetrating Radar analysis to investigate the impact and recovery of coastal dunes and the recurrence interval of overwash events

    NASA Astrophysics Data System (ADS)

    Switzer, A.; Gouramanis, C.; Bristow, C. S.; Jankaew, K.; Rubin, C. M.; Pham, D. T.; Ildefonso, S. R.; Lee, Y. S.

    2013-12-01

    The common techniques for investigating the impact, recovery and recurrence interval in coastal systems are point source augering or pitting and/or excavations. These techniques are time and cost intensive. Ground Penetrating Radar (GPR) presents a rapid, non-invasive, spatially-continuous technique for identifying subsurface stratigraphy. Although GPR facies are not diagnostic of a particular sedimentary characteristic, when combined with satellite imagery, they provide an avenue for reconstructing the impact and the post event recovery, or to help constrain the spatial extent of sandy deposits in the subsurface. Here, we present results from two GPR survey campaigns at Phra Thong Island, Thailand. The first campaign targeted the large scale recovery of the coast following the 2004 Indian ocean tsunami using 200 MHz antennae and the second campaign focused on a thin-bed approach aimed at imaging thin (<15 cm) sandy tsunami deposits and their associated structures using high-frequency 500 and 1000 MHz GPR antennae complemented by auger cores. The tsunami impact and recovery was reconciled by three 100 MHz GPR profiles and quasi-yearly satellite imagery. The GPR revealed the depth and extent of tsunami scour along with the sedimentary history of post tsunami coastal aggradation and recovery. The second GPR campaign captured several distinct palaeotsunami deposits as discreet thin sand layers preserved within a swale. The base of the swale and the contacts between the sandy and muddy layers are clearly imaged, although these reflectors are less consistent across the profile, suggesting that the contacts between thin sand and mud units can be accurately imaged provided the units are thicker than ca. 10cm. Our investigations show that GPR can be used to rapidly and non-invasively assess post event recovery and to image sandy washover events in muddy swales that are the result of tsunamis or storms.

  10. 23. TERMINUS, NORTH BRANCH PRAIRIE CITY DITCH. DITCH COMES FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. TERMINUS, NORTH BRANCH PRAIRIE CITY DITCH. DITCH COMES FROM ISOLATED GROUP OF TREES IN MIDDLE DISTANCE, AND ENDS AT CENTER RIGHT. WATER THEN PROCEEDED DOWN SWALE, INTO TREES AT LEFT. VIEW TO NORTH. - Natomas Ditch System, Rhoades' Branch Ditch, Approximately 7 miles between Nesmith Court and White Rock Road, Folsom, Sacramento County, CA

  11. Tracking rainfall impulses through progressively larger drainage basins in steep forested terrain

    Treesearch

    R. R. Ziemer; R. M. Rice

    1990-01-01

    Abstract - The precision of timing devices in modern electronic data loggers makes it possible to study the routing of water through small drainage basins having rapid responses to hydrologic impulses. Storm hyetographs were measured using digital tipping bucket rain gauges and their routing was observed at headwater piezometers located mid-slope, above a swale, and...

  12. Language Use in Computer-Mediated Communication: An Investigation into the Genre of Workplace Emails

    ERIC Educational Resources Information Center

    AlAfnan, Mohammad Awad

    2015-01-01

    This study investigated the moves and communicative purposes used in 522 email messages that were exchanged in a Malaysian private educational institute. Using Swales's (1990) move approach, this study revealed that email writers used fourteen moves that are mainly six framing and eight content moves. Content moves included four main, one…

  13. Rhetorical Organisation of the Subsections of Research Article Introductions in Applied Linguistics

    ERIC Educational Resources Information Center

    Öztürk, Ismet

    2018-01-01

    Since the publication of the book Genre Analysis (CUP) by Swales (1990), many studies have focused on the study of the rhetorical organisation of different sections of research articles (RAs). The organisation of RA introductions has received most of the attention. However, the focus has generally been on the structure of introductions without…

  14. A Genre-Based Investigation of Discussion Sections of Research Articles in Dentistry and Disciplinary Variation

    ERIC Educational Resources Information Center

    Basturkmen, Helen

    2012-01-01

    Outwardly the rhetorical organisation of sections of research reports in different disciplines can appear similar. Close examination, however, may reveal subtle differences. Numerous studies have drawn on the genre-based approach developed by Swales (1990, 2004) to investigate the schematic structure of sections of articles in a range of…

  15. Systematising "System": One Reviewer's Analysis of the Review Process

    ERIC Educational Resources Information Center

    Coniam, David

    2011-01-01

    This paper describes one reviewer's experience of reviewing for the journal "System" over an eight-year period, 2003-2011. The paper reports on the reviews produced by the single reviewer, which have been compiled into a specific purpose--an "occluded"--corpus (Swales, 1996) of 122 reviews, comprising 93,000 words. The paper first describes the…

  16. "We Have about Seven Minutes for Questions": The Discussion Sessions from a Specialized Conference

    ERIC Educational Resources Information Center

    Wulff, Stefanie; Swales, John M.; Keller, Kristen

    2009-01-01

    This paper discusses the "John Swales Conference Corpus" (JSCC), which contains the lectures and discussion sessions from an applied linguistics conference held in 2006 at the University of Michigan. This corpus constitutes a useful resource in that it provides insights into the language of a narrowly defined academic community.…

  17. A one-dimensional model of subsurface hillslope flow

    Treesearch

    Jason C. Fisher

    1997-01-01

    Abstract - A one-dimensional, finite difference model of saturated subsurface flow within a hillslope was developed. The model uses rainfall, elevation data, a hydraulic conductivity, and a storage coefficient to predict the saturated thickness in time and space. The model was tested against piezometric data collected in a swale located in the headwaters of the North...

  18. 78 FR 68470 - National Register of Historic Places; Notification of Pending Nominations and Related Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ...-1123 N. Los Robles Ave., Pasadena, 13000869 COLORADO El Paso County Lindsey--Johnson--Vanderhoof House... Kansas TR) 6 mi. S. & 11.3 mi. W. of Gove, Gove, 13000879 Johnson County Harmon Park Swale, (Santa Fe...., Roth, 13000886 RHODE ISLAND Bristol County Allen--West House, 153 George St., Barrington, 13000887...

  19. Best Practices Case Study: Tom Walsh and Co. - New Columbus, Portland, OR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2010-09-01

    Case study of Tom Walsh, who achieved 50% in heating and cooling energy savings over the 2004 IECC with advanced framing, superior air sealing, extra insulation, and ducts in conditioned space. Surface water runoff in the large urban rebuild development was handled with pervious pavers, swales, retention of existing trees, and green spaces.

  20. Genre and Second-Language Academic Writing

    ERIC Educational Resources Information Center

    Paltridge, Brian

    2014-01-01

    The term "genre" first came into the field of second-language (L2) writing and, in turn, the field of English for specific purposes (ESP) in the 1980s, with the research of John Swales, first carried out in the UK, into the introduction section of research articles. Other important figures in this area are Tony Dudley-Evans, Ann Johns…

  1. Preface Sections in English and Arabic Linguistics Books: A Rhetorico-Cultural Analysis

    ERIC Educational Resources Information Center

    Al-Zubaidi, Nassier A. G.; Jasim, Tahani Awad

    2016-01-01

    The present paper is a genre analysis of linguistics books prefaces in English and Arabic. Following Swales' (1990) genre framework, this study is a small scale-based generic analysis of 80 preface texts, equally divided into 40 texts from English and Arabic. The corpus analysis revealed that to perform its communicative function, the genre of the…

  2. Effect of spatial variability of storm on the optimal placement of best management practices (BMPs).

    PubMed

    Chang, C L; Chiueh, P T; Lo, S L

    2007-12-01

    It is significant to design best management practices (BMPs) and determine the proper BMPs placement for the purpose that can not only satisfy the water quantity and water quality standard, but also lower the total cost of BMPs. The spatial rainfall variability can have much effect on its relative runoff and non-point source pollution (NPSP). Meantime, the optimal design and placement of BMPs would be different as well. The objective of this study was to discuss the relationship between the spatial variability of rainfall and the optimal BMPs placements. Three synthetic rainfall storms with varied spatial distributions, including uniform rainfall, downstream rainfall and upstream rainfall, were designed. WinVAST model was applied to predict runoff and NPSP. Additionally, detention pond and swale were selected for being structural BMPs. Scatter search was applied to find the optimal BMPs placement. The results show that mostly the total cost of BMPs is higher in downstream rainfall than in upstream rainfall or uniform rainfall. Moreover, the cost of detention pond is much higher than swale. Thus, even though detention pond has larger efficiency for lowering peak flow and pollutant exports, it is not always the determined set in each subbasin.

  3. Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand

    USGS Publications Warehouse

    Jankaew, K.; Atwater, B.F.; Sawai, Y.; Choowong, M.; Charoentitirat, T.; Martin, M.E.; Prendergast, A.

    2008-01-01

    Recent centuries provide no precedent for the 2004 Indian Ocean tsunami, either on the coasts it devastated or within its source area. The tsunami claimed nearly all of its victims on shores that had gone 200 years or more without a tsunami disaster. The associated earthquake of magnitude 9.2 defied a Sumatra-Andaman catalogue that contains no nineteenth-century or twentieth-century earthquake larger than magnitude 7.9 (ref. 2). The tsunami and the earthquake together resulted from a fault rupture 1,500 km long that expended centuries' worth of plate convergence. Here, using sedimentary evidence for tsunamis, we identify probable precedents for the 2004 tsunami at a grassy beach-ridge plain 125 km north of Phuket. The 2004 tsunami, running 2 km across this plain, coated the ridges and intervening swales with a sheet of sand commonly 5-20 cm thick. The peaty soils of two marshy swales preserve the remains of several earlier sand sheets less than 2,800 years old. If responsible for the youngest of these pre-2004 sand sheets, the most recent full-size predecessor to the 2004 tsunami occurred about 550-700 years ago. ??2008 Macmillan Publishers Limited. All rights reserved.

  4. Picking up the pieces: conserving remnant natural areas in the post-industrial landscape of the Calumet Region

    USGS Publications Warehouse

    Labus, Paul; Whitman, Richard L.; Nevers, Meredith Becker

    1999-01-01

    The Calumet Region was shaped by geologic forces, succession, and interacting biomes converging on a unique natural landscape. Over the past 4500 years, a strand plain has formed to the north of a geologic area called Toleston Beach. Sequential and differential primary succession of dune and swale communities in this region allowed species from different biomes to interact freely. In the mid-nineteenth century, commerce and settlement drastically changed the area, and natural areas were fragmented, manipulated, and degraded by cultural intrusions and industrialization. Despite the near obliteration of dune and swale habitat, small fragments of natural land escaped destruction. These native fragments maintained some semblance of the landscape that once covered the region. Currently, these native fragments are threatened by the lingering intrusion of historic contamination and the continuing presence of industry and commerce. Restoration and conservation of these remnants will need to be a process of integrating biological diversity goals into the landscape of the industrialized region through planning and design. We outline here the natural history of the region, the philosophical rationale for conservation, and possible approaches for integrating and maintaining these valuable remnant resources and processes.

  5. Evaluation of Life Cycle Assessment (LCA) for Roadway Drainage Systems.

    PubMed

    Byrne, Diana M; Grabowski, Marta K; Benitez, Amy C B; Schmidt, Arthur R; Guest, Jeremy S

    2017-08-15

    Roadway drainage design has traditionally focused on cost-effectively managing water quantity; however, runoff carries pollutants, posing risks to the local environment and public health. Additionally, construction and maintenance incur costs and contribute to global environmental impacts. While life cycle assessment (LCA) can potentially capture local and global environmental impacts of roadway drainage and other stormwater systems, LCA methodology must be evaluated because stormwater systems differ from wastewater and drinking water systems to which LCA is more frequently applied. To this end, this research developed a comprehensive model linking roadway drainage design parameters to LCA and life cycle costing (LCC) under uncertainty. This framework was applied to 10 highway drainage projects to evaluate LCA methodological choices by characterizing environmental and economic impacts of drainage projects and individual components (basin, bioswale, culvert, grass swale, storm sewer, and pipe underdrain). The relative impacts of drainage components varied based on functional unit choice. LCA inventory cutoff criteria evaluation showed the potential for cost-based criteria, which performed better than mass-based criteria. Finally, the local aquatic benefits of grass swales and bioswales offset global environmental impacts for four impact categories, highlighting the need to explicitly consider local impacts (i.e., direct emissions) when evaluating drainage technologies.

  6. Optically stimulated luminescence dating of late Holocene raised strandplain sequences adjacent to Lakes Michigan and Superior, Upper Peninsula, Michigan, USA

    USGS Publications Warehouse

    Argyilan, Erin P.; Forman, Steven L.; Johnston, John W.; Wilcox, Douglas A.

    2005-01-01

    This study evaluates the accuracy of optically stimulated luminescence to date well-preserved strandline sequences at Manistique/Thompson bay (Lake Michigan), and Tahquamenon and Grand Traverse Bays (Lake Superior) that span the past ∼4500 yr. The single aliquot regeneration (SAR) method is applied to produce absolute ages for littoral and eolian sediments. SAR ages are compared against AMS and conventional 14C ages on swale organics. Modern littoral and eolian sediments yield SAR ages 14C ages on swale organics. Significant variability in 14C ages >2000 cal yr B.P. complicates comparison to SAR ages at all sites. However, a SAR age of 4280 ± 390 yr (UIC913) on ridge77 at Tahquamenon Bay is consistent with regional regression from the high lake level of the Nipissing II phase ca. 4500 cal yr B.P. SAR ages indicate a decrease in ridge formation rate after ∼1500 yr ago, likely reflecting separation of Lake Superior from lakes Huron and Michigan. This study shows that SAR is a credible alternative to 14C methods for dating littoral and eolian landforms in Great Lakes and other coastal strandplains where 14C methods prove problematic.

  7. Quantifying Hillslope to Watershed Erosional Response Following Wildfire

    NASA Astrophysics Data System (ADS)

    Vega, S.; Pierson, F. B.; Williams, C. J.; Brooks, E. S.; Strand, E. K.; Seyfried, M. S.; Murdock, M.; Pierce, J. L.; Roehner, C.; Lindsay, K.; Robichaud, P. R.; Brown, R. E.

    2017-12-01

    Across the western US, wildfires in sagebrush vegetation are occurring at a more frequent rate and higher severity. This has resulted in a decline of sagebrush rangeland. The changing fire regime can be attributed to invasive plant species and warming climate conditions. As the result of wildfire, protective vegetation cover is removed leaving the soil bare and exposed to erosion. Erosion following wildfire is a main concern among land managers due to the threat it poses to resources, infrastructure, and human health. Numerous studies have used artificial rainfall to assess post-fire runoff and erosion and rehabilitation treatment effectiveness. These results have found that high intensity rain events typical of summer convective storms drive post-fire erosion. The purpose of this study is to improve scientific understanding of how site-specific physical and biological attributes affect hillslope to watershed scale sediment yield on a mountainous burned sagebrush landscape. This study uses natural rainfall and a network of silt fences to quantify hillslope to watershed scale erosion response. The erosional drivers over various spatial scales were evaluated in context with vegetation recovery for a 2 year post-fire period. A network of silt fences was installed over long and short hillslope distances and in swales within the 130 ha Murphy Creek catchment in the Reynolds Creek Experimental Watershed in southwestern Idaho. We evaluated: 1) vegetation, soils, and sediment delivery across multiple spatial scales associated with 30 silt fences spanning north and south facing aspects, 2) precipitation input at two meteorological stations, and 3) watershed streamflow and sediment discharge from an existing weir. During the first and second year post-fire, the swales on both aspects produced more sediment than the short and long hillslopes. The results suggest that significant amounts of sediment and organic matter were deposited in the swales creating drifts. Sediment delivery was mainly by wind in the first few months post-fire and from runoff during low intensity rainfall and snowmelt events during the first autumn and winter seasons. This study will aid land management agencies throughout the western US with predicting post-fire erosion responses and determining appropriate erosion mitigation strategies.

  8. Quantifying morphological changes of cape-related shoals

    NASA Astrophysics Data System (ADS)

    Paniagua-Arroyave, J. F.; Adams, P. N.; Parra, S. M.; Valle-Levinson, A.

    2017-12-01

    The rising demand for marine resources has motivated the study of inner shelf transport processes, especially in locations with highly-developed coastlines, endangered-species habitats, and valuable economic resources. These characteristics are found at Cape Canaveral shoals, on the Florida Atlantic coast, where transport dynamics and morphological evolution are not well understood. To study morphological changes at these shoals, two sets of paired upward- and downward-pointing acoustic Doppler current profilers (ADCPs) were deployed in winter 2015-2016. One set was deployed at the inner swale of Shoal E, 20 km southeast of the cape tip in 13 m depth, while the other set was located at the edge of Southeast shoal in 5 m deep. Upward-pointing velocity profiles and suspended particle concentrations were implemented in the Exner equation to quantify instantaneous rates of change in bed elevation. This computation includes changes in sediment concentration and the advection of suspended particles, but does not account for spatial gradients in bed-load fluxes and water velocities. The results of the computation were then compared to bed change rates measured directly by the downward-pointing ADCPs. At the easternmost ridge, quantified bed elevation change rates ranged from -7×10-7 to 4×10-7 m/s, and those at the inner swale ranged from -4×10-7 to 8×10-7 m/s. These values were two orders of magnitude smaller than rates measured by downward-pointing ADCPs. Moreover, the cumulative changes were two orders of magnitude larger at the ridge (-0.33 m, downward, and -0.13, m upward) than at the inner swale (cf. -6×10-3 m, downward, and 3×10-3 m, upward). These values suggest that bedform migration may be occurring at the ridge, that suspended sediments account for up to 30% of total bed changes, and that gradients in bed-load fluxes exert control on morphological change over the shoals. Despite uncertainties related to the ADCP-derived sediment concentrations, these findings provide preliminary evidence about the spatial variability in morphological changes over cape-related shoals.

  9. Attenuation of copper in runoff from copper roofing materials by two stormwater control measures.

    PubMed

    LaBarre, William J; Ownby, David R; Lev, Steven M; Rader, Kevin J; Casey, Ryan E

    2016-01-01

    Concerns have been raised over diffuse and non-point sources of metals including releases from copper (Cu) roofs during storm events. A picnic shelter with a partitioned Cu roof was constructed with two types of stormwater control measures (SCMs), bioretention planter boxes and biofiltration swales, to evaluate the ability of the SCMs to attenuate Cu in stormwater runoff from the roof. Cu was measured as it entered the SCMs from the roof as influent as well as after it left the SCMs as effluent. Samples from twenty-six storms were collected with flow-weighted composite sampling. Samples from seven storms were collected with discrete sampling. Total Cu in composite samples of the influent waters ranged from 306 to 2863 μg L(-1) and had a median concentration of 1087 μg L(-1). Total Cu in the effluent from the planter boxes ranged from 28 to 141 μg L(-1), with a median of 66 μg L(-1). Total Cu in effluent from the swales ranged from 7 to 51 μg L(-1) with a median of 28 μg L(-1). Attenuation in the planter boxes ranged from 85 to 99% with a median of 94% by concentration and in the swales ranged from 93 to 99% with a median of 99%. As the roof aged, discrete storm events showed a pronounced first-flush effect of Cu in SCM influent but this was less pronounced in the planter outlets. Stormwater retention time in the media varied with antecedent conditions, stormwater intensity and volume with median values from 6.6 to 73.5 min. Based on local conditions, a previously-published Cu weathering model gave a predicted Cu runoff rate of 2.02 g m(-2) yr(-1). The measured rate based on stormwater sampling was 2.16 g m(-2) yr(-1). Overall, both SCMs were highly successful at retaining and preventing offsite transport of Cu from Cu roof runoff. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Computer-aided analysis of LANDSAT data for surveying Texas coastal zone environments. [Pass Cavallo and Port O'Conner

    NASA Technical Reports Server (NTRS)

    Kristof, S. J. (Principal Investigator); Weismiller, R. A.

    1977-01-01

    The author has identified the following significant results. The study areas were Pass Cavallo and Port O'Connor. The following terrestrial and aquatic environments were discriminated: alternating beach ridges, swales, sand dunes, beach birms, deflation surfaces, land-water interface, urban, spoil areas, fresh and salt water marshes, grass and woodland, recently burned or grazed areas, submerged vegetation, and waterways.

  11. Tsunami Disaster Risk Assessment and Prevention in West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Deng, H.; Harris, R. A.; Horns, D. M.; Yulianto, E.; Bunds, M. P.; Prasetyadi, C.; Emmett, C.; Hall, S.

    2016-12-01

    Java Island, Indonesia is the most populated area and one of the most tectonically active coastal nations on Earth. This island is the volcanic arc and accretionary wedge of the subduction zone of the Sunda and the Australia plate, where the Java Trench is located. However, the Java Trench hasn't had a mega or giant earthquake for at least 430 years according to historical records. Up to 30 m of slip may have accumulated on the subduction zone interface during this time, which is enough to produce a Mw 9.0 earthquake and large tsunami. One of the largest seismic gaps along the Sunda Arc is a 640 km section of the coast of west Java. The largest population center in this region is Pelabuhan Ratu, with is partially built on ridge and swale coastal plain topography. Candidate tsunami deposits were found in swales that may indicate inundation up to 1 km inland. Numerical modeling of various possible tsunami scenarios indicate that the configuration of the coastline may amplify a tsunami and cause high run-up in the most populated areas or the coast. Also, data from questionnaire surveys administered in Pelabuhan Ratu show a lack of awareness about how tsunamis threaten these communities and plans of action.

  12. Influence of hydrologic modifications on Fraxinus pennsylvanica in the Mississippi River Alluvial Valley, USA

    USGS Publications Warehouse

    Gee, Hugo K.W.; King, Sammy L.; Keim, Richard F.

    2015-01-01

    We used tree-ring analysis to examine radial growth response of a common, moderately flood-tolerant species (Fraxinus pennsylvanica Marshall) to hydrologic and climatic variability for > 40 years before and after hydrologic modifications affecting two forest stands in the Mississippi River Alluvial Valley (USA): a stand without levees below dams and a stand within a ring levee. At the stand without levees below dams, spring flood stages decreased and overall growth increased after dam construction, which we attribute to a reduction in flood stress. At the stand within a ring levee, growth responded to the elimination of overbank flooding by shifting from being positively correlated with river stage to not being correlated with river stage. In general, growth in swales was positively correlated with river stage and Palmer Drought Severity Index (an index of soil moisture) for longer periods than flats. Growth decreased after levee construction, but swales were less impacted than flats likely because of differences in elevation and soils provide higher soil moisture. Results of this study indicate that broad-scale hydrologic processes differ in their effects on the flood regime, and the effects on growth of moderately flood-tolerant species such as F. pennsylvanica can be mediated by local-scale factors such as topographic position, which affects soil moisture.

  13. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Functions of Forested Wetlands in the Mississippi Alluvial Valley

    DTIC Science & Technology

    2013-07-01

    Definition Depression Depressional wetlands occur in topographic depressions (i.e., closed elevation contours) that allow the accumulation of surface water... depression . The predominant hydrodynamics are vertical fluctuations that may occur over a range of time, from a few days to many months. Depressional ... depression in dunefields ............................... 3b. Depressional feature in abandoned meander features (oxbows or swales) not subject to 5-year

  14. Environmental Assessment for Phase 6 and Phase 7, Replace Family Housing at Malmstrom Air Force Base, Montana

    DTIC Science & Technology

    2005-01-01

    resulting in severe constriction and pipe leakage, and plumbing fixtures are worn and discolored and require replacing. Bedrooms are small and lack...construction. Damaged or degraded sections of piping will be replaced as needed during construction. New electrical circuits and supporting infrastructure...drainage at the site occurs primarily through open storm ditches, swales and underground pipes and discharge outfalls. Storm water discharge is

  15. Paddys Run Streambank Stabilization Project at the Fernald Preserve, Harrison, OH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooten, Gwendolyn; Hertel, Bill; Homer, John

    The Fernald Preserve is a former uranium-processing plant that underwent extensive remediation pursuant to CERCLA and is now managed by the US DOE Office of Legacy Management. While remediation of buildings and soil contamination was completed in 2006, aquifer remediation is ongoing. Paddys Run is a second-order stream that runs to the south along the western side of the Fernald Preserve. The Paddys Run watershed encompasses nearly 41 km2 (16 mi2), including most of the Fernald site. Field personnel conducting routine site inspections in March 2014 observed that Paddys Run was migrating east via bank erosion into the “Pit 3more » Swale,” an area of known surface-water contamination. The soil there was certified pursuant to site regulatory agreements and meets all final remediation levels. However, weekly surface-water monitoring is conducted from two puddles within the swale area, when water that exceeds the final remediation levels is present. Paddys Run had migrated east approximately 4 m (13 ft) in 2 years and was approximately 29 m (95 ft) from the sample location. This rapid migration threatened existing conditions that allowed for continued monitoring of the swale area and also threatened Paddys Run water quality. Therefore, DOE and regulators determined that the east bank of Paddys Run required stabilization. This was accomplished with a design that included the following components: relocation of approximately 145 m (475 ft) of streambed 9 m (30 ft) west, installation of a rock toe along the east bank, installation of two cross-vane in-stream grade-control structures, stabilization of a portion of the east bank using soil encapsulated lifts, and regrading, seeding, and planting within remaining disturbed areas. In an effort to take advantage of low-flow conditions in Paddys Run, construction was initiated in September 2014. Weather delays and subsurface flow within the Paddys Run streambed resulted in an interim shutdown of the project area in December 2014. Construction activities resumed in April 2015, with completion in November 2015. To date, this stabilization project has been successful. The regraded bank and streambed have remained stable, and no compromise to installed cross-vanes, the rock toe, or the soil encapsulated lifts has been observed.« less

  16. Planning Assistance for the Town of Hamburg, County of Erie, New York, Hoover Beach.

    DTIC Science & Technology

    1979-12-01

    area, creating swale areas which restrict overland flow into the storm drainage system . This low-lying area of the Mid Shore section also experiences...attack. The flood problems in the Mid Shore area are primarily caused by an inade- quate storm drainage system and ill-advised filling of low-lying arehs...by residents. These problems can be significantly reduced and possibly elimi- nated by improvements to the storm drainage system . Providing adequate

  17. Dendritic Connectivity, Heterogeneity, and Scaling in Urban Stormwater Networks: Implications for Socio-Hydrology

    NASA Astrophysics Data System (ADS)

    Mejia, A.; Jovanovic, T.; Hale, R. L.; Gironas, J. A.

    2017-12-01

    Urban stormwater networks (USNs) are unique dendritic (tree-like) structures that combine both artificial (e.g., swales and pipes) and natural (e.g., streams and wetlands) components. They are central to stream ecosystem structure and function in urban watersheds. The emphasis of conventional stormwater management, however, has been on localized, temporal impacts (e.g., changes to hydrographs at discrete locations), and the performance of individual stormwater control measures. This is the case even though control measures are implemented to prevent impacts on the USN. We develop a modeling approach to retrospectively study hydrological fluxes and states in USNs and apply the model to an urban watershed in Scottsdale, Arizona, USA. Using outputs from the model, we analyze over space and time the network properties of dendritic connectivity, heterogeneity, and scaling. Results show that as the network growth over time, due to increasing urbanization, it tends to become more homogenous in terms of topological features but increasingly heterogeneous in terms of dynamic features. We further use the modeling results to address socio-hydrological implications for USNs. We find that the adoption over time of evolving management strategies (e.g., widespread implementation of vegetated swales and retention ponds versus pipes) may be locally beneficial to the USN but benefits may not propagate systematically through the network. The latter can be reinforced by sudden, perhaps unintended, changes to the overall dendritic connectivity.

  18. Superfund Record of Decision (Region 2): Love Canal/93rd Street, New York (third remedial action), September 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Love Canal/93rd Street School site consists of approximately 19 acres and includes a school and an adjacent vacant lot. The site is located in Niagara Falls, New York, less than one mile northwest of Love Canal and is within the Love Canal Emergency Declaration Area. Hooker Chemicals and Plastics Corporation disposed of over 21,000 tons of various chemicals at the Love Canal site from 1942 to 1953, when the site was deeded over to the City of Niagara Falls Board of Education. Sampling has revealed that approximately 6,000 cu yds of soil are contaminated. During the 1950s, home constructionmore » accelerated in the area. Specifically, in 1950, the 93rd Street School was built, and in 1954, the 99th Street School was built adjacent to the middle portion of the Canal. Prior to construction of the 93rd Street School, a drainage swale crossed the site. Between 1938 and 1951, the swale was partially filled with soil and rock debris, followed by sand and fly ash materials. In 1980, the 93rd Street School was closed due to public health concerns related to the potentially contaminated fill material. The primary contaminants of concern affecting soil are VOCs, including toluene and xylenes, other organics including dioxins, PAHs and pesticides, and metals including arsenic and lead.« less

  19. Mapping coastal morphodynamics with geospatial techniques, Cape Henry, Virginia, USA

    NASA Astrophysics Data System (ADS)

    Allen, Thomas R.; Oertel, George F.; Gares, Paul A.

    2012-01-01

    The advent and proliferation of digital terrain technologies have spawned concomitant advances in coastal geomorphology. Airborne topographic Light Detection and Ranging (LiDAR) has stimulated a renaissance in coastal mapping, and field-based mapping techniques have benefitted from improvements in real-time kinematic (RTK) Global Positioning System (GPS). Varied methodologies for mapping suggest a need to match geospatial products to geomorphic forms and processes, a task that should consider product and process ontologies from each perspective. Towards such synthesis, coastal morphodynamics on a cuspate foreland are reconstructed using spatial analysis. Sequential beach ridge and swale topography are mapped using photogrammetric spot heights and airborne LiDAR data and integrated with digital bathymetry and large-scale vector shoreline data. Isobaths from bathymetric charts were digitized to determine slope and toe depth of the modern shoreface and a reconstructed three-dimensional antecedent shoreface. Triangulated irregular networks were created for the subaerial cape and subaqueous shoreface models of the cape beach ridges and sets for volumetric analyses. Results provide estimates of relative age and progradation rate and corroborate other paleogeologic sea-level rise data from the region. Swale height elevations and other measurements quantifiable in these data provide several parameters suitable for studying coastal geomorphic evolution. Mapped paleoshorelines and volumes suggest the Virginia Beach coastal compartment is related to embryonic spit development from a late Holocene shoreline located some 5 km east of the current beach.

  20. Development and investigation of a pollution control pit for treatment of stormwater from metal roofs and traffic areas.

    PubMed

    Dierkes, C; Göbel, P; Lohmann, M; Coldewey, W G

    2006-01-01

    Source control by on-site retention and infiltration of stormwater is a sustainable and proven alternative to classical drainage methods. Unfortunately, sedimentary particles and pollutants from drained surfaces cause clogging and endanger soil and groundwater during long-term operation of infiltration devices. German water authorities recommend the use of infiltration devices, such as swales or swale-trench-systems. Direct infiltration by underground facilities, such as pipes, trenches or sinks, without pretreatment of runoff is generally not permitted. Problems occur with runoff from metal roofs, traffic areas and industrial sites. However, due to site limitations, underground systems are often the only feasible option. To overcome this situation, a pollution control pit was developed with a hydrodynamic separator and a multistage filter made of coated porous concrete. The system treats runoff at source and protects soil, groundwater and receiving waterways. Typically, more than 90% of the pollutants such as sedimentary particles, hydrocarbons and heavy metals can be removed. Filters have been developed to treat even higher polluted stormwater loads from metal roofs and industrial sites. The treatment process is based on sedimentation, filtration, adsorption and chemical precipitation. Sediments are trapped in a special chamber within the pit and can be removed easily. Other pollutants are captured in the concrete filter upstream of the sediment separator chamber. Filters can be easily replaced.

  1. Superfund record of decision (EPA Region 6): Longhorn Army Ammunition Plant, IHAAP 12 and 16 Landfills, Karnack, TX, September 27, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This decision document presents the selected Early Interim Remedial Action for the LHAAP 12 and 16 landfills, Longhorn Army Ammunition Plant (LHAAP), Karnack, Texas. The Record of Decision for the sites addresses an Early Interim Remedial Action. The selected remedy consists of a multilayer landfill cap section which includes the following components: Foundation soil layer, Sodium Bentonite Geocomposite Liner, Geosynthetic Membrane Liner, Final soil cover, and Perimeter berms and drainage swales.

  2. A Cultural Resources Survey of the River Trace Permit Area Marion, Crittenden County, Arkansas

    DTIC Science & Technology

    1990-09-01

    located near the City of Marion, Crittenden County, Arkansas. The tract is within the direct impact area of a proposed lake that will be part of the River...channel. The area is presently situated in a swale between low ridges, and was part of Marion Lake until the early twentieth century. Properties...PRPOSED LAKE ................... B M N225 ~\\\\ \\\\r~~i N * ’~ 7~;777 ........o 7____ *, -T , .1 contour interval fee h~t 0 Mile PROJET ARE Map 0

  3. Final Supplemental Environmental Assessment for U.S. 98 at the Entrance to Hurlburt Field. Finding of No Significant Impact and Finding of No Practicable Alternative

    DTIC Science & Technology

    2013-06-01

    produce a more efficient, productive, and safe transportation system while adequately addressing the Purpose and Need defined in the 20 l 0 EA...Hurlburt Field from U.S. 98/S.R. 30 have adequate traffic storage capacity during peak times, the drainage requirements such as stormwater management pond... drainage swale for driveway construction 10 c. Modified Campaigne Street to include exclusive northbound right turn lane d. Added relocation of brick

  4. An Ecological Land Survey for Fort Greely, Alaska

    DTIC Science & Technology

    2001-02-01

    microcarpus, and Andromeda polifolia. Uncommon and not mapped. Lowland Fen Low-lying swales on retransported deposits, lowland loess, and abandoned...saxatilis 3 Eriophorum scheuchzeri 3 Carex canescens 2 Poa lanata 0 0 1 Andromeda polifolia 0 1 1 Dactylina spp. 0 0 0 1 Oxycoccus microcarpus 0 0 1...0 0 2 6 0 0 Sphagnum spp. 1 15 10 23 79 10 4 Andromeda polifolia 0 1 2 0 Drosera rotundifolia 0 0 1 0 0 Aulacomnium turgidum 1 2 0 1 2 0 Chamaedaphne

  5. Stable isotope ratios in swale sequences of Lake Superior as indicators of climate and lake level fluctuations during the Late Holocene

    USGS Publications Warehouse

    Sharma, Shruti; Mora, G.; Johnston, J.W.; Thompson, T.A.

    2005-01-01

    Beach ridges along the coastline of Lake Superior provide a long-term and detailed record of lake level fluctuations for the past 4000 cal BP. Although climate change has been invoked to explain these fluctuations, its role is still in debate. Here, we reconstruct water balance by employing peat samples collected from swale deposits present between beach ridge sequences at two locations along the coastline of Lake Superior. Carbon isotope ratios for Sphagnum remains from these peat deposits are used as a proxy for water balance because the presence or absence of water films on Sphagnum controls the overall isotope discrimination effects. Consequently, increased average water content in Sphagnum produces elevated ??13C values. Two maxima of Sphagnum ??13C values interpreted to reflect wetter conditions prevailed from 3400 to 2400 cal BP and from about 1900 to 1400 cal BP. There are two relatively short drier periods as inferred from low Sphagnum ??13C values: one is centered at about 2300 cal BP, and one begins at 1400 cal BP. A good covariance was found between Sphagnum ??13C values and reconstructed lake-levels for Lake Michigan in which elevated carbon isotope values correlate well with higher lake levels. Based on this covariance, we conclude that climate exerts a strong influence on lake levels in Lake Superior for the past 4000 cal BP. ?? 2005 Elsevier Ltd. All rights reserved.

  6. Hydrologic exchanges and baldcypress water use on deltaic hummocks, Louisiana, USA

    USGS Publications Warehouse

    Hsueh, Yu-Hsin; Chambers, Jim L.; Krauss, Ken W.; Allen, Scott T.; Keim, Richard F.

    2016-01-01

    Coastal forested hummocks support clusters of trees in the saltwater–freshwater transition zone. To examine how hummocks support trees in mesohaline sites that are beyond physiological limits of the trees, we used salinity and stable isotopes (2H and 18O) of water as tracers to understand water fluxes in hummocks and uptake by baldcypress (Taxodium distichum (L.) Rich.), which is the most abundant tree species in coastal freshwater forests of the southeastern U.S. Hummocks were always partially submerged and were completely submerged 1 to 8% of the time during the two studied growing seasons, in association with high water in the estuary. Salinity, δ18O, and δ2H varied more in the shallow open water than in groundwater. Surface water and shallow groundwater were similar to throughfall in isotopic composition, which suggested dominance by rainfall. Salinity of groundwater in hummocks increased with depth, was higher than in swales, and fluctuated little over time. Isotopic composition of xylem water in baldcypress was similar to the vadose zone and unlike other measured sources, indicating that trees preferentially use unsaturated hummock tops as refugia from higher salinity and saturated soil in swales and the lower portions of hummocks. Sustained upward gradients of salinity from groundwater to surface water and vadose water, and low variation in groundwater salinity and isotopic composition, suggested long residence time, limited exchange with surface water, and that the shallow subsurface of hummocks is characterized by episodic salinization and slow dilution.

  7. Effects of three highway-runoff detention methods on water quality of the surficial aquifer system in central Florida

    USGS Publications Warehouse

    Schiffer, D.M.

    1989-01-01

    Water quality of the surficial aquifer system in central Florida was evaluated at one exfiltration pipe, two ponds (detention and retention), and two swales in central Florida, representing three runoff-detention methods, to detect any effect from infiltrating highway runoff. Concentrations of major ions, metals, and nutrients in groundwater and bottom sediments were measured from 1984 through 1986. At each study area, constituent concentrations in groundwater near the structure were compared to concentrations in groundwater from an upgradient control site. Groundwater quality data were also pooled by detention method and statistically compared to detect any significant differences between methods. Significantly greater mean phosphorus concentrations in groundwater near the exfiltration pipe than those in the control well was the only evidence of increasing constituent concentrations in groundwater near structures. The quality of water was more variable, and had greater constituent concentrations in the unsaturated zone than in the saturated zone near the exfiltration pipe. Values of water quality variables measured in groundwater at all study areas generally were within State drinking water standards. The main exception was dissolved iron, which commonly exceeded 300 micrograms/L at one swale and the detention pond. Results of the study indicate that natural processes occurring in soils attenuate inorganic constituent concentrations prior to reaching the receiving groundwater. However, organic compounds detected in bottom sediments at the retention pond indicate a potential problem that may eventually affect the quality of the receiving groundwater. (USGS)

  8. Dedicated breast CT: geometric design considerations to maximize posterior breast coverage

    NASA Astrophysics Data System (ADS)

    Vedantham, Srinivasan; Karellas, Andrew; Emmons, Margaret M.; Moss, Lawrence J.; Hussain, Sarwat; Baker, Stephen P.

    2013-06-01

    An Institutional Review Board-approved protocol was used to quantify breast tissue inclusion in 52 women, under conditions simulating both craniocaudal (CC) and mediolateral oblique (MLO) views in mammography, dedicated breast CT in the upright subject position, and dedicated breast CT in the prone subject position. Using skin as a surrogate for the underlying breast tissue, the posterior aspect of the breast that is aligned with the chest-wall edge of the breast support in a screen-film mammography system was marked with the study participants positioned for CC and MLO views. The union of skin marks with the study participants positioned for CC and MLO views was considered to represent chest-wall tissue available for imaging with mammography and served as the reference standard. For breast CT, a prone stereotactic breast biopsy unit and a custom-fabricated barrier were used to simulate conditions during prone and upright breast CT, respectively. For the same breast marked on the mammography system, skin marks were made along the breast periphery that was just anterior to the apertures of the prone biopsy unit and the upright barrier. The differences in skin marks between subject positioning simulating breast CT (prone, upright) and mammography were quantified at six anatomic locations. For each location, at least one study participant had a skin mark from breast CT (prone, upright) posterior to mammography. However for all study participants, there was at least one anatomic location where the skin mark from mammography was posterior to that from breast CT (prone, upright) positioning. The maximum amount by which the skin mark from mammography was posterior to breast CT (prone and upright) over all six locations was quantified for each study participant and pair-wise comparison did not exhibit statistically significant difference between prone and upright breast CT (paired t- test, p = 0.4). Quantitatively, for 95% of the study participants the skin mark from mammography was posterior to breast CT (prone or upright) by at the most 9 mm over all six locations. Based on the study observations, geometric design considerations targeting chest-wall coverage with breast CT equivalent to mammography, wherein part of the x-ray beam images through the swale during breast CT are provided. Assuming subjects can extend their chest in to a swale, the optimal swale-depth required to achieve equivalent coverage with breast CT images as mammograms for 95% of the subjects varies in the range of ˜30-50 mm for clinical prototypes and was dependent on the system geometry.

  9. STRUCTURAL AND HYDROGEOLOGIC APPLICATIONS OF REMOTE SENSING DATA, EASTERN YUCATAN PENINSULA, MEXICO.

    USGS Publications Warehouse

    Southworth, C. Scott; ,

    1984-01-01

    Landsat and Seasat satellite images and aerial photographs of eastern Yucatan Peninsula, Mexico, were analyzed to delineate geologic controls of ground water. Significant interpretation results include the delineation of linear topographic swales, interpreted as fractures, extending more than 50 km along strike from the previously known limit of the Holbox fracture system; the alignment of sink holes (cenotes) and inlets (caletas) on strike with existing faults and fracture systems; and the identification of tonal anomalies in Ingles Lagoon suggesting fresh-water discharge from a submarine spring.

  10. Installation Restoration Program. Phase 2. Confirmation/Quantification Stage 1 for Pease Air Force Base, New Hampshire. Volume 1.

    DTIC Science & Technology

    1987-08-01

    01 0 4 In w el4 ’ n r fl f4 r, V 0 𔃾 1" * * * - ~ m ~c- I0 1-0- Q~ 3c 3c~ AdI-. * tp~dip Eu - 4j :: .( - * -U I’ -L - UJ a. Zw a Inc., ɘ L.3. 2-3...swale ap- proximately 100 feet south of Building 222 (Figure 3-7), the Jet Engine Test cell . With the exception of VOC, all param- eters detected at 15-B

  11. Cottonwood Management Plan / Draft Programmatic Environmental Assessment. Proposed Implementation of a Cottonwood Management Plan Along Six Priority Segments of the Missouri River

    DTIC Science & Technology

    2010-02-01

    floodplain ridges, levees, and road embankments), concave-up areas ( depressions , such as river channels, floodplain swales, and drainage ditches), and areas... depressions in dry, open, sandy areas with less than 30 percent vegetative cover and plant heights less than 1 foot (from USFWS 1990b; USFWS, 1990c as...U.S. Department of the Interior, NPS and the U.S. Army Corps of Engineers. National Park Service (NPS). 2007. First Annual Centennial Strategy for

  12. Seismic reflection and vibracoring studies of the continental shelf offshore central and western Long Island, New York

    USGS Publications Warehouse

    Kelly, W.M.; Albanese, J.R.; Coch, N.K.; Harsch, A.A.

    1999-01-01

    The ridge-and-swale topography on the continental shelf south of Fire Island, New York, is characterized by northeast-trending linear shoals that are shore attached and shore oblique on the inner shelf and isolated and shore parallel on the middle shelf. High-resolution seismic reflection profiles show that the ridges and swales occur independent of, and are not controlled by, the presence of internal structures (for example, filled tidal inlet channels, paleobarrier strata) or underlying structure (for example, high-relief Cretaceous unconformity). Grab samples of surficial sediments on the shelf south of Fire Island average 98% sand. Locally, benthic fauna increase silt and clay content through fecal pellet production or increase the content of gravel-size material by contribution of their fragmented shell remains. Surficial sand on the ridges is unimodal at 0.33 mm (medium sand, about 50 mesh), and surficial sand in troughs is bimodal at 0.33 mm and 0.15 mm (fine sand, about 100 mesh). In addition to seismic studies, 26 vibracores were recovered from the continental shelf in state and federal waters from south of Rockaway and Long Beaches, Long Island, New York. Stratigraphic and sedimentological data gleaned from these cores were used to outline the geologic framework in the study area. A variety of sedimentary features were noted in the cores, including burrow-mottled sections of sand in a finer silty-sand, rhythmic lamination of sand and silty-sand that reflect cyclic changes in sediment transport, layers of shell hash and shells that probably represent tempestites, and changes from dark color to light color in the sediments that probably represent changes in the oxidation-reduction conditions in the area with time. The stratigraphic units identified are an upper, generally oxidized, nearshore facies, an underlying fine- to medium-sand and silty-clay unit considered to be an estuarine facies, and a lower, coarse-grained deeply oxidized, cross-laminated pre-Holocene unit. Grain-size analysis shows that medium- to fine-grained sand makes up most (68-99%) of the surficial sediments. Gravel exists in trace amounts up to 19%. Silt ranges between 3% and 42% and clay ranges from 1% to 10%.The ridge-and-swale topography on the continental shelf south of Fire Island, New York, is characterized by northeast-trending linear shoals that are shore attached and shore oblique on the inner shelf and isolated and shore parallel on the middle shelf. High-resolution seismic reflection profiles show that the ridges and swales occur independent of, and are not controlled by, the presence of internal structures (for example, filled tidal inlet channels, paleobarrier strata) or underlying structure (for example, high-relief Cretaceous unconformity). Grab samples of surficial sediments on the shelf south of Fire Island average 98% sand. Locally, benthic fauna increase silt and clay content through fecal pellet production or increase the content of gravel-size material by contribution of their fragmented shell remains. Surficial sand on the ridges is unimodal at 0.33 mm (medium sand, about 50 mesh), and surficial sand in troughts is bimodal at 0.33 mm and 0.15 mm (fine sand, about 100 mesh). In addition to seismic studies, 26 vibracores were recovered from the continental shelf in state and federal waters from south of Rockaway and Long Beaches, Long Island, New York. Stratigraphic and sedimentological data gleaned from these cores were used to outline the geologic framework in the study area. A variety of sedimentary features were noted in the cores, including burrow-mottled sections of sand in a finer silty-sand, rhythmic lamination of sand and silty-sand that reflect cyclic changes in sediment transport, layers of shell hash and shells that probably represent tempestites, and changes from dark color to light color in the sediments that probably represent changes in the oxidation-reduction conditions in the area with time. The stratigraphic un

  13. KSC-04pd2111

    NASA Image and Video Library

    2004-10-08

    KENNEDY SPACE CENTER, FLA. - Technician Grace Miller-Swales does touch-up work on the Swift spacecraft in Hangar AE at Cape Canaveral Air Force Station. Swift is wrapped with blankets to provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission.

  14. Rooting-depth of Atriplex canescens (fourwing saltbush) in mine spoils at the Navajo Mine, northwestern New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stutz, H.C.; Buchanan, B.A.

    1990-12-31

    The distribution of roots was determined for fourteen mature plants of Atriplex canescens (fourwing saltbush) growing on mine spoils at the Navajo Mine in northwestern New Mexico and for two plants growing in contiguous unmined native soil. In all instances the amount of roots, by length, was negatively correlated with depth and positively correlated with percent water-content of the soils. The majority of roots (59%) were in the upper 100 cm; 72% were in the upper 150 cm; and 84% were in the upper 200 cm. These percentages were higher for plants growing on backslopes (64%, 77% and 88%, respectively)more » and much higher for those growing in native soils (84%, 93% and 96%, respectively). Most of the roots (83%) were less than 0.1 mm in diameter, and 93% were less than 0.5 mm in diameter. Plants growing in topsoiled sites had more roots per unit volume of soil (1.3 cm per cc of soil) than those growing in non-topsoiled sites (1.1 cm per cc of soil). Those growing in backslopes had more roots (1.3 cm per cc of soil) than growing in swales (1.0 cm per cc of soil) and those growing in soils that contained no fly-ash had more (0.78 cm per cc) than those growing in soils that contain fly ash (0.12 cm per cc of soil). Plants growing in native soils had a greater proportion of their roots near the surface than plants growing in mined soils. Plants growing in swales had a greater proportion of their roots below two meters than plants growing on backslopes.« less

  15. Agricultural runoff pollution control by a grassed swales coupled with wetland detention ponds system: a case study in Taihu Basin, China.

    PubMed

    Zhao, Jinhui; Zhao, Yaqian; Zhao, Xiaoli; Jiang, Cheng

    2016-05-01

    The performance of a field grassed swales (GSs) coupled with wetland detention ponds (WDPs) system was monitored under four typical rainfall events to assess its effectiveness on agricultural runoff pollution control in Taihu Basin, China. The results indicated that suspended solids (SS) derived from the flush process has significant influence on pollution loads in agricultural runoff. Determination of first flush effect (FFE) indicated that total suspended solids (TSS) and total phosphorus (TP) exhibited moderate FFE, while chemical oxygen demand (COD) and total nitrogen (TN) showed weak FFE. Average removal efficiencies of 83.5 ± 4.5, 65.3 ± 6.8, 91.6 ± 3.8, and 81.3 ± 5.8 % for TSS, COD, TN, and TP were achieved, respectively. The GSs played an important role in removing TSS and TP and acted as a pre-treatment process to prevent clogging of the subsequent WDPs. Particle size distributions (PSDs) analysis indicated that coarse particles larger than 75 μm accounted for 80 % by weight of the total particles in the runoff. GSs can effectively reduce coarse particles (≥75 μm) in runoff, while its removal efficiency for fine particles (<75 μm) was low, even minus results being recorded, especially for particles smaller than 25 μm. The length of GSs is a key factor in its performance. The WDPs can remove particles of all sizes by sedimentation. In addition, WDPs can improve water quality due to their buffering and dilution capacity during rainfall as well as their water purification ability during dry periods. Overall, the ecological system of GSs coupled with WDPs is an effective system for agricultural runoff pollution control.

  16. The effects of low impact development on urban flooding under different rainfall characteristics.

    PubMed

    Qin, Hua-peng; Li, Zhuo-xi; Fu, Guangtao

    2013-11-15

    Low impact development (LID) is generally regarded as a more sustainable solution for urban stormwater management than conventional urban drainage systems. However, its effects on urban flooding at a scale of urban drainage systems have not been fully understood particularly when different rainfall characteristics are considered. In this paper, using an urbanizing catchment in China as a case study, the effects of three LID techniques (swale, permeable pavement and green roof) on urban flooding are analyzed and compared with the conventional drainage system design. A range of storm events with different rainfall amounts, durations and locations of peak intensity are considered for holistic assessment of the LID techniques. The effects are measured by the total flood volume reduction during a storm event compared to the conventional drainage system design. The results obtained indicate that all three LID scenarios are more effective in flood reduction during heavier and shorter storm events. Their performance, however, varies significantly according to the location of peak intensity. That is, swales perform best during a storm event with an early peak, permeable pavements perform best with a middle peak, and green roofs perform best with a late peak, respectively. The trends of flood reduction can be explained using a newly proposed water balance method, i.e., by comparing the effective storage depth of the LID designs with the accumulative rainfall amounts at the beginning and end of flooding in the conventional drainage system. This paper provides an insight into the performance of LID designs under different rainfall characteristics, which is essential for effective urban flood management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Woody-grass ratios in a grassy arid system are limited by multi-causal interactions of abiotic constraint, competition and fire.

    PubMed

    Nano, Catherine E M; Clarke, Peter J

    2010-03-01

    Predicting changes in vegetation structure in fire-prone arid/semi-arid systems is fraught with uncertainty because the limiting factors to coexistence between grasses and woody plants are unknown. We investigated abiotic and biotic factors influencing boundaries and habitat membership in grassland (Triodia or 'spinifex' grassland)-shrubland (Acacia aneura or 'mulga' shrubland) mosaics in semi-arid central Australia. We used a field experiment to test for the effects of: (1) topographic relief (dune/swale habitat), (2) adult neighbour removal, and (3) soil type (sand/clay) on seedling survival in three shrub and two grass species in reciprocal field plantings. Our results showed that invasion of the shrubland (swale) by neighbouring grassland species is negated by abiotic limitations but competition limits shrubland invasion of the grassland (dune). All species from both habitats had significantly reduced survival in the grassland (dune) in the presence of the dominant grass (Triodia) regardless of soil type or shade. Further, the removal of the dominant grass allowed the shrubland dominant (A. aneura) to establish outside its usual range. Seedling growth and sexual maturation of the shrubland dominant (A. aneura) was slow, implying that repeated fire creates an immaturity risk for this non-sprouter in flammable grassland. By contrast, rapid growth and seed set in the grassland shrubs (facultative sprouters) provides a solution to fire exposure prior to reproductive onset. In terms of landscape dynamics, we argue that grass competition and fire effects are important constraints on shrubland patch expansion, but that their relative importance will vary spatially throughout the landscape because of spatial and temporal rainfall variability.

  18. Assessment of existing roadside swales with engineered filter soil: II. Treatment efficiency and in situ mobilization in soil columns.

    PubMed

    Ingvertsen, Simon T; Cederkvist, Karin; Jensen, Marina B; Magid, Jakob

    2012-01-01

    Use of roadside infiltration systems using engineered filter soil for optimized treatment has been common practice in Germany for decades, but little documentation is available regarding their long-term treatment performance. Here we present the results of laboratory leaching experiments with intact soil columns (15 cm i.d., 25-30 cm length) collected from two German roadside infiltration swales constructed in 1997. The columns were irrigated with synthetic solutions of unpolluted or polluted (dissolved heavy metals and fine suspended solids) road runoff, as well as a soluble nonreactive tracer (bromide) and a dye (brilliant blue). The experiments were performed at two irrigation rates corresponding to catchment rainfall intensities of approximately 5.1 and 34 mm/h. The bromide curves indicated that preferential flow was more pronounced at high irrigation rates, which was supported by the flow patterns revealed in the dye tracing experiment. Nonetheless, the soils seemed to be capable of retaining most of the dissolved heavy metals from the polluted road runoff at both low and high irrigation rates, except for Cr, which appears to pass through the soil as chromate. Fluorescent microspheres (diameter = 5 μm) used as surrogates for fine suspended solids were efficiently retained by the soils (>99%). However, despite promising treatment abilities, internal mobilization of heavy metals and P from the soil was observed, resulting in potentially critical effluent concentrations of Cu, Zn, and Pb. This is mainly ascribed to high concentrations of in situ mobilized dissolved organic carbon (DOC). Suggestions are provided for possible improvements and further research to minimize DOC mobilization in engineered filter soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. KSC-04pd2109

    NASA Image and Video Library

    2004-10-08

    KENNEDY SPACE CENTER, FLA. - Technician Grace Miller-Swales (left) does touch-up work on the Swift spacecraft in Hangar AE at Cape Canaveral Air Force Station. John Batilito, with Quality Assurance Services, is at right. Swift is wrapped with blankets to provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission.

  20. KSC-04pd2110

    NASA Image and Video Library

    2004-10-08

    KENNEDY SPACE CENTER, FLA. - Technician Grace Miller-Swales (left) does touch-up work on the Swift spacecraft in Hangar AE at Cape Canaveral Air Force Station. John DiBatilito is at right. Swift is wrapped with blankets to provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission.

  1. KSC-04pd2108

    NASA Image and Video Library

    2004-10-08

    KENNEDY SPACE CENTER, FLA. - Technician Grace Miller-Swales (left) does touch-up work on the Swift spacecraft in Hangar AE at Cape Canaveral Air Force Station. John DiBatilito, with Quality Assurance Services, is at right. Swift is wrapped with blankets to provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission.

  2. Centimeter-scale surface deformation caused by the 2011 Mineral, Virginia, earthquake sequence at the Carter farm site—Subsidiary structures with a quaternary history

    USGS Publications Warehouse

    Harrison, Richard W.; Schindler, J. Stephen; Pavich, Milan J.; Horton, J. Wright; Carter, Mark W.

    2016-08-25

    Centimeter-scale ground-surface deformation was produced by the August 23, 2011, magnitude (M) 5.8 earthquake that occurred in Mineral, Virginia. Ground-surface deformation also resulted from the earthquake aftershock sequence. This deformation occurred along a linear northeast-trend near Pendleton, Virginia. It is approximately 10 kilometers (km) northeast of the M5.8 epicenter and near the northeastern periphery of the epicentral area as defined by aftershocks. The ground-surface deformation extends over a distance of approximately 1.4 km and consists of parallel, small-scale (a few centimeters (cm) in amplitude) linear ridges and swales. Individual ridge and swale features are discontinuous and vary in length across a zone that ranges from about 20 meters (m) to less than 5 m in width. At one location, three fence posts and adjoining rails were vertically misaligned. Approximately 5 cm of uplift on one post provides a maximum estimate of vertical change from pre-earthquake conditions along the ridge and swale features. There was no change in the alignment of fence posts, indicating that deformation was entirely vertical. A broad monoclinal flexure with approximately 1 m of relief was identified by transit survey across surface deformation at the Carter farm site. There, surface deformation overlies the Carter farm fault, which is a zone of brittle faulting and fracturing along quartz veins, striking N40°E and dipping approximately 75°SE. Brecciation and shearing along this fault is interpreted as Quaternary in age because it disrupts the modern B-soil horizon. However, deformation is confined to saprolitized schist of the Ordovician Quantico Formation and the lowermost portion of overlying residuum, and is absent in the uppermost residuum and colluvial layer at the ground surface. Because there is a lack of surface shearing and very low relief, landslide processes were not a causative mechanism for the surface deformation. Two possible tectonic models and one non-tectonic model are considered: (1) tectonic, monoclinal flexuring along the Carter farm fault, probably aseismic, (2) tectonic, monoclinal flexuring related to a shallow (1–3 km) cluster of aftershocks (M2 to M3) that occurred approximately 1 to 1.5 km to the east of Carter farm, and (3) non-tectonic, differential response to seismic shaking between more-rigid quartz veins and soft residuum-saprolite under vertical motions that were created by Rayleigh surface waves radiating away from the August 23, 2011, hypocenter and propagating along strike of the Carter farm fault. These processes are not considered mutually exclusive, and all three support brittle deformation on the Carter farm fault during the Quaternary. In addition, abandoned stream valleys and active stream piracy are consistent with long-term uplift in vicinity of the Carter farm fault.

  3. Pancam multispectral imaging results from the Spirit Rover at Gusev crater

    USGS Publications Warehouse

    Bell, J.F.; Squyres, S. W.; Arvidson, R. E.; Arneson, H.M.; Bass, D.; Blaney, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.; Goetz, W.; Golombek, M.; Grant, J. A.; Greeley, R.; Guinness, E.; Hayes, A.G.; Hubbard, M.Y.H.; Herkenhoff, K. E.; Johnson, M.J.; Johnson, J. R.; Joseph, J.; Kinch, K.M.; Lemmon, M.T.; Li, R.; Madsen, M.B.; Maki, J.N.; Malin, M.; McCartney, E.; McLennan, S.; McSween, H.Y.; Ming, D. W.; Moersch, J.E.; Morris, R.V.; Dobrea, E.Z.N.; Parker, T.J.; Proton, J.; Rice, J. W.; Seelos, F.; Soderblom, J.; Soderblom, L.A.; Sohl-Dickstein, J. N.; Sullivan, R.J.; Wolff, M.J.; Wang, A.

    2004-01-01

    Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.

  4. Pancam multispectral imaging results from the Spirit Rover at Gusev Crater.

    PubMed

    Bell, J F; Squyres, S W; Arvidson, R E; Arneson, H M; Bass, D; Blaney, D; Cabrol, N; Calvin, W; Farmer, J; Farrand, W H; Goetz, W; Golombek, M; Grant, J A; Greeley, R; Guinness, E; Hayes, A G; Hubbard, M Y H; Herkenhoff, K E; Johnson, M J; Johnson, J R; Joseph, J; Kinch, K M; Lemmon, M T; Li, R; Madsen, M B; Maki, J N; Malin, M; McCartney, E; McLennan, S; McSween, H Y; Ming, D W; Moersch, J E; Morris, R V; Dobrea, E Z Noe; Parker, T J; Proton, J; Rice, J W; Seelos, F; Soderblom, J; Soderblom, L A; Sohl-Dickstein, J N; Sullivan, R J; Wolff, M J; Wang, A

    2004-08-06

    Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.

  5. Pancam multispectral imaging results from the Spirit Rover at Gusev Crater

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Blaney, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.; hide

    2004-01-01

    Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.

  6. Stormwater Pollution Prevention Plan (SWPPP) for Coal Storage Area Stabilization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Project and Design Engineering

    2011-03-01

    The scope of this project is to stabilize the abandoned coal storage area and redirect the storm water runoff from sanitary sewer system to the storm drain system. Currently, the existing storm water runoff is directed to a perimeter concrete drainage swale and collected in a containment basin. The collected water is then pumped to a treatment facility and after treatment, is discharged to the Y-12 sanitary sewer system. The existing drainage swale and collection basin along with silt fencing will be used during aggregate placement and grading to provide erosion and sediment control. Inlet protection will also be installedmore » around existing structures during the storm water diversion construction. This project scope will include the installation of a non-woven geotextile fabric and compacted mineral aggregate base (paving optional) to stabilize the site. The geotextile specifications are provided on the vendor cut sheets in Appendix B. The installation of a storm water collection/retention area will also be installed on the southern side of the site in accordance with EPA Technical Guidance on Implementing the Stormwater Runoff Requirements for federal Projects under Section 438 of the Energy Independence and Security Act. The total area to be disturbed is approximately 2.5 acres. The order of activities for this Stormwater Pollution Prevention Plan (SWPPP) will be: (1) post notice of coverage (NOC) in a prominent display near entrance of the site; (2) install rain gauge on site or contact Y-12 Plant Shift Superintendent daily for Met tower rain gauge readings; (3) install stabilized construction exit on site; (4) install silt fencing along perimeter as indicated on the attached site plan; (5) regrade site; (6) install geotextile fabric and compacted mineral aggregate base; (7) install catch basin inlet protection where required; (8) excavate and lower existing catch basin tops, re-grade and asphalt to drain; and (9) when all disturbed areas are re-stabilized, remove silt fencing and any other temporary erosion control.« less

  7. Challenges in Modeling Debris-Flow Initiation during the Exceptional September 2013 Northern Colorado Front Range Rainstorm

    NASA Astrophysics Data System (ADS)

    Baum, R. L.; Coe, J. A.; Godt, J.; Kean, J. W.

    2014-12-01

    Heavy rainfall during 9 - 13 September 2013 induced about 1100 debris flows in the foothills and mountains of the northern Colorado Front Range. Eye-witness accounts and fire-department records put the times of greatest landslide activity during the times of heaviest rainfall on September 12 - 13. Antecedent soil moisture was relatively low, particularly at elevations below 2250 m where many of the debris flows occurred, based on 45 - 125 mm of summer precipitation and absence of rainfall for about 2 weeks before the storm. Mapping from post-event imagery and field observations indicated that most debris flows initiated as small, shallow landslides. These landslides typically formed in colluvium that consisted of angular clasts in a sandy or silty matrix, depending on the nature of the parent bedrock. Weathered bedrock was partially exposed in the basal surfaces of many of the shallow source areas at depths ranging from 0.2 to 5 m, and source areas commonly occupied less than 500 m2. Although 49% of the source areas occurred in swales and 3 % in channels, where convergent flow might have contributed to pore-pressure build up during the rainfall, 48% of the source areas occurred on open slopes. Upslope contributing areas of most landslides (58%) were small (< 1000 m2) and 78% of the slides occurred on south-facing slopes (90°≤ aspect ≤270°). These observations pose challenges for modeling initiation of the debris flows. Effects of variable soil depth and properties, vegetation, and rainfall must be examined to explain the dominance of debris flows on south-facing slopes. Accounting for the small sizes and mixed swale and open-slope settings of source areas demands new approaches for resolving soil-depth and physical-properties variability. The low-moisture initial conditions require consideration of unsaturated zone effects. Ongoing fieldwork and computational modeling are aimed at addressing these challenges related to initiation of the September 2013 debris flows.

  8. Water balance of field-excavated aestivating Australian desert frogs, the cocoon-forming Neobatrachus aquilonius and the non-cocooning Notaden nichollsi (Amphibia: Myobatrachidae).

    PubMed

    Cartledge, Victoria A; Withers, Philip C; McMaster, Kellie A; Thompson, Graham G; Bradshaw, S Don

    2006-09-01

    Burrowed aestivating frogs of the cocoon-forming species Neobatrachus aquilonius and the non-cocooning species Notaden nichollsi were excavated in the Gibson Desert of central Australia. Their hydration state (osmotic pressure of the plasma and urine) was compared to the moisture content and water potential of the surrounding soil. The non-cocooning N. nichollsi was consistently found in sand dunes. While this sand had favourable water potential properties for buried frogs, the considerable spatial and temporal variation in sand moisture meant that frogs were not always in positive water balance with respect to the surrounding soil. The cocoon-forming N. aquilonius was excavated from two distinct habitat types, a claypan in which frogs had a well-formed cocoon and a dune swale where frogs did not have a cocoon. Cocoons of excavated frogs ranged in thickness from 19.4 microm to 55.61 microm and consisted of 81-229 layers. Cocooned claypan N. aquilonius were nearing exhaustion of their bladder water reserves and had a urine osmolality approaching that of the plasma. By contrast, non-cocooned N. aquilonius from the dune swale were fully hydrated, although soil moisture levels were not as high as calculated to be necessary to maintain water balance. Both species had similar plasma arginine vasotocin (AVT) concentrations ranging from 9.4 to 164 pg ml(-1), except for one cocooned N. aquilonius with a higher concentration of 394 pg ml(-1). For both species, AVT showed no relationship with plasma osmolality over the lower range of plasma osmolalities but was appreciably increased at the highest osmolality recorded. This study provides the first evidence that cocoon formation following burrowing is not obligatory in species that are capable of doing so, but that cocoon formation occurs when soil water conditions are more desiccating than for non-cocooned frogs.

  9. Tsunami sediments and their grain size characteristics

    NASA Astrophysics Data System (ADS)

    Sulastya Putra, Purna

    2018-02-01

    Characteristics of tsunami deposits are very complex as the deposition by tsunami is very complex processes. The grain size characteristics of tsunami deposits are simply generalized no matter the local condition in which the deposition took place. The general characteristics are fining upward and landward, poor sorting, and the grain size distribution is not unimodal. Here I review the grain size characteristics of tsunami deposit in various environments: swale, coastal marsh and lagoon/lake. Review results show that although there are similar characters in some environments and cases, but in detail the characteristics in each environment can be distinguished; therefore, the tsunami deposit in each environment has its own characteristic. The local geological and geomorphological condition of the environment may greatly affect the grain size characteristics.

  10. Comparative analysis of the outflow water quality of two sustainable linear drainage systems.

    PubMed

    Andrés-Valeri, V C; Castro-Fresno, D; Sañudo-Fontaneda, L A; Rodriguez-Hernandez, J

    2014-01-01

    Three different drainage systems were built in a roadside car park located on the outskirts of Oviedo (Spain): two sustainable urban drainage systems (SUDS), a swale and a filter drain; and one conventional drainage system, a concrete ditch, which is representative of the most frequently used roadside drainage system in Spain. The concentrations of pollutants were analyzed in the outflow of all three systems in order to compare their capacity to improve water quality. Physicochemical water quality parameters such as dissolved oxygen, total suspended solids, pH, electrical conductivity, turbidity and total petroleum hydrocarbons were monitored and analyzed for 25 months. Results are presented in detail showing significantly smaller amounts of outflow pollutants in SUDS than in conventional drainage systems, especially in the filter drain which provided the best performance.

  11. Evaluation of an Infiltration Model with Microchannels

    NASA Astrophysics Data System (ADS)

    Garcia-Serrana, M.; Gulliver, J. S.; Nieber, J. L.

    2015-12-01

    This research goal is to develop and demonstrate the means by which roadside drainage ditches and filter strips can be assigned the appropriate volume reduction credits by infiltration. These vegetated surfaces convey stormwater, infiltrate runoff, and filter and/or settle solids, and are often placed along roads and other impermeable surfaces. Infiltration rates are typically calculated by assuming that water flows as sheet flow over the slope. However, for most intensities water flow occurs in narrow and shallow micro-channels and concentrates in depressions. This channelization reduces the fraction of the soil surface covered with the water coming from the road. The non-uniform distribution of water along a hillslope directly affects infiltration. First, laboratory and field experiments have been conducted to characterize the spatial pattern of flow for stormwater runoff entering onto the surface of a sloped surface in a drainage ditch. In the laboratory experiments different micro-topographies were tested over bare sandy loam soil: a smooth surface, and three and five parallel rills. All the surfaces experienced erosion; the initially smooth surface developed a system of channels over time that increased runoff generation. On average, the initially smooth surfaces infiltrated 10% more volume than the initially rilled surfaces. The field experiments were performed in the side slope of established roadside drainage ditches. Three rates of runoff from a road surface into the swale slope were tested, representing runoff from 1, 2, and 10-year storm events. The average percentage of input runoff water infiltrated in the 32 experiments was 67%, with a 21% standard deviation. Multiple measurements of saturated hydraulic conductivity were conducted to account for its spatial variability. Second, a rate-based coupled infiltration and overland model has been designed that calculates stormwater infiltration efficiency of swales. The Green-Ampt-Mein-Larson assumptions were implemented to calculate infiltration along with a kinematic wave model for overland flow that accounts for short-circuiting of flow. Additionally, a sensitivity analysis on the parameters implemented in the model has been performed. Finally, the field experiments results have been used to quantify the validity of the coupled model.

  12. Microcomputer spacecraft thermal analysis routines (MSTAR) Phase I: The user interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teti, N.M.

    1993-12-31

    The Microcomputer Spacecraft Thermal Analysis Routines (MSTAR) software package is being developed for NASA/Goddard Space Flight Center by Swales and Associates, Inc. (S&AI). In December 1992, S&AI was awarded a phase I Small Business Inovative Research contract fronm NASA to develop a microcomputer based thermal analysis program to replace the current SSPTA and TRASYS programs. Phase I consists of a six month effort which will focus on developing geometric model generation and visualization capabilities using a graphical user interface (GUI). The information contained in this paper encompasses the work performed during the Phase I development cycle; with emphasis on themore » development of the graphical user interface (GUI). This includes both the theory behind and specific examples of how the MSTAR GUI was implemented. Furthermore, this report discusses new applications and enhancements which will improve the capabilities and commercialization of the MSTAR program.« less

  13. Microcomputer spacecraft thermal analysis routines (MSTAR) Phase I: The user interface

    NASA Technical Reports Server (NTRS)

    Teti, Nicholas M.

    1993-01-01

    The Microcomputer Spacecraft Thermal Analysis Routines (MSTAR) software package is being developed for NASA/Goddard Space Flight Center by Swales and Associates, Inc. (S&AI). In December 1992, S&AI was awarded a phase I Small Business Inovative Research contract fronm NASA to develop a microcomputer based thermal analysis program to replace the current SSPTA and TRASYS programs. Phase I consists of a six month effort which will focus on developing geometric model generation and visualization capabilities using a graphical user interface (GUI). The information contained in this paper encompasses the work performed during the Phase I development cycle; with emphasis on the development of the graphical user interface (GUI). This includes both the theory behind and specific examples of how the MSTAR GUI was implemented. Furthermore, this report discusses new applications and enhancements which will improve the capabilities and commercialization of the MSTAR program.

  14. KSC-06pd2798

    NASA Image and Video Library

    2006-12-14

    KENNEDY SPACE CENTER, FLA. -- THEMIS logo: NASA's 2-year Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission consists of five identical probes that will track these violent, colorful eruptions near the North Pole. When the five identical probes align over the North American continent, scientists will collect coordinated measurements along the Sun-Earth line, allowing the first comprehensive look at the onset of substorms and how they trigger auroral eruptions. Over the mission’s lifetime, the probes should be able to observe some 30 substorms – sufficient to finally know their origin. THEMIS is a NASA-funded mission managed by the Explorers Program Office at Goddard Space Flight Center in Greenbelt, Md. The Space Science Laboratory at the University of California at Berkeley is responsible for the project management, science instruments, mission integration, post launch operations and data analysis. Swales Aerospace of Beltsville, Md., manufactured the THEMIS spacecraft bus.

  15. Hydrology and Water and Sediment Quality at James Campbell National Wildlife Refuge near Kahuku, Island of Oahu, Hawaii

    USGS Publications Warehouse

    Hunt, Charles D.; De Carlo, Eric H.

    2000-01-01

    The James Campbell National Wildlife Refuge occupies two lowland marsh and pond complexes on the northern coastal plain of Oahu: the mostly natural ponds and wetlands of the Punamano Unit and the constructed ponds of the Kii Unit. The U.S. Fish and Wildlife Service manages the Refuge primarily to protect and enhance habitat for four endangered species of Hawaiian waterbirds. Kii Unit is fed by artesian wells and rainfall, whereas Punamano Unit is fed naturally by rainfall, runoff, and ground-water seepage. Streams drain from the uplands into lowland ditches that pass through Kii Unit on their way to the ocean. A high-capacity pump transfers water from the inner ditch terminus at Kii to the ocean outlet channel. Stormwaters also exit the inner ditch system over flood-relief swales near the outlet pump and through a culvert with a one-way valve. A hydrologic investigation was done from November 1996 through February 1998 to identify and quantify principal inflows and outflows of water to and from the Refuge, identify hydraulic factors affecting flooding, document ground-water/surface-water interactions, determine the adequacy of the current freshwater supply, and determine water and sediment quality. These goals were accomplished by installing and operating a network of stream-gaging stations, meteorology stations, and shallow ground-water piezometers, by computing water budgets for the two Refuge units, and by sampling and analyzing water and pond-bottom sediments for major ions, trace metals, and organic compounds. Streamflow during the study was dominated by winter stormflows, followed by a gradual recession of flow into summer 1997, as water that had been stored in alluvial fans drained to lowland ditches. Outflow at the ditch terminus in 1997 was 125 million gallons greater than measured inflow to the coastal plain, mainly reflecting gains from ground water along the ditches between outlying gages and the ditch terminus. Of the measured 1997 outflow, 98 percent was through the Kii outlet pump, with the outlet culvert valve only opening for brief periods during storms. Large volumes of stormflow overflowed the flood-relief swales unmeasured. The largest storm of the study, in November 1996, was estimated to have a flood frequency of about 3 to 4 years. Streamflow exceeded culvert capacity and overtopped Kamehameha Highway at Kalaeokahipa Stream and Hospital ditch. Slight overbank flooding in Kii ditch resulted strictly from high discharge. Minor overbank flooding farther out on the coastal plain probably was caused mainly by the small hydraulic gradients available to convey stormflows along the lowland ditches. Stormwaters flooded Kii ponds and flowed back upstream along Punamano ditch into Punamano marsh, introducing suspended sediment and possibly other contaminants to the Refuge. Two smaller storms in January 1997 resulted in smaller flows and no overbank flooding. The Kii outlet pump ran continuously for 7 days during the November 1996 storm and for 1 to 2 days during the January 1997 storms. During all three storms, the outlet culvert valve opened and the inner ditches overtopped the flood-relief swales, allowing free outflow of water from the inner ditch. Backwater effects hindered drainage during the January 1997 storms at Hospital ditch at Kamehameha Highway, and at Punamano ditch at Nudist Camp Road (where the backflow into Punamano marsh in November 1996 constituted an extreme backwater effect). A probable marine backwater effect was imposed at the ocean outlet ditch during the November 1996 storm through a combination of high spring tides and wave setup from large surf. Whether this backwater effect propagated upstream in the ditches to affect inland sites could not be determined conclusively. A sand plug may have built up in the ocean outlet channel before the November 1996 storm, but if so, it probably washed out prior to, or early in the storm, and was not present at the time of peak stage at inlan

  16. SSUIS - a research model for predicting suspended solids loads in stormwater runoff from urban impervious surfaces.

    PubMed

    Brodie, Ian M

    2012-01-01

    Suspended solids from urban impervious surfaces (SSUIS) is a spreadsheet-based model that predicts the mass loading of suspended solids (SS) in stormwater runoff generated from impervious urban surfaces. The model is intended to be a research tool and incorporates several particle accumulation and washoff processes. Development of SSUIS is based on interpretation of storm event data obtained from a galvanised iron roof, a concrete car park and a bitumen road located in Toowoomba, Australia. SSUIS is a source area model that tracks the particle mass balance on the impervious surface and within its lateral drain to a point of discharge. Particles are separated into two groups: free and detained, depending on the rainfall energy required for surface washoff. Calibration and verification of SSUIS against the Toowoomba SS data yielded R(2) values ranging from 0.60 to 0.98. Parameter sensitivity analysis and an example of how SSUIS can be applied to predict the treatment efficiency of a grass swale are also provided.

  17. CRT--Cascade Routing Tool to define and visualize flow paths for grid-based watershed models

    USGS Publications Warehouse

    Henson, Wesley R.; Medina, Rose L.; Mayers, C. Justin; Niswonger, Richard G.; Regan, R.S.

    2013-01-01

    The U.S. Geological Survey Cascade Routing Tool (CRT) is a computer application for watershed models that include the coupled Groundwater and Surface-water FLOW model, GSFLOW, and the Precipitation-Runoff Modeling System (PRMS). CRT generates output to define cascading surface and shallow subsurface flow paths for grid-based model domains. CRT requires a land-surface elevation for each hydrologic response unit (HRU) of the model grid; these elevations can be derived from a Digital Elevation Model raster data set of the area containing the model domain. Additionally, a list is required of the HRUs containing streams, swales, lakes, and other cascade termination features along with indices that uniquely define these features. Cascade flow paths are determined from the altitudes of each HRU. Cascade paths can cross any of the four faces of an HRU to a stream or to a lake within or adjacent to an HRU. Cascades can terminate at a stream, lake, or HRU that has been designated as a watershed outflow location.

  18. Spatiotemporal throughfall patterns beneath an urban tree row

    NASA Astrophysics Data System (ADS)

    Bogeholz, P.; Van Stan, J. T., II; Hildebrandt, A.; Friesen, J.; Dibble, M.; Norman, Z.

    2016-12-01

    Much recent research has focused on throughfall patterns in natural forests as they can influence the heterogeneity of surface ecohydrological and biogeochemical processes. However, to the knowledge of the authors, no work has assessed how urban forest structures affect the spatiotemporal variability of throughfall water flux. Urbanization greatly alters not only a significant portion of the land surface, but canopy structure, with the most typical urban forest configuration being landscaped tree rows along streets, swales, parking lot medians, etc. This study examines throughfall spatiotemporal patterns for a landscaped tree row of Pinus elliottii (Engelm., slash pine) on Georgia Southern University's campus (southeastern, USA) using 150 individual observations per storm. Throughfall correlation lengths beneath this tree row were similar to, but appeared to be more stable across storm size than, observations in past studies on natural forests. Individual tree overlap and the planting interval also may more strongly drive throughfall patterns in tree rows. Meteorological influences beyond storm magnitude (intensity, intermittency, wind conditions, and atmospheric moisture demand) are also examined.

  19. Analysis on LID for highly urbanized areas' waterlogging control: demonstrated on the example of Caohejing in Shanghai.

    PubMed

    Liao, Z L; He, Y; Huang, F; Wang, S; Li, H Z

    2013-01-01

    Although a commonly applied measure across the United States and Europe for alleviating the negative impacts of urbanization on the hydrological cycle, low impact development (LID) has not been widely used in highly urbanized areas, especially in rapidly urbanizing cities in developing countries like China. In this paper, given five LID practices including Bio-Retention, Infiltration Trench, Porous Pavement, Rain Barrels, and Green Swale, an analysis on LID for highly urbanized areas' waterlogging control is demonstrated using the example of Caohejing in Shanghai, China. Design storm events and storm water management models are employed to simulate the total waterlogging volume reduction, peak flow rate reduction and runoff coefficient reduction of different scenarios. Cost-effectiveness is calculated for the five practices. The aftermath shows that LID practices can have significant effects on storm water management in a highly urbanized area, and the comparative results reveal that Rain Barrels and Infiltration Trench are the two most suitable cost-effective measures for the study area.

  20. The Geological Trace Of The 1932 Tsunamis In The Tropical Jalisco-Colima Coast, Mexico

    NASA Astrophysics Data System (ADS)

    Ramirez-Herrera, M.; Blecher, L.; Goff, J. R.; Corona, N.; Chague-Goff, C.; Lagos, M.; Hutchinson, I.; Aguilar, B.; Goguitchaichrili, A.; Machain-Castillo, M. L.; Rangel, V.; Zawadzki, A.; Jacobsen, G.

    2013-05-01

    The study and preservation of tsunami deposits have being challenging in humid tropical environments. While tsunami deposits have been widely studied at temperate latitudes, few studies assess this problem in tropical environments due to the difficulties intrinsic to these places (e.g. tsunami deposit preservation, post-burial changes in a tropical environment, mangrove vegetation, difficult access, wildlife, among others). Here we assess the problem of tsunami-deposits preservation on the Jalisco-Colima tropical coast of Mexico, which parallels the more than 1000-km long Mexican subduction, where historical accounts indicate the occurrence of two significant tsunamis on June 3 and 22, 1932 (Corona and Ramírez-Herrera, 2012a, Valdivia et al., 2012). However, up to date, no geological evidence of these events has been reported. We present geological evidence of two large tsunamis related to the June 3, M 8.2 earthquake, and the June 22, Ms 6.9 landslide-triggering event of 1932 (Corona and Ramírez-Herrera, 2012a, b). A multiproxy approach was applied to unravel the nature of anomalous sand units and sharp basal contacts in the stratigraphy of a number of sites at Palo Verde estuary, El Tecuán swales and marsh, and La Manzanilla swales, on the Jalisco-Colima coast. Lines of evidence including historical, geomorphological, stratigraphic, grain size, organic matter content, microfossils (diatoms and foraminifera), geochemical content, magnetic susceptibility and AMS analyses, together with dating (210Pb and 14C), and modeling, corroborate the presence of tsunami deposits of both the 3 June 1932 tsunami at El Tecuán and La Manzanilla, and the 22 June 1932 tsunami at Palo Verde. Further evidence of earlier tsunamis, at least four events, is also evident in the stratigraphy. Work in progress should reveal the chronology of the earliest tsunamis and their origin. Corona, N., M.T. Ramirez-Herrera. (2012a) Mapping and historical reconstruction of the great Mexican 1932 tsunami. Natural Hazards and Earth System Sciences, 12, 1337-1352. NHESS-2011-369. Corona Morales N. y M.T. Ramírez-Herrera. (2012b) Técnicas histórico-etnográficas en la reconstrucción y caracterización de tsunamis: El ejemplo del gran tsunami del 22 de junio de 1932, en las costas del Pacífico Mexicano. Revista de Geografía Norte Grande. 53, 107-122. Valdivia O. L., Castillo A. M.R., Estrada T. M. (2012). Tsunamis en Jalisco, Geocalli, Cuadernos De Geografía, Universidad de Guadalajara. Año 13, No. 25, 103p.

  1. Wetlands Research Program Bulletin. Volume 5. Number 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, M.C.; Stutheit, R.G.; Davis, M.

    1995-03-01

    The city of Lincoln, Neb., was founded in the mid-18OOs along Salt Creek. During the last century, the saline marshes suffered extensive degradation through commercial and residential development, road construction, and agriculture. Today, Nebraska`s eastern saline wetlands are considered to be among the most restricted and imperiled ecosystems. Eastern Nebraska saline wetlands are regionally unique, located in floodplain swales and depressions within the Salt Creek and Rock Creek watersheds in Lancaster and southern Saunders counties. Water sources are a combination of discharge from the Dakota sandstone formation aquifer, precipitation, and overbank flooding. Salts are concentrated in the soil during drymore » periods. Vegetation in these wetlands is characterized by halophytes including spearscale (Atriplex subspicata), inland saltgrass (Distichlis spicata var. stricta), saltwort (Sa1icornia rubra), prairie bulrush (Scirpus mantimus var. paludosus), sea blite (Suaeda depressa), and narrow-leaved cattail (Typha angustifolia). Four plant species considered rare in Nebraska are saltmarsh aster (Aster subulatus var. ligulatus), seaside heliotrope (Heliotropium curassavicurn), saltwort, and Texas dropseed (Sporobolus texanus) can be found in the marshes along Salt Creek.« less

  2. Seasonal variation of fecal indicator bacteria in storm events within the US stormwater database.

    PubMed

    Pan, Xubin; Jones, Kim D

    2012-01-01

    Bacteria are one of the major causes of surface water impairments in the USA. Over the past several years, best management practices, including detention basins, manufactured devices, grass swales, filters and bioretention cells have been used to remove bacteria and other pollutants from stormwater runoff. However, there are data gaps in the comprehensive studies of bacteria concentrations in stormwater runoff. In this paper, the event mean concentration (EMC) of fecal indicator bacteria (Enterococcus, Escherichia coli, fecal Streptococcus group bacteria, and fecal coliform) across the USA was retrieved from the international stormwater best management practices database to analyze the seasonal variations of inflow and outflow event mean concentrations and removal efficiencies. The Kruskal-Wallis test was employed to determine the seasonal variations of bacteria indicator concentrations and removals, and the two-sample Kolmogorov-Smirnov test was used for comparing different seasonal outcomes. The results indicate that all the inflow EMC of FIB in stormwater runoff is above the water quality criteria. The seasonal differences of fecal Streptococcus group bacteria and fecal coliform are significant. Summer has the potential to increase the bacteria EMC and illustrate the seasonal differences.

  3. Efficiency of source control systems for reducing runoff pollutant loads: feedback on experimental catchments within Paris conurbation.

    PubMed

    Bressy, Adèle; Gromaire, Marie-Christine; Lorgeoux, Catherine; Saad, Mohamed; Leroy, Florent; Chebbo, Ghassan

    2014-06-15

    Three catchments, equipped with sustainable urban drainage systems (SUDS: vegetated roof, underground pipeline or tank, swale, grassed detention pond) for peak flow mitigation, have been compared to a reference catchment drained by a conventional separate sewer system in terms of hydraulic behaviour and discharged contaminant fluxes (organic matter, organic micropollutants, metals). A runoff and contaminant emission model has been developed in order to overcome land use differences. It has been demonstrated that the presence of peak flow control systems induces flow attenuation even for frequent rain events and reduces water discharges at a rate of about 50% depending on the site characteristics. This research has also demonstrated that this type of SUDS contributes to a significant reduction of runoff pollutant discharges, by 20%-80%. This level of reduction varies depending on the considered contaminant and on the design of the drainage system but is mostly correlated with the decrease in runoff volume. It could be improved if the design of these SUDS focused not only on the control of exceptional events but also targeted more explicitly the interception of frequent rain events. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Lineaments on Skylab photographs: Detection, mapping, and hydrologic significance in central Tennessee

    NASA Technical Reports Server (NTRS)

    Moore, G. K. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Lineaments were detected on Skylab photographs by stereo viewing, projection viewing, and composite viewing. Sixty-nine percent more lineaments were found by stereo viewing than by projection, but segments of projection lineaments are longer; total length of lineaments found by these two methods is nearly the same. Most Skylab lineaments consist of topographic depression: stream channel alinements, straight valley walls, elongated swales, and belts where sinkholes are abundant. Most of the remainder are vegetation alinements. Lineaments are most common in dissected areas having a thin soil cover. Results of test drilling show: (1) the median yield of test wells on Skylab lineaments is about six times the median yield of all existing wells; (2) three out of seven wells on Skylab lineaments yield more than 6.3 1/s (110 gal/min): (3) low yields are possible on lineaments as well as in other favorable locations; and (4) the largest well yields can be obtained at well locations of Skylab lineaments that also are favorably located with respect to topography and geologic structure, and are in the vicinity of wells with large yields.

  5. Anatomy of a shoreface sand ridge revisited using foraminifera: False Cape Shoals, Virginia/North Carolina inner shelf

    USGS Publications Warehouse

    Robinson, M.M.; McBride, R.A.

    2008-01-01

    Certain details regarding the origin and evolution of shelf sand ridges remain elusive. Knowledge of their internal stratigraphy and microfossil distribution is necessary to define the origin and to determine the processes that modify sand ridges. Fourteen vibracores from False Cape Shoal A, a well-developed shoreface-attached sand ridge on the Virginia/North Carolina inner continental shelf, were examined to document the internal stratigraphy and benthic foraminiferal assemblages, as well as to reconstruct the depositional environments recorded in down-core sediments. Seven sedimentary and foraminiferal facies correspond to the following stratigraphic units: fossiliferous silt, barren sand, clay to sandy clay, laminated and bioturbated sand, poorly sorted massive sand, fine clean sand, and poorly sorted clay to gravel. The units represent a Pleistocene estuary and shoreface, a Holocene estuary, ebb tidal delta, modern shelf, modern shoreface, and swale fill, respectively. The succession of depositional environments reflects a Pleistocene sea-level highstand and subsequent regression followed by the Holocene transgression in which barrier island/spit systems formed along the Virginia/North Carolina inner shelf ???5.2 ka and migrated landward and an ebb tidal delta that was deposited, reworked, and covered by shelf sand.

  6. Anatomy of a shoreface sand ridge revisted using foraminifera: False Cape Shoals, Virginia/North Carolina inner shelf

    USGS Publications Warehouse

    Robinson, Marci M.; McBride, Randolph A.

    2008-01-01

    Certain details regarding the origin and evolution of shelf sand ridges remain elusive. Knowledge of their internal stratigraphy and microfossil distribution is necessary to define the origin and to determine the processes that modify sand ridges. Fourteen vibracores from False Cape Shoal A, a well-developed shoreface-attached sand ridge on the Virginia/North Carolina inner continental shelf, were examined to document the internal stratigraphy and benthic foraminiferal assemblages, as well as to reconstruct the depositional environments recorded in down-core sediments. Seven sedimentary and foraminiferal facies correspond to the following stratigraphic units: fossiliferous silt, barren sand, clay to sandy clay, laminated and bioturbated sand, poorly sorted massive sand, fine clean sand, and poorly sorted clay to gravel. The units represent a Pleistocene estuary and shoreface, a Holocene estuary, ebb tidal delta, modern shelf, modern shoreface, and swale fill, respectively. The succession of depositional environments reflects a Pleistocene sea-level highstand and subsequent regression followed by the Holocene transgression in which barrier island/spit systems formed along the Virginia/North Carolina inner shelf not, vert, ~5.2 ka and migrated landward and an ebb tidal delta that was deposited, reworked, and covered by shelf sand.

  7. Effects of landscape-based green infrastructure on stormwater ...

    EPA Pesticide Factsheets

    The development of impervious surfaces in urban and suburban catchments affects their hydrological behavior by decreasing infiltration, increasing peak hydrograph response following rainfall events, and ultimately increasing the total volume of water and mass of pollutants reaching streams. These changes have deleterious effects on downstream surface waters. Consequently, strategies to mitigate these impacts are now components of contemporary urban development and stormwater management. This study evaluates the effectiveness of landscape green infrastructure (GI) in reducing stormwater runoff volumes and controlling peak flows in four subdivision-scale suburban catchments (1.88 – 12.97 acres) in Montgomery County, MD, USA. Stormwater flow rates during runoff events were measured in five minute intervals at each catchment outlet. One catchment was built with GI vegetated swales on all parcels with the goal of intercepting, conveying, and infiltrating stormwater before it enters the sewer network. The remaining catchments were constructed with traditional gray infrastructure and “end-of-pipe” best management practices (BMPs) that treat stormwater before entering streams. This study compared characteristics of rainfall-runoff events at the green and gray infrastructure sites to understand their effects on suburban hydrology. The landscape GI strategy generally reduced rainfall-runoff ratios compared to gray infrastructure because of increased infiltration, ul

  8. Catchment-scale environmental controls of sediment-associated contaminant dispersal

    NASA Astrophysics Data System (ADS)

    Macklin, Mark

    2010-05-01

    Globally river sediment associated contaminants, most notably heavy metals, radionuclides, Polychlorinated Biphenyls (PCBs), Organochlorine pesticides (OCs) and phosphorous, constitute one the most significant long-term risks to ecosystems and human health. These can impact both urban and rural areas and, because of their prolonged environmental residence times, are major sources of secondary pollution if contaminated soil and sediment are disturbed by human activity or by natural processes such as water or wind erosion. River catchments are also the primary source of sediment-associated contaminants to the coastal zone, and to the ocean, and an understanding of the factors that control contaminated sediment fluxes and delivery in river systems is essential for effective environmental management and protection. In this paper the catchment-scale controls of sediment-associated contaminant dispersal are reviewed, including climate-related variations in flooding regime, land-use change, channel engineering, restoration and flood defence. Drawing on case studies from metal mining impacted catchments in Bolivia (Río Pilcomayo), Spain (Río Guadiamar), Romania (River Tisa) and the UK (River Swale) some improved methodologies for identifying, tracing, modelling and managing contaminated river sediments are proposed that could have more general application in similarly affected river systems worldwide.

  9. Vernal Pools Detection Using High-Resolution LiDAR Data and Aerial Imagery in Hubbardston, Massachusetts

    NASA Astrophysics Data System (ADS)

    Jiang, Jiaxin

    Vernal pool refers to temporary or semi-permanent pools that occur in surface depressions without permanent inlets or outlets. Because they periodically dry out, vernal pools are free of fish and essential to amphibians, some reptiles, birds, and mammals for breeding habitats. In Massachusetts, vernal pool habitats are found in woodland depressions, swales or kettle holes where water is contained for at least two months in most years. However, vernal pools are delicate ecosystems. These systems are fragile to human activities such as urbanization. Understanding the current situation of vernal pools helps city planners make wiser decisions. This study focuses on identifying vernal pools in the state of Massachusetts with high-resolution light detection and ranging (LiDAR) data and aerial imagery. By using high-resolution light detection and ranging data, aerial imagery, land use data, the MassDEP Hydrography layer and the Soil Survey Geographic Database, the approach located over 1800 potential vernal pools in a 108 km 2 study area in Massachusetts. The assessment of the study result shows the commission rate was 5.6% and omission rate was 7.1%. This method provides an efficient way of locating vernal pools over large areas.

  10. Lower Klickitat Riparian and In-channel Habitat Restoration Project; Klickitat Watershed Enhancement, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conley, Will

    2004-01-01

    The overall goal of the Klickitat Watershed Enhancement Project (KWEP) is to restore watershed health to aid recovery of salmonid stocks in the Klickitat subbasin. An emphasis is placed on restoration and protection of stream reaches and watersheds supporting native anadromous fish production, particularly steelhead (Oncorhyncus mykiss; ESA- listed as 'Threatened' within the Mid-Columbia ESU) and spring Chinook (O. tshawytscha). Habitat restoration activities in the Klickitat subbasin augment goals and objectives of the Yakima Klickitat Fisheries Project (YKFP), NPPC Fish and Wildlife Program, Klickitat Subbasin Summary and the NMFS Biological Opinion (All-H paper). Work is conducted to enhance instream andmore » contributing upland habitat to facilitate increased natural production potential for native salmonid stocks. Efforts in the Klickitat Subbasin fall into two main categories: (1) identification and prioritization of sites for protection and restoration activities, (2) implementation of protection and restoration measures. KWEP personnel also assist monitoring efforts of the YKFP Monitoring & Evaluation Project. During the September 2002-August 2003 reporting period, KWEP personnel continued efforts to address feedback from the August 2000 Provincial Review that indicated a need for better information management and development of geographic priorities by: (1) Assisting development of the Strategic Habitat Plan for the Klickitat Lead Entity (Task A3.1) and Klickitat steelhead EDT model (Task A4.1); (2) Improving the functionality of reference point, habitat unit, and large woody debris modules of the habitat database as well as addition of a temperature module (Tasks A1.1-1.2); (3) Continuing development and acquisition of GIS data (Task A1.3); (4) Ongoing data collection efforts to fill information gaps including streamflow, habitat, and temperature (Objectives C1 and C2); and (5) Completion of planning, field work, and hydrologic modeling associated with roads assessment in the White Creek watershed (Task A4.2). Significant milestones associated with restoration projects during the reporting period included: (1) Completion of the Surveyors Fish Creek Passage Enhancement project (Task B2.3); (2) Completion of interagency agreements for the Klickitat Meadows (Task B2.4) and Klickitat Mill (Task B2.10) projects; (3) Completion of topographic surveys for the Klickitat Meadows (Task B2.4), Klickitat River Meadows (Task B2.5), Trout Creek and Bear Creek culvert replacements (Task B2.7), and Snyder Swale II (Task B2.13) projects; (4) Completion of the Snyder Swale II - Phase 1 project (Task B2.13); (5) Completion of design, planning, and permitting for the Klickitat Mill project (Task B2.10) and initiation of construction; (6) Design for the Trout and Bear Creek culverts (B2.7) were brought to the 60% level; and (7) Completion of design work for the for the Klickitat Meadows (Task B2.4) and Klickitat River Meadows (Task B2.5) projects.« less

  11. Comparison of Inflation Processes at the 1859 Mauna Loa Flow, HI, and the McCartys Flow Field, NM

    NASA Technical Reports Server (NTRS)

    Bleacher, Jacob E.; Garry, W. Brent; Zimbelman, James R.; Crumpler, Larry S.

    2012-01-01

    Basaltic lavas typically form channels or tubes during flow emplacement. However, the importance of sheet flow in the development of basalt ic terrains received recognition over the last 15 years. George Walke r?s research on the 1859 Mauna Loa Flow was published posthumously in 2009. In this paper he discusses the concept of endogenous growth, or inflation, for the distal portion of this otherwise channeldominated lava flow. We used this work as a guide when visiting the 1859 flow to help us better interpret the inflation history of the McCartys flow field in NM. Both well preserved flows display similar clues about the process of inflation. The McCartys lava flow field is among the you ngest (approx.3000 yrs) basaltic lava flows in the continental United States. It was emplaced over slopes of <1 degree, which is similar to the location within the 1859 flow where inflation occurred. Although older than the 1859 flow, the McCartys is located in an arid environ ment and is among the most pristine examples of sheet flow morphologies. At the meter scale the flow surface typically forms smooth, undula ting swales that create a polygonal terrain. The literature for simil ar features includes multiple explanatory hypotheses, original breakouts from adjacent lobes, or inflation related upwarping of crust or sa gging along fractures that enable gas release. It is not clear which of these processes is responsible for polygonal terrains, and it is po ssible that one explanation is not the sole cause of this morphology between all inflated flows. Often, these smooth surfaces within an inflated sheet display lineated surfaces and occasional squeeze-ups alon g swale contacts. We interpret the lineations to preserve original fl ow direction and have begun mapping these orientations to better interpret the emplacement history. At the scale of 10s to 100s of meters t he flow comprises multiple topographic plateaus and depressions. Some depressions display level floors with surfaces as described above, while some are bowl shaped with floors covered in broken lava slabs. Th e boundaries between plateaus and depressions are also typically smoo th, grooved surfaces that have been tilted to angles sometimes approaching vertical. The upper margin of these tilted surfaces displays lar ge cracks, sometimes containing squeeze-ups. The bottom boundary with smooth floored depressions typically shows embayment by younger lavas. It appears that this style of terrain represents the emplacement of an extensive sheet that experiences inflation episodes within prefer red regions where lateral spreading of the sheet is inhibited, thereby forming plateaus. Depressions are often the result of non-inflation and can be clearly identified by lateral squeeze-outs along the pit walls that form when the rising crust exposes the still liquid core of the sheet. Our current efforts are focused on.

  12. Dune formation on the Cooper Creek floodplain, Strzelecki Desert, Australia - first results of morphodynamic simulations

    NASA Astrophysics Data System (ADS)

    Kryger, Mateusz; Bubenzer, Olaf; Parteli, Eric

    2017-04-01

    Linear Dunes, which align longitudinally to the resultant wind vector, are the prevailing type of the south-north trending and partially vegetated dunes in the Strzelecki Desert, Australia. However, particularly on the Cooper Creek floodplain near Innamincka, striking complex dune features consisting of transversely oriented east-west trending dunes occur. These transverse dunes extend over several kilometers and are superimposed by linear dunes that elongate northwards and are separated by sandy swales. The aeolian features in the Strzelecki Desert are the result of interrelated late quaternary aeolian and fluvial activity and serve, thus, as archives providing information about variations in palaeoclimate and potential changes in fluvial sediment supply and wind strength and directionality. However, since the dunes are currently mostly stabilized by vegetation, it is uncertain whether their formation can be explained by the contemporary wind systems. To understand the dynamic processes underlying the genesis of the dune field in the Strzelecki Desert, the role of vegetation and the wind regimes leading to the observed dune patterns must be elucidated. Here we investigate the formative processes of the dune features occurring on the Cooper Creek floodplain by means of morphodynamic modeling of aeolian sand transport and dune formation in presence of vegetation growth. Our simulations show that a source-bordering dune can be formed out of the sediments of seasonally exposed sandbars of the palaeo-Cooper system by a unidirectional wind, which explains the emergence of the transverse dunes in the field. Moreover, a shift in the wind regime to obtuse bidirectional wind flows combined with a rapid decrease in the vegetation cover leads to the formation of linear dunes on the surface and in the lee of the transverse dunes. These linear dunes elongate over several kilometers downwind as a result of the seasonal wind changes. The dune shapes obtained in our simulations agree well with the real dune morphologies when a low vegetation growth rate is applied in the model. Although geochronological investigations, reported in the literature, on the Cooper Creek floodplain did not show the linear dunes declining in age downwind (which suggests the adjacent swales or the transverse dune to be the sediment source), our simulations show that strikingly similar linear dune morphologies can be obtained by sediment influx due to saltation alone. In this case, the bars of the palaeo-Cooper system might as well have served as the sediment source for the formation of the linear dunes. Therefore, our results suggest that a long-distance transport extension model could also explain the linear dune formation, while previous geochronological investigations supported the wind-rift vertical extension and wind-rift vertical accretion models. The morphodynamic simulations may thus not only help to reconstruct the palaeoenvironment of the northern Strzelecki Desert, but also provide insights for the interpretation of the sediment archives located on the Cooper Creek alluvial fan.

  13. Potential Sedimentary Evidence of Two Closely Spaced Tsunamis on the West Coast of Aceh, Indonesia

    NASA Astrophysics Data System (ADS)

    Monecke, Katrin; Meilianda, Ella; Rushdy, Ibnu; Moena, Abudzar; Yolanda, Irvan P.

    2016-04-01

    Recent research in the coastal regions of Aceh, Indonesia, an area that was largely affected by the 2004 Sumatra Andaman earthquake and ensuing Indian Ocean tsunami, suggests the possibility that two closely spaced tsunamis occurred at the turn of the 14th to 15th century (Meltzner et al., 2010; Sieh et al., 2015). Here, we present evidence of two buried sand layers in the coastal marshes of West Aceh, possibly representing these penultimate predecessors of the 2004 tsunami. We discovered the sand layers in an until recently inaccessible area of a previously studied beach ridge plain about 15 km North of Meulaboh, West Aceh. Here, the 2004 tsunami left a continuous, typically a few cm thick sand sheet in the coastal hinterland in low-lying swales that accumulate organic-rich deposits and separate the sandy beach ridges. In keeping with the long-term progradation of the coastline, older deposits have to be sought after further inland. Using a hand auger, the buried sand layers were discovered in 3 cores in a flooded and highly vegetated swale in about 1 km distance to the shoreline. The pair of sand layers occurs in 70-100 cm depth and overlies 40-60 cm of dark-brown peat that rests on the basal sand of the beach ridge plain. The lower sand layer is only 1-6 cm thick, whereas the upper layer is consistently thicker, measuring 11-17 cm, with 8-14 cm of peat in between sand sheets. Both layers consist of massive, grey, medium sand and include plant fragments. They show very sharp upper and lower boundaries clearly distinguishing them from the surrounding peat and indicating an abrupt depositional event. A previously developed age model for sediments of this beach ridge plain suggest that this pair of layers could indeed correlate to a nearby buried sand sheet interpreted as tsunamigenic and deposited soon after 1290-1400AD (Monecke et al., 2008). The superb preservation at this new site allows the clear distinction of two depositional events, which, based on a first estimate of sedimentation rates, are separated by only a few decades. Future microfossil and grain size analysis as well as radiocarbon dating are necessary to assertively interpret the origin, depositional characteristics and age of the two sand layers. Meltzner et al. (2010): Coral evidence for earthquake recurrence and an A.D. 1390 - 1455 earthquake cluster at the south end of the 2004 Aceh-Andaman rupture. J. Geophys. Res. 115, B10402. Sieh et al. (2015): Penultimate predecessors of the 2004 Indian Ocean tsunami in Aceh, Sumatra: Stratigraphic, archeological and historical evidence. J. Geophys. Res. Solid Earth, 120, 308-325. Monecke et al. (2008): A 1,000-year sedimentary record of tsunami recurrence in northern Sumatra. Nature, 455, 1232-1234.

  14. Advanced Devices for Cryogenic Thermal Management

    NASA Astrophysics Data System (ADS)

    Bugby, D.; Stouffer, C.; Garzon, J.; Beres, M.; Gilchrist, A.

    2006-04-01

    This paper describes six advanced cryogenic thermal management devices/subsystems developed by Swales Aerospace for ground/space-based applications of interest to NASA, DoD, and the commercial sector. The devices/subsystems described herein include the following: (a) a differential thermal expansion cryogenic thermal switch (DTE-CTSW) constructed with high purity aluminum end-pieces and an Ultem support rod for the 6 K Mid-Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST) (b) a quad-redundant DTE-CTSW assembly for the 35 K science instruments (NIRCam, NIRSpec, and FGS) mounted on the JWST Integrated Science Instrument Module (ISIM) (c) a cryogenic diode heat pipe (CDHP) thermal switching system using methane as the working fluid for the 100 K CRISM hyperspectral mapping instrument on the Mars Reconnaissance Orbiter (MRO) and (d) three additional devices/subsystems developed during the AFRL-sponsored CRYOTOOL program, which include a dual DTE-CTSW/dual cryocooler test bed, a miniaturized neon cryogenic loop heat pipe (mini-CLHP), and an across gimbal cryogenic thermal transport system (GCTTS). For the first three devices/subsystems mentioned above, this paper describes key aspects of the development efforts including concept definition, design, fabrication, and testing. For the latter three, this paper provides brief overview descriptions as key details are provided in a related paper.

  15. Study of hydraulic properties of binary beads mixture as porous media in sustainable urban drainage system

    NASA Astrophysics Data System (ADS)

    Abdullah, Muhammad Faiz; Puay, How Tion; Zakaria, Nor Azazi

    2017-10-01

    Sustainable Urban Drainage System (SuDS) such as swales and rain gardens is showing growing popularity as a green technology for stormwater management and it can be used in all types of development to provide a natural approach to managing drainage. Soil permeability is a critical factor in selecting the right SuDS technique for a site. On this basis, we have set up a laboratory experiment to investigate the porosity and saturated hydraulic conductivity of single size and binary (two sizes) mixture using column-test as a preliminary investigation with two sets of glass beads with different sizes are used in this study. The porosity and saturated hydraulic conductivity for varies volume fraction of the course and fine glass beads were measured. It was found that the porosity of the binary mixture does not increase with the increment of the ratio of coarse to fine beads until the volume fraction of fine particles is equal to the coarse component. Saturated hydraulic conductivity result shows that the assumption of random packing was not achieved at the higher coarse ratio where most of the fine particles tend to sit at the bottom of the column forming separate layers which lower the overall hydraulic conductivity value.

  16. Sea-floor drainage features of Cascadia Basin and the adjacent continental slope, northeast Pacific Ocean

    USGS Publications Warehouse

    Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.

    1989-01-01

    Sea-floor drainage features of Cascadia Basin and the adjacent continental slope include canyons, primary fan valleys, deep-sea valleys, and remnant valley segments. Long-range sidescan sonographs and associated seismic-reflection profiles indicate that the canyons may originate along a mid-slope escarpment and grow upslope by mass wasting and downslope by valley erosion or aggradation. Most canyons are partly filled with sediment, and Quillayute Canyon is almost completely filled. Under normal growth conditions, the larger canyons connect with primary fan valleys or deep-sea valleys in Cascadia Basin, but development of accretionary ridges blocks or re-routes most canyons, forcing abandonment of the associated valleys in the basin. Astoria Fan has a primary fan valley that connects with Astoria Canyon at the fan apex. The fan valley is bordered by parallel levees on the upper fan but becomes obscure on the lower fan, where a few valley segments appear on the sonographs. Apparently, Nitinat Fan does not presently have a primary fan valley; none of the numerous valleys on the fan connect with a canyon. The Willapa-Cascadia-Vancouver-Juan de Fuca deep-sea valley system bypasses the submarine fans and includes deeply incised valleys to broad shallow swales, as well as within-valley terraces and hanging-valley confluences. ?? 1989.

  17. Hydraulic characteristics of low-impact development practices in northeastern Ohio, 2008–2010

    USGS Publications Warehouse

    Darner, Robert A.; Dumouchelle, Denise H.

    2011-01-01

    Low-impact development (LID) is an approach to managing stormwater as near to its source as possible; this is accomplished by minimizing impervious surfaces and promoting more natural infiltration and evapotranspiration than is typically associated with developed areas. Two newly constructed LID sites in northeastern Ohio were studied to document their hydraulic characteristics. A roadside best-management practice (BMP) was constructed by replacing about 1,400 linear feet of existing ditches with a bioswale/rain garden BMP consisting of a grassed swale interspersed with rain-garden/overflow structures. The site was monitored in 2008, 2009, and 2010. Although some overflows occurred, numerous precipitation events exceeding the 0.75-inch design storm did not result in overflows. A second study site consists of an 8,200-square-foot parking lot made of a pervious pavers and a rain garden that receives runoff from the roof of a nearby commercial building. A comparison of data from 2009 and 2010 indicates that the median runoff volume in 2010 decreased relative to 2009. The centroid lag times (time difference between centroid of precipitation and centroid of flow) decreased in 2010, most likely due to more intense, shorter duration precipitation events and maturation of the rain garden. Additional data could help quantify the relation between meteorological variables and BMP efficiency.

  18. Conceptualization and application of an approach for designing healthcare software interfaces.

    PubMed

    Kumar, Ajit; Maskara, Reena; Maskara, Sanjeev; Chiang, I-Jen

    2014-06-01

    The aim of this study is to conceptualize a novel approach, which facilitates us to design prototype interfaces for healthcare software. Concepts and techniques from various disciplines were used to conceptualize an interface design approach named MORTARS (Map Original Rhetorical To Adapted Rhetorical Situation). The concepts and techniques included in this approach are (1) rhetorical situation - a concept of philosophy provided by Bitzer (1968); (2) move analysis - an applied linguistic technique provided by Swales (1990) and Bhatia (1993); (3) interface design guidelines - a cognitive and computer science concept provided by Johnson (2010); (4) usability evaluation instrument - an interface evaluation questionnaire provided by Lund (2001); (5) user modeling via stereotyping - a cognitive and computer science concept provided by Rich (1979). A prototype interface for outpatient clinic software was designed to introduce the underlying concepts of MORTARS. The prototype interface was evaluated by thirty-two medical informaticians. The medical informaticians found the designed prototype interface to be useful (73.3%), easy to use (71.9%), easy to learn (93.1%), and satisfactory (53.2%). MORTARS approach was found to be effective in designing the prototype user interface for the outpatient clinic software. This approach might be further used to design interfaces for various software pertaining to healthcare and other domains. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Twin Peaks (B/W)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Twin Peaks are modest-size hills to the southwest of the Mars Pathfinder landing site. They were discovered on the first panoramas taken by the IMP camera on the 4th of July, 1997, and subsequently identified in Viking Orbiter images taken over 20 years ago. The peaks are approximately 30-35 meters (-100 feet) tall. North Twin is approximately 860 meters (2800 feet) from the lander, and South Twin is about a kilometer away (3300 feet). The scene includes bouldery ridges and swales or 'hummocks' of flood debris that range from a few tens of meters away from the lander to the distance of the South Twin Peak. The large rock at the right edge of the scene is nicknamed 'Hippo'. This rock is about a meter (3 feet) across and 25 meters (80 feet) distant.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  20. Harpacticoid copepod diversity at two physically reworked sites in the deep sea

    NASA Astrophysics Data System (ADS)

    Thistle, David

    1998-01-01

    Grassle's and Jumars' theories of diversity maintenance in the quiescent deep sea view millimeter-to-meter-scale patchiness (mostly of biological origin) as crucial. In other deep-sea regions, episodes of strong near-bottom flow put the surficial sediment layers into motion, obliterating the biologically produced, millimeter-to-meter-scale patchiness. Under these theories, sites eroded so frequently that such patchiness is eliminated almost as soon as it is created should have lower diversities than sites where the time between erosive events is sufficient for this type of patchiness to be produced and exploited. I tested this prediction by comparing the diversities of harpacticoid copepods at two sites on Fieberling Guyot to determine whether Grassle's and Jumars' theories can be extended to the portion of the deep sea that experiences episodic erosive flows. At White Sand Swale (=WSS) (32°27.581'N, 127°47.839'W), strong near-bottom flows erode the surficial sediment daily. At Sea Pen Rim (=SPR) (32°27.631'N, 127°49.489'W), strong near-bottom flows erode the surficial sediment a few times annually. Contrary to expectation, the diversity of harpacticoid copepods was significantly greater at WSS than at SPR. However, the erosion regime at WSS may create small-scale patchiness that promotes harpacticoid diversity.

  1. Diversity of Bats in Contrasting Habitats of Hulu Terengganu Dipterocarp Forest and Setiu Wetland BRIS Forest with a Note on Preliminary Study of Vertical Stratification of Pteropodid Bats.

    PubMed

    Pounsin, Grace; Wahab, Nur Syahirah; Roslan, Azuan; Zahidin, Muhamad Aidil; Pesiu, Elizabeth; Tamrin, Nur Aida Md; Abdullah, M T

    2018-03-01

    A study of the bat diversity was conducted in Hulu Terengganu dipterocarp forest and Setiu Wetland Beach Ridges Interspersed with Swales (BRIS) forest in Terengganu, to study the species diversity, composition and stratification of fruit bats from the understorey to the forest canopy. Mist nets were set up at the understorey, sub-canopy and canopy layer while harp traps were set up at the understorey layer. We recorded 170 individuals from six families' compromised 21 species from Hulu Terengganu dipterocarp forests and four species from Setiu Wetland BRIS forests throughout the sampling period. Megaerops ecaudatus and Cynopterus brachyotis were the most dominant species in Hulu Terengganu dipterocarp forest and Setiu Wetland BRIS forests. Our study also recorded two species with new distributional records for the east coast of Peninsular Malaysia, namely, Rhinolophus chiewkweeae and Chaerephon johorensis in Hulu Terengganu dipterocarp forests. Potential factors that might influence the results were in terms of the canopy covers, the structural complexity of canopy, food availability and spatial characteristics. This study was able to increase the knowledge on the species diversity and composition of bats in Hulu Terengganu dipterocarp forest and Setiu Wetland BRIS forest, thus, further aid in the effort of bat conservation in both areas.

  2. Development of a Tool for Siting Low Impact Development in Urban Watersheds

    NASA Astrophysics Data System (ADS)

    Martin-Mikle, C.; de Beurs, K.; Julian, J.

    2013-12-01

    Low impact development (LID) -- a comprehensive land use planning and design approach with the goal of mitigating development impacts on hydrologic/nutrient cycles and ecosystems -- is increasingly being touted as an effective approach to lessen overland runoff and pollutant loadings. Examples of LIDs include riparian buffers, grassed swales, detention/retention ponds, rain gardens, green roofs and rain barrels. Broad-scale decision support tools for siting LIDs have been developed for agricultural watersheds, but are rare for urban watersheds, largely due to greater land use complexity and lack of necessary high-resolution geospatial data. Here, we develop a framework to assist city planners and water quality managers in siting LIDs in urban watersheds. One key component of this research is a framework accessible to those interested in using it. Hence, development of the framework has centered around 1) determining optimal data requirements for siting LID in an urban watershed and 2) developing a tool compatible with both open-source and commercial GIS software. We employ a wide variety of landscape metrics to evaluate the tool. A case study of the Lake Thunderbird Watershed, an urbanized watershed southeast of Oklahoma City, illustrates the effectiveness of a tool that is capable of siting LID in an urban watershed.

  3. Estimating the Limits of Infiltration in the Urban Appalachian Plateau

    NASA Astrophysics Data System (ADS)

    Lavin, S. M.; Bain, D.; Hopkins, K. G.; Pfeil-McCullough, E. K.; Copeland, E.

    2014-12-01

    Green infrastructure in urbanized areas commonly uses infiltration systems, such as rain gardens, swales and trenches, to convey surface runoff from impervious surfaces into surrounding soils. However, precipitation inputs can exceed soil infiltration rates, creating a limit to infiltration-based storm water management, particularly in urban areas covered by impervious surfaces. Given the limited availability and varied quality of soil infiltration rate data, we synthesized information from national databases, available field test data, and applicable literature to characterize soil infiltration rate distributions, focusing on Allegheny County, Pennsylvania as a case study. A range of impervious cover conditions was defined by sampling available GIS data (e.g., LiDAR and street edge lines) with analysis windows placed randomly across urbanization gradients. Changes in effective precipitation caused by impervious cover were calculated across these gradients and compared to infiltration rate distributions to identify thresholds in impervious coverage where these limits are exceeded. Many studies have demonstrated the effects of urbanization on infiltration, but the identification of these thresholds will clarify interactions between impervious cover and soil infiltration. These methods can help identify sections of urban areas that require augmentation of infiltration-based systems with additional infrastructural strategies, especially as green infrastructure moves beyond low impact development towards more frequent application during infilling of existing urban systems.

  4. Geomorphic control of landscape carbon accumulation

    USGS Publications Warehouse

    Rosenbloom, N.A.; Harden, J.W.; Neff, J.C.; Schimel, D.S.

    2006-01-01

    We use the CREEP process-response model to simulate soil organic carbon accumulation in an undisturbed prairie site in Iowa. Our primary objectives are to identify spatial patterns of carbon accumulation, and explore the effect of erosion on basin-scale C accumulation. Our results point to two general findings. First, redistribution of soil carbon by erosion results in a net increase in basin-wide carbon storage relative to a noneroding environment. Landscape-average mean residence times are increased in an eroding landscape owing to the burial/preservation of otherwise labile C. Second, field observations taken along a slope transect may overlook significant intraslope variations in carbon accumulation. Spatial patterns of modeled deep C accumulation are complex. While surface carbon with its relatively short equilibration time is predictable from surface properties, deep carbon is strongly influenced by the landscape's geomorphic and climatic history, resulting in wide spatial variability. Convergence and divergence associated with upland swales and interfluves result in bimodal carbon distributions in upper and mid slopes; variability in carbon storage within modeled mid slopes was as high as simulated differences between erosional shoulders and depositional valley bottoms. The bimodality of mid-slope C variability in the model suggests that a three-dimensional sampling strategy is preferable over the traditional two-dimensional analog or "catena" approach. Copyright 2006 by the American Geophysical Union.

  5. Fate of hydrocarbon pollutants in source and non-source control sustainable drainage systems.

    PubMed

    Roinas, Georgios; Mant, Cath; Williams, John B

    2014-01-01

    Sustainable drainage (SuDs) is an established method for managing runoff from developments, and source control is part of accepted design philosophy. However, there are limited studies into the contribution source control makes to pollutant removal, especially for roads. This study examines organic pollutants, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), in paired source and non-source control full-scale SuDs systems. Sites were selected to cover local roads, trunk roads and housing developments, with a range of SuDs, including porous asphalt, swales, detention basins and ponds. Soil and water samples were taken bi-monthly over 12 months to assess pollutant loads. Results show first flush patterns in storm events for solids, but not for TPH. The patterns of removal for specific PAHs were also different, reflecting varying physico-chemical properties. The potential of trunk roads for pollution was illustrated by peak runoff for TPH of > 17,000 μg/l. Overall there was no significant difference between pollutant loads from source and non-source control systems, but the dynamic nature of runoff means that longer-term data are required. The outcomes of this project will increase understanding of organic pollutants behaviour in SuDs. This will provide design guidance about the most appropriate systems for treating these pollutants.

  6. Diversity of Bats in Contrasting Habitats of Hulu Terengganu Dipterocarp Forest and Setiu Wetland BRIS Forest with a Note on Preliminary Study of Vertical Stratification of Pteropodid Bats

    PubMed Central

    Pounsin, Grace; Wahab, Nur Syahirah; Roslan, Azuan; Zahidin, Muhamad Aidil; Pesiu, Elizabeth; Tamrin, Nur Aida Md; Abdullah, M T

    2018-01-01

    A study of the bat diversity was conducted in Hulu Terengganu dipterocarp forest and Setiu Wetland Beach Ridges Interspersed with Swales (BRIS) forest in Terengganu, to study the species diversity, composition and stratification of fruit bats from the understorey to the forest canopy. Mist nets were set up at the understorey, sub-canopy and canopy layer while harp traps were set up at the understorey layer. We recorded 170 individuals from six families’ compromised 21 species from Hulu Terengganu dipterocarp forests and four species from Setiu Wetland BRIS forests throughout the sampling period. Megaerops ecaudatus and Cynopterus brachyotis were the most dominant species in Hulu Terengganu dipterocarp forest and Setiu Wetland BRIS forests. Our study also recorded two species with new distributional records for the east coast of Peninsular Malaysia, namely, Rhinolophus chiewkweeae and Chaerephon johorensis in Hulu Terengganu dipterocarp forests. Potential factors that might influence the results were in terms of the canopy covers, the structural complexity of canopy, food availability and spatial characteristics. This study was able to increase the knowledge on the species diversity and composition of bats in Hulu Terengganu dipterocarp forest and Setiu Wetland BRIS forest, thus, further aid in the effort of bat conservation in both areas. PMID:29644015

  7. Estimating evapotranspiration and groundwater flow from water-table fluctuations for a general wetland scenario

    USGS Publications Warehouse

    Carlson Mazur, Martha L.; Michael J. Wiley,; Douglas A. Wilcox,

    2015-01-01

    The use of diurnal water-table fluctuation methods to calculate evapotranspiration (ET) and groundwater flow is of increasing interest in ecohydrological studies. Most studies of this type, however, have been located in riparian wetlands of semi-arid regions where groundwater levels are consistently below topographic surface elevations and precipitation events are infrequent. Current methodologies preclude application to a wider variety of wetland systems. In this study, we extended a method for estimating sub-daily ET and groundwater flow rates from water-level fluctuations to fit highly dynamic, non-riparian wetland scenarios. Modifications included (1) varying the specific yield to account for periodic flooded conditions and (2) relating empirically derived ET to estimated potential ET for days when precipitation events masked the diurnal signal. To demonstrate the utility of this method, we estimated ET and groundwater fluxes over two growing seasons (2006–2007) in 15 wetlands within a ridge-and-swale wetland complex of the Laurentian Great Lakes under flooded and non-flooded conditions. Mean daily ET rates for the sites ranged from 4.0 mm d−1 to 6.6 mm d−1. Shallow groundwater discharge rates resulting from evaporative demand ranged from 2.5 mm d−1 to 4.3 mm d−1. This study helps to expand our understanding of the evapotranspirative demand of plants under various hydrologic and climate conditions.

  8. A planning algorithm for quantifying decentralised water management opportunities in urban environments.

    PubMed

    Bach, Peter M; McCarthy, David T; Urich, Christian; Sitzenfrei, Robert; Kleidorfer, Manfred; Rauch, Wolfgang; Deletic, Ana

    2013-01-01

    With global change bringing about greater challenges for the resilient planning and management of urban water infrastructure, research has been invested in the development of a strategic planning tool, DAnCE4Water. The tool models how urban and societal changes impact the development of centralised and decentralised (distributed) water infrastructure. An algorithm for rigorous assessment of suitable decentralised stormwater management options in the model is presented and tested on a local Melbourne catchment. Following detailed spatial representation algorithms (defined by planning rules), the model assesses numerous stormwater options to meet water quality targets at a variety of spatial scales. A multi-criteria assessment algorithm is used to find top-ranking solutions (which meet a specific treatment performance for a user-defined percentage of catchment imperviousness). A toolbox of five stormwater technologies (infiltration systems, surface wetlands, bioretention systems, ponds and swales) is featured. Parameters that set the algorithm's flexibility to develop possible management options are assessed and evaluated. Results are expressed in terms of 'utilisation', which characterises the frequency of use of different technologies across the top-ranking options (bioretention being the most versatile). Initial results highlight the importance of selecting a suitable spatial resolution and providing the model with enough flexibility for coming up with different technology combinations. The generic nature of the model enables its application to other urban areas (e.g. different catchments, local municipal regions or entire cities).

  9. Love Canal: environmental and toxicological studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, C.S.

    The New York State Department of Health has been involved at the Love Canal since 1978. The State has carried out numerous environmental and toxicological studies. The major purposes for these studies were to define how Love Canal contaminants might be escaping into the environment at large, what paths contaminant migration might take, and what toxicological effects Love Canal chemicals might have individually and together. Although underground contaminant migration was hypothesized along swales and underground utility bedding, these mechanisms have been proven not to be operative except for some migration along the utility bedding under Frontier Avenue. In general nomore » underground migration has occurred outside the confines of the three city blocks that contain the Love Canal referred to as the ''first ring''. Studies have been confused by apparent burial of waste materials in areas proximate but not directly connected to the Love Canal. Migration of Love Canal leachate has occurred through storm sewers. Love Canal contaminants have reached creeks to the north and the Niagara River to the south through storm sewer transport. In spite of finding 2, 3, 7, 8 tetrachlorodibenzoparadioxin (TCDD), toxicological studies in situ and through exposure to volatile components in Love Canal soils do not indicate unusual toxicity. Animal studies continue in an attempt to determine the teratogenic and fetotoxic potential of Love Canal chemicals under different routes of exposure.« less

  10. Coarse-clast ridge complexes of the Caribbean: A preliminary basis for distinguishing tsunami and storm-wave origins

    USGS Publications Warehouse

    Morton, R.A.; Richmond, B.M.; Jaffe, B.E.; Gelfenbaum, G.

    2008-01-01

    Coastal gravel-ridge complexes deposited on islands in the Caribbean Sea are recorders of past extreme-wave events that could be associated with either tsunamis or hurricanes. The ridge complexes of Bonaire, Jamaica, Puerto Rico (Isla de Mona), and Guadeloupe consist of polymodal clasts ranging in size from sand to coarse boulders that are derived from the adjacent coral reefs or subjacent rock platforms. Ridge-complex morphologies and crest elevations are largely controlled by availability of sediments, clast sizes, and heights of wave runup. The ridge complexes are internally organized, display textural sorting and a broad range of ages including historical events. Some display seaward-dipping beds and ridge-and-swale topography, and some terminate in fans or steep avalanche slopes. Together, the morphologic, sedimentologic, lithostratigraphic, and chronostratigraphic evidence indicates that shore-parallet ridge complexes composed of gravel and sand that are tens of meters wide and several meters thick are primarily storm-constructed features that have accumulated for a few centuries or millennia as a result of multiple high-frequency intense-wave events. They are not entirely the result of one or a few tsunamis as recently reported. Tsunami deposition may account for some of the lateral ridge-complex accretion or boulder fields and isolated blocks that are associated with the ridge complexes. Copyright ?? 2008, SEPM (Society for Sedimentary Geology).

  11. Active intraplate deformation in south India

    NASA Astrophysics Data System (ADS)

    Subrahmanya, K. R.

    1996-09-01

    Two characteristics of the Indian plate are the intraplate deformation of the oceanic crust to the south of Bay of Bengal and the ongoing uplift of the continental crust in the southern Indian peninsula. An irregular line connecting Mulki on the West Coast and Pulicat Lake on the East Coast (close to 13°N) constitutes a major drainage divide. Several large rivers of south India diverge from this line. This nearly east-west-trending ridge is characterised by gravity high, relatively thinner crust and microseismicity. The shoreline at either ends is convex towards sea. The coastal region particularly in the west is highly dissected. The coastal zone consists of series of beach ridges and swales indicating uplift of land. A close scrutiny of the river channels indicates that the rivers south of the major water divide have successively shifted southward leaving behind paleochannels on the Quaternary terrain. There is similar migration of streams to the north shifting northward. Even in areas where the gradient is low, the rivers have elevated terraces, resulting from valley deepending. The tide gauge records for Mangalore and Madras show a relative fall in sea-level. Occurrence of a dead oyster colony above the intertidal zone substantiates the tide gauge data. These observations indicate that the continental crust close to Mulki-Pulicat Lake axis is undergoing compression and uplift, related to the north-south oriented regional stress field.

  12. Rare earth element concentrations in dissolved and acid available particulate forms for eastern UK rivers

    NASA Astrophysics Data System (ADS)

    Neal, C.

    2007-01-01

    Variations in concentration of yttrium (Y), lanthanum (La), cerium (Ce), neodymium (Nd), samarium (Sm) and gadolinium (Gd) among rivers of eastern England and the border with Scotland are described in relation to the dissolved (<0.45 µM) fraction and acid-available particulate (AAP) fractions. The rivers cover a range of rural, agricultural and urban/industrial environments. Yttrium and the lanthanides show significant levels of both dissolved and acid-available particulate forms (typically about 40% in the dissolved form). For the dissolved phase, Y and the lanthanides are linearly correlated with each other and with iron: most of this dissolved component may be in a micro-particulate/colloidal form. The Y and lanthanide relationships show marked scatter and there are anomalously high La concentrations at times for the rivers Great Ouse, Thames and Wear that are probably linked to pollutant sources. For the Ouse, and especially for one of its tributaries, the Swale, relatively high Sm concentrations are probably associated with mineralisation within the catchment and contamination of the associated flood plain. For the AAP components, there are strong linear relationships with Y and the lanthanides across all the rivers. There is also a strong link between these AAP associated REE and AAP iron, although the scatter is greater and the industrial rivers have a lower lanthanide to iron ratio, probably due to iron-rich contaminants.

  13. Which offers more scope to suppress river phytoplankton blooms: reducing nutrient pollution or riparian shading?

    PubMed

    Hutchins, M G; Johnson, A C; Deflandre-Vlandas, A; Comber, S; Posen, P; Boorman, D

    2010-10-01

    River flow and quality data, including chlorophyll-a as a surrogate for river phytoplankton biomass, were collated for the River Ouse catchment in NE England, which according to established criteria is a largely unpolluted network. Against these data, a daily river quality model (QUESTOR) was setup and successfully tested. Following a review, a river quality classification scheme based on phytoplankton biomass was proposed. Based on climate change predictions the model indicated that a shift from present day oligotrophic/mesotrophic conditions to a mesotrophic/eutrophic system could occur by 2080. Management options were evaluated to mitigate against this predicted decline in quality. Reducing nutrient pollution was found to be less effective at suppressing phytoplankton growth than the less costly option of establishing riparian shading. In the Swale tributary, ongoing efforts to reduce phosphorus loads in sewage treatment works will only reduce peak (95th percentile) phytoplankton by 11%, whereas a reduction of 44% is possible if riparian tree cover is also implemented. Likewise, in the Ure, whilst reducing nitrate loads by curtailing agriculture in the headwaters may bring about a 10% reduction, riparian shading would instead reduce levels by 47%. Such modelling studies are somewhat limited by insufficient field data but offer a potentially very valuable tool to assess the most cost-effective methods of tackling effects of eutrophication. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Sustainable stormwater management at Fornebu--from an airport to an industrial and residential area of the city of Oslo, Norway.

    PubMed

    Astebøl, Svein Ole; Hvitved-Jacobsen, Thorkild; Simonsen, Oyvind

    2004-12-01

    The Oslo Airport at Fornebu was closed in 1998 after 60 years of operation. An area of 3.1 km(2) was made available for one of Norway's biggest property development projects. Plans include 6000 residences and 20,000 workplaces. Fornebu is situated on a peninsula in the Oslo Fjord just outside the city of Oslo and is regarded as a very attractive area for both urbanisation and recreation. The residential area located centrally at Fornebu surrounds a centrally located park area. In the planning process, there was an expressed interest in using water as a life-giving element within the vegetation structure of the park. In Norway, stormwater in urban areas has traditionally been collected and transported in pipe systems to adjacent watercourses. However, there is an increasing interest in alternative "green" solutions for the management of stormwater. The paper presents a concept for sustainable stormwater management at Fornebu. A main objective is to improve the recreational and ecological value of stormwater while achieving a cost-effective solution. This objective is reached by replacing conventional urban drainage pipes with swales, filter strips, wetlands and ponds as collection, storage and treatment systems designed for natural processes. The paper thereby addresses integrated systems for stormwater management by approaching nature's way and sustainable development principles.

  15. Reintroduction of locally extinct vertebrates impacts arid soil fungal communities.

    PubMed

    Clarke, Laurence J; Weyrich, Laura S; Cooper, Alan

    2015-06-01

    Introduced species have contributed to extinction of native vertebrates in many parts of the world. Changes to vertebrate assemblages are also likely to alter microbial communities through coextinction of some taxa and the introduction of others. Many attempts to restore degraded habitats involve removal of exotic vertebrates (livestock and feral animals) and reintroduction of locally extinct species, but the impact of such reintroductions on microbial communities is largely unknown. We used high-throughput DNA sequencing of the fungal internal transcribed spacer I (ITS1) region to examine whether replacing exotic vertebrates with reintroduced native vertebrates led to changes in soil fungal communities at a reserve in arid central Australia. Soil fungal diversity was significantly different between dune and swale (interdune) habitats. Fungal communities also differed significantly between sites with exotic or reintroduced native vertebrates after controlling for the effect of habitat. Several fungal operational taxonomic units (OTUs) found exclusively inside the reserve were present in scats from reintroduced native vertebrates, providing a direct link between the vertebrate assemblage and soil microbial communities. Our results show that changes to vertebrate assemblages through local extinctions and the invasion of exotic species can alter soil fungal communities. If local extinction of one or several species results in the coextinction of microbial taxa, the full complement of ecological interactions may never be restored. © 2015 John Wiley & Sons Ltd.

  16. Justification and Persuasion about Cloning: Arguments in Hwang's Paper and Journalistic Reported Versions

    NASA Astrophysics Data System (ADS)

    Jiménez-Aleixandre, María Pilar; Federico-Agraso, Marta

    2009-05-01

    We examine the argumentative structure of Hwang et al.’s (2004) paper about human somatic cell nuclear transfer (SCNT, or ‘therapeutic cloning’), contrasted with four Journalistic Reported Versions (JRV) of it, and with students’ summaries of one JRV. As the evaluation of evidence is one of the critical features of argumentation (Jiménez-Aleixandre 2008), the analysis focuses on the use of evidence, drawing from instruments to analyze written argumentation (Kelly et al. 2008) and from studies about the structure of empirical research reports (Swales 2001). The objectives are: 1) To examine the use of evidence and the argumentative structure of Hwang et al.’s Science, 303: 1669-1674 (2004) original paper in terms of the criteria: a) pertinence of the evidence presented to the claims; b) sufficiency of the evidence for the purpose of supporting the claims; and c) coordination of the evidence across epistemic levels. 2) To explore how the structure of Hwang’s paper translates into the JRV and into university students’ perceptions about the evidence supporting the claims. The argumentative structure of Hwang’s paper is such that its apparently ostensible main claim about NT constitutes a justification for a second claim about its therapeutic applications, for which no evidence is offered. However, this second claim receives prominent treatment in the JRV and in the students’ summaries. Implications for promoting critical reading in the classroom are discussed.

  17. Hyporheic zone influences on concentration-discharge relationships in a headwater sandstone stream

    NASA Astrophysics Data System (ADS)

    Hoagland, Beth; Russo, Tess A.; Gu, Xin; Hill, Lillian; Kaye, Jason; Forsythe, Brandon; Brantley, Susan L.

    2017-06-01

    Complex subsurface flow dynamics impact the storage, routing, and transport of water and solutes to streams in headwater catchments. Many of these hydrogeologic processes are indirectly reflected in observations of stream chemistry responses to rain events, also known as concentration-discharge (CQ) relations. Identifying the relative importance of subsurface flows to stream CQ relationships is often challenging in headwater environments due to spatial and temporal variability. Therefore, this study combines a diverse set of methods, including tracer injection tests, cation exchange experiments, geochemical analyses, and numerical modeling, to map groundwater-surface water interactions along a first-order, sandstone stream (Garner Run) in the Appalachian Mountains of central Pennsylvania. The primary flow paths to the stream include preferential flow through the unsaturated zone ("interflow"), flow discharging from a spring, and groundwater discharge. Garner Run stream inherits geochemical signatures from geochemical reactions occurring along each of these flow paths. In addition to end-member mixing effects on CQ, we find that the exchange of solutes, nutrients, and water between the hyporheic zone and the main stream channel is a relevant control on the chemistry of Garner Run. CQ relationships for Garner Run were compared to prior results from a nearby headwater catchment overlying shale bedrock (Shale Hills). At the sandstone site, solutes associated with organo-mineral associations in the hyporheic zone influence CQ, while CQ trends in the shale catchment are affected by preferential flow through hillslope swales. The difference in CQ trends document how the lithology and catchment hydrology control CQ relationships.

  18. Habitat associations of chorusing anurans in the Lower Mississippi River Alluvial valley

    USGS Publications Warehouse

    Lichtenberg, J.S.; King, S.L.; Grace, J.B.; Walls, S.C.

    2006-01-01

    Amphibian populations have declined worldwide. To pursue conservation efforts adequately, land managers need more information concerning amphibian habitat requirements. To address this need, we examined relationships between anurans and habitat characteristics of wetlands in the Lower Mississippi River Alluvial Valley (LMAV). We surveyed chorusing anurans in 31 wetlands in 2000 and 28 wetlands in 2001, and measured microhabitat variables along the shoreline within the week following each survey. We recorded 12 species of anurans during our study. Species richness was significantly lower in 2000 than 2001 (t-test, P < 0.001) and correlated with an ongoing drought. We found species richness to be significantly greater at lake sites compared to impoundment, swale, and riverine sites (ANOVA, P = 0.002). We used stepwise regression to investigate the wetland types and microhabitat characteristics associated with species richness of chorusing anurans. Microhabitat characteristics associated with species richness included dense herbaceous vegetation and accumulated litter along the shoreline. Individual species showed species-specific habitat associations. The bronze frog, American bullfrog, and northern cricket frog were positively associated with lake sites (Fisher's Exact Test, P < 0.05), however wetland type did not significantly influence any additional species. Using bivariate correlations, we found that six of the seven most common species had significant associations with microhabitat variables. Overall, our findings support the view that conservation and enhancement of amphibian communities in the LMAV and elsewhere requires a matrix of diverse wetland types and habitat conditions. ?? 2006, The Society of Wetland Scientists.

  19. High resolution shallow geologic characterization of a late Pleistocene eolian environment using ground penetrating radar and optically stimulated luminescence techniques: North Carolina, USA

    USGS Publications Warehouse

    Mallinson, D.; Mahan, S.; Moore, Christine

    2008-01-01

    Geophysical surveys, sedimentology, and optically-stimulated luminescence age analyses were used to assess the geologic development of a coastal system near Swansboro, NC. This area is a significant Woodland Period Native American habitation and is designated the "Broad Reach" archaeological site. 2-d and 3-d subsurface geophysical surveys were performed using a ground penetrating radar system to define the stratigraphic framework and depositional facies. Sediment samples were collected and analyzed for grain-size to determine depositional environments. Samples were acquired and analyzed using optically stimulated luminescence techniques to derive the depositional age of the various features. The data support a low eolian to shallow subtidal coastal depositional setting for this area. Li-DAR data reveal ridge and swale topography, most likely related to beach ridges, and eolian features including low-relief, low-angle transverse and parabolic dunes, blowouts, and a low-relief eolian sand sheet. Geophysical data reveal dominantly seaward dipping units, and low-angle mounded features. Sedimentological data reveal mostly moderately-well to well-sorted fine-grained symmetrical to coarse skewed sands, suggesting initial aqueous transport and deposition, followed by eolian reworking and bioturbation. OSL data indicate initial coastal deposition prior to ca. 45,000 yBP, followed by eolian reworking and low dune stabilization at ca. 13,000 to 11,500 yBP, and again at ca. 10,000 yBP (during, and slightly after the Younger Dryas chronozone).

  20. What impact might mitigation of diffuse nitrate pollution have on river water quality in a rural catchment?

    PubMed

    Hutchins, Michael G

    2012-10-30

    Observations of river flow, river quality and solar radiation were collated to assess the degree to which light and nutrients may be limiting phytoplankton growth at seven sites in the River Ouse catchment in NE England under average conditions. Hydraulic information derived from river network model applications was then used to determine where river water has sufficient residence time above the tidal limit to facilitate bloom development. A nitrate model (NALTRACES) was developed to estimate the impact of land management change on mean river nitrate concentrations. Applications of this model showed that although agricultural activity contributes substantially to nitrate loads in the Ouse it is likely to have little impact on phytoplankton growth, which could still occur extensively in its absence given favourable sunny and dry conditions. As an example of a means of controlling light availability, establishing full riparian tree cover would appear to be a considerably more effective management scenario than suppressing inputs to the river of nitrate or phosphorus. Any actions should be prioritised in headwater areas such as the upper reaches of the Swale and Ure tributaries. These conclusions are in broad agreement with those arising from more detailed simulations at daily resolution using the QUESTOR river quality model. The combination of simple modelling approaches applied here allows an initial identification of suitable spatially-targeted options for mitigating against phytoplankton blooms which can be applied more widely at a regional or national level. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Urban base flow with low impact development

    USGS Publications Warehouse

    Bhaskar, Aditi; Hogan, Dianna M.; Archfield, Stacey A.

    2016-01-01

    A novel form of urbanization, low impact development (LID), aims to engineer systems that replicate natural hydrologic functioning, in part by infiltrating stormwater close to the impervious surfaces that generate it. We sought to statistically evaluate changes in a base flow regime because of urbanization with LID, specifically changes in base flow magnitude, seasonality, and rate of change. We used a case study watershed in Clarksburg, Maryland, in which streamflow was monitored during whole-watershed urbanization from forest and agricultural to suburban residential development using LID. The 1.11-km2 watershed contains 73 infiltration-focused stormwater facilities, including bioretention facilities, dry wells, and dry swales. We examined annual and monthly flow during and after urbanization (2004–2014) and compared alterations to nearby forested and urban control watersheds. We show that total streamflow and base flow increased in the LID watershed during urbanization as compared with control watersheds. The LID watershed had more gradual storm recessions after urbanization and attenuated seasonality in base flow. These flow regime changes may be because of a reduction in evapotranspiration because of the overall decrease in vegetative cover with urbanization and the increase in point sources of recharge. Precipitation that may once have infiltrated soil, been stored in soil moisture to be eventually transpired in a forested landscape, may now be recharged and become base flow. The transfer of evapotranspiration to base flow is an unintended consequence to the water balance of LID.

  2. [Simulation of rainfall and snowmelt runoff reduction in a northern city based on combination of green ecological strategies.

    PubMed

    Han, Jin Feng; Liu, Shuo; Dai, Jun; Qiu, Hao

    2018-02-01

    With the aim to control and reduce rainfall and snowmelt runoff in northern cities in China, the summer runoff and spring snowmelt runoff in the studied area were simulated with the establishment of storm water management model (SWMM). According to the climate characteristics and the situation of the studied area, the low impact development (LID) green ecological strategies suitable for the studied area were established. There were three kinds of management strategies being used, including extended green roof, snow and rainwater harvesting devices, and grass-swales or trenches. We examined the impacts of those integrated green ecological measures on the summer rainfall and spring snowmelt runoff and their mitigation effects on the drainage network pressure. The results showed that the maximum flow rates of the measured rainfall in May 24th, June 10th and July 18th 2016 were 2.7, 6.2 and 7.4 m 3 ·s -1 respectively. The peak flow rates at different return periods of 1, 2, 5, 10 years were 2.39, 3.91, 6.24 and 7.85 m 3 ·s -1 , respectively. In the snowmelt period, the peak flow appeared at the beginning of March. The LID measures had positive effect on peak flow reduction, and thus delayed peak time and relieved drainage pressure. The flow reduction rate was as high as 70%. Moreover, the snow harvesting devices played a positive role in controlling snowmelt runoff in spring.

  3. Optimal implementation of green infrastructure practices to reduce adverse impacts of urban areas on hydrology and water quality

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Collingsworth, P.; Pijanowski, B. C.; Engel, B.

    2016-12-01

    Nutrient loading from Maumee River watershed is a significant reason for the harmful algal blooms (HABs) problem in Lake Erie. Although studies have explored strategies to reduce nutrient loading from agricultural areas in the Maumee River watershed, the nutrient loading in urban areas also needs to be reduced. Green infrastructure practices are popular approaches for stormwater management and useful for improving hydrology and water quality. In this study, the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model was used to determine how different strategies for implementing green infrastructure practices can be optimized to reduce impacts on hydrology and water quality in an urban watershed in the upper Maumee River system. Community inputs, such as the types of green infrastructure practices of greatest interest and environmental concerns for the community, were also considered during the study. Based on community input, the following environmental concerns were considered: runoff volume, Total Suspended Solids (TSS), Total Phosphorous (TP), Total Kjeldahl Nitrogen (TKN), and Nitrate+Nitrite (NOx); green infrastructure practices of interest included rain barrel, cistern, green roof, permeable patio, porous pavement, grassed swale, bioretention system, grass strip, wetland channel, detention basin, retention pond, and wetland basin. Spatial optimization of green infrastructure practice implementation was conducted to maximize environmental benefits while minimizing the cost of implementation. The green infrastructure practice optimization results can be used by the community to solve hydrology and water quality problems.

  4. The EVNATURB project: toward an operational platform to assess Blue Green Solutions eco-systemic services in urban environment

    NASA Astrophysics Data System (ADS)

    Schertzer, D. J. M.; Versini, P. A.; Tchiguirinskaia, I.

    2017-12-01

    Urban areas are facing an expected increase in intensity and frequency of extreme weather events due to climate change. Combined with unsustainable urbanization, this should exacerbate the environmental consequences related to the water cycle as stormwater management issues, urban heat island increase and biodiversity degradation. Blue Green Solutions (BGS), such as green roofs, vegetated swales or urban ponds, appear to be particularly efficient to reduce the potential impact of new and existing urban developments with respect to these issues. Based on this statement, the French ANR EVNATURB project aims to develop a platform to assess the eco-systemic services provided by BGS and related with the previously mentioned issues. By proposing a multi-disciplinary consortium coupling monitoring, modelling and prospecting, it attempts to tackle several scientific issues currently limiting BGS wide implementation. Based on high resolution monitored sites and modelling tools, space-time variability of the related physical processes will be studied over a wide range of scales (from the material to the district scale), as well as local social-environmental stakes and constraints, to better consider the complexity of the urban environment. The EVNATURB platform developed during the project is intended for every stakeholder involved in urban development projects (planners, architects, engineering and environmental certification companies…) and will help them to implement BGS and evaluate which ones are the most appropriate for a particular project depending on its environmental objectives and constraints, and particularly for obtaining environmental certification.

  5. Retrieval of Compositional End-Members From Mars Exploration Rover Opportunity Observations in a Soil-Filled Fracture in Marathon Valley, Endeavour Crater Rim

    NASA Astrophysics Data System (ADS)

    Stein, N. T.; Arvidson, R. E.; O'Sullivan, J. A.; Catalano, J. G.; Guinness, E. A.; Politte, D. V.; Gellert, R.; VanBommel, S. J.

    2018-01-01

    The Opportunity rover investigated a gentle swale on the rim of Endeavour crater called Marathon Valley where a series of bright planar outcrops are cut into polygons by fractures. A wheel scuff performed on one of the soil-filled fracture zones revealed the presence of three end-members identified on the basis of Pancam multispectral imaging observations covering 0.4 to 1 μm: red and dark pebbles, and a bright soil clod. Multiple overlapping Alpha Particle X-ray Spectrometer (APXS) measurements were collected on three targets within the scuff zone. The field of view of each APXS measurement contained various proportions of the Pancam-based end-members. Application of a log maximum likelihood method for retrieving the composition of the end-members using the 10 APXS measurements shows that the dark pebble end-member is compositionally similar to average Mars soil, with slightly elevated S and Fe. In contrast, the red pebble end-member exhibits enrichments in Al and Si and is depleted in Fe and Mg relative to average Mars soil. The soil clod end-member is enriched in Mg, S, and Ni. Thermodynamic modeling of the soil clod end-member composition indicates a dominance of sulfate minerals. We hypothesize that acidic fluids in fractures leached and oxidized the basaltic host rock, forming the red pebbles, and then evaporated to leave behind sulfate-cemented soil.

  6. Coastal geomorphic conditions and styles of storm surge washover deposits from Southern Thailand

    NASA Astrophysics Data System (ADS)

    Phantuwongraj, Sumet; Choowong, Montri; Nanayama, Futoshi; Hisada, Ken-Ichiro; Charusiri, Punya; Chutakositkanon, Vichai; Pailoplee, Santi; Chabangbon, Akkaneewut

    2013-06-01

    The characteristics of tropical storm washover deposits laid down during the years 2007 to 2011 along the southern peninsular coast of the Gulf of Thailand (GOT) were described in relation to their different geomorphic conditions, including perched fan, washover terrace and sheetwash lineations preserved behind the beach zone within 100 m of the shoreline. As a result, washover terrace and sheetwash lineations were found where the beach configuration was uniform and promoted an unconfined flow. Non-uniform beach configurations that promoted a confined flow resulted in a perched fan deposit. Washover sediments were differentiated into two types based on sedimentary characteristics, including (i) a thick-bedded sand of multiple reverse grading layers and (ii) a medium-bedded sand of multiple normal grading layers. In the case of thick-bedded washover deposits, the internal sedimentary structures were characterized by the presence of sub-horizontal bedding, reverse grading, lamination, foreset bedding and wavy bedding, whereas, horizontal bedding, normal grading, and dunes were the dominant structures in the medium-bedded washover sand. Rip-up clasts were rare and recognized only in the washover deposits in the bottom unit, which reflects the condition when a mud supply was available. All washover successions were found in the landward inclined-bedding with a basal sharp contact. A high elevated beach ridge associated with a large swale at the backshore proved suitable for a thick-bedded washover type, whereas a small beach ridge with uniformly flat backshore topography promoted a medium-bedded washover sediment.

  7. Estimating evapotranspiration and groundwater flow from water-table fluctuations for a general wetland scenario

    USGS Publications Warehouse

    Weber, Lisa C.; Wiley, Michael J.; Wilcox, Douglas A.

    2016-01-01

    The use of diurnal water-table fluctuation methods to calculate evapotranspiration (ET) and groundwater flow is of increasing interest in ecohydrological studies. Most studies of this type, however, have been located in riparian wetlands of semi-arid regions where groundwater levels are consistently below topographic surface elevations and precipitation events are infrequent. Current methodologies preclude application to a wider variety of wetland systems. In this study, we extended a method for estimating sub-daily ET and groundwater flow rates from water-level fluctuations to fit highly dynamic, non-riparian wetland scenarios. Modifications included (1) varying the specific yield to account for periodic flooded conditions and (2) relating empirically derived ET to estimated potential ET for days when precipitation events masked the diurnal signal. To demonstrate the utility of this method, we estimated ET and groundwater fluxes over two growing seasons (2006–2007) in 15 wetlands within a ridge-and-swale wetland complex of the Laurentian Great Lakes under flooded and non-flooded conditions. Mean daily ET rates for the sites ranged from 4.0 mm d−1 to 6.6 mm d−1. Shallow groundwater discharge rates resulting from evaporative demand ranged from 2.5 mm d−1 to 4.3 mm d−1. This study helps to expand our understanding of the evapotranspirative demand of plants under various hydrologic and climate conditions. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  8. Transformation of dilative and contractive landslide debris into debris flows-An example from marin County, California

    USGS Publications Warehouse

    Fleming, R.W.; Ellen, S.D.; Algus, M.A.

    1989-01-01

    The severe rainstorm of January 3, 4 and 5, 1982, in the San Francisco Bay area, California, produced numerous landslides, many of which transformed into damaging debris flows. The process of transformation was studied in detail at one site where only part of a landslide mobilized into several episodes of debris flow. The focus of our investigation was to learn whether the landslide debris dilated or contracted during the transformation from slide to flow. The landslide debris consisted of sandy colluvium that was separable into three soil horizons that occupied the axis of a small topographic swale. Failure involved the entire thickness of colluvium; however, over parts of the landslide, the soil A-horizon failed separately from the remainder of the colluvium. Undisturbed samples were taken for density measurements from outside the landslide, from the failure zone and overlying material from the part of the landslide that did not mobilize into debris flows, and from the debris-flow deposits. The soil A-horizon was contractive and mobilized to flows in a process analogous to liquefaction of loose, granular soils during earthquakes. The soil B- and C-horizons were dilative and underwent 2 to 5% volumetric expansion during landslide movement that permitted mobilization of debris-flow episodes. Several criteria can be used in the field to differentiate between contractive and dilative behavior including lag time between landsliding and mobilization of flow, episodic mobilization of flows, and partial or complete transformation of the landslide. ?? 1989.

  9. The DC-8 Submillimeter-Wave Cloud Ice Radiometer

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Batelaan, Paul; Siegel, Peter; Evans, K. Franklin; Evans, Aaron; Balachandra, Balu; Gannon, Jade; Guldalian, John; Raz, Guy; Shea, James

    2000-01-01

    An airborne radiometer is being developed to demonstrate the capability of radiometry at submillimeter-wavelengths to characterize cirrus clouds. At these wavelengths, cirrus clouds scatter upwelling radiation from water vapor in the lower troposphere. Radiometric measurements made at multiple widely spaced frequencies permit flux variations caused by changes in scattering due to crystal size to be distinguished from changes in cloud ice content. Measurements at dual polarizations can also be used to constrain the mean crystal shape. An airborne radiometer measuring the upwelling submillimeter-wave flux should then able to retrieve both bulk and microphysical cloud properties. The radiometer is being designed to make measurements at four frequencies (183 GHz, 325 GHz, 448 GHz, and 643 GHz) with dual-polarization capability at 643 GHz. The instrument is being developed for flight on NASA's DC-8 and will scan cross-track through an aircraft window. Measurements with this radiometer in combination with independent ground-based and airborne measurements will validate the submillimeter-wave radiometer retrieval techniques. The goal of this effort is to develop a technique to enable spaceborne characterization of cirrus, which will meet a key climate measurement need. The development of an airborne radiometer to validate cirrus retrieval techniques is a critical step toward development of spaced-based radiometers to investigate and monitor cirrus on a global scale. The radiometer development is a cooperative effort of the University of Colorado, Colorado State University, Swales Aerospace, and Jet Propulsion Laboratory and is funded by the NASA Instrument Incubator Program.

  10. Cenozoic seismic stratigraphy of the SW Bermuda Rise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mountain, G.S.; Driscoll, N.W.; Miller, K.G.

    1985-01-01

    The seismic Horizon A-Complex (Tucholke, 1979) readily explains reflector patterns observed along the western third of the Bermuda Rise; farther east, basement is much more rugged and gravity flows shed from local topographic highs complicate the stratigraphy. Distal turbidites on the southwestern Bermuda Rise onlap reflector A* from the west, suggesting early Paleocene mass wasting of the North American margin. Locally erosive bottom currents cut into the middle Eocene section of the SW Bermuda Rise; these northward flowing currents preceded those that formed reflector Au along the North American margin near the Eocene-Oligocene boundary. Southward flowing currents swift enough tomore » erode the sea floor and to form reflector Au did not reach as far east as the SW Bermuda Rise. Instead, the main effect of these Au currents was to pirate sediment into contour-following geostrophic flows along the North American margin and to deprive the deep basin and the Bermuda Rise of sediment transported down-slope. Consequently, post-Eocene sediments away from the margin are fine-grained muds. Deposition of these muds on the SW Bermuda Rise was controlled by northward flowing bottom currents. The modern Hatteras Abyssal Plain developed in the late Neogene as turbidites once again onlapped the SW Bermuda Rise. Today, these deposits extend farthest east in fracture zone valleys and in the swales between sediment waves. Northward flowing currents continue at present to affect sediment distribution patterns along the western edge of the Bermuda Rise.« less

  11. The NIRCam Optical Telescope Simulator (NOTES)

    NASA Technical Reports Server (NTRS)

    Kubalak, David; Hakun, Claef; Greeley, Bradford; Eichorn, William; Leviton, Douglas; Guishard, Corina; Gong, Qian; Warner, Thomas; Bugby, David; Robinson, Frederick; hide

    2007-01-01

    The Near Infra-Red Camera (NIRCam), the 0.6-5.0 micron imager and wavefront sensing instrument for the James Webb Space Telescope (JWST), will be used on orbit both as a science instrument, and to tune the alignment of the telescope. The NIRCam Optical Telescope Element Simulator (NOTES) will be used during ground testing to provide an external stimulus to verify wavefront error, imaging characteristics, and wavefront sensing performance of this crucial instrument. NOTES is being designed and built by NASA Goddard Space Flight Center with the help of Swales Aerospace and Orbital Sciences Corporation. It is a single-point imaging system that uses an elliptical mirror to form an U20 image of a point source. The point source will be fed via optical fibers from outside the vacuum chamber. A tip/tilt mirror is used to change the chief ray angle of the beam as it passes through the aperture stop and thus steer the image over NIRCam's field of view without moving the pupil or introducing field aberrations. Interchangeable aperture stop elements allow us to simulate perfect JWST wavefronts for wavefront error testing, or introduce transmissive phase plates to simulate a misaligned JWST segmented mirror for wavefront sensing verification. NOTES will be maintained at an operating temperature of 80K during testing using thermal switches, allowing it to operate within the same test chamber as the NIRCam instrument. We discuss NOTES' current design status and on-going development activities.

  12. An evaluation of the use of individual grass species in retaining polluted soil and dust particulates in vegetated sustainable drainage devices.

    PubMed

    Charlesworth, S M; Bennett, J; Waite, A

    2016-08-01

    A sustainable means of preventing polluted particulates carried in urban storm water entering rivers, groundwater and lakes is by employing vegetated sustainable drainage system (SUDS) devices, or best management practices to trap or biodegrade them. In the UK, a mixture of grass species is recommended for use in devices such as swales or filter strips. However, there is little evidence in support of the efficiency of the individual grasses or mixtures to deal with such contaminated material. A pot-based pollutant retention study was conducted using processed street dust from central Coventry, UK, as a simulated pollutant to be applied in different quantities to a variety of recommended grasses for vegetated SUDS devices. Analysis was conducted on compost cores, roots and shoots for heavy metals (Cd, Cu, Ni, Pb and Zn). Street dust mainly concentrated in the top compost layer for all grasses with only the finer material migrating down the profile. Analysis of roots indicated little accumulation, with ANOVA statistical tests indicating significant differences in heavy metal concentrations, with less in the compost and more in the shoots. Development of root systems on or near the surface possibly explains increased uptake of heavy metals by some species. Overall Agrostis canina and Poa pratensis showed the greatest accumulations compared to their controls although Agrostis capillaris syn.tenuis and Agrostis stolonifera also demonstrated accumulation potential. On ranking, Agrostis canina and Poa pratensis were highest overall. These rankings will assist in selecting the best grasses to address pollution of the urban environment by contaminated particulates.

  13. Viking Lander 2 Anniversary

    NASA Image and Video Library

    2002-12-13

    This portion of NASA Mars Odyssey image covers NASA Viking 2 landing site shown with the X. The second landing on Mars took place September 3, 1976 in Utopia Planitia. The exact location of Lander 2 is not as well established as Lander 1 because there were no clearly identifiable features in the lander images as there were for the site of Lander 1. The Utopia landing site region contains pedestal craters, shallow swales and gentle ridges. The crater Goldstone was named in honor of the Tracking Station in the desert of California. The two Viking Landers operated for over 6 years (nearly four martian years) after landing. This one band IR (band 9 at 12.6 microns) image shows bright and dark textures, which are primarily due to differences in the abundance of rocks on the surface. The relatively cool (dark) regions during the day are rocky or indurated materials, fine sand and dust are warmer (bright). Many of the temperature variations are due to slope effects, with sun-facing slopes warmer than shaded slopes. The dark rings around several of the craters are due to the presence of rocky (cool) material ejected from the crater. These rocks are well below the resolution of any existing Mars camera, but THEMIS can detect the temperature variations they produce. Daytime temperature variations are produced by a combination of topographic (solar heating) and thermophysical (thermal inertia and albedo) effects. Due to topographic heating the surface morphologies seen in THEMIS daytime IR images are similar to those seen in previous imagery and MOLA topography. http://photojournal.jpl.nasa.gov/catalog/PIA04023

  14. Sustainable urban development in Brisbane City--the Holy Grail?

    PubMed

    Rahman, K; Weber, T

    2003-01-01

    Impacts from urban stormwater runoff on receiving environments have been well documented, particularly through specific regional scientific studies. Using various local government planning and management elements, urban developments in Brisbane City are now able to address stormwater management in an increasingly holistic context. One key initiative includes facilitating Water Sensitive Urban Design (WSUD) components within an Integrated Water Management Strategy that looks at policy formation, planning strategies, design option, community marketing and acceptance, maintenance programs and finally evaluation of various WSUD approaches. These can include the use of Natural Channel Designs, grassed swales, bio-filtration systems, porous pavements and roofwater tanks in several economic combinations. By linking with the Cooperative Research Centre for Catchment Hydrology, Brisbane City Council has influenced the design of WSUD planning tools and benefited the city with academic inputs into extensive evaluation programs. As well, it has also contributed to the Cooperative Research Centre's research outcomes. These evaluation programs are increasingly providing better understanding of various stormwater quality best management practices throughout Australia. As part of the overall implementation process, active involvement by a range of stakeholders has been crucial. These stakeholders have included internal planning, development assessment and design staff, external consultants, developers, and other local and state government agencies. The latter two groups are assisting in the important task of "regionalisation" of Brisbane City Council's policies and guidelines. Implementation of WSUD initiatives and stormwater re-use strategies under Council's new "Integrated Water Management" agenda are showing some excellent results, suggesting that sustainable urban development is no longer like the search for the Holy Grail.

  15. Quantifying flood duration controls on chute cutoff formation in a wandering gravel-bed river

    NASA Astrophysics Data System (ADS)

    Sawyer, A.; Wilcox, A. C.

    2014-12-01

    Chute cutoffs, which occur when a bypass or "chute" channel incises across a point or braid bar, distribute water and sediment, regulate sinuosity, and create off-channel habitat in wandering gravel-bed rivers. Cutoffs have been hypothesized to occur by progressive migration preparing a bend for cutoff, after which overbank flow events provide a trigger to excavate new channels. This trigger may depend on the magnitude and duration of floods and their associated sediment fluxes. Here we investigated how overbank flow duration impacts cutoff formation in a wandering gravel-bed river. To explore this, we applied a two-dimensional hydrodynamic model to a recently reconstructed reach of the Clark Fork River in western Montana that experienced chute cutoffs during a long-duration flood event in 2011. Hydrographs exceeding bankfull and with varying durations were simulated to constrain the role of overbank flow duration on erosional work in chute cutoff channels. For each magnitude-frequency-duration combination, cumulative excess shear stress (i.e., above the threshold of sediment mobilization) was quantified for in-channel and overbank areas. Locations of shear stress divergence associated with morphological change were identified along chute pathways. Preliminary results suggest that overbank areas containing concentrated flowpaths such as swales follow cumulative excess shear stress curve patterns similar to in-channel areas. This work describes a dynamic system characteristic of wandering gravel-bed rivers in the Pacific Northwest, and has implications for understanding morphodynamic evolution, river restoration targeting off-channel habitat for fish, and geomorphic flow regime management in regulated rivers.

  16. Characterizing Watersheds with Geophysical Methods: Some uses of GPR and EMI in Hydropedological Investigations.

    NASA Astrophysics Data System (ADS)

    Doolittle, J.; Lin, H.; Jenkinson, B.; Zhou, X.

    2006-05-01

    The USDA-NRCS and its cooperators use ground-penetrating radar (GPR) and electromagnetic induction (EMI) as rapid, noninvasive tools to support soil surveys at different scales and levels of resolution. The effective use of GPR is site-specific and generally restricted to soils having low electrical conductivity (e.g., soils with low clay and soluble salt contents). In suitable soils, GPR provides high resolution data, which are used to estimate depths to soil horizons and geologic layers that restrict, redirect, and/or concentrate the flow of water through landscapes. In areas of coarse-textured soils, GPR has been used to map spatiotemporal variations in water-table depths and local ground-water flow patterns. Compared with GPR, EMI can be effectively used across a broader spectrum of soils and spatial scales, but provides lower resolution of subsurface features. EMI is used to refine and improve soil maps prepared with traditional soil survey methods. Differences in apparent conductivity (ECa) are associated with different soils and soil properties (e.g., clay, moisture and soluble salt contents). Apparent conductivity maps provide an additional layer of information, which directs soil sampling, aids the identification and delineation of some soil polygons, and enhances the quality of soil maps. More recently, these tools were used to characterize the hydropedological character of a small, steeply sloping, forested watershed. Within the watershed, EMI was used to characterize the principal soil-landscape components, and GPR was used to provide high resolution data on soil depth and layering within colluvial deposits located in swales and depressional areas.

  17. AmeriFlux US-KS1 Kennedy Space Center (slash pine)

    DOE Data Explorer

    Drake, Bert [Smithsonian Environmental Research Center; Hinkle, Ross [University of Central Florida

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-KS1 Kennedy Space Center (slash pine). Site Description - The Kennedy Space Center Slash Pine Flatwoods site is located in the Merritt Island National Wildlife Refuge at the Kennedy Space Center (KSC) on the east coast of central Florida. Occupying 310 ha of local forest, the slash pine flatwoods ecosystem is managed as an uneven-aged stand with a sparsely populated overstory and a dense oak-dominated understory. Disturbances tend to occur on a 7 to 10 year cycle, mostly related to fire or hurricane activity. Prescribed fires have been conducted since 1969 to control understory fuel. The most recent burn was conducted in February of 1995. Following the burn, the stand was allowed to naturally regenerate into a open canopy of slash pines, less than 15% of canopy coverage ( on the order of 15-30 trees per ha), with a understory mostly composed of saw palmetto and scrub oak. There was a seasonally wet swale to the southeast that was on the margin of the flux tower footprint. A severe drought gripped most of Florida beginning in 1998 until the later half of 2001 resulting in four years of relatively low annual precipitation totals. Exceptionally high annual rainfall amounts in 2004 were the result of a pair of hurricanes that hit the area in August and September of 2004. Wind directions for the site are as follows: W and NW in the winter, afternoon E sea breeze in the summer.

  18. A Theoretical Model of Drumlin Formation Based on Observations at Múlajökull, Iceland

    NASA Astrophysics Data System (ADS)

    Iverson, N. R.; McCracken, R. G.; Zoet, L. K.; Benediktsson, Í. Ö.; Schomacker, A.; Johnson, M. D.; Woodard, J.

    2017-12-01

    The drumlin field at the surge-type glacier, Múlajökull, provides an unusual opportunity to build a model of drumlin formation based on field observations in a modern drumlin-forming environment. These observations indicate that surges deposit till layers that drape the glacier forefield, conform to drumlin surfaces, and are deposited in shear. Observations also indicate that erosion helps create drumlin relief, effective stresses in subglacial till are highest between drumlins, and during quiescent flow, crevasses on the glacier surface overlie drumlins while subglacial channels occupy intervening swales. In the model, we consider gentle undulations on the bed bounded by subglacial channels at low water pressure. During quiescent flow, slip of temperate ice across these undulations and basal water flow toward bounding channels create an effective stress distribution that maximizes till entrainment in ice on the heads and flanks of drumlins. Crevasses amplify this effect but are not necessary for it. During surges, effective stresses are uniformly low, and the bed shears pervasively. Vigorous basal melting during surges releases debris from ice and deposits it on the bed, with deposition augmented by transport in the deforming bed. As surge cycles progress, drumlins migrate downglacier and grow at increasing rates, due to positive feedbacks that depend on drumlin height. Drumlin growth can be accompanied by either net aggradation or erosion of the bed, and drumlin heights and stratigraphy generally correspond with observations. This model highlights that drumlin growth can reflect instabilities other than those of bed shear instability models, which require heuristic till transport assumptions.

  19. Integral stormwater management master plan and design in an ecological community.

    PubMed

    Che, Wu; Zhao, Yang; Yang, Zheng; Li, Junqi; Shi, Man

    2014-09-01

    Urban stormwater runoff nearly discharges directly into bodies of water through gray infrastructure in China, such as sewers, impermeable ditches, and pump stations. As urban flooding, water shortage, and other environment problems become serious, integrated water environment management is becoming increasingly complex and challenging. At more than 200ha, the Oriental Sun City community is a large retirement community located in the eastern side of Beijing. During the beginning of its construction, the project faced a series of serious water environment crises such as eutrophication, flood risk, water shortage, and high maintenance costs. To address these issues, an integral stormwater management master plan was developed based on the concept of low impact development (LID). A large number of LID and green stormwater infrastructure (GSI) approaches were designed and applied in the community to replace traditional stormwater drainage systems completely. These approaches mainly included bioretention (which captured nearly 85th percentile volume of the annual runoff in the site, nearly 5.4×10(5)m(3) annually), swales (which functioned as a substitute for traditional stormwater pipes), waterscapes, and stormwater wetlands. Finally, a stormwater system plan was proposed by integrating with the gray water system, landscape planning, an architectural master plan, and related consultations that supported the entire construction period. After more than 10 years of planning, designing, construction, and operation, Oriental Sun City has become one of the earliest modern large-scale LID communities in China. Moreover, the project not only addressed the crisis efficiently and effectively, but also yielded economic and ecological benefits. Copyright © 2014. Published by Elsevier B.V.

  20. Morphology and processes associated with the accumulation of the fine-grained sediment deposit on the southern New England shelf

    USGS Publications Warehouse

    Twichell, David C.; McClennen, Charles E.; Butman, Bradford

    1981-01-01

    A 13,000 km2 area of the southern New England Continental Shelf which is covered by anomalously fine-grained sediment has been surveyed by means of high-resolution, seismic-reflection and side-scan sonar techniques to map its morphology and structure, and a near-bottom instrument system contributed to understanding present activity of the deposit. Seismic-reflection profiles show that the fine-grained deposit, which is as much as 13 m thick, has accumulated during the last transgression because it rests on a reflector that is geomorphically similar to and continuous with the Holocene transgressive sand sheet still exposed on the shelf to the west. The ridge and swale topography comprising the sand sheet on the shelf off New Jersey and Long Island are relict in origin as these same features are found buried under the fine sediment deposit. Southwestward migrating megaripples observed on the sonographs in the eastern part of the deposit are evidence that sediment is still actively accumulating in this area. In the western part of the deposit, where surface sediment is composed of silt plus clay, evidence of present sediment mobility consists of changes in the near-bottom, suspended-matter concentrations primarily associated with storms. Nantucket Shoals and Georges Bank are thought to be the sources for the fine-textured sediment. Storms and strong tidal currents in these shoal areas may still erode available fine-grained material, which then is transported westward by the mean drift to the southern New England Shelf, where a comparatively tranquil environment permits deposition of the fine material.

  1. A Comparison of Runoff Quantity and Quality from Two Small Basins Undergoing Implementation of Conventional and Low-Impact-Development (LID) Strategies: Cross Plains, Wisconsin, Water Years 1999-2005

    USGS Publications Warehouse

    Selbig, William R.; Bannerman, Roger T.

    2008-01-01

    Environmental managers are often faced with the task of designing strategies to accommodate development while minimizing adverse environmental impacts. Low-impact development (LID) is one such strategy that attempts to mitigate environmental degradation commonly associated with impervious surfaces. The U.S. Geological Survey, in cooperation with the Wisconsin Department of Natural Resources, studied two residential basins in Cross Plains, Wis., during water years 1999?2005. A paired-basin study design was used to compare runoff quantity and quality from the two basins, one of which was developed in a conventional way and the other was developed with LID. The conventional-developed basin (herein called ?conventional basin?) consisted of curb and gutter, 40-foot street widths, and a fully connected stormwater-conveyance system. The LID basin consisted of grassed swales, reduced impervious area (32-foot street widths), street inlets draining to grass swales, a detention pond, and an infiltration basin. Data collected in the LID basin represented predevelopment through near-complete build-out conditions. Smaller, more frequent precipitation events that produced stormwater discharge from the conventional basin were retained in the LID basin. Only six events with precipitation depths less than or equal to 0.4 inch produced measurable discharge from the LID basin. Of these six events, five occurred during winter months when underlying soils are commonly frozen, and one was likely a result of saturated soil from a preceding storm. In the conventional basin, the number of discharge events, using the same threshold of precipitation depth, was 180, with nearly one-half of those resulting from precipitation depths less than 0.2 inch. Precipitation events capable of producing appreciable discharge in the LID basin were typically those of high intensity or precipitation depth or those that occurred after soils were already saturated. Total annual discharge volume measured from the conventional basin ranged from 1.3 to 9.2 times that from the LID basin. Development of the LID basin did not appreciably alter the hydrologic response to precipitation characterized during predevelopment conditions. Ninety-five percent or more of precipitation in the LID basin was retained during each year of construction from predevelopment through near-complete build-out, surpassing the 90-percent benchmark established for new development by the Wisconsin Department of Natural Resources. The amount of precipitation retained in the conventional basin did not exceed 94 percent and fell below the 90-percent standard 2 of the 6 years monitored. Much of the runoff in the LID basin was retained by an infiltration basin, the largest control structure used to mitigate storm-runoff quantity and quality. The infiltration basin also was the last best-management practice (BMP) used to treat runoff before it left the LID basin as discharge. From May 25, 2002, to September 30, 2005, only 24 of 155 precipitation events exceeded the retention/ infiltrative capacity of the infiltration basin. The overall reduction in runoff volume from these few events was 51 percent. The effectiveness of the infiltration basin decreased as precipitation intensities exceeded 0.5 inch per hour. Annual loads were estimated to characterize the overall effectiveness of low-impact design practices for mitigating delivery of total solids, total suspended solids, and total phosphorus. Annual loads of these three constituents were greater in the LID basin than in the conventional basin in 2000 and 2004. Seventy percent or more of all constituent annual loads were associated with two discharge events in 2000, and a single discharge event produced 50 percent or more of constituent annual loads in 2004. Each of these discharge events was associated with considerable precipitation depths and (or) intensities, ranging from 4.89 to 6.21 inches and from 1.13 to 1.2 inches per hour, respectively

  2. Microsites Matter: Improving the Success of Rare Species Reintroductions.

    PubMed

    Dunwiddie, Peter W; Martin, R Adam

    2016-01-01

    Our study was undertaken to better understand how to increase the success rates of recovery plantings of a rare hemiparasite, golden paintbrush (Castilleja levisecta-Orobanchaceae). This species is endemic to western Washington and Oregon, USA, and southwestern British Columbia, Canada. Over 5000 golden paintbrush plants were outplanted as plugs in 2007 at six different native prairie sites that were considered to be suitable habitat, based on general evaluations of vegetation and soil conditions. Outplantings were installed at regular intervals along transects up to 1 km long to include a range of conditions occurring at each site. All plantings were re-examined five years later. The patchy distribution of surviving plugs and new recruits within each reintroduction site suggested success is strongly influenced by microsite characteristics. Indicator species analysis of taxa growing in microsites around outplanted golden paintbrush identified species that were positively or negatively associated with paintbrush survival. Species such as Festuca roemeri, Eriophyllum lanatum, and Viola adunca were strong indicators at some sites; non-natives such as Hypochaeris radicata and Teesdalia nudicaulis tended to be frequent negative indicators. Overall, higher richness of native perennial forbs was strongly correlated with both survival and flowering of golden paintbrush, a pattern that may reflect interactions of this hemiparasite with the immediately surrounding plant community. Topographic position also influenced outcomes, with greater survival occurring on mounds and in swales, where soils generally were deeper. Our findings suggest that assessments of site suitability based on vegetation alone, and coarser, site-level assessments that do not characterize heterogeneity at the microsite scale, may not be strong predictors of restoration success over the longer term and in sites with variability in vegetation and soils. By identifying suitable microsites to focus rare species plantings, survival and efficiency may be significantly enhanced.

  3. Can There Ever Be Enough to Impact Water Quality? Evaluating BMPs in Elliot Ditch, Indiana Using the LTHIA-LID Model

    NASA Astrophysics Data System (ADS)

    Rahman, M. S.; Hoover, F. A.; Bowling, L. C.

    2017-12-01

    Elliot Ditch is an urban/urbanizing watershed located in the city of Lafayette, IN, USA. The city continues to struggle with stormwater management and combined sewer overflow (CSO) events. Several best-management practices (BMP) such as rain gardens, green roofs, and bioswales have been implemented in the watershed, but the level of adoption needed to achieve meaningful impact is currently unknown. This study's goal is to determine what level of BMP coverage is needed to impact water quality, whether meaningful impact is determined by achieving water quality targets or statistical significance. A power analysis was performed using water quality data for total suspended solids (TSS), E.coli, total phosphorus (TP) and nitrate (NO3-N) from Elliot Ditch from 2011 to 2015. The minimum detectable difference (MDD) was calculated as the percent reduction in load needed to detect a significant change in the watershed. The water quality targets were proposed by stakeholders as part of a watershed management planning process. The water quality targets and the MDD percentages were then compared to simulated load reductions due to BMP implementation using the Long-term Hydrologic Impact Assessment-Low Impact Development (LTHIA-LID) model. Seven baseline model scenarios were simulated by implementing the maximum number of each of six types of BMPs (rain barrels, permeable patios, green roofs, grassed swale/bioswales, bioretention/rain gardens, and porous pavement), as well as all the practices combined in the watershed. These provide the baseline for targeted implementation scenarios designed to determine if statistically and physically meaningful load reductions can be achieved through BMP implementation alone.

  4. Luminescence ages for alluvial-fan deposits in Southern Death Valley: Implications for climate-driven sedimentation along a tectonically active mountain front

    USGS Publications Warehouse

    Sohn, M.F.; Mahan, S.A.; Knott, J.R.; Bowman, D.D.

    2007-01-01

    Controversy exists over whether alluvial-fan sedimentation along tectonically active mountain fronts is driven by climatic changes or tectonics. Knowing the age of sedimentation is the key to understanding the relationship between sedimentation and its cause. Alluvial-fan deposits in Death Valley and throughout the arid southwestern United States have long been the subjects of study, but their ages have generally eluded researchers until recently. Most mapping efforts have recognized at least four major relative-age groupings (Q1 (oldest), Q2, Q3, and Q4 (youngest)), using observed changes in surface soils and morphology, relation to the drainage net, and development of desert pavement. Obtaining numerical age determinations for these morphologic stages has proven challenging. We report the first optically stimulated luminescence (OSL) ages for three of these four stages deposited within alluvial-fans along the tectonically active Black Mountains of Death Valley. Deposits showing distinct, remnant bar and swale topography (Q3b) have OSL ages from 7 to 4 ka., whereas those with moderate to poorly developed desert pavement and located farther above the active channel (Q3a) have OSL ages from 17 to 11 ka. Geomorphically older deposits with well-developed desert pavement (Q2d) have OSL ages ???25 ka. Using this OSL-based chronology, we note that alluvial-fan deposition along this tectonically active mountain front corresponds to both wet-to-dry and dry-to-wet climate changes recorded globally and regionally. These findings underscore the influence of climate change on alluvial fan deposition in arid and semi-arid regions. ?? 2007 Elsevier Ltd and INQUA.

  5. Watershed erosion modeling using the probability of sediment connectivity in a gently rolling system

    NASA Astrophysics Data System (ADS)

    Mahoney, David Tyler; Fox, James Forrest; Al Aamery, Nabil

    2018-06-01

    Sediment connectivity has been shown in recent years to explain how the watershed configuration controls sediment transport. However, we find no studies develop a watershed erosion modeling framework based on sediment connectivity, and few, if any, studies have quantified sediment connectivity for gently rolling systems. We develop a new predictive sediment connectivity model that relies on the intersecting probabilities for sediment supply, detachment, transport, and buffers to sediment transport, which is integrated in a watershed erosion model framework. The model predicts sediment flux temporally and spatially across a watershed using field reconnaissance results, a high-resolution digital elevation models, a hydrologic model, and shear-based erosion formulae. Model results validate the capability of the model to predict erosion pathways causing sediment connectivity. More notably, disconnectivity dominates the gently rolling watershed across all morphologic levels of the uplands, including, microtopography from low energy undulating surfaces across the landscape, swales and gullies only active in the highest events, karst sinkholes that disconnect drainage areas, and floodplains that de-couple the hillslopes from the stream corridor. Results show that sediment connectivity is predicted for about 2% or more the watershed's area 37 days of the year, with the remaining days showing very little or no connectivity. Only 12.8 ± 0.7% of the gently rolling watershed shows sediment connectivity on the wettest day of the study year. Results also highlight the importance of urban/suburban sediment pathways in gently rolling watersheds, and dynamic and longitudinal distributions of sediment connectivity might be further investigated in future work. We suggest the method herein provides the modeler with an added tool to account for sediment transport criteria and has the potential to reduce computational costs in watershed erosion modeling.

  6. Implications of hydrologic variability on the succession of plants in Great Lakes wetlands

    USGS Publications Warehouse

    Wilcox, Douglas A.

    2004-01-01

    Primary succession of plant communities directed toward a climax is not a typical occurrence in wetlands because these ecological systems are inherently dependent on hydrology, and temporal hydrologic variability often causes reversals or setbacks in succession. Wetlands of the Great Lakes provide good examples for demonstrating the implications of hydrology in driving successional processes and for illustrating potential misinterpretations of apparent successional sequences. Most Great Lakes coastal wetlands follow cyclic patterns in which emergent communities are reduced in area or eliminated by high lake levels and then regenerated from the seed bank during low lake levels. Thus, succession never proceeds for long. Wetlands also develop in ridge and swale terrains in many large embayments of the Great Lakes. These formations contain sequences of wetlands of similar origin but different age that can be several thousand years old, with older wetlands always further from the lake. Analyses of plant communities across a sequence of wetlands at the south end of Lake Michigan showed an apparent successional pattern from submersed to floating to emergent plants as water depth decreased with wetland age. However, paleoecological analyses showed that the observed vegetation changes were driven largely by disturbances associated with increased human settlement in the area. Climate-induced hydrologic changes were also shown to have greater effects on plant-community change than autogenic processes. Other terms, such as zonation, maturation, fluctuations, continuum concept, functional guilds, centrifugal organization, pulse stability, and hump-back models provide additional means of describing organization and changes in vegetation; some of them overlap with succession in describing vegetation processes in Great Lakes wetlands, but each must be used in the proper context with regard to short- and long-term hydrologic variability.

  7. Modelling the ability of source control measures to reduce inundation risk in a community-scale urban drainage system

    NASA Astrophysics Data System (ADS)

    Mei, Chao; Liu, Jiahong; Wang, Hao; Shao, Weiwei; Xia, Lin; Xiang, Chenyao; Zhou, Jinjun

    2018-06-01

    Urban inundation is a serious challenge that increasingly confronts the residents of many cities, as well as policymakers, in the context of rapid urbanization and climate change worldwide. In recent years, source control measures (SCMs) such as green roofs, permeable pavements, rain gardens, and vegetative swales have been implemented to address flood inundation in urban settings, and proven to be cost-effective and sustainable. In order to investigate the ability of SCMs on reducing inundation in a community-scale urban drainage system, a dynamic rainfall-runoff model of a community-scale urban drainage system was developed based on SWMM. SCMs implementing scenarios were modelled under six design rainstorm events with return period ranging from 2 to 100 years, and inundation risks of the drainage system were evaluated before and after the proposed implementation of SCMs, with a risk-evaluation method based on SWMM and analytic hierarchy process (AHP). Results show that, SCMs implementation resulting in significantly reduction of hydrological indexes that related to inundation risks, range of reduction rates of average flow, peak flow, and total flooded volume of the drainage system were 28.1-72.1, 19.0-69.2, and 33.9-56.0 %, respectively, under six rainfall events with return periods ranging from 2 to 100 years. Corresponding, the inundation risks of the drainage system were significantly reduced after SCMs implementation, the risk values falling below 0.2 when the rainfall return period was less than 10 years. Simulation results confirm the effectiveness of SCMs on mitigating inundation, and quantified the potential of SCMs on reducing inundation risks in the urban drainage system, which provided scientific references for implementing SCMs for inundation control of the study area.

  8. Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed.

    PubMed

    Mei, Chao; Liu, Jiahong; Wang, Hao; Yang, Zhiyong; Ding, Xiangyi; Shao, Weiwei

    2018-10-15

    Green Infrastructure (GI) has become increasingly important in urban stormwater management because of the effects of climate change and urbanization. To mitigate severe urban water-related problems, China is implementing GI at the national scale under its Sponge City Program (SCP). The SCP is currently in a pilot period, however, little attention has been paid to the cost-effectiveness of GI implementation in China. In this study, an evaluation framework based on the Storm Water Management Model (SWMM) and life cycle cost analysis (LCCA) was applied to undertake integrated assessments of the development of GI for flood mitigation, to support robust decision making regarding sponge city construction in urbanized watersheds. A baseline scenario and 15 GI scenarios under six design rainfall events with recurrence intervals ranging from 2-100 years were simulated and assessed. Model simulation results confirmed the effectiveness of GI for flood mitigation. Nevertheless, even under the most beneficial scenario, the results showed the hydrological performance of GI was incapable of eliminating flooding. Analysis indicated the bioretention cell (BC) plus vegetated swale (VS) scenario was the most cost-effective GI option for unit investment under all rainfall events. However, regarding the maximum potential of the implementation areas of all GI scenarios, the porous pavement plus BC + VS strategy was considered most reasonable for the study area. Although the optimal combinations are influenced by uncertainties in both the model and the GI parameters, the main trends and key insights derived remain unaffected; therefore, the conclusions are relevant regarding sponge city construction within the study area. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Termites Are Resistant to the Effects of Fire at Multiple Spatial Scales.

    PubMed

    Avitabile, Sarah C; Nimmo, Dale G; Bennett, Andrew F; Clarke, Michael F

    2015-01-01

    Termites play an important ecological role in many ecosystems, particularly in nutrient-poor arid and semi-arid environments. We examined the distribution and occurrence of termites in the fire-prone, semi-arid mallee region of south-eastern Australia. In addition to periodic large wildfires, land managers use fire as a tool to achieve both asset protection and ecological outcomes in this region. Twelve taxa of termites were detected by using systematic searches and grids of cellulose baits at 560 sites, clustered in 28 landscapes selected to represent different fire mosaic patterns. There was no evidence of a significant relationship between the occurrence of termite species and time-since-fire at the site scale. Rather, the occurrence of species was related to habitat features such as the density of mallee trees and large logs (>10 cm diameter). Species richness was greater in chenopod mallee vegetation on heavier soils in swales, rather than Triodia mallee vegetation of the sandy dune slopes. At the landscape scale, there was little evidence that the frequency of occurrence of termite species was related to fire, and no evidence that habitat heterogeneity generated by fire influenced termite species richness. The most influential factor at the landscape scale was the environmental gradient represented by average annual rainfall. Although termites may be associated with flammable habitat components (e.g. dead wood), they appear to be buffered from the effects of fire by behavioural traits, including nesting underground, and the continued availability of dead wood after fire. There is no evidence to support the hypothesis that a fine-scale, diverse mosaic of post-fire age-classes will enhance the diversity of termites. Rather, termites appear to be resistant to the effects of fire at multiple spatial scales.

  10. The Great 1787 Earthquake (M 8.6) and Tsunami along The Mexican Subduction Zone - History, Geology and Tsunami Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Ramirez-Herrera, M. T.; Lagos, M.; Goguitchaichvili, A.; Machain-Castillo, M. L.; Caballero, M.; Ruiz-Fernandez, A. C.; Suarez, G.; Ortuño, M.

    2017-12-01

    The 1787 great earthquake (M 8.6) triggered a deadly tsunami that poured over the coast of Oaxaca, Guerrero, and Chiapas, along more than 500 km of the Mexican Pacific coast and up to 6 km inland. This tsunami, according with historical documents, destroyed mostly farmlands and livestock, and damaged few villages since the density of population was sparse at the time. We report first on geological evidence from the Corralero lagoon and adjacent coastal plain that seem in agreement with historical accounts. The deposit left by the 1787 tsunami can be traced along a transect of cores and test pits from the coastline and up to 1.6 km inland. The test pits showed an anomalous sand layer that was deposited in a single event in the swales of a series of beach ridges. The anomalous layer is almost continuous along the transect, about a 1000 m-long, and is formed of coarse to medium sand, at variable depths, with variable thickness, and pinching up with the distance from the coastline. We used stratigraphy, grain size, microfossils (foraminifera and diatoms), magnetic susceptibility and anisotropy of magnetic susceptibility proxies to reveal the nature of this anomalous sand layer. Stratigraphy, abrupt contacts, and magnetic properties support a sudden and rapid event, consisting of sands transported most probably by an extreme sea-wave far inland. Furthermore, based on the accounts of the 1787 earthquake (M 8.6) and tsunami, and estimates from 210Pb sedimentation rates, we suggest that this is the tsunami deposit left by the 1787 event. Tsunami modeling will further enhance the hazard and risk assessment of this area in Mexico.

  11. Termites Are Resistant to the Effects of Fire at Multiple Spatial Scales

    PubMed Central

    Avitabile, Sarah C.; Nimmo, Dale G.; Bennett, Andrew F.; Clarke, Michael F.

    2015-01-01

    Termites play an important ecological role in many ecosystems, particularly in nutrient-poor arid and semi-arid environments. We examined the distribution and occurrence of termites in the fire-prone, semi-arid mallee region of south-eastern Australia. In addition to periodic large wildfires, land managers use fire as a tool to achieve both asset protection and ecological outcomes in this region. Twelve taxa of termites were detected by using systematic searches and grids of cellulose baits at 560 sites, clustered in 28 landscapes selected to represent different fire mosaic patterns. There was no evidence of a significant relationship between the occurrence of termite species and time-since-fire at the site scale. Rather, the occurrence of species was related to habitat features such as the density of mallee trees and large logs (>10 cm diameter). Species richness was greater in chenopod mallee vegetation on heavier soils in swales, rather than Triodia mallee vegetation of the sandy dune slopes. At the landscape scale, there was little evidence that the frequency of occurrence of termite species was related to fire, and no evidence that habitat heterogeneity generated by fire influenced termite species richness. The most influential factor at the landscape scale was the environmental gradient represented by average annual rainfall. Although termites may be associated with flammable habitat components (e.g. dead wood), they appear to be buffered from the effects of fire by behavioural traits, including nesting underground, and the continued availability of dead wood after fire. There is no evidence to support the hypothesis that a fine-scale, diverse mosaic of post-fire age-classes will enhance the diversity of termites. Rather, termites appear to be resistant to the effects of fire at multiple spatial scales. PMID:26571383

  12. Independent Review of Elemental Phosphorus Remediation at the Eastern Michaud Flats FMC Operable Unit near Pocatello, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, L. E.; Jerden, J. J.; Kimmell, T. A.

    2016-01-01

    If, despite risks to workers and these potential impacts, stakeholders decide that P4 wastes need to be excavated and treated, the Review Team determined that a number of the ETTs examined warrant further consideration for the treatment of P4 waste that has been characterized (for example, P4 waste present in the historical ponds). Nevertheless, concerns about the health and safety of site investigation workers using then-available investigation approaches prevented the collection of subsurface samples containing P4 from large areas of the site (e.g., the railroad swale, the vadose zone beneath the Furnace Building, and the abandoned railcars), As a result,more » the contaminant CSM in those particular areas was not refined enough to allow the Review Team to draw conclusions about using some of the ETTs to treat P4 waste in those areas. The readiness of an ETT for implementation varies depending on many factors, including stakeholder input, permitting, and remedial action construction requirements. Technologies that could be ready for use in the near term (within 1 year) include the following: mechanical excavation, containment technologies, off-site incineration, and drying and mechanical mixing under a tent structure. Technologies that could be ready for use in the mid-term (1 to 2 years) include cutter suction dredging, thermal-hydraulic dredging, and underground pipeline cleaning technologies. Technologies requiring a longer lead time (2 to 5 years) include on-site incineration, a land disposal restriction waste treatment system, an Albright & Wilson batch mud still, post-treatment on-site disposal, and post-treatment off-site disposal.« less

  13. Coral reef complexes at an atypical windward platform margin: Late Quaternary, southeast Florida

    USGS Publications Warehouse

    Lidz, B.H.

    2004-01-01

    Major coral reef complexes rim many modern and ancient carbonate platforms. Their role in margin evolution is not fully understood, particularly when they border a margin atypical of the classic model. Classic windward margins are steeply inclined. The windward margin of southeast Florida is distinct with a very low-gradient slope and a shelf edge ringed with 30-m-high Quaternary outlier reefs on a shallow upper-slope terrace. A newly developed synthesis of temporally well-constrained geologic events is used with surface and subsurface seismic-reflection contours to construct morphogenetic models of four discontinuous reef-complex sequences. The models show uneven subsurface topography, upward and landward buildups, and a previously unreported, rapid, Holocene progradation. The terms backstepped reef-complex margin, backfilled prograded margin, and coalesced reef-complex margin are proposed for sections exhibiting suitable signatures in the stratigraphic record. The models have significant implications for interpretation of ancient analogues. The Florida record chronicles four kinds of geologic events. (1) Thirteen transgressions high enough for marine deposition occurred between ca. 325 ka and the present. Six gave rise to stratigraphically successive coral reef complexes between ca. 185 and ca. 77.8 ka. The seventh reef ecosystem is Holocene. (2) Two primary coral reef architectures built the outer shelf and margin, producing respective ridge-and-swale and reef-and-trough geometries of very different scales. (3) Massive outlier reefs developed on an upper-slope terrace between ca. 106.5 and ca. 80 ka and are inferred to contain corals that would date to highstands at ca. 140 and 125 ka. (4) Sea level remained below elevation of the shelf between ca. 77.8 and ca. 9.6 ka. ?? 2004 Geological Society of America.

  14. Holding Water in the Landscape; striking a balance between food production and healthy catchment function

    NASA Astrophysics Data System (ADS)

    Quinn, Paul; Wilkinson, Mark; Stutter, Marc; Adams, Russell

    2015-04-01

    Here it is proposed that ~5 % of the rural landscape could be modified to hold water during storm events. Hence ~95% of land remains for food production, commercial forestry and amenity. This is a catchment scale commitment to sustainably reducing flood and drought risk, improving water quality, biodiversity and thereby climate proofing our catchments. The farmed landscape has intensified and as a result, runoff rates are no longer in balance with the catchment needs, which in turn contributes to floods, droughts and water pollution problems. The loss of infiltration rates, soil water holding capacity and the increase in ditches and drains through intense farming has resulted in a reduction of the overall water holding capacity of the landscape, therefore deeper soil and aquifer recharge rates are lower. However, adequate raw water supply and food production is also vital. Here we consider how ~5% of productive land could be used to physically hold water during and after storms. This is a simple philosophy for water stewardship that could be delivered by farmers and land managers themselves. In this poster we consider a 'treatment train' of mitigation in headwaters by the construction of:- Rural SuDs - by creating swales, bunds and grassy filters; Buffer Strips - (designed to hold water); The Ditch of The Future - by creating the prime location for holding water and recovering lost top soil and finally the better use of Small Headwater Floodplains - by storing flood water, creating wetlands, planting new forest, installing woody debris and new habitats. We present examples of where and how these measures have been installed and show the cost-effectiveness of temporarily holding storm runoff in several case study catchments taken from the UK.

  15. Characterising stormwater gross pollutants captured in catch basin inserts.

    PubMed

    Alam, Md Zahanggir; Anwar, A H M Faisal; Sarker, Dipok Chandra; Heitz, Anna; Rothleitner, Craig

    2017-05-15

    The accumulation of wash-off solid waste, termed gross pollutants (GPs), in drainage systems has become a major constraint for best management practices (BMPs) of stormwater. GPs should be captured at source before the material clogs the drainage network, seals the infiltration capacity of side entry pits or affects the aquatic life in receiving waters. BMPs intended to reduce stormwater pollutants include oil and grit separators, grassed swales, vegetated filter strips, retention ponds, and catch basin inserts (CBIs) are used to remove GP at the source and have no extra land use requirement because they are typically mounted within a catch basin (e.g. side entry pits; grate or gully pits). In this study, a new type of CBI, recently developed by Urban Stormwater Technologies (UST) was studied for its performance at a site in Gosnells, Western Australia. This new type of CBI can capture pollutants down to particle sizes of 150μm while retaining its shape and pollutant capturing capacity for at least 1year. Data on GP and associated water samples were collected during monthly servicing of CBIs for one year. The main component of GPs was found to be vegetation (93%): its accumulation showed a strong relationship (r 2 =0.9) with rainfall especially during the wet season. The average accumulation of total GP load for each CBI was 384kg/ha/yr (dry mass) with the GP moisture content ranging from 24 to 52.5%. Analysis of grain sizes of GPs captured in each CBI showed similar distributions in the different CBIs. The loading rate coefficient (K) calculated from runoff and GP load showed higher K-values for CBI located near trees. The UST developed CBI in this study showed higher potential to capture GPs down to 150μm in diameter than similar CBI devices described in previous studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Map showing drainage basins and historic cloudburst floods in the Salina quadrangle, Utah

    USGS Publications Warehouse

    Hackman, Robert J.; Williams, Paul L.

    1972-01-01

    In the Salina quadrangle, as in most of the arid West, summer precipitation commonly occurs as thunderstorms. Suring these storms, rain falls as a torrential downpour, or cloudburst, in a local area. An inch of rain or more may fall in half an hour; U.S. Weather Bureau records show that o.4 inch of rain has fallen in a period of 5 minutes (Woolley, 1946). Such a fall of water far exceeds the absorptive capacity of the ground surface, and in areas of steep sparsely vegetated terrain the runoff forms a cloudburst flood in which loose rock, soil, and alluvium combine with water to form a debris-laden mudflow. The mudflow then moves rapidly down gullies and canyons with power great enough to erode and to transport debris, and to destroy the works of man lying in its path. When the mudflow pours from the canyon mount into an open valley, solid debris separates from the water and is added to the alluvial fan built by numerous previous floods. Because many towns in Utah are built on fans at the mouths of canyons, there has been loss of life and considerable damage to buildings, streets, and crops since 1847, when white men first settled in Utah.This map shows historical cloudburst floods for which records exist; data were taken from the sources listed below. Most of the flooded areas shown are in or near populated places, and so the floods were observed and recorded. Actually, no part of the quadrangle is exempt from cloudburst floods; every canyon, dry wash, and swale is visited sooner or later by a cloudburst and becomes, briefly, the site of a destructive mudflow. The traveler is advised to exercise caution in all drainageways, especially during July and August, when 80 percent of the cloudbursts occur.

  17. The Usumacinta-Grijalva beach-ridge plain in southern Mexico: a high-resolution archive of river discharge and precipitation

    NASA Astrophysics Data System (ADS)

    Nooren, Kees; Hoek, Wim Z.; Winkels, Tim; Huizinga, Annika; Van der Plicht, Hans; Van Dam, Remke L.; Van Heteren, Sytze; Van Bergen, Manfred J.; Prins, Maarten A.; Reimann, Tony; Wallinga, Jakob; Cohen, Kim M.; Minderhoud, Philip; Middelkoop, Hans

    2017-09-01

    The beach-ridge sequence of the Usumacinta-Grijalva delta borders a 300 km long section of the southern Gulf of Mexico coast. With around 500 beach ridges formed in the last 6500 years, the sequence is unsurpassed in the world in terms of numbers of individual ridges preserved, continuity of the record, and temporal resolution. We mapped and dated the most extensively accreted part of the sequence, linking six phases of accretion to river mouth reconfigurations and constraining their ages with 14C and OSL dating. The geomorphological and sedimentological reconstruction relied on lidar data, coring transects, GPR measurements, grain-size analyses, and chemical fingerprinting of volcanic glass and pumice encountered within the beach and dune deposits. We demonstrate that the beach-ridge complex was formed under ample long-term fluvial sediment supply and shorter-term wave- and aeolian-modulated sediment reworking. The abundance of fluvially supplied sand is explained by the presence of easily weatherable Los Chocoyos ignimbrites from the ca. 84 ka eruption of the Atitlán volcano (Guatemala) in the catchment of the Usumacinta River. Autocyclic processes seem responsible for the formation of ridge-swale couplets. Fluctuations in their periodicity (ranging from 6-19 years) are governed by progradation rate, and are therefore not indicative of sea level fluctuations or variability in storm activity. The fine sandy beach ridges are mainly swash built. Ridge elevation, however, is strongly influenced by aeolian accretion during the time the ridge is located next to the beach. Beach-ridge elevation is negatively correlated with progradation rate, which we relate to the variability in sediment supply to the coastal zone, reflecting decadal-scale precipitation changes within the river catchment. In the southern Mexican delta plain, the coastal beach ridges therefore appear to be excellent recorders of hinterland precipitation.

  18. Assessing the Role of Dune Topography on a Fresh Water Lens of a Siliciclastic Barrier Along the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Anderson, C. P.; Carter, G. A.; Mooneyhan, D.

    2013-12-01

    Carlton P. Anderson, Gregory Carter, and David Mooneyhan University of Southern Mississippi Gulf Coast Geospatial Center Department of Geography and Geology Carlton.p.anderson@eagles.usm.edu The Mississippi-Alabama (MS-AL) barrier island chain consist of dynamic depositional landforms that constantly undergo changes in their evolutionary processes through changes in sea level, sediment supply, and weather events. These complex landscapes of the Northern Gulf of Mexico (NGOM) provide a chance to study their geomorphological progressions, which have been produced by sea level rise and fluvial processes throughout the Holocene. Studies on the freshwater lens of barriers have mainly concentrated on carbonate island settings with minimal focus to barriers with siliciclastic geology. The purpose of this study is to examine the relationship beach dune topography plays in the development and sustainability of the fresh water lens of Cat Island, Mississippi. Cat Island offers the opportunity to research a siliciclastic barrier along the NGOM where minimal anthropogenic activities have taken place. To determine the effect dune topography has on the fresh water lens, a transect of permanent water wells were used in conjunction with test wells at different sites throughout the north spit of the island, to establish the water table height above the ellipsoid (WGS 84), with vertical accuracies of 2 cm. Cross-sectional profiles of the dunes were also performed utilizing purposeful transects that intersected fresh water ponds in the dune-swale systems. These ponds provide water table elevations at the surface which were interpolated across the dunes for areas that lacked permanent well sites. To obtain survey-grade accuracies, a Trimble TSC3 receiver coupled with a R8 antennae RTK system were used. Salinity measurements were taken at test sites to determine the salt-to-freshwater interface. Results provide insights into how dune topography influences the fresh water lens of a siliciclastic barrier.

  19. How much Is enough? Minimal responses of water quality and stream biota to partial retrofit stormwater management in a suburban neighborhood

    USGS Publications Warehouse

    Roy, Allison; Rhea, Lee K.; Mayer, Audrey L.; Shuster, William D.; Beaulieu, Jake J.; Hopton, Matthew E.; Morrison, Matthew A.; St. Amand, Ann

    2014-01-01

    Decentralized stormwater management approaches (e.g., biofiltration swales, pervious pavement, green roofs, rain gardens) that capture, detain, infiltrate, and filter runoff are now commonly used to minimize the impacts of stormwater runoff from impervious surfaces on aquatic ecosystems. However, there is little research on the effectiveness of retrofit, parcel-scale stormwater management practices for improving downstream aquatic ecosystem health. A reverse auction was used to encourage homeowners to mitigate stormwater on their property within the suburban, 1.8 km2 Shepherd Creek catchment in Cincinnati, Ohio (USA). In 2007–2008, 165 rain barrels and 81 rain gardens were installed on 30% of the properties in four experimental (treatment) subcatchments, and two additional subcatchments were maintained as controls. At the base of the subcatchments, we sampled monthly baseflow water quality, and seasonal (5×/year) physical habitat, periphyton assemblages, and macroinvertebrate assemblages in the streams for the three years before and after treatment implementation. Given the minor reductions in directly connected impervious area from the rain barrel installations (11.6% to 10.4% in the most impaired subcatchment) and high total impervious levels (13.1% to 19.9% in experimental subcatchments), we expected minor or no responses of water quality and biota to stormwater management. There were trends of increased conductivity, iron, and sulfate for control sites, but no such contemporaneous trends for experimental sites. The minor effects of treatment on streamflow volume and water quality did not translate into changes in biotic health, and the few periphyton and macroinvertebrate responses could be explained by factors not associated with the treatment (e.g., vegetation clearing, drought conditions). Improvement of overall stream health is unlikely without additional treatment of major impervious surfaces (including roads, apartment buildings, and parking lots). Further research is needed to define the minimum effect threshold and restoration trajectories for retrofitting catchments to improve the health of stream ecosystems.

  20. Geomorphic and sedimentologic evidence for the separation of Lake Superior from Lake Michigan and Huron

    USGS Publications Warehouse

    Johnston, J.W.; Thompson, T.A.; Wilcox, D.A.; Baedke, S.J.

    2007-01-01

    A common break was recognized in four Lake Superior strandplain sequences using geomorphic and sedimentologic characteristics. Strandplains were divided into lakeward and landward sets of beach ridges using aerial photographs and topographic surveys to identify similar surficial features and core data to identify similar subsurface features. Cross-strandplain, elevation-trend changes from a lowering towards the lake in the landward set of beach ridges to a rise or reduction of slope towards the lake in the lakeward set of beach ridges indicates that the break is associated with an outlet change for Lake Superior. Correlation of this break between study sites and age model results for the strandplain sequences suggest that the outlet change occurred sometime after about 2,400 calendar years ago (after the Algoma phase). Age model results from one site (Grand Traverse Bay) suggest an alternate age closer to about 1,200 calendar years ago but age models need to be investigated further. The landward part of the strandplain was deposited when water levels were common in all three upper Great Lakes basins (Superior, Huron, and Michigan) and drained through the Port Huron/Sarnia outlet. The lakeward part was deposited after the Sault outlet started to help regulate water levels in the Lake Superior basin. The landward beach ridges are commonly better defined and continuous across the embayments, more numerous, larger in relief, wider, have greater vegetation density, and intervening swales contain more standing water and peat than the lakeward set. Changes in drainage patterns, foreshore sediment thickness and grain size help in identifying the break between sets in the strandplain sequences. Investigation of these breaks may help identify possible gaps in the record or missing ridges in strandplain sequences that may not be apparent when viewing age distributions and may justify the need for multiple age and glacial isostatic adjustment models. ?? 2006 Springer Science+Business Media B.V.

  1. Spatial connectivity, scaling, and temporal trajectories as emergent urban stormwater impacts

    NASA Astrophysics Data System (ADS)

    Jovanovic, T.; Gironas, J. A.; Hale, R. L.; Mejia, A.

    2016-12-01

    Urban watersheds are structurally complex systems comprised of multiple components (e.g., streets, pipes, ponds, vegetated swales, wetlands, riparian corridors, etc.). These multiple engineered components interact in unanticipated and nontrivial ways with topographic conditions, climate variability, land use/land cover changes, and the underlying eco-hydrogeomorphic dynamics. Such interactions can result in emergent urban stormwater impacts with cascading effects that can negatively influence the overall functioning of the urban watershed. For example, the interaction among many detention ponds has been shown, in some situations, to synchronize flow volumes and ultimately lead to downstream flow amplifications and increased pollutant mobilization. Additionally, interactions occur at multiple temporal and spatial scales requiring that urban stormwater dynamics be represented at the long-term temporal (decadal) and across spatial scales (from the single lot to the watershed scale). In this study, we develop and implement an event-based, high-resolution, network hydro-engineering model (NHEM), and demonstrate an approach to reconstruct the long-term regional infrastructure and land use/land cover conditions of an urban watershed. As the study area, we select an urban watershed in the metropolitan area of Scottsdale, Arizona. Using the reconstructed landscapes to drive the NHEM, we find that distinct surficial, hydrologic connectivity patterns result from the intersection of hydrologic processes, infrastructure, and land use/land cover arrangements. These spatial patters, in turn, exhibit scaling characteristics. For example, the scaling of urban watershed dispersion mechanisms shows altered scaling exponents with respect to pre-urban conditions. For example, the scaling exponent associated with geomorphic dispersion tends to increase for urban conditions, reflecting increased surficial path heterogeneity. Both the connectivity and scaling results can be used to delineate impact trajectories (i.e. the evolution of spatially referenced impacts over time). We find that the impact trajectories provide insight about the urban stormwater sustainability of watersheds as well as clues about the potential imprint of socio-environmental feedbacks in the evolutionary dynamics.

  2. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.D. Levine; V.L. Finley

    1998-03-01

    The results of the 1996 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1996, PPPL's Tokamak Fusion Test Reactor (TFTR) continued to conduct fusion experiments. Having set a world record on November 2, 1994, by achieving approximately 10.7 million watts of controlled fusion power during the deuterium-tritium (D-T) plasmamore » experiments, researchers turned their attention to studying plasma science experiments, which included ''enhanced reverse shear techniques.'' Since November 1993, more than 700 tritium-fueled experiments were conducted, which generated more than 4 x 10(superscript 20) neutrons and 1.4 gigajoules of fusion energy. In 1996, the overall performance of Princeton Plasma Physics Laboratory was rated ''excellent'' by the US Department of Energy in the Laboratory Appraisal report issued in early 1997. The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents) and petroleum hydrocarbons (past leaks of releases of diesel fuel from underground storage tanks). Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this report. During 1996, PPPL completed the removal of contaminated soil from two locations that were identified through the monitoring program: petroleum hydrocarbons along a drainage swale and chromium adjacent to the cooling tower.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khangaonkar, Tarang P.; Breithaupt, Stephen A.; Kristanovich, Felix C.

    A hydrodynamic and hydrologic modeling analysis was conducted to evaluate the feasibility of restoring natural estuarine functions and tidal marine wetlands habitat in the Chinook River estuary, located near the mouth of the Columbia River in Washington. The reduction in salmonid populations is attributable primarily to the construction of a Highway 101 overpass across the mouth of the Chinook River in the early 1920s with a tide gate under the overpass. This construction, which was designed to eliminate tidal action in the estuary, has impeded the upstream passage of salmonids. The goal of the Chinook River Restoration Project is tomore » restore tidal functions through the estuary, by removing the tide gate at the mouth of the river, filling drainage ditches, restoring tidal swales, and reforesting riparian areas. The hydrologic model (HEC-HMS) was used to compute Chinook River and tributary inflows for use as input to the hydrodynamic model at the project area boundary. The hydrodynamic model (RMA-10) was used to generate information on water levels, velocities, salinity, and inundation during both normal tides and 100-year storm conditions under existing conditions and under the restoration alternatives. The RMA-10 model was extended well upstream of the normal tidal flats into the watershed domain to correctly simulate flooding and drainage with tidal effects included, using the wetting and drying schemes. The major conclusion of the hydrologic and hydrodynamic modeling study was that restoration of the tidal functions in the Chinook River estuary would be feasible through opening or removal of the tide gate. Implementation of the preferred alternative (removal of the tide gate, restoration of the channel under Hwy 101 to a 200-foot width, and construction of an internal levee inside the project area) would provide the required restorations benefits (inundation, habitat, velocities, and salinity penetration, etc.) and meet flood protection requirements. The alternative design included design of storage such that relatively little difference in the drainage or inundation upstream of Chinook River Valley Road would occur as a result of the proposed restoration activities.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khangaonkar, Tarang P.; Breithaupt, Stephen A.; Kristanovich, Felix C.

    A hydrodynamic and hydrologic modeling analysis was conducted to evaluate the feasibility of restoring natural estuarine functions and tidal marine wetlands habitat in the Chinook River estuary, located near the mouth of the Columbia River in Washington. The reduction in salmonid populations is attributable primarily to the construction of a Highway 101 overpass across the mouth of the Chinook River in the early 1920s with a tide gate under the overpass. This construction, which was designed to eliminate tidal action in the estuary, has impeded the upstream passage of salmonids. The goal of the Chinook River Restoration Project is tomore » restore tidal functions through the estuary, by removing the tide gate at the mouth of the river, filling drainage ditches, restoring tidal swales, and reforesting riparian areas. The hydrologic model (HEC-HMS) was used to compute Chinook River and tributary inflows for use as input to the hydrodynamic model at the project area boundary. The hydrodynamic model (RMA-10) was used to generate information on water levels, velocities, salinity, and inundation during both normal tides and 100-year storm conditions under existing conditions and under the restoration alternatives. The RMA-10 model was extended well upstream of the normal tidal flats into the watershed domain to correctly simulate flooding anddrainage with tidal effects included, using the wetting and drying schemes. The major conclusion of the hydrologic and hydrodynamic modeling study was that restoration of the tidal functions in the Chinook River estuary would be feasible through opening or removal of the tide gate. Implementation of the preferred alternative (removal of the tide gate, restoration of the channel under Hwy 101 to a 200-foot width, and construction of an internal levee inside the project area) would provide the required restorations benefits (inundation, habitat, velocities, and salinity penetration, etc.) and meet flood protection requirements. The alternative design included design of storage such that relatively little difference in the drainage or inundation upstream of Chinook River Valley Road would occur as a result of the proposed restoration activities.« less

  5. Coupling chemical weathering with soil production across soil-mantled landscapes

    USGS Publications Warehouse

    Burke, B.C.; Heimsath, A.M.; White, A.F.

    2007-01-01

    Soil-covered upland landscapes constitute a critical part of the habitable world. Our understanding of how they evolve as a function of different climatic, tectonic and geological regimes is important across a wide range of disciplines and depends, in part, on understanding the links between chemical and physical weathering processes. Extensive previous work has shown that soil production rates decrease with increasing soil column thickness, but chemical weathering rates were not measured. Here we examine a granitic, soil-mantled hillslope at Point Reyes, California, where soil production rates were determined using in situ produced cosmogenic nuclides (10Be and 26Al), and we quantify the extent as well as the rates of chemical weathering of the saprolite from beneath soil from across the landscape. We collected saprolite samples from the base of soil pits and analysed them for abrasion pH as well as for major and trace elements by X-ray fluorescence spectroscopy, and for clay mineralogy by X-ray diffraction spectroscopy. Our results show for the first time that chemical weathering rates decrease with increasing soil thickness and account for 13 to 51 per cent of total denudation. We also show that spatial variation in chemical weathering appears to be topographically controlled: weathering rate decreases with slope across the divergent ridge and increases with upslope contributing area in the convergent swale. Furthermore, to determine the best measure for the extent of saprolite weathering, we compared four different chemical weathering indices - the Vogt ratio, the chemical index of alteration (CIA), Parker's index, and the silicon-aluminium ratio - with saprolite pH. Measurements of the CIA were the most closely correlated with saprolite pH, showing that weathering intensity decreases linearly with an increase in saprolite pH from 4.7 to almost 7. Data presented here are among the first to couple directly rates of soil production and chemical weathering with how topography is likely to control weathering at a hillslope scale. Copyright ?? 2006 John Wiley & Sons, Ltd.

  6. How Much Is Enough? Minimal Responses of Water Quality and Stream Biota to Partial Retrofit Stormwater Management in a Suburban Neighborhood

    PubMed Central

    Roy, Allison H.; Rhea, Lee K.; Mayer, Audrey L.; Shuster, William D.; Beaulieu, Jake J.; Hopton, Matthew E.; Morrison, Matthew A.; St. Amand, Ann

    2014-01-01

    Decentralized stormwater management approaches (e.g., biofiltration swales, pervious pavement, green roofs, rain gardens) that capture, detain, infiltrate, and filter runoff are now commonly used to minimize the impacts of stormwater runoff from impervious surfaces on aquatic ecosystems. However, there is little research on the effectiveness of retrofit, parcel-scale stormwater management practices for improving downstream aquatic ecosystem health. A reverse auction was used to encourage homeowners to mitigate stormwater on their property within the suburban, 1.8 km2 Shepherd Creek catchment in Cincinnati, Ohio (USA). In 2007–2008, 165 rain barrels and 81 rain gardens were installed on 30% of the properties in four experimental (treatment) subcatchments, and two additional subcatchments were maintained as controls. At the base of the subcatchments, we sampled monthly baseflow water quality, and seasonal (5×/year) physical habitat, periphyton assemblages, and macroinvertebrate assemblages in the streams for the three years before and after treatment implementation. Given the minor reductions in directly connected impervious area from the rain barrel installations (11.6% to 10.4% in the most impaired subcatchment) and high total impervious levels (13.1% to 19.9% in experimental subcatchments), we expected minor or no responses of water quality and biota to stormwater management. There were trends of increased conductivity, iron, and sulfate for control sites, but no such contemporaneous trends for experimental sites. The minor effects of treatment on streamflow volume and water quality did not translate into changes in biotic health, and the few periphyton and macroinvertebrate responses could be explained by factors not associated with the treatment (e.g., vegetation clearing, drought conditions). Improvement of overall stream health is unlikely without additional treatment of major impervious surfaces (including roads, apartment buildings, and parking lots). Further research is needed to define the minimum effect threshold and restoration trajectories for retrofitting catchments to improve the health of stream ecosystems. PMID:24465468

  7. Biological-Physical Feedbacks Determine Coastal Environmental Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Moore, L. J.; Duran Vinent, O.; Walters, D.; Fagherazzi, S.; Mariotti, G.; Young, D.; Wolner, C. V.

    2012-12-01

    As low-lying coastal landforms, transitional between marine and terrestrial realms, barrier islands are especially sensitive to changing environmental conditions. Interactions among biological and physical processes appear to play a critical role in determining how these landscapes will evolve in the future as sea level rises, storm intensity increases and plant species composition changes. Within a new conceptual framework, barrier islands tend to exist in one of two primary states. "Low" islands have little relief above sea level and are dominated by external processes, responding quickly on short time scales to changes in forcing (e.g., storms, sea level rise, etc.), migrating rapidly and generally being low in ecological diversity and productivity. In contrast, "high" islands are less vulnerable to storms, tend to be dominated by internal processes (e.g., sand trapping by vegetation), require long time periods to respond to changes in forcing, migrate slowly (if at all) and host a range of plant species and morphological environments including shrubs, small trees and vegetated secondary and tertiary dunes with intervening swales. The continued existence of barrier island landforms will depend on the degree to which islands can maintain elevation above sea level while also responding to changes in forcing by migrating landward. A long-term morphological-behavior model exploring coupled barrier-marsh evolution and a new ecomorphodynamic model representing the formation/recovery of dunes as a function of storms, shed light on the role of interactions among biological and physical processes on barrier island response to climate change. Results suggest that connections between the marsh and barrier realms, which are mediated by biological processes in the marsh environment, are highly sensitive to factors such as sea level rise rate, antecedent morphology and marsh composition. Results also suggest that feedbacks between sediment transport and vegetation involved in dune building may allow small, gradual changes in storms to cause abrupt, nonlinear transitions from the high to low island state.

  8. Strand-plain evidence for late Holocene lake-level variations in Lake Michigan

    USGS Publications Warehouse

    Thompson, T.A.; Baedke, S.J.

    1997-01-01

    Lake level is a primary control on shoreline behavior in Lake Michigan. The historical record from lake-level gauges is the most accurate source of information on past lake levels, but the short duration of the record does not permit the recognition of long-term patterns of lake-level change (longer than a decade or two). To extend the record of lake-level change, the internal architecture and timing of development of five strand plains of late Holocene beach ridges along the Lake Michigan coastline were studied. Relative lake-level curves for each site were constructed by determining the elevation of foreshore (swash zone) sediments in the beach ridges and by dating basal wetland sediments in the swales between ridges. These curves detect long-term (30+ yr) lake-level variations and differential isostatic adjustments over the past 4700 yr at a greater resolution than achieved by other studies. The average timing of beach-ridge development for all sites is between 29 and 38 yr/ridge. This correspondence occurs in spite of the embayments containing the strand plains being different in size, orientation, hydrographic regime, and available sediment type and caliber. If not coincidental, all sites responded to a lake-level fluctuation of a little more than three decades in duration and a range of 0.5 to 0.6 m. Most pronounced in the relative lake-level curves is a fluctuation of 120-180 yr in duration. This ???150 yr variation is defined by groups of four to six ridges that show a rise and fall in foreshore elevations of 0.5 to 1.5 m within the group. The 150 yr variation can be correlated between sites in the Lake Michigan basin. The ???30 and 150 yr fluctuations are superimposed on a long-term loss of water to the Lake Michigan basin and differential rates of isostatic adjustment.

  9. How much is enough? Minimal responses of water quality and stream biota to partial retrofit stormwater management in a suburban neighborhood.

    PubMed

    Roy, Allison H; Rhea, Lee K; Mayer, Audrey L; Shuster, William D; Beaulieu, Jake J; Hopton, Matthew E; Morrison, Matthew A; St Amand, Ann

    2014-01-01

    Decentralized stormwater management approaches (e.g., biofiltration swales, pervious pavement, green roofs, rain gardens) that capture, detain, infiltrate, and filter runoff are now commonly used to minimize the impacts of stormwater runoff from impervious surfaces on aquatic ecosystems. However, there is little research on the effectiveness of retrofit, parcel-scale stormwater management practices for improving downstream aquatic ecosystem health. A reverse auction was used to encourage homeowners to mitigate stormwater on their property within the suburban, 1.8 km(2) Shepherd Creek catchment in Cincinnati, Ohio (USA). In 2007-2008, 165 rain barrels and 81 rain gardens were installed on 30% of the properties in four experimental (treatment) subcatchments, and two additional subcatchments were maintained as controls. At the base of the subcatchments, we sampled monthly baseflow water quality, and seasonal (5×/year) physical habitat, periphyton assemblages, and macroinvertebrate assemblages in the streams for the three years before and after treatment implementation. Given the minor reductions in directly connected impervious area from the rain barrel installations (11.6% to 10.4% in the most impaired subcatchment) and high total impervious levels (13.1% to 19.9% in experimental subcatchments), we expected minor or no responses of water quality and biota to stormwater management. There were trends of increased conductivity, iron, and sulfate for control sites, but no such contemporaneous trends for experimental sites. The minor effects of treatment on streamflow volume and water quality did not translate into changes in biotic health, and the few periphyton and macroinvertebrate responses could be explained by factors not associated with the treatment (e.g., vegetation clearing, drought conditions). Improvement of overall stream health is unlikely without additional treatment of major impervious surfaces (including roads, apartment buildings, and parking lots). Further research is needed to define the minimum effect threshold and restoration trajectories for retrofitting catchments to improve the health of stream ecosystems.

  10. Semi-Automated Classification of Seafloor Data Collected on the Delmarva Inner Shelf

    NASA Astrophysics Data System (ADS)

    Sweeney, E. M.; Pendleton, E. A.; Brothers, L. L.; Mahmud, A.; Thieler, E. R.

    2017-12-01

    We tested automated classification methods on acoustic bathymetry and backscatter data collected by the U.S. Geological Survey (USGS) and National Oceanic and Atmospheric Administration (NOAA) on the Delmarva inner continental shelf to efficiently and objectively identify sediment texture and geomorphology. Automated classification techniques are generally less subjective and take significantly less time than manual classification methods. We used a semi-automated process combining unsupervised and supervised classification techniques to characterize seafloor based on bathymetric slope and relative backscatter intensity. Statistical comparison of our automated classification results with those of a manual classification conducted on a subset of the acoustic imagery indicates that our automated method was highly accurate (95% total accuracy and 93% Kappa). Our methods resolve sediment ridges, zones of flat seafloor and areas of high and low backscatter. We compared our classification scheme with mean grain size statistics of samples collected in the study area and found that strong correlations between backscatter intensity and sediment texture exist. High backscatter zones are associated with the presence of gravel and shells mixed with sand, and low backscatter areas are primarily clean sand or sand mixed with mud. Slope classes further elucidate textural and geomorphologic differences in the seafloor, such that steep slopes (>0.35°) with high backscatter are most often associated with the updrift side of sand ridges and bedforms, whereas low slope with high backscatter correspond to coarse lag or shell deposits. Low backscatter and high slopes are most often found on the downdrift side of ridges and bedforms, and low backscatter and low slopes identify swale areas and sand sheets. We found that poor acoustic data quality was the most significant cause of inaccurate classification results, which required additional user input to mitigate. Our method worked well along the primarily sandy Delmarva inner continental shelf, and outlines a method that can be used to efficiently and consistently produce surficial geologic interpretations of the seafloor from ground-truthed geophysical or hydrographic data.

  11. Blue and green infrastructures implementation to solve stormwater management issues in a new urban development project - a modelling approach

    NASA Astrophysics Data System (ADS)

    Versini, Pierre-Antoine; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2016-04-01

    Concentrating buildings and socio-economic activities, urban areas are particularly vulnerable to hydrological risks. Modification in climate may intensify already existing issues concerning stormwater management (due to impervious area) and water supply (due to the increase of the population). In this context, water use efficiency and best water management practices are key-issues in the urban environment already stressed. Blue and green infrastructures are nature-based solutions that provide synergy of the blue and green systems to provide multifunctional solutions and multiple benefits: increased amenity, urban heat island improvement, biodiversity, reduced energy requirements... They are particularly efficient to reduce the potential impact of new and existing developments with respect to stormwater and/or water supply issues. The Multi-Hydro distributed rainfall-runoff model represents an adapted tool to manage the impacts of such infrastructures at the urban basin scale. It is a numerical platform that makes several models interact, each of them representing a specific portion of the water cycle in an urban environment: surface runoff and infiltration depending on a land use classification, sub-surface processes and sewer network drainage. Multi-Hydro is still being developed at the Ecole des Ponts (open access from https://hmco.enpc.fr/Tools-Training/Tools/Multi-Hydro.php) to take into account the wide complexity of urban environments. The latest advancements have made possible the representation of several blue and green infrastructures (green roof, basin, swale). Applied in a new urban development project located in the Paris region, Multi-Hydro has been used to simulate the impact of blue and green infrastructures implementation. It was particularly focused on their ability to fulfil regulation rules established by local stormwater managers in order to connect the parcel to the sewer network. The results show that a combination of several blue and green infrastructures, if they are widely implemented, could represent an efficient tool to ensure regulation rules at the parcel scale.

  12. Structural Design and Analysis of the Upper Pressure Shell Section of a Composite Crew Module

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Paddock, David; Jeans, Jim W.; Hudeck, John D.

    2008-01-01

    This paper presents the results of the structural design and analysis of the upper pressure shell section of a carbon composite demonstration structure for the Composite Crew Module (CCM) Project. The project is managed by the NASA Engineering and Safety Center with participants from eight NASA Centers, the Air Force Research Laboratory, and multiple aerospace contractors including ATK/Swales, Northrop Grumman, Lockheed Martin, Collier Research Corporation, Genesis Engineering, and Janicki Industries. The paper discusses details of the upper pressure shell section design of the CCM and presents the structural analysis results using the HyperSizer structural sizing software and the MSC Nastran finite element analysis software. The HyperSizer results showed that the controlling load case driving most of the sizing in the upper pressure shell section was the internal pressure load case. The regions around the cutouts were controlled by internal pressure and the main parachute load cases. The global finite element analysis results showed that the majority of the elements of the CCM had a positive margin of safety with the exception of a few hot spots around the cutouts. These hot spots are currently being investigated with a more detailed analysis. Local finite element models of the Low Impact Docking System (LIDS) interface ring and the forward bay gussets with greater mesh fidelity were created for local sizing and analysis. The sizing of the LIDS interface ring was driven by the drogue parachute loads, Trans-Lunar Insertion (TLI) loads, and internal pressure. The drogue parachute loads controlled the sizing of the gusset cap on the drogue gusset and TLI loads controlled the sizing of the other five gusset caps. The main parachute loads controlled the sizing of the lower ends of the gusset caps on the main parachute fittings. The results showed that the gusset web/pressure shell and gusset web/gusset cap interfaces bonded using Pi-preform joints had local hot spots in the Pi-preform termination regions. These regions require a detailed three-dimensional analysis, which is currently being performed, to accurately address the load distribution near the Pi-preform termination in the upper and lower gusset caps.

  13. Geomorphological control on podzolisation - An example from a tropical barrier island

    NASA Astrophysics Data System (ADS)

    Martinez, Pedro; Buurman, Peter; Lopes-Mazzetto, Josiane Millani; Giannini, Paulo César Fonseca; Schellekens, Judith; Vidal-Torrado, Pablo

    2018-05-01

    We investigated how the geomorphology of coastal barrier islands impacts soil hydrology and drainage at the landscape scale. Ilha Comprida is a Holocene barrier island with a 2.5 km-long cliff that is perpendicular to the coastal shore which provides an ideal condition to study the relation between age, relief, hydrology, and podzol morphology. Five geomorphic units were identified that differed in surface morphology and alignment of ridges and swales. Optical stimulated luminescence (OSL) dating showed that these geomorphic units had growth phases that decreased in age from west to east (Units I-V, from 5250 ± 820 to 325 ± 31 years ago, respectively). The geomorphic units were studied in two parallel 3 km transects on the southern part of the island. Along transect A-B, about 1 km from the southern shore, deep augerings were used to study sedimentary sequence and soil development, while on transect C-D on the southern shore, the continuous cliff exposure allowed more detailed morphological investigation. On all geomorphic units excluding the youngest, podzolisation has been the main soil-forming process. Groundwater level was monitored monthly for two years in 14 deep wells along transect A-B. Groundwater level during the formation of the B horizon was ascertained by determination of Fe. Podzol morphology (color of B horizon and its boundary with the E horizon) generally showed correlation to groundwater levels for both transects, except for the podzols in southwestern part of the island (Unit II). The podzols of Unit II showed an extremely thick (3 m) Bhm horizon devoid of Fe, indicating that they were formed under poor drainage conditions. However, soil morphology (undulating EB horizon boundary) and measured groundwater levels (below the B horizons) demonstrated that drainage has been improved. The extremely thick B horizon (3 m) in those podzols, which was formed in approximately 3000 years, and its genesis is explained by concentrated lateral flow of DOM-loaded groundwater due to the converging ridge alignments found in these units, in combination with a gradual uplift of the southwestern part of the island.

  14. Sedimentary characteristics of the 2004 Indian Ocean tsunami in Ban Talae Nok, southwestern Ranong province, Thailand

    NASA Astrophysics Data System (ADS)

    Monecke, K.; Beitel, J.; Moran, K.; Moore, A.

    2006-12-01

    Ban Talae Nok, a village on the Andaman shoreline of Thailand, was hit by the December 26, 2004, tsunami with wave heights up to ~13 meters. Eyewitnesses reported the passage of four to five waves with the second being the largest, followed by the third and fourth waves. The tsunami flooded an area with open grassy fields, small cashew nut plantations and a wetland within a local swale. The wave stopped against hills ~500 m from the shoreline, where watermarks still indicate a flow depth of approximately 1 m. Erosion at the beach is marked by a ~30 cm high scarp cutting a former gravelly beach trail ~60 m inshore of the present shoreline. Deposition of tsunami sand started behind the former beach trail at 80 m inshore. The tsunami deposit changes significantly in thickness and composition along a flow parallel transect that was measured and sampled within this study. The most seaward deposit is about 10 cm thick and consists of three distinct layers that show internal as well as overall normal grading from coarse sand into fine sand. The coarse base contains gravels from the old beach trail and shell fragments. Locally, cross stratification is visible at the top. Farther landward the deposit thins and only one normally graded layer is visible. Behind a small ridge where the wetland begins, the tsunami sediments again reveal three normally graded layers with shell- rich, medium-coarse sand grading into brown-gray mud, probably eroded from the wetland. This deposit thins farther inland from ~30 cm to 8 cm and consists of only one layer. The thickest deposit along the transect is 125 cm thick and can be found in a low at the landward end of the wetland. It consists of normally graded coarse to fine sand with rip-up clasts at the base and climbing ripples in the middle of the deposit section. In the adjacent grassy field the deposit is up to 40 cm thick and consists of medium to coarse sand with shell fragments grading into fine to medium sands, which continue to the foot of the hills.

  15. Perennial flow through convergent hillslopes explains chemodynamic solute behavior in a shale headwater catchment

    NASA Astrophysics Data System (ADS)

    Herndon, E.; Steinhoefel, G.; Dere, A. L. D.; Sullivan, P. L.

    2017-12-01

    Streams experience changing hydrologic connectivity to heterogeneous water sources under different flow regimes. It remains unclear how seasonal flow paths link these different sources and regulate concentration-discharge behavior. Previous research at the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) in central Pennsylvania, USA identified chemostatic solutes (e.g., K, Mg, Na, Cl) whose concentrations varied little across a wide range of discharge values and chemodynamic solutes (e.g., Fe and Mn) whose concentrations decreased sharply with increasing stream discharge. To elucidate inputs to the stream when concentrations of chemodynamic solutes were high, we investigated stream water and shallow groundwater (< 4 m) chemistry at the SSHCZO in early autumn when discharge was negligible. The stream consisted of isolated puddles that were chemically variable along the length of the channel but similar to underlying shallow groundwater. Chemodynamic solute concentrations in the stream and groundwater were high in the upper catchment but decreased by an order of magnitude towards the outlet. In contrast, chemostatic solute concentrations varied little. Groundwater was minimally connected to the stream in an area of upwelling near the stream headwaters; however, the water table remained over a meter below the stream bed along the rest of the channel. We conclude that well water sampled from the upper catchment is young, shallow interflow that upwells to generate metal-rich stream headwaters during the dry season. High concentrations of chemodynamic solutes measured during low discharge occur when metal-rich headwaters are flushed to the catchment outlet during periodic rain events. Interflow during the dry season originates from water that infiltrates through organic-rich swales; thus, metals in the stream at low flow are ultimately derived from convergent hillslopes where biological processes have concentrated chemodynamic elements. We infer that chemodynamic solutes are diluted at high discharge due to increased flow through planar hillslopes and inputs from regional groundwater that rises to enter the stream. This study highlights how spatially heterogeneous biogeochemistry and seasonally variable flow paths regulate concentration-discharge behavior within catchments.

  16. Late Quaternary eolian dust in surficial deposits of a Colorado Plateau grassland: Controls on distribution and ecologic effects

    USGS Publications Warehouse

    Reynolds, R.L.; Reheis, M.C.; Neff, J.C.; Goldstein, H.; Yount, J.

    2006-01-01

    In a semi-arid, upland setting on the Colorado Plateau that is underlain by nutrient-poor Paleozoic eolian sandstone, alternating episodes of dune activity and soil formation during the late Pleistocene and Holocene have produced dominantly sandy deposits that support grass and shrub communities. These deposits also contain eolian dust, especially in paleosols. Eolian dust in these deposits is indicated by several mineralogic and chemical disparities with local bedrock, but it is most readily shown by the abundance of titaniferous magnetite in the sandy deposits that is absent in local bedrock. Magnetite and some potential plant nutrients (especially, P, K, Na, Mn, and Zn) covary positively with depth (3-4 m) in dune-crest and dune-swale settings. Magnetite abundance also correlates strongly and positively with abundances of other elements (e.g., Ti, Li, As, Th, La, and Sc) that are geochemically stable in these environments. Soil-property variations with depth can be ascribed to three primary factors: (1) shifts in local geomorphic setting; (2) accumulation of relatively high amounts of atmospheric mineral dust inputs during periods of land-surface stability; and (3) variations in dust flux and composition that are likely related to changes in dust-source regions. Shifts in geomorphic setting are revealed by large variations in soil texture and are also expressed by changes in soil chemical and magnetic properties. Variable dust inputs are indicated by both changes in dust flux and changes in relations among magnetic, chemical, and textural properties. The largest of these changes is found in sediment that spans late Pleistocene to early Holocene time. Increased dust inputs to the central Colorado Plateau during this period may have been related to desiccation and shrinkage of large lakes from about 12 to 8 ka in western North America that exposed vast surfaces capable of emitting dust. Soil properties that result from variable dust accumulation and redistribution in these surficial deposits during the late Quaternary are important to modern ecosystem dynamics because some plants today utilize nutrients deposited as long ago as about 12-15 ky and because variations in fine-grained (silt) sediment, including eolian dust, influence soil-moisture capacity.

  17. Slope evolution at the Calvert Cliffs, Maryland -- measuring the change from eroding bluffs to stable slopes

    USGS Publications Warehouse

    Herzog, Martha; Larsen, Curtis E.; McRae, Michele

    2002-01-01

    Despite a long history of geomorphic studies, it is difficult to ascertain the time required for slopes to change from near vertical exposures to relatively stable slopes due to inadequate age control. Actively eroding coastal bluffs along the western shore of the Chesapeake Bay provide a key for understanding the centennial-scale development of stable slopes from eroding bluff faces. The Calvert Cliffs are composed of sandy silts, silty sands, and clayey silts of Miocene-age. Active wave erosion at the bluff toes encourages rapid sloughing from bluff faces and maintains slope angles of 70-80 degrees and relatively constant bluff-retreat rates. Naturally stabilized slopes are preserved as a fossil bluff line inland from a prograding cuspate foreland at Cove Point. The foreland is migrating southward at a rate of ca. 1.5 m/yr. As it moves south, it progressively protects bluffs from wave action as new beaches are deposited at their toes. Wave erosion is reinitiated at the northern end of the complex as the landform passes. An incremental record of slope change is preserved along the fossil bluff line. 14C dating of swales between beach ridges shows the complex to span 1700 years of progressive migration history. We hypothesized that slopes would change from steep, eroding faces to low-angle slopes covered with vegetation and sought to document the rate of change. Our team measured slope angles at intervals along the fossil bluff line and dated profiles by interpolating 14C ages of adjacent beach ridges. There was no progressive decrease in slope with age. All slopes along the fossil bluff line were 30-40 degrees with a mean of 35 degrees. Constancy in slope angle suggests that steep, actively eroding bluffs were quickly changed to stable slopes by landslides and slumping once they were protected. Given the accuracy of our age control, we conclude that the time required to attain a stable slope under natural processes is less than one century. This indicates that once toe erosion is ended (naturally or through engineering) slopes are reduced to 35-degrees over a period of decades and not centuries.

  18. Polygenetic Karsted Hardground Omission Surfaces in Lower Silurian Neritic Limestones: a Signature of Early Paleozoic Calcite Seas

    NASA Astrophysics Data System (ADS)

    James, Noel P.; Desrochers, André; Kyser, Kurt T.

    2015-04-01

    Exquisitely preserved and well-exposed rocky paleoshoreline omission surfaces in Lower Silurian Chicotte Formation limestones on Anticosti Island, Quebec, are interpreted to be the product of combined marine and meteoric diagenesis. The different omission features include; 1) planar erosional bedding tops, 2) scalloped erosional surfaces, 3) knobs, ridges, and swales at bedding contacts, and 4) paleoscarps. An interpretation is proposed that relates specific omission surface styles to different diagenetic-depositional processes that took place in separate terrestrial-peritidal-shallow neritic zones. Such processes were linked to fluctuations in relative sea level with specific zones of diagenesis such as; 1) karst corrosion, 2) peritidal erosion, 3) subtidal seawater flushing and cementation, and 4) shallow subtidal deposition. Most surfaces are interpreted to have been the result of initial extensive shallow-water synsedimentary lithification that were, as sea level fell, altered by exposure and subaerial corrosion, only to be buried by sediments as sea level rose again. This succession was repeated several times resulting in a suite of recurring polyphase omission surfaces through many meters of stratigraphic section. Synsedimentary cloudy marine cements are well preserved and are thus interpreted to have been calcitic originally. Aragonite components are rare and thought to have to have been dissolved just below the Silurian seafloor. Large molluscs that survived such seafloor removal were nonetheless leached and the resultant megamoulds were filled with synsedimentary calcite cement. These Silurian inner neritic-strandline omission surfaces are temporally unique. They are part of a suite of marine omission surfaces that are mostly found in early Paleozoic neritic carbonate sedimentary rocks. These karsted hardgrounds formed during a calcite-sea time of elevated marine carbonate saturation and extensive marine cement precipitation. The contemporaneous greenhouse atmosphere was supercharged with CO2 leading to profound surface karst under strongly acid rain. Younger peritidal omission surfaces, although potentially formed during aragonite or calcite sea times, would have been subject to very different terrestrial diagenetic process with lower atmospheric pCO2 values but increasingly complex biogenic soils producing dissimilar alteration features.

  19. Assembling an ignimbrite: Compositionally defined eruptive packages in the 1912 Valley of Ten Thousand Smokes ignimbrite, Alaska

    USGS Publications Warehouse

    Fierstein, J.; Wilson, C.J.N.

    2005-01-01

    The 1912 Valley of Ten Thousand Smokes (VTTS) ignimbrite was constructed from 9 compositionally distinct, sequentially emplaced packages, each with distinct proportions of rhyolite (R), dacite (D), and andesite (A) pumices that permit us to map package boundaries and flow paths from vent to distal extents. Changing pumice proportions and interbedding relationships link ignimbrite formation to coeval fall deposition during the first ???16 h (Episode I) of the eruption. Pumice compositional proportions in the ignimbrite were estimated by counts on ???100 lapilli at multiple levels in vertical sections wherever accessible and more widely over most of the ignimbrite surface in the VTTS. The initial, 100% rhyolite ignimbrite package (equivalent to regional fall Layer A and occupying ???3.5 h) was followed by packages with increasing proportions of andesite, then dacite, emplaced over ???12.5 h and equivalent to regional fall Layers B1-B3. Coeval fall deposits are locally intercalated with the ignimbrite and show parallel changes in R:D (rhyolite:dacite) proportions, but lack significant amounts of andesite. Andesite was thus dominantly a low-fountaining component in the eruption column and is preferentially represented in packages filling the VTTS north of the vent. The most extensive packages (3 and 4) occur in B1 and early B2 times where flow mobility and volume were optimized; earlier all-rhyolite flows (Package 1) were highly energetic but less voluminous, while later packages (5-9) were both less voluminous and emplaced at lower velocities. Package boundaries are expressed as one or more of the following: sharp color changes corresponding to compositional variations; persistent finer-grained basal parts of flow units; compaction swales filled by later packages; erosional channels cut by the flows that fill them; lobate accumulations of one package; and (mostly south of the vent) intercalated fall deposit layers. Clear flow-unit boundaries are best developed between ignimbrite of non-successive packages, indicating time breaks of tens of minutes to hours. Less well-defined stratification may represent rapidly emplaced successive flow units but often changes over short distances and indicates variations in localized depositional conditions. ?? 2005 Geological Society of America.

  20. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model.

    PubMed

    Liu, Yaoze; Bralts, Vincent F; Engel, Bernard A

    2015-04-01

    The adverse influence of urban development on hydrology and water quality can be reduced by applying best management practices (BMPs) and low impact development (LID) practices. This study applied green roof, rain barrel/cistern, bioretention system, porous pavement, permeable patio, grass strip, grassed swale, wetland channel, retention pond, detention basin, and wetland basin, on Crooked Creek watershed. The model was calibrated and validated for annual runoff volume. A framework for simulating BMPs and LID practices at watershed scales was created, and the impacts of BMPs and LID practices on water quantity and water quality were evaluated with the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for 16 scenarios. The various levels and combinations of BMPs/LID practices reduced runoff volume by 0 to 26.47%, Total Nitrogen (TN) by 0.30 to 34.20%, Total Phosphorus (TP) by 0.27 to 47.41%, Total Suspended Solids (TSS) by 0.33 to 53.59%, Lead (Pb) by 0.30 to 60.98%, Biochemical Oxygen Demand (BOD) by 0 to 26.70%, and Chemical Oxygen Demand (COD) by 0 to 27.52%. The implementation of grass strips in 25% of the watershed where this practice could be applied was the most cost-efficient scenario, with cost per unit reduction of $1m3/yr for runoff, while cost for reductions of two pollutants of concern was $445 kg/yr for Total Nitrogen (TN) and $4871 kg/yr for Total Phosphorous (TP). The scenario with very high levels of BMP and LID practice adoption (scenario 15) reduced runoff volume and pollutant loads from 26.47% to 60.98%, and provided the greatest reduction in runoff volume and pollutant loads among all scenarios. However, this scenario was not as cost-efficient as most other scenarios. The L-THIA-LID 2.1 model is a valid tool that can be applied to various locations to help identify cost effective BMP/LID practice plans at watershed scales. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Hydrological Modeling of Rainfall-Watershed-Bioretention System with EPA SWMM

    NASA Astrophysics Data System (ADS)

    gülbaz, sezar; melek kazezyılmaz-alhan, cevza

    2016-04-01

    Water resources should be protected for the sustainability of water supply and water quality. Human activities such as high urbanization with lack of infrastructure system and uncontrolled agricultural facilities adversely affect the water resources. Therefore, recent techniques should be investigated in detail to avoid present and future problems like flood, drought and water pollution. Low Impact Development-Best Management Practice (LID-BMP) is such a technique to manage storm water runoff and quality. There are several LID storm water BMPs such as bioretention facilities, rain gardens, storm water wetlands, vegetated rooftops, rain barrels, vegetative swales and permeable pavements. Bioretention is a type of Low Impact Developments (LIDs) implemented to diminish adverse effects of urbanization by reducing peak flows over the surface and improving surface water quality simultaneously. Different soil types in different ratios are considered in bioretention design which affects the performance of bioretention systems. Therefore, in this study, a hydrologic model for bioretention is developed by using Environmental Protection Agency Storm Water Management Model (EPA SWMM). Part of the input data is supplied to the hydrologic model by experimental setup called Rainfall-Watershed-Bioretention (RWB). RWB System is developed to investigate the relation among rainfall, watershed and bioretention. This setup consists of three main parts which are artificial rainfall system, drainage area and four bioretention columns with different soil mixture. EPA SWMM is a dynamic simulation model for the surface runoff which develops on a watershed during a rainfall event. The model is commonly used to plan, analyze, and control storm water runoff, to design drainage system components and to evaluate watershed management of both urban and rural areas. Furthermore, EPA SWMM is a well-known program to model LID-Bioretention in the literature. Therefore, EPA SWMM is employed in drainage and bioretention modeling. Calibration of hydrologic model is made using part of the measured data in RWB System for drainage area and for each bioretention column separately. Finally, performance of the model is evaluated by comparing the model results with the experimental data collected in RWB system.

  2. On the role of vegetation in the formation of river anabranching patterns

    NASA Astrophysics Data System (ADS)

    Crouzy, B.; D'Odorico, P.; Wütrich, D.; Perona, P.

    2012-04-01

    Part of studies on the couplings between the evolution of riparian vegetation and the river morphodynamics, we investigate the effect of spatial interactions between vegetation located at different positions within the channel. This work generalizes the experimental and theoretical results by Perona et al. and by Crouzy and Perona (both Advances in Water Resources, in Press) on colonization of riverbars by seedlings or large woody debris by relaxing the hypothesis made in those two works of the biomass growth and uprooting being independent on the presence of neighboring plants. While the hypothesis of independent vegetation growth and uprooting is justified for sparse vegetation cover or young seedlings, it fails as soon as the canopy significantly disturbs the flow or changes the sediment stability. Then, flow-mediated interactions between riparian vegetation located at different positions within the channel can be observed. Those interactions are either constructive or destructive. For example, a region favorable to the development of biomass appears on the lee side of a vegetated obstacle (with bleed flow) due to increased deposition of seeds and sediment (Schnauder and Moggridge, 2008) while conversely scouring can be increased laterally due to obstacle-induced flow diversion (Roulund et al., 2005; Melville and Sutherland, 1988; Zong and Nepf, 2008). We focus on the role of vegetation in the formation of the regular vegetated ridge patterns found in ephemeral rivers (see for example the work by Tooth and Nanson, 2004 on anabranching patterns) or as a succession of swales and ridges on the inside of meander bends (scroll bars). From the analysis of aerial images, we obtain the characteristic length scale of the patterns. We show how in the limit where the hydrological (interarrival time of floods) and the biological (germination and growth rates) timescales are comparable the combination between both positive and negative feedbacks between vegetation located at different positions can lead to the spatial organization of the vegetation. Classically, the presence of the anabranches has been ascribed to an optimization of the sediment load transport (Huang and Nanson, 2007) or for the scroll bars to channel migration, without explicitly accounting for the role of vegetation.

  3. Factors influencing soil invertebrate communities in riparian grasslands of the central platte river floodplain

    USGS Publications Warehouse

    Davis, C.A.; Austin, J.E.; Buhl, D.A.

    2006-01-01

    In the Platte River Valley of central Nebraska, USA, riparian grasslands (also known as wet meadows) have been severely impacted by a reduction in river flows, causing lower ground-water levels and altered seasonal hydroperiods. The potential impacts of these hydrologic changes, as well as the environmental factors that influence wet meadow soil invertebrate communities, are not well understood. An understanding of the ecological processes that influence these invertebrate communities is crucial for maintaining and restoring wet meadows along the Platte River. Our objectives were to describe the soil invertebrate community of wet meadows throughout the growing season and to examine the relative roles of abiotic factors in determining patterns in invertebrate community structure. We conducted the study in 12 wet meadows along the Platte River during 1999 and 2000. We identified 73 invertebrate taxa; 39 were considered soil inhabitants. Total biomass was primarily composed of earthworms, Scarabaeidae, Isopoda, and Elateridae, with earthworms and Scarabaeidae accounting for >82%. Differences in river flow and precipitation patterns influenced some soil invertebrates. Earthworms and Scarabaeidae declined dramatically from 1999 (wet year) to 2000 (dry year). The topographic gradient created by the ridge-swale complex affected several soil invertebrate taxa; Scarabaeidae, Diplopoda, and Lepidoptera biomasses were greatest on drier ridges, while Tipulidae and Isopoda biomasscs were greatest in wetter sloughs. Responses of earthworm taxa to the topographic gradient were variable, but generally, greater biomasses occurred on ridges and mid-elevations. Water-table depth and soil moisture were the most important variables influencing wet meadow soil invertebrates. Because these communities are linked to the hydrologic processes of the Platte River, future alterations of wet meadow hydrology could shift the distribution patterns of many of these invertebrates and possibly eliminate more moisture-tolerant taxa. To maintain wet meadows and their biotic communities, flow management should focus on regaining as much as possible of the former hydrograph through properly timed flows that provide an adequate hydrologic regime for wet meadows. In addition, restoration of wet meadows will depend on restoring the natural topography of wet meadows. ?? 2006, The Society of Wetland Scientists.

  4. Chenier Development within a Prograding Strandplain Complex

    NASA Astrophysics Data System (ADS)

    FitzGerald, D.; Hein, C. J.; Georgiou, I. Y.

    2017-12-01

    Strandplains dominate the southern coast of Brazil due to abundant shelf and local sediment and falling sea-level (2-4 m) during the past 6 ka. These plains are composed chiefly of swash-aligned sandy beach and dune ridges deposited in bedrock-framed embayments 2-5 km wide and 3-10 km long. The Tijucas Strandplain developed in a more sheltered and deeply embayed setting fronted by long peninsulas and bedrock islands, which reduce ocean wave energy. The Tijucas River bisects the plain and has provided the primary source of sediment to produce a Holocene basinal fill composed of a seaward-thickening bay mud sequence (10-16 m thick). Long-term gradual shoaling of the basin and attendant lessening wave energy produced upper strandplain foreshore and beach units that transition from landward 8-m thick sand sections to a 3-4-m thick mud unit along the present-day shoreline. The gradual lateral change of the morpho-sedimentary character of the plain is likely a product of climate-induced changes in sediment composition and supply and/or wave regime. For example, the mid-plain is defined by a series of abrupt alterations between sand-dominated beach ridges and mixed sand-and-mud cheniers. This area contains at least four chenier complexes consisting of closely spaced (25-40 m apart) 50-75 m wide ridges composed of 3-4 m thick shelly sand underlain and separated by a cohesive basin-fill clay. The seaward portion of the plain has two sandy chenier ridges each 1 m high and <3 m thick, separated by 100 m of consolidated mud with rare sand beds. Ground-penetrating radar sections show ridges contain numerous seaward-sloping beds having variable dips and multiple truncations, resulting from repeated erosional and depositional events. Expansive, thin (<50 cm) sand sheets composed of flat-lying to shallowly landward-dipping internal radar reflections extend landward from most chenier ridges that overtop inter-ridge mud. The present beach comprises the most current developing chenier. Recent storm-induced landward transport of a thin, sandy overwash fan mimics the proposed mechanism for earlier ridge-swale development. Finally, a future chenier is forming 1 km offshore where breaking waves concentrate sand. Between these two sand deposits is a shallow (< 3 m) muddy region where cores and surface samples indicate an absence of sand.

  5. Modeling the efficacy of future BMP implementation to improve water quality in the highly urbanized watersheds of Dominguez Channel and Machado Lake in Los Angeles California

    NASA Astrophysics Data System (ADS)

    Gallo, E. M.; Hogue, T. S.; Gold, M.; Mika, K.

    2016-12-01

    Dominguez Channel and Machado Lake watersheds are located in highly urbanized southern Los Angeles County. The 16 mile long channel that runs through the Dominguez Channel watershed (DCW) captures stormwater from a drainage area of 71 square miles and discharges directly into the Los Angeles Harbor. Machado Lake, located within the Machado Lake watershed (MLW) and directly adjacent to DCW, has a surface area of 40 acres and receives stormwater from 25 square miles. The water quality of receiving streams and waterbodies in DCW and MLW are increasingly polluted from stormwater runoff and highly concentrated areas of industrial activities. The main concern of water impairment within DCW includes copper and zinc while MLW is focused on nutrients, Total Nitrogen and Total Phosphorous. The implementation of Low Impact Developments (LIDs) and stormwater Best Management Practices (BMPs) within the watershed aim to mitigate the effects of urbanization by reducing pollutant loads, runoff volume, and storm peak flow. We utilize the EPA System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN) model in order to assess the impact of BMPs within the DCW and MLW watersheds by forecasting flow regimes and water quality time series data. Six compliance scenarios are simulated in SUSTAIN to assess pollutant load reduction and cost effectiveness. They each utilize a various suite of the five BMPs selected, which include vegetated swales, bioretention cells, dry ponds, infiltration trenches and porous pavement. Preliminary results show that while the six compliance options reduce pollutant loads by at least 73% in DCW, copper and zinc are only 9% and 50% in compliance, respectively, in terms of the wet weather TMDLs. This study further analyzes these results by comparing DCW to other previously modelled watersheds in Los Angeles, including Ballona Creek watershed and the Los Angeles River watershed. Observed water quality sampling from Machado Lake has shown the mean concentrations of nutrients well above the TMDLs. Machado Lake is currently being restored which includes the implementation BMPs. While the DCW is being modeled to determine the best scenarios for future BMP implementation, MLW is modeled to assess the efficacy of current BMPs to meet TMDL compliance.

  6. Using Emergent and Internal Catchment Data to Elucidate the Influence of Landscape Structure and Storage State on Hydrologic Response in a Piedmont Watershed

    NASA Astrophysics Data System (ADS)

    Putnam, S. M.; Harman, C. J.

    2017-12-01

    Many studies have sought to unravel the influence of landscape structure and catchment state on the quantity and composition of water at the catchment outlet. These studies run into issues of equifinality where multiple conceptualizations of flow pathways or storage states cannot be discriminated against on the basis of the quantity and composition of water alone. Here we aim to parse out the influence of landscape structure, flow pathways, and storage on both the observed catchment hydrograph and chemograph, using hydrometric and water isotope data collected from multiple locations within Pond Branch, a 37-hectare Piedmont catchment of the eastern US. This data is used to infer the quantity and age distribution of water stored and released by individual hydrogeomorphic units, and the catchment as a whole, in order to test hypotheses relating landscape structure, flow pathways, and catchment storage to the hydrograph and chemograph. Initial hypotheses relating internal catchment properties or processes to the hydrograph or chemograph are formed at the catchment scale. Data from Pond Branch include spring and catchment discharge measurements, well water levels, and soil moisture, as well as three years of high frequency precipitation and surface water stable water isotope data. The catchment hydrograph is deconstructed using hydrograph separation and the quantity of water associated with each time-scale of response is compared to the quantity of discharge that could be produced from hillslope and riparian hydrogeomorphic units. Storage is estimated for each hydrogeomorphic unit as well as the vadose zone, in order to construct a continuous time series of total storage, broken down by landscape unit. Rank StorAge Selection (rSAS) functions are parameterized for each hydrogeomorphic unit as well as the catchment as a whole, and the relative importance of changing proportions of discharge from each unit as well as storage in controlling the variability in the catchment chemograph is explored. The results suggest that the quantity of quickflow can be accounted for by direct precipitation onto < 5.2% of the catchment area, representing a zero-order swale plus the riparian area. rSAS modeling suggests that quickflow is largely composed of pre-event, stored water, generated through a process such as groundwater ridging.

  7. Teaching Sustainable Water Resources and Low Impact Development: A Project Centered Course for First-Year Undergraduates

    NASA Astrophysics Data System (ADS)

    Cianfrani, C. M.

    2009-12-01

    Teaching Sustainable Water Resources and Low Impact Development: A Project Centered Course for First-Year Undergraduates Christina M. Cianfrani Assistant Professor, School of Natural Science, Hampshire College, 893 West Avenue, Amherst, MA 01002 Sustainable water resources and low impact development principles are taught to first-year undergraduate students using an applied design project sited on campus. All students at Hampshire College are required to take at least one natural science course during their first year as part of their liberal arts education. This requirement is often met with resistance from non-science students. However, ‘sustainability’ has shown to be a popular topic on campus and ‘Sustainable Water Resources’ typically attracts ~25 students (a large class size for Hampshire College). Five second- or third-year students are accepted in the class as advanced students and serve as project leaders. The first-year students often enter the class with only basic high school science background. The class begins with an introduction to global water resources issues to provide a broad perspective. The students then analyze water budgets, both on a watershed basis and a personal daily-use basis. The students form groups of 4 to complete their semester project. Lectures on low impact design principles are combined with group work sessions for the second half of the semester. Students tour the physical site located across the street from campus and begin their project with a site analysis including soils, landcover and topography. They then develop a building plan and identify preventative and mitigative measures for dealing with stormwater. Each group completes TR-55 stormwater calculations for their design (pre- and post-development) to show the state regulations for quantity will be met with their design. Finally, they present their projects to the class and prepare a formal written report. The students have produced a wide variety of creative, mostly practical designs. Student feedback about the course has included high praise for the applied nature of the project as well as the use of advanced students to lead the groups and help provide guidance throughout the project. Example of low impact development using clustered housing, rain gardens (small dots), green roofs (circles on house sites), vegetated swales along roadways, infiltration area, and a reforested buffer (along right edge).

  8. Integrated Modelling and Performance Analysis of Green Roof Technologies in Urban Environments

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Mijic, Ana; Maksimovic, Cedo

    2014-05-01

    As a result of the changing global climate and increase in urbanisation, the behaviour of the urban environment has been significantly altered, causing an increase in both the frequency of extreme weather events, such as flooding and drought, and also the associated costs. Moreover, uncontrolled or inadequately planned urbanisation can exacerbate the damage. The Blue-Green Dream (BGD) project therefore develops a series of components for urban areas that link urban vegetated areas (green infrastructure) with existing urban water (blue) systems, which will enhance the synergy of urban blue and green systems and provide effective, multifunctional BGD solutions to support urban adaptation to future climatic changes. Coupled with new urban water management technologies and engineering, multifunctional benefits can be gained. Some of the technologies associated with BGD solutions include green roofs, swales that might deal with runoff more effectively and urban river restoration that can produce benefits similar to those produced from sustainable urban drainage systems (SUDS). For effective implementation of these technologies, however, appropriate tools and methodologies for designing and modelling BGD solutions are required to be embedded within urban drainage models. Although several software packages are available for modelling urban drainage, the way in which green roofs and other BGD solutions are integrated into these models is not yet fully developed and documented. This study develops a physically based mass and energy balance model to monitor, test and quantitatively evaluate green roof technology for integrated BGD solutions. The assessment of environmental benefits will be limited to three aspects: (1) reduction of the total runoff volume, (2) delay in the initiation of runoff, and (3) reduction of building energy consumption, rather than water quality, visual, social or economic impacts. This physically based model represents water and heat dynamics in a layered soil profile covered with vegetation which can be used to simulate the physical behaviour of different green roof systems in response to rainfall under various climatic conditions. Because it is a physically based model, this model could be generalised to other atmosphere-plant-soil systems. The validity of this mass and energy balance approach will be demonstrated by comparing its outcomes with observations from a green roof experimental site in London, UK.

  9. Strategy for introduction of rainwater management facility considering rainfall event applied on new apartment complex

    NASA Astrophysics Data System (ADS)

    KIM, H.; Lee, D. K.; Yoo, S.

    2014-12-01

    As regional torrential rains become frequent due to climate change, urban flooding happens very often. That is why it is necessary to prepare for integrated measures against a wide range of rainfall. This study proposes introduction of effective rainwater management facilities to maximize the rainwater runoff reductions and recover natural water circulation for unpredictable extreme rainfall in apartment complex scale. The study site is new apartment complex in Hanam located in east of Seoul, Korea. It has an area of 7.28ha and is analysed using the EPA-SWMM and STORM model. First, it is analyzed that green infrastructure(GI) had efficiency of flood reduction at the various rainfall events and soil characteristics, and then the most effective value of variables are derived. In case of rainfall event, Last 10 years data of 15 minutes were used for analysis. A comparison between A(686mm rainfall during 22days) and B(661mm/4days) knew that soil infiltration of A is 17.08% and B is 5.48% of the rainfall. Reduction of runoff after introduction of the GI of A is 24.76% and B is 6.56%. These results mean that GI is effective to small rainfall intensity, and artificial rainwater retarding reservoir is needed at extreme rainfall. Second, set of target year is conducted for the recovery of hydrological cycle at the predevelopment. And an amount of infiltration, evaporation, surface runoff of the target year and now is analysed on the basis of land coverage, and an arrangement of LID facilities. Third, rainwater management scenarios are established and simulated by the SWMM-LID. Rainwater management facilities include GI(green roof, porous pavement, vegetative swale, ecological pond, and raingarden), and artificial rainwater. Design scenarios are categorized five type: 1)no GI, 2)conventional GI design(current design), 3)intensive GI design, 4)GI design+rainwater retarding reservoir 5)maximized rainwater retarding reservoir. Intensive GI design is to have attribute value to obtain the maximum efficiency for each GI facility with in-depth experts interviews. Climate change scenario is also used to set the capacity of the rainwater management facilities considering the extreme precipitation. These all scenarios are not only simulated for calculating the hydrological balance but analysed the cost for each scenarios effect.

  10. The Twin Peaks in 3-D, as Viewed by the Mars Pathfinder IMP Camera

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Twin Peaks are modest-size hills to the southwest of the Mars Pathfinder landing site. They were discovered on the first panoramas taken by the IMP camera on the 4th of July, 1997, and subsequently identified in Viking Orbiter images taken over 20 years ago. The peaks are approximately 30-35 meters (-100 feet) tall. North Twin is approximately 860 meters (2800 feet) from the lander, and South Twin is about a kilometer away (3300 feet). The scene includes bouldery ridges and swales or 'hummocks' of flood debris that range from a few tens of meters away from the lander to the distance of the South Twin Peak. The large rock at the right edge of the scene is nicknamed 'Hippo'. This rock is about a meter (3 feet) across and 25 meters (80 feet) distant.

    This view of the Twin Peaks was produced by combining 4 individual 'Superpan' scenes from the left and right eyes of the IMP camera to cover both peaks. Each frame consists of 8 individual frames (left eye) and 7 frames (right eye) taken with different color filters that were enlarged by 500% and then co-added using Adobe Photoshop to produce, in effect, a super-resolution pancromatic frame that is sharper than an individual frame would be.

    The anaglyph view of the Twin Peaks was produced by combining the left and right eye mosaics (above) by assigning the left eye view to the red color plane and the right eye view to the green and blue color planes (cyan), to produce a stereo anaglyph mosaic. This mosaic can be viewed in 3-D on your computer monitor or in color print form by wearing red-blue 3-D glasses.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  11. Identification of Geomorphic Conditions Favoring Preservation of Multiple Individual Displacements Across Transform Faults

    NASA Astrophysics Data System (ADS)

    Williams, P. L.; Phillips, D. A.; Bowles-Martinez, E.; Masana, E.; Stepancikova, P.

    2010-12-01

    Terrestrial and airborne LiDAR data, and low altitude aerial photography have been utilized in conjunction with field work to identify and map single and multiple-event stream-offsets along all strands of the San Andreas fault in the Coachella Valley. Goals of the work are characterizing the range of displacements associated with the fault’s prehistoric surface ruptures, evaluating patterns of along-fault displacement, and disclosing processes associated with the prominent Banning-Mission Creek fault junction. Preservation offsets is associated with landscape conditions including: (1) well-confined and widely spaced source streams up-slope of the fault; (2) persistent geomorphic surfaces below the fault; (3) slope directions oriented approximately perpendicular to the fault. Notably, a pair of multiple-event offset sites have been recognized in coarse fan deposits below the Mission Creek fault near 1000 Palms oasis. Each of these sites is associated with a single source drainage oriented approximately perpendicular to the fault, and preserves a record of individual fault displacements affecting the southern portion of the Mission Creek branch of the San Andreas fault. The two sites individually record long (>10 event) slip-per-event histories. Documentation of the sites indicates a prevalence of moderate displacements and a small number of large offsets. This is consistent with evidence developed in systematic mapping of individual and multiple event stream offsets in the area extending 70 km south to Durmid Hill. Challenges to site interpretation include the presence of closely spaced en echelon fault branches and indications of stream avulsion in the area of the modern fault crossing. Conversely, strong bar and swale topography produce high quality offset indicators that can be identified across en echelon branches in most cases. To accomplish the detailed mapping needed to fully recover the complex yet well-preserved geomorphic features under investigation, a program of terrestrial laser scanning (TLS) was conducted at the 1000 Palms oasis stream offset sites. Data products and map interpretations will be presented along with initial applications of the study to characterizing San Andreas fault rupture hazard. Continuing work will seek to more fully populate the dataset of larger offsets, evaluate means to objectively date the larger offsets, and, as completely as possible, to characterize magnitudes of past surface ruptures of the San Andreas fault in the Coachella Valley.

  12. The 7 ka pollen record of Akovitika: Key evidence for environmental change and human impact in the SW Peloponnese, Greece

    NASA Astrophysics Data System (ADS)

    Engel, M.; Knipping, M.; Brückner, H.; Kraft, J. C.; Kiderlen, M.

    2009-04-01

    Detailed investigations on the Holocene stratigraphy of the lower Messenian plain (SW Peloponnese, Greece) carried out within the framework of a geoarchaeological study on the Protogeometric Poseidon Sanctuary of Akovitika indicate significant shoreline fluctuations during Holocene times. Sedimentary, geochemical, mineralogical, and microfossil analyses of 18 vibracores document a maximum landward shoreline displacement around 3000 BC. Subsequently, increased sediment loads entering the gulf predominantly at the eastern head overcompensated the decelerating eustatic sea level rise and triggered beach ridge progradation. Synopses of adjacent sediment cores reveal extended wetland formation in the swales between the sand ridges throughout the Holocene. The swamp areas enlarged continuously during the late Holocene marine regression and persisted until the large-scaled implementation of drainage measures in the 20th century. However, the strata representing former wetland environments provide excellently preserved pollen assemblages and enable detailed vegetation reconstruction of certain time windows within the past 7000 years. During early Neolithic times the lower Messenian plain was covered with open vegetation adapted to the seasonal standing water bodies. Deciduous oak forests were abundant but restricted to the surrounding marl terraces while no signs of human impact appear in the pollen record so far. In mid- to late Neolithic times initial modification of the local vegetation composition is evident. The Neogene terraces nearby were still covered with forest, albeit Pinus and evergreen oak gradually started replacing deciduous oak. Anthropogenic influence on the vegetation was moderate although the upper part of the sequence (approx. 3500 BC) contains increasing amounts of settlement indicators. Exceptionally high percentages of Erica and Cistus as well as of charcoal fragments point to extensive burning of woodland and subsequent sustained establishment of a heliophile macchia vegetation. Whether this is man-made or a result of increasing aridity remains uncertain. Agriculture can be excluded for the wet lower Messenian plain in Neolithic times, while it seems possible on the adjacent Neogene marl terraces. The pollen sequence of Submycenaean to Archaic times reflects reduced human impact after the Messenian late Bronze Age population climax. Decreasing amounts of Olea show the abandonment of olive orchards while rising dominance of Phyllirea indicates a temporary re-establishment of high macchia during the cultural decline of the Dark Ages. Higher percentages of Olea in the uppermost sample document a recovering human population in Messenia during Archaic times.

  13. Submillimeter-Wave Cloud Ice Radiometry

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.

    1999-01-01

    Submillimeter-wave cloud ice radiometry is a new and innovative technique for characterizing cirrus ice clouds. Cirrus clouds affect Earth's climate and hydrological cycle by reflecting incoming solar energy, trapping outgoing IR radiation, sublimating into vapor, and influencing atmospheric circulation. Since uncertainties in the global distribution of cloud ice restrict the accuracy of both climate and weather models, successful development of this technique could provide a valuable tool for investigating how clouds affect climate and weather. Cloud ice radiometry could fill an important gap in the observational capabilities of existing and planned Earth-observing systems. Using submillimeter-wave radiometry to retrieve properties of ice clouds can be understood with a simple model. There are a number of submillimeter-wavelength spectral regions where the upper troposphere is transparent. At lower tropospheric altitudes water vapor emits a relatively uniform flux of thermal radiation. When cirrus clouds are present, they scatter a portion of the upwelling flux of submillimeter-wavelength radiation back towards the Earth as shown in the diagram, thus reducing the upward flux o f energy. Hence, the power received by a down-looking radiometer decreases when a cirrus cloud passes through the field of view causing the cirrus cloud to appear radiatively cool against the warm lower atmospheric thermal emissions. The reduction in upwelling thermal flux is a function of both the total cloud ice content and mean crystal size. Radiometric measurements made at multiple widely spaced frequencies permit flux variations caused by changes in crystal size to be distinguished from changes in ice content, and polarized measurements can be used to constrain mean crystal shape. The goal of the cloud ice radiometry program is to further develop and validate this technique of characterizing cirrus. A multi-frequency radiometer is being designed to support airborne science and spacecraft validation missions. This program has already extended the initial millimeter-wave modeling studies to submillimeter-wavelengths and has improved the realism of the cloud scattering models. Additionally a proof-of-concept airborne submillimeter-wave radiometer was constructed and fielded. It measured a radiometric signal from cirrus confirming the basic technical feasibility of this technique. This program is a cooperative effort of the University of Colorado, Colorado State University, Swales Aerospace, and Jet Propulsion Laboratory. Additional information is contained in the original.

  14. Geologic Map of the Estes Park 30' x 60' Quadrangle, North-Central Colorado

    USGS Publications Warehouse

    Cole, James C.; Braddock, William A.

    2009-01-01

    The rocks and landforms of the Estes Park 30 x 60 minute quadrangle display an exceptionally complete record of geologic history in the northern Front Range of Colorado. The Proterozoic basement rocks exposed in the core of the range preserve evidence of Paleoproterozoic marine sedimentation, volcanism, and regional soft-sediment deformation, followed by regional folding and gradational metamorphism. The metasedimentary rocks of the Estes Park quadrangle are distinct within northern Colorado for preserving the complete metamorphic zonation from low-grade chlorite-muscovite phyllites, through middle greenschist-grade rocks with sequential aluminous porphyroblasts, to partially melted gneisses that contain high-grade cordierite and garnet in the non-melted residues. Regional and textural evidence shows that the widespread metamorphism was essentially concurrent with intrusion of the Boulder Creek Granodiorite and related magmas and with the peak of deformation in the partially melted high-grade rocks. The metamorphic thermal pulse arrived later following the peak of deformation in the physically higher, cooler, low-grade terrane. Mesoproterozoic time was marked by intrusion of biotite granite in the Longs Peak-St Vrain batholith, a complex, irregular body that occupies nearly half of the core of the Front Range in this quadrangle. The magma was dry and viscous as it invaded the metamorphic rocks and caused wholesale plastic folding of the wall rock structure. Steep metamorphic foliation that resulted from the Paleoproterozoic deformations was bowed upward and re-oriented into flat-lying attitudes as the crystal-rich magma rose buoyantly and spread out in the middle crust. Magma invaded the schists and gneisses along weak foliation planes and produced a characteristic sill-upon-sill intrusive fabric, particularly in the higher parts of the batholith. Broad, open arches and swales that are defined by the flow-aligned feldspar foliation of the granite, as well as by compositional banding in the intruded and included metamorphic rocks, formed late during batholith emplacement due to rising, buoyant magma and sinking, dense wall rocks. The Longs Peak-St Vrain batholith was intruded into crust that was structurally neutral or moderately extending in an east-northeast direction. A broad zone of mylonite, the Moose Mountain shear zone, formed within the batholith during the final stages of consolidation as a result of differential buoyancy between the magma and dense wall rock, not as a result of regional tectonic deformation.

  15. Impacts of Stormwater Management Measures on E. coli and Enterococci Populations in Stormwater Effluent

    NASA Astrophysics Data System (ADS)

    Wildey, R. A.; Ballestero, T. P.; Roseen, R. M.; Houle, J.

    2005-05-01

    In our efforts to improve the quality of runoff entering our streams and waterways, stormwater management measures (or BMPs) are being implemented at a rapid pace. Usually designed to treat one or more specific types of contamination or loading, these measures may have unintended consequences that are not well understood. One issue that has not been fully explored is the potential effect these systems have on microbial contamination of the treated runoff. This study evaluates 11 types of treatment systems and their impact on E. coli and Enterococci contamination. Recent research has demonstrated that near-shore sediment may act as a continuous source of bacterial loading in the overlying waters, rather than bacterial loading being solely a temporal, storm-driven phenomenon. Similarly, stormwater management measures that utilize a soil media for filtration or incorporate a sediment sump may also provide conditions conducive to the incubation of fecal coliforms that can then be released into the environment during runoff events. Following with EPA regulatory guidelines for receiving waters, E. coli and Enterococci are used as surrogates for the presence of other potential disease-causing pathogens typically associated with mammalian and avian enteric bacteria. The stormwater management measures being investigated include: subsurface infiltration, surface sand filter, standard detention pond, bioretention area, hydrodynamic separation, subsurface gravel wetland, street sweeping, and vegetated swale. An adjacent porous parking area and a standard asphalt lot that drains to a tree filter are similarly monitored. Influent is supplied by runoff generated by a 9-acre commuter parking lot at the University of New Hampshire in Durham, NH. This influent is distributed equally to the different treatment devices that operate in parallel. Water quality parameters (DO, pH, specific conductivity, temperature) and flow are continuously monitored upstream from the distribution chamber (influent) and downstream from each device (effluent). Automated samplers are used to collect samples during storm events and grab samples are taken between storm events to evaluate the effect of each device or BMP on bacterial populations. Initial data indicate that influent concentrations of fecal coliforms for this parking area often exceed EPA limits for Class A waterbodies. Several of the treatment units appear to substantially reduce (>90% reduction) bacterial loading, while others appear to increase loading during some storm events (>500% increase). This study is on-going and additional sample events from the Spring of 2005 will also be presented.

  16. Big Crater as Viewed by Pathfinder Lander

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The 'Big Crater' is actually a relatively small Martian crater to the southeast of the Mars Pathfinder landing site. It is 1500 meters (4900 feet) in diameter, or about the same size as Meteor Crater in Arizona. Superimposed on the rim of Big Crater (the central part of the rim as seen here) is a smaller crater nicknamed 'Rimshot Crater.' The distance to this smaller crater, and the nearest portion of the rim of Big Crater, is 2200 meters (7200 feet). To the right of Big Crater, south from the spacecraft, almost lost in the atmospheric dust 'haze,' is the large streamlined mountain nicknamed 'Far Knob.' This mountain is over 450 meters (1480 feet) tall, and is over 30 kilometers (19 miles) from the spacecraft. Another, smaller and closer knob, nicknamed 'Southeast Knob' can be seen as a triangular peak to the left of the flanks of the Big Crater rim. This knob is 21 kilometers (13 miles) southeast from the spacecraft.

    The larger features visible in this scene - Big Crater, Far Knob, and Southeast Knob - were discovered on the first panoramas taken by the IMP camera on the 4th of July, 1997, and subsequently identified in Viking Orbiter images taken over 20 years ago. The scene includes rocky ridges and swales or 'hummocks' of flood debris that range from a few tens of meters away from the lander to the distance of South Twin Peak. The largest rock in the nearfield, just left of center in the foreground, nicknamed 'Otter', is about 1.5 meters (4.9 feet) long and 10 meters (33 feet) from the spacecraft.

    This view of Big Crater was produced by combining 6 individual 'Superpan' scenes from the left and right eyes of the IMP camera. Each frame consists of 8 individual frames (left eye) and 7 frames (right eye) taken with different color filters that were enlarged by 500% and then co-added using Adobe Photoshop to produce, in effect, a super-resolution panchromatic frame that is sharper than an individual frame would be.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  17. Viking Lander 2 Anniversary

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This portion of a daytime IR image covers the Viking 2 landing site (shown with the X). The second landing on Mars took place September 3, 1976 in Utopia Planitia. The exact location of Lander 2 is not as well established as Lander 1 because there were no clearly identifiable features in the lander images as there were for the site of Lander 1. The Utopia landing site region contains pedestal craters, shallow swales and gentle ridges. The crater Goldstone was named in honor of the Tracking Station in the desert of California. The two Viking Landers operated for over 6 years (nearly four martian years) after landing. This one band IR (band 9 at 12.6 microns) image shows bright and dark textures, which are primarily due to differences in the abundance of rocks on the surface. The relatively cool (dark) regions during the day are rocky or indurated materials, fine sand and dust are warmer (bright). Many of the temperature variations are due to slope effects, with sun-facing slopes warmer than shaded slopes. The dark rings around several of the craters are due to the presence of rocky (cool) material ejected from the crater. These rocks are well below the resolution of any existing Mars camera, but THEMIS can detect the temperature variations they produce. Daytime temperature variations are produced by a combination of topographic (solar heating) and thermophysical (thermal inertia and albedo) effects. Due to topographic heating the surface morphologies seen in THEMIS daytime IR images are similar to those seen in previous imagery and MOLA topography.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Dynamics and internal structure of an Alaskan debris-covered glacier from repeat airborne photogrammetry and surface geophysics

    NASA Astrophysics Data System (ADS)

    Holt, John; Levy, Joseph; Petersen, Eric; Larsen, Chris; Fahnestock, Mark

    2016-04-01

    Debris-covered glaciers and rock glaciers encompass a range of compositions and activity, and can be useful paleoclimate indicators. They also respond differently to ongoing climate change than glaciers without a protective cover. Their flow dynamics are not well understood, and their unique surface morphologies, including lobate fronts and arcuate ridges, likely result from viscous flow influenced by a combination of composition, structure, and climatic factors. However, basic connections between flow kinematics and surface morphology have not yet been established, limiting our ability to understand these features. In order to begin to address this problem we have undertaken airborne and surface studies of multiple debris-covered glaciers in Alaska and the western U.S. Sourdough Rock Glacier in the St. Elias Mountains, Alaska, is completely debris-covered and exhibits numerous transverse compressional ridges. Its trunk also exhibits highly regular bumps and swales with a wavelength of ~175 m and amplitudes up to 12 m. In the middle trunk, lineations (boulder trains and furrows) bend around a point roughly 200m from the eastern edge. We acquired five high-resolution airborne surveys of Sourdough Rock Glacier between late 2013 and late 2015 using lidar and photogrammetry to assess annual and seasonal change at the sub-meter level. Differencing the DTMs provides vertical change while feature tracking in orthophotos provide horizontal velocities that indicate meters of annual motion. The flow field is highly correlated with surface features; in particular, compressional ridges in the lower lobe. Stranded, formerly active lobes are also apparent. Surface geophysical studies were undertaken to constrain internal structure and composition using a combination of ground-penetrating radar (GPR) at 50 and 100 MHz in six transects, and time-domain electromagnetic (TDEM) measurements at 47 locations, primarily in an along-flow transect and two cross-flow transects. We infer from the GPR and TDEM data that Sourdough Rock Glacier is 40-50 m thick and consists of a core of relatively pure glacier ice preserved under a 2.5-3 m thick debris mantle. In conclusion, Sourdough is actively flowing, with surface velocities that correlate with surface slope and thickness. A bedrock restriction is inferred from bending flow lines, low surface velocities, and localized thinning of the ice. This comprehensive suite of observations provides the potential to model ice flow and to ultimately link details of the surface morphology to accumulation and rheology through flow kinematics and internal structure.

  19. Reading Ombrone river delta evolution through beach ridges morphology

    NASA Astrophysics Data System (ADS)

    Mammi, Irene; Piccardi, Marco; Pranzini, Enzo; Rossi, Lorenzo

    2017-04-01

    The present study focuses on the evolution of the Ombrone River delta (Southern Tuscany, Italy) in the last five centuries, when fluvial sediment input was huge also as a consequence of the deforestation performed on the watershed. The aim of this study is to find a correlation between river input and beach ridges morphology and to explain the different distribution of wetlands and sand deposits on the two sides of the delta. Visible, NIR and TIR satellite images were processed to retrieve soil wetness associated to sand ridges and interdune silty deposits. High resolution LiDAR data were analysed using vegetation filter and GIS enhancement algorithms in order to highlight small morphological variations, especially in areas closer to the river where agriculture has almost deleted these morphologies. A topographic survey and a very high resolution 3D model obtained from a set of images acquired by an Unmanned Aerial Vehicle (UAV) were carried out in selected sites, both to calibrate satellite LiDAR 3D data, and to map low relief areas. Historical maps, aerial photography and written documents were analysed for dating ancient shorelines associated to specific beach ridges. Thus allowing the reconstruction of erosive and accretive phases of the delta. Seventy beach ridges were identified on the two wings of the delta. On the longer down-drift side (Northern wing) beach ridges are more spaced at the apex and gradually converge to the extremity, where the Bruna River runs and delimits the sub aerial depositional area of the Ombrone River. On the shorter up-drift lobe (Southern wing), beach ridges are closer, but run almost parallel each other. In this case, a rocky headland called Collelungo promontory closes and cuts the beach ridges sequence but shallow water depth allows sediment by pass. One kilometre to the south a more pronounced promontory encloses a small pocket beach (Cala di Forno) and identifies the limit of the subaerial depositionary area. Beach ridges heights were analysed through LiDAR data and some of them were found higher than average. Conceptual models in literature allowed us to explain higher beach ridges as periods of stability or a very initial erosion stage interesting the beach. The high resolution DTM produced from LiDAR and UAV data permitted a better reconstruction of the last five centuries of delta evolution and to characterize the difference of beach ridges morphology of the up-drift and the down-drift sides of the delta. Within this framework the presence of interdune swales in the down-drift side has been explained.

  20. Evaluating the effect of river restoration techniques on reducing the impacts of outfall on water quality

    NASA Astrophysics Data System (ADS)

    Mant, Jenny; Janes, Victoria; Terrell, Robert; Allen, Deonie; Arthur, Scott; Yeakley, Alan; Morse, Jennifer; Holman, Ian

    2015-04-01

    Outfalls represent points of discharge to a river and often contain pollutants from urban runoff, such as heavy metals. Additionally, erosion around the outfall site results in increased sediment generation and the release of associated pollutants. Water quality impacts from heavy metals pose risks to the river ecosystem (e.g. toxicity to aquatic habitats). Restoration techniques including establishment of swales, and the re-vegetation and reinforcement of channel banks aim to decrease outfall flow velocities resulting in deposition of pollutants and removal through plant uptake. Within this study the benefits of river restoration techniques for the removal of contaminants associated with outfalls have been quantified within Johnson Creek, Portland, USA as part of the EPSRC funded Blue-Green Cities project. The project aims to develop new strategies for protecting hydrological and ecological values of urban landscapes. A range of outfalls have been selected which span restored and un-restored channel reaches, a variety of upstream land-uses, and both direct and set-back outfalls. River Habitat Surveys were conducted at each of the sites to assess the level of channel modification within the reach. Sediment samples were taken at the outfall location, upstream, and downstream of outfalls for analysis of metals including Nickel, Lead, Zinc, Copper, Iron and Magnesium. These were used to assess the impact of the level of modification at individual sites, and to compare the influence of direct and set-back outfalls. Concentrations of all metals in the sediments found at outfalls generally increased with the level of modification at the site. Sediment in restored sites had lower metal concentrations both at the outfall and downstream compared to unrestored sites, indicating the benefit of these techniques to facilitate the effective removal of pollutants by trapping of sediment and uptake of contaminants by vegetation. However, the impact of restoration measures varied between metal types. Restored sites also showed lower variability in metal concentrations than un-restored sites, which is linked to greater bank stability and hence lower bank erosion rates within restored sites as eroding banks were noted to be a source of metal contaminants. The success of pollutant removal by set-back outfalls was varied due to additional factors including the distance between the set-back outfall and the main channel, vegetation type, density and age. The study highlights the ability of restoration techniques to reduce metal contaminant concentrations at outfalls, and provides an indication of the potential benefits from wider application of similar techniques.

  1. Evidence for biologic response to pedogenesis along the Merced River chronosequence, Central Valley, California

    NASA Astrophysics Data System (ADS)

    Reed, S. E.; Amundson, R.

    2010-12-01

    Long-term soil weathering results in accumulations of clay and reduced hydraulic conductivity. How biology responds to these changes in the physical environment and how the response, in turn, influences landscape development are crucial questions in the effort to elucidate the links between the biologic and physical earth surface domains. Mima mounds are small, circular half-domes of soil that are suspected of being formed by burrowing rodents, as an adaption to saturated soil conditions. In the swales between the mounds, ephemeral wetlands called vernal pools, support a suite of endemic and endangered plant and animal species. Mima mounds, then, may provide a useful model by which to examine the complex feedbacks between landscape and life. In this study, changes in mound characteristics and in biological activity (pocket gopher, Thomomys bottae) are investigated across the Merced River chronosequence, a series of alluvial terraces which have been shown to exhibit an increasing degree of soil and hardpan development with landform age. Mound morphology (size, slope, curvature, concentration, elongation, dispersion) and relation to environmental parameters were analyzed using airborne LIDAR (light detection and ranging) imagery of the mounds. The high-resolution (1m) LIDAR surveys (conducted in 2006 and 2010) cover 65km2 and comprise seven different-aged landforms, ranging from several hundred years to several million years. Minimal filtering was performed on the dataset given the absence of large vegetation or other obstructions. A 20x20m moving window filter was used to smooth out the low frequency signals and accentuate mounded features. To test how and whether the subterranean mammals modify their burrowing habits in response to soil age, biotic sediment transport was measured monthly on 0.01, 0.5, and 2 m.y.o. terraces using RFID (radio frequency identification) technology. Half-liter portions of soil containing five RFID tags were implanted in active gopher tunnels on several size classes of mounds and at three positions on each mound (base, mid, and top). Within two weeks of insertion, tags were located using an RFID reader, and displacement was measured using a differential GPS. The surveys show distinct differences in mound and burrow form and biotic activity across the terraces. These results enhance our understanding of the rates at which landscapes are biotically transformed, and, when applied to sediment transport models, provide further evidence that Mima mounds are likely created and maintained by pocket gophers.

  2. Temporal and Spatial Patterns of Preferential Flow Occurrence in the Shale Hills Catchment: From the Hillslope to the Catchment Scales

    NASA Astrophysics Data System (ADS)

    Liu, H.; Lin, H.

    2013-12-01

    Understanding temporal and spatial patterns of preferential flow (PF) occurrence is important in revealing hillslope and catchment hydrologic and biogeochemical processes. Quantitative assessment of the frequency and control of PF occurrence in the field, however, has been limited, especially at the landscape scale of hillslope and catchment. By using 5.5-years' (2007-2012) real-time soil moisture at 10 sites response to 323 precipitation events, we tested the temporal consistency of PF occurrence at the hillslope scale in the forested Shale Hills Catchment; and by using 25 additional sites with at least 1-year data (2011-2012), we evaluated the spatial patterns of PF occurrence across the catchment. To explore the potential effects of PF occurrence on catchment hydrology, wavelet analysis was performed on the recorded time series of hydrological signals (i.e., precipitation, soil moisture, catchment discharge). Considerable temporal consistence was observed in both the frequency and the main controls of PF occurrence at the hillslope scale, which was attributed largely to the statistical stability of precipitation pattern over the monitoring period and the relatively stable subsurface preferential pathways. Preferential flow tended to occur more often in response to intense rainfall events, and favored the conditions at dry hilltop or wet valley floor sites. When upscaling to the entire catchment, topographic control on the PF occurrence was amplified remarkably, leading to the identification of a subsurface PF network in the catchment. Higher frequency of PF occurrence was observed at the valley floor (average 48%), hilltop (average 46%), and swales/hillslopes near the stream (average 40%), while the hillslopes in the eastern part of the catchment were least likely to experience PF (0-20%). No clear relationship, however, was observed between terrain attributes and PF occurrence, because the initiation and persistency of PF in this catchment was controlled jointly by complex interactions among landform units, soil types, initial soil moisture, precipitation features, and season. Through the wavelet method (coherence spectrum and phase differences), dual-pore filtering effects of soil system were proven, rendering it possible to further infer characteristic properties of the underlying hydrological processes in the subsurface. We found that preferential flow dominates the catchment discharge response at short-time periods (< 3 days), while the matrix flow may dominate the discharge response at the time scales of around 10-12 days. The temporal and spatial patterns of PF occurrence revealed in this study can help advance the modeling and prediction of complex PF dynamics in this and other similar landscapes.

  3. Debris flows as geomorphic agents in the Huachuca Mountains of southeastern Arizona

    USGS Publications Warehouse

    Wohl, E.E.; Pearthree, P.P.

    1991-01-01

    Numerous debris flows occurred in the Huachuca Mountains of southeastern Arizona during the summer rainy season of 1988 in areas that were burned by a forest fire earlier in the summer. Debris flows occurred following a major forest fire in 1977 as well, suggesting a causal link between fires and debris flows. Abundant evidence of older debris flows preserved along channels and in mountain front fans indicates that debris flows have occurred repeteadly during the late Quaternary in this environment. Soil development in sequences of debris-flow deposits indicates that debris flows probably recur over time intervals of several hundred to a thousand years in individual drainage basins in the study area. Surface runoff in the steep drainage basins of the Huachuca Mountains is greatly enhanced following forest fires, as the hillslopes are denuded of their vegetative cover. Water and sediment eroded from the hillslope regolith are rapidly introduced into the upper reaches of tributary channels by widespread rilling and slope wash during rainfall events. This influx of water and sediment destabilizes regolith previously accumulated in the channel, triggering debris flows that scour the channel to bedrock in the upper reaches. Following a debris flow, the scoured, trapezoidally-shaped channel gradually assumes a swale shape and the percentage of exposed bedrock declines, as material is introduced from the slopes. Debris flows do a tremendous amount of work in a very short time, however, and are the major channel-forming events. Where the tributary channels enter larger, trunk channels, the debris flows serve as the main source of very coarse sediment. The local slope and coarse particle distribution of the trunk channel depend on the competence of water flows in the channel to transport the material introduced by debris flows. Where the smaller channels drain directly to the mountain front, debris flows create extensive alluvial fans which dominate the morphology of the basin-range boundary. Time intervals between debris flows in the drainage basins of the Huachuca Mountains are probably controlled by complex interactions among climate, forest fires and slope processes. Fires destroy the protective vegetation that stabilizes the upper catchment slopes and inhibits erosion. However, not every fire that burns a catchment causes debris flows, because sufficient weathered material must accumulate in the upper channel reaches to initiate a large debris flow. If such accumulation has not occurred, the material introduced to a channel following a forest fire will move only a short distance down the channel. Thus, the episodic nature of debris flows probably depends on rates of slope weathering and erosion, which are in turn controlled by climate, both directly and through vegetation and forest fires. ?? 1991.

  4. Disturbance effects of hurricane Hugo on a pristine coastal landscape: North Inlet, South Carolina, USA

    NASA Astrophysics Data System (ADS)

    Gardner, L. R.; Michener, W. K.; Williams, T. M.; Blood, E. R.; Kjerve, B.; Smock, L. A.; Lipscomb, D. J.; Gresham, C.

    Despite its intensity and landfall at high tide, Hurricane Hugo (22 Sept. 1989) had only a modest impact on the geomorphology of the undeveloped coastal landscape at North Inlet, South Carolina. Pre- and post-Hugo aerial photographs (April 1987 and October 1989) showed no change in the salt-marsh creek network, nor could changes be seen in the size or shape of sand bars within the creeks. Several new, small washover fans formed on the adjacent barrier islands. These lobate fans extend 50 to 100 m from the dune line into the back barrier area and are deposited on older but recently formed fans in areas where the islands are thin and devoid of large shrubs and trees. Hugo's failure to have a more dramatic geomorphic effect was probably related to the rapid approach of the storm along a path perpendicular to the coast. This allowed minimal time for the surge to build and for wave attack to modify the shoreface. In contrast, the nearby coastal forest experienced extensive wind damage as well as tree mortality due to soil salinization by the surge. Wind damage was a function of tree species, diameter and soil type. The most severe damage occurred in mixed bottomland hardwood sites on Rutledge (sandy, silicious, thermic Typic Humaquepts) soils. Salt-induced foliage discoloration and defoliation became fully evident in the surge-inundated area by January 1990. Above-normal salt concentrations were found in shallow groundwater samples from sites up to the 3.0-m contour (MSL). Salt concentrations generally decreased inland from the forest-marsh boundary and with the passage of time. Trees standing along the forest-marsh boundary and in swales suffered the most severe salt-induced mortality. As of June 1991, new understory vegetation and pine seedlings appeared to be flourishing in the salt-affected area. Salinization also mobilized ammonium from soil storage as a result of ion exchange with seawater cations and disruption of nitrogen cycling processes. There was a virtual absence of insects and terrestrial vertebrates in the surge-affected forest immediately following Hugo. Flying insects and birds were the first to return but six months after Hugo, the abundance of reptiles and amphibians remained significantly lower than populations observed prior to the storm. Scouring and high salinity had a catastrophic effect on benthic invertebrates in the blackwater streams of the forest. Population density dropped by 97% and biomass declined from 542 mg dry mass·m -2 to only 2.0 mg dry mass·m -2. The community recovered quickly, however, as density and biomass returned to pre-storm levels in three and six months, respectively.

  5. Impacts of Different Soil Texture and Organic Content on Hydrological Performance of Bioretention

    NASA Astrophysics Data System (ADS)

    Gülbaz, Sezar; Melek Kazezyilmaz Alhan, Cevza

    2015-04-01

    The land development and increase in urbanization in a watershed has adverse effects such as flooding and water pollution on both surface water and groundwater resources. Low Impact Development (LID) Best Management Practices (BMPs) such as bioretentions, vegetated rooftops, rain barrels, vegetative swales and permeable pavements have been implemented in order to diminish adverse effects of urbanization. LID-BMP is a land planning method which is used to manage storm water runoff by reducing peak flows as well as simultaneously improving water quality. The aim of this study is developing a functional experimental setup called as Rainfall-Watershed-Bioretention (RWB) System in order to investigate and quantify the hydrological performance of bioretention. RWB System is constructed on the Istanbul University Campus and includes an artificial rainfall system, which allows for variable rainfall intensity, drainage area, which has controllable size and slope, and bioretention columns with different soil ratios. Four bioretention columns with different soil textures and organic content are constructed in order to investigate their effects on water quantity. Using RWB System, the runoff volume, hydrograph, peak flow rate and delay in peak time at the exit of bioretention columns may be quantified under various rainfalls in order to understand the role of soil types used in bioretention columns and rainfall intensities. The data obtained from several experiments conducted in RWB System are employed in establishing a relation among rainfall, surface runoff and flow reduction after bioretention. Moreover, the results are supported by mathematical models in order to explain the physical mechanism of bioretention. Following conclusions are reached based on the analyses carried out in this study: i) Results show that different local soil types in bioretention implementation affect surface runoff and peak flow considerably. ii) Rainfall intensity and duration affect peak flow reduction and arrival time and shape of the hydrograph. iii) A mathematical representation of the relation among the rainfall, surface runoff over the watershed and outflow from the bioretention is developed by incorporating kinematic wave equation into the modified Green-Ampt Method. The rainfall intensity in modified Green-Ampt method is represented by the inflow per unit surface area of bioretention which may be obtained from kinematic wave solution using the measured rainfall data. Variable rainfall cases may be taken into account by using the modified Green-Ampt method. Thus, employing the modified Green-Ampt method helps significantly in understanding and explaining the hydrological mechanism of a bioretention cell where the Darcy law or the classical Green-Ampt method is inadequate which works under constant rainfall intensities. Consequently, the rainfall is directly related with the outflow through the bioretention. This study discusses only the water quantity of bioretention.

  6. Paleoenvironmental reconstruction of lagoonal strata from Sri Lanka using multiple physical properties proxies to assure stratigraphic continuity

    NASA Astrophysics Data System (ADS)

    Ranasinghage, P. N.; Ortiz, J. D.; Moore, A.; Siriwardana, C.

    2009-12-01

    Core collapsing is a common problem in studies of lagoonal sediment cores. Coring liquefied sediments below the water table can lead to collapse of material from upper core drives in to the hole. This can be prevented by casing the hole. But casing is not always possible due to practical issues such as coring device type, resources, or time constraints. In such cases identifying the collapsed material in each drive is necessary to ensure accurate results. Direct visual identification of collapsed portion is not always possible and may not be precise. This study successfully recognized collapsed material using a suite of physical properties measurements including: visible (VIS) reflectance spectroscopy, magnetic susceptibility and grain size spectra. This enables us to use the verified stratigraphically continuous records for paleo-environmental studies. Sediment cores were collected from three coastal lagoons and a swale along south eastern and eastern Sri Lanka. Cores were collected using a customized AMS soil coring device with a 1-m long sample barrel. The metal barrel of this instrument collects a 2.5 cm diameter sample in 1-m long plastic tubes. Coring was conducted to refusal, with a maximum depth of 5 m. Casing was not applied to the holes due to small core diameter and time constrains. Drill holes were placed at locations situated both below and above the water level of the lagoons. A total of 100 m of sediment core were obtained from these locations. After opening the cores, suspected collapsed material was initially identified by visual observation using a high power binocular microscope. Particle size, magnetic susceptibility, X-ray fluorescence (XRF) and Diffuse Spectral Reflectance (DSR) was then measured on all cores at 1-2 cm resolution to precisely define the repeated sediment intervals. Down core variation plots of magnetic susceptibility, CIE L* (lightness), a*(red/green difference), b* (blue and yellow difference) clearly record abrupt changes at core drive boundaries at the presence of collapsed material. The correlation of grain-size spectra from the bottom and top of consecutive drives was used to precisely determine the thickness of the collapsed material between drives. Our analysis of 48 m of core material thus far indicates that ~4.4m or ~9% of the record represents collapsed material which can be excluded from further study. The remaining continuous record was analyzed for paleoenvironmental studies. Down core variation of grain size, geochemical ratios, principle components of DSR and geochemical data, and magnetic susceptibility from all locations indicate a gradual filling of these deep lagoons and a transition from reducing to oxic conditions. According to an age model constructed for a nearby lagoon the onset of regression began ~6,000 years BP. Several instantaneous sedimentation events were recorded in all lagoons. Further studies will be carried out to determine whether these represent tsunami, storm surge, or flood deposits.

  7. Neutron Spectrometer Prospecting in the Mojave Volatiles Project Analog Field Test

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Heldmann, J. L.; Colaprete, A.; Hunt, D. R.; Deans, M. C.; Lim, D. S.; Foil, G.; Fong, T.

    2015-01-01

    We know that volatiles are sequestered at the poles of the Moon. While we have evidence of water ice and a number of other compounds based on remote sensing, the detailed distribution, and physical and chemical form are largely unknown. Additional orbital studies of lunar polar volatiles may yield further insights, but the most important next step is to use landed assets to fully characterize the volatile composition and distribution at scales of tens to hundreds of meters. To achieve this range of scales, mobility is needed. Because of the proximity of the Moon, near real-time operation of the surface assets is possible, with an associated reduction in risk and cost. This concept of operations is very different from that of rovers on Mars, and new operational approaches are required to carry out such real-time robotic exploration. The Mojave Volatiles Project (MVP) was a Moon-Mars Analog Mission Activities (MMAMA) program project aimed at (1) determining effective approaches to operating a real-time but short-duration lunar surface robotic mission, and (2) performing prospecting science in a natural setting, as a test of these approaches. Here we describe some results from the first such test, carried out in the Mojave Desert between 16 and 24 October, 2014. The test site was an alluvial fan just E of the Soda Mountains, SW of Baker, California. This site contains desert pavements, ranging from the late Pleistocene to early-Holocene in age. These pavements are undergoing dissection by the ongoing development of washes. A principal objective was to determine the hydration state of different types of desert pavement and bare ground features. The mobility element of the test was provided by the KREX-2 rover, designed and operated by the Intelligent Robotics Group at NASA Ames Research Center. The rover-borne neutron spectrometer measured the neutron albedo at both thermal and epithermal energies. Assuming uniform geochemistry and material bulk density, hydrogen as either hydroxyl/water in mineral assemblages or as moisture will significantly enhance the return of thermalized neutrons. However, in the Mojave test setting there is little uniformity, especially in bulk material density. We find that lighter toned materials (immature pavements, bar and swale, and wash materials) have lower thermal neutron flux, while mature, darker pavements with the greatest desert varnish development have higher neutron fluxes. Preliminary analysis of samples from the various terrain types in the test area indicates a prevailing moisture content of 2-3 wt% H2O. However, soil mineralogy suggests that the welldeveloped Av1 soil horizon beneath the topmost dark pavement clast layer contains the highest clay content. Structural water (including hydroxyl) in these clays may explain the enhanced neutron albedo over dark pavements. On the other hand, surface and subsurface bulk density can also play a role in neutron albedo - lower density of materials found in washes, for example, can result in a reduction in neutron flux. Analysis is ongoing.

  8. New Constraints on Late Pleistocene - Holocene Slip Rates and Seismic Behavior Along the Panamint Valley Fault Zone, Eastern California

    NASA Astrophysics Data System (ADS)

    Hoffman, W.; Kirby, E.; McDonald, E.; Walker, J.; Gosse, J.

    2008-12-01

    Space-time patterns of seismic strain release along active fault systems can provide insight into the geodynamics of deforming lithosphere. Along the eastern California shear zone, fault systems south of the Garlock fault appear to have experienced an ongoing pulse of seismic activity over the past ca. 1 kyr (Rockwell et al., 2000). Recently, this cluster of seismicity has been implicated as both cause and consequence of the oft-cited discrepancy between geodetic velocities and geologic slip rates in this region (Dolan et al., 2007; Oskin et al., 2008). Whether other faults within the shear zone exhibit similar behavior remains uncertain. Here we report the preliminary results of new investigations of slip rates and seismic history along the Panamint Valley fault zone (PVFZ). The PVFZ is characterized by dextral, oblique-normal displacement along a moderately to shallowly-dipping range front fault. Previous workers (Zhang et al., 1990) identified a relatively recent surface rupture confined to a ~25 km segment of the southern fault zone and associated with dextral displacements of ~3 m. Our mapping reveals that youthful scarps ranging from 2-4 m in height are distributed along the central portion of the fault zone for at least 50 km. North of Ballarat, a releasing jog in the fault zone forms a 2-3 km long embayment. Displacement of debris-flow levees and channels along NE-striking faults that confirm that displacement is nearly dip-slip, consistent with an overall transport direction toward ~340°, and affording an opportunity to constrain fault displacement directly from the vertical offset of alluvial surfaces of varying age. At the mouth of Happy Canyon, the frontal fault strand displaces a fresh debris-flow by ~3-4 m; soil development atop the debris-flow surface is incipient to negligible. Radiocarbon ages from logs embedded in the flow matrix constrain the timing of the most recent event to younger than ~ 600 cal yr BP. Older alluvial surfaces, such as that buried by the debris-flow lobe, exhibit progressively larger displacement (up to 10-12 m). Well-preserved bar and swale morphology, incipient varnishing of surface boulders, and weak soil development all suggest that this surface is Late Holocene in age. We are working to confirm this inference, but if correct, it suggests that this fault system may have experienced ~3-4 events in the relatively recent past. Finally, preliminary surface ages from even older surfaces along this portion of the fault zone place limits on the slip rate over Late Pleistocene time. Cosmogenic 10Be surface clast dating of an alluvial surface with well-developed pavement and moderate soil development near Happy Canyon suggests a surface age of 30-35 kyr. We are working to refine this estimate with new dating and soil characterization, but our preliminary reconstructions of displacement of this surface across the two primary fault strands are consistent with slip rates that exceed ~3 mm/yr. Overall, these results are consistent with the inference that the Panamint Valley fault zone is the primary structure that accomplishes transfer of right-lateral shear across the Garlock Fault.

  9. Big Crater as Viewed by Pathfinder Lander - Anaglyph

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The 'Big Crater' is actually a relatively small Martian crater to the southeast of the Mars Pathfinder landing site. It is 1500 meters (4900 feet) in diameter, or about the same size as Meteor Crater in Arizona. Superimposed on the rim of Big Crater (the central part of the rim as seen here) is a smaller crater nicknamed 'Rimshot Crater.' The distance to this smaller crater, and the nearest portion of the rim of Big Crater, is 2200 meters (7200 feet). To the right of Big Crater, south from the spacecraft, almost lost in the atmospheric dust 'haze,' is the large streamlined mountain nicknamed 'Far Knob.' This mountain is over 450 meters (1480 feet) tall, and is over 30 kilometers (19 miles) from the spacecraft. Another, smaller and closer knob, nicknamed 'Southeast Knob' can be seen as a triangular peak to the left of the flanks of the Big Crater rim. This knob is 21 kilometers (13 miles) southeast from the spacecraft.

    The larger features visible in this scene - Big Crater, Far Knob, and Southeast Knob - were discovered on the first panoramas taken by the IMP camera on the 4th of July, 1997, and subsequently identified in Viking Orbiter images taken over 20 years ago. The scene includes rocky ridges and swales or 'hummocks' of flood debris that range from a few tens of meters away from the lander to the distance of South Twin Peak. The largest rock in the nearfield, just left of center in the foreground, nicknamed 'Otter', is about 1.5 meters (4.9 feet) long and 10 meters (33 feet) from the spacecraft.

    This view of Big Crater was produced by combining 6 individual 'Superpan' scenes from the left and right eyes of the IMP camera. Each frame consists of 8 individual frames (left eye) and 7 frames (right eye) taken with different color filters that were enlarged by 500% and then co-added using Adobe Photoshop to produce, in effect, a super-resolution panchromatic frame that is sharper than an individual frame would be.

    The anaglyph view of Big Crater was produced by combining the left and right eye mosaics (above) by assigning the left eye view to the red color plane and the right eye view to the green and blue color planes (cyan), to produce a stereo anaglyph mosaic. This mosaic can be viewed in 3-D on your computer monitor or in color print form by wearing red-blue 3-D glasses.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  10. Past storminess recorded in the internal architecture of coastal formations of Estonia in the NE Baltic Sea region

    NASA Astrophysics Data System (ADS)

    Tõnisson, Hannes; Vilumaa, Kadri; Kont, Are; Sugita, Shinya; Rosentau, Alar; Muru, Merle; Anderson, Agnes

    2016-04-01

    Over the past 50 years, storminess has increased in northern Europe because of the changes in cyclonic activity. The cyclone season in the Baltic Sea area has shifted from autumn to winter; this has led to intensification of shore processes (erosion, sediment transport and accumulation) and has increased pressure to the economy (land use, coastal protection measures) of the coastal regions in the Baltic states. Therefore, studing the effects of such changes on shore processes in the past is critical for prediction of the future changes along the Baltic coasts. Beach ridge plains are found worldwide, where cyclones and storm surges affect accumulation forms. These sandy shores are highly susceptible to erosion. Due to the isostatic uplift on the NE coast of the Baltic Sea, the signs of major past events are well-preserved in the internal architecture of old coastal formations (dune ridge-swale complexes). Wave-eroded scarps in beach deposits are visible in subsurface ground-penetrating radar (GPR) records, indicating the past high-energy events. Several study areas and transects were selected on the NW coast of Estonia, using high-resolution topographic maps (LiDAR). Shore-normal subsurface surveys have been conducted with a digital GSSI SIR-3000 georadar with a 270 MHz antenna at each transect. Interpretation of GPR facies was based on hand auger and window sampler coring, which provided accurate depths of key stratigraphic boundaries and bounding surfaces. Several samples for luminescence and 14C dating were collected to determine the approximate chronology of the coastal formations along the Estonian coast. We have found that changes in storminess, including the periods of high and low intensity of storms in late Holocene, are clearly reflected in the internal patterns of ancient coastal formations. The sections with small ridges with short seaward-dipped layers (interface between wave-built and aeolian deposits) in deeper horizons are probably formed during relatively calm periods. Such short seaward-dipped layers refer to low sea levels during their formation. More extensive layers reflect stronger storm events with higher water levels. Large amounts of sand in nearshore zone contribute to the formation of larger ridges. We have found at least three periods with high cyclonic activity and two relatively calm periods punctuated by few intense storms along the Estonian coast. In addition, a comparative study of the erosional palaeo-surfaces and recent storm monitoring data is currently underway for a better understanding, and thus a reliable reconstruction of the past storm parameters. Further studies are required for a better chronology of coastal events to clarify the periodicity of storminess in this part of the Baltic Sea region. The findings of the current study will contribute to the forecast of future scenarios in regional storm risk assessment of the coastal areas. ACKNOWLEDGMENTS: This work has been funded by the Estonian Ministry of Education and Research and by the Estonian Science Foundation grants No. 7564, 8549, 9191, 9011, IUT18-9, PUT456, the BONUS project BaltCoast and Doctoral School of Earth Sciences and Ecology (EU Structural Support).

  11. Modeling right-lateral offset of a Late Pleistocene terrace riser along the Polaris fault using ground based LiDAR imagery

    NASA Astrophysics Data System (ADS)

    Howle, J. F.; Bawden, G. W.; Hunter, L. E.; Rose, R. S.

    2009-12-01

    High resolution (centimeter level) three-dimensional point-cloud imagery of offset glacial outwash deposits were collected by using ground based tripod LiDAR (T-LiDAR) to characterize the cumulative fault slip across the recently identified Polaris fault (Hunter et al., 2009) near Truckee, California. The type-section site for the Polaris fault is located 6.5 km east of Truckee where progressive right-lateral displacement of middle to late Pleistocene deposits is evident. Glacial outwash deposits, aggraded during the Tioga glaciation, form a flat lying ‘fill’ terrace on both the north and south sides of the modern Truckee River. During the Tioga deglaciation melt water incised into the terrace producing fluvial scarps or terrace risers (Birkeland, 1964). Subsequently, the terrace risers on both banks have been right-laterally offset by the Polaris fault. By using T-LiDAR on an elevated tripod (4.25 m high), we collected 3D high-resolution (thousands of points per square meter; ± 4 mm) point-cloud imagery of the offset terrace risers. Vegetation was removed from the data using commercial software, and large protruding boulders were manually deleted to generate a bare-earth point-cloud dataset with an average data density of over 240 points per square meter. From the bare-earth point cloud we mathematically reconstructed a pristine terrace/scarp morphology on both sides of the fault, defined coupled sets of piercing points, and extracted a corresponding displacement vector. First, the Polaris fault was approximated as a vertical plane that bisects the offset terrace risers, as well as bisecting linear swales and tectonic depressions in the outwash terrace. Then, piercing points to the vertical fault plane were constructed from the geometry of the geomorphic elements on either side of the fault. On each side of the fault, the best-fit modeled outwash plane is projected laterally and the best-fit modeled terrace riser projected upward to a virtual intersection in space, creating a vector. These constructed vectors were projected to intersection with the fault plane, defining statistically significant piercing points. The distance between the coupled set of piercing points, within the plane of the fault, is the cumulative displacement vector. To assess the variability of the modeled geomorphic surfaces, including surface roughness and nonlinearity, we generated a suite of displacement models by systematically incorporating larger areas of the model domain symmetrically about the fault. Preliminary results of 10 models yield an average cumulative displacement of 5.6 m (1 Std Dev = 0.31 m). As previously described, Tioga deglaciation melt water incised into the outwash terrace leaving terrace risers that were subsequently offset by the Polaris fault. Therefore, the age of the Tioga outwash terrace represents a maximum limiting age of the tectonic displacement. Using regional age constraints of 15 to 13 kya for the Tioga outwash terrace (Benson et al., 1990; Clark and Gillespie, 1997; James et al., 2002) and the above model results, we estimate a preliminary minimum fault slip rate of 0.40 ± 0.05 mm/yr for the Polaris type-section site.

  12. Processes of Terrace Formation on the Piedmont of the Santa Cruz River Valley During Quaternary Time, Green Valley-Tubac Area, Southeastern Arizona

    USGS Publications Warehouse

    Lindsey, David A.; Van Gosen, Bradley S.

    2010-01-01

    In this report we describe a series of stepped Quaternary terraces on some piedmont tributaries of the Santa Cruz River valley in southeastern Arizona. These terraces began to form in early Pleistocene time, after major basin-and-range faulting ceased, with lateral planation of basin fill and deposition of thin fans of alluvium. At the end of this cycle of erosion and deposition, tributaries of the Santa Cruz River began the process of dissection and terrace formation that continues to the present. Vertical cutting alternated with periods of equilibrium, during which streams cut laterally and left thin deposits of channel fill. The distribution of terraces was mapped and compiled with adjacent mapping to produce a regional picture of piedmont stream history in the middle part of the Santa Cruz River valley. For selected tributaries, the thickness of terrace fill was measured, particle size and lithology of gravel were determined, and sedimentary features were photographed and described. Mapping of terrace stratigraphy revealed that on two tributaries, Madera Canyon Wash and Montosa Canyon Wash, stream piracy has played an important role in piedmont landscape development. On two other tributaries, Cottonwood Canyon Wash and Josephine Canyon Wash, rapid downcutting preempted piracy. Two types of terraces are recognized: erosional and depositional. Gravel in thin erosional terraces has Trask sorting coefficients and sedimentary structures typical of streamflood deposits, replete with bar-and-swale surface topography on young terraces. Erosional-terrace fill represents the channel fill of the stream that cuts the terrace; the thickness of the fill indicates the depth of channel scour. In contrast to erosional terraces, depositional terraces show evidence of repeated deposition and net aggradation, as indicated by their thickness (as much as 20+ m) and weakly bedded structure. Depositional terraces are common below mountain-front canyon mouths where streams drop their load in response to abrupt flattening of gradients and expansion of channel banks, and they extend down the piedmont along Josephine Canyon Wash. Gravel in depositional terraces also has sorting coefficients typical of streamflood deposits. Sedimentary features in both types of terraces are consistent with deposition by flash floods in ephemeral streams, suggesting the climate was arid. Bedding and clast armor are weakly developed, clast clusters and imbrication are common, and crossbedding is generally absent. Debris-flow deposits, even near the mountain front, are surprisingly rare. On the tectonically stable piedmont of southeastern Arizona, stream piracy and climate change are the most likely agents of terrace formation. Both piracy and climate change can cause rapid changes in discharge and sediment supply, which initiate cycles of incision, lateral cutting, and aggradation. Increased stream discharge initiates downcutting, but increased sediment supply interrupts downcutting and causes streams to cut laterally and aggrade. At times, on Madera Canyon Wash and Montosa Canyon Wash, stream piracy affected stream discharge and sediment supply, but on Cottonwood Canyon Wash and Josephine Canyon Wash, only climate change could have initiated terrace cutting. Terraces probably formed during extended arid intervals when sparse vegetation and flashy stream discharge combined to increase sediment supply. In most cases, sediment supply was sufficient to promote lateral cutting but not long-term aggradation. Thus, most streams formed erosional terraces. The middle Pleistocene Josephine Canyon Wash formed a depositional terrace because it had a source of abundant unconsolidated sediment.

  13. Historical changes in the Mississippi-Alabama barrier islands and the roles of extreme storms, sea level, and human activities

    USGS Publications Warehouse

    Morton, Robert A.

    2007-01-01

    An historical analysis of images and documents shows that the Mississippi-Alabama (MS-AL) barrier islands are undergoing rapid land loss and translocation. The barrier island chain formed and grew at a time when there was a surplus of sand in the alongshore sediment transport system, a condition that no longer prevails. The islands, except Cat, display alternating wide and marrow segments. Wide segments generally were products of low rates of inlet migration and spit elongation that resulted in well-defined ridges and swales formed by wave refraction along the inlet margins. In contrast, rapid rates of inlet migration and spit elongation under conditions of surplus sand produced low, narrow, straight barrier segments. Since the mid 1800s, average rates of land loss for all the MS islands accelerated systematically while maintaining consistency from island to island. In contrast, Dauphin Island, off the Alabama coast, gained land during the early 20th century and then began to lose land at rates comparable to those of the MS barriers. There is an inverse relationship between island size and percentage of land reduction for each barrier such that Horn Island lost 24% and Ship Island lost 64% of its area since the mid 1800s. Ship Island is particularly vulnerable to storm-driven land losses because topographic and bathymetric boundary conditions focus wave energy onto the island. The three predominant morphodynamic processes associated with land loss are: (1) unequal lateral transfer of sand related to greater updrift erosion compared to downdrift deposition, (2) barrier narrowing resulting from simultaneous erosion of the Gulf and Soundside shores, and (3) barrier segmentation related to storm breaching. The western three fourths of Dauphin Island are migrating landward as a result of storms that erode the Gulf shore, overwash the island, and deposit sand in Mississippi Sound. Petit Bois, Horn, and Ship Islands have migrated westward as a result of predominant westward sediment transport by alongshore currents, and Cat Island is being reshaped as it adjusts to post-formation changes in wave and current patterns associated with deposition of the St. Bernard lobe of the Mississippi delta. The principal causes of barrier island land loss are frequent intense storms, a relative rise in sea level, and a deficit in the sediment budget. The only factor that has a historical trend that coincides with the progressive increase in rates of land loss is the progressive reduction in sand supply associated with nearly simultaneous deepening of channels dredged across the outer bars of the three tidal inlets maintained for deep-draft shipping. Neither rates of relative sea level rise nor storm parameters have long-term historical rends that match the increased rates of land loss since the mid 1800s. The historical rates of relative sea level rise in the northern Gulf of Mexico have been relatively constant and storm frequencies and intensities occur in multidecal cycles. However, the most recent land loss accelerations likely related to the increased storm activity since 1995. Considering the predicted trends for storms and sea level related to global warming, it is clear that the barrier islands will continue to lose land area at a rapid rate without a reversal in trend of at least one of the causal factors. The reduction in sand supply related to disruption of the alongshore sediment transport system is the only factor contributing to land loss that can be managed directly. This can be accomplished by placing dredged material so that the adjacent barrier island shores revive it for island nourishment and rebuilding.

  14. Computer-model analysis of ground-water flow and simulated effects of contaminant remediation at Naval Weapons Industrial Reserve Plant, Dallas, Texas

    USGS Publications Warehouse

    Barker, Rene A.; Braun, Christopher L.

    2000-01-01

    In June 1993, the Department of the Navy, Southern Division Naval Facilities Engineering Command (SOUTHDIV), began a Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) of the Naval Weapons Industrial Reserve Plant (NWIRP) in north-central Texas. The RFI has found trichloroethene, dichloroethene, vinyl chloride, as well as chromium, lead, and other metallic residuum in the shallow alluvial aquifer underlying NWIRP. These findings and the possibility of on-site or off-site migration of contaminants prompted the need for a ground-water-flow model of the NWIRP area. The resulting U.S. Geological Survey (USGS) model: (1) defines aquifer properties, (2) computes water budgets, (3) delineates major flowpaths, and (4) simulates hydrologic effects of remediation activity. In addition to assisting with particle-tracking analyses, the calibrated model could support solute-transport modeling as well as help evaluate the effects of potential corrective action. The USGS model simulates steadystate and transient conditions of ground-water flow within a single model layer.The alluvial aquifer is within fluvial terrace deposits of Pleistocene age, which unconformably overlie the relatively impermeable Eagle Ford Shale of Late Cretaceous age. Over small distances and short periods, finer grained parts of the aquifer are separated hydraulically; however, most of the aquifer is connected circuitously through randomly distributed coarser grained sediments. The top of the underlying Eagle Ford Shale, a regional confining unit, is assumed to be the effective lower limit of ground-water circulation and chemical contamination.The calibrated steady-state model reproduces long-term average water levels within +5.1 or –3.5 feet of those observed; the standard error of the estimate is 1.07 feet with a mean residual of 0.02 foot. Hydraulic conductivity values range from 0.75 to 7.5 feet per day, and average about 4 feet per day. Specific yield values range from 0.005 to 0.15 and average about 0.08. Simulated infiltration rates range from 0 to 2.5 inches per year, depending mostly on local patterns of ground cover.Computer simulation indicates that, as of December 31, 1998, remediation systems at NWIRP were removing 7,375 cubic feet of water per day from the alluvial aquifer, with 3,050 cubic feet per day coming from aquifer storage. The resulting drawdown prevented 1,800 cubic feet per day of ground water from discharging into Cottonwood Bay, as well as inducing another 1,325 cubic feet per day into the aquifer from the bay. An additional 1,200 cubic feet of water per day (compared to pre-remediation conditions) was prevented from discharging into the west lagoon, east lagoon, Mountain Creek Lake, and Mountain Creek swale.Particle-tracking simulations, assuming an aquifer porosity of 0.15, were made to delineate flowpath patterns, or contaminant “capture zones,” resulting from 2.5- and 5-year periods of remediation activity at NWIRP. The resulting flowlines indicate three such zones, or areas from which ground water is simulated to have been removed during July 1996–December 1998, as well as extended areas from which ground water would be removed during the next 2.5 years (January 1999– June 2001).Simulation indicates that, as of December 31, 1998, the recovery trench was intercepting about 827 cubic feet per day of ground water that—without the trench—would have discharged into Cottonwood Bay. During this time, the trench is simulated to have removed about 3,221 cubic feet per day of water from the aquifer, with about 934 cubic feet per day (29 percent) coming from the south (Cottonwood Bay) side of the trench.

  15. Geology and hydrology of radioactive solid-waste burial grounds at the Hanford Reservation, Washington

    USGS Publications Warehouse

    LaSala, Albert Mario; Doty, Gene C.

    1976-01-01

    The geology and hydrology of radioactive solid waste burial grounds at the Hanford Reservation were investigated, using existing data, by the U.S. Geological Survey as part of the waste management plan of the Richland Operations Office of the Energy Research and Development Administration. The purpose of the investigation was to assist the operations office in characterizing the burial sites as to present environmental safety and as to their suitability for long-term storage (several thousand to tens of thousands of years) of radioactive sol id wastes. The burial ground sites fall into two classifications: (1) those on the low stream terraces adjacent to the Columbia River, mainly in the 100 Areas and 300 Area, and (2) those lying on the high terraces south of Gable Mountain in the 200 Areas. Evaluation of the suitability of the burial grounds for long-term storage was made almost entirely on hydrologic, geologic, and topographic criteria. Of greatest concern was the possibility that radionuclides might be leached from the buried wastes by infiltrating water and carried downward to the water table. The climate is semi-arid and the average annual precipitation is 6.4 inches at the Hanford Meteorological Station. However, the precipitation is seasonally distributed with about 50 percent occurring during the months of November, December, January, and February when evapotranspiration is negligible and conditions for infiltration are most favorable. None of the burial grounds are instrumented with monitoring devices that could be used to determine if radionuclides derived from them are reaching the water table. Burial grounds on the low stream terraces are mainly underlain by permeable materials and the water table lies at relatively shallow depths. Radionuclides conceivably could be leached from these burial grounds by percolating soil water, and radionuclides might reach the Columbia River in a relatively short time. These sites could also be inundated by erosion during a catastrophic flood. For these reasons, they are judged to be unsuited for long-term storage. Local conditions at several of these burial grounds are particularly unfavorable from the standpoint of safety. Depressions and swales at some burial grounds, such as numbers 4 and 5 in the 300 Area in which runoff can collect, enhance the possibility of water infiltrating through the buried wastes and transporting radionuclides to the water table. Also, during a high stage of the Columbia River, the water table conceivably could rise into burial grounds l and 2 of the 100 F Area. Most of the burial grounds on the low terraces contain either (1) reactor components and related equipment bearing activation products, principally cobalt-60, or (2) less hazardous radioactive materials such as uranium. The inventory of activation products in these burial grounds will decay to a safe level in a relatively short period of time (about 100 years), according to estimates made by C. D. Corbit, Douglas United Nuclear, Inc., 1969. The inventory of radionuclides is not considered by the ERDA staff to be complete, however. At these burial grounds containing activation products or less hazardous materials, investigations should be made of the radioactivity in soil and ground water beneath selected representative sites to verify that radionuclides are not migrating from the burial grounds. If migration is detected, field investigations should be made to determine the source or sources of the radionuclides and the desirability of removing the source wastes. Other burial grounds on the low terraces contain plutonium and fission products, which require long-term storage. Both the 300 WYE and the 300 North burial grounds are reported to contain plutonium in large quantities. Burial ground no. l in the 300 Area reportedly also contains plutonium. The inventory records of any other burial grounds on the low terraces suspected of containing plutonium should be reviewed to determine if pl

  16. New aspects concerning geoelectrical tests on shallow landslides in Telega, Romania

    NASA Astrophysics Data System (ADS)

    Maftei, R.-M.; Rusu, E.; Ciurean, R.; Avram, O.; Scutelnicu, I.; Grigorescu, S.; Grigorescu, A.

    2009-04-01

    New aspects concerning geoelectrical tests on shallow landslides in Telega, Romania Raluca Maftei, Emil Rusu, Roxana Ciurean, Ovidiu Avram, Ionut Scutelnicu, Stefan Grigorescu, Andrei Grigorescu (1) (1) GIR, Bucharest, Romania The analysis of natural hazards involved by landslides requires the revealing of both depth and relief of the slipping surface, and also to show the extension of the dislocated material areas. A particular aspect in Romania is related to the frequent occurrence of salt. It is to be mentioned that Romania contains the largest salt resources/reserves throughout Europe. This potential of about three billion tons could supply salt for the whole world population for over four hundred years. Telega village, separated by Campina town through Doftana River, is situated at 5 km from it, in the west part of Prahova County. The village covers a medium altitude relief (550m), characterized by irregularities of ground, many valleys and swales crossed by streams. On the left bank of Telega valley, the landslides' effects have a large extension, in some places being catastrophic. Among these, the one called at "Butoi" area presents a huge interest according of their produced destructions and because of the influence on Telega Spa, main communal road etc. In the above-mentioned sector, the slope is badly affected over a 0.4 sqkm surface. The morphology presents many scars, sometimes with steeps, waves with variable amplitudes and counter slope aspects in which water accumulates as lakes and swamps, with transversal and longitudinal fissures with different lengths and depths. The slope is very steep, especially in crest area. Besides the covering deluvial, clayey, yellow-gray quaternary rocks, other rocks form the basement are moving, in the detachment area marly, gray-black, fine stratified, sandy rocks interbeded with soft, gray sandstones of Meotian age are affected. Also, the rocks of the "salt breccias horizon" of Badenian age are affected. Predominantly are gray-purple marls with breccias aspect with white-gray large crystallized lens of salt. The whole stack of sediments is trapped into a very complex structure crossed by Campina-Cosminele fault and flanked NE by Martin fault. The salt presence influences land's instability phenomena occurrence. The water's circulation is made through the gritty and sandy horizons (layers), with a relatively large development. The permeability and the porosity of these rocks vary depending on the lithologic constitution of the respectively stratigraphic layer. The geoelectric investigation outlines horizontally the sliding area, and vertically the elements of the landslide surface - position, depth, shape, and the bedrock's relief. The quantitative interpretation of the resistivity geoelectrical vertical tests, and the correlation with the geological structure identified 3 sliding surfaces, from which only the upper one (2-6m depth) was known before the stability works. There were localized the rainfall waters circulation and accumulation zones, areas with high sliding risk Same results were obtained in sliding zones, been localized the principal elements of the landslides, with practical implications in land instability and estimation of the evolution of the destructive phenomena mechanisms. With this study we try to quantify the complex relationship between the natural factors that generate the terrain instability phenomena and the intensity of the socio-economic effects, at a regional and local scale, by correlating the engineering geology information and geophysical data. This paper is part of the DIGISOIL project dissemination plan. The DIGISOIL project is financed by the European Commission under the 7th Framework Programme for Research and Technological Development, Area "Environment", Activity 6.3 "Environmental Technologies". The [following text] reflects the author's views. The European Commission is not liable for any use that may be made of the information contained therein.

  17. Factors related to well yield in the fractured-bedrock aquifer of New Hampshire

    USGS Publications Warehouse

    Moore, Richard Bridge; Schwartz, Gregory E.; Clark, Stewart F.; Walsh, Gregory J.; Degnan, James R.

    2002-01-01

    The New Hampshire Bedrock Aquifer Assessment was designed to provide information that can be used by communities, industry, professional consultants, and other interests to evaluate the ground-water development potential of the fractured-bedrock aquifer in the State. The assessment was done at statewide, regional, and well field scales to identify relations that potentially could increase the success in locating high-yield water supplies in the fractured-bedrock aquifer. statewide, data were collected for well construction and yield information, bedrock lithology, surficial geology, lineaments, topography, and various derivatives of these basic data sets. Regionally, geologic, fracture, and lineament data were collected for the Pinardville and Windham quadrangles in New Hampshire. The regional scale of the study examined the degree to which predictive well-yield relations, developed as part of the statewide reconnaissance investigation, could be improved by use of quadrangle-scale geologic mapping. Beginning in 1984, water-well contractors in the State were required to report detailed information on newly constructed wells to the New Hampshire Department of Environmental Services (NHDES). The reports contain basic data on well construction, including six characteristics used in this study?well yield, well depth, well use, method of construction, date drilled, and depth to bedrock (or length of casing). The NHDES has determined accurate georeferenced locations for more than 20,000 wells reported since 1984. The availability of this large data set provided an opportunity for a statistical analysis of bedrock-well yields. Well yields in the database ranged from zero to greater than 500 gallons per minute (gal/min). Multivariate regression was used as the primary statistical method of analysis because it is the most efficient tool for predicting a single variable with many potentially independent variables. The dependent variable that was explored in this study was the natural logarithm (ln) of the reported well yield. One complication with using well yield as a dependent variable is that yield also is a function of demand. An innovative statistical technique that involves the use of instrumental variables was implemented to compensate for the effect of demand on well yield. Results of the multivariate-regression model show that a variety of factors are either positively or negatively related to well yields. Using instrumental variables, well depth is positively related to total well yield. Other factors that were found to be positively related to well yield include (1) distance to the nearest waterbody; (2) size of the drainage area upgradient of a well; (3) well location in swales or valley bottoms in the Massabesic Gneiss Complex and Breakfast Hill Granite; (4) well proximity to lineaments, identified using high-altitude (1:80,000-scale) aerial photography, which are correlated with the primary fracture direction (regional analysis); (5) use of a cable tool rig for well drilling; and (6) wells drilled for commercial or public supply. Factors negatively related to well yields include sites underlain by foliated plutons, sites on steep slopes sites at high elevations, and sites on hilltops. Additionally, seven detailed geologic map units, identified during the detailed geologic mapping of the Pinardville and Windham quadrangles, were found to be positively or negatively related to well yields. Twenty-four geologic map units, depicted on the Bedrock Geologic Map of New Hampshire, also were found to be positively or negatively related to well yields. Maps or geographic information system (GIS) data sets identifying areas of various yield probabilities clearly display model results. Probability criteria developed in this investigation can be used to select areas where other techniques, such as geophysical techniques, can be applied to more closely identify potential drilling sites for high-yielding

  18. Volcanic Processes and Geology of Augustine Volcano, Alaska

    USGS Publications Warehouse

    Waitt, Richard B.; Beget, James E.

    2009-01-01

    Augustine Island (volcano) in lower Cook Inlet, Alaska, has erupted repeatedly in late-Holocene and historical times. Eruptions typically beget high-energy volcanic processes. Most notable are bouldery debris avalanches containing immense angular clasts shed from summit domes. Coarse deposits of these avalanches form much of Augustine's lower flanks. A new geologic map at 1:25,000 scale depicts these deposits, these processes. We correlate deposits by tephra layers calibrated by many radiocarbon dates. Augustine Volcano began erupting on the flank of a small island of Jurassic clastic-sedimentary rock before the late Wisconsin glaciation (late Pleistocene). The oldest known effusions ranged from olivine basalt explosively propelled by steam, to highly explosive magmatic eruptions of dacite or rhyodacite shed as pumice flows. Late Wisconsin piedmont glaciers issuing from the mountainous western mainland surrounded the island while dacitic eruptive debris swept down the south volcano flank. Evidence is scant for eruptions between the late Wisconsin and about 2,200 yr B.P. On a few south-flank inliers, thick stratigraphically low pumiceous pyroclastic-flow and fall deposits probably represent this period from which we have no radiocarbon dates on Augustine Island. Eruptions between about 5,350 and 2,200 yr B.P. we know with certainty by distal tephras. On Shuyak Island 100 km southeast of Augustine, two distal fall ashes of Augustinian chemical provenance (microprobe analysis of glass) date respectively between about 5,330 and 5,020 yr B.P. and between about 3,620 and 3,360 yr B.P. An Augustine ash along Kamishak Creek 70 km southwest of Augustine dates between about 3,850 and 3,660 yr B.P. A probably Augustinian ash lying within peat near Homer dates to about 2,275 yr B.P. From before 2,200 yr B.P. to the present, Augustine eruptive products abundantly mantle the island. During this period, numerous coarse debris avalanches swept beyond Augustine's coast, most recently in A.D. 1883. The decapitated summit after the 1883 eruption, replaced by andesite domes of six eruptions since, shows a general process: collapse of steep summit domes, then the summit regrown by later dome eruptions. The island's stratigraphy is based on six or seven coarse-pumice tephra 'marker beds'. In upward succession they are layers G (2,100 yr B.P.), I (1,700 yr B.P.), H (1,400 yr B.P.), C (1,200-1,000 yr B.P.), M (750 yr B.P.), and B (390 yr B.P.). A coarse, hummocky debris-avalanche deposit older than about 2,100 yr B.P. - or perhaps a stack of three of them - lies along the east coast, the oldest exposed such bouldery diamicts on Augustine Island. Two large debris avalanches swept east and southeast into the sea between about 2,100 and 1,800 yr B.P. A large debris avalanche shed east and east-northeast into the sea between 1,700 and 14,00 yr B.P. Between about 1,400 and 1,100 yr B.P. debris avalanches swept into the sea on the volcano's south, southwest, and north-northwest. Pumiceous pyroclastic fans spread to the southeast and southwest, lithic pyroclastic flows and lahars (?) to the south and southeast. Pyroclastic flows, pyroclastic surges, and lahars swept down the west and south flanks between about 1,000 and 750 yr B.P. A debris avalanche swept into the sea on the west, and a small one on the south-southeast, between about 750 and 400 yr B.P. Large lithic pyroclastic flows shed to the southeast; smaller ones descended existing swales on the southwest and south. Between about 400 yr B.P. and historical time (late 1770s), three debris avalanches swept into the sea on the west-northwest, north-northwest, and north flanks. One of them (West Island) was large and fast: most of it rode to sea far beyond a former sea cliff, and its surface includes geomorphic evidence of having initiating a tsunami. Augustine's only conspicuous lava flow erupted on the north flank. During this prehistoric period numerous domes grew at th

  19. Hydrogeology and hydrology of the Punta Cabullones wetland area, Ponce, southern Puerto Rico, 2007-08

    USGS Publications Warehouse

    Rodríguez-Martínez, Jesús; Soler-López, Luis R.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Municipio Autónomo de Ponce and the Puerto Rico Department of Natural and Environmental Resources, conducted a study of the hydrogeology and hydrology of the Punta Cabullones area in Ponce, southern Puerto Rico. (Punta Cabullones is also referred to as Punta Cabullón.) The Punta Cabullones area is about 9 square miles and is an ecological system made up of a wetland, tidal flats, saltflats, mangrove forests, and a small fringing reef located a short distance offshore. The swales or depressions between successive beach ridges became development avenues for saline to hypersaline wetlands. The Punta Cabullones area was designated by the U.S. Fish and Wildlife Service as a coastal barrier in the 1980s because of its capacity to act as a buffer zone to ameliorate the impacts of natural phenomenon such as storm surges. Since 2003, Punta Cabullones has been set aside for preservation as part of the mitigation effort mandated by Federal and State laws to compensate for the potential environmental effects that might be caused by the construction of the Las Américas Transshipment Port. Total rainfall measured during 2008 within the Punta Cabullones area was 36 inches, which is slightly greater than the long-term annual average of 32 inches for the coastal plain near Ponce. Two evapotranspiration estimates, 29 and 37 inches, were obtained for the subarea of the Punta Cabullones area that is underlain by fan-delta and alluvial deposits by using two variants of the Penman semi-empirical equation. The long-term water stage and chemical character of the wetland in Punta Cabullones are highly dependent on the seasonal and annual variations of both rainfall and sea-wave activity. Also, unseasonal short-term above-normal rainfall and sea-wave events resulting from passing storms may induce substantial changes in the water stage and the chemical character of the wetland. In general, tidal fluctuations exert a minor role in modifying the water quality and stage of the wetland in Punta Cabullones. The role of the tidal fluctuations becomes important during those times when the outlets/inlets to the sea are not blocked by a sand bar and is allowed to freely flow into the wetland interior. The salinity of the wetland varies from brackish to hypersaline. The hypersaline conditions, including the occurrence of saltflats, within the Punta Cabullones wetland area result from a high evapotranspiration rate. The hypersaline conditions are further enhanced by a sand bar that blocks the inlet/outlet of the wetland’s easternmost channel, particularly during the dry season. Groundwater in Punta Cabullones mostly is present within beds of silisiclastic sand and gravel. During the study period, the depth to groundwater did not exceed 4 feet below land surface. The movement and direction of the groundwater flow in Punta Cabullones are driven by density variations that in turn result from the wide range of salinities in the groundwater. The salinity of the groundwater decreases within the first 60 to 100 feet of depth and decreases outward from a mound of hypersaline groundwater centered on piezometer nest PN2. The main groundwater types within the Punta Cabullones area vary from calcium-bicarbonate type in the northernmost part of the study area to a predominantly sodium-potassium-chloride groundwater type southward. According to stable-isotope data, groundwater within the study area is both modern meteoric water and seawater highly affected by evaporation. The chemical and stable-isotopic character of local groundwater is highly influenced by evapotranspiration because of its shallow depth. Equivalent freshwater heads indicate groundwater moves away from a mound centered on piezometer nest PN2, in a pattern similar to the spatial distribution of groundwater salinity. Vertical groundwater flow occurs in Punta Cabullones due to local differences in density. In the wetland subarea of Punta Cabullones, groundwater and surface water are hydraulically coupled. Locally, surface-hypersaline water sinks into the aquifer, providing recharge and serving as a mechanism to redistribute salt throughout the study area. The evapotranspiration in the wetland subarea is estimated at about 11 million gallons per day (Mgal/d) that is equivalent to about 12,586 acre-feet per year. The balance of evapotranspiration, in excess of the about 0.5 Mgal/d of groundwater flow within the wetland, is supplied by saline to hypersaline surface water that may include seawater and meteoric water highly affected by evaporation with dissolved salts. In one of the extreme scenarios in which no groundwater is intercepted by pumpage at the Restaurada well field, the amount of saline to hypersaline water in the wetland consumed by evapotranspiration is about 10.5 Mgal/d. In the opposite extreme in which the entire regional groundwater flow is intercepted by pumpage in the Restaurada well field, the entire evapotranpiration requirement is met by saline to hypersaline water. Hydrologic, isotopic, and chemical data indicate that all of, or a large portion of, the historical groundwater flow to Punta Cabullones is being captured by the Puerto Rico Aqueducts and Sewer Authority pumpage at the Restaurada well field at a rate of about 2 Mgal/d. As a consequence, seawater intrusion into the aquifer at the Punta Cabullones area seems to be occurring, while the current pumpage at the Restaurada well field is sustained by storage depletion of the aquifer.

  20. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed

    USGS Publications Warehouse

    Lindsey, Bruce D.; Phillips, Scott; Donnelly, Colleen A.; Speiran, Gary K.; Plummer, Niel; Bohlke, John Karl; Focazio, Michael J.; Burton, William C.; Busenberg, Eurybiades

    2003-01-01

    One of the major water-quality problems in the Chesapeake Bay is an overabundance of nutrients from the streams and rivers that discharge to the Bay. Some of these nutrients are from nonpoint sources such as atmospheric deposition, agricultural manure and fertilizer, and septic systems. The effects of efforts to control nonpoint sources, however, can be difficult to quantify because of the lag time between changes at the land surface and the response in the base-flow (ground water) component of streams. To help resource managers understand the lag time between implementation of management practices and subsequent response in the nutrient concentrations in the base-flow component of streamflow, a study of ground-water discharge, residence time, and nitrate transport in springs throughout the Chesapeake Bay Watershed and in four smaller watersheds in selected hydrogeomorphic regions (HGMRs) was conducted. The four watersheds were in the Coastal Plain Uplands, Piedmont crystalline, Valley and Ridge carbonate, and Valley and Ridge siliciclastic HGMRs.A study of springs to estimate an apparent age of the ground water was based on analyses for concentrations of chlorofluorocarbons in water samples collected from 48 springs in the Chesapeake Bay Watershed. Results of the analysis indicate that median age for all the samples was 10 years, with the 25th percentile having an age of 7 years and the 75th percentile having an age of 13 years. Although the number of samples collected in each HGMR was limited, there did not appear to be distinct differences in the ages between the HGMRs. The ranges were similar between the major HGMRs above the Fall Line (modern to about 50 years), with only two HGMRs of small geographic extent (Piedmont carbonate and Mesozoic Lowland) having ranges of modern to about 10 years. The median values of all the HGMRs ranged from 7 to 11 years. Not enough samples were collected in the Coastal Plain for comparison. Spring samples showed slightly younger water under wet conditions than under dry conditions. The apparent age of water from wells, springs, and other ground-water discharge points in the four targeted watersheds was modern to 60 years, which was similar to the apparent ages from the spring study. In the Pocomoke River Watershed in the Coastal Plain Uplands HGMR, the apparent age of ground-water samples ranged from 0 to 60 years; the ages in the vicinity of the streams ranged from 0 to 23 years.The apparent ages of ground water in the Polecat Creek Watershed in the Piedmont crystalline HGMR ranged from 2 to 30 years. The apparent ages of water from wells in the Muddy Creek Watershed in the Valley and Ridge carbonate HGMR ranged from 10 to 20 years (except for a single sample that was 45 years). The ages in the East Mahantango Creek Watershed in the Valley and Ridge siliciclastic HGMR ranged from 0 to 50 years. The distribution in apparent age of water from wells in the targeted watersheds, however, generally is older than that for water from the springs. The median age of water from wells in the Muddy Creek Watershed, for example, was 15 years, compared to 11 years for the water from the springs in that watershed, and less than 10 years for water from all springs in the spring study. The similarity in the ranges in apparent age of water from the wells and from the springs shows that the samples from the targeted watersheds and springs have bracketed the range of apparent ages that would be expected in the shallow ground-water-flow systems throughout the Chesapeake Bay Watershed.The apparent age of water from individual wells does not necessarily represent the entire distribution of ages of the discharging ground water, and it is this distribution of ages that affects the response of nutrient concentrations in stream base flow. Nutrient-reduction scenarios were modeled for two watersheds for which the distribution of apparent ground-water ages was available, the East Mahantango Creek Watershed in the Valley and Ridge siliciclastic HGMR and the Locust Grove Watershed in the Coastal Plain Uplands HGMR. A nutrient-reduction scenario was created for East Mahantango Creek, where the average residence time was determined to be approximately 10 years on the basis of the output of particle tracking from a ground-water-flow model. This scenario showed decreases of nearly 50 percent in base-flow concentrations of nitrate in streams within the first year after the reduction in nitrogen input; smaller reductions in nitrate concentration occurred in each subsequent year. A second scenario for that same watershed, in which the same 10-year average residence time was assumed and an exponential model was used for analysis, showed that a 50-percent reduction in base-flow concentrations of nitrate could take up to 5 years. For the Locust Grove Watershed, in which an average residence time of 32 years was assumed, simulation with the exponential model showed that it may take more than 20 years to achieve a 50-percent reduction in base-flow concentra-tions of nitrate. Although it was not possible to construct such scenarios for all watersheds, these examples show the range of possible responses to changes in nutrient inputs in two very different types of watersheds.Findings from this study include information on factors that affect ground-water age, spatial distribution of ages, and nitrogen transport. In the East Mahantango Creek Watershed and the Polecat Creek Watershed, the residence time varied spatially depending on the position of the flow path, and temporally depending on the recharge conditions. Generally, ground water in areas near the stream had short residence times and the water in upland areas had longer residence times. Water traveling through deep layers had longer residence times than water traveling through shallow layers, and residence times were faster under high recharge conditions than low recharge conditions. Ground water in the Pocomoke Watershed exhibits a similar pattern: younger water discharges to small order streams in headwater basins and older water discharges to larger streams near the basin outlet.Factors affecting nitrogen transport in ground water include spatial and temporal variation in input sources, ground-water age, and aquifer processes that lead to denitrification. Spatial and temporal variations in nitrogen sources affect all the watersheds. Tributaries with higher inputs of nitrogen have higher concentrations in stream base flow. Areas where nitrogen application rates have increased over time show an age-nitrate relation in ground-water samples. The age-nitrate relation can be affected by denitrification, which occurs in Pocomoke and East Mahantango Creeks but is not evident in Polecat and Muddy Creeks. In East Mahantango Creek, the level of denitrification is significant in water with residence times greater than 20 years, but because this is a small component of overall ground-water discharge to a stream, it may not remove a significant quantity of nitrogen from the system. Denitrification in Pocomoke Creek is significant and appears to affect mostly older water discharging to streams. Therefore, if most of the nitrogen entering these two streams is associated with the discharge of younger ground water, denitrification may not greatly affect the overall nitrogen delivery to these streams.Other findings of this study show that nitrate in ground water discharging along preferential flow paths may not be affected by natural processes, such as denitrification or uptake by riparian vegetation. Seeps to swales and ditches beneath the north uplands at Polecat Creek indicate a shallow water table and discharge of young ground water whereas the absence of such seeps on the south side indicates a deep water table and a lack of young ground water. Similarly, discharge at the base of the slope and to the valley wetland south of the creek but not north of the creek indicates a different role for the riparian forest on the two sides of the creek. In many of the systems where water discharges at the base of slopes to wetlands, ditches have been dug to drain the valley. Such drainage circumvents possible removal of nitrate by riparian vegetation.Because ground-water residence times do not appear directly related to the HGMRs, the targeting of management practices will achieve the most rapid response in water quality if directed at 1) watersheds with large agricultural sources of nitrate, 2) areas with the shortest ground-water-flow paths and 3) areas not affected by significant denitrification. The fastest response in stream base-flow concentrations of nitrogen to implementation of management practices would be to implement practices in those areas with the highest loads rather than attempt to target practices on the basis of HGMR stratification. Overall findings of the study indicate that 1) ground-water contributions to nitrogen in streamflow are significant, 2) some response to management practices should be evident in base-flow concentrations of nitrogen and loads within 1 to 5 years in watersheds with the shortest average residence times, but response time may be closer to 20 years in watersheds with longer average ground-water residence times, 3) the majority of the response in ground-water discharge to any changes in management practices will be distributed over a 10-year time period even in the watersheds with the fastest response times, and 4) given that half the streamflow is from ground-water discharge and the other half is runoff or soil water, about 90 percent of total water being discharged to a stream will be less than about a decade old; therefore, full implementation of nutrient reductions may result in improved streamwater quality in about a decade. In the more-likely scenario of gradual source reduction, the reduction in concentrations of nitrate in streams and aquifers would take longer than the examples shown here.

Top