USDA-ARS?s Scientific Manuscript database
Understanding the growth dynamics of grass-legume swards is critical as pastoral management practices are adapted to economic constraints and environmental considerations. Efficient management must synchronize use of accumulated herbage with the needs of grazing livestock. This must be accomplishe...
Barber, Jonathan L; Thomas, Gareth O; Bailey, Rebekah; Kerstiens, Gerhard; Jones, Kevin C
2004-07-15
To improve understanding of air-to-vegetation transfer of persistent organic pollutants (POPs), uptake and depuration of polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) between grass sward and air was investigated. Pasture swards were placed in fanned (2 m s(-1) wind speed) and unfanned conditions for a period of 20 days and sampled at intervals. Depuration was carried out after a short (4 days) and a long (14 days) exposure period. Prior to contamination, a mixed pasture sward at a semi-rural location contained sigmaPCN concentrations 15-20% of the sigmaPCB concentration. Uptake of both PCBs and PCNs was broadly linear in fanned and unfanned conditions over the 20-day period, i.e., the pasture did not reach equilibrium with the air. Uptake rates (fluxes) were greater under the fanned conditions. The difference in uptake rates between fanned and unfanned conditions increased with degree of chlorination for both PCBs and PCNs, ranging between a factor of 2 for tri-chlorinated PCBs and PCNs and a factor 5 for octa-chlorinated PCBs. Depuration results over the first hours were very scattered, showing an initial period of loss, followed by an increase in concentrations, possibly as a result of re-volatilization of PCBs from the soil in the trays, with consequent recapture by the overlying sward. Rapid clearance was observed over the following days, but depuration of PCBs and PCNs was still incomplete after 14 days, with 20% of the initial concentration of the sigmaPCBs and 10% of the sigmaPCNs retained by the sward. There was no difference in the proportion of POPs retained in the sward between the 4- and 14-day contamination treatments. POP-specific differences in the amount of compound "trapped" in leaves after contamination were observed. The results show that, although changes in the rate of air movement around a pasture have an effect on the uptake rate of POPs into the vegetation, plant-side resistance controls both the air-to-pasture and pasture-to-air exchange of gas-phase PCBs and PCNs; i.e., differences between plant species in cuticle composition and/or structure affecting the permeability of the cuticle are of greater importance than differences in leaf morphology affecting aerodynamic roughness.
Soil intake of lactating dairy cows in intensive strip grazing systems.
Jurjanz, S; Feidt, C; Pérez-Prieto, L A; Ribeiro Filho, H M N; Rychen, G; Delagarde, R
2012-08-01
Involuntary soil intake by cows on pasture can be a potential route of entry for pollutants into the food chain. Therefore, it appears necessary to know and quantify factors affecting soil intake in order to ensure the food safety in outside rearing systems. Thus, soil intake was determined in two Latin square trials with 24 and 12 lactating dairy cows. In Trial 1, the effect of pasture allowance (20 v. 35 kg dry matter (DM) above ground level/cow daily) was studied for two sward types (pure perennial ryegrass v. mixed perennial ryegrass-white clover) in spring. In Trial 2, the effect of pasture allowance (40 v. 65 kg DM above ground level/cow daily) was studied at two supplementation levels (0 or 8 kg DM of a maize silage-based supplement) in autumn. Soil intake was determined by the method based on acid-insoluble ash used as an internal marker. The daily dry soil intake ranged, between treatments, from 0.17 to 0.83 kg per cow in Trial 1 and from 0.15 to 0.85 kg per cow in Trial 2, reaching up to 1.3 kg during some periods. In both trials, soil intake increased with decreasing pasture allowance, by 0.46 and 0.15 kg in Trials 1 and 2, respectively. In Trial 1, this pasture allowance effect was greater on mixed swards than on pure ryegrass swards (0.66 v. 0.26 kg reduction of daily soil intake between medium and low pasture allowance, respectively). In Trial 2, the pasture allowance effect was similar at both supplementation levels. In Trial 2, supplemented cows ate much less soil than unsupplemented cows (0.20 v. 0.75 kg/day, respectively). Differences in soil intake between trials and treatments can be related to grazing conditions, particularly pre-grazing and post-grazing sward height, determining at least in part the time spent grazing close to the ground. A post-grazing sward height lower than 50 mm can be considered as a critical threshold. Finally, a dietary supplement and a low grazing pressure, that is, high pasture allowance increasing post-grazing sward height, would efficiently limit the risk for high level of soil intake, especially when grazing conditions are difficult. Pre-grazing and post-grazing sward heights, as well as faecal crude ash concentration appear to be simple and practical tools for evaluating the risk for critical soil intake in grazing dairy cows.
Re, Giovanni Antonio; Piluzza, Giovanna; Sanna, Federico; Molinu, Maria Giovanna; Sulas, Leonardo
2018-06-01
In Mediterranean grazed woodlands, microclimate changes induced by trees influence the growth and development of the understory, but very little is known about its polyphenolic composition in relation to light intensity. We investigated the bioactive compounds and antioxidant capacity of different legume-based swards and variations due to full sunlight and partial shade. The research was carried out in a cork oak agrosilvopastoral system in Sardinia. The highest values of DPPH reached 7 mmol TEAC 100 g -1 DW, total phenolics 67.1 g GAE kg -1 DW and total flavonoids 7.5 g CE kg -1 DW. Compared to full sunlight, partial shade reduced DPPH values by 29 and 42%, and the total phenolic content by 23 and 53% in 100% legume mixture and semi natural pasture. Twelve phenolic compounds were detected: chlorogenic acid in 80% legume mixture (partial shade) and verbascoside in pure sward of bladder clover (full sunlight) were the most abundant. Light intensity significantly affected antioxidant capacity, composition and levels of phenolic compounds. Our results provide new insights into the effects of light intensity on plant secondary metabolites from legume based swards, underlining the important functions provided by agroforestry systems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Fatty acid profile in vertical strata of elephant grass subjected to intermittent stocking.
Dias, Kamila M; Schmitt, Daniel; Rodolfo, Giselle R; Deschamps, Francisco C; Camargo, Guilherme N; Pereira, Raphael S; Sbrissia, André F
2017-01-01
The milk and meat from animals with a pasture-based diet have higher proportions of CLA and C18:3 and lower omega-6:omega-3 ratios than products from animals with diets based on corn silage and concentrate. However, most of the published studies have evaluated fatty acid profiles in temperate climate grasses and the literature with tropical grasses is scarce. Thus, the aim of this study was to evaluate the morphological and fatty acid compositions in the vertical strata of elephant grass (Pennisetum purpureum Schum.) swards subjected to grazing heights (90 or 120 cm pre-grazing heights) and levels of defoliation (50% or 70% removal of the initial pre-grazing height). There were no interactions among pre-grazing height, the level of defoliation and grazing stratum. However, higher proportion of C18:3 (58% and 63%) was found in the 90-cm swards and in the half upper stratum. A higher proportion of C18:3 was associated with a higher leaf proportion and crude protein content. Thus, the upper stratum of sward or a grazing management scheme (e.g. first-last stocking) resulting in a higher proportion of leaves and crude protein both provide higher proportions of C18:3 to animals grazing in elephant grass swards.
The role of rodents in the seed fate of a thorny shrub in an ancient wood pasture
NASA Astrophysics Data System (ADS)
Scheper, Jeroen; Smit, Christian
2011-03-01
Thorny shrubs play a crucial role for the diversity and dynamics in wood pastures: they protect non-defended plants from large herbivores and thus facilitate tree establishment in the landscape through associational resistance. How thorny shrubs themselves establish in wood pastures - the main bottleneck for a dynamic shifting of grassland - shrub - woodland mosaics - is an essential unanswered question. We studied post-primary dispersal seed fate - i.e. removal, predation, secondary dispersal and survival of seeds after primary dispersal - of the thorny shrub blackthorn ( Prunus spinosa) in an ancient wood pasture in the Netherlands. Blackthorn seeds are primarily dispersed by frugivorous birds and may secondarily be dispersed by scatter-hoarding rodents. We performed two cafeteria-style experiments with blackthorn seeds placed on dishes in the dominant vegetation types. In the first we monitored seed removal in grassland, swards or blackthorn shrubs and determined rodent species abundance by live-trapping. In the second we followed tagged blackthorn seeds under shrubs and in swards to determine seed removal, predation, survival and secondary dispersal patterns. Tagged seeds were retrieved using a metal detector and by visual means. We recorded dispersal direction and distance, vegetation type, seed handling (burial, consumption) and rodent species responsible via bite marks. Seed removal and number of live-trapped rodents differed between vegetation types, with higher removal and rodent captures under shrubs than in swards and grassland. All retrieved seeds were depredated, predominantly by the wood mouse ( Apodemus sylvaticus). Disproportionally high seed numbers were retrieved in the vegetation type where originally placed (shrubs or swards). Our study suggests that rodents play an important role for blackthorn in wood pastures, predominantly as seed predators rather than secondary seed dispersers. Predation is particularly high under blackthorn shrubs, suggesting that primary seed dispersal by birds away from shrubs into grassland or swards is a prerequisite for blackthorn recruitment in wood pastures.
Hirata, M; Matsumoto, Y; Izumi, S; Soga, Y; Hirota, F; Tobisa, M
2015-04-01
A feeding station is the area of forage a grazing animal can reach without moving its forefeet. Grazing behavior can be divided into residence within feeding stations (with bites as benefits) and movement between feeding stations (with steps as costs). However, relatively little information has been reported on how grazing animals modify their feeding station behavior seasonally and interannually in response to varying environmental conditions. The feeding station behavior of beef cows (Japanese Black) stocked on a tropical grass pasture (bahiagrass dominant) was monitored for 4 years (2010 to 2013) in order to investigate the association of feeding station behavior with meteorological and sward conditions across the seasons and years. Mean air temperature during stocking often exceeded 30°C during summer months. A severe summer drought in 2013 decreased herbage mass and sward height of the pasture and increased nitrogen concentration of herbage from summer to autumn. A markedly high feeding station number per unit foraging time, low bite numbers per feeding station and a low bite rate were observed in summer 2013 compared with the other seasons and years. Bite number per feeding station was explained by a multiple regression equation, where sward height and dry matter digestibility of herbage had a positive effect, whereas air temperature during stocking had a negative effect (R 2=0.658, P<0.01). Feeding station number per minute was negatively correlated with bite number per feeding station (r=-0.838, P<0.001). It was interpreted that cows modified bite number per feeding station in response to the sward and meteorological conditions, and this largely determined the number of feeding stations the animals visited per minute. The results indicate potential value of bite number per feeding station as an indicator of daily intake in grazing animals, and an opportunity for livestock and pasture managers to control feeding station behavior of animals through managements (e.g. fertilizer application, manipulation of stocking intensity and stocking time within the day).
Measurement of emission and deposition patterns of ammonia from urine in grass swards
NASA Astrophysics Data System (ADS)
Ross, C. A.; Jarvis, S. C.
Currently, legislation is being considered to reduce NH3 emissions in the UK. The major sources of NH3 and their relative contributions are well known, however, the processes that control the rates of emission are still poorly defined. A series of wind-tunnel experiments has been carried out to determine the effects of various management practices on NH3 losses. The tunnels were modified to enable NH3 emission and subsequent deposition to the adjacent swards in the field to be measured. The wind-tunnels were used to examine the effects of herbage length, cutting and N status on rates of NH3 fluxes, which together with the prevailing environmental conditions affected the rates of NH3 emission and deposition. Results showed that between 20 and 60% of the NH3 emitted was deposited within 2 m. Compensation points of between 1.0 and 2.3 μg m-3 were calculated for the grass sward.
Sward structure and nutritive value of Alexandergrass fertilized with nitrogen.
Salvador, Paulo R; Pötter, Luciana; Rocha, Marta G; Hundertmarck, Anelise P; Sichonany, Maria José O; Amaral Neto, Luiz G; Negrini, Mateus; Moterle, Paulo H
2016-03-01
This experiment evaluated forage production, sward structure, stocking rate, weight gain per area and nutritive value of forage as grazed by beef heifers on Alexandergrass (Urochloa plantaginea (Link) Hitch) pasture fertilized with nitrogen (N): 0; 100; 200 or 300 kg of N/ha. The experiment was a completely randomized design following a repeated measurement arrangement. The experimental animals were Angus heifers with initial age and weight of 15 months and 241.5±5 kg, respectively. The grazing method was continuous, with put-and-take stocking. N utilization, regardless of the level, increase by 25% the daily forage accumulation rate and the weight gain per area by 23%. The level of 97.2 kg N/ha leads to a higher leaf blade mass and increases by 20% the leaf:stem ratio. Alterations in sward structure changes the nutritive value of forage as grazed. The utilization of 112.7 kg of N/ha allows the highest stocking rate (2049.8 kg of BW/ha), equivalent to 7.5 heifers per hectare.
Zhang, Yong; Prins, Herbert H. T.; Versluijs, Martijn; Wessels, Rick; Cao, Lei; de Boer, Willem Frederik
2016-01-01
When differently sized species feed on the same resources, interference competition may occur, which may negatively affect their food intake rate. It is expected that competition between species also alters behaviour and feeding patch selection. To assess these changes in behaviour and patch selection, we applied an experimental approach using captive birds of three differently sized Anatidae species: wigeon (Anas penelope) (~600 g), swan goose (Anser cygnoides) (~2700 g) and bean goose (Anser fabalis) (~3200 g). We quantified the functional response for each species and then recorded their behaviour and patch selection with and without potential competitors, using different species combinations. Our results showed that all three species acquired the highest nitrogen intake at relatively tall swards (6, 9 cm) when foraging in single species flocks in the functional response experiment. Goose species were offered foraging patches differing in sward height with and without competitors, and we tested for the effect of competition on foraging behaviour. The mean percentage of time spent feeding and being vigilant did not change under competition for all species. However, all species utilized strategies that increased their peck rate on patches across different sward heights, resulting in the same instantaneous and nitrogen intake rate. Our results suggest that variation in peck rate over different swards height permits Anatidae herbivores to compensate for the loss of intake under competition, illustrating the importance of behavioural plasticity in heterogeneous environments when competing with other species for resources. PMID:27727315
Red urine from red deer grazed on pure red clover swards.
Niezen, J H; Barry, T N; Wilson, P R; Lane, G
1992-12-01
Twenty-four red deer hinds with their calves were released on to a newly established pure red clover sward and, 2 days later, red staining of the tail, perineum and hocks was observed. This was presumed to be of urinary origin. Observation of micturition showed that when urine was passed, it was a normal straw colour but it turned scarlet-red about 1 hour after exposure to air. Midstream urine remained the normal colour when held under a pure nitrogen atmosphere immediately after micturition, but it turned red when held in air in the dark, suggesting that the colour change was due to an oxidative rather than a photosensitive reaction. All deer grazing red clover were affected but this did not occur in deer grazing ryegrass/white clover swards. No adverse effects were observed in the deer grazing the red clover, and calf growth was significantly higher than on ryegrass/white clover, suggesting that the red urine had no effect on health or productivity. Blood and urine analyses showed no signs of haemolysis, haematuria or haemoglobinuria. Preliminary chemical analyses suggest that the compounds involved are not those found in the urine of sheep grazing oestrogenic clover. The nature of the compounds have yet to be determined.
Congio, Guilhermo F S; Batalha, Camila D A; Chiavegato, Marília B; Berndt, Alexandre; Oliveira, Patrícia P A; Frighetto, Rosa T S; Maxwell, Thomas M R; Gregorini, Pablo; Da Silva, Sila C
2018-05-01
Agricultural systems are responsible for environmental impacts that can be mitigated through the adoption of more sustainable principles. Our objective was to investigate the influence of two pre-grazing targets (95% and maximum canopy light interception during pasture regrowth; LI 95% and LI Max , respectively) on sward structure and herbage nutritive value of elephant grass cv. Cameroon, and dry matter intake (DMI), milk yield, stocking rate, enteric methane (CH 4 ) emissions by Holstein × Jersey dairy cows. We hypothesized that grazing strategies modifying the sward structure of elephant grass (Pennisetum purpureum Schum.) improves nutritive value of herbage, increasing DMI and reducing intensity of enteric CH 4 emissions, providing environmental and productivity benefits to tropical pasture-based dairy systems. Results indicated that pre-sward surface height was greater for LI Max (≈135 cm) than LI 95% (≈100 cm) and can be used as a reliable field guide for monitoring sward structure. Grazing management based on LI 95% criteria improved herbage nutritive value and grazing efficiency, allowing greater DMI, milk yield and stocking rate by dairy cows. Daily enteric CH 4 emission was not affected; however, cows grazing elephant grass at LI 95% were more efficient and emitted 21% less CH 4 /kg of milk yield and 18% less CH 4 /kg of DMI. The 51% increase in milk yield per hectare overcame the 29% increase in enteric CH 4 emissions per hectare in LI 95% grazing management. Thereby the same resource allocation resulted in a 16% mitigation of the main greenhouse gas from pasture-based dairy systems. Overall, strategic grazing management is an environmental friendly practice that improves use efficiency of allocated resources through optimization of processes evolving plant, ruminant and their interface, and enhances milk production efficiency of tropical pasture-based systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Marley, Christina L.; Fychan, Rhun; Davies, John W.; Scollan, Nigel D.; Richardson, R. Ian; Theobald, Vince J.; Genever, Elizabeth; Forbes, Andy B.; Sanderson, Ruth
2014-01-01
An experiment investigated whether the inclusion of chicory (Cichorium intybus) in swards grazed by beef steers altered their performance, carcass characteristics or parasitism when compared to steers grazing perennial ryegrass (Lolium perenne). Triplicate 2-ha plots were established with a chicory/ryegrass mix or ryegrass control. Forty-eight Belgian Blue-cross steers were used in the first grazing season and a core group (n = 36) were retained for finishing in the second grazing season. The experiment comprised of a standardisation and measurement period. During standardisation, steers grazed a ryegrass/white clover pasture as one group. Animals were allocated to treatment on the basis of liveweight, body condition and faecal egg counts (FEC) determined 7 days prior to the measurement period. The measurement period ran from 25 May until 28 September 2010 and 12 April until 11 October 2011in the first and second grazing year. Steers were weighed every 14 days at pasture or 28 days during housing. In the first grazing year, faecal samples were collected for FEC and parasite cultures. At the end of the first grazing year, individual blood samples were taken to determine O. ostertagi antibody and plasma pepsinogen levels. During winter, animals were housed as one group and fed silage. In the second grazing year, steers were slaughtered when deemed to reach fat class 3. Data on steer performance showed no differences in daily live-weight gain which averaged 1.04 kg/day. The conformation, fat grade and killing out proportion of beef steers grazing chicory/ryegrass or ryegrass were not found to differ. No differences in FEC, O. ostertagi antibody or plasma pepsinogen levels of beef steers grazing either chicory/ryegrass or ryegrass were observed. Overall, there were no detrimental effects of including chicory in swards grazed by beef cattle on their performance, carcass characteristics or helminth parasitism, when compared with steers grazing ryegrass. PMID:24489708
Jing, Jingying; Søegaard, Karen; Cong, Wen-Feng; Eriksen, Jørgen
2017-01-01
Plant species diversity may benefit natural grassland productivity, but its effect in managed grassland systems is not well understood. A four-year multispecies grassland experiment was conducted to investigate the effect of species diversity-legumes and non-leguminous forbs-on productivity, persistence and sward quality under cutting or grazing regimes and with or without slurry application. Three mixtures were established- 3-mix: grass, red and white clover, 10-mix: 3-mix plus birdsfoot trefoil and six non-leguminous forbs, and 12-mix: 10-mix plus lucerne and festulolium. Species diversity increased sward production and yield persistence under cutting regime. The 12-mix had the highest yield from the second year onwards and no statistically significant yield reduction over four years, while annual yields in the 3-mix and 10-mix decreased significantly with increasing grassland age. The higher yield in the 12-mix was mainly due to the inclusion of high-yielding lucerne. The 10-mix and 12-mix had lower proportions of unsown species than the 3-mix, the difference being dependent on grassland age. Generally, the 3-mix had higher concentrations of in-vitro organic matter digestibility (IVOMD), neutral detergent fiber (NDF) and crude protein (CP), and a lower concentration of ash than the 10-mix and 12-mix. Slurry application increased annual yield production by 10% and changed the botanical composition, increasing the proportion of grass and decreasing the proportion of legumes. Compared to cutting, grazing increased forage production by 9% per cut on average and lowered legume and forb proportions in the mixtures, but yields did not differ among the three mixtures. Overall, our results suggest that species diversity increases sward productivity and persistence only under an ungrazed cutting regime. We conclude that increasing species diversity by selecting appropriate species with compatible management is key to achieving both high yields and high persistence in managed grasslands.
Ecology of grazing lawns in Africa.
Hempson, Gareth P; Archibald, Sally; Bond, William J; Ellis, Roger P; Grant, Cornelia C; Kruger, Fred J; Kruger, Laurence M; Moxley, Courtney; Owen-Smith, Norman; Peel, Mike J S; Smit, Izak P J; Vickers, Karen J
2015-08-01
Grazing lawns are a distinct grassland community type, characterised by short-stature and with their persistence and spread promoted by grazing. In Africa, they reveal a long co-evolutionary history of grasses and large mammal grazers. The attractiveness to grazers of a low-biomass sward lies in the relatively high quality of forage, largely due to the low proportion of stem material in the sward; this encourages repeat grazing that concomitantly suppresses tall-grass growth forms that would otherwise outcompete lawn species for light. Regular grazing that prevents shading and maintains sward quality is thus the cornerstone of grazing lawn dynamics. The strong interplay between abiotic conditions and disturbance factors, which are central to grazing lawn existence, can also cause these systems to be highly dynamic. Here we identify differences in growth form among grazing lawn grass species, and assess how compositional differences among lawn types, as well as environmental variables, influence their maintenance requirements (i.e. grazing frequency) and vulnerability to degradation. We also make a clear distinction between the processes of lawn establishment and lawn maintenance. Rainfall, soil nutrient status, grazer community composition and fire regime have strong and interactive influences on both processes. However, factors that concentrate grazing pressure (e.g. nutrient hotspots and sodic sites) have more bearing on where lawns establish. Similarly, we discuss the relevance of enhanced rates of nitrogen cycling and of sodium levels to lawn maintenance. Grazer community composition and density has considerable significance to grazing lawn dynamics; not all grazers are adapted to foraging on short-grass swards, and differences in body size and relative mouth dimensions determine which species are able to convert tall-grass swards into grazing lawns under different conditions. Hence, we evaluate the roles of different grazers in lawn dynamics, as well as the benefits that grazer populations derive from having access to grazing lawns. The effects of grazing lawns can extend well beyond their borders, due to their influence on grazer densities, behaviour and movements as well as fire spread, intensity and frequency. Variation in the area and proportion of a landscape that is grazing lawn can thus have a profound impact on system dynamics. We provide a conceptual model that summarises grazing lawn dynamics, and identify a rainfall range where we predict grazing lawns to be most prevalent. We also examine the biodiversity associated with grazing lawn systems, and consider their functional contribution to the conservation of this biodiversity. Finally, we assess the utility of grazing lawns as a resource in a rangeland context. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholls, David P.
Over the past four years the Principal Investigator (PI) David Nicholls has worked on several projects in connection with award DE-SC0001549. Of the greatest import has been the continued supervision of ve Ph.D. students (Robyn Canning, Travis McBride, Andrew Sward, Zheng Fang, and Venu Tammali). Canning and McBride defended their theses and graduated in May 2012, while Sward defended his thesis and graduated in May 2013. Both Fang and Tammali plan to defend their theses within the year and graduate in May 2015. Fang is now a very experienced graduate researcher with one paper accepted for publication and another inmore » preparation. Tammali is nearly to the point of writing a paper and will work this summer as an intern at Argonne National Laboratory in the Mathematics and Computer Science Division under the supervision of Paul Fischer.« less
Process-based modelling of the nutritive value of forages: a review
USDA-ARS?s Scientific Manuscript database
Modelling sward nutritional value (NV) is of particular importance to understand the interactions between grasslands, livestock production, environment and climate-related impacts. Variables describing nutritive value vary significantly between ruminant production systems, but two types are commonly...
Hill, Paul W; Garnett, Mark H; Farrar, John; Iqbal, Zafar; Khalid, Muhammad; Soleman, Nawaf; Jones, Davey L
2015-01-01
Increasing atmospheric carbon dioxide (CO2) concentration is both a strong driver of primary productivity and widely believed to be the principal cause of recent increases in global temperature. Soils are the largest store of the world's terrestrial C. Consequently, many investigations have attempted to mechanistically understand how microbial mineralisation of soil organic carbon (SOC) to CO2 will be affected by projected increases in temperature. Most have attempted this in the absence of plants as the flux of CO2 from root and rhizomicrobial respiration in intact plant-soil systems confounds interpretation of measurements. We compared the effect of a small increase in temperature on respiration from soils without recent plant C with the effect on intact grass swards. We found that for 48 weeks, before acclimation occurred, an experimental 3 °C increase in sward temperature gave rise to a 50% increase in below ground respiration (ca. 0.4 kg C m−2; Q10 = 3.5), whereas mineralisation of older SOC without plants increased with a Q10 of only 1.7 when subject to increases in ambient soil temperature. Subsequent 14C dating of respired CO2 indicated that the presence of plants in swards more than doubled the effect of warming on the rate of mineralisation of SOC with an estimated mean C age of ca. 8 years or older relative to incubated soils without recent plant inputs. These results not only illustrate the formidable complexity of mechanisms controlling C fluxes in soils but also suggest that the dual biological and physical effects of CO2 on primary productivity and global temperature have the potential to synergistically increase the mineralisation of existing soil C. PMID:25351704
Managing the herbage utilisation and intake by cattle grazing rangelands
USDA-ARS?s Scientific Manuscript database
To be able to predict the performance of grazing cattle in extensive rangeland environments, herbage intake is paramount because it quantifies energy intake and performance. Nutrient demand of the animals is the major driver of herbage intake and characteristics of the sward dictate how this demand...
N2 fixation of common and hairy vetches when intercropped into switchgrass
USDA-ARS?s Scientific Manuscript database
Interest in alternatives to synthetic nitrogen (N) fertilizer for switchgrass (Panicum virgatum L.) forage and bioenergy production continues to increase, and interseeding legumes into swards may be one such prospect. Common vetch (Vicia sativa L.) occurs naturally throughout the U.S. and has fewer ...
Genotype by environment interaction effects of propagation and defoliation on meadow bromegrass
USDA-ARS?s Scientific Manuscript database
Sixty-three meadow bromegrass (Bromus riparius Rehm.) half-sib families were evaluated over two years at Millville, UT location for biomass production and nutritive value. Families were evaluated under either space-plant or sward conditions combined with either grazed or cut management. The objectiv...
Effect of forage supplements on the incidence of bloat in dairy cows grazing high clover pastures.
Phillips, C J; James, N L; Murray-Evans, J P
1996-08-17
The effect of offering forage supplements of different compositions was examined in two experiments with cows grazing high clover swards. In the first experiment strawmix supplements of high or low energy content (11 and 9 MJ metabolisable energy/kg dry matter [DM]) and high or low crude protein content (17 and 4 g/kg DM) were offered for periods of three weeks. The energy and protein contents were varied by the content of molasses and soyabean meal, respectively. The high energy, high protein supplement increased the incidence of bloat, and the low energy, high protein supplement reduced it, compared with grazing alone. Bloat was most evident in the first two weeks of each feeding period, suggesting that the cows partially adapted to the diets within three weeks. In the second experiment silage supplements reduced the incidence of bloat among cows grazing both tall and short swards. The most suitable forages to feed when there is a risk of bloat are those that are slowly fermented in the rumen but are eaten in sufficient quantity to reduce periods of rapid herbage intake.
Hill, Paul W; Garnett, Mark H; Farrar, John; Iqbal, Zafar; Khalid, Muhammad; Soleman, Nawaf; Jones, Davey L
2015-03-01
Increasing atmospheric carbon dioxide (CO2 ) concentration is both a strong driver of primary productivity and widely believed to be the principal cause of recent increases in global temperature. Soils are the largest store of the world's terrestrial C. Consequently, many investigations have attempted to mechanistically understand how microbial mineralisation of soil organic carbon (SOC) to CO2 will be affected by projected increases in temperature. Most have attempted this in the absence of plants as the flux of CO2 from root and rhizomicrobial respiration in intact plant-soil systems confounds interpretation of measurements. We compared the effect of a small increase in temperature on respiration from soils without recent plant C with the effect on intact grass swards. We found that for 48 weeks, before acclimation occurred, an experimental 3 °C increase in sward temperature gave rise to a 50% increase in below ground respiration (ca. 0.4 kg C m(-2) ; Q10 = 3.5), whereas mineralisation of older SOC without plants increased with a Q10 of only 1.7 when subject to increases in ambient soil temperature. Subsequent (14) C dating of respired CO2 indicated that the presence of plants in swards more than doubled the effect of warming on the rate of mineralisation of SOC with an estimated mean C age of ca. 8 years or older relative to incubated soils without recent plant inputs. These results not only illustrate the formidable complexity of mechanisms controlling C fluxes in soils but also suggest that the dual biological and physical effects of CO2 on primary productivity and global temperature have the potential to synergistically increase the mineralisation of existing soil C. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Carranca, C; Castro, I V; Figueiredo, N; Redondo, R; Rodrigues, A R F; Saraiva, I; Maricato, R; Madeira, M A V
2015-02-15
Symbiotic N2 fixation is of primordial significance in sustainable agro-forestry management as it allows reducing the use of mineral N in the production of mixed stands and by protecting the soils from degradation. Thereby, on a 2-year basis, N2 fixation was evaluated in four oak woodlands under Mediterranean conditions using a split-plot design and three replicates. (15)N technique was used for determination of N2 fixation rate. Variations in environmental conditions (temperature, rainfall, radiation) by the cork tree canopy as well as the age of stands and pasture management can cause great differences in vegetation growth, legume N2 fixation, and soil rhizobial abundance. In the present study, non-legumes dominated the swards, in particular beneath the tree canopy, and legumes represented only 42% of total herbage. A 2-fold biomass reduction was observed in the oldest sown pasture in relation to the medium-age sward (6 t DW ha(-1)yr(-1)). Overall, competition of pasture growth for light was negligible, but soil rhizobial abundance and symbiotic N2 fixation capacity were highly favored by this environmental factor in the spring and outside the influence of tree canopy. Nitrogen derived from the atmosphere was moderate to high (54-72%) in unsown and sown swards. Inputs of fixed N2 increased from winter to spring due to more favorable climatic conditions (temperature and light intensity) for both rhizobia and vegetation growths. Assuming a constant fixation rate at each seasonal period, N2 fixation capacity increased from about 0.10 kg N ha(-1) per day in the autumn-winter period to 0.15 kg N ha(-1) per day in spring. Belowground plant material contributed to 11% of accumulated N in pasture legumes and was not affected by canopy. Size of soil fixing bacteria contributed little to explain pasture legumes N. Copyright © 2014 Elsevier B.V. All rights reserved.
Courant, Sabrina; Fortin, Daniel
2010-06-01
Herbivores commonly base their foraging decisions not only on the intrinsic characteristics of plants, but also on the attributes of neighboring species. Although herbivores commonly orient their food choices toward the maximization of energy intake, the impact of such choices on neighboring plants remains largely unexplored. We evaluated whether foraging decisions by herbivores aiming at a rapid intake of digestible energy could explain multiple neighboring effects in complex swards. Specifically, we assessed how spatial patterns of occurrence of Carex atherodes, a highly profitable sedge species, could control the risk of bison (Bison bison) herbivory for seven other plant species. The foraging behavior of 70 free-ranging bison was evaluated in their natural environment during summer, and then related to plant characteristics. We used this information to estimate the instantaneous intake rate of digestible energy at individual feeding stations. We found that neighbor contrast defense and associational susceptibility can both be explained by simple foraging rules of energy maximization. Energy gains were higher when C. atherodes was consumed while avoiding the species for which we detected neighbor contrast defense. The lower intake rate associated with their consumption was due to an increase in handling time caused by their small size relative to C. atherodes. Bison also had higher energy gains by consuming instead of avoiding the plant species that experienced associational susceptibility. Because most of these plants were at least as tall as C. atherodes, their presence increased the heterogeneity of the grazed stratum. Avoiding their consumption increased handling time thereby reducing the instantaneous rate of energy intake. Overall, we found that bison adjust their fine-scale foraging decisions to vertical and horizontal sward structures in a way that maximizes their energy intake rate. Energy maximization principles thus provide a valuable framework to evaluate a broad-range of neighboring effects for prey faced with generalist consumers.
Gregorini, P; Minnee, E M K; Griffiths, W; Lee, J M
2013-01-01
Although the nutritive value of chicory (Cichorium intybus L.) and plantain (Plantago lanceolata L.) has been thoroughly studied, little is known about the grazing behavior of cattle feeding on chicory and plantain swards. The objective of the present study was to assess and describe the grazing behavior of dairy cows as affected by dietary proportions of chicory and plantain fed as monocultures for part of the day. Ninety Holstein-Friesian cows (489±42 kg of body weight; 4.1±0.3 body condition score, and 216±15 d in milk) were randomly assigned to 15 groups (6 cows per group) and grazed according to 7 treatments: control (CTL, 3 groups), perennial ryegrass (Lolium perenne L.) dominant sward (24-h pasture strip); 3 chicory treatments comprising 20, 40, and 60% of the diet, strip-grazing a monoculture of chicory to a fixed postgrazing residual before strip-grazing a perennial ryegrass dominant sward (2 groups of cows per treatment); and 3 plantain treatments comprising 20, 40, and 60% of the diet, strip-grazing a monoculture of plantain to a fixed postgrazing residual before strip-grazing a perennial ryegrass dominant sward (2 groups of cows per treatment). Four focal animals per group were equipped with 3-dimensional motion sensors, which provided the number of steps taken at each minute of the day. These cows were also fitted with automatic jaw-movement recorders that identified bites, mastication during ingestion, chewing during rumination, and determined grazing, rumination and idling times and bouts. Daily grazing time and bouts were not affected by treatments but rumination time differed and was reduced by up to 90 min when cows were allocated to chicory and plantain as 60% of their diet. Ruminative chewing was reduced in cows grazing chicory and plantain by up to 20% in cows allocated to the 60% treatments. Compared with perennial ryegrass, as the dietary proportion of chicory and plantain increased, cows spent more time idling and less time ruminating, and increased ingestive mastications 5 and 3 times for chicory and plantain, respectively. Cows allocated to chicory and plantain reduced bite rate and bites per grazing step linearly, and increased the number of mastications per bite of pasture dry matter intake while grazing pasture after having grazed chicory and plantain. These results indicate that cows grazing chicory and plantain masticate more during ingestion and reduce rumination time and chewing. They also suggest that chicory presents greater constraints to ingestion than does plantain. Thus, although chicory has been considered to have a greater nutritive value than plantain, its overall feeding value may be no greater than that of plantain. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
We evaluated health parameters associated with gastrointestinal parasite control when lambs and meat-goat kids were finished on a mixed sward of orchardgrass (Dactylis glomerata L.), red clover (Trifolium pratense L.), and white clover (Trifolium repens L.) with and without supplemental whole cotton...
Cool-season annual pastures with clovers to supplement wintering beef cows nursing calves
USDA-ARS?s Scientific Manuscript database
Every December, for 3 years, 87 beef cows, nursing cows, (594 ' 9.8 kg; calving season, September to November) were stratified by body condition score, body weight, cow age, and calf gender. They were divided randomly into 6 groups and assigned to 1 of 6 cool-season annual swards (0.45 hectares/cow...
USDA-ARS?s Scientific Manuscript database
We evaluated forage production patterns, weight gains, and health patterns when lambs (Ovis aries) and meat goat (Caprus hircus) kids were finished on a mixed sward of orchardgrass (Dactylis glomerata L.), red clover (Trifolium pratense L.), and white clover (Trifolium repens L.) with (SUP) and with...
NASA Astrophysics Data System (ADS)
David, M.; Roche, R.; Mattsson, M.; Sutton, M. A.; Dämmgen, U.; Schjoerring, J. K.; Cellier, P.
2009-01-01
Grassland management may lead to strong modification of the canopy structure and hence fluxes of carbon and nitrogen in the soil-plant-atmosphere system. Mowing or grazing removes green leaves, which are often a sink for ammonia. Consequently, the ratio between actively growing leaves and senescing/dead parts of the plants is strongly changed in favour of the latter, which may constitute a large source of ammonia. Moreover, fertilisers are a known source of ammonia through direct volatilisation. The effects of grassland management, e.g. growing, cutting and fertilisation, on ammonia emission were investigated using a dynamic chamber. This technique made it possible to monitor ammonia emissions in the field at the plant level. With ammonia-free air at the inlet, the ammonia emissions from mature sward did not exceed 4 ng NH3 m-2 s-1. They were approximately 20 times larger above a sward re-growing after cutting and 200 times larger after fertilisation, where 0.5-1.0% of the applied inorganic nitrogen fertiliser was lost by volatilisation. Cutting implied three main changes in ammonia sources and sinks within the canopy: (i) physiological changes with nitrogen remobilisation to the growing leaves and increase in senescence, (ii) changes in compartment proportions with only 5% of green leaves remaining after cutting as opposed to equal proportions of dead leaves as green leaves before cutting, (iii) microclimate changes within the canopy especially for litter with higher turbulence, temperature, and alternation of dry (day) and wet (night) conditions after cutting. These changes promoted ammonia volatilisation from the litter, which could account for the increased ammonia loss following cutting. Another potential source was the wounded surfaces of the stubble which may have emitted ammonia during bleeding and evaporation of sap containing significant levels of ammonium. These results showed that the contribution of litter and drying cut sward on the ammonia balance of grassland is very significant, as well as their interaction with microclimatic conditions. This could apply to most natural and managed ecosystems and could be especially significant in the former. Consequently, further studies on ammonia fluxes should have a 0focus on this part of the canopy.
Mezzalira, Jean C; Bonnet, Olivier J F; Carvalho, Paulo C de F; Fonseca, Lidiane; Bremm, Carolina; Mezzalira, Carlos C; Laca, Emilio A
2017-09-01
The functional response (i.e. the relationship between consumers' intake rate and resource density) is central in plant-herbivore interactions. Its shape and the biological processes leading to it have significant implications for both foraging theory and ecology of grazing systems. A type IV functional response (i.e. dome-shaped relationship) of short-term intake rate of dry matter (intake while grazing) has rarely been reported for large herbivores and the conditions that can lead to it are poorly understood. We report a type IV functional response observed in heifers grazing monocultures of Cynodon sp. and Avena strigosa. The mechanisms and consequences of this type of functional response for grazed system dynamics are discussed. Intake rate was higher at intermediate than at short or tall sward heights in both grass species. The type IV functional response resulted from changes in bite mass instead of a longer time needed to encounter and process bites. Thus, the decrease of intake rate of dry matter in tall swards is not explained by a shift from process 3 (potential bites are concentrated and apparent) to process 2 (potential bites are apparent but dispersed, Spalinger & Hobbs 1992). Bite mass was smaller in tall than in intermediate swards due to a reduction of bite volume possibly caused by the greater proportion of stem and sheath acting as a physical barrier to bite formation. It is generally accepted that potential bites are abundant and apparent in most grassland and meadow systems, as they were in the present experiments. Therefore, a type IV response of intake rate not directly related to digestive constraints may determine the dynamics of intake and defoliation under a much larger set of conditions than previously thought. These results have implications for foraging theory and stability of grazing systems. For example, if animals prefer patches of intermediate stature that yield the highest intake rate, grazing should lead to the widely observed bimodal distribution of plant mass per unit area, even when tall patches are not of significantly lower digestive quality than the pasture average. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Direct and carryover effect of post-grazing sward height on total lactation dairy cow performance.
Ganche, E; Delaby, L; O'Donovan, M; Boland, T M; Kennedy, E
2013-08-01
Grazing pastures to low post-grazing sward heights (PGSH) is a strategy to maximise the quantity of grazed grass in the diet of dairy cows within temperate grass-based systems. Within Irish spring-calving systems, it was hypothesised that grazing swards to very low PGSH would increase herbage availability during early lactation but would reduce dairy cow performance, the effect of which would persist in subsequent lactation performance when compared with cows grazing to a higher PGSH. Seventy-two Holstein-Friesian dairy cows (mean calving date, 12 February) were randomly assigned post-calving across two PGSH treatments (n = 36): 2.7 cm (severe; S1) and 3.5 cm (moderate; M1), which were applied from 10 February to 18 April (period 1; P1). This was followed by a carryover period (period 2; P2) during which cows were randomly reassigned within their P1 treatment across two further PGSH (n = 18): 3.5 cm (severe, SS and MS) and 4.5 cm (moderate, SM and MM) until 30 October. Decreasing PGSH from 3.5 to 2.7 cm significantly decreased milk (-2.3 kg/cow per day), protein (-95 g/day), fat (-143 g/day) and lactose (-109 g/day) yields, milk protein (-1.2 g/kg) and fat (-2.2 g/kg) concentrations and grass dry matter intake (GDMI; -1.7 kg dry matter/cow per day). The severe PGSH was associated with a lower bodyweight (BW) at the end of P1. There was no carryover effect of P1 PGSH on subsequent milk or milk solids yields in P2, but PGSH had a significant carryover effect on milk fat and lactose concentrations. Animals severely restricted at pasture in early spring had a higher BW and slightly higher body condition score in later lactation when compared with M1 animals. During P2, increasing PGSH from 3.5 to 4.5 cm increased milk and milk solids yield as a result of greater GDMI and resulted in higher mean BW and end BW. This study indicates that following a 10-week period of feed restriction, subsequent dairy cow cumulative milk production is unaffected. However, the substantial loss in milk solid yield that occurred during the period of restriction is not recovered.
Zhao, Y G; O'Connell, N E; Yan, T
2016-06-01
Development of effective methane (CH) mitigation strategies for grazing sheep requires accurate prediction tools. The present study aimed to identify key parameters influencing enteric CH emissions and develop prediction equations for enteric CH emissions from sheep offered fresh grass. The data used were collected from 82 sheep offered fresh perennial ryegrass () as sole diets in 6 metabolism experiments (data from non-grass-only diets were not used). Sheep were from breeds of Highlander, Texel, Scottish Blackface, and Swaledale at the age of 5 to 18 mo and weighing from 24.5 to 62.7 kg. Grass was harvested daily from 6 swards on contrasting harvest dates (May to December). Before the commencement of each study, the experimental sward was harvested at a residual height of 4 cm and allowed to grow for 2 to 4 wk. The feeding trials commenced when the grass sward was suitable to zero grazing (average grass height = 15 cm), thus offering grass of a quality similar to what grazing animals would receive under routine grazing management. Sheep were housed in individual pens for 14 d and then moved to individual calorimeter chambers for 4 d. Feed intake, fecal and urine outputs, and CH emissions were measured during the final 4 d. Data were analyzed using the REML procedure to develop prediction equations for CH emissions. Linear and multiple prediction equations were developed using BW, DMI, GE intake (GEI), and grass chemical concentrations (DM, OM, water-soluble carbohydrates [WSC], NDF, ADF, nitrogen [N], GE, DE, and ME) as explanatory variables. The mean CH production was 21.1 g/kg DMI or 0.062 MJ/MJ GEI. Dry matter intake and GEI were much more accurate predictors for CH emissions than BW ( < 0.001, = 0.86 and = 0.87 vs. = 0.09, respectively). Adding grass DE and ME concentrations and grass nutrient concentrations (e.g., OM, N, GE, NDF, and WSC) to the relationships between DMI or GEI and CH emissions improved prediction accuracy with values increased to 0.93. Models based on farm-level data, for example, BW and grass nutrient (i.e., DM, GE, OM, and N) concentrations, were also developed and performed satisfactorily ( < 0.001, = 0.63). These models can contribute to improve prediction accuracy for enteric CH emissions from sheep grazing on ryegrass pasture.
NASA Astrophysics Data System (ADS)
Näsi, R.; Viljanen, N.; Oliveira, R.; Kaivosoja, J.; Niemeläinen, O.; Hakala, T.; Markelin, L.; Nezami, S.; Suomalainen, J.; Honkavaara, E.
2018-04-01
Light-weight 2D format hyperspectral imagers operable from unmanned aerial vehicles (UAV) have become common in various remote sensing tasks in recent years. Using these technologies, the area of interest is covered by multiple overlapping hypercubes, in other words multiview hyperspectral photogrammetric imagery, and each object point appears in many, even tens of individual hypercubes. The common practice is to calculate hyperspectral orthomosaics utilizing only the most nadir areas of the images. However, the redundancy of the data gives potential for much more versatile and thorough feature extraction. We investigated various options of extracting spectral features in the grass sward quantity evaluation task. In addition to the various sets of spectral features, we used photogrammetry-based ultra-high density point clouds to extract features describing the canopy 3D structure. Machine learning technique based on the Random Forest algorithm was used to estimate the fresh biomass. Results showed high accuracies for all investigated features sets. The estimation results using multiview data provided approximately 10 % better results than the most nadir orthophotos. The utilization of the photogrammetric 3D features improved estimation accuracy by approximately 40 % compared to approaches where only spectral features were applied. The best estimation RMSE of 239 kg/ha (6.0 %) was obtained with multiview anisotropy corrected data set and the 3D features.
Root interaction between Bromud tectorum and Poa pratensis: a three-dimensional analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bookman, P.A.; Mack, R.N.
1982-06-01
The spatial distribution of roots of two alien grasses, Bromus tectorum and Poa pratensis, grown singly and in a mixture, was examined using a double-labelling radioisotope technique. Interactions between the root systems of these plants led to a restricted B. tectorum rooting volume in P. pratensis neighborhoods greater than or equal to30-d-old. The roots of B. tectorum failed to develop laterally. The altered B. tectorum root systems may contribute to its inability to persist in established P. pratensis swards.
McCarthy, B; Delaby, L; Pierce, K M; McCarthy, J; Fleming, C; Brennan, A; Horan, B
2016-05-01
The production and utilization of increased quantities of high quality pasture is of paramount importance in pasture-based milk production systems. The objective of this study was to evaluate the cumulative effects of alternative integrated grazing strategies, incorporating alternative stocking rate (SR) and grazing severities, on pasture productivity and grazing efficiency over multiple years within farm systems using perennial ryegrass dominant pastures. Three whole-farm SR treatments were compared over 4 complete grazing seasons (2009 to 2012 inclusive): low (2.51 cows/ha; LSR), medium (2.92 cows/ha; MSR), and high (3.28 cows/ha; HSR). Each system had its own farmlet containing 18 paddocks and remained on the same treatment for the duration of the study. Stocking rate had a significant effect on all grazing variables with the exception of soil fertility status and sward density. Increased SR resulted in increased total annual net pasture accumulation, improved sward nutritive value, and increased grazed pasture utilization. Total annual net pasture accumulation was greatest in HSR [15,410kg of dry matter (DM)/ha], intermediate for MSR (14,992kg of DM/ha), and least for LSR (14,479kg of DM/ha) during the 4-yr study period. A linear effect of SR on net pasture accumulation was detected with an increase in net pasture accumulation of 1,164.4 (SE=432.7) kg of DM/ha for each 1 cow/ha increase in SR. Pregrazing pasture mass and height and postgrazing residual pasture mass and height were greatest for LSR, intermediate for the MSR, and lowest for the HSR. In comparison with the LSR, the imposition of a consistently increased grazing severity coupled with increased whole farm SR in MSR and HSR treatments arrested the decline in sward nutritive value, typically observed during mid-season. Incorporating the individual beneficial effects of SR on pasture accumulation, nutritive value, and utilization efficiency, total proportional energy (unité fourragère lait) utilization per hectare increased significantly with increasing SR (+0.026 and +0.081 for MSR and HSR, respectively). These results quantify the significant effect of grazing management practices on the feed production capability of modern perennial ryegrass pastures for intensive grazing dairy production systems. Furthermore, these results highlight the importance of consistently imposing grazing treatments over multiple years, and within integrated whole farm systems, to accurately assess the longer term effects of alternate grazing management practices on pasture productivity. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Kälber, T; Meier, J S; Kreuzer, M; Leiber, F
2011-03-01
The effect of several flowering dicotyledonous catch crop plants (dicots) on milk fat quality in cows was investigated to test the hypothesis that their phenolic compounds may inhibit ruminal biohydrogenation and thus enhance the transfer to milk of intact, plant-derived polyunsaturated fatty acids. Berseem clover (Trifolium alexandrinum), buckwheat (Fagopyrum esculentum), and phacelia (Phacelia tanacetifolia) were sown in mixture with ryegrass (Lolium multiflorum; intended biomass proportion of 0.2) on 1ha. For comparison, nonflowering chicory (Cichorium intybus, also sown in mixture with ryegrass) and pure ryegrass were cultivated. Realized biomass proportions (wet weight) were 91% for berseem clover, 69% for buckwheat, 54% for phacelia, and 51% for chicory. At the start of flowering (or from d 47 after sowing onward), cultures were harvested daily and fed for 20 d ad libitum to groups of 6 midlactation cows each. Additionally, 1 kg each of energy and protein concentrate and pure ryegrass hay were fed. Individual intake and milk yield of the cows were measured daily. Milk samples were obtained twice daily 5 d before and from 11 to 20 d after the start of treatment feeding. Feed samples were drawn twice a week from the fresh feeds. Apart from standard traits, feeds and milk were analyzed for fatty acids, tocopherols, and phenolic fractions. Only a few substantial treatment effects on intake and performance were observed. All diets based on dicots increased α-linolenic acid (ALA) concentrations in milk fat compared with the ryegrass diet even though the corresponding swards were not generally richer in ALA. The highest ALA concentration in milk fat (1.3 g/100g of fatty acids) occurred with the berseem clover diet. Transfer rate of ALA from feed to milk was highest with the buckwheat diet (0.09) and lowest with ryegrass (0.05). This was congruent with the differences in total extractable phenols, being high in the buckwheat sward (2.6% of dry matter) and low in the ryegrass sward (1.2% of dry matter). Intermediates of ALA biohydrogenation were lowest in the milk fat of the buckwheat group, indicating an inhibitory effect of this treatment, which provided the highest dietary levels of phenols. The α-tocopherol concentration in milk was higher with the buckwheat diet than with berseem clover and phacelia diets. The study provides evidence that the ALA concentration in milk fat could be enhanced by feeding flowering dicots; however, this was due to different modes of action. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Hodgson, Christopher J; Oliver, David M; Fish, Robert D; Bulmer, Nicholas M; Heathwaite, A Louise; Winter, Michael; Chadwick, David R
2016-12-01
Dairy farming generates large volumes of liquid manure (slurry), which is ultimately recycled to agricultural land as a valuable source of plant nutrients. Different methods of slurry application to land exist; some spread the slurry to the sward surface whereas others deliver the slurry under the sward and into the soil, thus helping to reduce greenhouse gas (GHG) emissions from agriculture. The aim of this study was to investigate the impact of two slurry application methods (surface broadcast versus shallow injection) on the survival of faecal indicator organisms (FIOs) delivered via dairy slurry to replicated grassland plots across contrasting seasons. A significant increase in FIO persistence (measured by the half-life of E. coli and intestinal enterococci) was observed when slurry was applied to grassland via shallow injection, and FIO decay rates were significantly higher for FIOs applied to grassland in spring relative to summer and autumn. Significant differences in the behaviour of E. coli and intestinal enterococci over time were also observed, with E. coli half-lives influenced more strongly by season of application relative to the intestinal enterococci population. While shallow injection of slurry can reduce agricultural GHG emissions to air it can also prolong the persistence of FIOs in soil, potentially increasing the risk of their subsequent transfer to water. Awareness of (and evidence for) the potential for 'pollution-swapping' is critical in order to guard against unintended environmental impacts of agricultural management decisions. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Management options to limit nitrate leaching from grassland
NASA Astrophysics Data System (ADS)
Cuttle, S. P.; Scholefield, D.
1995-12-01
Nitrate leaching can be reduced by the adoption of less intensive grassland systems which, though requiring a greater land area to achieve the same agricultural output, result in less nitrate leaching per unit of production than do intensively managed grasslands. The economic penalties associated with reductions in output can be partly offset by greater reliance on symbiotic nitrogen fixation and the use of clover-based swards in place of synthetic N fertilisers. Alternatively, specific measures can be adopted to improve the efficiency of nitrogen use in intensively managed systems in order to maintain high outputs but with reduced losses. Controls should take account of other forms of loss and flows of nitrogen between grassland and other components of the whole-farm system and, in most instances, should result in an overall reduction in nitrogen inputs. Removing stock from the fields earlier in the grazing season will reduce the accumulation of high concentrations of potentially leachable nitrate in the soil of grazed pastures but will increase the quantity of manure produced by housed animals and the need to recycle this effectively. Supplementing grass diets with low-nitrogen forages such as maize silage will reduce the quantity of nitrogen excreted by livestock but may increase the potential for nitrate leaching elsewhere on the farm if changes to cropping patterns involve more frequent cultivation of grassland. Improved utilisation by the sward of nitrogen in animal excreta and manures and released by mineralisation of soil organic matter will permit equivalent reductions to be made in fertiliser inputs, provided that adequate information is available about the supply of nitrogen from these non-fertiliser sources.
Pembleton, Luke W; Inch, Courtney; Baillie, Rebecca C; Drayton, Michelle C; Thakur, Preeti; Ogaji, Yvonne O; Spangenberg, German C; Forster, John W; Daetwyler, Hans D; Cogan, Noel O I
2018-06-02
Exploitation of data from a ryegrass breeding program has enabled rapid development and implementation of genomic selection for sward-based biomass yield with a twofold-to-threefold increase in genetic gain. Genomic selection, which uses genome-wide sequence polymorphism data and quantitative genetics techniques to predict plant performance, has large potential for the improvement in pasture plants. Major factors influencing the accuracy of genomic selection include the size of reference populations, trait heritability values and the genetic diversity of breeding populations. Global diversity of the important forage species perennial ryegrass is high and so would require a large reference population in order to achieve moderate accuracies of genomic selection. However, diversity of germplasm within a breeding program is likely to be lower. In addition, de novo construction and characterisation of reference populations are a logistically complex process. Consequently, historical phenotypic records for seasonal biomass yield and heading date over a 18-year period within a commercial perennial ryegrass breeding program have been accessed, and target populations have been characterised with a high-density transcriptome-based genotyping-by-sequencing assay. Ability to predict observed phenotypic performance in each successive year was assessed by using all synthetic populations from previous years as a reference population. Moderate and high accuracies were achieved for the two traits, respectively, consistent with broad-sense heritability values. The present study represents the first demonstration and validation of genomic selection for seasonal biomass yield within a diverse commercial breeding program across multiple years. These results, supported by previous simulation studies, demonstrate the ability to predict sward-based phenotypic performance early in the process of individual plant selection, so shortening the breeding cycle, increasing the rate of genetic gain and allowing rapid adoption in ryegrass improvement programs.
Thompson, R B; Meisinger, J J
2002-01-01
Ammonia (NH3) volatilization commonly causes a substantial loss of crop-available N from surface-applied cattle slurry. Field studies were conducted with small wind tunnels to assess the effect of management factors on NH3 volatilization. Two studies compared NH3 volatilization from grass sward and bare soil. The average total NH3 loss was 1.5 times greater from slurry applied to grass sward. Two studies examined the effect of slurry dry matter (DM) content on NH3 loss under hot, summer conditions in Maryland, USA. Slurry DM contents were between 54 and 134 g kg(-1). Dry matter content did not affect total NH3 loss, but did influence the time course of NH3 loss. Higher DM content slurries had relatively higher rates of NH3 volatilization during the first 12 to 24 h, but lower rates thereafter. Under the hot conditions, the higher DM content slurries appeared to dry and crust more rapidly causing smaller rates of NH3 volatilization after 12 to 24 h, which offset the earlier positive effects of DM content on NH3 volatilization. Three studies compared immediate incorporation with different tillage implements. Total NH3 loss from unincorporated slurry was 45% of applied slurry NH4+-N, while losses following immediate incorporation with a moldboard plow, tandem-disk harrow, or chisel plow were, respectively, 0 to 3, 2 to 8, and 8 to 12%. These ground cover and DM content data can be used to improve predictions of NH3 loss under specific farming conditions. The immediate incorporation data demonstrate management practices that can reduce NH3 volatilization, which can improve slurry N utilization in crop-forage production.
Hauggaard-Nielsen, Henrik; Lachouani, Petra; Knudsen, Marie Trydeman; Ambus, Per; Boelt, Birte; Gislum, René
2016-01-15
A three-season field experiment was established and repeated twice with spring barley used as cover crop for different perennial grass-legume intercrops followed by a full year pasture cropping and winter wheat after sward incorporation. Two fertilization regimes were applied with plots fertilized with either a high or a low rate of mineral nitrogen (N) fertilizer. Life cycle assessment (LCA) was used to evaluate the carbon footprint (global warming potential) of the grassland management including measured nitrous oxide (N2O) emissions after sward incorporation. Without applying any mineral N fertilizer, the forage legume pure stand, especially red clover, was able to produce about 15 t above ground dry matter ha(-1) year(-1) saving around 325 kg mineral Nfertilizer ha(-1) compared to the cocksfoot and tall fescue grass treatments. The pure stand ryegrass yielded around 3t DM more than red clover in the high fertilizer treatment. Nitrous oxide emissions were highest in the treatments containing legumes. The LCA showed that the low input N systems had markedly lower carbon footprint values than crops from the high N input system with the pure stand legumes without N fertilization having the lowest carbon footprint. Thus, a reduction in N fertilizer application rates in the low input systems offsets increased N2O emissions after forage legume treatments compared to grass plots due to the N fertilizer production-related emissions. When including the subsequent wheat yield in the total aboveground production across the three-season rotation, the pure stand red clover without N application and pure stand ryegrass treatments with the highest N input equalled. The present study illustrate how leguminous biological nitrogen fixation (BNF) represents an important low impact renewable N source without reducing crop yields and thereby farmers earnings. Copyright © 2015. Published by Elsevier B.V.
Aloisio, Jason M; Palmer, Matthew I; Giampieri, Mario A; Tuininga, Amy R; Lewis, James D
2017-01-01
Plant survivorship depends on biotic and abiotic factors that vary at local and regional scales. This survivorship, in turn, has cascading effects on community composition and the physical structure of vegetation. Survivorship of native plant species is variable among populations planted in environmentally stressful habitats like urban roofs, but the degree to which factors at different spatial scales affect survivorship in urban systems is not well understood. We evaluated the effects of biotic and abiotic factors on survivorship, composition, and physical structure of two native perennial species assemblages, one characterized by a mixture of C 4 grasses and forbs (Hempstead Plains, HP) and one characterized by a mixture of C 3 grasses and forbs (Rocky Summit, RS), that were initially sown at equal ratios of growth forms (5:1:4; grass, N-fixing forb and non-N-fixing forb) in replicate 2-m 2 plots planted on 10 roofs in New York City (New York, USA). Of 24 000 installed plants, 40% survived 23 months after planting. Within-roof factors explained 71% of variation in survivorship, with biotic (species identity and assemblage) factors accounting for 54% of the overall variation, and abiotic (growing medium depth and plot location) factors explaining 17% of the variation. Among-roof factors explained 29% of variation in survivorship and increased solar radiation correlated with decreased survivorship. While growing medium properties (pH, nutrients, metals) differed among roofs there was no correlation with survivorship. Percent cover and sward height increased with increasing survivorship. At low survivorship, cover of the HP assemblage was greater compared to the RS assemblage. Sward height of the HP assemblage was about two times greater compared to the RS assemblage. These results highlight the effects of local biotic and regional abiotic drivers on community composition and physical structure of green roof vegetation. As a result, initial green roof plant composition and roof microclimate may have long-term effects on community dynamics, ecosystem function, and urban biodiversity. © 2016 by the Ecological Society of America.
Fraser, Mariecia D.; Fleming, Hannah R.; Moorby, Jon M.
2014-01-01
Ruminant livestock turn forages and poor-quality feeds into human edible products, but enteric methane (CH4) emissions from ruminants are a significant contributor to greenhouse gases (GHGs) and hence to climate change. Despite the predominance of pasture-based beef production systems in many parts of Europe there are little data available regarding enteric CH4 emissions from free-ranging grazing cattle. It is possible that differences in physiology or behaviour could influence comparative emissions intensities for traditional and modern breed types depending on the nutritional characteristics of the herbage grazed. This study investigated the role of breed type in influencing CH4 emissions from growing beef steers managed on contrasting grasslands typical of intensive (lowland) and extensive (upland) production systems. Using the SF6 dilution technique CH4 emissions were estimated for a modern, fast-growing crossbred (Limousin cross) and a smaller and hardier native breed (Welsh Black) when grazing lowland perennial ryegrass (high nutritional density, low sward heterogeneity) and semi-improved upland pasture (low/medium nutritional density, high sward heterogeneity). Live-weight gain was substantially lower for steers on the upland system compared to the lowland system (0.31 vs. 1.04 kg d−1; s.e.d. = 0.085 kg d−1; P<0.001), leading to significant differences in estimated dry matter intakes (8.0 vs. 11.1 kg DM d−1 for upland and lowland respectively; s.e.d. = 0.68 kg DM d−1; P<0.001). While emissions per unit feed intake were similar for the lowland and upland systems, CH4 emissions per unit of live-weight gain (LWG) were substantially higher when the steers grazed the poorer quality hill pasture (760 vs 214 g kg−1 LWG; s.e.d. = 133.5 g kg−1 LWG; P<0.001). Overall any effects of breed type were relatively small relative to the combined influence of pasture type and location. PMID:25259617
NASA Astrophysics Data System (ADS)
Roth, G.; Flessa, H.; Helfrich, M.; Well, R.
2012-04-01
Conversion of grassland to arable land often causes a decrease of soil organic matter stocks and it increases nitrate leaching and the emission of the greenhouse gases CO2 and N2O. Conversion methods which minimize the mechanical impact on the surface soil may reduce mineralization rates and greenhouse gas emissions. We determined the effect of two different types of grassland to maize conversion (a) plowing of the sward followed by seeding of maize and (b) chemical killing of the sward by glyphosate followed by direct seed of maize) on the mineralization of grassland derived organic matter, the release of nitrate and the emission of N2O. The field experiment was carried out at the research station Kleve which is located in North Rhine-Westphalia, Germany. A four times replicated plot experiment with the following treatments was set up in April 2010: (i) mechanical conversion of grassland to maize (ii) chemical conversion grassland to maize and (iii) continuous grassland as reference. Nitrogen fertilization was 137 kg N ha-1 for maize and 250 kg N ha-1 for grassland. Soil respiration and emission of N2O were measured weekly for one year using manual closed chambers and gas chromatography. Emission of CO2 from mineralization of grassland-derived organic matter was determined from the δ13C signature of soil respiration. Soil respiration was mainly fueled by mineralization of grassland-derived organic carbon. There was no effect of the type of grassland conversion on total mineralization of organic matter originating from grassland. Both grassland to maize conversion treatments exhibited very high soil nitrate concentrations one year after grassland conversion (about 250 kg NO3-N in 0 - 90 cm). Total N2O emission decreased in the order chemical conversion of grassland (25.5) > mechanical conversion of grassland (20.1) > permanent grassland (10.8). Emissions were highest after harvest of maize when soil moisture increased. The results show that both types of grassland-to-maize conversion resulted in a large surplus of soil nitrate which promotes nitrate leaching to the groundwater and indirect N2O emissions. In addition, it caused high direct N2O emissions. We found no evidence that grassland conversion without mechanical plowing is an option to reduce groundwater contamination and greenhouse gas emission to the atmosphere.
Celaya, R; Moreno-Gonzalo, J; López López, C; Ferreira, L M M; García, U; Ferre, I; Osoro, K
2016-03-01
Although goat meat production could be an option for diversification in improved upland pastures in northern Spain, precise information on the optimal grazing management to enhance goat performance and maximize production per unit land area is lacking. The objective of this study was to compare the effects of 3 stocking rates, high stocking rate (HSR; 20 goats/ha), medium stocking rate (MSR; 15 goats/ha), and low stocking rate (LSR; 10 goats/ha), on gastrointestinal (GI) nematode infections and productive responses of Cashmere goats grazing such pastures. Treatments were replicated twice on 6 paddocks sown with and and with a high presence of the native grass . The experiment lasted 3 grazing seasons (from spring to autumn). Pastures were sampled for sward height and botanical and proximate composition. Body weight and BCS changes of goats were monitored and GI nematode infections were assessed by fecal egg counts (FEC). The established treatments resulted in lower mean sward height in the HSR than in the MSR and LSR (9.6, 11.5, and 14.4 cm, respectively; < 0.001). Pasture botanical composition and nutritive quality did not differ between treatments. The mean FEC of does across the 3 grazing seasons were greater ( < 0.05) in the HSR than in the LSR. spp., , and were the most prevalent nematode species identified in coprocultures. Does showed more favorable ( < 0.001) BW and BCS changes in the LSR than in the MSR and HSR (-14, -30, and -52 g/d and -0.1, -0.3, and -0.7 BCS units [scale 1 to 5], respectively). Greater ( < 0.001) kids' BW gains were observed in the LSR and MSR (average 94 g/d) compared with the HSR (70 g/d). Inversely, kid output per unit land area was greater in the HSR than in the MSR and LSR (320, 258, and 192 kg∙ha∙yr, respectively; < 0.001), whereas daily kids' BW gains per hectare were greater ( < 0.001) in the HSR and MSR (average 1.37 kg∙d∙ha) compared with the LSR (0.98 kg∙d∙ha). A medium stocking rate of 15 goats/ha could represent the best compromise between animal health, performance, and productivity per unit land area in this type of upland pastures, but stricter controls of parasite levels during the grazing season would be necessary to avoid production losses, unless alternative nutraceuticals are provided.
Valencia, E; Williams, M J; Chase, C C; Sollenberger, L E; Hammond, A C; Kalmbacher, R S; Kunkle, W E
2001-09-01
In Florida, rhizoma peanut (RP; Arachis glabrata Benth.), a tropical legume, combines the attributes of excellent nutritive value, competitive ability with tropical grasses, and high animal performance. The objective of this study was to determine the effects of spring N fertilization (0 vs 35 kg/ha) and summer stocking rate (1.5 and 2.5 bulls/ha) on herbage mass, nutritive value, herbage allowance, and diet botanical composition of grazed RP-grass swards and their interaction with growth and development of bulls (Senepol, and Brahman or Angus). The study was conducted in 1995 and 1996 at the USDA, ARS, Subtropical Agriculture Research Station in Brooksville, FL. Nitrogen was applied in April of each year, and all pastures were stocked with 1.5 bulls/ha until approximately July of each year, when stocking rate was increased on half the pastures to 2.5 bulls/ha. Herbage mass (HM, kg/ha), herbage allowance (HA, kg/kg BW), nutritive value (CP and in vitro organic matter digestibility [IVOMD]), and diet botanical composition (fecal microhistological) readings were determined. Animal measurements included total and seasonal (spring vs summer), ADG, hip height (cm), scrotal circumference (SC, cm), and plasma urea nitrogen (PUN, mg/dL). Herbage mass (3.0 +/- 0.12 Mg/ha and 3.4 +/- 0.13 Mg/ha in 1995 and 1996, respectively) was not affected by nitrogen fertilization or stocking rate but was affected by season (P < 0.05) due to increased plant growth rate associated with summer rainfall. Stocking rate did affect herbage availability, but it never fell below 3 kg/kg BW, indicating herbage availability was never limiting. Crude protein (200 to 140 g/kg) and IVOMD (650 to 540 g/kg) were not affected by treatment, but declined (P < 0.001) from spring until fall. Treatments also had no effect on diet botanical composition. Summer ADG averaged about 0.2 kg/d lower than spring ADG, due, in part, to seasonal declines in nutritive value. Because herbage allowance was never limiting, full-season ADG was not affected by stocking rate or N fertilization and averaged 0.61 +/- 0.03 and 0.60 +/- 0.02 kg/d in 1995 and 1996, respectively. There were season x breed interactions (P < 0.05) for ADG due to greater declines during the summer for Angus than for Senepol or Brahman. There were no differences in final BW, SC, BCS, hip height, or PUN due to treatments, but breed differences were noted (P < 0.05) for all measures except BCS.
NASA Astrophysics Data System (ADS)
Petrovskii, Sergei; Petrovskaya, Natalia; Bearup, Daniel
2014-09-01
Pest insects pose a significant threat to food production worldwide resulting in annual losses worth hundreds of billions of dollars. Pest control attempts to prevent pest outbreaks that could otherwise destroy a sward. It is good practice in integrated pest management to recommend control actions (usually pesticides application) only when the pest density exceeds a certain threshold. Accurate estimation of pest population density in ecosystems, especially in agro-ecosystems, is therefore very important, and this is the overall goal of the pest insect monitoring. However, this is a complex and challenging task; providing accurate information about pest abundance is hardly possible without taking into account the complexity of ecosystems' dynamics, in particular, the existence of multiple scales. In the case of pest insects, monitoring has three different spatial scales, each of them having their own scale-specific goal and their own approaches to data collection and interpretation. In this paper, we review recent progress in mathematical models and methods applied at each of these scales and show how it helps to improve the accuracy and robustness of pest population density estimation.
Petrovskii, Sergei; Petrovskaya, Natalia; Bearup, Daniel
2014-09-01
Pest insects pose a significant threat to food production worldwide resulting in annual losses worth hundreds of billions of dollars. Pest control attempts to prevent pest outbreaks that could otherwise destroy a sward. It is good practice in integrated pest management to recommend control actions (usually pesticides application) only when the pest density exceeds a certain threshold. Accurate estimation of pest population density in ecosystems, especially in agro-ecosystems, is therefore very important, and this is the overall goal of the pest insect monitoring. However, this is a complex and challenging task; providing accurate information about pest abundance is hardly possible without taking into account the complexity of ecosystems' dynamics, in particular, the existence of multiple scales. In the case of pest insects, monitoring has three different spatial scales, each of them having their own scale-specific goal and their own approaches to data collection and interpretation. In this paper, we review recent progress in mathematical models and methods applied at each of these scales and show how it helps to improve the accuracy and robustness of pest population density estimation. Copyright © 2014 Elsevier B.V. All rights reserved.
Richter, F; Fricke, T; Wachendorf, M
2011-04-01
In order to determine influencing parameters on energy production of the IFBB process, herbage from a lowland hay meadow (Arrhenaterion) was sampled and ensiled at eight dates between 27 April and 21 June 2007. The silage from each date was processed in six IFBB treatments with and without hydrothermal conditioning at different temperatures. Methane yields and higher heating values were determined and an energy balance was calculated with whole-crop digestion (WCD) of the silage as reference system. Maximum net energy yields were 10.2 MWh ha(-1) for the IFBB treatment without hydrothermal conditioning and 9.0 MWh ha(-1) for the treatment with hydrothermal conditioning at 50 °C. WCD achieved a maximum net energy yield of 3.7 MWh ha(-1). Energy conversion efficiency ranged from 0.24 to 0.54 and was predicted with high accuracy by temperature of hydrothermal conditioning as well as concentration of neutral detergent fibre and dry matter in the silage (R(2)=0.90). Copyright © 2011 Elsevier Ltd. All rights reserved.
Viability of Acremonium coenophialum in tall fescue seed after ionizing radiation treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagegni, A.M.; Sleper, D.A.; Kerr, H.D.
Planting tall fescue (Festuca arundinacea Schreb.) seed free of the endophyte Acremonium coenophialum Morgan-Jones and Gams allows establishment of swards free of the fungus. Eradication of the fungal endophyte from infected tall fescue seeds containing 130 g kg{sup {minus}1} moisture using ionizing radiation was investigated. Three sources of radiation were used: gamma rays ({sup 60}Co source), neutron particles ({sup 252}Cf source), and a thermal neutron beam. The percent germination of tall fescue seeds among gamma doses did not differ significantly (P < 0.05) from the control treatment and did not show a significant negative response (R{sub 2} = 0.41) tomore » increasing levels of gamma radiation. At 250 Gy of gamma radiation, percent germination after 14 d was still > 90%. Percent seed germination of tall fescue and high levels of radiation were negatively correlated for both sources of neutrons. Gamma radiation was shown to reduce (P < 0.01) the percent of the viable endophyte to {approx} 10% of control. The {sup 252}Cf and thermal neutrons reduced the percent of tall fescue infected by the endophyte to {approx} 30% without deleterious effects on seed germination.« less
Hawkins, Jane M B; Scholefield, David; Braven, Jim
2006-08-15
Organic matter is a valuable resource on which the sustainability and productivity of soils relies heavily. Thus, it is important to understand the mechanisms for the loss of organic compounds from soil. It is also essential to determine how these losses can be minimized, especially those resulting from anthropogenic activity. Grazed grassland lysimeters (1 hectare) were used to examine the contribution and distribution patterns of dissolved free and combined amino acids to dissolved organic nitrogen and carbon in surface runoff and drainage waters from a grassland soil over three winter drainage periods. The waters were collected from soils beneath drained and undrained permanent ryegrass swards, receiving 0 and 280 kg ha(-1) year(-1) mineral nitrogen (N) input. Total dissolved free amino acid (DFAA) and dissolved combined amino acid (DCAA) concentrations ranged between 1.9 nM and 6.1 microM and between 1.3 and 87 microM, respectively. Although addition of mineral N fertilizer increased both DFAA and DCAA concentrations in waters, there was no detectable effect of soil hydrology or fertilizer addition on distribution patterns.
The important role of scattered trees on the herbaceous diversity of a grazed Mediterranean dehesa
NASA Astrophysics Data System (ADS)
López-Sánchez, Aida; San Miguel, Alfonso; López-Carrasco, Celia; Huntsinger, Lynn; Roig, Sonia
2016-10-01
Scattered trees are considered keystone structures and play an important role in Mediterranean sylvopastoral systems. Such systems are associated with high biodiversity and provide important natural resources and ecosystem services. In this study, we measured the contribution of scattered trees and different grazing management (cattle, sheep and wildlife only) to the diversity of the grassland sward in a dehesa (open holm oak woodland) located in Central Spain. We analyzed alpha and beta diversity through measurement of species richness, Shannon-Wiener, and Whittaker indices, respectively; and the floristic composition of the herb layer using subplots within two adjacent plots (trees present vs. trees absent) under three different grazing management regimes, including wildlife only, during a year. We found a 20-30% increment in the alpha diversity of wooded plots, compared to those without trees, regardless of grazing management. All beta indices calculated showed more than 60% species turnover. Wooded plots were occupied by different herbaceous species in different heterogeneous microsites (under the canopy, in the ecotone or on open land) created by the trees. Livestock grazing modified species composition (e.g. more nitrophilous species) compared to wildlife only plots. In addition to all their other benefits, trees are important to maintaining grassland diversity in Mediterranean dehesas.
Human gastric cancer, Helicobacter pylori and bracken carcinogens: A connecting hypothesis.
Oliveros-Bastidas, Alberto; Calcagno-Pissarelli, María Pía; Naya, Marlene; Ávila-Núñez, Jorge Luis; Alonso-Amelot, Miguel E
2016-03-01
Long term infection of Helicobacter pylori (Hp) virulent strains is a key factor in the genesis of human gastric cancer, and so are certain dietary proinflammatory and genotoxic compounds. Carcinogenic bracken fern (Pteridium spp.) is one of these. Toxins from this plant are consumed as bracken culinary preparations, through milk and meat of bracken-exposed livestock, and drain waters from bracken swards. Bracken toxin ptaquiloside (PtQ), a suspected human carcinogen, elicits complex responses in animals leading to death. PtQ and Hp might cooperate in gastric pathologies. This paper presents an hypothesis on PtQ-Hp association leading to the enhancement of carcinogenesis in the human gastric environment that might explain the high gastric cancer incidence and death rates among Hp-infected people living in bracken zones at two levels: (1) The macroscopic scale comprising the flow of PtQ in the human diet. (2) the microscopic scale encompassing (A) gastric luminal medium; (B) gastric mucus structure and mucin degradation elicited by Hp; (C) bacterial pH gradient modification of the gastric mucosa that favors PtQ survival and its penetration into epithelial tissue; (D) combined PtQ/Hp effects on gastric immune and inflammatory responses; (E) PtQ-Hp complementary activity at selected cell signaling cascades and genome disturbance. Copyright © 2015 Elsevier Ltd. All rights reserved.
TDR Technique for Estimating the Intensity of Evapotranspiration of Turfgrasses.
Janik, Grzegorz; Wolski, Karol; Daniel, Anna; Albert, Małgorzata; Skierucha, Wojciech; Wilczek, Andrzej; Szyszkowski, Paweł; Walczak, Amadeusz
2015-01-01
The paper presents a method for precise estimation of evapotranspiration of selected turfgrass species. The evapotranspiration functions, whose domains are only two relatively easy to measure parameters, were developed separately for each of the grass species. Those parameters are the temperature and the volumetric moisture of soil at the depth of 2.5 cm. Evapotranspiration has the character of a modified logistic function with empirical parameters. It assumes the form ETR(θ (2.5 cm), T (2.5 cm)) = A/(1 + B · e (-C · (θ (2.5 cm) · T (2.5 cm)), where: ETR(θ (2.5 cm), T (2.5 cm)) is evapotranspiration [mm · h(-1)], θ (2.5 cm) is volumetric moisture of soil at the depth of 2.5 cm [m(3) · m(-3)], T (2.5 cm) is soil temperature at the depth of 2.5 cm [°C], and A, B, and C are empirical coefficients calculated individually for each of the grass species [mm · h(1)], and [-], [(m(3) · m(-3) · °C)(-1)]. The values of evapotranspiration calculated on the basis of the presented function can be used as input data for the design of systems for the automatic control of irrigation systems ensuring optimum moisture conditions in the active layer of lawn swards.
Angell, Joseph William; Grove-White, Dai H; Duncan, Jennifer S
2018-01-01
Footrot is an ovine foot disease of infectious origin and a cause of serious welfare and economic compromise in affected animals and flocks. The development of footrot in sheep is associated with the infectious agent Dichelobacter nodosus, which may invade as a primary pathogen, but the risk of disease is increased following damage to the interdigital skin of the foot. In this study, we used data from six farms in North Wales collected between June 2012 and October 2013 to model the dynamic changes of footrot prevalence over time and investigate the association of footrot with multiple farm, management, environmental and sheep factors. Footrot prevalence varied widely within and between farms and overall varied with season with an increase in prevalence shown in late summer and again in the spring. In addition, sheep were more likely to have footrot when the flock size was larger, when grazing poached pasture or when grazing a longer sward, and yearling sheep were less likely to have footrot when compared with lambs and adult sheep. These data may be helpful for advising farmers of likely environmental events, risk groups and management practices that may increase the probability of sheep developing footrot. PMID:29363571
Schirmel, Jens; Gerlach, Rebekka; Buhk, Constanze
2017-08-17
Seminatural grasslands provide habitats for various species and are important for biodiversity conservation. The understanding of the diverse responses of species and traits to different grassland management methods is therefore urgently needed. We disentangled the role of grassland management (fertilization and irrigation), vegetation structure (biomass, sward height) and plant quality (protein and fiber content) for Orthoptera communities in lowland hay meadows in Germany. We found vegetation structure to be the most important environmental category in explaining community structure of Orthoptera (species richness, total individuals, functional diversity and species composition). Intensively used meadows (fertilized, irrigated, high plant biomass) were characterized by assemblages with few species, low functional diversity, and low conservation value. Thereby, the relatively moderate fertilizer inputs in our study system of up to ∼75 kg N/ha/year reduced functional diversity of Orthoptera, while this negative effect of fertilization was not detectable when solely considering taxonomic aspects. We found strong support for a prominent role of plant quality in shaping Orthoptera communities and especially the trait composition. Our findings demonstrate the usefulness of considering both taxonomic and functional components (functional diversity) in biodiversity research and we suggest a stronger involvement of plant quality measures in Orthoptera studies. © 2017 Institute of Zoology, Chinese Academy of Sciences.
Potential of legume-based grassland–livestock systems in Europe: a review
Lüscher, A; Mueller-Harvey, I; Soussana, J F; Rees, R M; Peyraud, J L
2014-01-01
European grassland-based livestock production systems face the challenge of producing more meat and milk to meet increasing world demands and to achieve this using fewer resources. Legumes offer great potential for achieving these objectives. They have numerous features that can act together at different stages in the soil–plant–animal–atmosphere system, and these are most effective in mixed swards with a legume proportion of 30–50%. The resulting benefits include reduced dependence on fossil energy and industrial N-fertilizer, lower quantities of harmful emissions to the environment (greenhouse gases and nitrate), lower production costs, higher productivity and increased protein self-sufficiency. Some legume species offer opportunities for improving animal health with less medication, due to the presence of bioactive secondary metabolites. In addition, legumes may offer an adaptation option to rising atmospheric CO2 concentrations and climate change. Legumes generate these benefits at the level of the managed land-area unit and also at the level of the final product unit. However, legumes suffer from some limitations, and suggestions are made for future research to exploit more fully the opportunities that legumes can offer. In conclusion, the development of legume-based grassland–livestock systems undoubtedly constitutes one of the pillars for more sustainable and competitive ruminant production systems, and it can be expected that forage legumes will become more important in the future. PMID:26300574
Ruiz-Albarrán, Miguel; Balocchi, Oscar A; Noro, Mirela; Wittwer, Fernando; Pulido, Rubén G
2016-07-01
The aim of this study was to evaluate the effect of herbage allowance (HA) and type of silage supplemented (TS) on milk yield, dry matter intake (DMI) and metabolism of dairy cows in early lactation. Thirty-six Holstein-Friesian dairy cows were allocated to four treatments derived from an arrangement of two HA (LHA = 17 or HHA = 25 kg of DM/cow/day) and two TS (grass (GS) or maize (MS)). Herbage allowance had no effect on DMI or milk yield. Rumen pH and NH3 -N concentration were not affected by HA. The efficiency of microbial protein synthesis in the rumen (microbial protein (MP)) was affected by HA with 21.5 and 23.9 g microbial nitrogen per kg ruminal digestible organic matter for LHA and HHA, respectively (P < 0.05). Supplementation with MS showed higher values of milk yield by 2.4 kg/cow/day (P < 0.001), milk protein content by 0.10 % (P < 0.023) and herbage DMI by 2.2 kg/cow/day, and showed lower values for milk urea compared to GS (P < 0.001). The former results suggest that TS had a greater effect on milk yield, total feed intake and energy intake than increase in herbage allowance; however, increase in HA had greater effects on MP than TS. © 2015 Japanese Society of Animal Science.
TDR Technique for Estimating the Intensity of Evapotranspiration of Turfgrasses
Janik, Grzegorz; Wolski, Karol; Daniel, Anna; Albert, Małgorzata; Wilczek, Andrzej; Szyszkowski, Paweł; Walczak, Amadeusz
2015-01-01
The paper presents a method for precise estimation of evapotranspiration of selected turfgrass species. The evapotranspiration functions, whose domains are only two relatively easy to measure parameters, were developed separately for each of the grass species. Those parameters are the temperature and the volumetric moisture of soil at the depth of 2.5 cm. Evapotranspiration has the character of a modified logistic function with empirical parameters. It assumes the form ETR(θ 2.5 cm, T 2.5 cm) = A/(1 + B · e −C·(θ2.5 cm · T2.5 cm)), where: ETR(θ 2.5 cm, T 2.5 cm) is evapotranspiration [mm·h−1], θ 2.5 cm is volumetric moisture of soil at the depth of 2.5 cm [m3·m−3], T 2.5 cm is soil temperature at the depth of 2.5 cm [°C], and A, B, and C are empirical coefficients calculated individually for each of the grass species [mm·h1], and [—], [(m3·m−3·°C)−1]. The values of evapotranspiration calculated on the basis of the presented function can be used as input data for the design of systems for the automatic control of irrigation systems ensuring optimum moisture conditions in the active layer of lawn swards. PMID:26448964
Angell, Joseph William; Grove-White, Dai H; Duncan, Jennifer S
2018-03-10
Footrot is an ovine foot disease of infectious origin and a cause of serious welfare and economic compromise in affected animals and flocks. The development of footrot in sheep is associated with the infectious agent Dichelobacter nodosus , which may invade as a primary pathogen, but the risk of disease is increased following damage to the interdigital skin of the foot. In this study, we used data from six farms in North Wales collected between June 2012 and October 2013 to model the dynamic changes of footrot prevalence over time and investigate the association of footrot with multiple farm, management, environmental and sheep factors. Footrot prevalence varied widely within and between farms and overall varied with season with an increase in prevalence shown in late summer and again in the spring. In addition, sheep were more likely to have footrot when the flock size was larger, when grazing poached pasture or when grazing a longer sward, and yearling sheep were less likely to have footrot when compared with lambs and adult sheep. These data may be helpful for advising farmers of likely environmental events, risk groups and management practices that may increase the probability of sheep developing footrot. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Al-Mamun, Mohammad; Yamaki, Koji; Masumizu, Toshiki; Nakai, Yumi; Saito, Katsumi; Sano, Hiroaki; Tamura, Yoshifumi
2007-01-01
Free radicals are not only destructive to the living cells but also reduce the quality of animal products through oxidation. As a result the superoxide anion radical (O2・-), one of the most destructive reactive oxygen species, is a matter of concern for the animal scientists as well as feed manufacturers to ensure the quality of product to reach consumers demand. The superoxide anion radical scavenging activities (SOSA) of water and MeOH extracts of 2 herbs and 9 pasture samples collected from lowland and highland swards were determined against a 5,5-dimethyl-1-pyroline-N-oxide-O2・-spin adduct based on a hypoxanthine-xanthine oxidase reaction using electron spin resonance spectrometry. Both the water and MeOH extracted SOSA differed among the herbs and pastures. Species and altitudinal variations were observed between extraction methods. The herbs were higher in both water and MeOH extracted SOSA than the pastures except for water extracts of one pasture, white clover (Trifolium repens L.). Among the pastures, quackgrass (Agrophyron repens L.) showed higher SOSA in both the MeOH and water extracts, and timothy (Phleum pretense L.) showed higher MeOH extracted SOSA. It is apparent that the kind and amount of antioxidants differ among herbs and pastures. Animal health and quality of animal products could be improved by adequate selection and combining of herbs and pastures having higher SOSA. PMID:17713599
Paciullo, D S C; Pires, M F A; Aroeira, L J M; Morenz, M J F; Maurício, R M; Gomide, C A M; Silveira, S R
2014-08-01
The silvopastoral system (SPS) has been suggested to ensure sustainability in animal production systems in tropical ecosystems. The objective of this study was to evaluate pasture characteristics, herbage intake, grazing activity and milk yield of Holstein×Zebu cows managed in two grazing systems (treatments): SPS dominated by a graminaceous forage (Brachiaria decumbens) intercropped with different leguminous herbaceous forages (Stylosanthes spp., Pueraria phaseoloides and Calopogonium mucunoides) and legume trees (Acacia mangium, Gliricidia sepium and Leucaena leucocephala), and open pasture (OP) of B. decumbens intercropped only with Stylosanthes spp. Pastures were managed according to the rules for organic cattle production. The study was carried out by following a switch back format with 12 cows, 6 for each treatment, over 3 experimental years. Herbage mass was similar (P>0.05) for both treatments, supporting an average stocking rate of 1.23 AU/ha. Daily dry matter intake did not vary (P>0.05) between treatments (average of 11.3±1.02 kg/cow per day, corresponding to 2.23±0.2% BW). Milk yield was higher (P0.05) in subsequent years. The highest (P0.05) milk yields. Low persistence of Stylosanthes guianensis was observed over the experimental period, indicating that the persistence of forage legumes under grazing could be improved using adapted cultivars that have higher annual seed production. The SPS and a diversified botanical composition of the pasture using legume species mixed with grasses are recommended for organic milk production.
Predation risk of artificial ground nests in managed floodplain meadows
NASA Astrophysics Data System (ADS)
Arbeiter, Susanne; Franke, Elisabeth
2018-01-01
Nest predation highly determines the reproductive success in birds. In agricultural grasslands, vegetation characteristics and management practices influences the predation risk of ground breeders. Little is known so far on the predation pressure on non-passerine nests in tall swards. Investigations on the interaction of land use with nesting site conditions and the habitat selection of nest predators are crucial to develop effective conservation measures for grassland birds. In this study, we used artificial nests baited with quail and plasticine eggs to identify potential predators of ground nests in floodplain meadows and related predation risk to vegetation structure and grassland management. Mean daily predation rate was 0.01 (±0.012) after an exposure duration of 21 days. 70% of all observed nest predations were caused by mammals (Red Fox and mustelids) and 17.5% by avian predators (corvids). Nest sites close to the meadow edge and those providing low forb cover were faced with a higher daily predation risk. Predation risk also increased later in the season. Land use in the preceding year had a significant effect on predation risk, showing higher predation rates on unmanaged sites than on mown sites. Unused meadows probably attract mammalian predators, because they provide a high abundance of small rodents and a more favourable vegetation structure for foraging, increasing also the risk of incidental nest predations. Although mowing operation is a major threat to ground-nesting birds, our results suggest that an annual removal of vegetation may reduce predation risk in the subsequent year.
Feedback dynamics of grazing lawns: Coupling vegetation change with animal growth
Person, Brian T.; Herzog, M.P.; Ruess, Roger W.; Sedinger, J.S.; Anthony, R. Michael; Babcock, C.A.
2003-01-01
We studied the effects of grazing by Black Brant (Branta bernicla nigricans) geese (hereafter Brant) on plant community zonation and gosling growth between 1987 and 2000 at a nesting colony in southwestern Alaska. The preferred forage of Brant, Carex subspathacea, is only found as a grazing lawn. An alternate forage species, C. ramenskii, exists primarily as meadow but also forms grazing lawns when heavily grazed. We mowed plots of ungrazed C. ramenskii meadows to create swards that Brant could select and maintain as grazing lawns. Fecal counts were higher on mowed plots than on control plots in the year after plots were mowed. Both nutritional quality and aboveground biomass of C. ramenskii in mowed plots were similar to that of C. subspathacea grazing lawns. The areal extent of grazing lawns depends in part on the population size of Brant. High Brant populations can increase the areal extent of grazing lawns, which favors the growth of goslings. Grazing lawns increased from 3% to 8% of surface area as the areal extent of C. ramenskii meadows declined between 1991 and 1999. Gosling mass was lower early in this time period due to density dependent effects. As the goose population stabilized, and area of grazing lawns increased, gosling mass increased between 1993 and 1999. Because larger goslings have increased survival, higher probability of breeding, and higher fecundity, herbivore-mediated changes in the distribution grazing lawn extent may result in a numerical increase of the population within the next two decades.
Granados-Rivera, Lorenzo Danilo; Hernández-Mendo, Omar; González-Muñoz, Sergio Segundo; Burgueño-Ferreira, Juan Andrés; Mendoza-Martínez, German David; Arriaga-Jordán, Carlos Manuel
2017-12-01
The objective of the study was to evaluate the effect of adding protected palmitic acid (PA) to the ration of grazing dairy cows supplemented with protected conjugated linoleic acid (CLA) on milk production, chemical composition and fat profile. Six cows were used, 3/4 American Swiss × Zebu, under a rotational grazing system in a mixed sward with Cynodon plectostachyus, Brachiaria decumbens and Brachiaria brizantha. Furthermore, each cow received daily 4 kg concentrates and 8 kg sorghum silage, which made up the basal diet. The cows were distributed into three two-cow groups. Three treatments were randomly assigned to the groups, using a cross design: (1) control (basal diet), (2) basal diet + CLA (50 g/d) and (3) basal diet + CLA (50 g/d) + PA (412 g/d). The following variables were evaluated: forage intake, milk production, protein, fat and lactose concentration in milk, and milk fatty acid (FA) profile. There were no differences in forage intake between treatments; however, there were differences in milk production, protein, fat and lactose yield and fat concentration, which increased significantly in group CLA + PA when compared with group CLA. The concentration of FA synthesised de novo was lower when PA was included in the diet. Adding PA to the diet of grazing cows mitigates the milk fat decline caused by including trans-10, cis-12 CLA in the diet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, M.
In assessing the role of biomass in alleviating potential global warming, the absence of information on the sustainability of biomass production on soils of limited agricultural potential is cited as a major constraint to the assessment of the role of biomass. Research on the sustainability of yields, recycling of nutrients, and emphasis on reduced inputs of agricultural chemicals in the production of biomass are among the critical research needs to clarify optimum cropping practice in biomass production. Two field experiments were conducted between 1989 and 1993. One study evaluated biomass production and composition of switchgrass (Panicum virgatum L.) grown alonemore » and with bigflower vetch (Vicia grandiflora L.) and the other assessed biomass productivity and composition of tall fescue (Festuca arundinacea Schreb.) grown alone and with perennial legumes. Switchgrass received 0, 75 or 150 kg ha{sup {minus}1} of N annually as NH{sub 4}NO{sub 3} or was interseeded with vetch. Tall fescue received 0, 75, 150 or 225 kg ha{sup {minus}1} of N annually or was interseeded with alfalfa (Medicago L.) or birdsfoot trefoil (Lotus corniculatus L.). It is hoped that production systems can be designed to produce high yields of biomass with minimal inputs of fertilizer N. Achievement of this goal would reduce the potential for movement of NO{sub 3} and other undesirable N forms outside the biomass production system into the environment. In addition, management systems involving legumes could reduce the cost of biomass production.« less
Informing agricultural management - The challenge of modelling grassland phenology
NASA Astrophysics Data System (ADS)
Calanca, Pierluigi
2017-04-01
Grasslands represent roughly 70% of the agricultural land worldwide, are the backbone of animal husbandry and contribute substantially to agricultural income. At the farm scale a proper management of meadows and pastures is necessary to attain a balance between forage production and consumption. A good hold on grassland phenology is of paramount importance in this context, because forage quantity and quality critically depend on the developmental stage of the sward. Traditionally, empirical rules have been used to advise farmers in this respect. Yet the provision of supporting information for decision making would clearly benefit from dedicated tools that integrate reliable models of grassland phenology. As with annual crops, in process-based models grassland phenology is usually described as a linear function of so-called growing degree days, whereby data from field trials and monitoring networks are used to calibrate the relevant parameters. It is shown in this contribution that while the approach can provide reasonable estimates of key developmental stages in an average sense, it fails to account for the variability observed in managed grasslands across sites and years, in particular concerning the start of the growing season. The analysis rests on recent data from western Switzerland, which serve as a benchmark for simulations carried out with grassland models of increasing complexity. Reasons for an unsatisfactory model performance and possibilities to improve current models are discussed, including the necessity to better account for species composition, late season management decisions, as well as plant physiological processes taking place during the winter season. The need to compile existing, and collect new data doe managed grasslands is also stressed.
Quantifying Beetle-Mediated Effects on Gas Fluxes from Dung Pats
Penttilä, Atte; Slade, Eleanor M.; Simojoki, Asko; Riutta, Terhi; Minkkinen, Kari; Roslin, Tomas
2013-01-01
Agriculture is one of the largest contributors of the anthropogenic greenhouse gases (GHGs) responsible for global warming. Measurements of gas fluxes from dung pats suggest that dung is a source of GHGs, but whether these emissions are modified by arthropods has not been studied. A closed chamber system was used to measure the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from dung pats with and without dung beetles on a grass sward. The presence of dung beetles significantly affected the fluxes of GHGs from dung pats. Most importantly, fresh dung pats emitted higher amounts of CO2 and lower amounts of CH4 per day in the presence than absence of beetles. Emissions of N2O showed a distinct peak three weeks after the start of the experiment – a pattern detected only in the presence of beetles. When summed over the main grazing season (June–July), total emissions of CH4 proved significantly lower, and total emissions of N2O significantly higher in the presence than absence of beetles. While clearly conditional on the experimental conditions, the patterns observed here reveal a potential impact of dung beetles on gas fluxes realized at a small spatial scale, and thereby suggest that arthropods may have an overall effect on gas fluxes from agriculture. Dissecting the exact mechanisms behind these effects, mapping out the range of conditions under which they occur, and quantifying effect sizes under variable environmental conditions emerge as key priorities for further research. PMID:23940758
Dini, Yoana; Gere, José; Briano, Carolina; Manetti, Martin; Juliarena, Paula; Picasso, Valentin; Gratton, Roberto; Astigarraga, Laura
2012-06-08
Understanding the impact of changing pasture composition on reducing emissions of GHGs in dairy grazing systems is an important issue to mitigate climate change. The aim of this study was to estimate daily CH₄ emissions of dairy cows grazing two mixed pastures with contrasting composition of grasses and legumes: L pasture with 60% legumes on Dry Matter (DM) basis and G pasture with 75% grasses on DM basis. Milk production and CH₄ emissions were compared over two periods of two weeks during spring using eight lactating Holstein cows in a 2 × 2 Latin square design. Herbage organic matter intake (HOMI) was estimated by chromic oxide dilution and herbage organic matter digestibility (OMD) was estimated by faecal index. Methane emission was estimated by using the sulfur hexafluoride (SF6) tracer technique adapted to collect breath samples over 5-day periods. OMD (0.71) and HOMI (15.7 kg OM) were not affected by pasture composition. Milk production (20.3 kg/d), milk fat yield (742 g/d) and milk protein yield (667 g/d) were similar for both pastures. This may be explained by the high herbage allowance (30 kg DM above 5 cm/cow) which allowed the cows to graze selectively, in particular in grass sward. Similarly, methane emission expressed as absolute value (368 g/d or 516 L/d) or expressed as methane yield (6.6% of Gross Energy Intake (GEI)) was not affected by treatments. In conclusion, at high herbage allowance, the quality of the diet selected by grazing cows did not differ between pastures rich in legumes or rich in grasses, and therefore there was no effect on milk or methane production.
Marin, M; Laverack, G; Matthews, S; Powell, A A
2018-02-10
The facultative root hemi-parasite Rhinanthus minor is often used in grassland habitat restoration projects to regulate ecosystem structure and function. Its impact on community productivity and diversity as a function of resource supply, sward composition and management has been widely investigated. However, there is a lack of information about the possible influence of seed quality on the efficacy of the hemi-parasite. Ten seed lots from commercial sources were sown in the field and their germination characteristics were investigated in the laboratory. Seeds from four lots were also germinated and sown in pots alongside plants of two host species, Lotus corniculatus and Holcus lanatus. Plant establishment, height and flowering density were evaluated for the hemi-parasite, while plant biomass was measured for both R. minor and its host. Two aspects of seed quality influenced the field emergence of seed lots of R. minor, the radicle emergence (%) and the length of the lag period from the beginning of imbibition to germination (mean germination time), which indicates seed vigour. A longer lag period (lower vigour) was associated with higher levels of seedling mortality and lower plant vigour, in terms of plant height and biomass accumulation and was also reflected in the parasitic impact of the seed lots. Seed quality, specifically germination and vigour, can influence the establishment, survival, subsequent plant productivity and parasitic impact of R. minor in vegetation restoration projects. Seed quality is discussed as a key factor to consider when predicting the impact of the hemi-parasite on community productivity and diversity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Furnell, Julie; Hull, Susan L.
2014-02-01
Rocky shores and beaches are important over-wintering areas for non-estuarine waders but have rarely been studied. We examined cliff top habitat use by 6 species of wader over 75 km of coast to assess their potential value as alternative feeding sites to rocky and sandy shores. Both the regional and local survey showed that waders occurred on golf courses and recreational grasslands in higher frequencies than expected but arable and pasture use was lower than expected. We also compared local wader densities on rocky and sandy shores, pastures, golf courses, caravan parks and recreational grasslands over two winters. Sanderling predominantly fed on the beach whereas Oystercatcher, Dunlin, Turnstone and Redshank numbers significantly increased on golf courses and recreational grasslands over the winter period, with pasture being rarely used. General linear models were used to relate environmental factors to the presence and absence of each species on the cliff top habitats. Redshank was the only species that showed a higher probability of occurrence on cliff top habitats at high tide whereas the probability of Turnstone, Oystercatcher and Redshank occurring increased as temperatures declined. Using core sampling, we determined that invertebrate richness and abundance was significantly higher on the recreational grasslands and golf courses than on the pasture or the beach. Our data demonstrated that cliff top habitats are important alternative feeding areas for over-wintering waders in areas where the intertidal is bounded by cliffs. Current management creates short sward, open field habitats with a diverse and abundant invertebrate food supply exploited by waders. Any alterations to the land use of these areas should be carefully considered by planning authorities in light of the fact that they support species that are of conservation concern.
Chen, Liming; Stehouwer, Richard; Tong, Xiaogang; Kost, Dave; Bigham, Jerry M; Dick, Warren A
2015-09-01
Abandoned coal-mined lands are a worldwide concern due to their potential negative environmental impacts, including erosion and development of acid mine drainage. A field study investigated the use of a dry flue gas desulfurization product for reclamation of abandoned coal mined land in USA. Treatments included flue gas desulfurization product at a rate of 280 Mg ha(-1) (FGD), FGD at the same rate plus 112 Mg ha(-1) yard waste compost (FGD/C), and conventional reclamation that included 20 cm of re-soil material plus 157 Mg ha(-1) of agricultural limestone (SOIL). A grass-legume sward was planted after treatment applications. Chemical properties of surface runoff and tile water (collected from a depth of 1.2m below the ground surface) were measured over both short-term (1-4 yr) and long-term (14-20 yr) periods following reclamation. The pH of surface runoff water was increased from approximately 3, and then sustained at 7 or higher by all treatments for up to 20 yr, and the pH of tile flow water was also increased and sustained above 5 for 20 yr. Compared with SOIL, concentrations of Ca, S and B in surface runoff and tile flow water were generally increased by the treatments with FGD product in both short- and long-term measurements and concentrations of the trace elements were generally not statistically increased in surface runoff and tile flow water over the 20-yr period. However, concentrations of As, Ba, Cr and Hg were occasionally elevated. These results suggest the use of FGD product for remediating acidic surface coal mined sites can provide effective, long-term reclamation. Copyright © 2015. Published by Elsevier Ltd.
Influence of high-altitude grazing on bone metabolism of growing sheep.
Liesegang, A; Hüttenmoser, D; Risteli, J; Leiber, F; Kreuzer, M; Wanner, M
2013-02-01
The objective of this study was to identify the effect of high alpine grazing, associated with varying pasture grass qualities and more pronounced exercise on typically steep slopes, on bone metabolism by improving bone density and enhancing bone turnover in growing sheep. Twenty-four 5-month-old sheep were randomly assigned to two groups. One group was kept at high altitude (HA; 2000-2200 m a.s.l.) for 3 months, and the other group (C; control) remained in the lowlands (400 m a.s.l.). Both groups were kept in grazing pastures with access to good-quality swards. Before the start of the experiment, blood samples were taken, the sheep were weighed, and the left metatarsus of each animal was analysed by quantitative computer tomography. After 1 month, blood samples were taken and body weight was measured, followed by biweekly sampling. Finally, the animals were slaughtered, and the bones were collected for analysis of various bone parameters. Body weight development did not differ between the groups. Concentrations of 25-OH-Vitamin D, carboxy-terminal telopeptide of type I collagen and activities of bone-specific alkaline phosphatase were always higher in the HA group than in the C group, except on the last two sampling dates. Bone mineral content and density increased in both groups during the experiment, but more intensively in the HA group. In addition, the cortical thickness of the HA group increased. The present study demonstrates an increase in bone turnover and mineral content of the bones of the growing sheep grazing in high alpine pastures. The factors associated with HA grazing, therefore, clearly seem to improve bone composition. © 2011 Blackwell Verlag GmbH.
Transpiration efficiency of three Mediterranean annual pasture species and wheat.
Bolger, T P; Turner, N C
1998-06-01
Attempts to improve water use efficiency in regions with Mediterranean climates generally focus on increasing plant transpiration relative to evaporation from the soil and increasing transpiration efficiency. Our aim was to determine if transpiration efficiency differs among key species occurring in annual pastures in southern Australia. Two glasshouse experiments were conducted with three key pasture species, subterranean clover (Trifolium subterraneum L.), capeweed [Arctotheca calendula (L.) Levyns] and annual ryegrass (Lolium rigidum Gaudin), and wheat (Triticum aestivum L.). Transpiration efficiency was assessed at the levels of␣whole-plant biomass and water use (W), leaf gas exchange measurements of the ratio of CO 2 assimilation to leaf conductance to water vapour (A/g), and carbon isotope discrimination (Δ) in leaf tissue. In addition, Δ was measured on shoots of the three pasture species growing together in the field. In the glasshouse studies, annual ryegrass had a consistently higher transpiration efficiency than subterranean clover or capeweed by all methods of measurement. Subterranean clover and capeweed had similar transpiration efficiencies by all three methods of measurement. Wheat had W values similar to ryegrass but A/g and Δ values similar to subterranean clover or capeweed. The high W of annual ryegrass seems to be related to a conservative leaf gas exchange behaviour, with lower assimilation and conductance but higher A/g than for the other species. In contrast to the glasshouse results, the three pasture species had similar Δ values when growing together in mixed-species swards in the field. Reasons for these differing responses between glasshouse and field-grown plants are discussed in terms of the implications for improving the transpiration efficiency of mixed-species annual pasture communities in the field.
NASA Astrophysics Data System (ADS)
Stockli, D. F.
2017-12-01
The Aegean/Cycladic region (AC) and the Basin and Range Province (B&R) are two of the most famous Cenozoic extensional provinces and have greatly influenced our thinking about syn-convergent back-arc extension, core complex formation, syn-extensional magmatism, and kinematic transitions. They share numerous tectonic and structural similarities, such as a syn-convergent setting, previous contractional deformation, and core complex formation, but fundamental geological ambiguities remain, mainly centering around timing. The B&R affected a previously contractional belt (Sevier) and voluminous continental magmatic arc that created a pre-extensional orogenic highland. Extension was long-lived and complex, driven by both gravitational collapse and temporally distinct kinematic boundary condition changes. The B&R was also affected by massive, largely pre-extensional regional magmatic flare-ups that modified both the thermal and crustal composition. As the B&R occupies an elevated interior plateau, syn-extensional basin deposits are exclusively continental in character. In contrast, the AC is a classic marine back-arc extensional province that affected an active subduction margin with numerous accreted oceanic and continental ribbons, exhuming an early Cenozoic HP-LT subduction complex. Exhumation of the HP-LT complex, however, was accommodated both by vertical extrusion and crustal extension. Late Cenozoic extensional faulting was contemporaneous with S-ward sweeping arc magmatism and affected by little to no kinematic changes. As both the AC and B&R experienced contractional deformation during K-Cz subduction and J-K shortening, respectively, it is critical to differentiate between contractional and extensional structures and fabrics. The lack of temporal constraints hampers the reconstructions of pre-extensional structural anatomies and extensional strain magnitudes or even the attribution of structures to specific geodynamic settings. Novel methodologies in petrochronology, detrital geochronology, and high- and low-T thermochronometry allow us to elucidate pre-extensional crustal geometries, differentiate contractional from extensional fabrics, and understand the thermal and rheological evolution of these extensional provinces in a more holistic fashion.
Sainz-Sánchez, Pedro Alan; López-González, Felipe; Estrada-Flores, Julieta Gertrudis; Martínez-García, Carlos Galdino; Arriaga-Jordán, Carlos Manuel
2017-01-01
The use and management of native grassland for dairy production during the rainy season was studied on two small-scale dairy farms in the highlands of central Mexico. Two stocking rates (2 and 4 cows/ha) and two levels of supplementation with commercial concentrate (4 and 6 kg/cow/day) under grazing were given to 12 milking Holstein cows in a 4 × 4 Latin square design replicated three times in a factorial arrangement. Net herbage accumulation (NHA), sward height, chemical composition, and in vitro digestibility of organic matter were recorded for the grassland, as well as vegetation cover and herbage mass 12 weeks post experiment. Animal performance variables were milk yield and composition, live weight, and body condition score. A partial budget analysis of feeding costs, returns, and margins was calculated. There were no differences between periods for NHA and herbage height and between plots for chemical composition (P > 0.05). However, there were highly significant differences among periods (P < 0.01) for organic matter, neutral detergent fibre (NDF), acid detergent fibre, in vitro organic matter digestibility (IVOMD), and estimated metabolisable energy (eME), with highly significant plot × period interactions (P < 0.01) for NDF, IVOMD, and eME. There were no statistical differences (P > 0.05) between treatments for milk yield, chemical composition of milk, live weight, or body condition score. Post-experimental vegetation cover was 72 % for both stocking rates, indicating there was no degradation of the grassland. Lower feeding costs were for the low supplementation treatments. It is concluded that a high stocking rate in studied native grasslands of 4 cows/ha with moderate concentrate supplementation supports a mean milk yield of 11.9 kg/cow/day during the rainy season without deleterious effects on the grassland.
Evolution of body size in Galapagos marine iguanas.
Wikelski, Martin
2005-10-07
Body size is one of the most important traits of organisms and allows predictions of an individual's morphology, physiology, behaviour and life history. However, explaining the evolution of complex traits such as body size is difficult because a plethora of other traits influence body size. Here I review what we know about the evolution of body size in a group of island reptiles and try to generalize about the mechanisms that shape body size. Galapagos marine iguanas occupy all 13 larger islands in this Pacific archipelago and have maximum island body weights between 900 and 12 000g. The distribution of body sizes does not match mitochondrial clades, indicating that body size evolves independently of genetic relatedness. Marine iguanas lack intra- and inter-specific food competition and predators are not size-specific, discounting these factors as selective agents influencing body size. Instead I hypothesize that body size reflects the trade-offs between sexual and natural selection. We found that sexual selection continuously favours larger body sizes. Large males establish display territories and some gain over-proportional reproductive success in the iguanas' mating aggregations. Females select males based on size and activity and are thus responsible for the observed mating skew. However, large individuals are strongly selected against during El Niño-related famines when dietary algae disappear from the intertidal foraging areas. We showed that differences in algae sward ('pasture') heights and thermal constraints on large size are causally responsible for differences in maximum body size among populations. I hypothesize that body size in many animal species reflects a trade-off between foraging constraints and sexual selection and suggest that future research could focus on physiological and genetic mechanisms determining body size in wild animals. Furthermore, evolutionary stable body size distributions within populations should be analysed to better understand selection pressures on individual body size.
Evolution of body size in Galapagos marine iguanas
Wikelski, Martin
2005-01-01
Body size is one of the most important traits of organisms and allows predictions of an individual's morphology, physiology, behaviour and life history. However, explaining the evolution of complex traits such as body size is difficult because a plethora of other traits influence body size. Here I review what we know about the evolution of body size in a group of island reptiles and try to generalize about the mechanisms that shape body size. Galapagos marine iguanas occupy all 13 larger islands in this Pacific archipelago and have maximum island body weights between 900 and 12 000 g. The distribution of body sizes does not match mitochondrial clades, indicating that body size evolves independently of genetic relatedness. Marine iguanas lack intra- and inter-specific food competition and predators are not size-specific, discounting these factors as selective agents influencing body size. Instead I hypothesize that body size reflects the trade-offs between sexual and natural selection. We found that sexual selection continuously favours larger body sizes. Large males establish display territories and some gain over-proportional reproductive success in the iguanas' mating aggregations. Females select males based on size and activity and are thus responsible for the observed mating skew. However, large individuals are strongly selected against during El Niño-related famines when dietary algae disappear from the intertidal foraging areas. We showed that differences in algae sward (‘pasture’) heights and thermal constraints on large size are causally responsible for differences in maximum body size among populations. I hypothesize that body size in many animal species reflects a trade-off between foraging constraints and sexual selection and suggest that future research could focus on physiological and genetic mechanisms determining body size in wild animals. Furthermore, evolutionary stable body size distributions within populations should be analysed to better understand selection pressures on individual body size. PMID:16191607
Key challenges and priorities for modelling European grasslands under climate change.
Kipling, Richard P; Virkajärvi, Perttu; Breitsameter, Laura; Curnel, Yannick; De Swaef, Tom; Gustavsson, Anne-Maj; Hennart, Sylvain; Höglind, Mats; Järvenranta, Kirsi; Minet, Julien; Nendel, Claas; Persson, Tomas; Picon-Cochard, Catherine; Rolinski, Susanne; Sandars, Daniel L; Scollan, Nigel D; Sebek, Leon; Seddaiu, Giovanna; Topp, Cairistiona F E; Twardy, Stanislaw; Van Middelkoop, Jantine; Wu, Lianhai; Bellocchi, Gianni
2016-10-01
Grassland-based ruminant production systems are integral to sustainable food production in Europe, converting plant materials indigestible to humans into nutritious food, while providing a range of environmental and cultural benefits. Climate change poses significant challenges for such systems, their productivity and the wider benefits they supply. In this context, grassland models have an important role in predicting and understanding the impacts of climate change on grassland systems, and assessing the efficacy of potential adaptation and mitigation strategies. In order to identify the key challenges for European grassland modelling under climate change, modellers and researchers from across Europe were consulted via workshop and questionnaire. Participants identified fifteen challenges and considered the current state of modelling and priorities for future research in relation to each. A review of literature was undertaken to corroborate and enrich the information provided during the horizon scanning activities. Challenges were in four categories relating to: 1) the direct and indirect effects of climate change on the sward 2) climate change effects on grassland systems outputs 3) mediation of climate change impacts by site, system and management and 4) cross-cutting methodological issues. While research priorities differed between challenges, an underlying theme was the need for accessible, shared inventories of models, approaches and data, as a resource for stakeholders and to stimulate new research. Developing grassland models to effectively support efforts to tackle climate change impacts, while increasing productivity and enhancing ecosystem services, will require engagement with stakeholders and policy-makers, as well as modellers and experimental researchers across many disciplines. The challenges and priorities identified are intended to be a resource 1) for grassland modellers and experimental researchers, to stimulate the development of new research directions and collaborative opportunities, and 2) for policy-makers involved in shaping the research agenda for European grassland modelling under climate change. Copyright © 2016 Elsevier B.V. All rights reserved.
Mitchell, Ruth J; Hewison, Richard L; Fielding, Debbie A; Fisher, Julia M; Gilbert, Diana J; Hurskainen, Sonja; Pakeman, Robin J; Potts, Jacqueline M; Riach, David
2018-04-01
The predicted long lag time between a decrease in atmospheric deposition and a measured response in vegetation has generally excluded the investigation of vegetation recovery from the impacts of atmospheric deposition. However, policy-makers require such evidence to assess whether policy decisions to reduce emissions will have a positive impact on habitats. Here we have shown that 40 years after the peak of SO x emissions, decreases in SO x are related to significant changes in species richness and cover in Scottish Calcareous, Mestrophic, Nardus and Wet grasslands. Using a survey of vegetation plots across Scotland, first carried out between 1958 and 1987 and resurveyed between 2012 and 2014, we test whether temporal changes in species richness and cover of bryophytes, Cyperaceae, forbs, Poaceae, and Juncaceae can be explained by changes in sulphur and nitrogen deposition, climate and/or grazing intensity, and whether these patterns differ between six grassland habitats: Acid, Calcareous, Lolium, Nardus, Mesotrophic and Wet grasslands. The results indicate that Calcareous, Mesotrophic, Nardus and Wet grasslands in Scotland are starting to recover from the UK peak of SO x deposition in the 1970's. A decline in the cover of grasses, an increase in cover of bryophytes and forbs and the development of a more diverse sward (a reversal of the impacts of increased SO x ) was related to decreased SO x deposition. However there was no evidence of a recovery from SO x deposition in the Acid or Lolium grasslands. Despite a decline in NO x deposition between the two surveys we found no evidence of a reversal of the impacts of increased N deposition. The climate also changed significantly between the two surveys, becoming warmer and wetter. This change in climate was related to significant changes in both the cover and species richness of bryophytes, Cyperaceae, forbs, Poaceae and Juncaceae but the changes differed between habitats. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yan, M-J; Humphreys, J; Holden, N M
2013-07-01
Little consideration has been given to how farm management, specifically tactics used to implement the management strategy, may influence the carbon footprint (CF) and land use for milk produced on commercial farms. In this study, the CF and land use of milk production from 18 Irish commercial dairy farms were analyzed based on foreground data from a 12-mo survey capturing management tactics and background data from the literature. Large variation was found in farm attributes and management tactics; for example, up to a 1.5-fold difference in fertilizer nitrogen input was used to support the same stocking density, and up to a 3.5-fold difference in concentrate fed for similar milk output per cow. However, the coefficient of variation for milk CF between farms only varied by 13% and for land use by 18%. The overall CF and overall land use of the milk production from the 18 dairy farms was 1.23±0.04kg of CO2 Eq and 1.22±0.05 m(2) per kilogram of energy-corrected milk. Milk output per cow, economic allocation between exports of milk and liveweight, and on-farm diesel use per ha were found to be influential factors on milk CF, whereas the fertilizer N rate, milk output per cow, and economic allocation between exports of milk and liveweight were influential on land use. Effective sward management of white clover within a few farms appeared to lower the CF but increased on-farm land use. It was concluded that a combination of multiple tactics determines CF and land use for milk production on commercial dairy farms and, although these 2 measures of environmental impact are correlated, a farm with a low CF did not always have low land use and vice versa. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Morales, Pamela K.; Yunusa, Isa A.M.; Lugg, Glenys; Li, Zheng; Gribben, Paul; Eamus, Derek
2013-01-01
Restoration of belowground ecology is seldom a priority in designing revegetation strategies for disturbed landscapes. We determined earthworm abundance and diversity in a 16-year old grass sward (grassland), a 6-year old (Plantation-04) and a 4-year old (Plantation-06) plantation, both of mixed woody species, on a reclaimed waste disposal site, and in nearby remnant woodland, in suburban Sydney, Australia. While no catches were made in autumn, more earthworms were found in spring (21 ± 8.6 m–2) than in winter (10.2 ± 5.9 m–2) or summer (14.4 ± 5.5 m–2). Earthworm abundance in spring was in the order grassland ≈ Plantation-04 (35.2 m–2) > woodland (12.8 m–2) > Plantation-06 (0.8 m–2). None of the revegetated covers had restored earthworm diversity to levels found in the woodland. Exotic species, mostly Microscolex dubius, dominated in the four vegetation covers at any time; the only two native species (Heteroporodrilus sp. and Megascoleceides sp.) found were in the woodland. We also assessed how quality of the evolving soils from the three revegetated covers, compared with that from the woodland, impacted viability of common exotic earthworm species. Both weight gain and cocoon production by the exotic earthworms were higher in the soil from Plantation-04 than in soils from the other vegetation covers, including the woodland; the two variables were positively correlated with the pH and mineral nutrient content (as indicated by electrical conductivity that was in turn correlated with clay content) of the soil. Age of vegetation rather than its composition explained differences in the level of earthworm recovery observed. PMID:25550677
NASA Astrophysics Data System (ADS)
Vuichard, Nicolas; Soussana, Jean-FrançOis; Ciais, Philippe; Viovy, Nicolas; Ammann, Christof; Calanca, Pierluigi; Clifton-Brown, John; Fuhrer, Jürg; Jones, Mike; Martin, CéCile
2007-03-01
We improved a process-oriented biogeochemical model of carbon and nitrogen cycling in grasslands and tested it against in situ measurements of biomass and CO2 and CH4 fluxes at five European grassland sites. The new version of the model (PASIM) calculates the growth and senescence of aboveground vegetation biomass accounting for sporadic removals when the grassland is cut and for continuous removals when it is grazed. Limitations induced by high leaf area index (LAI), soil water deficits and aging of leaves are also included. We added to this a simple empirical formulation to account for the detrimental impact on vegetation of trampling and excreta by grazing animals. Finally, a more realistic methane emission module than is currently used was introduced on the basis of the quality of the animals' diet. Evaluation of this improved version of PASIM is performed at (1) Laqueuille, France, on grassland continuously grazed by cattle with two plots of intensive and extensive grazing intensities, (2) Oensingen, Switzerland, on cut grassland with two fertilized and nonfertilized plots, and (3) Carlow, Ireland, on grassland that is both cut and grazed by cattle during the growing season. In addition, we compared the modeled animal CH4 emissions with in situ measurements on cattle for two grazing intensities at the grazed grassland site of Laqueuille. Altogether, when all improvements to the PASIM model are included, we found that the new parameterizations resulted into a better fit to the observed seasonal cycle of biomass and of measured CO2 and CH4 fluxes. However, the large uncertainties in measurements of biomass and LAI make simulation of biomass dynamics difficult to make. Also simulations for cut grassland are better than for grazed swards. This work paves the way for simulating greenhouse gas fluxes over grasslands in a spatially explicit manner, in order to quantify and understand the past, present and future role of grasslands in the greenhouse gas budget of the European continent.
Milk quality as affected by grazing time of day in Mediterranean goats.
Avondo, Marcella; Bonanno, Adriana; Pagano, Renato I; Valenti, Bernardo; Grigoli, Antonio Di; Luigia Alicata, M; Galofaro, Vittorio; Pennisi, Pietro
2008-02-01
We evaluated the effect of grazing time of day on goat milk chemical composition, renneting properties and milk fatty acid profile in a Mediterranean grazing system. Sixteen lactating Girgentana goats were divided into two experimental groups and housed in individual pens, where they received 500 g/d of barley grain. For 5 weeks the two groups were left to graze in two fenced plots on a ryegrass sward as follows: morning group (AM), from 9.00 to 13.00; afternoon group (PM), from 12.00 to 16.00. In selected herbage, water-soluble carbohydrates (WSC) increased in the afternoon (204 v. 174 g/kg dry matter, DM; P=0.01), whereas crude protein (CP) and linolenic acid decreased (respectively, 16.7 v. 19.8% DM; P<0.01 and 26.8 v. 30.4 g/kg DM; P<0.01). Pasture dry matter intake (DMI) was significantly higher in the afternoon (0.82 v. 0.75 kg/d; P=0.026). Fat corrected milk production (FCM), milk fat and lactose content were not affected by treatment, whereas protein and titrable acidity ( degrees SH) increased in the PM group (respectively 3.56 v. 3.42%; P=0.01; 3.55 v. 3.22 degrees SH/50 ml; P=0.01). In contrast, milk urea content was significantly higher in the AM group (381 v. 358 mg/l; P=0.037). The results seem to indicate that an improvement in ruminal efficiency might be obtained by shifting grazing time from morning to afternoon, as a consequence of a more balanced ratio between nitrogenous compounds and sugars. Indeed, the higher linolenic acid and the lower conjugated linoleic acid (CLA) (respectively 1.02 v. 0.90, P=0.037; 0.71 v. 0.81% of total fatty acids, P=0.022) in the milk of goats grazing in the afternoon seem to indicate a reduced biohydrogenation activity in the PM group.
NASA Astrophysics Data System (ADS)
Magnússon, B.; Magnússon, S. H.; Ólafsson, E.; Sigurdsson, B. D.
2014-06-01
Plant colonization and succession on Surtsey volcanic island, formed in 1963, have been closely followed. In 2013, a total of 69 vascular plant species had been discovered on the island; of these 59 were present and 39 had established viable populations. Surtsey had more than twice the species of any of the comparable neighbouring islands and all their common species had established on Surtsey. The first colonizers were dispersed by sea, but after 1985 bird-dispersal became the principal pathway with the formation of a seagull colony on the island and consequent site amelioration. This allowed wind-dispersed species to establish after 1990. Since 2007 there has been a net loss of species on the island. A study of plant succession, soil formation and invertebrate communities in permanent plots on Surtsey and on two older neighbouring islands (plants and soil) has revealed that seabirds, through their transfer of nutrients from sea to land, are major drivers of development of these ecosystems. In the area impacted by seagulls dense grassland swards have developed and plant cover, species richness, diversity, plant biomass and soil carbon become significantly higher than in low-impact areas, which remained relatively barren. A similar difference was found for the invertebrate fauna. After 2000, the vegetation of the oldest part of the seagull colony became increasingly dominated by long-lived, rhizomatous grasses (Festuca, Poa, Leymus) with a decline in species richness and diversity. Old grasslands of the neighbouring islands Elliðaey (puffin colony, high nutrient input) and Heimaey (no seabirds, low nutrient input) contrasted sharply. The puffin grassland of Elliðaey was very dense and species-poor. Dominated by Festuca and Poa, it it was very similar to the seagull grassland developing on Surtsey. The Heimaey grassland was significantly higher in species richness and diversity, and had a more even cover of dominants (Festuca/Agrostis/Ranunculus). We forecast that with continued erosion of Surtsey, loss of habitats and increasing impact from seabirds a lush, species poor grassland will develop and persist, as on the old neighbouring islands.
NASA Astrophysics Data System (ADS)
Magnússon, B.; Magnússon, S. H.; Ólafsson, E.; Sigurdsson, B. D.
2014-10-01
Plant colonization and succession on the volcanic island of Surtsey, formed in 1963, have been closely followed. In 2013, a total of 69 vascular plant species had been discovered on the island; of these, 59 were present and 39 had established viable populations. Surtsey had more than twice the species of any of the comparable neighbouring islands, and all of their common species had established on Surtsey. The first colonizers were dispersed by sea, but, after 1985, bird dispersal became the principal pathway with the formation of a seagull colony on the island and consequent site amelioration. This allowed wind-dispersed species to establish after 1990. Since 2007, there has been a net loss of species on the island. A study of plant succession, soil formation and invertebrate communities in permanent plots on Surtsey and on two older neighbouring islands (plants and soil) has revealed that seabirds, through their transfer of nutrients from sea to land, are major drivers of development of these ecosystems. In the area impacted by seagulls, dense grassland swards have developed and plant cover, species richness, diversity, plant biomass and soil carbon become significantly higher than in low-impact areas, which remained relatively barren. A similar difference was found for the invertebrate fauna. After 2000, the vegetation of the oldest part of the seagull colony became increasingly dominated by long-lived, rhizomatous grasses (Festuca, Poa, Leymus) with a decline in species richness and diversity. Old grasslands of the neighbouring islands Elliđaey (puffin colony, high nutrient input) and Heimaey (no seabirds, low nutrient input) contrasted sharply. The puffin grassland of Elliđaey was very dense and species-poor. It was dominated by Festuca and Poa, and very similar to the seagull grassland developing on Surtsey. The Heimaey grassland was significantly higher in species richness and diversity, and had a more even cover of dominants (Festuca/Agrostis/Ranunculus). We forecast that, with continued erosion of Surtsey, loss of habitats and increasing impact from seabirds a lush, species-poor grassland will develop and persist, as on the old neighbouring islands.
Rate, Andrew W; Lee, Karen M; French, Peter A
2004-02-01
Mineral sands mining involves stripping topsoil to access heavy-mineral bearing deposits, which are then rehabilitated to their original state, commonly pasture in south-west Western Australia. Organic amendments such as biosolids (digested sewage sludge) can contribute organic carbon to the rehabilitating system and improve soil chemical fertility and physical conditions. Use of biosolids also introduces the risk of contamination of the soil-plant system with heavy metals, but may be a useful source of trace elements to plants if the concentrations of these elements are low in unamended soil. We expected that biosolids amendment of areas mined for mineral sands would result in increased concentrations of metals in soils and plants, and that metal uptake would be decreased by adding stockpiled topsoil or by liming. A glasshouse experiment growing a mixed annual ryegrass (Lolium rigidum)-subterranean clover (Trifolium subterraneum) sward was conducted using two soil materials (residue sand/clay and conserved topsoil) from a mineral sands mine amended with different rates of biosolids (0, 10, 20, 50 dry t/ha), and including a liming treatment (2 t/ha). Total concentrations of metals (As, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil increased with increasing rate of biosolids application. Metal uptake was generally lower where topsoil was present and was decreased by liming. With increasing biosolids application, plant metal concentrations increased for Cd, Ni and Zn but decreased or were erratic for other elements. In clover, biosolids application removed the Zn deficiency observed where biosolids were not applied. Plant uptake of all elements increased with increasing biosolids application, suggesting dilution by increased plant biomass was responsible for erratic metal concentration results. Despite the observed increases in uptake of metals by plants, metal concentrations in both species were low and below food standard thresholds. It is unlikely that a single application of biosolids in this system posed a threat from heavy metal contamination of soils or plants, and was beneficial in terms of Zn nutrition of T. subterraneum.
Fiems, L O; De Boever, J L; De Vliegher, A; Vanacker, J M; De Brabander, D L; Carlier, L
2004-06-01
Chemical composition, digestibility, nutritive value and intake of hay from an agri-environmental management (EH) were compared with those from hay (Lolium perenne) from an intensive management (IH). IH was of low to moderate quality because of unfavourable weather conditions. EH was harvested mid-June of 2000 (EH1) and 2001 (EH2) on the same sward that had not received mineral fertilizer for 10 years. The EH was characterized by a species-rich botanical composition. On average, it had lower contents of protein (32%), NDF (9%) and ash (35%), and a higher concentration of water-soluble carbohydrates (117%) than IH. Digestibility of dry and organic matter, determined with sheep, was not different between IH and EH and averaged 59 and 63%, respectively. Crude fibre and NDF digestibility were lower in EH (58 and 57%, respectively) than in IH (70 and 69%, respectively). Net energy value for lactation did not differ between IH and EH and amounted to 4.78 MJ per kg DM. True protein digested in the small intestine and rumen degraded protein balance were lower in EH (63 and -60 g per kg DM) than in IH (71 and -33 g per kg DM). Intake of hay was investigated in Holstein-Friesian heifers and Belgian Blue double-muscled heifers (mean BW 280 +/- 22 kg and 269 +/- 21 kg, respectively), and in Belgian Blue non-lactating and non-pregnant double-muscled cows (initial BW 642 +/- 82 kg), using a cross-over design. Hay was freely available. It was supplemented with 1 kg concentrate daily. Dry matter intake from hay was higher for EH than for IH in heifers (4% and 13%, respectively in Holstein-Friesian and Belgian Blue heifers) and in cows (22%). Hay from an agri-environmental management may be used for low-performing animals, as energy intake only exceeded maintenance requirements by 20 to 35%. Several characteristics of EH were different between years, such as dry matter digestibility, net energy value for lactation and fermentable organic matter content.
Del Prado, A; Misselbrook, T; Chadwick, D; Hopkins, A; Dewhurst, R J; Davison, P; Butler, A; Schröder, J; Scholefield, D
2011-09-01
Multiple demands are placed on farming systems today. Society, national legislation and market forces seek what could be seen as conflicting outcomes from our agricultural systems, e.g. food quality, affordable prices, a healthy environmental, consideration of animal welfare, biodiversity etc., Many of these demands, or desirable outcomes, are interrelated, so reaching one goal may often compromise another and, importantly, pose a risk to the economic viability of the farm. SIMS(DAIRY), a farm-scale model, was used to explore this complexity for dairy farm systems. SIMS(DAIRY) integrates existing approaches to simulate the effect of interactions between farm management, climate and soil characteristics on losses of nitrogen, phosphorus and carbon. The effects on farm profitability and attributes of biodiversity, milk quality, soil quality and animal welfare are also included. SIMS(DAIRY) can also be used to optimise fertiliser N. In this paper we discuss some limitations and strengths of using SIMS(DAIRY) compared to other modelling approaches and propose some potential improvements. Using the model we evaluated the sustainability of organic dairy systems compared with conventional dairy farms under non-optimised and optimised fertiliser N use. Model outputs showed for example, that organic dairy systems based on grass-clover swards and maize silage resulted in much smaller total GHG emissions per l of milk and slightly smaller losses of NO(3) leaching and NO(x) emissions per l of milk compared with the grassland/maize-based conventional systems. These differences were essentially because the conventional systems rely on indirect energy use for 'fixing' N compared with biological N fixation for the organic systems. SIMS(DAIRY) runs also showed some other potential benefits from the organic systems compared with conventional systems in terms of financial performance and soil quality and biodiversity scores. Optimisation of fertiliser N timings and rates showed a considerable scope to reduce the (GHG emissions per l milk too). Copyright © 2011 Elsevier B.V. All rights reserved.
Greenhouse gas emissions from fen soils used for forage production in northern Germany
NASA Astrophysics Data System (ADS)
Poyda, Arne; Reinsch, Thorsten; Kluß, Christof; Loges, Ralf; Taube, Friedhelm
2016-09-01
A large share of peatlands in northwestern Germany is drained for agricultural purposes, thereby emitting high amounts of greenhouse gases (GHGs). In order to quantify the climatic impact of fen soils in dairy farming systems of northern Germany, GHG exchange and forage yield were determined on four experimental sites which differed in terms of management and drainage intensity: (a) rewetted and unutilized grassland (UG), (b) intensive and wet grassland (GW), (c) intensive and moist grassland (GM) and (d) arable forage cropping (AR). Net ecosystem exchange (NEE) of CO2 and fluxes of CH4 and N2O were measured using closed manual chambers. CH4 fluxes were significantly affected by groundwater level (GWL) and soil temperature, whereas N2O fluxes showed a significant relation to the amount of nitrate in top soil. Annual balances of all three gases, as well as the global warming potential (GWP), were significantly correlated to mean annual GWL. A 2-year mean GWP, combined from CO2-C eq. of NEE, CH4 and N2O emissions, as well as C input (slurry) and C output (harvest), was 3.8, 11.7, 17.7 and 17.3 Mg CO2-C eq. ha-1 a-1 for sites UG, GW, GM and AR, respectively (standard error (SE) 2.8, 1.2, 1.8, 2.6). Yield-related emissions for the three agricultural sites were 201, 248 and 269 kg CO2-C eq. (GJ net energy lactation; NEL)-1 for sites GW, GM and AR, respectively (SE 17, 9, 19). The carbon footprint of agricultural commodities grown on fen soils depended on long-term drainage intensity rather than type of management, but management and climate strongly influenced interannual on-site variability. However, arable forage production revealed a high uncertainty of yield and therefore was an unsuitable land use option. Lowest yield-related GHG emissions were achieved by a three-cut system of productive grassland swards in combination with a high GWL (long-term mean ≤ 20 cm below the surface).
d'Alexis, S; Periacarpin, F; Jackson, F; Boval, M
2014-08-01
Mixed grazing systems combining sheep and cattle have shown better growth performance for one or both species. This observation has been attributed to their complementary feeding behaviour and the reduced host infection by gastrointestinal nematodes. Less attention has been paid to mixed grazing systems combining goats and cattle. Here, continuously grazing goats mixed with cattle (M) were compared with control goats reared alone (C) under tropical conditions. The comparison was conducted with gastrointestinal nematode-infected (I) and non-infected (nI) goats. Thus, the four treatments were cattle with gastrointestinal nematode-infected goats (MI), gastrointestinal nematode-infected goats alone (CI), cattle with non-infected goats (MnI) and non-infected goats (CnI). Average daily gain (ADG, g/day) and grass production were measured for the four groups of animals (six goats and two heifers treated with MI or MnI) grazing for 3 months on 4 subplots. Monthly measurements were performed over 5-day periods. This pattern was replicated in space for a second set of four subplots and in time for six successive cohorts of animals (bands 1 to 6). The ADG of goats in mixed grazing conditions was higher than controls irrespective of the infection status (32.6 v. 18.4 g/day for MI v. CI; 44.2 v. 33.5 g/day for MnI v. CnI). Concomitantly, the average biomass was lower for mixed grazing animals compared with controls (174 v. 170 for MI and MnI; 235 v. 208 for CI and CnI, respectively), suggesting better use of the sward. For daily BW gain (g/kg DM), mixed grazing also yielded better results than the control (1.88 v. 0.52 g BW/kg DM per day for MI v. CI; 2.08 v. 1.47 g BW/kg DM per day for MnI and CnI). Mixed grazing of goats and heifers offers a promising alternative for increasing goat and overall animal production as well as improving the management of pastures.
Norbury, Grant; Byrom, Andrea; Pech, Roger; Smith, James; Clarke, Dean; Anderson, Dean; Forrester, Guy
2013-10-01
Biotic invasions and habitat modification are two drivers of global change predicted to have detrimental impacts on the persistence of indigenous biota worldwide. Few studies have investigated how they operate synergistically to alter trophic interactions among indigenous and nonindigenous species in invaded ecosystems. We experimentally manipulated a suite of interacting invasive mammals, including top predators (cat Felis catus, ferret Mustela furo, stoat M. erminea), herbivores (rabbit Oryctolagus cuniculus, hare Lepus europaeus), and an insectivore (hedgehog Erinaceus europaeus occidentalis), and measured their effects on indigenous lizards and invertebrates and on an invasive mesopredator (house mouse Mus musculus). The work was carried out in a grassland/shrubland ecosystem that had been subjected to two types of habitat modification (widespread introduction of high-seed-producing pasture species, and areas of land use intensification by fertilization and livestock grazing). We also quantified food productivity for indigenous and invasive fauna by measuring pasture biomass, as well as seed and fruit production by grasses and shrubs. Indigenous fauna did not always increase following top-predator suppression: lizards increased on one of two sites; invertebrates did not increase on either site. Mesopredator release of mice was evident at the site where lizards did not increase, suggesting negative effects of mice on lizard populations. High mouse abundance occurred only on the predator-suppression site with regular production of pasture seed, indicating that this food resource was the main driver of mouse populations. Removal of herbivores increased pasture and seed production, which further enhanced ecological release of mice, particularly where pasture swards were overtopped by shrubs. An effect of landscape supplementation was also evident where nearby fertilized pastures boosted rabbit numbers and the associated top predators. Other studies have shown that both suppression of invasive predators and retiring land from grazing can benefit indigenous species, but our results suggest that the ensuing vegetation changes and complex interactions among invasive species can block recovery of indigenous fauna vulnerable to mesopredators. Top-down and bottom-up ecological release of mesopredators and landscape supplementation of top predators are key processes to consider when managing invaded communities in complex landscapes.
Li, Dejun; Lanigan, Gary; Humphreys, James
2011-01-01
There is uncertainty about the potential reduction of soil nitrous oxide (N2O) emission when fertilizer nitrogen (FN) is partially or completely replaced by biological N fixation (BNF) in temperate grassland. The objectives of this study were to 1) investigate the changes in N2O emissions when BNF is used to replace FN in permanent grassland, and 2) evaluate the applicability of the process-based model DNDC to simulate N2O emissions from Irish grasslands. Three grazing treatments were: (i) ryegrass (Lolium perenne) grasslands receiving 226 kg FN ha−1 yr−1 (GG+FN), (ii) ryegrass/white clover (Trifolium repens) grasslands receiving 58 kg FN ha−1 yr−1 (GWC+FN) applied in spring, and (iii) ryegrass/white clover grasslands receiving no FN (GWC-FN). Two background treatments, un-grazed swards with ryegrass only (G–B) or ryegrass/white clover (WC–B), did not receive slurry or FN and the herbage was harvested by mowing. There was no significant difference in annual N2O emissions between G–B (2.38±0.12 kg N ha−1 yr−1 (mean±SE)) and WC-B (2.45±0.85 kg N ha−1 yr−1), indicating that N2O emission due to BNF itself and clover residual decomposition from permanent ryegrass/clover grassland was negligible. N2O emissions were 7.82±1.67, 6.35±1.14 and 6.54±1.70 kg N ha−1 yr−1, respectively, from GG+FN, GWC+FN and GWC-FN. N2O fluxes simulated by DNDC agreed well with the measured values with significant correlation between simulated and measured daily fluxes for the three grazing treatments, but the simulation did not agree very well for the background treatments. DNDC overestimated annual emission by 61% for GG+FN, and underestimated by 45% for GWC-FN, but simulated very well for GWC+FN. Both the measured and simulated results supported that there was a clear reduction of N2O emissions when FN was replaced by BNF. PMID:22028829
NASA Astrophysics Data System (ADS)
Calanca, Pierluigi; Mosimann, Eric; Meisser, Marco; Deléglise, Claire
2014-05-01
Grasslands cover the majority of the world's agricultural area, provide the feedstock for animal production, contribute to the economy of farms, and deliver a variety of ecological and societal services. Assessing responses of grassland ecosystems to climate change, in particular climate-related risks, is therefore an important step toward identifying adaptation options necessary to secure grassland functioning and productivity. Of particular concern are risks in relation to drought and extreme temperatures, on the one hand because grasslands are very sensitive to water stress, on the other hand also because global warming is expected to increase the occurrence and intensity of these events in many agricultural areas of the world. In this contribution we review findings of ongoing experimental and modelling activities that aim at examining the implications of climate extremes and climate change for grassland vegetation dynamics and herbage productivity. Data collected at the Jura foot in western Switzerland indicate that water scarcity and associated anomalous temperatures slowed plant development in relation to both the summer drought of 2003 as well as the spring drought of 2011, with decline in annual yields of up to 40%. Further effects of drought found from the analysis of recent field trials explicitly designed to study the effects of different water management regimes are changes in the functional composition and nutritive value of grasslands. Similar responses are disclosed by simulations with a process based grassland ecosystem model that was originally developed for the simulation of mixed grass/clover swards. Simulations driven with historical weather records from the Swiss Plateau suggest that drought and extreme temperature could represent one of the main reasons for the observed yield variability in productive systems. Simulations with climate change scenarios further reveal important changes in ecosystem dynamics for the current century. The results show that herbage growth could basically benefit from increasing temperatures and CO2 concentrations, which promote in particular the development of clover. However, productivity is found to decline in the long term on the background of a projected decrease in summer precipitation. This has implications for future grassland production across Europe and in other agricultural area of the world, and calls for the adoption of adaptation measures.
The use of sustainable 'biochar compost' for remediation of contaminated land
NASA Astrophysics Data System (ADS)
Ryan, Aoife; Street-Perrott, Alayne; Eastwood, Daniel; Brackenbury, Sion
2014-05-01
South Wales (UK) has a long industrial history which, since the collapse of the coal-mining industry, has left a large number of contaminated former colliery sites. Bio-remediation of these areas by re-vegetation with native grasses aims to prevent erosion and leaching of pollutants into drainage waters. However, acid pH, low organic-matter content and unsuitable soil structure have limited the success of re-vegetation and prompted research into the development of artificial soils. This study aims to assess the value of creating an artificial soil cover by adding "biochar compost" to the top 10cm of a large volume of contaminated colliery spoil (high in As and Cu) to be moved during construction of a flood-alleviation barrage in Cwm Dulais (Swansea). It is proposed to use biochar, manufactured from chipped biomass sourced from a local stand of invasive Rhododendron ponticum using a BiGchar 1000 fast pyrolysis-gasification unit, in combination with locally produced BSI PAS100-certified Pteridium aquilinum (bracken) compost, to remediate a large area (2.3ha) of landscaped colliery waste and re-establish a cover of native grasses suitable for sheep grazing. Pot and field trials are being used to determine the most appropriate biochar:compost mix. In a 90-day outdoor pot trial, a commercial acid-grassland seed mix was grown in screened (< 20mm) colliery spoil, to which 25%v/v bracken compost (with/without composted manure) was added as a source of organic matter. This application rate of compost (equivalent to 250m3ha-1) was based on a successful coal-tip remediation trial at Ffos-y-Frân (Jarvis & Walton, WRAP Report, 2011). Varying application rates of biochar (0%, 2%, 5%, 10% or 20%v/v) were employed. Additional benefits of adding mycorrhizal inoculant or Trifolium repens (white clover) seed were also tested. Six-fold replication was used, with appropriate controls. The performance of each treatment was assessed from its maximum sward height and final above-ground dry phytomass. To evaluate the quality of the resulting grassland for sheep grazing, grass samples are being analysed for nutrients, heavy metals and metalloids by elemental analysis (EA) and X-ray fluorescence spectroscopy (XRF). These results will be compared with grass samples collected from Cwm Dulais. Initial findings suggest that addition of biochar compost improved grass growth compared with unamended colliery spoil.
Gregorini, P; Waghorn, G C; Kuhn-Sherlock, B; Romera, A J; Macdonald, K A
2015-09-01
The aim of this study was to investigate and assess differences in the grazing pattern of 2 groups of mature dairy cows selected as calves for divergent residual feed intake (RFI). Sixteen Holstein-Friesian cows (471±31kg of body weight, 100 d in milk), comprising 8 cows selected as calves (6-8 mo old) for low (most efficient: CSCLowRFI) and 8 cows selected as calves for high (least efficient: CSCHighRFI) RFI, were used for the purpose of this study. Cows (n=16) were managed as a single group, and strip-grazed (24-h pasture allocation at 0800h) a perennial ryegrass sward for 31 d, with measurements taken during the last 21 d. All cows were equipped with motion sensors for the duration of the study, and jaw movements were measured for three 24-h periods during 3 random nonconsecutive days. Measurements included number of steps and jaw movements during grazing and rumination, plus fecal particle size distribution. Jaw movements were analyzed to identify bites, mastication (oral processing of ingesta) during grazing bouts, chewing during rumination, and to calculate grazing and rumination times for 24-h periods. Grazing and walking behavior were also analyzed in relation to the first meal of the day after the new pasture was allocated. Measured variables were subjected to multivariate analysis. Cows selected for low RFI as calves appeared to (a) prioritize grazing and rumination over idling; (b) take fewer steps, but with a higher proportion of grazing steps at the expense of nongrazing steps; and (c) increase the duration of the first meal and commenced their second meal earlier than CSCHighRFI. The CSCLowRFI had fewer jaw movements during eating (39,820 vs. 45,118 for CSCLowRFI and CSCHighRFI, respectively), more intense rumination (i.e., 5 more chews per bolus), and their feces had 30% less large particles than CSCHighRFI. These results suggest that CSCLowRFI concentrate their grazing activity to the time when fresh pasture is allocated, and graze more efficiently by walking and masticating less, hence they are more efficient grazers than CSCHighRFI. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Schulze, A K S; Nørgaard, P; Byskov, M V; Weisbjerg, M R
2015-02-01
The physical structure value of conserved grass/clover forages of spring harvest was evaluated by assessing effects of harvest time, conservation method, iNDF/NDF ratio and NDF intake (NDFI) per kg BW on chewing activity and fecal particle size in dairy heifers. A mixed sward consisting of ryegrass (Lolium perenne), red clover (Trifolium pratense) and white clover (Trifolium repens) was harvested in 2009 on May 9 (early) and 25 (late), and both cuts were conserved as silage and hay. The early silage, early hay, late silage and late hay contained dry matter (DM) of 454, 842, 250 and 828 g/kg, and NDF of 315, 436, 414 and 503 g/kg DM, respectively. Forages were fed as sole feed to four Jersey heifers of 435±30 kg BW in a 4×4 Latin square experiment. Feeding level was 90% of individual ad libitum intake, divided equally across two daily meals offered at 0800 and 1530 h. Chewing activity was estimated from recorded jaw movements (JM) oscillations continuously logged for 96 h and summarized per 24 h as mean effective rumination time and eating time. Eating behavior was further observed during four 20-min test meals. Weight proportion of large feces particles (>1.0 mm) and geometric mean fecal particle size (GPS) were calculated. Potentially indigestible NDF (iNDF) was estimated by incubation for 288 h in situ. The daily DM intake (DMI) decreased with progressing maturity at harvest (P<0.001) while daily NDFI was unaffected by harvest time (P>0.05). Earlier harvest led to less rumination per kg NDFI (P<0.01), similar eating time per kg NDFI (P>0.05) and similar proportion of large particles (P>0.01) compared with later harvest. Rumination time per kg NDFI decreased with higher NDFI per kg BW (P<0.001) and with lower iNDF/NDF ratio (P<0.01). Content and potential digestibility of NDF was greater in hay than in silage from the same harvest probably due to field loss and therefore confounded effects of conservation method. This study of high digestibility grass/clover silage and hay showed that NDF content and NDFI per kg BW affect fecal particle size and rumination time per kg NDF, and suggests implementation of NDFI per kg BW in systems evaluating physical structure in diets.
International postseismic response after the Mw=7.8 April 16, 2016 Pedernales Earthquake in Ecuador
NASA Astrophysics Data System (ADS)
Font, Y.; Ruiz, M. C.; Alvarado, A. P.; Mercerat, D.; Beck, S. L.; Leon Rios, S.; Meltzer, A.; Charvis, P.; Regnier, M. M.; Jarrin, P.; Rietbrock, A.; Vasconez, F.; Dionicio, V.; Calvache, M. L.; Singaucho, J. C.; Pazmino, A.; Rolandone, F.; Mothes, P. A.; Nocquet, J. M.; Martin, X.; Viracucha, C.; Audin, L.; Saillard, M.; Laurendeau, A.; Perrault, M.; Garth, T.; Pernoud, M.; Barros, J. G.; Yates, B.; Malengros, D.; Oregioni, D.; Villegas Lanza, J. C.; Cisneros, D.; Gomez, J.; Montes, L.; Beauval, C. M.; Bertrand, E.; Delouis, B.; Ruiz Paspuel, A. G.; Freymueller, J. T.; Williams, K.; La Femina, P.; Fuenzalida, A.; Mariniere, J.; Cheze, J.; Gueguen, P.; Maron, C.; Michaud, F.; Yepes, H. A.; Palacios, P.; Vallee, M.; Deschamps, A.; Gabriela, P.; Ambrois, D.; Ramos, C.; Courboulex, F.
2016-12-01
The Pedernales earthquake is a large Mw7.8 subduction earthquake caused by the relative convergence between the Nazca and South American plates. It occured north of the city of Pedernales, at 21 km depth and struck the coastal and densely populated Manabi Province, causing many casualties, structural damages and widespread surficial deformation. The 2016 epicenter was located near the Mw 7.8 1942 epicenter. Both events are similar in size and probably ruptured the same segment, which also corresponds to the southern part of the 1906 Mw8.8 Ecuador-Colombia megathrust rupture zone. Immediately after the earthquake, an international team from Ecuador, France, Colombia, the United Kingdom, Peru and the United States coordinated a scientific response with the respective financial support of EPN, IRD and CNRS, SGC, NERC and NSF. Equipment was provided by IGEPN, IRD, CEREMA, SGC, LIVERPOOL, IRIS PASSCAL and UNAVCO. Within a 1.5 month, the team progressively deployed a temporary seismic network of about 70 accelerometer and seismic stations, and 17 continuous GPS stations, complementing the permanent seismic, accelerometer and geodetic network of the IG-EPN. The dense network covers the 300 x 150 km wide area affected by the earthquake, including a trench-parallel line of 10 ocean bottom seismometers deployed by the R/V Orion of INOCAR for 6 months, assuring a minimized azimuthal gap. Intense seismicity is observed up to 150 km N- and S-ward from the rupture zone aligning mainly along 3 seismic strips roughly perpendicular to the trench and also near the rupture area. Peak ground and spectral accelerations are compared with existing ground-motion prediction equations (GMPEs) developed for interface earthquakes. Different soil investigations were realized to highlight soil characteristics in cities. The geodetic observations captured the immediate afterslip and will help determining the time history of afterslip and viscoelastic relaxation in response to this earthquake. A field survey was conducted on-land to describe the coseismic tectonic deformations and damages to buildings. At sea, a multibeam bathymetry survey of the margin over the rupture zone was conducted by the R/V Orion, making it possible to tentatively estimate and quantify sea-floor deformation after and before the earthquake.
1 Reevaluation of the integrated horizontal flux approach
NASA Astrophysics Data System (ADS)
Neftel, Albrecht; Häni, Christoph; Hensen, Arjan
2017-04-01
The integrated horizontal flux (IHF) method is a simplified mass balance approach frequently used to determine emissions from confined source areas, e.g. NH3 emissions from slurry spread to a circular plot (Denmead, 2008). With a mast in the center of the circle with radius R, the total flux F of the upwind emitted NH3 is approximated from the measured vertical (z) profiles of concentration (c) and horizontal wind speed (u) as (Denmead 1983): F = 1/R\\intz=zplz=0\\overline{u(c - cbgd)}dz where cbgd is the ``background'' concentration upwind of the emitting area and zpl is the maximum height of the emission plume (where the concentration c equals cbgd).The IHF method is a robust approach, as it is independent of surface characteristics and the state of atmospheric diffusion (Denmead, 2008; Laubach,2010). Ryden and McNeill (1984) published guidelines on how to evaluate IHF measurements, which have been used in many investigations that followed. In the following we analyze systematic biases that might occur by applying different recipes to both modelled concentration profiles as well as measured profiles from a recent field experiment in the Netherlands. Typical differencs using the approach by Ryden et al. (1984) are in the order +10% to +30% compared to the reference values from the model or alternative determination of the emissions based on the experimental values. The positive biases consist of several contributions: horizontal diffusion, logarithmic fit of the concentration profile, displacement height. References Denmead, O. T., 1983. Micrometeorological methods for measuring gaseous losses of nitrogen in the field. In: Gaseous Loss of Nitrogen from Plum-Soil Systems (Freney, J. R.; Simpson, J. R., Eds) Martinus Nijhof/Dr W. Junk, The Hague, pp. 133-157. Denmead, O. T., 2008. Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere. Plant Soil 309 (1-2), 5a\\euro 24.Laubach, J., 2010. Testing of a lagrangian model of dispersion in the surface layer with cattle methane emissions. Agr. Forest Meteorol. 150 (11), 1428a \\euro 1442.Ryden, J., McNeill, J., 1984. Application of the Micrometeorological Mass Balance Method to the Determination of Ammonia Loss from a Grazed Sward. J. Sci. Food Agricult. 35 (12), 1297a\\euro 1310.
238U, and its decay products, in grasses from an abandoned uranium mine
NASA Astrophysics Data System (ADS)
Childs, Edgar; Maskall, John; Millward, Geoffrey
2016-04-01
Bioaccumulation of radioactive contaminants by plants is of concern particularly where the sward is an essential part of the diet of ruminants. The abandoned South Terras uranium mine, south west England, had primary deposits of uraninite (UO2) and pitchblende (U3O8), which contained up to 30% uranium. When the mine was active uranium and radium were extracted but following closure it was abandoned without remediation. Waste rock and gangue, consisting of inefficiently processed minerals, were spread around the site, including a field where ruminants are grazed. Here we report the activity concentrations of 238U, 235U 214,210Pb, and the concentrations of selected metals in the soils, roots and leaves of grasses taken from the contaminated field. Soil samples were collected at the surface, and at 30 cm depth, using an auger along a 10-point transect in the field from the foot of a waste heap. Whole, individual grass plants were removed with a spade, ensuring that their roots were intact. The soils and roots and grass leaves were freeze-dried. Activity concentrations of the radionuclides were determined by gamma spectroscopy, following 30 days incubation for development of secular equilibrium. Dried soils, roots and grasses were also digested in aqua regia and the concentrations of elements determined by ICP techniques. Maximum activity concentrations of 238U, 235U, 214Pb and 210Pb surface soils were 63,300, 4,510, 23,300 and 49,400 Bq kg-1, respectively. The mean 238U:235U ratio was 11.8 ± 1.8, an order of magnitude lower than the natural value of 138, indicating disequilibrium within the decay chain due to mineral processing. Radionuclides in the roots had 5 times lower concentration and only grass leaves in the vicinity of the waste heap had measureable values. The mean soil to root transfer factor for 238U was 36%, the mean root to leaf was 3% and overall only 0.7% of 238U was transferred from the soil to the leaves. The roots contained 0.8% iron, possibly as iron plaque acting to mediate 238U transfer within the plants. The results are discussed in the context of remediation of grazing land contaminated with radionuclides.
Coleman, J; Pierce, K M; Berry, D P; Brennan, A; Horan, B
2010-09-01
The objective of the study was to quantify the effect of genetic improvement using the Irish total merit index, the Economic Breeding Index (EBI), on overall performance and lactation profiles for milk, milk solids, body weight (BW), and body condition score (BCS) within 2 pasture-based systems of milk production likely to be used in the future, following abolition of the European Union's milk quota system. Three genotypes of Holstein-Friesian dairy cattle were established from within the Moorepark dairy research herd: LowNA, indicative of animals with North American origin and average or lower genetic merit at the time of the study; HighNA, North American Holstein-Friesians of high genetic merit; and HighNZ, New Zealand Holstein-Friesians of high genetic merit. Animals from within each genotype were randomly allocated to 1 of 2 possible pasture-based feeding systems (FS): 1) The Moorepark pasture (MP) system (2.64 cows/ha and 344 kg of concentrate supplement per cow per lactation) and 2) a high output per hectare (HC) system (2.85 cows/ha and 1,056 kg of concentrate supplement per cow per lactation). Pasture was allocated to achieve similar postgrazing residual sward heights for both treatments. A total of 126, 128, and 140 spring-calving dairy cows were used during the years 2006, 2007, and 2008, respectively. Each group had an individual farmlet of 17 paddocks and all groups were managed similarly throughout the study. The effects of genotype, FS, and the interaction between genotype and FS on milk production, BW, and BCS across lactation were studied using mixed models with factorial arrangements of genotype and FS accounting for the repeated cow records across years. No significant genotype by FS interaction was observed for any of the variables measured. Results show that milk solids production of the national average dairy cow can be increased across lactation through increased EBI. High EBI genotypes (HighNA and HighNZ) produced more milk solids per cow and per hectare than the LowNA genotype (2.7 and 4.1%, respectively). The results also suggest that when concentrate supplementation is used to facilitate increased stocking rates, increased herbage utilization and decreased substitution of concentrate for herbage can be achieved. When implemented, the HC FS could increase the overall productivity of pasture-fed dairy farming systems where land availability is the primary limiting factor of production. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Feeding value of pastures for ruminants.
Waghorn, G C; Clark, D A
2004-12-01
Perennial ryegrass is the primary forage component of ruminant diets in New Zealand. It is persistent and palatable, and immature ryegrass has a high nutritive value (NV). However, seedhead development substantially lowers its feeding value (FV) as fibre concentration increases, the rate and extent of digestibility decreases, and voluntary intake declines. Ryegrass pastures are susceptible to accumulation of endophytic and saprophytic fungi in dead material at the base of the sward, especially when mature and laxly grazed. Feeding forage legumes to ruminants grazing grass-dominant pastures will improve animal performance and lessen the reliance on a single species to meet all nutritional requirements. The FV of forage is a function of intake and NV, measured by chemical analyses and animal feeding trials. Performance of individual animals grazing forages is usually limited by energy intake because structural fibre can slow digestion and clearance from the rumen and because of competition between individuals for available feed. The use of metabolisable energy (ME) content of forage to signify FV can give a reasonable indication of animal performance, but it should be used in conjunction with chemical analyses to improve the accuracy of predictions. The relationship between FV, pasture production, animal performance and profitability is complex. The importance of skilled management to maintain pasture quality and optimise animal performance under inconsistent climatic conditions should not be underestimated. Acceptable animal performance with minimal veterinary intervention requires good nutrition, but the genetic potential of livestock in New Zealand cannot be met solely by grazing pasture, especially when a high utilisation of pasture is required to maintain quality and profitability. Producers are responding to industry demands to reduce the seasonality in supply of milk and meat by changing lambing and calving dates, and extending lactation length in dairy cows. Social changes include adoption of once-daily milking in the dairy industry. Some changes have necessitated increased use of supplements and others can be met by feeding forages with a higher FV than ryegrass, all of which require an improved knowledge of feed quality. This information is available through rapid and inexpensive near infrared spectroscopy (NIRS) analysis, enabling animal nutritional needs to be balanced by appropriate nutrient supply. It is essential that producers continue to improve animal welfare, limit excessive use of fertilisers and meet the demands of overseas consumers. Good nutrition, with an increased use of legumes and other forages to complement ryegrass pastures, will enable these objectives to be achieved.
Dini, Yoana; Gere, José; Briano, Carolina; Manetti, Martin; Juliarena, Paula; Picasso, Valentin; Gratton, Roberto; Astigarraga, Laura
2012-01-01
Simple Summary GHGs emissions are relevant in evaluating environmental impact of farming systems. Methane (CH4) produced by enteric fermentation accounts for half of all anthropogenic emissions of GHGs in Uruguay, where ruminant production is based on year round grazing of forages. Here we compared milk production and CH4 emissions by dairy cows grazing two contrasting mixed pastures (rich in legumes or rich in grasses) using the SF6 tracer technique adapted to collect breath samples over 5-days periods. There were no differences in milk or CH4 production between the contrasting pastures, probably because of the high herbage allowance that enabled selective grazing by cows. Abstract Understanding the impact of changing pasture composition on reducing emissions of GHGs in dairy grazing systems is an important issue to mitigate climate change. The aim of this study was to estimate daily CH4 emissions of dairy cows grazing two mixed pastures with contrasting composition of grasses and legumes: L pasture with 60% legumes on Dry Matter (DM) basis and G pasture with 75% grasses on DM basis. Milk production and CH4 emissions were compared over two periods of two weeks during spring using eight lactating Holstein cows in a 2 × 2 Latin square design. Herbage organic matter intake (HOMI) was estimated by chromic oxide dilution and herbage organic matter digestibility (OMD) was estimated by faecal index. Methane emission was estimated by using the sulfur hexafluoride (SF6) tracer technique adapted to collect breath samples over 5-day periods. OMD (0.71) and HOMI (15.7 kg OM) were not affected by pasture composition. Milk production (20.3 kg/d), milk fat yield (742 g/d) and milk protein yield (667 g/d) were similar for both pastures. This may be explained by the high herbage allowance (30 kg DM above 5 cm/cow) which allowed the cows to graze selectively, in particular in grass sward. Similarly, methane emission expressed as absolute value (368 g/d or 516 L/d) or expressed as methane yield (6.6% of Gross Energy Intake (GEI)) was not affected by treatments. In conclusion, at high herbage allowance, the quality of the diet selected by grazing cows did not differ between pastures rich in legumes or rich in grasses, and therefore there was no effect on milk or methane production. PMID:26486922
Vibart, R E; Tavendale, M; Otter, D; Schwendel, B H; Lowe, K; Gregorini, P; Pacheco, D
2017-07-01
Eighty late-lactation dairy cows were used to examine the effects of allocating a new pasture strip of a sward based on ryegrass (Lolium perenne L.) in the morning (a.m.; ∼0730 h) or in the afternoon (p.m.; ∼1530 h) on milk production and composition, nitrogen (N) utilization, and grazing behavior. Cows grazed the same pasture strips for 24 h and were offered the same daily herbage allowance. Herbage composition differed among treatments; p.m. herbage had greater dry matter (DM; 22.7 vs. 19.9%), organic matter (OM; 89.5 vs. 88.9%), and water-soluble carbohydrate (10.9 vs. 7.6%) concentrations and lesser crude protein (20.5 vs. 22.2%) and neutral detergent fiber (48.8 vs. 50.4%) concentrations compared with a.m. herbage. Total fatty acids (FA), α-linolenic acid, and polyunsaturated FA (PUFA) were greater in a.m. herbage, whereas monounsaturated FA were greater in p.m. herbage. Estimates of herbage DM intake did not differ among treatments. Daily milk yields and milk fat and milk protein concentrations were similar among treatments, whereas milk fat (684 vs. 627 g/cow), milk protein (545 vs. 505 g/cow), and milk solids (milk fat + milk protein) yields (1,228 vs. 1,132 g/cow) tended to be greater for cows on p.m. herbage. Rumenic acid and total PUFA in milk were greater for cows on a.m. herbage, whereas oleic acid was greater for cows on p.m. herbage. Estimates of urinary N excretion (g/d) did not differ among treatments, but urinary N concentrations were greater for cows on a.m. herbage (5.85 vs. 5.36 g/L). Initial herbage mass (HM) available (kg of DM/ha) and instantaneous HM disappearance rates (kg of DM/ha and kg of DM/h) did not differ, but fractional disappearance rates (0.56 vs. 0.74 per hour for a.m. vs. p.m., respectively) differed. Under the current conditions, timing of pasture strip allocation altered the herbage nutrient supply to cows; allocating a fresh strip of pasture later in the day resulted in moderate increases in milk and milk solids yields in late-lactation dairy cows. Conversely, a greater concentration of precursor FA in a.m. herbage resulted in a greater concentration of beneficial FA in milk, compared with cows on p.m. herbage. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Schwarte, K A; Russell, J R; Morrical, D G
2011-10-01
A 2-yr grazing experiment was conducted to assess the effects of grazing management on cattle distribution and pasture and stream bank characteristics. Six 12.1-ha cool-season grass pastures in central Iowa were allotted to 1 of 3 treatments: continuous stocking with unrestricted stream access (CSU), continuous stocking with stream access restricted to 4.9-m-wide stabilized crossings (CSR), or rotational stocking with stream access restricted to a riparian paddock (RP). Pastures were stocked with 15 fall-calving Angus cows (Bos taurus L.) from mid-May to mid-October for 153 d in 2008 and 2009. A global positioning system (GPS) collar recording cow position every 10 min was placed on at least 1 cow per pasture for 2 wk of each month from May through September. Off-stream water was provided to cattle in CSU and CSR treatments during the second of the 2 wk when GPS collars were on the cattle. A black globe temperature relative humidity index (BGTHI) was measured at 10-min intervals to match the time of the GPS measurements. Each month of the grazing season, forage characteristics (sward height, forage mass, and CP, IVDMD, and P concentrations) and bare and fecal-covered ground were measured. Stream bank erosion susceptibility was visually scored in May, August, and October (pre-, mid-, and post-stocking). Cattle in RP and CSR treatments spent less time (P < 0.10) within the stream zone (0 to 3 m from stream center) in June and August and in the streamside zone (0 to 33 m from stream zone) in May through August and May through September, respectively, than cattle in CSU pastures. However, off-stream water had no effect on cattle distribution. Compared with the CSU treatment, the CSR treatment reduced the probability (P < 0.10) that cattle were within the riparian zone (0 to 36 m from stream center) at BGTHI of 50 to 100. Bare ground was greater (P < 0.10) in pastures with the CSU than CSR and RP treatments in the stream and streamside zones in September and October and in July and September. Streams in pastures with the CSU treatment had less stable banks (P < 0.10) mid- and post-stocking than RP or CSR treatments. Results show that time spent by cattle near pasture streams can be reduced by RP or CSR treatments, thereby decreasing risks of sediment and nutrient loading of pasture streams even during periods of increased BGTHI.
Zhao, Y G; Annett, R; Yan, T
2017-08-01
Thirty-six nonpregnant hill ewes (18 pure Scottish Blackface and 18 Swaledale × Scottish Blackface) aged 18 mo and weighing 48 ± 4.8 kg were allocated to 3 forage treatments balanced for genotype and BW. Each genotype was offered 3 forages (pelleted ryegrass, fresh lowland grass, and fresh hill grass) ad libitum with 6 ewes for each of the 6 genotype × diet combination treatments. Pelleted ryegrass was sourced from a commercial supplier (Drygrass South Western Ltd, Burrington, UK). Fresh lowland grass was harvested daily in the morning from a third regrowth perennial ryegrass () sward. Fresh hill grass was harvested from a seminatural hill grassland every 2 d and stored in plastic bags at 4 to 5°C until offered. The animals were individually housed in pens and offered experimental diets for 14 d before being transferred to 6 individual respiration chambers for a further 4 d, during which feed intake, fecal and urine outputs, and CH emissions were measured. There was no interaction between genotype and forage types on any variable measured. In a comparison of effects of the 3 forages, pelleted ryegrass had the greatest ( < 0.001) values in DMI, GE intake, CH emissions, N intake (NI), and fecal N (FN), urine N (UN), and manure N (MN) outputs, whereas hill grass had the lowest ( < 0.001) values in DMI, energy (GE, DE, and ME) intake, CH emissions, NI, UN, and MN. However, pelleted ryegrass had the lowest ratio in CH emissions per unit DMI ( = 0.022) or GE intake ( = 0.026) or UN excretion as a proportion of NI or MN ( < 0.001). Lowland grass had a greater ( < 0.001) digestibility of DM, OM, CP, NDF, ADF, and GE and a greater ( < 0.001) ME:GE ratio or retained N:NI ratio than pelleted ryegrass and hill grass. Genotypes of sheep had no effect on any variable in feed intake, digestibility, CH emissions, or N utilization. The CH conversion factors (CH energy/GE) for pelleted ryegrass, lowland grass, and hill grass were 4.4, 5.7, and 5.6%, respectively. All data were then pooled to develop regression equations between CH and DMI or between N excretions (FN, UN, and MN) and NI. Methane emissions and N excretions were positively related to DMI and NI ( < 0.001), respectively. However, increasing DMI could reduce CH emissions per kilogram DMI. These equations add new information in predicting enteric CH emissions and N utilization efficiency and can be used to quantify the environmental footprint of hill sheep production systems.
Halmemies-Beauchet-Filleau, A; Kairenius, P; Ahvenjärvi, S; Crosley, L K; Muetzel, S; Huhtanen, P; Vanhatalo, A; Toivonen, V; Wallace, R J; Shingfield, K J
2013-04-01
The effect of forage conservation method on ruminal lipid metabolism and microbial ecology was examined in 2 complementary experiments in cows. Treatments comprised fresh chopped grass, barn-dried hay, or untreated (UTS) or formic acid-treated silage (FAS) prepared from the same grass sward. Preparation of conserved forages coincided with the collection of samples from cows offered fresh grass. In the first experiment, 5 multiparous Finnish Ayrshire cows (229 d in milk) were used to compare the effects of feeding diets based on grass followed by hay during 2 consecutive 14-d periods separated by a 5-d transition during which extensively wilted grass was fed. In the second experiment, 5 multiparous Finnish Ayrshire cows (53 d in milk) were assigned to 1 of 2 blocks and allocated treatments according to a replicated 3×3 Latin square design with 14-d periods to compare the effects of hay, UTS, and FAS. Cows received 7 or 9 kg/d of the same concentrate in experiments 1 and 2, respectively. Conservation of grass by drying, but not ensiling, decreased forage fatty acid content primarily due to losses of 18:2n-6 and 18:3n-3. Compared with grass, feeding hay had no effect on dry matter intake (DMI), rumen pH, or fermentation characteristics, other than increasing ammonia content, but lowered whole-tract organic matter and fiber digestibility (experiment 1). Relative to hay, silage increased DMI, rumen volatile fatty acid (VFA) concentrations, and molar proportions of butyrate, and decreased molar acetate proportions (experiment 2). Compared with UTS, FAS increased DMI, had no effect on rumen ammonia or VFA concentrations, but tended to lower rumen pH and the molar ratio of lipogenic to glucogenic VFA. Conservation method had no substantial effect on ruminal or whole-tract digestibility coefficients. Compared with fresh grass and silages, hay decreased lipolysis and biohydrogenation (BH) of dietary unsaturates in the rumen, resulting in similar flows of 18:2n-6 and 18:3n-3, but lower amounts of trans-11 18:1 and Δ11,13 18:2 at the omasum. The extent of silage fermentation had minimal influence on ruminal lipid metabolism. Treatments were not associated with changes in the relative abundance of specific bacteria known to be capable of BH or rumen protozoal numbers. In conclusion, conservation method altered forage lipids, the extent of lipolysis and BH in the rumen, and the flow of fatty acids at the omasum, in the absence of substantial changes in ruminal Butyrivibrio populations. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Harris, Paul; Takahashi, Taro; Blackwell, Martin; Cardenas, Laura; Collins, Adrian; Dungait, Jennifer; Eisler, Mark; Hawkins, Jane; Misselbrook, Tom; Mcauliffe, Graham; Mcfadzean, Jamie; Murray, Phil; Orr, Robert; Jordana Rivero, M.; Wu, Lianhai; Lee, Michael
2017-04-01
Global agriculture is at a critical juncture when competing requirements for maximal production and minimal pollution have led to the concept of sustainable intensification. Livestock production, especially ruminant livestock is central to this debate. Ruminants make an important contribution to global food security by converting feed that is unsuitable for human consumption to high value protein, demand for which is currently increasing at an unprecedented rate. Sustainable intensification of ruminant livestock production may be applied to pastoral grazing, mixed-cropping, feedlot and housed production systems. All these systems have associated environmental risks such as water and air pollution, greenhouse gas emissions and soil degradation, as well as issues affecting production efficiency, product quality and consumer acceptability, such as reduced animal fertility, health and welfare, reflected in the development of agricultural sustainability policies. Further, in many societies livestock represent a resource far greater than just food, e.g. fibre, draught, fertiliser, fuel, bank and social. These challenges necessitate multidisciplinary solutions that can only be properly researched, implemented and tested in real-world production systems which are suited to their geographical and climatic production practice, e.g. temperate grassland. The North Wyke Farm Platform (http://www.rothamsted.ac.uk/farmplatform) was established during 2010 as a UK national capability for collaborative research, training and knowledge exchange in agro-environmental sciences. Its remit is to research agricultural productivity and ecosystem responses to different management practices for beef and sheep production in lowland temperate grasslands. Following construction, a typical beef and sheep system based on permanent pasture receiving chemical fertilisers on first grade pasture (>60% perennial ryegrass) was implemented across the 67.2 ha farm platform in order to obtain baseline data on hydrology, emissions, nutrient cycling, biodiversity, productivity and livestock welfare/health for 2 years (April 2011 to March 2013). Since April 2013, the platform has been progressively modified across three distinct ca. 22 ha farmlets with the underlying principle being to improve the sustainability (economic, social and environmental) by comparing contrasting pasture-based systems (permanent pasture, grass and clover swards, and reseeding of high quality germplasm on a regular cycle). This modification or transitional period ended in July 2015, when the platform assumed full post-baseline status. In this paper, we summarise the sustainability trade-off metrics developed to compare the three systems, together with the farm platform data collections used to create them; collections that can be viewed as 'big data' when considered in their entirety. We concentrate on the baseline and transitional periods and discuss the potential innovations to optimise grazing livestock systems utilising an experimental farm platform approach.
Warner, D; Dijkstra, J; Hendriks, W H; Pellikaan, W F
2013-01-01
Fractional passage rates are required to predict nutrient absorption in ruminants but data on nutrient-specific passage kinetics are largely lacking. With the use of the stable isotope ratio (δ) as an internal marker, we assessed passage kinetics of fiber and fiber-bound nitrogen (N) of intrinsically labeled grass silage from fecal and omasal excretion patterns of δ(13)C and δ(15)N. In a 6×6 Latin square, lactating dairy cows received grass silages [455 g/kg of total diet dry matter (DM) ] in a 2×3 factorial arrangement from ryegrass swards fertilized at low (45 kg of N/ha) or high (90 kg of N/ha) levels of N and harvested at 3 maturity stages. Feed intake (16.7±0.48 kg of DM/d; mean ± standard error of the mean) and milk yield (26.7±0.92 kg/d) increased at the high level of N fertilization and at decreasing maturity. Nutrient digestibility decreased with increasing plant maturity, particularly at the high level of N fertilization, essentially reflecting dietary treatment effects on the nutritional composition of the grass silage. Fractional rumen passage rates (K1) were highest and total mean retention time in the gastrointestinal tract (TMRT) was lowest when based on the external marker chromium mordanted fiber (Cr-NDF; 0.047/h and 38.0 h, respectively). Fecal δ(13)C in the acid detergent fiber fraction ((13)CADF) provided the lowest K1 (0.023/h) and the highest TMRT (61.1 h) and highest peak concentration time (PCT; 24.3h) among markers. In comparison, fecal fiber-bound N ((15)NADF) had a considerably higher K1 (0.032/h) and lower TMRT (46.4 h) than (13)CADF. Total N (measured with (15)NDM) had a comparable K1 (0.034/h) to that of (15)NADF but provided the highest fractional passage rates from the proximal colon-cecum (K2; 0.37/h) and lowest PCT (17.4 h) among markers. A literature review indicated unclear effects of grass silage maturity on K1 and unknown effects of N fertilization on K1. Our study indicated no effect of advancing maturity on fecal K1 and a trend for K1 to increase with the high level of N fertilization. Parameter K2 increased, whereas PCT and TMRT generally decreased with the high level of N fertilization. Omasal digesta sampling largely confirmed results based on fecal sampling. Results indicate that the use of δ(13)C and δ(15)N can describe fiber-specific passage kinetics of forage. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kostka, Stanley; Lampe, Mark; van Mondfrans, Jan; Madsen, Matthew; McMillan, Mica
2015-04-01
Surfactant seed coating (SSC) is a technology being developed cooperatively by scientists at the USDA, Agricultural Research Service and Aquatrols to improve stand establishment in water repellent soils, particularly under arid conditions. Early SSC studies have demonstrated that surfactant coatings can dramatically increase soil water content, turfgrass density, cover, and biomass for Kentucky bluegrass, tall fescue and perennial ryegrass sown in water repellent soils under greenhouse conditions. However, in these studies, surfactant loads were excessive (≥ 40 wt% of seed mass). The objective of the current study was to ascertain if a lower surfactant treatment level (10 wt%) would improve emergence and stand establishment in a severely water repellent sandy soil under field conditions. Research was conducted on a golf course near Utrecht, NL. At the time of planting water drop penetration time (WDPT) of the soil was approximately 300 s, indicating severe water repellency. Chewings fescue (Festuca rubra subsp. commutata) seed was treated with ASET-4001 surfactant at a loading rate of 10 wt% using two different proprietary coating procedures (US Patent Application 20100267554). The two different ASET-4001 coatings were compared against untreated seed in a randomized complete block design with four replicates. In order to maximize abiotic stresses, the only applied water came from rainfall. Assessments of stand establishment were made every 7-14 days for three months using a subjective visual assessment of percent grass cover and sward quality based on a 1-10 scale (where 10 is best). At six months post-sowing, 20 mm x 300 mm soil cores were randomly removed from each plot and soil wetting front depth measured. Improved emergence of the surfactant coated seeds over the untreated seeds began to appear 7 days after sowing. However, there were no differences between the two SSC treatments. Establishment was influenced by weather conditions. From mid-June to early July, ratings were similar between all treatments. However, with the onset of warmer more stressful growing conditions in mid-July, stand establishment ratings for the SSC treatments were higher than for the untreated control. From 16 July to 18 August, stand establishment ratings for the SSC treatments were between 9.1 and 9.8. In the untreated control plots, 16 July ratings were at 7.1 and dropped precipitously to 5.3 by 18 August. The visual differences between treatments suggested that rootzone water may be greater in the SSC treatments. Mean wetting front depths in cores collected from the SSC plots were at minimum 2x greater than untreated controls (200 mm vs 100 mm) confirming that SSC resulted in greater rootzone water distribution. SSC improved emergence and stand establishment of Chewings fescue and modified the soil wetting pattern in severely water repellent sand for at least six months. SSC may provide a sustainable strategy to improve turfgrass establishment under water stress conditions or when irrigation is limited.
NASA Astrophysics Data System (ADS)
Dal Cin, Michela; Böhm, Gualtiero; Busetti, Martina; Zgur, Fabrizio
2017-04-01
The Gulf of Trieste (GOT) is located south of the intersection between the External Dinarides and the South-Eastern Alps. It is considered the foredeep of both the orogens and its sedimentary sequence consists of the Mesozoic-Paleogenic Carbonate Platform, the Eocene turbiditic sediments of the Flysch, the Late Oligocene-Miocenic continental to coastal units of Molassa, the Plio-Quaternary continental and marine deposits. The area underwent a multiphase tectonic activity that started in the Mesozoic, when an extensional regime, with NW-SE oriented normal faults, allowed the aggradation of the Carbonate Platform. In the Late Cretaceous-Paleogene, the Dinaric fold-thrust system gradually migrated towards SW, deflecting the Carbonate Platform E-ward. The main frontal ramp of the External Dinarides is the Karst Thrust that extends along the eastern and rocky coastline of the GOT and that separates the hanging-wall, topographically expressed by the Karst highland, from the footwall lying in the gulf. In the Oligocene-Miocene, the convergence that generated the S-ward vergent Southern Alpine orogen, caused a N-ward deepening of the platform and reactivated the inherited Mesozoic and Cenozoic structures with a dextral transcurrent motion. In the last decade, a dense geophysical dataset has been acquired in the GOT: it consists of 632 km of multichannel seismic (MCS) reflection and sub-bottom profiles, that have been processed and interpreted in time domain by OGS. The data evidenced fault systems related to the extensional Mesozoic and compressional Cenozoic phases and their reactivation with transcurrent kinematics, due to the ongoing N-ward motion of the Adria plate. The transcurrent fault systems show evidence of neotectonic activity and are often the preferential way along which fluids migrate from the carbonates to the seafloor. The MCS lines were used in this work to perform a tomographic analysis providing a detailed velocity model that can enhance seismic imaging and depth conversion and migration, for a deeper understanding of the tectonic evolution of the GOT. The tomographic method started from the identification of the main reflected and refracted events on common shot gathers. The related travel times were used in an iterative process that uses SIRT method (Simultaneous Iterative Reconstruction Technique) for the evaluation of the velocity field and an algorithm, based on the principle of the minimum dispersion of the estimated reflection/refraction points, for the definition of the interface's depth and geometry. The iterative process was stopped when the last model reached a minimum difference from the previous model. The time residuals were then computed to estimate the reliability of the results. The tomography provided us crucial information about the structural setting of the gulf, such as a vertical displacement for the Karst Thrust bigger than 1500 m.
Cabezas-Garcia, E H; Krizsan, S J; Shingfield, K J; Huhtanen, P
2017-07-01
This study evaluated the effects of gradual replacement of a mixture of late-cut grass silage (LS) and barley with early-cut grass silage (ES) on milk production, CH 4 emissions, and N utilization in Swedish Red cows. Two grass silages were prepared from the same primary growth of timothy grass sward but harvested 2 wk apart [11.0 and 9.7 MJ of metabolizable energy/kg of dry matter (DM)]. Four diets, fed as a total mixed ration, were formulated to meet the metabolizable energy and protein requirements of 35 kg of energy-corrected milk (ECM) by gradually replacing a mixture of LS and barley with ES (0, 33, 67, and 100% of the forage component of the diet), whereas the proportion of barley decreased from 47.2 to 26.6% of diet DM. Expeller canola meal was used as a protein supplement. Sixteen Swedish Red cows were used in 4 replicated 4 × 4 Latin squares. Cows were offered diets ad libitum and milked twice daily. Each period of 28 d comprised 14 d of diet adaptation followed by 14 d of data collection. Intake and milk yield were recorded daily, and milk samples were collected on d 19 to 21 and d 26 to 28 of each period. Diet digestibility was determined by grab sampling using indigestible neutral detergent fiber as an internal marker. Gas emissions were measured using the GreenFeed system (C-Lock Inc., Rapid City, SD). Dry matter intake (DMI) linearly decreased from 22.6 to 19.3 kg/d as the proportion of ES increased in the diet. The ECM yield did not differ among treatments, but milk protein yield decreased with increasing proportion of ES in the diet. Because of reduced DMI with increasing ES, feed efficiency (ECM/DMI) improved with an increased proportion of ES in the diet. Nitrogen efficiency (milk N/N intake) did not change despite a linear increase in milk urea N concentration from 9.7 (LS alone) to 11.9 mg/dL (ES alone) with graded replacement of LS and barley by ES in the diet. Lower DMI responses in ES diets were partly compensated for by increased organic matter digestibility (656 g/kg of DM for LS alone; 715 g/kg of DM for ES alone) related to improved forage digestibility at early harvesting. Total CH 4 emissions and CH 4 intensity (CH 4 /ECM) were not influenced by diet, but CH 4 yield (CH 4 /DMI) increased linearly from 19.5 to 23.0 g/kg of DMI with greater inclusion of ES in the diet. In conclusion, replacing LS and barley with ES improved the conversion of feed to milk without increasing CH 4 emissions or compromising N efficiency. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Anderson, K.; Dungan, J. L.
2008-12-01
One of the biggest challenges in the use of proximal remote sensing methods continues to be the accurate, reproducible characterisation of natural surface reflectance properties measured in the solar radiation environment. Complexities in such measurements arise from differences in instrument type, field-of-view, atmospheric conditions, solar illumination and measurement angles and uncertainty in the calibration of reference sources used. Three GER 1500 spectroradiometers were used to measure the reflectance of a short sward grass canopy. A full laboratory assessment was first carried out to characterise instrument uncertainty. Wavelength-dependent patterns in noise equivalent delta radiances (NEdL) were similar for all three instruments, (less than 1 W m-2 sr μm-1 in the range 400-1000 nm). The spectroradiometers were then used in the field, each in a single-beam configuration and two in a dual-field- of-view configuration to compare their field reproducibility to laboratory measurements. Hemispherical-conical reflectance factors (HCRF) were collected in clear sky conditions of a grass (Pennisetum clandestinum) canopy. Two measurement dates were used where skies were clean (diffuse-to-global (DG) irradiance ratios < 0.13) and stable (standard deviation in DG < 0.001). Spectra were collected at nadir during the two- hour period spanning solar noon with a 2° range in solar zenith angles. A reproducible method was used which enabled positioning of instruments to within 1° precision in the azimuthal direction and with no movement in zenithal position. Ten measurements were taken with each sensor head, from a calibrated optical grade Spectralon panel (99% reflecting), the grass target, and a control surface -- a grey, 75% Spectralon panel. After each sequence the sensor heads were changed. On each date, the sequence of measurements was repeated. Field results showed standard uncertainties (u) of less than 0.01 (SD in HCRF) for the grey panel and less than 0.015 for vegetation. The grey panel data showed a wavelength- dependent pattern, similar to the NEdL laboratory trend, but subsequent error propagation of laboratory- derived NEdL through to a reflectance factor showed that the laboratory characterisation was unable to account for all of the uncertainty measured in the field. Therefore the estimate of u gained from field data more closely represents the reproducibility of measurements where atmospheric, solar zenith and instrument-related uncertainties are combined. Results on vegetation u showed a stronger wavelength dependency with higher standard uncertainties beyond the vegetation red-edge than in visible wavelengths (maximum = 0.015 at 800 nm, and 0.004 at 550nm). The results demonstrate that standard uncertainties of field reflectance data have a spectral dependence and exceed laboratory-derived estimates of instrument "noise". Uncertainty of this type must be taken into account when statistically testing for differences in field spectra. Improved reporting of standard uncertainties from field experiments will foster progress in remote sensing science.
Gregorini, P; Galli, J; Romera, A J; Levy, G; Macdonald, K A; Fernandez, H H; Beukes, P C
2014-07-01
The DairyNZ whole-farm model (WFM; DairyNZ, Hamilton, New Zealand) consists of a framework that links component models for animal, pastures, crops, and soils. The model was developed to assist with analysis and design of pasture-based farm systems. New (this work) and revised (e.g., cow, pasture, crops) component models can be added to the WFM, keeping the model flexible and up to date. Nevertheless, the WFM does not account for plant-animal relationships determining herbage-depletion dynamics. The user has to preset the maximum allowable level of herbage depletion [i.e., postgrazing herbage mass (residuals)] throughout the year. Because residuals have a direct effect on herbage regrowth, the WFM in its current form does not dynamically simulate the effect of grazing pressure on herbage depletion and consequent effect on herbage regrowth. The management of grazing pressure is a key component of pasture-based dairy systems. Thus, the main objective of the present work was to develop a new version of the WFM able to predict residuals, and thereby simulate related effects of grazing pressure dynamically at the farm scale. This objective was accomplished by incorporating a new component model into the WFM. This model represents plant-animal relationships, for example sward structure and herbage intake rate, and resulting level of herbage depletion. The sensitivity of the new version of the WFM was evaluated and then the new WFM was tested against an experimental data set previously used to evaluate the WFM and to illustrate the adequacy and improvement of the model development. Key outputs variables of the new version pertinent to this work (milk production, herbage dry matter intake, intake rate, harvesting efficiency, and residuals) responded acceptably to a range of input variables. The relative prediction errors for monthly and mean annual residual predictions were 20 and 5%, respectively. Monthly predictions of residuals had a line bias (1.5%), with a proportion of square root of mean square prediction error (RMSPE) due to random error of 97.5%. Predicted monthly herbage growth rates had a line bias of 2%, a proportion of RMSPE due to random error of 96%, and a concordance correlation coefficient of 0.87. Annual herbage production was predicted with an RMSPE of 531 (kg of herbage dry matter/ha per year), a line bias of 11%, a proportion of RMSPE due to random error of 80%, and relative prediction errors of 2%. Annual herbage dry matter intake per cow and hectare, both per year, were predicted with RMSPE, relative prediction error, and concordance correlation coefficient of 169 and 692kg of dry matter, 3 and 4%, and 0.91 and 0.87, respectively. These results indicate that predictions of the new WFM are relatively accurate and precise, with a conclusion that incorporating a plant-animal relationship model into the WFM allows for dynamic predictions of residuals and more realistic simulations of the effect of grazing pressure on herbage production and intake at the farm level without the intervention from the user. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Buchen, Caroline; Well, Reinhard; Flessa, Heinz; Fuß, Roland; Helfrich, Mirjam; Lewicka-Szczebak, Dominika
2017-04-01
Grassland break-up due to grassland renewal and grassland conversion to cropland can lead to a flush of mineral nitrogen from decomposition of the old grass sward and the decomposition of soil organic matter. Moreover, increased carbon and nitrogen mineralisation can result in enhanced nitrous oxide (N2O) emissions. As N2O is known to be an important greenhouse gas and a major precursor for ozone depletion, its emissions need to be mitigated by adjusting agricultural management practices. Therefore, it is necessary to understand the N2O processes involved, as well as the contribution of N2O reduction to N2. Apart from the widely used 15N gas flux method, natural abundance isotopic analysis of the four most abundant isotopocules of N2O species is a promising alternative to assess N2O production pathways. We used stable isotope analyses of soil-emitted N2O (δ18ON2O, δ15NN2Obulk and δ15NN2OSP= intramolecular distribution of 15N within the linear N2O molecule) with an isotopocule mapping approach to simultaneously estimate the magnitude of N2O reduction to N2 and the fraction of N2O originating from the bacterial denitrification pathway or fungal denitrification and/or nitrification. This approach is based on endmember areas of isotopic values for the N2O produced from different sources reported in the literature. For this purpose, we calculated two main scenarios with different assumptions for N2O produced: N2O is reduced to N2 before residual N2O is mixed with N2O of various sources (Scenario a) and vice versa (Scenario b). Based on this, we applied seven different scenario variations, where we evaluated the range of possible values for the potential N2O production pathways (heterotrophic bacterial denitrification and/or nitrifier denitrification and fungal denitrification and/or nitrification). This was done by using a range of isotopic endmember values and assuming different fractionation factors of N2O reduction in order to find the most reliable scenario. Investigations were carried out over a study period of one year following grassland renewal and grassland conversion to maize cropping on two different soil sites (Plaggic Anthrosol and Histic Gleysol) near Oldenburg, Lower Saxony Germany. Our observations indicate heterotrophic bacterial denitrification and/or nitrifier denitrification as the main source of N2O production, with a significant contribution of N2O reduction to N2 rather than nitrification (i.e. hydroxylamine oxidation) and fungal denitrification throughout the entire study period. A tendency to a higher contribution of N2O reduction to N2 was observed for the often water-saturated Histic Gleysol, while lower N2O reduction was found for the Plaggic Anthrosol. For two samples, we attempt to validate our results from the isotopocule mapping approach with a parallel 15N labelling study at the field scale (Buchen et al., 2016), as conditions of soil moisture, nitrate availability and N2O flux were similar. References: Buchen, C., Lewicka-Szczebak, D., Fuß, R., Helfrich, M., Flessa, H., Well, R., 2016. Fluxes of N2 and N2O and contributing processes in summer after grassland renewal and grassland conversion to maize cropping on a Plaggic Anthrosol and a Histic Gleysol. Soil Biology and Biochemistry 101, 6-19.
NASA Astrophysics Data System (ADS)
Crespo, G.; Rodriguez, I.; Martinez, O.
2009-04-01
In very intensive milk production systems in Europe and America with the use of high amounts of chemical fertilizers, the nutrient recycling models consider the losses by leaching and N volatilization, as well as the hydro physical characteristics of the soil affecting the performance of this element (10; 6). However, in more extensive milk production systems, low input agriculture forming the natural cycle occurring within each farm, is of vital importance to potentate nutrient recycling for a stable animal production. The objective is the determination of the values of N, P and K inputs and outputs in a dairy farm with a sward composed by 60% of C. nlemfuensis and 40% of P. purpureum CT-115, associated with legumes in 28% of the area and the balance of these nutrients in the system using the "Recycling" software proposed by Crespo et al (2007). The grassland covered an area of 53.4 ha, composed by C. nlemfuensis (60%), P. purpureum CT-115 (40%) and L. leucocephala and C. cajan legumes intercropped in 28% of the area. The dairy herd consisted of 114 cows, 35 replacement heifers and 24 calves. There was a milk yield of 100 000 litters and the animals consumed 825 t DM from pastures and 75.1 t DM from other supplementary feeds. Nutrients extracted by pastures, nutrients intake by animals from pastures, symbiotically N fixation by legumes and N, P and K determinations outside the system due to animal production were determined (3-11). Volatilized ammonia, nutrient input and litter accumulated in the paddocks were measured once each season of the year. In the whole system the balance indicates negative values of N, P and K. Out of the total amount of nutrients consumed, animals used only 16 kg N, 5 Kg P and 4 Kg K for milk production, LW gain and calf production, the remainder returned to the system through excretions. Hence, more than 90% of the N and K, and approximately 81% of the P consumed by the animals were recycled to the system through the excretions. These results agree with those reported by Jarvis (1993) and Cadish et al (1994). However, 40% of the excretions occurred in the shade buildings and milking parlours ant thus these nutrients did not recycle in the system. An important internal recycling mechanism, especially for nitrogen and potassium, is their remobilization by the rejected pasture to re-use them for the regrowth activity. This is of particular interest in CT-115 Bank, since stems of CT-115 plants left after grazing remobilize an important amount of these nutrients, guarantee a favourable pasture regrowth (Martinez 1996). The return of all the excretion to the grassland is recommended as well as increasing the area of legumes to attain a satisfactory balance of N, P and K in the system. Further studies must consider maintenance fertilization, nutrient losses due to leaching and denitrification, as well as variation of the stable OM in the soil and the influence of hydro physical properties in the recycling process. The "Recycling" software was effective to determine the balance of nutrients in the dairy farm. Cadish, G., Schunke, R.N & Giller, K.E. 1994. Nitrogen cycling in a pure grass pasture and a grass-legume mixture on a red latosol in Brazil. Tropical Grasslands 28:43. Crespo G. y Rodríguez, I. 2006. Contribución al conocimiento del reciclaje de los nutrientes en el sistema suelo-pasto-animal. Instituto de Ciencia Animal, Editorial EDICA, La Habana, Cuba, 94 pp. Hirata, M., Sugimoto, Y.G & Ueno, M.1991. Use of a mathematical model to evaluate the effects of dung from grazing animals on pasture production. J. Japan Grassld. Sci. 37:303.