Sample records for swarms agent-based models

  1. Emergence of Swarming Behavior: Foraging Agents Evolve Collective Motion Based on Signaling.

    PubMed

    Witkowski, Olaf; Ikegami, Takashi

    2016-01-01

    Swarming behavior is common in biology, from cell colonies to insect swarms and bird flocks. However, the conditions leading to the emergence of such behavior are still subject to research. Since Reynolds' boids, many artificial models have reproduced swarming behavior, focusing on details ranging from obstacle avoidance to the introduction of fixed leaders. This paper presents a model of evolved artificial agents, able to develop swarming using only their ability to listen to each other's signals. The model simulates a population of agents looking for a vital resource they cannot directly detect, in a 3D environment. Instead of a centralized algorithm, each agent is controlled by an artificial neural network, whose weights are encoded in a genotype and adapted by an original asynchronous genetic algorithm. The results demonstrate that agents progressively evolve the ability to use the information exchanged between each other via signaling to establish temporary leader-follower relations. These relations allow agents to form swarming patterns, emerging as a transient behavior that improves the agents' ability to forage for the resource. Once they have acquired the ability to swarm, the individuals are able to outperform the non-swarmers at finding the resource. The population hence reaches a neutral evolutionary space which leads to a genetic drift of the genotypes. This reductionist approach to signal-based swarming not only contributes to shed light on the minimal conditions for the evolution of a swarming behavior, but also more generally it exemplifies the effect communication can have on optimal search patterns in collective groups of individuals.

  2. Agent-Based Simulation and Analysis of a Defensive UAV Swarm Against an Enemy UAV Swarm

    DTIC Science & Technology

    2011-06-01

    de Investigacion, Programas y Desarrollo de la Armada Armada de Chile CHILE 10. CAPT Jeffrey Kline, USN(ret.) Naval Postgraduate School Monterey, California 91 ...this de - fensive swarm system, an agent-based simulation model is developed, and appropriate designs of experiments and statistical analyses are... de - velopment and implementation of counter UAV technology from readily-available commercial products. The organization leverages the “largest

  3. DualTrust: A Trust Management Model for Swarm-Based Autonomic Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiden, Wendy M.

    Trust management techniques must be adapted to the unique needs of the application architectures and problem domains to which they are applied. For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, certain characteristics of the mobile agent ant swarm -- their lightweight, ephemeral nature and indirect communication -- make this adaptation especially challenging. This thesis looks at the trust issues and opportunities in swarm-based autonomic computing systems and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and stillmore » serves to protect the swarm. After analyzing the applicability of trust management research as it has been applied to architectures with similar characteristics, this thesis specifies the required characteristics for trust management mechanisms used to monitor the trustworthiness of entities in a swarm-based autonomic computing system and describes a trust model that meets these requirements.« less

  4. Self Organized Sorting in Swarms

    NASA Astrophysics Data System (ADS)

    Copenhagen, Katherine; Quint, David; Gopinathan, Ajay

    2014-03-01

    Swarming behavior extends across multiple length scales in biology ranging from bacteria to whales. Natural swarms are affected by erratic, or dissenting behavior by individuals within the swarm who may display different types of behaviors than the rest of the swarm. This research investigates the introduction of heterogenous behavior amongst individuals within a swarm and their impact on swarm formation and robustness. We model swarms with a finite number of agents utilizing a velocity alignment interaction and a Lennard-Jones potential, which provides both cohesive and repulsive interactions between neighboring agents. Depending on the parameters governing the swarming interactions and the level of heterogeneity in behavior introduced, we found a variety of collective behavior including sharp transitions from swarming to non-swarming regimes and self organized sorting of individuals based on their types of behavior. Our research sheds light on the varied responses of swarms to internal dissent and suggests optimal strategies to tolerate errant individuals.

  5. Stability of Nonlinear Swarms on Flat and Curved Surfaces

    DTIC Science & Technology

    numerical experiments have shown that the system either converges to a rotating circular limit cycle with a fixed center of mass, or the agents clump ...Swarming is a near-universal phenomenon in nature. Many mathematical models of swarms exist , both to model natural processes and to control robotic...agents. We study a swarm of agents with spring-like at-traction and nonlinear self-propulsion. Swarms of this type have been studied numerically, but

  6. Collective navigation of cargo-carrying swarms

    PubMed Central

    Shklarsh, Adi; Finkelshtein, Alin; Ariel, Gil; Kalisman, Oren; Ingham, Colin; Ben-Jacob, Eshel

    2012-01-01

    Much effort has been devoted to the study of swarming and collective navigation of micro-organisms, insects, fish, birds and other organisms, as well as multi-agent simulations and to the study of real robots. It is well known that insect swarms can carry cargo. The studies here are motivated by a less well-known phenomenon: cargo transport by bacteria swarms. We begin with a concise review of how bacteria swarms carry natural, micrometre-scale objects larger than the bacteria (e.g. fungal spores) as well as man-made beads and capsules (for drug delivery). A comparison of the trajectories of virtual beads in simulations (using different putative coupling between the virtual beads and the bacteria) with the observed trajectories of transported fungal spores implies the existence of adaptable coupling. Motivated by these observations, we devised new, multi-agent-based studies of cargo transport by agent swarms. As a first step, we extended previous modelling of collective navigation of simple bacteria-inspired agents in complex terrain, using three putative models of agent–cargo coupling. We found that cargo-carrying swarms can navigate efficiently in a complex landscape. We further investigated how the stability, elasticity and other features of agent–cargo bonds influence the collective motion and the transport of the cargo, and found sharp phase shifts and dual successful strategies for cargo delivery. Further understanding of such mechanisms may provide valuable clues to understand cargo-transport by smart swarms of other organisms as well as by man-made swarming robots. PMID:24312731

  7. Swarming behaviors in multi-agent systems with nonlinear dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Wenwu, E-mail: wenwuyu@gmail.com; School of Electrical and Computer Engineering, RMIT University, Melbourne VIC 3001; Chen, Guanrong

    2013-12-15

    The dynamic analysis of a continuous-time multi-agent swarm model with nonlinear profiles is investigated in this paper. It is shown that, under mild conditions, all agents in a swarm can reach cohesion within a finite time, where the upper bounds of the cohesion are derived in terms of the parameters of the swarm model. The results are then generalized by considering stochastic noise and switching between nonlinear profiles. Furthermore, swarm models with limited sensing range inducing changing communication topologies and unbounded repulsive interactions between agents are studied by switching system and nonsmooth analysis. Here, the sensing range of each agentmore » is limited and the possibility of collision among nearby agents is high. Finally, simulation results are presented to demonstrate the validity of the theoretical analysis.« less

  8. Developing a Conceptual Architecture for a Generalized Agent-based Modeling Environment (GAME)

    DTIC Science & Technology

    2008-03-01

    4. REPAST (Java, Python , C#, Open Source) ........28 5. MASON: Multi-Agent Modeling Language (Swarm Extension... Python , C#, Open Source) Repast (Recursive Porous Agent Simulation Toolkit) was designed for building agent-based models and simulations in the...Repast makes it easy for inexperienced users to build models by including a built-in simple model and provide interfaces through which menus and Python

  9. Biobotic insect swarm based sensor networks for search and rescue

    NASA Astrophysics Data System (ADS)

    Bozkurt, Alper; Lobaton, Edgar; Sichitiu, Mihail; Hedrick, Tyson; Latif, Tahmid; Dirafzoon, Alireza; Whitmire, Eric; Verderber, Alexander; Marin, Juan; Xiong, Hong

    2014-06-01

    The potential benefits of distributed robotics systems in applications requiring situational awareness, such as search-and-rescue in emergency situations, are indisputable. The efficiency of such systems requires robotic agents capable of coping with uncertain and dynamic environmental conditions. For example, after an earthquake, a tremendous effort is spent for days to reach to surviving victims where robotic swarms or other distributed robotic systems might play a great role in achieving this faster. However, current technology falls short of offering centimeter scale mobile agents that can function effectively under such conditions. Insects, the inspiration of many robotic swarms, exhibit an unmatched ability to navigate through such environments while successfully maintaining control and stability. We have benefitted from recent developments in neural engineering and neuromuscular stimulation research to fuse the locomotory advantages of insects with the latest developments in wireless networking technologies to enable biobotic insect agents to function as search-and-rescue agents. Our research efforts towards this goal include development of biobot electronic backpack technologies, establishment of biobot tracking testbeds to evaluate locomotion control efficiency, investigation of biobotic control strategies with Gromphadorhina portentosa cockroaches and Manduca sexta moths, establishment of a localization and communication infrastructure, modeling and controlling collective motion by learning deterministic and stochastic motion models, topological motion modeling based on these models, and the development of a swarm robotic platform to be used as a testbed for our algorithms.

  10. Application of a swarm-based approach for phase unwrapping

    NASA Astrophysics Data System (ADS)

    da S. Maciel, Lucas; Albertazzi G., Armando, Jr.

    2014-07-01

    An algorithm for phase unwrapping based on swarm intelligence is proposed. The novel approach is based on the emergent behavior of swarms. This behavior is the result of the interactions between independent agents following a simple set of rules and is regarded as fast, flexible and robust. The rules here were designed with two purposes. Firstly, the collective behavior must result in a reliable map of the unwrapped phase. The unwrapping reliability was evaluated by each agent during run-time, based on the quality of the neighboring pixels. In addition, the rule set must result in a behavior that focuses on wrapped regions. Stigmergy and communication rules were implemented in order to enable each agent to seek less worked areas of the image. The agents were modeled as Finite-State Machines. Based on the availability of unwrappable pixels, each agent assumed a different state in order to better adapt itself to the surroundings. The implemented rule set was able to fulfill the requirements on reliability and focused unwrapping. The unwrapped phase map was comparable to those from established methods as the agents were able to reliably evaluate each pixel quality. Also, the unwrapping behavior, being observed in real time, was able to focus on workable areas as the agents communicated in order to find less traveled regions. The results were very positive for such a new approach to the phase unwrapping problem. Finally, the authors see great potential for future developments concerning the flexibility, robustness and processing times of the swarm-based algorithm.

  11. Supervised self-organization of homogeneous swarms using ergodic projections of Markov chains.

    PubMed

    Chattopadhyay, Ishanu; Ray, Asok

    2009-12-01

    This paper formulates a self-organization algorithm to address the problem of global behavior supervision in engineered swarms of arbitrarily large population sizes. The swarms considered in this paper are assumed to be homogeneous collections of independent identical finite-state agents, each of which is modeled by an irreducible finite Markov chain. The proposed algorithm computes the necessary perturbations in the local agents' behavior, which guarantees convergence to the desired observed state of the swarm. The ergodicity property of the swarm, which is induced as a result of the irreducibility of the agent models, implies that while the local behavior of the agents converges to the desired behavior only in the time average, the overall swarm behavior converges to the specification and stays there at all times. A simulation example illustrates the underlying concept.

  12. DualTrust: A Distributed Trust Model for Swarm-Based Autonomic Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiden, Wendy M.; Dionysiou, Ioanna; Frincke, Deborah A.

    2011-02-01

    For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, trust management is important for the acceptance of the mobile agent sensors and to protect the system from malicious behavior by insiders and entities that have penetrated network defenses. This paper examines the trust relationships, evidence, and decisions in a representative system and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and still serves to protect the swarm. We then propose the DualTrust conceptual trust model. By addressing themore » autonomic manager’s bi-directional primary relationships in the ACS architecture, DualTrust is able to monitor the trustworthiness of the autonomic managers, protect the sensor swarm in a scalable manner, and provide global trust awareness for the orchestrating autonomic manager.« less

  13. Smart Swarms of Bacteria-Inspired Agents with Performance Adaptable Interactions

    PubMed Central

    Shklarsh, Adi; Ariel, Gil; Schneidman, Elad; Ben-Jacob, Eshel

    2011-01-01

    Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment – by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots. PMID:21980274

  14. Smart swarms of bacteria-inspired agents with performance adaptable interactions.

    PubMed

    Shklarsh, Adi; Ariel, Gil; Schneidman, Elad; Ben-Jacob, Eshel

    2011-09-01

    Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment--by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots.

  15. Investigating Ground Swarm Robotics Using Agent Based Simulation

    DTIC Science & Technology

    2006-12-01

    Incorporation of virtual pheromones as a shared memory map is modeled as an additional capability that is found to enhance the robustness and reliability of the...virtual pheromones as a shared memory map is modeled as an additional capability that is found to enhance the robustness and reliability of the swarm... PHEROMONES .......................................... 42 1. Repel Friends under Inorganic SA.................................................. 45 2. Max

  16. Identifying Interacting Genetic Variations by Fish-Swarm Logic Regression

    PubMed Central

    Yang, Aiyuan; Yan, Chunxia; Zhu, Feng; Zhao, Zhongmeng; Cao, Zhi

    2013-01-01

    Understanding associations between genotypes and complex traits is a fundamental problem in human genetics. A major open problem in mapping phenotypes is that of identifying a set of interacting genetic variants, which might contribute to complex traits. Logic regression (LR) is a powerful multivariant association tool. Several LR-based approaches have been successfully applied to different datasets. However, these approaches are not adequate with regard to accuracy and efficiency. In this paper, we propose a new LR-based approach, called fish-swarm logic regression (FSLR), which improves the logic regression process by incorporating swarm optimization. In our approach, a school of fish agents are conducted in parallel. Each fish agent holds a regression model, while the school searches for better models through various preset behaviors. A swarm algorithm improves the accuracy and the efficiency by speeding up the convergence and preventing it from dropping into local optimums. We apply our approach on a real screening dataset and a series of simulation scenarios. Compared to three existing LR-based approaches, our approach outperforms them by having lower type I and type II error rates, being able to identify more preset causal sites, and performing at faster speeds. PMID:23984382

  17. A Markov Chain Approach to Probabilistic Swarm Guidance

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Bayard, David S.

    2012-01-01

    This paper introduces a probabilistic guidance approach for the coordination of swarms of autonomous agents. The main idea is to drive the swarm to a prescribed density distribution in a prescribed region of the configuration space. In its simplest form, the probabilistic approach is completely decentralized and does not require communication or collabo- ration between agents. Agents make statistically independent probabilistic decisions based solely on their own state, that ultimately guides the swarm to the desired density distribution in the configuration space. In addition to being completely decentralized, the probabilistic guidance approach has a novel autonomous self-repair property: Once the desired swarm density distribution is attained, the agents automatically repair any damage to the distribution without collaborating and without any knowledge about the damage.

  18. Foraging swarms as Nash equilibria of dynamic games.

    PubMed

    Özgüler, Arif Bülent; Yildiz, Aykut

    2014-06-01

    The question of whether foraging swarms can form as a result of a noncooperative game played by individuals is shown here to have an affirmative answer. A dynamic game played by N agents in 1-D motion is introduced and models, for instance, a foraging ant colony. Each agent controls its velocity to minimize its total work done in a finite time interval. The game is shown to have a unique Nash equilibrium under two different foraging location specifications, and both equilibria display many features of a foraging swarm behavior observed in biological swarms. Explicit expressions are derived for pairwise distances between individuals of the swarm, swarm size, and swarm center location during foraging.

  19. Limited Bandwidth Recognition of Collective Behaviors in Bio-Inspired Swarms

    DTIC Science & Technology

    2014-05-09

    collective? Some swarm models exhibit multiple emergent behaviors from the same parameters. This provides increased expressivity at the cost of...swarms, namely, how do you know what the swarm is doing if you can’t ob- serve every agent in the collective? Some swarm models exhibit multiple ...flocking [15, 21, 12] or cyclic behavior [8, 7], and in some cases can exhibit multiple group behaviors depending on the model parameters used [6, 3, 17

  20. Verification of NASA Emergent Systems

    NASA Technical Reports Server (NTRS)

    Rouff, Christopher; Vanderbilt, Amy K. C. S.; Truszkowski, Walt; Rash, James; Hinchey, Mike

    2004-01-01

    NASA is studying advanced technologies for a future robotic exploration mission to the asteroid belt. This mission, the prospective ANTS (Autonomous Nano Technology Swarm) mission, will comprise of 1,000 autonomous robotic agents designed to cooperate in asteroid exploration. The emergent properties of swarm type missions make them powerful, but at the same time are more difficult to design and assure that the proper behaviors will emerge. We are currently investigating formal methods and techniques for verification and validation of future swarm-based missions. The advantage of using formal methods is their ability to mathematically assure the behavior of a swarm, emergent or otherwise. The ANT mission is being used as an example and case study for swarm-based missions for which to experiment and test current formal methods with intelligent swam. Using the ANTS mission, we have evaluated multiple formal methods to determine their effectiveness in modeling and assuring swarm behavior.

  1. Particle Swarm Social Adaptive Model for Multi-Agent Based Insurgency Warfare Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Xiaohui; Potok, Thomas E

    2009-12-01

    To better understand insurgent activities and asymmetric warfare, a social adaptive model for modeling multiple insurgent groups attacking multiple military and civilian targets is proposed and investigated. This report presents a pilot study using the particle swarm modeling, a widely used non-linear optimal tool to model the emergence of insurgency campaign. The objective of this research is to apply the particle swarm metaphor as a model of insurgent social adaptation for the dynamically changing environment and to provide insight and understanding of insurgency warfare. Our results show that unified leadership, strategic planning, and effective communication between insurgent groups are notmore » the necessary requirements for insurgents to efficiently attain their objective.« less

  2. Collective motion patterns of swarms with delay coupling: Theory and experiment.

    PubMed

    Szwaykowska, Klementyna; Schwartz, Ira B; Mier-Y-Teran Romero, Luis; Heckman, Christoffer R; Mox, Dan; Hsieh, M Ani

    2016-03-01

    The formation of coherent patterns in swarms of interacting self-propelled autonomous agents is a subject of great interest in a wide range of application areas, ranging from engineering and physics to biology. In this paper, we model and experimentally realize a mixed-reality large-scale swarm of delay-coupled agents. The coupling term is modeled as a delayed communication relay of position. Our analyses, assuming agents communicating over an Erdös-Renyi network, demonstrate the existence of stable coherent patterns that can be achieved only with delay coupling and that are robust to decreasing network connectivity and heterogeneity in agent dynamics. We also show how the bifurcation structure for emergence of different patterns changes with heterogeneity in agent acceleration capabilities and limited connectivity in the network as a function of coupling strength and delay. Our results are verified through simulation as well as preliminary experimental results of delay-induced pattern formation in a mixed-reality swarm.

  3. Collective motion patterns of swarms with delay coupling: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Szwaykowska, Klementyna; Schwartz, Ira B.; Mier-y-Teran Romero, Luis; Heckman, Christoffer R.; Mox, Dan; Hsieh, M. Ani

    2016-03-01

    The formation of coherent patterns in swarms of interacting self-propelled autonomous agents is a subject of great interest in a wide range of application areas, ranging from engineering and physics to biology. In this paper, we model and experimentally realize a mixed-reality large-scale swarm of delay-coupled agents. The coupling term is modeled as a delayed communication relay of position. Our analyses, assuming agents communicating over an Erdös-Renyi network, demonstrate the existence of stable coherent patterns that can be achieved only with delay coupling and that are robust to decreasing network connectivity and heterogeneity in agent dynamics. We also show how the bifurcation structure for emergence of different patterns changes with heterogeneity in agent acceleration capabilities and limited connectivity in the network as a function of coupling strength and delay. Our results are verified through simulation as well as preliminary experimental results of delay-induced pattern formation in a mixed-reality swarm.

  4. From organized internal traffic to collective navigation of bacterial swarms

    NASA Astrophysics Data System (ADS)

    Ariel, Gil; Shklarsh, Adi; Kalisman, Oren; Ingham, Colin; Ben-Jacob, Eshel

    2013-12-01

    Bacterial swarming resulting in collective navigation over surfaces provides a valuable example of cooperative colonization of new territories. The social bacterium Paenibacillus vortex exhibits successful and diverse swarming strategies. When grown on hard agar surfaces with peptone, P. vortex develops complex colonies of vortices (rotating bacterial aggregates). In contrast, during growth on Mueller-Hinton broth gelled into a soft agar surface, a new strategy of multi-level organization is revealed: the colonies are organized into a special network of swarms (or ‘snakes’ of a fraction of millimeter in width) with intricate internal traffic. More specifically, cell movement is organized in two or three lanes of bacteria traveling between the back and the front of the swarm. This special form of cellular logistics suggests new methods in which bacteria can share resources and risk while searching for food or migrating into new territories. While the vortices-based organization on hard agar surfaces has been modeled before, here, we introduce a new multi-agent bacterial swarming model devised to capture the swarms-based organization on soft surfaces. We test two putative generic mechanisms that may underlie the observed swarming logistics: (i) chemo-activated taxis in response to chemical cues and (ii) special align-and-push interactions between the bacteria and the boundary of the layer of lubricant collectively generated by the swarming bacteria. Using realistic parameters, the model captures the observed phenomena with semi-quantitative agreement in terms of the velocity as well as the dynamics of the swarm and its envelope. This agreement implies that the bacteria interactions with the swarm boundary play a crucial role in mediating the interplay between the collective movement of the swarm and the internal traffic dynamics.

  5. The Dynamics of Interacting Swarms

    DTIC Science & Technology

    2018-04-04

    Unlimited 16 Ira Schwartzt (202) 404-8359 Swarms are self-organized dynamical coupled agents which evolve from simple rules of communication. They are ...when delay is introduced to the communicating agents. One of our major findings is that interacting swarms are far less likely to flock cohesively if...they are coupled with delay. In addition, parameter ranges based on coupling strength, incidence angle of collision, and delay change dramatically

  6. Probabilistic Swarm Guidance using Optimal Transport

    DTIC Science & Technology

    2014-10-10

    controlled to collectively exhibit useful emergent behavior [2]–[5]. Similarly, swarms of hundreds to thousands of femtosatellites (100-gram-class...algorithm using inhomo- geneous Markov chains (PSG– IMC ), each agent chooses the tuning parameter (ξjk) based on the Hellinger distance (HD) between the...PGA and PSG– IMC in the next section. B. Simulation Results We now present the setup of this simulation example. The swarm containing m = 5000 agents is

  7. Multi-Agent Task Negotiation Among UAVs to Defend Against Swarm Attacks

    DTIC Science & Technology

    2012-03-01

    are based on economic models [39]. Auction methods of task coordination also attempt to deal with agents dealing with noisy, dynamic environments...August 2006. [34] M. Alighanbari, “ Robust and decentralized task assignment algorithms for uavs,” Ph.D. dissertation, Massachusetts Institute of Technology...Implicit Coordination . . . . . . . . . . . . . 12 2.4 Decentralized Algorithm B - Market- Based . . . . . . . . . . . . . . . . 12 2.5 Decentralized

  8. UAV Swarm Tactics: An Agent-Based Simulation and Markov Process Analysis

    DTIC Science & Technology

    2013-06-01

    CRN Common Random Numbers CSV Comma Separated Values DoE Design of Experiment GLM Generalized Linear Model HVT High Value Target JAR Java ARchive JMF... Java Media Framework JRE Java runtime environment Mason Multi-Agent Simulator Of Networks MOE Measure Of Effectiveness MOP Measures Of Performance...with every set several times, and to write a CSV file with the results. Rather than scripting the agent behavior deterministically, the agents should

  9. Independence and interdependence in collective decision making: an agent-based model of nest-site choice by honeybee swarms

    PubMed Central

    List, Christian; Elsholtz, Christian; Seeley, Thomas D.

    2008-01-01

    Condorcet's jury theorem shows that when the members of a group have noisy but independent information about what is best for the group as a whole, majority decisions tend to outperform dictatorial ones. When voting is supplemented by communication, however, the resulting interdependencies between decision makers can strengthen or undermine this effect: they can facilitate information pooling, but also amplify errors. We consider an intriguing non-human case of independent information pooling combined with communication: the case of nest-site choice by honeybee (Apis mellifera) swarms. It is empirically well documented that when there are different nest sites that vary in quality, the bees usually choose the best one. We develop a new agent-based model of the bees' decision process and show that its remarkable reliability stems from a particular interplay of independence and interdependence between the bees. PMID:19073474

  10. Defensive Swarm: An Agent Based Modeling Analysis

    DTIC Science & Technology

    2017-12-01

    INITIAL ALGORITHM (SINGLE- RUN ) TESTING .........................43  1.  Patrol Algorithm—Passive...scalability are therefore quite important to modeling in this highly variable domain. One can force the software to run the gamut of options to see...changes in operating constructs or procedures. Additionally, modelers can run thousands of iterations testing the model under different circumstances

  11. Density Control of Multi-Agent Systems with Safety Constraints: A Markov Chain Approach

    NASA Astrophysics Data System (ADS)

    Demirer, Nazli

    The control of systems with autonomous mobile agents has been a point of interest recently, with many applications like surveillance, coverage, searching over an area with probabilistic target locations or exploring an area. In all of these applications, the main goal of the swarm is to distribute itself over an operational space to achieve mission objectives specified by the density of swarm. This research focuses on the problem of controlling the distribution of multi-agent systems considering a hierarchical control structure where the whole swarm coordination is achieved at the high-level and individual vehicle/agent control is managed at the low-level. High-level coordination algorithms uses macroscopic models that describes the collective behavior of the whole swarm and specify the agent motion commands, whose execution will lead to the desired swarm behavior. The low-level control laws execute the motion to follow these commands at the agent level. The main objective of this research is to develop high-level decision control policies and algorithms to achieve physically realizable commanding of the agents by imposing mission constraints on the distribution. We also make some connections with decentralized low-level motion control. This dissertation proposes a Markov chain based method to control the density distribution of the whole system where the implementation can be achieved in a decentralized manner with no communication between agents since establishing communication with large number of agents is highly challenging. The ultimate goal is to guide the overall density distribution of the system to a prescribed steady-state desired distribution while satisfying desired transition and safety constraints. Here, the desired distribution is determined based on the mission requirements, for example in the application of area search, the desired distribution should match closely with the probabilistic target locations. The proposed method is applicable for both systems with a single agent and systems with large number of agents due to the probabilistic nature, where the probability distribution of each agent's state evolves according to a finite-state and discrete-time Markov chain (MC). Hence, designing proper decision control policies requires numerically tractable solution methods for the synthesis of Markov chains. The synthesis problem has the form of a Linear Matrix Inequality Problem (LMI), with LMI formulation of the constraints. To this end, we propose convex necessary and sufficient conditions for safety constraints in Markov chains, which is a novel result in the Markov chain literature. In addition to LMI-based, offline, Markov matrix synthesis method, we also propose a QP-based, online, method to compute a time-varying Markov matrix based on the real-time density feedback. Both problems are convex optimization problems that can be solved in a reliable and tractable way, utilizing existing tools in the literature. A Low Earth Orbit (LEO) swarm simulations are presented to validate the effectiveness of the proposed algorithms. Another problem tackled as a part of this research is the generalization of the density control problem to autonomous mobile agents with two control modes: ON and OFF. Here, each mode consists of a (possibly overlapping) finite set of actions, that is, there exist a set of actions for the ON mode and another set for the OFF mode. We give formulation for a new Markov chain synthesis problem, with additional measurements for the state transitions, where a policy is designed to ensure desired safety and convergence properties for the underlying Markov chain.

  12. Novel probabilistic and distributed algorithms for guidance, control, and nonlinear estimation of large-scale multi-agent systems

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Saptarshi

    Multi-agent systems are widely used for constructing a desired formation shape, exploring an area, surveillance, coverage, and other cooperative tasks. This dissertation introduces novel algorithms in the three main areas of shape formation, distributed estimation, and attitude control of large-scale multi-agent systems. In the first part of this dissertation, we address the problem of shape formation for thousands to millions of agents. Here, we present two novel algorithms for guiding a large-scale swarm of robotic systems into a desired formation shape in a distributed and scalable manner. These probabilistic swarm guidance algorithms adopt an Eulerian framework, where the physical space is partitioned into bins and the swarm's density distribution over each bin is controlled using tunable Markov chains. In the first algorithm - Probabilistic Swarm Guidance using Inhomogeneous Markov Chains (PSG-IMC) - each agent determines its bin transition probabilities using a time-inhomogeneous Markov chain that is constructed in real-time using feedback from the current swarm distribution. This PSG-IMC algorithm minimizes the expected cost of the transitions required to achieve and maintain the desired formation shape, even when agents are added to or removed from the swarm. The algorithm scales well with a large number of agents and complex formation shapes, and can also be adapted for area exploration applications. In the second algorithm - Probabilistic Swarm Guidance using Optimal Transport (PSG-OT) - each agent determines its bin transition probabilities by solving an optimal transport problem, which is recast as a linear program. In the presence of perfect feedback of the current swarm distribution, this algorithm minimizes the given cost function, guarantees faster convergence, reduces the number of transitions for achieving the desired formation, and is robust to disturbances or damages to the formation. We demonstrate the effectiveness of these two proposed swarm guidance algorithms using results from numerical simulations and closed-loop hardware experiments on multiple quadrotors. In the second part of this dissertation, we present two novel discrete-time algorithms for distributed estimation, which track a single target using a network of heterogeneous sensing agents. The Distributed Bayesian Filtering (DBF) algorithm, the sensing agents combine their normalized likelihood functions using the logarithmic opinion pool and the discrete-time dynamic average consensus algorithm. Each agent's estimated likelihood function converges to an error ball centered on the joint likelihood function of the centralized multi-sensor Bayesian filtering algorithm. Using a new proof technique, the convergence, stability, and robustness properties of the DBF algorithm are rigorously characterized. The explicit bounds on the time step of the robust DBF algorithm are shown to depend on the time-scale of the target dynamics. Furthermore, the DBF algorithm for linear-Gaussian models can be cast into a modified form of the Kalman information filter. In the Bayesian Consensus Filtering (BCF) algorithm, the agents combine their estimated posterior pdfs multiple times within each time step using the logarithmic opinion pool scheme. Thus, each agent's consensual pdf minimizes the sum of Kullback-Leibler divergences with the local posterior pdfs. The performance and robust properties of these algorithms are validated using numerical simulations. In the third part of this dissertation, we present an attitude control strategy and a new nonlinear tracking controller for a spacecraft carrying a large object, such as an asteroid or a boulder. If the captured object is larger or comparable in size to the spacecraft and has significant modeling uncertainties, conventional nonlinear control laws that use exact feed-forward cancellation are not suitable because they exhibit a large resultant disturbance torque. The proposed nonlinear tracking control law guarantees global exponential convergence of tracking errors with finite-gain Lp stability in the presence of modeling uncertainties and disturbances, and reduces the resultant disturbance torque. Further, this control law permits the use of any attitude representation and its integral control formulation eliminates any constant disturbance. Under small uncertainties, the best strategy for stabilizing the combined system is to track a fuel-optimal reference trajectory using this nonlinear control law, because it consumes the least amount of fuel. In the presence of large uncertainties, the most effective strategy is to track the derivative plus proportional-derivative based reference trajectory, because it reduces the resultant disturbance torque. The effectiveness of the proposed attitude control law is demonstrated by using results of numerical simulation based on an Asteroid Redirect Mission concept. The new algorithms proposed in this dissertation will facilitate the development of versatile autonomous multi-agent systems that are capable of performing a variety of complex tasks in a robust and scalable manner.

  13. Agent-Based Models in Social Physics

    NASA Astrophysics Data System (ADS)

    Quang, Le Anh; Jung, Nam; Cho, Eun Sung; Choi, Jae Han; Lee, Jae Woo

    2018-06-01

    We review the agent-based models (ABM) on social physics including econophysics. The ABM consists of agent, system space, and external environment. The agent is autonomous and decides his/her behavior by interacting with the neighbors or the external environment with the rules of behavior. Agents are irrational because they have only limited information when they make decisions. They adapt using learning from past memories. Agents have various attributes and are heterogeneous. ABM is a non-equilibrium complex system that exhibits various emergence phenomena. The social complexity ABM describes human behavioral characteristics. In ABMs of econophysics, we introduce the Sugarscape model and the artificial market models. We review minority games and majority games in ABMs of game theory. Social flow ABM introduces crowding, evacuation, traffic congestion, and pedestrian dynamics. We also review ABM for opinion dynamics and voter model. We discuss features and advantages and disadvantages of Netlogo, Repast, Swarm, and Mason, which are representative platforms for implementing ABM.

  14. Modeling and simulation of dynamic ant colony's labor division for task allocation of UAV swarm

    NASA Astrophysics Data System (ADS)

    Wu, Husheng; Li, Hao; Xiao, Renbin; Liu, Jie

    2018-02-01

    The problem of unmanned aerial vehicle (UAV) task allocation not only has the intrinsic attribute of complexity, such as highly nonlinear, dynamic, highly adversarial and multi-modal, but also has a better practicability in various multi-agent systems, which makes it more and more attractive recently. In this paper, based on the classic fixed response threshold model (FRTM), under the idea of "problem centered + evolutionary solution" and by a bottom-up way, the new dynamic environmental stimulus, response threshold and transition probability are designed, and a dynamic ant colony's labor division (DACLD) model is proposed. DACLD allows a swarm of agents with a relatively low-level of intelligence to perform complex tasks, and has the characteristic of distributed framework, multi-tasks with execution order, multi-state, adaptive response threshold and multi-individual response. With the proposed model, numerical simulations are performed to illustrate the effectiveness of the distributed task allocation scheme in two situations of UAV swarm combat (dynamic task allocation with a certain number of enemy targets and task re-allocation due to unexpected threats). Results show that our model can get both the heterogeneous UAVs' real-time positions and states at the same time, and has high degree of self-organization, flexibility and real-time response to dynamic environments.

  15. Daphnia swarms: from single agent dynamics to collective vortex formation

    NASA Astrophysics Data System (ADS)

    Ordemann, Anke; Balazsi, Gabor; Caspari, Elizabeth; Moss, Frank

    2003-05-01

    Swarm theories have become fashionable in theoretical physics over the last decade. They span the range of interactions from individual agents moving in a mean field to coherent collective motions of large agent populations, such as vortex-swarming. But controlled laboratory tests of these theories using real biological agents have been problematic due primarily to poorly known agent-agent interactions (in the case of e.g. bacteria and slime molds) or the large swarm size (e.g. for flocks of birds and schools of fish). Moreover, the entire range of behaviors from single agent interactions to collective vortex motions of the swarm have here-to-fore not been observed with a single animal. We present the results of well defined experiments with the zooplankton Daphnia in light fields showing this range of behaviors. We interpret our results with a theory of the motions of self-propelled agents in a field.

  16. New tools for characterizing swarming systems: A comparison of minimal models

    NASA Astrophysics Data System (ADS)

    Huepe, Cristián; Aldana, Maximino

    2008-05-01

    We compare three simple models that reproduce qualitatively the emergent swarming behavior of bird flocks, fish schools, and other groups of self-propelled agents by using a new set of diagnosis tools related to the agents’ spatial distribution. Two of these correspond in fact to different implementations of the same model, which had been previously confused in the literature. All models appear to undergo a very similar order-to-disorder phase transition as the noise level is increased if we only compare the standard order parameter, which measures the degree of agent alignment. When considering our novel quantities, however, their properties are clearly distinguished, unveiling previously unreported qualitative characteristics that help determine which model best captures the main features of realistic swarms. Additionally, we analyze the agent clustering in space, finding that the distribution of cluster sizes is typically exponential at high noise, and approaches a power-law as the noise level is reduced. This trend is sometimes reversed at noise levels close to the phase transition, suggesting a non-trivial critical behavior that could be verified experimentally. Finally, we study a bi-stable regime that develops under certain conditions in large systems. By computing the probability distributions of our new quantities, we distinguish the properties of each of the coexisting metastable states. Our study suggests new experimental analyses that could be carried out to characterize real biological swarms.

  17. Self Organized Multi Agent Swarms (SOMAS) for Network Security Control

    DTIC Science & Technology

    2009-03-01

    Normal hierarchy vs entangled hierarchy 2.5.7 Quantifying Entangledness . While self organization means that the swarm develops a consistent structure of...flexibility due to centralization of control and com- munication. Thus, self organized, entangled hierarchy multi-agent swarms are evolved in this study to...technique. The resulting design exhibits a self organized multi-agent swarm (SOMAS) with entangled hierarchical control and communication through the

  18. Individual Pause-and-Go Motion Is Instrumental to the Formation and Maintenance of Swarms of Marching Locust Nymphs

    PubMed Central

    Ariel, Gil; Ophir, Yotam; Levi, Sagi; Ben-Jacob, Eshel; Ayali, Amir

    2014-01-01

    The principal interactions leading to the emergence of order in swarms of marching locust nymphs was studied both experimentally, using small groups of marching locusts in the lab, and using computer simulations. We utilized a custom tracking algorithm to reveal fundamental animal-animal interactions leading to collective motion. Uncovering this behavior introduced a new agent-based modeling approach in which pause-and-go motion is pivotal. The behavioral and modeling findings are largely based on motion-related visual sensory inputs obtained by the individual locust. Results suggest a generic principle, in which intermittent animal motion can be considered as a sequence of individual decisions as animals repeatedly reassess their situation and decide whether or not to swarm. This interpretation implies, among other things, some generic characteristics regarding the build-up and emergence of collective order in swarms: in particular, that order and disorder are generic meta-stable states of the system, suggesting that the emergence of order is kinetic and does not necessarily require external environmental changes. This work calls for further experimental as well as theoretical investigation of the neural mechanisms underlying locust coordinative behavior. PMID:24988464

  19. Analysis multi-agent with precense of the leader

    NASA Astrophysics Data System (ADS)

    Achmadi, Sentot; Marjono, Miswanto

    2017-12-01

    The phenomenon of swarm is a natural phenomenon that is often done by a collection of living things in the form of motion from one place to another. By clustering, a group of animals can increase their effectiveness in food search and avoid predators. A group of geese also performs a swarm phenomenon when flying and forms an inverted V-formation with one of the geese acting as a leader. Each flying track of members of the geese group always follows the leader's path at a certain distance. This article discusses the mathematical modeling of the swarm phenomenon, which is the optimal tracking control for multi-agent model with the influence of the leader in the 2-dimensional space. The leader in this model is intended to track the specified path. Firstly, the leader's motion control is to follow the predetermined path using the Tracking Error Dynamic method. Then, the path from the leader is used to design the motion control of each agent to track the leader's path at a certain distance. The result of numerical simulation shows that the leader trajectory can track the specified path. Similarly, the motion of each agent can trace and follow the leader's path.

  20. Industry Cluster's Adaptive Co-competition Behavior Modeling Inspired by Swarm Intelligence

    NASA Astrophysics Data System (ADS)

    Xiang, Wei; Ye, Feifan

    Adaptation helps the individual enterprise to adjust its behavior to uncertainties in environment and hence determines a healthy growth of both the individuals and the whole industry cluster as well. This paper is focused on the study on co-competition adaptation behavior of industry cluster, which is inspired by swarm intelligence mechanisms. By referencing to ant cooperative transportation and ant foraging behavior and their related swarm intelligence approaches, the cooperative adaptation and competitive adaptation behavior are studied and relevant models are proposed. Those adaptive co-competition behaviors model can be integrated to the multi-agent system of industry cluster to make the industry cluster model more realistic.

  1. Mixed reality framework for collective motion patterns of swarms with delay coupling

    NASA Astrophysics Data System (ADS)

    Szwaykowska, Klementyna; Schwartz, Ira

    The formation of coherent patterns in swarms of interacting self-propelled autonomous agents is an important subject for many applications within the field of distributed robotic systems. However, there are significant logistical challenges associated with testing fully distributed systems in real-world settings. In this paper, we provide a rigorous theoretical justification for the use of mixed-reality experiments as a stepping stone to fully physical testing of distributed robotic systems. We also model and experimentally realize a mixed-reality large-scale swarm of delay-coupled agents. Our analyses, assuming agents communicating over an Erdos-Renyi network, demonstrate the existence of stable coherent patterns that can be achieved only with delay coupling and that are robust to decreasing network connectivity and heterogeneity in agent dynamics. We show how the bifurcation structure for emergence of different patterns changes with heterogeneity in agent acceleration capabilities and limited connectivity in the network as a function of coupling strength and delay. Our results are verified through simulation as well as preliminary experimental results of delay-induced pattern formation in a mixed-reality swarm. K. S. was a National Research Council postdoctoral fellow. I.B.S was supported by the U.S. Naval Research Laboratory funding (N0001414WX00023) and office of Naval Research (N0001414WX20610).

  2. Resilience and Controllability of Dynamic Collective Behaviors

    PubMed Central

    Komareji, Mohammad; Bouffanais, Roland

    2013-01-01

    The network paradigm is used to gain insight into the structural root causes of the resilience of consensus in dynamic collective behaviors, and to analyze the controllability of the swarm dynamics. Here we devise the dynamic signaling network which is the information transfer channel underpinning the swarm dynamics of the directed interagent connectivity based on a topological neighborhood of interactions. The study of the connectedness of the swarm signaling network reveals the profound relationship between group size and number of interacting neighbors, which is found to be in good agreement with field observations on flock of starlings [Ballerini et al. (2008) Proc. Natl. Acad. Sci. USA, 105: 1232]. Using a dynamical model, we generate dynamic collective behaviors enabling us to uncover that the swarm signaling network is a homogeneous clustered small-world network, thus facilitating emergent outcomes if connectedness is maintained. Resilience of the emergent consensus is tested by introducing exogenous environmental noise, which ultimately stresses how deeply intertwined are the swarm dynamics in the physical and network spaces. The availability of the signaling network allows us to analytically establish for the first time the number of driver agents necessary to fully control the swarm dynamics. PMID:24358209

  3. Trust Management in Swarm-Based Autonomic Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiden, Wendy M.; Haack, Jereme N.; Fink, Glenn A.

    2009-07-07

    Reputation-based trust management techniques can address issues such as insider threat as well as quality of service issues that may be malicious in nature. However, trust management techniques must be adapted to the unique needs of the architectures and problem domains to which they are applied. Certain characteristics of swarms such as their lightweight ephemeral nature and indirect communication make this adaptation especially challenging. In this paper we look at the trust issues and opportunities in mobile agent swarm-based autonomic systems and find that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust managementmore » problem becomes much more scalable and still serves to protect the swarms. We also analyze the applicability of trust management research as it has been applied to architectures with similar characteristics. Finally, we specify required characteristics for trust management mechanisms to be used to monitor the trustworthiness of the entities in a swarm-based autonomic computing system.« less

  4. Effects of physical factors on the swarming motility of text itPseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Si, Tieyan; Ma, Zidong; Tang, Wai Shing; Yang, Alexander; Tang, Jay

    Many species of bacteria can spread over a semi-solid surface via a particular form of collective motion known as surface swarming. Using Pseudomonas aeruginosa as a model organism, we investigate physical factors that either facilitate or restrict the swarming motility. The semi-solid surface is typically formed by 0.5-1% agar containing essential nutrients for the bacterial growth and proliferation. Most bacterial species, including P. aeruginosa, synthesize bio-surfactants to aid in swarming. We found addition of exogenous surfactants such as triton into the agar matrix enhances the swarming. In contrast, increasing agar percentage, infusing osmolites, and adding viscous agents all decrease swarming. We propose that the swarming speed is restricted by the rate of water supply from within the agar gel and by the line tension at the swarm front involving three materials in contact: the air, the bacteria propelled liquid film, and the agar substrate.

  5. Multi-agent simulation of the von Thunen model formation mechanism

    NASA Astrophysics Data System (ADS)

    Tao, Haiyan; Li, Xia; Chen, Xiaoxiang; Deng, Chengbin

    2008-10-01

    This research tries to explain the internal driving forces of circular structure formation in urban geography via the simulation of interaction between individual behavior and market. On the premise of single city center, unchanged scale merit and complete competition, enterprise migration theory as well, an R-D algorithm, that has agents searched the best behavior rules in some given locations, is introduced with agent-based modeling technique. The experiment conducts a simulation on Swarm platform, whose result reflects and replays the formation process of Von Thünen circular structure. Introducing and considering some heterogeneous factors, such as traffic roads, the research verifies several landuse models and discusses the self-adjustment function of price mechanism.

  6. Multiagent robotic systems' ambient light sensor

    NASA Astrophysics Data System (ADS)

    Iureva, Radda A.; Maslennikov, Oleg S.; Komarov, Igor I.

    2017-05-01

    Swarm robotics is one of the fastest growing areas of modern technology. Being subclass of multi-agent systems it inherits the main part of scientific-methodological apparatus of construction and functioning of practically useful complexes, which consist of rather autonomous independent agents. Ambient light sensors (ALS) are widely used in robotics. But speaking about swarm robotics, the technology which has great number of specific features and is developing, we can't help mentioning that its important to use sensors on each robot not only in order to help it to get directionally oriented, but also to follow light emitted by robot-chief or to help to find the goal easier. Key words: ambient light sensor, swarm system, multiagent system, robotic system, robotic complexes, simulation modelling

  7. Simulating the decentralized processes of the human immune system in a virtual anatomy model.

    PubMed

    Sarpe, Vladimir; Jacob, Christian

    2013-01-01

    Many physiological processes within the human body can be perceived and modeled as large systems of interacting particles or swarming agents. The complex processes of the human immune system prove to be challenging to capture and illustrate without proper reference to the spatial distribution of immune-related organs and systems. Our work focuses on physical aspects of immune system processes, which we implement through swarms of agents. This is our first prototype for integrating different immune processes into one comprehensive virtual physiology simulation. Using agent-based methodology and a 3-dimensional modeling and visualization environment (LINDSAY Composer), we present an agent-based simulation of the decentralized processes in the human immune system. The agents in our model - such as immune cells, viruses and cytokines - interact through simulated physics in two different, compartmentalized and decentralized 3-dimensional environments namely, (1) within the tissue and (2) inside a lymph node. While the two environments are separated and perform their computations asynchronously, an abstract form of communication is allowed in order to replicate the exchange, transportation and interaction of immune system agents between these sites. The distribution of simulated processes, that can communicate across multiple, local CPUs or through a network of machines, provides a starting point to build decentralized systems that replicate larger-scale processes within the human body, thus creating integrated simulations with other physiological systems, such as the circulatory, endocrine, or nervous system. Ultimately, this system integration across scales is our goal for the LINDSAY Virtual Human project. Our current immune system simulations extend our previous work on agent-based simulations by introducing advanced visualizations within the context of a virtual human anatomy model. We also demonstrate how to distribute a collection of connected simulations over a network of computers. As a future endeavour, we plan to use parameter tuning techniques on our model to further enhance its biological credibility. We consider these in silico experiments and their associated modeling and optimization techniques as essential components in further enhancing our capabilities of simulating a whole-body, decentralized immune system, to be used both for medical education and research as well as for virtual studies in immunoinformatics.

  8. Material quality assessment of silk nanofibers based on swarm intelligence

    NASA Astrophysics Data System (ADS)

    Brandoli Machado, Bruno; Nunes Gonçalves, Wesley; Martinez Bruno, Odemir

    2013-02-01

    In this paper, we propose a novel approach for texture analysis based on artificial crawler model. Our method assumes that each agent can interact with the environment and each other. The evolution process converges to an equilibrium state according to the set of rules. For each textured image, the feature vector is composed by signatures of the live agents curve at each time. Experimental results revealed that combining the minimum and maximum signatures into one increase the classification rate. In addition, we pioneer the use of autonomous agents for characterizing silk fibroin scaffolds. The results strongly suggest that our approach can be successfully employed for texture analysis.

  9. Collective motion of predictive swarms

    PubMed Central

    Vural, Dervis Can

    2017-01-01

    Theoretical models of populations and swarms typically start with the assumption that the motion of agents is governed by the local stimuli. However, an intelligent agent, with some understanding of the laws that govern its habitat, can anticipate the future, and make predictions to gather resources more efficiently. Here we study a specific model of this kind, where agents aim to maximize their consumption of a diffusing resource, by attempting to predict the future of a resource field and the actions of other agents. Once the agents make a prediction, they are attracted to move towards regions that have, and will have, denser resources. We find that the further the agents attempt to see into the future, the more their attempts at prediction fail, and the less resources they consume. We also study the case where predictive agents compete against non-predictive agents and find the predictors perform better than the non-predictors only when their relative numbers are very small. We conclude that predictivity pays off either when the predictors do not see too far into the future or the number of predictors is small. PMID:29065136

  10. Collective motion of predictive swarms.

    PubMed

    Rupprecht, Nathaniel; Vural, Dervis Can

    2017-01-01

    Theoretical models of populations and swarms typically start with the assumption that the motion of agents is governed by the local stimuli. However, an intelligent agent, with some understanding of the laws that govern its habitat, can anticipate the future, and make predictions to gather resources more efficiently. Here we study a specific model of this kind, where agents aim to maximize their consumption of a diffusing resource, by attempting to predict the future of a resource field and the actions of other agents. Once the agents make a prediction, they are attracted to move towards regions that have, and will have, denser resources. We find that the further the agents attempt to see into the future, the more their attempts at prediction fail, and the less resources they consume. We also study the case where predictive agents compete against non-predictive agents and find the predictors perform better than the non-predictors only when their relative numbers are very small. We conclude that predictivity pays off either when the predictors do not see too far into the future or the number of predictors is small.

  11. Topological and behavioral disorder in collective motion

    NASA Astrophysics Data System (ADS)

    Quint, David

    2014-03-01

    A major underlying assumption in many studies on the collective motion of self-propelled agents has been that the environment is continuous, isotropic and ordered and agents are all identical. In the natural world there are many examples of disordered environments or heterogeneous swarms where collective motion can exist. Examples include bats that navigate natural caverns via echolocation, schools of fish that maneuver through dark and light areas, microbial colonies that move about in heterogeneous soil, quorum sensing bacteria, crowds of people that are evacuating a building and traffic flow in major cities. In general disorder can arise from two basic sources that inhibit/augment both movement and information flow, those that represent physical obstacles (i.e topological), (extrinsic), and those that arise from behavioral heterogeneties within the swarm itself (intrinsic). In either case, extrinsic or intrinsic, disorder can be quenched or dynamic in space or time or both. To understand the effect of the various forms of disorder that can be present in the environment of the agents, we study both discrete and continuous 2 d agent based models that utilize only local interactions and study the transition to the collectively moving state as a function of the amount of disorder or behavioral heterogeneities present in the environment. I will present our recent results and discuss the effect that disorder has on collective motion and the general physical mechanisms that swarms, either real or artificial, could utilize in order to overcome disorder in their environment.

  12. Autonomous Navigation, Dynamic Path and Work Flow Planning in Multi-Agent Robotic Swarms Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Leucht, Kurt; Stolleis, Karl

    2015-01-01

    Kennedy Space Center has teamed up with the Biological Computation Lab at the University of New Mexico to create a swarm of small, low-cost, autonomous robots, called Swarmies, to be used as a ground-based research platform for in-situ resource utilization missions. The behavior of the robot swarm mimics the central-place foraging strategy of ants to find and collect resources in an unknown environment and return those resources to a central site.

  13. Continuum models of cohesive stochastic swarms: The effect of motility on aggregation patterns

    NASA Astrophysics Data System (ADS)

    Hughes, Barry D.; Fellner, Klemens

    2013-10-01

    Mathematical models of swarms of moving agents with non-local interactions have many applications and have been the subject of considerable recent interest. For modest numbers of agents, cellular automata or related algorithms can be used to study such systems, but in the present work, instead of considering discrete agents, we discuss a class of one-dimensional continuum models, in which the agents possess a density ρ(x,t) at location x at time t. The agents are subject to a stochastic motility mechanism and to a global cohesive inter-agent force. The motility mechanisms covered include classical diffusion, nonlinear diffusion (which may be used to model, in a phenomenological way, volume exclusion or other short-range local interactions), and a family of linear redistribution operators related to fractional diffusion equations. A variety of exact analytic results are discussed, including equilibrium solutions and criteria for unimodality of equilibrium distributions, full time-dependent solutions, and transitions between asymptotic collapse and asymptotic escape. We address the behaviour of the system for diffusive motility in the low-diffusivity limit for both smooth and singular interaction potentials and show how this elucidates puzzling behaviour in fully deterministic non-local particle interaction models. We conclude with speculative remarks about extensions and applications of the models.

  14. Guidance and control of swarms of spacecraft

    NASA Astrophysics Data System (ADS)

    Morgan, Daniel James

    There has been considerable interest in formation flying spacecraft due to their potential to perform certain tasks at a cheaper cost than monolithic spacecraft. Formation flying enables the use of smaller, cheaper spacecraft that distribute the risk of the mission. Recently, the ideas of formation flying have been extended to spacecraft swarms made up of hundreds to thousands of 100-gram-class spacecraft known as femtosatellites. The large number of spacecraft and limited capabilities of each individual spacecraft present a significant challenge in guidance, navigation, and control. This dissertation deals with the guidance and control algorithms required to enable the flight of spacecraft swarms. The algorithms developed in this dissertation are focused on achieving two main goals: swarm keeping and swarm reconfiguration. The objectives of swarm keeping are to maintain bounded relative distances between spacecraft, prevent collisions between spacecraft, and minimize the propellant used by each spacecraft. Swarm reconfiguration requires the transfer of the swarm to a specific shape. Like with swarm keeping, minimizing the propellant used and preventing collisions are the main objectives. Additionally, the algorithms required for swarm keeping and swarm reconfiguration should be decentralized with respect to communication and computation so that they can be implemented on femtosats, which have limited hardware capabilities. The algorithms developed in this dissertation are concerned with swarms located in low Earth orbit. In these orbits, Earth oblateness and atmospheric drag have a significant effect on the relative motion of the swarm. The complicated dynamic environment of low Earth orbits further complicates the swarm-keeping and swarm-reconfiguration problems. To better develop and test these algorithms, a nonlinear, relative dynamic model with J2 and drag perturbations is developed. This model is used throughout this dissertation to validate the algorithms using computer simulations. The swarm-keeping problem can be solved by placing the spacecraft on J2-invariant relative orbits, which prevent collisions and minimize the drift of the swarm over hundreds of orbits using a single burn. These orbits are achieved by energy matching the spacecraft to the reference orbit. Additionally, these conditions can be repeatedly applied to minimize the drift of the swarm when atmospheric drag has a large effect (orbits with an altitude under 500 km). The swarm reconfiguration is achieved using two steps: trajectory optimization and assignment. The trajectory optimization problem can be written as a nonlinear, optimal control problem. This optimal control problem is discretized, decoupled, and convexified so that the individual femtosats can efficiently solve the optimization. Sequential convex programming is used to generate the control sequences and trajectories required to safely and efficiently transfer a spacecraft from one position to another. The sequence of trajectories is shown to converge to a Karush-Kuhn-Tucker point of the nonconvex problem. In the case where many of the spacecraft are interchangeable, a variable-swarm, distributed auction algorithm is used to determine the assignment of spacecraft to target positions. This auction algorithm requires only local communication and all of the bidding parameters are stored locally. The assignment generated using this auction algorithm is shown to be near optimal and to converge in a finite number of bids. Additionally, the bidding process is used to modify the number of targets used in the assignment so that the reconfiguration can be achieved even when there is a disconnected communication network or a significant loss of agents. Once the assignment is achieved, the trajectory optimization can be run using the terminal positions determined by the auction algorithm. To implement these algorithms in real time a model predictive control formulation is used. Model predictive control uses a finite horizon to apply the most up-to-date control sequence while simultaneously calculating a new assignment and trajectory based on updated state information. Using a finite horizon allows collisions to only be considered between spacecraft that are near each other at the current time. This relaxes the all-to-all communication assumption so that only neighboring agents need to communicate. Experimental validation is done using the formation flying testbed. The swarm-reconfiguration algorithms are tested using multiple quadrotors. Experiments have been performed using sequential convex programming for offline trajectory planning, model predictive control and sequential convex programming for real-time trajectory generation, and the variable-swarm, distributed auction algorithm for optimal assignment. These experiments show that the swarm-reconfiguration algorithms can be implemented in real time using actual hardware. In general, this dissertation presents guidance and control algorithms that maintain and reconfigure swarms of spacecraft while maintaining the shape of the swarm, preventing collisions between the spacecraft, and minimizing the amount of propellant used.

  15. Flocking algorithm for autonomous flying robots.

    PubMed

    Virágh, Csaba; Vásárhelyi, Gábor; Tarcai, Norbert; Szörényi, Tamás; Somorjai, Gergő; Nepusz, Tamás; Vicsek, Tamás

    2014-06-01

    Animal swarms displaying a variety of typical flocking patterns would not exist without the underlying safe, optimal and stable dynamics of the individuals. The emergence of these universal patterns can be efficiently reconstructed with agent-based models. If we want to reproduce these patterns with artificial systems, such as autonomous aerial robots, agent-based models can also be used in their control algorithms. However, finding the proper algorithms and thus understanding the essential characteristics of the emergent collective behaviour requires thorough and realistic modeling of the robot and also the environment. In this paper, we first present an abstract mathematical model of an autonomous flying robot. The model takes into account several realistic features, such as time delay and locality of communication, inaccuracy of the on-board sensors and inertial effects. We present two decentralized control algorithms. One is based on a simple self-propelled flocking model of animal collective motion, the other is a collective target tracking algorithm. Both algorithms contain a viscous friction-like term, which aligns the velocities of neighbouring agents parallel to each other. We show that this term can be essential for reducing the inherent instabilities of such a noisy and delayed realistic system. We discuss simulation results on the stability of the control algorithms, and perform real experiments to show the applicability of the algorithms on a group of autonomous quadcopters. In our case, bio-inspiration works in two ways. On the one hand, the whole idea of trying to build and control a swarm of robots comes from the observation that birds tend to flock to optimize their behaviour as a group. On the other hand, by using a realistic simulation framework and studying the group behaviour of autonomous robots we can learn about the major factors influencing the flight of bird flocks.

  16. Joint global optimization of tomographic data based on particle swarm optimization and decision theory

    NASA Astrophysics Data System (ADS)

    Paasche, H.; Tronicke, J.

    2012-04-01

    In many near surface geophysical applications multiple tomographic data sets are routinely acquired to explore subsurface structures and parameters. Linking the model generation process of multi-method geophysical data sets can significantly reduce ambiguities in geophysical data analysis and model interpretation. Most geophysical inversion approaches rely on local search optimization methods used to find an optimal model in the vicinity of a user-given starting model. The final solution may critically depend on the initial model. Alternatively, global optimization (GO) methods have been used to invert geophysical data. They explore the solution space in more detail and determine the optimal model independently from the starting model. Additionally, they can be used to find sets of optimal models allowing a further analysis of model parameter uncertainties. Here we employ particle swarm optimization (PSO) to realize the global optimization of tomographic data. PSO is an emergent methods based on swarm intelligence characterized by fast and robust convergence towards optimal solutions. The fundamental principle of PSO is inspired by nature, since the algorithm mimics the behavior of a flock of birds searching food in a search space. In PSO, a number of particles cruise a multi-dimensional solution space striving to find optimal model solutions explaining the acquired data. The particles communicate their positions and success and direct their movement according to the position of the currently most successful particle of the swarm. The success of a particle, i.e. the quality of the currently found model by a particle, must be uniquely quantifiable to identify the swarm leader. When jointly inverting disparate data sets, the optimization solution has to satisfy multiple optimization objectives, at least one for each data set. Unique determination of the most successful particle currently leading the swarm is not possible. Instead, only statements about the Pareto optimality of the found solutions can be made. Identification of the leading particle traditionally requires a costly combination of ranking and niching techniques. In our approach, we use a decision rule under uncertainty to identify the currently leading particle of the swarm. In doing so, we consider the different objectives of our optimization problem as competing agents with partially conflicting interests. Analysis of the maximin fitness function allows for robust and cheap identification of the currently leading particle. The final optimization result comprises a set of possible models spread along the Pareto front. For convex Pareto fronts, solution density is expected to be maximal in the region ideally compromising all objectives, i.e. the region of highest curvature.

  17. Human Robotic Swarm Interaction Using an Artificial Physics Approach

    DTIC Science & Technology

    2014-12-01

    calculates virtual forces that are summed and translated into velocity commands. The virtual forces are modeled after real physical forces such as...results from the physical experiments show that an artificial physics-based framework is an effective way to allow multiple agents to follow a human... modeled after real physical forces such as gravitational and Coulomb, forces but are not restricted to them, for example, the force magnitude may not be

  18. Verification of Emergent Behaviors in Swarm-based Systems

    NASA Technical Reports Server (NTRS)

    Rouff, Christopher; Vanderbilt, Amy; Hinchey, Mike; Truszkowski, Walt; Rash, James

    2004-01-01

    The emergent properties of swarms make swarm-based missions powerful, but at the same time more difficult to design and to assure that the proper behaviors will emerge. We are currently investigating formal methods and techniques for verification and validation of swarm-based missions. The Autonomous Nano-Technology Swarm (ANTS) mission is being used as an example and case study for swarm-based missions to experiment and test current formal methods with intelligent swarms. Using the ANTS mission, we have evaluated multiple formal methods to determine their effectiveness in modeling and assuring swarm behavior. This paper introduces how intelligent swarm technology is being proposed for NASA missions, and gives the results of a comparison of several formal methods and approaches for specifying intelligent swarm-based systems and their effectiveness for predicting emergent behavior.

  19. Properties of a Formal Method to Model Emergence in Swarm-Based Systems

    NASA Technical Reports Server (NTRS)

    Rouff, Christopher; Vanderbilt, Amy; Truszkowski, Walt; Rash, James; Hinchey, Mike

    2004-01-01

    Future space missions will require cooperation between multiple satellites and/or rovers. Developers are proposing intelligent autonomous swarms for these missions, but swarm-based systems are difficult or impossible to test with current techniques. This viewgraph presentation examines the use of formal methods in testing swarm-based systems. The potential usefulness of formal methods in modeling the ANTS asteroid encounter mission is also examined.

  20. Evolution of Collective Behaviour in an Artificial World Using Linguistic Fuzzy Rule-Based Systems

    PubMed Central

    Lebar Bajec, Iztok

    2017-01-01

    Collective behaviour is a fascinating and easily observable phenomenon, attractive to a wide range of researchers. In biology, computational models have been extensively used to investigate various properties of collective behaviour, such as: transfer of information across the group, benefits of grouping (defence against predation, foraging), group decision-making process, and group behaviour types. The question ‘why,’ however remains largely unanswered. Here the interest goes into which pressures led to the evolution of such behaviour, and evolutionary computational models have already been used to test various biological hypotheses. Most of these models use genetic algorithms to tune the parameters of previously presented non-evolutionary models, but very few attempt to evolve collective behaviour from scratch. Of these last, the successful attempts display clumping or swarming behaviour. Empirical evidence suggests that in fish schools there exist three classes of behaviour; swarming, milling and polarized. In this paper we present a novel, artificial life-like evolutionary model, where individual agents are governed by linguistic fuzzy rule-based systems, which is capable of evolving all three classes of behaviour. PMID:28045964

  1. Evolution of Collective Behaviour in an Artificial World Using Linguistic Fuzzy Rule-Based Systems.

    PubMed

    Demšar, Jure; Lebar Bajec, Iztok

    2017-01-01

    Collective behaviour is a fascinating and easily observable phenomenon, attractive to a wide range of researchers. In biology, computational models have been extensively used to investigate various properties of collective behaviour, such as: transfer of information across the group, benefits of grouping (defence against predation, foraging), group decision-making process, and group behaviour types. The question 'why,' however remains largely unanswered. Here the interest goes into which pressures led to the evolution of such behaviour, and evolutionary computational models have already been used to test various biological hypotheses. Most of these models use genetic algorithms to tune the parameters of previously presented non-evolutionary models, but very few attempt to evolve collective behaviour from scratch. Of these last, the successful attempts display clumping or swarming behaviour. Empirical evidence suggests that in fish schools there exist three classes of behaviour; swarming, milling and polarized. In this paper we present a novel, artificial life-like evolutionary model, where individual agents are governed by linguistic fuzzy rule-based systems, which is capable of evolving all three classes of behaviour.

  2. Searching for effective forces in laboratory insect swarms

    NASA Astrophysics Data System (ADS)

    Puckett, James G.; Kelley, Douglas H.; Ouellette, Nicholas T.

    2014-04-01

    Collective animal behaviour is often modeled by systems of agents that interact via effective social forces, including short-range repulsion and long-range attraction. We search for evidence of such effective forces by studying laboratory swarms of the flying midge Chironomus riparius. Using multi-camera stereoimaging and particle-tracking techniques, we record three-dimensional trajectories for all the individuals in the swarm. Acceleration measurements show a clear short-range repulsion, which we confirm by considering the spatial statistics of the midges, but no conclusive long-range interactions. Measurements of the mean free path of the insects also suggest that individuals are on average very weakly coupled, but that they are also tightly bound to the swarm itself. Our results therefore suggest that some attractive interaction maintains cohesion of the swarms, but that this interaction is not as simple as an attraction to nearest neighbours.

  3. Swarm Intelligence Optimization and Its Applications

    NASA Astrophysics Data System (ADS)

    Ding, Caichang; Lu, Lu; Liu, Yuanchao; Peng, Wenxiu

    Swarm Intelligence is a computational and behavioral metaphor for solving distributed problems inspired from biological examples provided by social insects such as ants, termites, bees, and wasps and by swarm, herd, flock, and shoal phenomena in vertebrates such as fish shoals and bird flocks. An example of successful research direction in Swarm Intelligence is ant colony optimization (ACO), which focuses on combinatorial optimization problems. Ant algorithms can be viewed as multi-agent systems (ant colony), where agents (individual ants) solve required tasks through cooperation in the same way that ants create complex social behavior from the combined efforts of individuals.

  4. VDLLA: A virtual daddy-long legs optimization

    NASA Astrophysics Data System (ADS)

    Yaakub, Abdul Razak; Ghathwan, Khalil I.

    2016-08-01

    Swarm intelligence is a strong optimization algorithm based on a biological behavior of insects or animals. The success of any optimization algorithm is depending on the balance between exploration and exploitation. In this paper, we present a new swarm intelligence algorithm, which is based on daddy long legs spider (VDLLA) as a new optimization algorithm with virtual behavior. In VDLLA, each agent (spider) has nine positions which represent the legs of spider and each position represent one solution. The proposed VDLLA is tested on four standard functions using average fitness, Medium fitness and standard deviation. The results of proposed VDLLA have been compared against Particle Swarm Optimization (PSO), Differential Evolution (DE) and Bat Inspired Algorithm (BA). Additionally, the T-Test has been conducted to show the significant deference between our proposed and other algorithms. VDLLA showed very promising results on benchmark test functions for unconstrained optimization problems and also significantly improved the original swarm algorithms.

  5. Agent-based modeling and systems dynamics model reproduction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    North, M. J.; Macal, C. M.

    2009-01-01

    Reproducibility is a pillar of the scientific endeavour. We view computer simulations as laboratories for electronic experimentation and therefore as tools for science. Recent studies have addressed model reproduction and found it to be surprisingly difficult to replicate published findings. There have been enough failed simulation replications to raise the question, 'can computer models be fully replicated?' This paper answers in the affirmative by reporting on a successful reproduction study using Mathematica, Repast and Swarm for the Beer Game supply chain model. The reproduction process was valuable because it demonstrated the original result's robustness across modelling methodologies and implementation environments.

  6. Control design based on dead-zone and leakage adaptive laws for artificial swarm mechanical systems

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaomin; Chen, Y. H.; Zhao, Han

    2017-05-01

    We consider the control design of artificial swarm systems with emphasis on four characteristics. First, the agent is made of mechanical components. As a result, the motion of each agent is subject to physical laws that govern mechanical systems. Second, both nonlinearity and uncertainty of the mechanical system are taken into consideration. Third, the ideal agent kinematic performance is treated as a desired d'Alembert constraint. This in turn suggests a creative way of embedding the constraint into the control design. Fourth, two types of adaptive robust control schemes are designed. They both contain leakage and dead-zone. However, one design suggests a trade-off between the amount of leakage and the size of dead-zone, in exchange for a simplified dead-zone structure.

  7. Coherent Pattern Prediction in Swarms of Delay-Coupled Agents

    NASA Astrophysics Data System (ADS)

    Mier-Y-Teran-Romero, Luis; Forgoston, Eric; Scwartz, Ira

    2013-03-01

    We consider a general swarm model of self-propelling particles interacting through a pairwise potential in the presence of a fixed communication time delay. Previous work has shown that swarms with communication time delays and noise may display pattern transitions that depend on the size of the coupling amplitude. We extend these results by completely unfolding the bifurcation structure of the mean field approximation. Our analysis reveals a direct correspondence between the different dynamical behaviors found in different regions of the coupling-time delay plane with the different classes of simulated coherent swarm patterns. We derive the spatio-temporal scales of the swarm structures, and also demonstrate how the complicated interplay of coupling strength, time delay, noise intensity, and choice of initial conditions can affect the swarm. In addition, when adding noise to the system, we find that for sufficiently large values of the coupling strength and/or the time delay, there is a noise intensity threshold that forces a transition of the swarm from a misaligned state into an aligned state. We show that this alignment transition exhibits hysteresis when the noise intensity is taken to be time dependent. Office of Naval Research, NIH (LMR and IBS) and NRL (EF)

  8. A comparison between metaheuristics as strategies for minimizing cyclic instability in Ambient Intelligence.

    PubMed

    Romero, Leoncio A; Zamudio, Victor; Baltazar, Rosario; Mezura, Efren; Sotelo, Marco; Callaghan, Vic

    2012-01-01

    In this paper we present a comparison between six novel approaches to the fundamental problem of cyclic instability in Ambient Intelligence. These approaches are based on different optimization algorithms, Particle Swarm Optimization (PSO), Bee Swarm Optimization (BSO), micro Particle Swarm Optimization (μ-PSO), Artificial Immune System (AIS), Genetic Algorithm (GA) and Mutual Information Maximization for Input Clustering (MIMIC). In order to be able to use these algorithms, we introduced the concept of Average Cumulative Oscillation (ACO), which enabled us to measure the average behavior of the system. This approach has the advantage that it does not need to analyze the topological properties of the system, in particular the loops, which can be computationally expensive. In order to test these algorithms we used the well-known discrete system called the Game of Life for 9, 25, 49 and 289 agents. It was found that PSO and μ-PSO have the best performance in terms of the number of agents locked. These results were confirmed using the Wilcoxon Signed Rank Test. This novel and successful approach is very promising and can be used to remove instabilities in real scenarios with a large number of agents (including nomadic agents) and complex interactions and dependencies among them.

  9. A Comparison between Metaheuristics as Strategies for Minimizing Cyclic Instability in Ambient Intelligence

    PubMed Central

    Romero, Leoncio A.; Zamudio, Victor; Baltazar, Rosario; Mezura, Efren; Sotelo, Marco; Callaghan, Vic

    2012-01-01

    In this paper we present a comparison between six novel approaches to the fundamental problem of cyclic instability in Ambient Intelligence. These approaches are based on different optimization algorithms, Particle Swarm Optimization (PSO), Bee Swarm Optimization (BSO), micro Particle Swarm Optimization (μ-PSO), Artificial Immune System (AIS), Genetic Algorithm (GA) and Mutual Information Maximization for Input Clustering (MIMIC). In order to be able to use these algorithms, we introduced the concept of Average Cumulative Oscillation (ACO), which enabled us to measure the average behavior of the system. This approach has the advantage that it does not need to analyze the topological properties of the system, in particular the loops, which can be computationally expensive. In order to test these algorithms we used the well-known discrete system called the Game of Life for 9, 25, 49 and 289 agents. It was found that PSO and μ-PSO have the best performance in terms of the number of agents locked. These results were confirmed using the Wilcoxon Signed Rank Test. This novel and successful approach is very promising and can be used to remove instabilities in real scenarios with a large number of agents (including nomadic agents) and complex interactions and dependencies among them. PMID:23112643

  10. Modeling, Analysis, and Control of Swarming Agents in a Probabilistic Framework

    DTIC Science & Technology

    2012-11-01

    configurations, which can ultimately lead the swarm towards configurations close to the global minimum of the total potential of interactions. The drawback ...165–171, 1992. [6] H. Ye, H. Wang, and H. Wang, “Stabilization of a PVTOL aircraft and an inertia wheel pendulum using saturation technique,” IEEE...estimate its parameters. The drawback of this approach is that the assumed form of the field can be unrealistic. In the approach that we are presenting here

  11. Decision-making in honeybee swarms based on quality and distance information of candidate nest sites.

    PubMed

    Laomettachit, Teeraphan; Termsaithong, Teerasit; Sae-Tang, Anuwat; Duangphakdee, Orawan

    2015-01-07

    In the nest-site selection process of honeybee swarms, an individual bee performs a waggle dance to communicate information about direction, quality, and distance of a discovered site to other bees at the swarm. Initially, different groups of bees dance to represent different potential sites, but eventually the swarm usually reaches an agreement for only one site. Here, we model the nest-site selection process in honeybee swarms of Apis mellifera and show how the swarms make adaptive decisions based on a trade-off between the quality and distance to candidate nest sites. We use bifurcation analysis and stochastic simulations to reveal that the swarm's site distance preference is moderate>near>far when the swarms choose between low quality sites. However, the distance preference becomes near>moderate>far when the swarms choose between high quality sites. Our simulations also indicate that swarms with large population size prefer nearer sites and, in addition, are more adaptive at making decisions based on available information compared to swarms with smaller population size. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Simulating Flying Insects Using Dynamics and Data-Driven Noise Modeling to Generate Diverse Collective Behaviors

    PubMed Central

    Ren, Jiaping; Wang, Xinjie; Manocha, Dinesh

    2016-01-01

    We present a biologically plausible dynamics model to simulate swarms of flying insects. Our formulation, which is based on biological conclusions and experimental observations, is designed to simulate large insect swarms of varying densities. We use a force-based model that captures different interactions between the insects and the environment and computes collision-free trajectories for each individual insect. Furthermore, we model the noise as a constructive force at the collective level and present a technique to generate noise-induced insect movements in a large swarm that are similar to those observed in real-world trajectories. We use a data-driven formulation that is based on pre-recorded insect trajectories. We also present a novel evaluation metric and a statistical validation approach that takes into account various characteristics of insect motions. In practice, the combination of Curl noise function with our dynamics model is used to generate realistic swarm simulations and emergent behaviors. We highlight its performance for simulating large flying swarms of midges, fruit fly, locusts and moths and demonstrate many collective behaviors, including aggregation, migration, phase transition, and escape responses. PMID:27187068

  13. Log-linear model based behavior selection method for artificial fish swarm algorithm.

    PubMed

    Huang, Zhehuang; Chen, Yidong

    2015-01-01

    Artificial fish swarm algorithm (AFSA) is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm.

  14. The Design of a Polymorphous Cognitive Agent Architecture (PCAA)

    DTIC Science & Technology

    2008-05-01

    tree, and search agents may search the tree for documents or clusters, depositing pheromones on the way down the tree. 46 19 The quality of SODAS...location in the lattice is a node, connected to its neighbors by links, and agents roam across the lattice, depositing pheromones . 49 21 A possible FPGA...provided by swarming, and also figure out a way for learning in ACT-R to trickle down to swarming computations, e.g., through the pheromones . Integration

  15. A distributed automatic target recognition system using multiple low resolution sensors

    NASA Astrophysics Data System (ADS)

    Yue, Zhanfeng; Lakshmi Narasimha, Pramod; Topiwala, Pankaj

    2008-04-01

    In this paper, we propose a multi-agent system which uses swarming techniques to perform high accuracy Automatic Target Recognition (ATR) in a distributed manner. The proposed system can co-operatively share the information from low-resolution images of different looks and use this information to perform high accuracy ATR. An advanced, multiple-agent Unmanned Aerial Vehicle (UAV) systems-based approach is proposed which integrates the processing capabilities, combines detection reporting with live video exchange, and swarm behavior modalities that dramatically surpass individual sensor system performance levels. We employ real-time block-based motion analysis and compensation scheme for efficient estimation and correction of camera jitter, global motion of the camera/scene and the effects of atmospheric turbulence. Our optimized Partition Weighted Sum (PWS) approach requires only bitshifts and additions, yet achieves a stunning 16X pixel resolution enhancement, which is moreover parallizable. We develop advanced, adaptive particle-filtering based algorithms to robustly track multiple mobile targets by adaptively changing the appearance model of the selected targets. The collaborative ATR system utilizes the homographies between the sensors induced by the ground plane to overlap the local observation with the received images from other UAVs. The motion of the UAVs distorts estimated homography frame to frame. A robust dynamic homography estimation algorithm is proposed to address this, by using the homography decomposition and the ground plane surface estimation.

  16. Properties of a Formal Method for Prediction of Emergent Behaviors in Swarm-based Systems

    NASA Technical Reports Server (NTRS)

    Rouff, Christopher; Vanderbilt, Amy; Hinchey, Mike; Truszkowski, Walt; Rash, James

    2004-01-01

    Autonomous intelligent swarms of satellites are being proposed for NASA missions that have complex behaviors and interactions. The emergent properties of swarms make these missions powerful, but at the same time more difficult to design and assure that proper behaviors will emerge. This paper gives the results of research into formal methods techniques for verification and validation of NASA swarm-based missions. Multiple formal methods were evaluated to determine their effectiveness in modeling and assuring the behavior of swarms of spacecraft. The NASA ANTS mission was used as an example of swarm intelligence for which to apply the formal methods. This paper will give the evaluation of these formal methods and give partial specifications of the ANTS mission using four selected methods. We then give an evaluation of the methods and the needed properties of a formal method for effective specification and prediction of emergent behavior in swarm-based systems.

  17. Adaptive Control Parameters for Dispersal of Multi-Agent Mobile Ad Hoc Network (MANET) Swarms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Derr; Milos Manic

    A mobile ad hoc network is a collection of independent nodes that communicate wirelessly with one another. This paper investigates nodes that are swarm robots with communications and sensing capabilities. Each robot in the swarm may operate in a distributed and decentralized manner to achieve some goal. This paper presents a novel approach to dynamically adapting control parameters to achieve mesh configuration stability. The presented approach to robot interaction is based on spring force laws (attraction and repulsion laws) to create near-optimal mesh like configurations. In prior work, we presented the extended virtual spring mesh (EVSM) algorithm for the dispersionmore » of robot swarms. This paper extends the EVSM framework by providing the first known study on the effects of adaptive versus static control parameters on robot swarm stability. The EVSM algorithm provides the following novelties: 1) improved performance with adaptive control parameters and 2) accelerated convergence with high formation effectiveness. Simulation results show that 120 robots reach convergence using adaptive control parameters more than twice as fast as with static control parameters in a multiple obstacle environment.« less

  18. Self-organized sorting limits behavioral variability in swarms

    PubMed Central

    Copenhagen, Katherine; Quint, David A.; Gopinathan, Ajay

    2016-01-01

    Swarming is a phenomenon where collective motion arises from simple local interactions between typically identical individuals. Here, we investigate the effects of variability in behavior among the agents in finite swarms with both alignment and cohesive interactions. We show that swarming is abolished above a critical fraction of non-aligners who do not participate in alignment. In certain regimes, however, swarms above the critical threshold can dynamically reorganize and sort out excess non-aligners to maintain the average fraction close to the critical value. This persists even in swarms with a distribution of alignment interactions, suggesting a simple, robust and efficient mechanism that allows heterogeneously mixed populations to naturally regulate their composition and remain in a collective swarming state or even differentiate among behavioral phenotypes. We show that, for evolving swarms, this self-organized sorting behavior can couple to the evolutionary dynamics leading to new evolutionarily stable equilibrium populations set by the physical swarm parameters. PMID:27550316

  19. Self-organized sorting limits behavioral variability in swarms

    NASA Astrophysics Data System (ADS)

    Copenhagen, Katherine; Quint, David A.; Gopinathan, Ajay

    2016-08-01

    Swarming is a phenomenon where collective motion arises from simple local interactions between typically identical individuals. Here, we investigate the effects of variability in behavior among the agents in finite swarms with both alignment and cohesive interactions. We show that swarming is abolished above a critical fraction of non-aligners who do not participate in alignment. In certain regimes, however, swarms above the critical threshold can dynamically reorganize and sort out excess non-aligners to maintain the average fraction close to the critical value. This persists even in swarms with a distribution of alignment interactions, suggesting a simple, robust and efficient mechanism that allows heterogeneously mixed populations to naturally regulate their composition and remain in a collective swarming state or even differentiate among behavioral phenotypes. We show that, for evolving swarms, this self-organized sorting behavior can couple to the evolutionary dynamics leading to new evolutionarily stable equilibrium populations set by the physical swarm parameters.

  20. Do small swarms have an advantage when house hunting? The effect of swarm size on nest-site selection by Apis mellifera.

    PubMed

    Schaerf, T M; Makinson, J C; Myerscough, M R; Beekman, M

    2013-10-06

    Reproductive swarms of honeybees are faced with the problem of finding a good site to establish a new colony. We examined the potential effects of swarm size on the quality of nest-site choice through a combination of modelling and field experiments. We used an individual-based model to examine the effects of swarm size on decision accuracy under the assumption that the number of bees actively involved in the decision-making process (scouts) is an increasing function of swarm size. We found that the ability of a swarm to choose the best of two nest sites decreases as swarm size increases when there is some time-lag between discovering the sites, consistent with Janson & Beekman (Janson & Beekman 2007 Proceedings of European Conference on Complex Systems, pp. 204-211.). However, when simulated swarms were faced with a realistic problem of choosing between many nest sites discoverable at all times, larger swarms were more accurate in their decisions than smaller swarms owing to their ability to discover nest sites more rapidly. Our experimental fieldwork showed that large swarms invest a larger number of scouts into the decision-making process than smaller swarms. Preliminary analysis of waggle dances from experimental swarms also suggested that large swarms could indeed discover and advertise nest sites at a faster rate than small swarms.

  1. Do small swarms have an advantage when house hunting? The effect of swarm size on nest-site selection by Apis mellifera

    PubMed Central

    Schaerf, T. M.; Makinson, J. C.; Myerscough, M. R.; Beekman, M.

    2013-01-01

    Reproductive swarms of honeybees are faced with the problem of finding a good site to establish a new colony. We examined the potential effects of swarm size on the quality of nest-site choice through a combination of modelling and field experiments. We used an individual-based model to examine the effects of swarm size on decision accuracy under the assumption that the number of bees actively involved in the decision-making process (scouts) is an increasing function of swarm size. We found that the ability of a swarm to choose the best of two nest sites decreases as swarm size increases when there is some time-lag between discovering the sites, consistent with Janson & Beekman (Janson & Beekman 2007 Proceedings of European Conference on Complex Systems, pp. 204–211.). However, when simulated swarms were faced with a realistic problem of choosing between many nest sites discoverable at all times, larger swarms were more accurate in their decisions than smaller swarms owing to their ability to discover nest sites more rapidly. Our experimental fieldwork showed that large swarms invest a larger number of scouts into the decision-making process than smaller swarms. Preliminary analysis of waggle dances from experimental swarms also suggested that large swarms could indeed discover and advertise nest sites at a faster rate than small swarms. PMID:23904590

  2. Log-Linear Model Based Behavior Selection Method for Artificial Fish Swarm Algorithm

    PubMed Central

    Huang, Zhehuang; Chen, Yidong

    2015-01-01

    Artificial fish swarm algorithm (AFSA) is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm. PMID:25691895

  3. Swarm intelligence in humans: A perspective of emergent evolution

    NASA Astrophysics Data System (ADS)

    Tao, Yong

    2018-07-01

    The origin of intelligence has fascinated scientists for a long time. Over the past 100 years, many scholars have observed the connection between entropy and intelligence. In the present study, we investigated a potential origin of the swarm intelligence in humans. The present study shows that a competitive economy consisting of a large number of self-interested agents can be mapped to a Boltzmann-like system, where entropy and energy play roles of swarm intelligence and income, respectively. However, different from the physical entropy in the Boltzmann system, the entropy (or swarm intelligence) in the economic system is a self-referential variable, which may be a key characteristic for distinguishing between biological and physical systems. Furthermore, we employ the household income data from 66 countries and Hong Kong SAR to test the validity of the Boltzmann-like distribution. Remarkably, the empirical data are perfectly consistent with the theoretical results. This finding implies that the competitive behaviors among a colony of self-interested agents will spontaneously prompt the colony to evolve to a state of higher technological level, although each agent has no willingness to evolve.

  4. A Survey of Formal Methods for Intelligent Swarms

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Rash, James; Hinchey, Mike; Rouff, Chrustopher A.

    2004-01-01

    Swarms of intelligent autonomous spacecraft, involving complex behaviors and interactions, are being proposed for future space exploration missions. Such missions provide greater flexibility and offer the possibility of gathering more science data than traditional single spacecraft missions. The emergent properties of swarms make these missions powerful, but simultaneously far more difficult to design, and to assure that the proper behaviors will emerge. These missions are also considerably more complex than previous types of missions, and NASA, like other organizations, has little experience in developing or in verifying and validating these types of missions. A significant challenge when verifying and validating swarms of intelligent interacting agents is how to determine that the possible exponential interactions and emergent behaviors are producing the desired results. Assuring correct behavior and interactions of swarms will be critical to mission success. The Autonomous Nano Technology Swarm (ANTS) mission is an example of one of the swarm types of missions NASA is considering. The ANTS mission will use a swarm of picospacecraft that will fly from Earth orbit to the Asteroid Belt. Using an insect colony analogy, ANTS will be composed of specialized workers for asteroid exploration. Exploration would consist of cataloguing the mass, density, morphology, and chemical composition of the asteroids, including any anomalous concentrations of specific minerals. To perform this task, ANTS would carry miniaturized instruments, such as imagers, spectrometers, and detectors. Since ANTS and other similar missions are going to consist of autonomous spacecraft that may be out of contact with the earth for extended periods of time, and have low bandwidths due to weight constraints, it will be difficult to observe improper behavior and to correct any errors after launch. Providing V&V (verification and validation) for this type of mission is new to NASA, and represents the cutting edge in system correctness, and requires higher levels of assurance than other (traditional) missions that use a single or small number of spacecraft that are deterministic in nature and have near continuous communication access. One of the highest possible levels of assurance comes from the application of formal methods. Formal methods are mathematics-based tools and techniques for specifying and verifying (software and hardware) systems. They are particularly useful for specifying complex parallel systems, such as exemplified by the ANTS mission, where the entire system is difficult for a single person to fully understand, a problem that is multiplied with multiple developers. Once written, a formal specification can be used to prove properties of a system (e.g., the underlying system will go from one state to another or not into a specific state) and check for particular types of errors (e.g., race or livelock conditions). A formal specification can also be used as input to a model checker for further validation. This report gives the results of a survey of formal methods techniques for verification and validation of space missions that use swarm technology. Multiple formal methods were evaluated to determine their effectiveness in modeling and assuring the behavior of swarms of spacecraft using the ANTS mission as an example system. This report is the first result of the project to determine formal approaches that are promising for formally specifying swarm-based systems. From this survey, the most promising approaches were selected and are discussed relative to their possible application to the ANTS mission. Future work will include the application of an integrated approach, based on the selected approaches identified in this report, to the formal specification of the ANTS mission.

  5. Improving high-altitude emp modeling capabilities by using a non-equilibrium electron swarm model to monitor conduction electron evolution

    NASA Astrophysics Data System (ADS)

    Pusateri, Elise Noel

    An Electromagnetic Pulse (EMP) can severely disrupt the use of electronic devices in its path causing a significant amount of infrastructural damage. EMP can also cause breakdown of the surrounding atmosphere during lightning discharges. This makes modeling EMP phenomenon an important research effort in many military and atmospheric physics applications. EMP events include high-energy Compton electrons or photoelectrons that ionize air and produce low energy conduction electrons. A sufficient number of conduction electrons will damp or alter the EMP through conduction current. Therefore, it is important to understand how conduction electrons interact with air in order to accurately predict the EMP evolution and propagation in the air. It is common for EMP simulation codes to use an equilibrium ohmic model for computing the conduction current. Equilibrium ohmic models assume the conduction electrons are always in equilibrium with the local instantaneous electric field, i.e. for a specific EMP electric field, the conduction electrons instantaneously reach steady state without a transient process. An equilibrium model will work well if the electrons have time to reach their equilibrium distribution with respect to the rise time or duration of the EMP. If the time to reach equilibrium is comparable or longer than the rise time or duration of the EMP then the equilibrium model would not accurately predict the conduction current necessary for the EMP simulation. This is because transport coefficients used in the conduction current calculation will be found based on equilibrium reactions rates which may differ significantly from their non-equilibrium values. We see this deficiency in Los Alamos National Laboratory's EMP code, CHAP-LA (Compton High Altitude Pulse-Los Alamos), when modeling certain EMP scenarios at high altitudes, such as upward EMP, where the ionization rate by secondary electrons is over predicted by the equilibrium model, causing the EMP to short abruptly. The objective of the PhD research is to mitigate this effect by integrating a conduction electron model into CHAP-LA which can calculate the conduction current based on a non-equilibrium electron distribution. We propose to use an electron swarm model to monitor the time evolution of conduction electrons in the EMP environment which is characterized by electric field and pressure. Swarm theory uses various collision frequencies and reaction rates to study how the electron distribution and the resultant transport coefficients change with time, ultimately reaching an equilibrium distribution. Validation of the swarm model we develop is a necessary step for completion of the thesis work. After validation, the swarm model is integrated in the air chemistry model CHAP-LA employs for conduction electron simulations. We test high altitude EMP simulations with the swarm model option in the air chemistry model to show improvements in the computational capability of CHAP-LA. A swarm model has been developed that is based on a previous swarm model developed by Higgins, Longmire and O'Dell 1973, hereinafter HLO. The code used for the swarm model calculation solves a system of coupled differential equations for electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, including the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are recalculated and compared to the previously reported empirical results given by HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford 2005. BOLSIG+ utilizes updated electron scattering cross sections that are defined over an expanded energy range found in the atomic and molecular cross section database published by Phelps in the Phelps Database 2014 on the LXcat website created by Pancheshnyi et al. 2012. The swarm model is also updated from the original HLO model by including additional physical parameters such as the O2 electron attachment rate, recombination rate, and mutual neutralization rate. This necessitates tracking the positive and negative ion densities in the swarm model. Adding these parameters, especially electron attachment, is important at lower EMP altitudes where atmospheric density is high. We compare swarm model equilibrium temperatures and times using the HLO and BOLSIG+ coefficients for a uniform electric field of 1 StatV/cm for a range of atmospheric heights. This is done in order to test sensitivity to the swarm parameters used in the swarm model. It is shown that the equilibrium temperature and time are sensitive to the modifications in the collision frequency and ionization rate based on the updated electron interaction cross sections. We validate the swarm model by comparing ionization coefficients and equilibrium drift velocities to experimental results over a wide range of reduced electric field values. The final part of the PhD thesis work includes integrating the swarm model into CHAP-LA. We discuss the physics included in the CHAP-LA EMP model and demonstrate EMP damping behavior caused by the ohmic model at high altitudes. We report on numerical techniques for incorporation of the swarm model into CHAP-LA's Maxwell solver. This includes a discussion of integration techniques for Maxwell's equations in CHAP-LA using the swarm model calculated conduction current. We show improvements on EMP parameter calculations when modeling a high altitude, upward EMP scenario. This provides a novel computational capability that will have an important impact on the atmospheric and EMP research community.

  6. Multiscale Model of Swarming Bacteria

    NASA Astrophysics Data System (ADS)

    Alber, Mark

    2011-03-01

    Many bacteria can rapidly traverse surfaces from which they are extracting nutrient for growth. They generate flat, spreading colonies, called swarms because they resemble swarms of insects. In the beginning of the talk, swarms of the M. xanthus will be described in detail. Individual M. xanthus cells are elongated; they always move in the direction of their long axis; and they are in constant motion, repeatedly touching each other. As a cell glides, the slime capsule of a cell interacts with the bare agar surface, non-oriented slime which arises from the surface contact with the slime capsule, or oriented slime trails. Remarkably, cells regularly reverse their gliding directions. In this talk a detailed cell- and behavior-based computational model of M. xanthus swarming will be used to demonstrate that reversals of gliding direction and cell bending are essential for swarming and that specific reversal frequencies result in optimal swarming rate of the whole population. This suggests that the circuit regulating reversals evolved to its current sensitivity under selection for growth achieved by swarming.

  7. Swarm motility inhibitory and antioxidant activities of pomegranate peel processed under three drying conditions.

    PubMed

    John, K M Maria; Bhagwat, Arvind A; Luthria, Devanand L

    2017-11-15

    During processing of ready-to-eat fresh fruits, large amounts of peel and seeds are discarded as waste. Pomegranate (Punicagranatum) peels contain high amounts of bioactive compounds which inhibit migration of Salmonella on wet surfaces. The metabolic distribution of bioactives in pomegranate peel, inner membrane, and edible aril portion was investigated under three different drying conditions along with the anti-swarming activity against Citrobacter rodentium. Based on the multivariate analysis, 29 metabolites discriminated the pomegranate peel, inner membrane, and edible aril portion, as well as the three different drying methods. Punicalagins (∼38.6-50.3mg/g) were detected in higher quantities in all fractions as compared to ellagic acid (∼0.1-3.2mg/g) and punicalins (∼0-2.4mg/g). The bioactivity (antioxidant, anti-swarming) and phenolics content was significantly higher in peels than the edible aril portion. Natural anti-swarming agents from food waste may have promising potential for controlling food borne pathogens. Published by Elsevier Ltd.

  8. Optimization of multi-objective micro-grid based on improved particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Gan, Yang

    2018-04-01

    The paper presents a multi-objective optimal configuration model for independent micro-grid with the aim of economy and environmental protection. The Pareto solution set can be obtained by solving the multi-objective optimization configuration model of micro-grid with the improved particle swarm algorithm. The feasibility of the improved particle swarm optimization algorithm for multi-objective model is verified, which provides an important reference for multi-objective optimization of independent micro-grid.

  9. Hysteresis compensation of the Prandtl-Ishlinskii model for piezoelectric actuators using modified particle swarm optimization with chaotic map.

    PubMed

    Long, Zhili; Wang, Rui; Fang, Jiwen; Dai, Xufei; Li, Zuohua

    2017-07-01

    Piezoelectric actuators invariably exhibit hysteresis nonlinearities that tend to become significant under the open-loop condition and could cause oscillations and errors in nanometer-positioning tasks. Chaotic map modified particle swarm optimization (MPSO) is proposed and implemented to identify the Prandtl-Ishlinskii model for piezoelectric actuators. Hysteresis compensation is attained through application of an inverse Prandtl-Ishlinskii model, in which the parameters are formulated based on the original model with chaotic map MPSO. To strengthen the diversity and improve the searching ergodicity of the swarm, an initial method of adaptive inertia weight based on a chaotic map is proposed. To compare and prove that the swarm's convergence occurs before stochastic initialization and to attain an optimal particle swarm optimization algorithm, the parameters of a proportional-integral-derivative controller are searched using self-tuning, and the simulated results are used to verify the search effectiveness of chaotic map MPSO. The results show that chaotic map MPSO is superior to its competitors for identifying the Prandtl-Ishlinskii model and that the inverse Prandtl-Ishlinskii model can provide hysteresis compensation under different conditions in a simple and effective manner.

  10. Multiscale modelling and analysis of collective decision making in swarm robotics.

    PubMed

    Vigelius, Matthias; Meyer, Bernd; Pascoe, Geoffrey

    2014-01-01

    We present a unified approach to describing certain types of collective decision making in swarm robotics that bridges from a microscopic individual-based description to aggregate properties. Our approach encompasses robot swarm experiments, microscopic and probabilistic macroscopic-discrete simulations as well as an analytic mathematical model. Following up on previous work, we identify the symmetry parameter, a measure of the progress of the swarm towards a decision, as a fundamental integrated swarm property and formulate its time evolution as a continuous-time Markov process. Contrary to previous work, which justified this approach only empirically and a posteriori, we justify it from first principles and derive hard limits on the parameter regime in which it is applicable.

  11. A persistent homology approach to collective behavior in insect swarms

    NASA Astrophysics Data System (ADS)

    Sinhuber, Michael; Ouellette, Nicholas T.

    Various animals from birds and fish to insects tend to form aggregates, displaying self-organized collective swarming behavior. Due to their frequent occurrence in nature and their implications for engineered, collective systems, these systems have been investigated and modeled thoroughly for decades. Common approaches range from modeling them with coupled differential equations on the individual level up to continuum approaches. We present an alternative, topology-based approach for describing swarming behavior at the macroscale rather than the microscale. We study laboratory swarms of Chironomus riparius, a flying, non-biting midge. To obtain the time-resolved three-dimensional trajectories of individual insects, we use a multi-camera stereoimaging and particle-tracking setup. To investigate the swarming behavior in a topological sense, we employ a persistent homology approach to identify persisting structures and features in the insect swarm that elude a direct, ensemble-averaging approach. We are able to identify features of sub-clusters in the swarm that show behavior distinct from that of the remaining swarm members. The coexistence of sub-swarms with different features resembles some non-biological systems such as active colloids or even thermodynamic systems.

  12. Multiscale Modelling and Analysis of Collective Decision Making in Swarm Robotics

    PubMed Central

    Vigelius, Matthias; Meyer, Bernd; Pascoe, Geoffrey

    2014-01-01

    We present a unified approach to describing certain types of collective decision making in swarm robotics that bridges from a microscopic individual-based description to aggregate properties. Our approach encompasses robot swarm experiments, microscopic and probabilistic macroscopic-discrete simulations as well as an analytic mathematical model. Following up on previous work, we identify the symmetry parameter, a measure of the progress of the swarm towards a decision, as a fundamental integrated swarm property and formulate its time evolution as a continuous-time Markov process. Contrary to previous work, which justified this approach only empirically and a posteriori, we justify it from first principles and derive hard limits on the parameter regime in which it is applicable. PMID:25369026

  13. Using Swarming Agents for Scalable Security in Large Network Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crouse, Michael; White, Jacob L.; Fulp, Errin W.

    2011-09-23

    The difficulty of securing computer infrastructures increases as they grow in size and complexity. Network-based security solutions such as IDS and firewalls cannot scale because of exponentially increasing computational costs inherent in detecting the rapidly growing number of threat signatures. Hostbased solutions like virus scanners and IDS suffer similar issues, and these are compounded when enterprises try to monitor these in a centralized manner. Swarm-based autonomous agent systems like digital ants and artificial immune systems can provide a scalable security solution for large network environments. The digital ants approach offers a biologically inspired design where each ant in the virtualmore » colony can detect atoms of evidence that may help identify a possible threat. By assembling the atomic evidences from different ant types the colony may detect the threat. This decentralized approach can require, on average, fewer computational resources than traditional centralized solutions; however there are limits to its scalability. This paper describes how dividing a large infrastructure into smaller managed enclaves allows the digital ant framework to effectively operate in larger environments. Experimental results will show that using smaller enclaves allows for more consistent distribution of agents and results in faster response times.« less

  14. A new bio-inspired optimisation algorithm: Bird Swarm Algorithm

    NASA Astrophysics Data System (ADS)

    Meng, Xian-Bing; Gao, X. Z.; Lu, Lihua; Liu, Yu; Zhang, Hengzhen

    2016-07-01

    A new bio-inspired algorithm, namely Bird Swarm Algorithm (BSA), is proposed for solving optimisation applications. BSA is based on the swarm intelligence extracted from the social behaviours and social interactions in bird swarms. Birds mainly have three kinds of behaviours: foraging behaviour, vigilance behaviour and flight behaviour. Birds may forage for food and escape from the predators by the social interactions to obtain a high chance of survival. By modelling these social behaviours, social interactions and the related swarm intelligence, four search strategies associated with five simplified rules are formulated in BSA. Simulations and comparisons based on eighteen benchmark problems demonstrate the effectiveness, superiority and stability of BSA. Some proposals for future research about BSA are also discussed.

  15. Self-organizing control strategy for asteroid intelligent detection swarm based on attraction and repulsion

    NASA Astrophysics Data System (ADS)

    An, Meiyan; Wang, Zhaokui; Zhang, Yulin

    2017-01-01

    The self-organizing control strategy for asteroid intelligent detection swarm, which is considered as a space application instance of intelligent swarm, is developed. The leader-follower model for the asteroid intelligent detection swarm is established, and the further analysis is conducted for massive asteroid and small asteroid. For a massive asteroid, the leader spacecraft flies under the gravity field of the asteroid. For a small asteroid, the asteroid gravity is negligible, and a trajectory planning method is proposed based on elliptic cavity virtual potential field. The self-organizing control strategy for the follower spacecraft is developed based on a mechanism of velocity planning and velocity tracking. The simulation results show that the self-organizing control strategy is valid for both massive asteroid and small asteroid, and the exploration swarm forms a stable configuration.

  16. Seismological mechanism analysis of 2015 Luanxian swarm, Hebei province,China

    NASA Astrophysics Data System (ADS)

    Tan, Yipei; Liao, Xu; Ma, Hongsheng; Zhou, Longquan; Wang, Xingzhou

    2017-04-01

    The seismological mechanism of an earthquake swarm, a kind of seismic burst activity, means the physical and dynamic process in earthquakes triggering in the swarm. Here we focus on the seismological mechanism of 2015 Luanxian swarm in Hebei province, China. The process of digital seismic waveform data processing is divided into four steps. (1) Choose the three components waveform of earthquakes in the catalog as templates, and detect missing earthquakes by scanning the continues waveforms with matched filter technique. (2) Recalibrate P and S-wave phase arrival time using waveform cross-correlation phase detection technique to eliminate the artificial error in phase picking in the observation report made by Hebei seismic network, and then we obtain a more complete catalog and a more precise seismic phase report. (3) Relocate the earthquakes in the swarm using hypoDD based on phase arrival time we recalibrated, and analyze the characteristics of swarm epicenter migration based on the earthquake relocation result. (4) Detect whether there are repeating earthquakes activity using both waveform cross-correlation standard and whether rupture areas can overlapped. We finally detect 106 missing earthquakes in the swarm, 66 of them have the magnitude greater than ML0.0, include 2 greater than ML1.0. Relocation result shows that the epicenters of earthquakes in the swarm have a strip distribution in NE-SW direction, which indicates the seismogenic structure may be a NE-SW trending fault. The spatial-temporal distribution variation of epicenters in the swarm shows a kind of two stages linear migration characteristics, in which the first stage has appeared with a higher migration velocity as 1.2 km per day, and the velocity of the second step is 0.0024 km per day. According to the three basic models to explain the seismological mechanism of earthquake swarms: cascade model, slow slip model and fluid diffusion model, repeating earthquakes activity is difficult to explain by previous earthquakes stress triggering, however, it can be explained by continuing stress loading at the same asperity from fault slow slip. The phenomena of linear migration is more fitting slow slip model than the migration characteristics of fluid diffusion which satisfied diffusion equation. Comparing the phenomena we observed and the seismological mechanism models, we find that the Luanxian earthquake swarm may be associated with fault slow slip. Fault slow slip may play a role in Luanxian earthquake swarm triggering and sustained activity.

  17. Ant-Based Cyber Defense (also known as

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenn Fink, PNNL

    2015-09-29

    ABCD is a four-level hierarchy with human supervisors at the top, a top-level agent called a Sergeant controlling each enclave, Sentinel agents located at each monitored host, and mobile Sensor agents that swarm through the enclaves to detect cyber malice and misconfigurations. The code comprises four parts: (1) the core agent framework, (2) the user interface and visualization, (3) test-range software to create a network of virtual machines including a simulated Internet and user and host activity emulation scripts, and (4) a test harness to allow the safe running of adversarial code within the framework of monitored virtual machines.

  18. Survey of Methods and Algorithms of Robot Swarm Aggregation

    NASA Astrophysics Data System (ADS)

    E Shlyakhov, N.; Vatamaniuk, I. V.; Ronzhin, A. L.

    2017-01-01

    The paper considers the problem of swarm aggregation of autonomous robots with the use of three methods based on the analogy of the behavior of biological objects. The algorithms substantiating the requirements for hardware realization of sensor, computer and network resources and propulsion devices are presented. Techniques for efficiency estimation of swarm aggregation via space-time characteristics are described. The developed model of the robot swarm reconfiguration into a predetermined three-dimensional shape is presented.

  19. Position-adaptive explosive detection concepts for swarming micro-UAVs

    NASA Astrophysics Data System (ADS)

    Selmic, Rastko R.; Mitra, Atindra

    2008-04-01

    We have formulated a series of position-adaptive sensor concepts for explosive detection applications using swarms of micro-UAV's. These concepts are a generalization of position-adaptive radar concepts developed for challenging conditions such as urban environments. For radar applications, this concept is developed with platforms within a UAV swarm that spatially-adapt to signal leakage points on the perimeter of complex clutter environments to collect information on embedded objects-of-interest. The concept is generalized for additional sensors applications by, for example, considering a wooden cart that contains explosives. We can formulate system-of-systems concepts for a swarm of micro-UAV's in an effort to detect whether or not a given cart contains explosives. Under this new concept, some of the members of the UAV swarm can serve as position-adaptive "transmitters" by blowing air over the cart and some of the members of the UAV swarm can serve as position-adaptive "receivers" that are equipped with chem./bio sensors that function as "electronic noses". The final objective can be defined as improving the particle count for the explosives in the air that surrounds a cart via development of intelligent position-adaptive control algorithms in order to improve the detection and false-alarm statistics. We report on recent simulation results with regard to designing optimal sensor placement for explosive or other chemical agent detection. This type of information enables the development of intelligent control algorithms for UAV swarm applications and is intended for the design of future system-of-systems with adaptive intelligence for advanced surveillance of unknown regions. Results are reported as part of a parametric investigation where it is found that the probability of contaminant detection depends on the air flow that carries contaminant particles, geometry of the surrounding space, leakage areas, and other factors. We present a concept of position-adaptive detection (i.e. based on the example in the previous paragraph) consisting of position-adaptive fluid actuators (fans) and position-adaptive sensors. Based on these results, a preliminary analysis of sensor requirements for these fluid actuators and sensors is presented for small-UAVs in a field-enabled explosive detection environment. The computational fluid dynamics (CFD) simulation software Fluent is used to simulate the air flow in the corridor model containing a box with explosive particles. It is found that such flow is turbulent with Reynolds number greater than 106. Simulation methods and results are presented which show particle velocity and concentration distribution throughout the closed box. The results indicate that the CFD-based method can be used for other sensor placement and deployment optimization problems. These techniques and results can be applied towards the development of future system-of-system UAV swarms for defense, homeland defense, and security applications.

  20. Symbiosis-Based Alternative Learning Multi-Swarm Particle Swarm Optimization.

    PubMed

    Niu, Ben; Huang, Huali; Tan, Lijing; Duan, Qiqi

    2017-01-01

    Inspired by the ideas from the mutual cooperation of symbiosis in natural ecosystem, this paper proposes a new variant of PSO, named Symbiosis-based Alternative Learning Multi-swarm Particle Swarm Optimization (SALMPSO). A learning probability to select one exemplar out of the center positions, the local best position, and the historical best position including the experience of internal and external multiple swarms, is used to keep the diversity of the population. Two different levels of social interaction within and between multiple swarms are proposed. In the search process, particles not only exchange social experience with others that are from their own sub-swarms, but also are influenced by the experience of particles from other fellow sub-swarms. According to the different exemplars and learning strategy, this model is instantiated as four variants of SALMPSO and a set of 15 test functions are conducted to compare with some variants of PSO including 10, 30 and 50 dimensions, respectively. Experimental results demonstrate that the alternative learning strategy in each SALMPSO version can exhibit better performance in terms of the convergence speed and optimal values on most multimodal functions in our simulation.

  1. Swarm formation control utilizing elliptical surfaces and limiting functions.

    PubMed

    Barnes, Laura E; Fields, Mary Anne; Valavanis, Kimon P

    2009-12-01

    In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry and the individual member spacing. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables that force the swarm to behave according to set constraints, formation, and member spacing. The artificial potential functions and limiting functions are combined to control swarm formation, orientation, and swarm movement as a whole. Parameters are chosen based on desired formation and user-defined constraints. This approach is computationally efficient and scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models. Simulation results are presented for a swarm of 10 and 40 robots that follow circle, ellipse, and wedge formations. Experimental results are included to demonstrate the applicability of the approach on a swarm of four custom-built unmanned ground vehicles (UGVs).

  2. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    DOE PAGES

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; ...

    2015-08-04

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Importantmore » swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections.« less

  3. Incremental social learning in particle swarms.

    PubMed

    de Oca, Marco A Montes; Stutzle, Thomas; Van den Enden, Ken; Dorigo, Marco

    2011-04-01

    Incremental social learning (ISL) was proposed as a way to improve the scalability of systems composed of multiple learning agents. In this paper, we show that ISL can be very useful to improve the performance of population-based optimization algorithms. Our study focuses on two particle swarm optimization (PSO) algorithms: a) the incremental particle swarm optimizer (IPSO), which is a PSO algorithm with a growing population size in which the initial position of new particles is biased toward the best-so-far solution, and b) the incremental particle swarm optimizer with local search (IPSOLS), in which solutions are further improved through a local search procedure. We first derive analytically the probability density function induced by the proposed initialization rule applied to new particles. Then, we compare the performance of IPSO and IPSOLS on a set of benchmark functions with that of other PSO algorithms (with and without local search) and a random restart local search algorithm. Finally, we measure the benefits of using incremental social learning on PSO algorithms by running IPSO and IPSOLS on problems with different fitness distance correlations.

  4. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asher, R.B.; Cameron, S.M.; Loubriel, G.M.

    1998-11-25

    In many situations, stand-off remote-sensing and hazard-interdiction techniques over realistic operational areas are often impractical "and difficult to characterize. An alternative approach is to implement an adap- tively deployable array of sensitive agent-specific devices. Our group has been studying the collective be- havior of an autonomous, multi-agent system applied to chedbio detection and related emerging threat applications, The current physics-based models we are using coordinate a sensor array for mukivanate sig- nal optimization and coverage as re,alized by a swarm of robots or mobile vehicles. These intelligent control systems integrate'glob"ally operating decision-making systems and locally cooperative learning neural net- worksmore » to enhance re+-timp operational responses to dynarnical environments examples of which include obstacle avoidance, res~onding to prevailing wind patterns, and overcoming other natural obscurants or in- terferences. Collectively',tkensor nefirons with simple properties, interacting according to basic community rules, can accomplish complex interconnecting functions such as generalization, error correction, pattern recognition, sensor fusion, and localization. Neural nets provide a greater degree of robusmess and fault tolerance than conventional systems in that minor variations or imperfections do not impair performance. The robotic platforms would be equipped with sensor devices that perform opticaI detection of biologicais in combination with multivariate chemical analysis tools based on genetic and neural network algorithms, laser-diode LIDAR analysis, ultra-wideband short-pulsed transmitting and receiving antennas, thermal im- a:ing sensors, and optical Communication technology providing robust data throughput pathways. Mission scenarios under consideration include ground penetrating radar (GPR) for detection of underground struc- tures, airborne systems, and plume migration and mitigation. We will describe our research in these areas anti give a status report on our progress.« less

  5. Distance-Based Behaviors for Low-Complexity Control in Multiagent Robotics

    NASA Astrophysics Data System (ADS)

    Pierpaoli, Pietro

    Several biological examples show that living organisms cooperate to collectively accomplish tasks impossible for single individuals. More importantly, this coordination is often achieved with a very limited set of information. Inspired by these observations, research on autonomous systems has focused on the development of distributed control techniques for control and guidance of groups of autonomous mobile agents, or robots. From an engineering perspective, when coordination and cooperation is sought in large ensembles of robotic vehicles, a reduction in hardware and algorithms' complexity becomes mandatory from the very early stages of the project design. The research for solutions capable of lowering power consumption, cost and increasing reliability are thus worth investigating. In this work, we studied low-complexity techniques to achieve cohesion and control on swarms of autonomous robots. Starting from an inspiring example with two-agents, we introduced effects of neighbors' relative positions on control of an autonomous agent. The extension of this intuition addressed the control of large ensembles of autonomous vehicles, and was applied in the form of a herding-like technique. To this end, a low-complexity distance-based aggregation protocol was defined. We first showed that our protocol produced a cohesion aggregation among the agent while avoiding inter-agent collisions. Then, a feedback leader-follower architecture was introduced for the control of the swarm. We also described how proximity measures and probability of collisions with neighbors can also be used as source of information in highly populated environments.

  6. On the spatial dynamics and oscillatory behavior of a predator-prey model based on cellular automata and local particle swarm optimization.

    PubMed

    Molina, Mario Martínez; Moreno-Armendáriz, Marco A; Carlos Seck Tuoh Mora, Juan

    2013-11-07

    A two-dimensional lattice model based on Cellular Automata theory and swarm intelligence is used to study the spatial and population dynamics of a theoretical ecosystem. It is found that the social interactions among predators provoke the formation of clusters, and that by increasing the mobility of predators the model enters into an oscillatory behavior. © 2013 Elsevier Ltd. All rights reserved.

  7. Firefly as a novel swarm intelligence variable selection method in spectroscopy.

    PubMed

    Goodarzi, Mohammad; dos Santos Coelho, Leandro

    2014-12-10

    A critical step in multivariate calibration is wavelength selection, which is used to build models with better prediction performance when applied to spectral data. Up to now, many feature selection techniques have been developed. Among all different types of feature selection techniques, those based on swarm intelligence optimization methodologies are more interesting since they are usually simulated based on animal and insect life behavior to, e.g., find the shortest path between a food source and their nests. This decision is made by a crowd, leading to a more robust model with less falling in local minima during the optimization cycle. This paper represents a novel feature selection approach to the selection of spectroscopic data, leading to more robust calibration models. The performance of the firefly algorithm, a swarm intelligence paradigm, was evaluated and compared with genetic algorithm and particle swarm optimization. All three techniques were coupled with partial least squares (PLS) and applied to three spectroscopic data sets. They demonstrate improved prediction results in comparison to when only a PLS model was built using all wavelengths. Results show that firefly algorithm as a novel swarm paradigm leads to a lower number of selected wavelengths while the prediction performance of built PLS stays the same. Copyright © 2014. Published by Elsevier B.V.

  8. Collective Motion in Behaviorally Heterogeneous Systems

    NASA Astrophysics Data System (ADS)

    Copenhagen, Katherine

    Collective motion is a widespread phenomenon in nature where individuals actively propel themselves, gather together and move as a group. Some examples of collective motion are bird flocks, fish schools, bacteria swarms, cell clusters, and crowds of people. Many models seek to understand the effects of activity in collective systems including things such as environmental disorder, density, and interaction details primarily at infinite size limits and with uniform populations. In this dissertation I investigate the effects of finite sizes and behavioral heterogeneity as it exists in nature. Behavioral heterogeneity can originate from several different sources. Mixed populations of individuals can have inherently different behaviors such as mutant bacteria, injured fish, or agents that prefer individualistic behavior over coordinated motion. Alternatively, agents may modify their own behavior based on some local environmental dependency, such as local substrate, or density. In cases such as mutant cheaters in bacteria or malfunctioning drones in swarms, mixed populations of behaviorally heterogeneous agents can be modelled as arising in the form of aligning and non-aligning agents. When this kind of heterogeneity is introduced, there is a critical carrying capacity of non-aligners above which the system is unable to form a cohesive ordered group. However, if the cohesion of the group is relaxed to allow for fracture, the system will actively sort out non-aligning agents the system will exist at a critical non-aligner fraction. A similar heterogeneity could result in a mixture of high and low noise individuals. In this case there is also a critical carry capacity beyond which the system is unable to reach an ordered state, however the nature of this transition depends on the model details. Agents which are part of an ordered collective may vary their behavior as the group changes environments such as a flock of birds flying into a cloud. Using a unique model of a flock where the group behaves as a rigid disk reveals interesting behaviors as the system crosses a boundary between interfaces. The collective rotates and reorients or becomes stuck on the boundary as it crosses. I also investigate the effects of variable behavior depending on local density, and find that a frustration driven transient rotational phase arises in clusters where agents with low local density move faster than those with high local density as in cell clusters. All together I have shown that behavioral heterogeneity in collective motion can lead to unique phases and behaviors that are not seen in their homogeneous counterparts.

  9. Consensus-based distributed estimation in multi-agent systems with time delay

    NASA Astrophysics Data System (ADS)

    Abdelmawgoud, Ahmed

    During the last years, research in the field of cooperative control of swarm of robots, especially Unmanned Aerial Vehicles (UAV); have been improved due to the increase of UAV applications. The ability to track targets using UAVs has a wide range of applications not only civilian but also military as well. For civilian applications, UAVs can perform tasks including, but not limited to: map an unknown area, weather forecasting, land survey, and search and rescue missions. On the other hand, for military personnel, UAV can track and locate a variety of objects, including the movement of enemy vehicles. Consensus problems arise in a number of applications including coordination of UAVs, information processing in wireless sensor networks, and distributed multi-agent optimization. We consider a widely studied consensus algorithms for processing sensed data by different sensors in wireless sensor networks of dynamic agents. Every agent involved in the network forms a weighted average of its own estimated value of some state with the values received from its neighboring agents. We introduced a novelty of consensus-based distributed estimation algorithms. We propose a new algorithm to reach a consensus given time delay constraints. The proposed algorithm performance was observed in a scenario where a swarm of UAVs measuring the location of a ground maneuvering target. We assume that each UAV computes its state prediction and shares it with its neighbors only. However, the shared information applied to different agents with variant time delays. The entire group of UAVs must reach a consensus on target state. Different scenarios were also simulated to examine the effectiveness and performance in terms of overall estimation error, disagreement between delayed and non-delayed agents, and time to reach a consensus for each parameter contributing on the proposed algorithm.

  10. An adaptive neural swarm approach for intrusion defense in ad hoc networks

    NASA Astrophysics Data System (ADS)

    Cannady, James

    2011-06-01

    Wireless sensor networks (WSN) and mobile ad hoc networks (MANET) are being increasingly deployed in critical applications due to the flexibility and extensibility of the technology. While these networks possess numerous advantages over traditional wireless systems in dynamic environments they are still vulnerable to many of the same types of host-based and distributed attacks common to those systems. Unfortunately, the limited power and bandwidth available in WSNs and MANETs, combined with the dynamic connectivity that is a defining characteristic of the technology, makes it extremely difficult to utilize traditional intrusion detection techniques. This paper describes an approach to accurately and efficiently detect potentially damaging activity in WSNs and MANETs. It enables the network as a whole to recognize attacks, anomalies, and potential vulnerabilities in a distributive manner that reflects the autonomic processes of biological systems. Each component of the network recognizes activity in its local environment and then contributes to the overall situational awareness of the entire system. The approach utilizes agent-based swarm intelligence to adaptively identify potential data sources on each node and on adjacent nodes throughout the network. The swarm agents then self-organize into modular neural networks that utilize a reinforcement learning algorithm to identify relevant behavior patterns in the data without supervision. Once the modular neural networks have established interconnectivity both locally and with neighboring nodes the analysis of events within the network can be conducted collectively in real-time. The approach has been shown to be extremely effective in identifying distributed network attacks.

  11. Human-Swarm Interactions Based on Managing Attractors

    DTIC Science & Technology

    2014-03-01

    means that agent j is visible to agent i at time t. Each aij(t) is determined at time t according to a Bernoulli random vari- able with parameter pij(t...angu- lar momentum , mgroup, and group polarization, pgroup [9, 17]. The mgroup is a measure of the degree of rotation of the group about its centroid...0.1 seconds. 91 (a) (b) Figure 2: The group momentum and polarization as the radius of orientation is increased and decreased. 3. ATTRACTORS AND

  12. Experiences applying Formal Approaches in the Development of Swarm-Based Space Exploration Systems

    NASA Technical Reports Server (NTRS)

    Rouff, Christopher A.; Hinchey, Michael G.; Truszkowski, Walter F.; Rash, James L.

    2006-01-01

    NASA is researching advanced technologies for future exploration missions using intelligent swarms of robotic vehicles. One of these missions is the Autonomous Nan0 Technology Swarm (ANTS) mission that will explore the asteroid belt using 1,000 cooperative autonomous spacecraft. The emergent properties of intelligent swarms make it a potentially powerful concept, but at the same time more difficult to design and ensure that the proper behaviors will emerge. NASA is investigating formal methods and techniques for verification of such missions. The advantage of using formal methods is the ability to mathematically verify the behavior of a swarm, emergent or otherwise. Using the ANTS mission as a case study, we have evaluated multiple formal methods to determine their effectiveness in modeling and ensuring desired swarm behavior. This paper discusses the results of this evaluation and proposes an integrated formal method for ensuring correct behavior of future NASA intelligent swarms.

  13. The influence of swarm deformation on the velocity behavior of falling swarms of particles

    NASA Astrophysics Data System (ADS)

    Mitchell, C. A.; Pyrak-Nolte, L. J.; Nitsche, L.

    2017-12-01

    Cohesive particle swarms have been shown to exhibit enhanced sedimentation in fractures for an optimal range of fracture apertures. Within this range, swarms travel farther and faster than a disperse (particulate) solution. This study aims to uncover the physics underlying the enhanced sedimentation. Swarm behavior at low Reynolds number in a quiescent unbounded fluid and between smooth rigid planar boundaries is investigated numerically using direct-summation, particle-mesh (PM) and particle-particle particle-mesh (P3M) methods - based upon mutually interacting viscous point forces (Stokeslet fields). Wall effects are treated with a least-squares boundary singularity method. Sub-structural effects beyond pseudo-liquid behavior (i.e., particle-scale interactions) are approximated by the P3M method much more efficiently than with direct summation. The model parameters are selected from particle swarm experiments to enable comparison. From the simulations, if the initial swarm geometry at release is unaffected by the fracture aperture, no enhanced transport occurs. The swarm velocity as a function of apertures increases monotonically until it asymptotes to the swarm velocity in an open tank. However, if the fracture aperture affects the initial swarm geometry, the swarm velocity no longer exhibits a monotonic behavior. When swarms are released between two parallel smooth walls with very small apertures, the swarm is forced to reorganize and quickly deform, which results in dramatically reduced swarm velocities. At large apertures, the swarm evolution is similar to that of a swarm in open tank and quickly flattens into a slow speed torus. In the optimal aperture range, the swarm maintains a cohesive unit behaving similarly to a falling sphere. Swarms falling in apertures less than or greater than the optimal aperture range, experience a level of anisotropy that considerably decreases velocities. Unraveling the physics that drives swarm behavior in fractured porous media is important for understanding particle sedimentation and contaminant spreading in the subsurface. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).

  14. Spatial distribution and male mating success of Anopheles gambiae swarms

    PubMed Central

    2011-01-01

    Background Anopheles gambiae mates in flight at particular mating sites over specific landmarks known as swarm markers. The swarms are composed of males; females typically approach a swarm, and leave in copula. This mating aggregation looks like a lek, but appears to lack the component of female choice. To investigate the possible mechanisms promoting the evolution of swarming in this mosquito species, we looked at the variation in mating success between swarms and discussed the factors that structure it in light of the three major lekking models, known as the female preference model, the hotspot model, and the hotshot model. Results We found substantial variation in swarm size and in mating success between swarms. A strong correlation between swarm size and mating success was observed, and consistent with the hotspot model of lek formation, the per capita mating success of individual males did not increase with swarm size. For the spatial distribution of swarms, our results revealed that some display sites were more attractive to both males and females and that females were more attracted to large swarms. While the swarm markers we recognize help us in localizing swarms, they did not account for the variation in swarm size or in the swarm mating success, suggesting that mosquitoes probably are attracted to these markers, but also perceive and respond to other aspects of the swarming site. Conclusions Characterizing the mating system of a species helps understand how this species has evolved and how selective pressures operate on male and female traits. The current study looked at male mating success of An. gambiae and discussed possible factors that account for its variation. We found that swarms of An. gambiae conform to the hotspot model of lek formation. But because swarms may lack the female choice component, we propose that the An. gambiae mating system is a lek-like system that incorporates characteristics pertaining to other mating systems such as scramble mating competition. PMID:21711542

  15. A Modular Simulation Framework for Assessing Swarm Search Models

    DTIC Science & Technology

    2014-09-01

    SUBTITLE A MODULAR SIMULATION FRAMEWORK FOR ASSESSING SWARM SEARCH MODELS 5. FUNDING NUMBERS 6. AUTHOR(S) Blake M. Wanier 7. PERFORMING ORGANIZATION...Numerical studies demonstrate the ability to leverage the developed simulation and analysis framework to investigate three canonical swarm search models ...as benchmarks for future exploration of more sophisticated swarm search scenarios. 14. SUBJECT TERMS Swarm Search, Search Theory, Modeling Framework

  16. Swarm intelligence inspired shills and the evolution of cooperation.

    PubMed

    Duan, Haibin; Sun, Changhao

    2014-06-09

    Many hostile scenarios exist in real-life situations, where cooperation is disfavored and the collective behavior needs intervention for system efficiency improvement. Towards this end, the framework of soft control provides a powerful tool by introducing controllable agents called shills, who are allowed to follow well-designed updating rules for varying missions. Inspired by swarm intelligence emerging from flocks of birds, we explore here the dependence of the evolution of cooperation on soft control by an evolutionary iterated prisoner's dilemma (IPD) game staged on square lattices, where the shills adopt a particle swarm optimization (PSO) mechanism for strategy updating. We demonstrate that not only can cooperation be promoted by shills effectively seeking for potentially better strategies and spreading them to others, but also the frequency of cooperation could be arbitrarily controlled by choosing appropriate parameter settings. Moreover, we show that adding more shills does not contribute to further cooperation promotion, while assigning higher weights to the collective knowledge for strategy updating proves a efficient way to induce cooperative behavior. Our research provides insights into cooperation evolution in the presence of PSO-inspired shills and we hope it will be inspirational for future studies focusing on swarm intelligence based soft control.

  17. A multipopulation PSO based memetic algorithm for permutation flow shop scheduling.

    PubMed

    Liu, Ruochen; Ma, Chenlin; Ma, Wenping; Li, Yangyang

    2013-01-01

    The permutation flow shop scheduling problem (PFSSP) is part of production scheduling, which belongs to the hardest combinatorial optimization problem. In this paper, a multipopulation particle swarm optimization (PSO) based memetic algorithm (MPSOMA) is proposed in this paper. In the proposed algorithm, the whole particle swarm population is divided into three subpopulations in which each particle evolves itself by the standard PSO and then updates each subpopulation by using different local search schemes such as variable neighborhood search (VNS) and individual improvement scheme (IIS). Then, the best particle of each subpopulation is selected to construct a probabilistic model by using estimation of distribution algorithm (EDA) and three particles are sampled from the probabilistic model to update the worst individual in each subpopulation. The best particle in the entire particle swarm is used to update the global optimal solution. The proposed MPSOMA is compared with two recently proposed algorithms, namely, PSO based memetic algorithm (PSOMA) and hybrid particle swarm optimization with estimation of distribution algorithm (PSOEDA), on 29 well-known PFFSPs taken from OR-library, and the experimental results show that it is an effective approach for the PFFSP.

  18. Markerless human motion tracking using hierarchical multi-swarm cooperative particle swarm optimization.

    PubMed

    Saini, Sanjay; Zakaria, Nordin; Rambli, Dayang Rohaya Awang; Sulaiman, Suziah

    2015-01-01

    The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches-Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims.

  19. Implementation and comparative analysis of the optimisations produced by evolutionary algorithms for the parameter extraction of PSP MOSFET model

    NASA Astrophysics Data System (ADS)

    Hadia, Sarman K.; Thakker, R. A.; Bhatt, Kirit R.

    2016-05-01

    The study proposes an application of evolutionary algorithms, specifically an artificial bee colony (ABC), variant ABC and particle swarm optimisation (PSO), to extract the parameters of metal oxide semiconductor field effect transistor (MOSFET) model. These algorithms are applied for the MOSFET parameter extraction problem using a Pennsylvania surface potential model. MOSFET parameter extraction procedures involve reducing the error between measured and modelled data. This study shows that ABC algorithm optimises the parameter values based on intelligent activities of honey bee swarms. Some modifications have also been applied to the basic ABC algorithm. Particle swarm optimisation is a population-based stochastic optimisation method that is based on bird flocking activities. The performances of these algorithms are compared with respect to the quality of the solutions. The simulation results of this study show that the PSO algorithm performs better than the variant ABC and basic ABC algorithm for the parameter extraction of the MOSFET model; also the implementation of the ABC algorithm is shown to be simpler than that of the PSO algorithm.

  20. Mid-Frequency Reverberation Measurements with Full Companion Environmental Support

    DTIC Science & Technology

    2014-12-30

    acoustic modeling is based on measured stratification and observed wave amplitudes on the New Jersey shelf during the SWARM experiment.3 Ray tracing is...wave model then gives quantitative results for the clutter. 2. Swarm NLIW model and ray tracing Nonlinear internal waves are very common on the...receiver in order to give quantitative clutter to reverberation. To picture the mechanism, a set of rays was launched from a source at range zero and

  1. Synthetic collective intelligence.

    PubMed

    Solé, Ricard; Amor, Daniel R; Duran-Nebreda, Salva; Conde-Pueyo, Núria; Carbonell-Ballestero, Max; Montañez, Raúl

    2016-10-01

    Intelligent systems have emerged in our biosphere in different contexts and achieving different levels of complexity. The requirement of communication in a social context has been in all cases a determinant. The human brain, probably co-evolving with language, is an exceedingly successful example. Similarly, social insects complex collective decisions emerge from information exchanges between many agents. The difference is that such processing is obtained out of a limited individual cognitive power. Computational models and embodied versions using non-living systems, particularly involving robot swarms, have been used to explore the potentiality of collective intelligence. Here we suggest a novel approach to the problem grounded in the genetic engineering of unicellular systems, which can be modified in order to interact, store memories or adapt to external stimuli in collective ways. What we label as Synthetic Swarm Intelligence defines a parallel approach to the evolution of computation and swarm intelligence and allows to explore potential embodied scenarios for decision making at the microscale. Here, we consider several relevant examples of collective intelligence and their synthetic organism counterparts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Cooperative Search and Rescue with Artificial Fishes Based on Fish-Swarm Algorithm for Underwater Wireless Sensor Networks

    PubMed Central

    Zhao, Wei; Tang, Zhenmin; Yang, Yuwang; Wang, Lei; Lan, Shaohua

    2014-01-01

    This paper presents a searching control approach for cooperating mobile sensor networks. We use a density function to represent the frequency of distress signals issued by victims. The mobile nodes' moving in mission space is similar to the behaviors of fish-swarm in water. So, we take the mobile node as artificial fish node and define its operations by a probabilistic model over a limited range. A fish-swarm based algorithm is designed requiring local information at each fish node and maximizing the joint detection probabilities of distress signals. Optimization of formation is also considered for the searching control approach and is optimized by fish-swarm algorithm. Simulation results include two schemes: preset route and random walks, and it is showed that the control scheme has adaptive and effective properties. PMID:24741341

  3. Cooperative search and rescue with artificial fishes based on fish-swarm algorithm for underwater wireless sensor networks.

    PubMed

    Zhao, Wei; Tang, Zhenmin; Yang, Yuwang; Wang, Lei; Lan, Shaohua

    2014-01-01

    This paper presents a searching control approach for cooperating mobile sensor networks. We use a density function to represent the frequency of distress signals issued by victims. The mobile nodes' moving in mission space is similar to the behaviors of fish-swarm in water. So, we take the mobile node as artificial fish node and define its operations by a probabilistic model over a limited range. A fish-swarm based algorithm is designed requiring local information at each fish node and maximizing the joint detection probabilities of distress signals. Optimization of formation is also considered for the searching control approach and is optimized by fish-swarm algorithm. Simulation results include two schemes: preset route and random walks, and it is showed that the control scheme has adaptive and effective properties.

  4. A Multipopulation PSO Based Memetic Algorithm for Permutation Flow Shop Scheduling

    PubMed Central

    Liu, Ruochen; Ma, Chenlin; Ma, Wenping; Li, Yangyang

    2013-01-01

    The permutation flow shop scheduling problem (PFSSP) is part of production scheduling, which belongs to the hardest combinatorial optimization problem. In this paper, a multipopulation particle swarm optimization (PSO) based memetic algorithm (MPSOMA) is proposed in this paper. In the proposed algorithm, the whole particle swarm population is divided into three subpopulations in which each particle evolves itself by the standard PSO and then updates each subpopulation by using different local search schemes such as variable neighborhood search (VNS) and individual improvement scheme (IIS). Then, the best particle of each subpopulation is selected to construct a probabilistic model by using estimation of distribution algorithm (EDA) and three particles are sampled from the probabilistic model to update the worst individual in each subpopulation. The best particle in the entire particle swarm is used to update the global optimal solution. The proposed MPSOMA is compared with two recently proposed algorithms, namely, PSO based memetic algorithm (PSOMA) and hybrid particle swarm optimization with estimation of distribution algorithm (PSOEDA), on 29 well-known PFFSPs taken from OR-library, and the experimental results show that it is an effective approach for the PFFSP. PMID:24453841

  5. A parallel competitive Particle Swarm Optimization for non-linear first arrival traveltime tomography and uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Luu, Keurfon; Noble, Mark; Gesret, Alexandrine; Belayouni, Nidhal; Roux, Pierre-François

    2018-04-01

    Seismic traveltime tomography is an optimization problem that requires large computational efforts. Therefore, linearized techniques are commonly used for their low computational cost. These local optimization methods are likely to get trapped in a local minimum as they critically depend on the initial model. On the other hand, global optimization methods based on MCMC are insensitive to the initial model but turn out to be computationally expensive. Particle Swarm Optimization (PSO) is a rather new global optimization approach with few tuning parameters that has shown excellent convergence rates and is straightforwardly parallelizable, allowing a good distribution of the workload. However, while it can traverse several local minima of the evaluated misfit function, classical implementation of PSO can get trapped in local minima at later iterations as particles inertia dim. We propose a Competitive PSO (CPSO) to help particles to escape from local minima with a simple implementation that improves swarm's diversity. The model space can be sampled by running the optimizer multiple times and by keeping all the models explored by the swarms in the different runs. A traveltime tomography algorithm based on CPSO is successfully applied on a real 3D data set in the context of induced seismicity.

  6. Geomagnetic Jerks in the Swarm Era

    NASA Astrophysics Data System (ADS)

    Brown, William; Beggan, Ciaran; Macmillan, Susan

    2016-08-01

    The timely provision of geomagnetic observations as part of the European Space Agency (ESA) Swarm mission means up-to-date analysis and modelling of the Earth's magnetic field can be conducted rapidly in a manner not possible before. Observations from each of the three Swarm constellation satellites are available within 4 days and a database of close-to-definitive ground observatory measurements is updated every 3 months. This makes it possible to study very recent variations of the core magnetic field. Here we investigate rapid, unpredictable internal field variations known as geomagnetic jerks. Given that jerks represent (currently) unpredictable changes in the core field and have been identified to have happened in 2014 since Swarm was launched, we ask what impact this might have on the future accuracy of the International Geomagnetic Reference Field (IGRF). We assess the performance of each of the IGRF-12 secular variation model candidates in light of recent jerks, given that four of the nine candidates are novel physics-based predictive models.

  7. Application of Particle Swarm Optimization Algorithm in the Heating System Planning Problem

    PubMed Central

    Ma, Rong-Jiang; Yu, Nan-Yang; Hu, Jun-Yi

    2013-01-01

    Based on the life cycle cost (LCC) approach, this paper presents an integral mathematical model and particle swarm optimization (PSO) algorithm for the heating system planning (HSP) problem. The proposed mathematical model minimizes the cost of heating system as the objective for a given life cycle time. For the particularity of HSP problem, the general particle swarm optimization algorithm was improved. An actual case study was calculated to check its feasibility in practical use. The results show that the improved particle swarm optimization (IPSO) algorithm can more preferably solve the HSP problem than PSO algorithm. Moreover, the results also present the potential to provide useful information when making decisions in the practical planning process. Therefore, it is believed that if this approach is applied correctly and in combination with other elements, it can become a powerful and effective optimization tool for HSP problem. PMID:23935429

  8. Modeling the complex shape evolution of sedimenting particle swarms in fractures

    NASA Astrophysics Data System (ADS)

    Mitchell, C. A.; Nitsche, L.; Pyrak-Nolte, L. J.

    2016-12-01

    The flow of micro- and nano-particles through subsurface systems can occur in several environments, such as hydraulic fracturing or enhanced oil recovery. Computer simulations were performed to advance our understanding of the complexity of subsurface particle swarm transport in fractures. Previous experiments observed that particle swarms in fractures with uniform apertures exhibit enhanced transport speeds and suppressed bifurcations for an optimal range of apertures. Numerical simulations were performed for low Reynolds number, no interfacial tension and uniform viscosity conditions with particulate swarms represented by point-particles that mutually interact through their (regularized) Stokeslet fields. A P3 M technique accelerates the summations for swarms exceeding 105 particles. Fracture wall effects were incorporated using a least-squares variant of the method of fundamental solutions, with grid mapping of the surface force and source elements within the fast-summation scheme. The numerical study was executed on the basis of dimensionless variables and parameters, in the interest of examining the fundamental behavior and relationships of particle swarms in the presence of uniform apertures. Model parameters were representative of particle swarms experiments to enable direct comparison of the results with the experimental observations. The simulations confirmed that the principal phenomena observed in the experiments can be explained within the realm of Stokes flow. The numerical investigation effectively replicated swarm evolution in a uniform fracture and captured the coalescence, torus and tail formation, and ultimate breakup of the particle swarm as it fell under gravity in a quiescent fluid. The rate of swarm evolution depended on the number of particles in a swarm. When an ideal number of particles was used, swarm transport was characterized by an enhanced velocity regime as observed in the laboratory data. Understanding the physics particle swarms in fractured media will improve the ability to perform controlled micro-particulate transport through rock. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).

  9. An Earthquake Swarm Search Implemented at Major Convergent Margins to Test for Associated Aseismic Slip

    NASA Astrophysics Data System (ADS)

    Holtkamp, S. G.; Pritchard, M. E.; Lohman, R. B.; Brudzinski, M. R.

    2009-12-01

    Recent geodetic analysis indicates earthquake swarms may be associated with slow slip such that earthquakes may only represent a fraction of the moment release. To investigate this potential relationship, we have developed a manual search approach to identify earthquake swarms from a seismicity catalog. Our technique is designed to be insensitive to spatial and temporal scales and the total number of events, as seismicity rates vary in different fault zones. Our first application of this technique on globally recorded earthquakes in South America detects 35 possible swarms of varying spatial scale, with 18 in the megathrust region and 8 along the volcanic arc. Three swarms in the vicinity of the arc appear to be triggered by the Mw=8.5 2001 Peru earthquake, and are examined for possible triggering mechanisms. Coulomb stress modeling suggests that static stress changes due to the earthquake are insufficient to trigger activity, so a dynamic or secondary triggering mechanism is more likely. Volcanic swarms are often associated with ground deformation, either associated with fluid movement (e.g. dike intrusion or chamber inflation or deflation) or fault movement, although these processes are sometimes difficult to differentiate. The only swarm along the arc with sufficient geodetic data that we can process and model is near Ticsani Volcano in Peru. In this case, a swarm of events southeast of the volcano precedes a more typical earthquake sequence beneath the volcano, and evidence for deformation is found in the location of the swarm, but there is no evidence for aseismic slip. Rather, we favor a model where the swarm is associated with deflation of a magma body to the southeast that triggered the earthquake sequence by promoting movement on a fault beneath Ticsani. Since swarms on the subduction interface may indicate aseismic moment release, with a direct impact on hazard, we examine potential relations between swarms and megathrust ruptures. We find evidence that some earthquake swarms show strong interaction with megathrust events where swarms precede the mainshock, swarms show stress interaction with the events, swarms mark the limits of rupture propagation, and swarms occur in areas of long standing seismic gaps. The latter two features also reflect several cases where swarms occur at the subduction of aseismic ridges and trench parallel gravity highs, features often related to megathrust segmentation. Considering that aseismic ridges likely represent material heterogeneity and earthquake swarms typically have low stress drops, we propose that swarms primarily occur in transitional areas of weak coupling that inhibit megathrust seismogenesis and facilitate earthquake swarms. Only 1 swarm in the megathrust area has sufficient geodetic data to investigate slip models, offshore Copiapo, Chile, and while the preferred model suggests aseismic slip, difficulty in modeling an offshore event with onshore data indicates a model without aseismic slip cannot be ruled out. To further examine whether the relationship between swarms and megathrust segmentation is locally derived or more pervasive, we will present results from applying our technique to other major subduction zones.

  10. Swarmie User Manual: A Rover Used for Multi-agent Swarm Research

    NASA Technical Reports Server (NTRS)

    Montague, Gilbert

    2014-01-01

    The ability to create multiple functional yet cost effective robots is crucial for conducting swarming robotics research. The Center Innovation Fund (CIF) swarming robotics project is a collaboration among the KSC Granular Mechanics and Regolith Operations (GMRO) group, the University of New Mexico Biological Computation Lab, and the NASA Ames Intelligent Robotics Group (IRG) that uses rovers, dubbed "Swarmies", as test platforms for genetic search algorithms. This fall, I assisted in the development of the software modules used on the Swarmies and created this guide to provide thorough instructions on how to configure your workspace to operate a Swarmie both in simulation and out in the field.

  11. Swarming motility and biofilm formation of Paenibacillus larvae, the etiological agent of American Foulbrood of honey bees (Apis mellifera).

    PubMed

    Fünfhaus, Anne; Göbel, Josefine; Ebeling, Julia; Knispel, Henriette; Garcia-Gonzalez, Eva; Genersch, Elke

    2018-06-11

    American Foulbrood is a worldwide distributed, fatal disease of the brood of the Western honey bee (Apis mellifera). The causative agent of this fatal brood disease is the Gram-positive, spore-forming bacterium Paenibacillus larvae, which can be classified into four different genotypes (ERIC I-IV), with ERIC I and II being the ones isolated from contemporary AFB outbreaks. P. larvae is a peritrichously flagellated bacterium and, hence, we hypothesized that P. larvae is capable of coordinated and cooperative multicellular behaviors like swarming motility and biofilm formation. In order to analyze these behaviors of P. larvae, we firstly established appropriate functional assays. Using these assays we demonstrated that P. larvae ERIC II, but not P. larvae ERIC I, was capable of swarming. Swarming motility was hampered in a P. larvae ERIC II-mutant lacking production of paenilarvin, an iturin-like lipopeptide exclusively expressed by this genotype. Both genotypes were able to form free floating biofilm aggregates loosely attached to the walls of the culture wells. Visualizing the biofilms by Congo red and thioflavin S staining suggested structural differences between the biofilms formed. Biofilm formation was shown to be independent from paenilarvin production because the paenilarvin deficient mutant was comparably able to form a biofilm.

  12. Genetic particle swarm parallel algorithm analysis of optimization arrangement on mistuned blades

    NASA Astrophysics Data System (ADS)

    Zhao, Tianyu; Yuan, Huiqun; Yang, Wenjun; Sun, Huagang

    2017-12-01

    This article introduces a method of mistuned parameter identification which consists of static frequency testing of blades, dichotomy and finite element analysis. A lumped parameter model of an engine bladed-disc system is then set up. A bladed arrangement optimization method, namely the genetic particle swarm optimization algorithm, is presented. It consists of a discrete particle swarm optimization and a genetic algorithm. From this, the local and global search ability is introduced. CUDA-based co-evolution particle swarm optimization, using a graphics processing unit, is presented and its performance is analysed. The results show that using optimization results can reduce the amplitude and localization of the forced vibration response of a bladed-disc system, while optimization based on the CUDA framework can improve the computing speed. This method could provide support for engineering applications in terms of effectiveness and efficiency.

  13. Swarm Intelligence for Urban Dynamics Modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gerard H. E.

    2009-04-16

    In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.

  14. Swarm Intelligence for Urban Dynamics Modelling

    NASA Astrophysics Data System (ADS)

    Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gérard H. E.

    2009-04-01

    In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.

  15. Numerical Relations and Skill Level Constrain Co-Adaptive Behaviors of Agents in Sports Teams

    PubMed Central

    Silva, Pedro; Travassos, Bruno; Vilar, Luís; Aguiar, Paulo; Davids, Keith; Araújo, Duarte; Garganta, Júlio

    2014-01-01

    Similar to other complex systems in nature (e.g., a hunting pack, flocks of birds), sports teams have been modeled as social neurobiological systems in which interpersonal coordination tendencies of agents underpin team swarming behaviors. Swarming is seen as the result of agent co-adaptation to ecological constraints of performance environments by collectively perceiving specific possibilities for action (affordances for self and shared affordances). A major principle of invasion team sports assumed to promote effective performance is to outnumber the opposition (creation of numerical overloads) during different performance phases (attack and defense) in spatial regions adjacent to the ball. Such performance principles are assimilated by system agents through manipulation of numerical relations between teams during training in order to create artificially asymmetrical performance contexts to simulate overloaded and underloaded situations. Here we evaluated effects of different numerical relations differentiated by agent skill level, examining emergent inter-individual, intra- and inter-team coordination. Groups of association football players (national – NLP and regional-level – RLP) participated in small-sided and conditioned games in which numerical relations between system agents were manipulated (5v5, 5v4 and 5v3). Typical grouping tendencies in sports teams (major ranges, stretch indices, distances of team centers to goals and distances between the teams' opposing line-forces in specific team sectors) were recorded by plotting positional coordinates of individual agents through continuous GPS tracking. Results showed that creation of numerical asymmetries during training constrained agents' individual dominant regions, the underloaded teams' compactness and each team's relative position on-field, as well as distances between specific team sectors. We also observed how skill level impacted individual and team coordination tendencies. Data revealed emergence of co-adaptive behaviors between interacting neurobiological social system agents in the context of sport performance. Such observations have broader implications for training design involving manipulations of numerical relations between interacting members of social collectives. PMID:25191870

  16. Numerical relations and skill level constrain co-adaptive behaviors of agents in sports teams.

    PubMed

    Silva, Pedro; Travassos, Bruno; Vilar, Luís; Aguiar, Paulo; Davids, Keith; Araújo, Duarte; Garganta, Júlio

    2014-01-01

    Similar to other complex systems in nature (e.g., a hunting pack, flocks of birds), sports teams have been modeled as social neurobiological systems in which interpersonal coordination tendencies of agents underpin team swarming behaviors. Swarming is seen as the result of agent co-adaptation to ecological constraints of performance environments by collectively perceiving specific possibilities for action (affordances for self and shared affordances). A major principle of invasion team sports assumed to promote effective performance is to outnumber the opposition (creation of numerical overloads) during different performance phases (attack and defense) in spatial regions adjacent to the ball. Such performance principles are assimilated by system agents through manipulation of numerical relations between teams during training in order to create artificially asymmetrical performance contexts to simulate overloaded and underloaded situations. Here we evaluated effects of different numerical relations differentiated by agent skill level, examining emergent inter-individual, intra- and inter-team coordination. Groups of association football players (national--NLP and regional-level--RLP) participated in small-sided and conditioned games in which numerical relations between system agents were manipulated (5v5, 5v4 and 5v3). Typical grouping tendencies in sports teams (major ranges, stretch indices, distances of team centers to goals and distances between the teams' opposing line-forces in specific team sectors) were recorded by plotting positional coordinates of individual agents through continuous GPS tracking. Results showed that creation of numerical asymmetries during training constrained agents' individual dominant regions, the underloaded teams' compactness and each team's relative position on-field, as well as distances between specific team sectors. We also observed how skill level impacted individual and team coordination tendencies. Data revealed emergence of co-adaptive behaviors between interacting neurobiological social system agents in the context of sport performance. Such observations have broader implications for training design involving manipulations of numerical relations between interacting members of social collectives.

  17. [Optimization of the parameters of microcirculatory structural adaptation model based on improved quantum-behaved particle swarm optimization algorithm].

    PubMed

    Pan, Qing; Yao, Jialiang; Wang, Ruofan; Cao, Ping; Ning, Gangmin; Fang, Luping

    2017-08-01

    The vessels in the microcirculation keep adjusting their structure to meet the functional requirements of the different tissues. A previously developed theoretical model can reproduce the process of vascular structural adaptation to help the study of the microcirculatory physiology. However, until now, such model lacks the appropriate methods for its parameter settings with subsequent limitation of further applications. This study proposed an improved quantum-behaved particle swarm optimization (QPSO) algorithm for setting the parameter values in this model. The optimization was performed on a real mesenteric microvascular network of rat. The results showed that the improved QPSO was superior to the standard particle swarm optimization, the standard QPSO and the previously reported Downhill algorithm. We conclude that the improved QPSO leads to a better agreement between mathematical simulation and animal experiment, rendering the model more reliable in future physiological studies.

  18. Designing an Engaged Swarm: Toward a "Techne" for Multi-Class, Interdisciplinary Collaborations with Nonprofit Partners

    ERIC Educational Resources Information Center

    McCarthy, Seán

    2016-01-01

    This essay proposes a model of university-community partnership called "an engaged swarm" that mobilizes networks of students from across classes and disciplines to work with off-campus partners such as nonprofits. Based on theories that translate the distributed, adaptive, and flexible activity of actors in biological systems to…

  19. A user credit assessment model based on clustering ensemble for broadband network new media service supervision

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Cao, San-xing; Lu, Rui

    2012-04-01

    This paper proposes a user credit assessment model based on clustering ensemble aiming to solve the problem that users illegally spread pirated and pornographic media contents within the user self-service oriented broadband network new media platforms. Its idea is to do the new media user credit assessment by establishing indices system based on user credit behaviors, and the illegal users could be found according to the credit assessment results, thus to curb the bad videos and audios transmitted on the network. The user credit assessment model based on clustering ensemble proposed by this paper which integrates the advantages that swarm intelligence clustering is suitable for user credit behavior analysis and K-means clustering could eliminate the scattered users existed in the result of swarm intelligence clustering, thus to realize all the users' credit classification automatically. The model's effective verification experiments are accomplished which are based on standard credit application dataset in UCI machine learning repository, and the statistical results of a comparative experiment with a single model of swarm intelligence clustering indicates this clustering ensemble model has a stronger creditworthiness distinguishing ability, especially in the aspect of predicting to find user clusters with the best credit and worst credit, which will facilitate the operators to take incentive measures or punitive measures accurately. Besides, compared with the experimental results of Logistic regression based model under the same conditions, this clustering ensemble model is robustness and has better prediction accuracy.

  20. Langevin dynamics encapsulate the microscopic and emergent macroscopic properties of midge swarms

    PubMed Central

    2018-01-01

    In contrast to bird flocks, fish schools and animal herds, midge swarms maintain cohesion but do not possess global order. High-speed imaging techniques are now revealing that these swarms have surprising properties. Here, I show that simple models found on the Langevin equation are consistent with this wealth of recent observations. The models predict correctly that large accelerations, exceeding 10 g, will be common and they predict correctly the coexistence of core condensed phases surrounded by dilute vapour phases. The models also provide new insights into the influence of environmental conditions on swarm dynamics. They predict that correlations between midges increase the strength of the effective force binding the swarm together. This may explain why such correlations are absent in laboratory swarms but present in natural swarms which contend with the wind and other disturbances. Finally, the models predict that swarms have fluid-like macroscopic mechanical properties and will slosh rather than slide back and forth after being abruptly displaced. This prediction offers a promising avenue for future experimentation that goes beyond current quasi-static testing which has revealed solid-like responses. PMID:29298958

  1. Multimode resource-constrained multiple project scheduling problem under fuzzy random environment and its application to a large scale hydropower construction project.

    PubMed

    Xu, Jiuping; Feng, Cuiying

    2014-01-01

    This paper presents an extension of the multimode resource-constrained project scheduling problem for a large scale construction project where multiple parallel projects and a fuzzy random environment are considered. By taking into account the most typical goals in project management, a cost/weighted makespan/quality trade-off optimization model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform the fuzzy random parameters into fuzzy variables that are subsequently defuzzified using an expected value operator with an optimistic-pessimistic index. Then a combinatorial-priority-based hybrid particle swarm optimization algorithm is developed to solve the proposed model, where the combinatorial particle swarm optimization and priority-based particle swarm optimization are designed to assign modes to activities and to schedule activities, respectively. Finally, the results and analysis of a practical example at a large scale hydropower construction project are presented to demonstrate the practicality and efficiency of the proposed model and optimization method.

  2. Multimode Resource-Constrained Multiple Project Scheduling Problem under Fuzzy Random Environment and Its Application to a Large Scale Hydropower Construction Project

    PubMed Central

    Xu, Jiuping

    2014-01-01

    This paper presents an extension of the multimode resource-constrained project scheduling problem for a large scale construction project where multiple parallel projects and a fuzzy random environment are considered. By taking into account the most typical goals in project management, a cost/weighted makespan/quality trade-off optimization model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform the fuzzy random parameters into fuzzy variables that are subsequently defuzzified using an expected value operator with an optimistic-pessimistic index. Then a combinatorial-priority-based hybrid particle swarm optimization algorithm is developed to solve the proposed model, where the combinatorial particle swarm optimization and priority-based particle swarm optimization are designed to assign modes to activities and to schedule activities, respectively. Finally, the results and analysis of a practical example at a large scale hydropower construction project are presented to demonstrate the practicality and efficiency of the proposed model and optimization method. PMID:24550708

  3. A New Stochastic Technique for Painlevé Equation-I Using Neural Network Optimized with Swarm Intelligence

    PubMed Central

    Raja, Muhammad Asif Zahoor; Khan, Junaid Ali; Ahmad, Siraj-ul-Islam; Qureshi, Ijaz Mansoor

    2012-01-01

    A methodology for solution of Painlevé equation-I is presented using computational intelligence technique based on neural networks and particle swarm optimization hybridized with active set algorithm. The mathematical model of the equation is developed with the help of linear combination of feed-forward artificial neural networks that define the unsupervised error of the model. This error is minimized subject to the availability of appropriate weights of the networks. The learning of the weights is carried out using particle swarm optimization algorithm used as a tool for viable global search method, hybridized with active set algorithm for rapid local convergence. The accuracy, convergence rate, and computational complexity of the scheme are analyzed based on large number of independents runs and their comprehensive statistical analysis. The comparative studies of the results obtained are made with MATHEMATICA solutions, as well as, with variational iteration method and homotopy perturbation method. PMID:22919371

  4. Elastic and inelastic collisions of swarms

    NASA Astrophysics Data System (ADS)

    Armbruster, Dieter; Martin, Stephan; Thatcher, Andrea

    2017-04-01

    Scattering interactions of swarms in potentials that are generated by an attraction-repulsion model are studied. In free space, swarms in this model form a well-defined steady state describing the translation of a stable formation of the particles whose shape depends on the interaction potential. Thus, the collision between a swarm and a boundary or between two swarms can be treated as (quasi)-particle scattering. Such scattering experiments result in internal excitations of the swarm or in bound states, respectively. In addition, varying a parameter linked to the relative importance of damping and potential forces drives transitions between elastic and inelastic scattering of the particles. By tracking the swarm's center of mass, a refraction rule is derived via simulations relating the incoming and outgoing directions of a swarm hitting the wall. Iterating the map derived from the refraction law allows us to predict and understand the dynamics and bifurcations of swarms in square boxes and in channels.

  5. The infrared spectral transmittance of Aspergillus niger spore aggregated particle swarm

    NASA Astrophysics Data System (ADS)

    Zhao, Xinying; Hu, Yihua; Gu, Youlin; Li, Le

    2015-10-01

    Microorganism aggregated particle swarm, which is quite an important composition of complex media environment, can be developed as a new kind of infrared functional materials. Current researches mainly focus on the optical properties of single microorganism particle. As for the swarm, especially the microorganism aggregated particle swarm, a more accurate simulation model should be proposed to calculate its extinction effect. At the same time, certain parameters deserve to be discussed, which helps to better develop the microorganism aggregated particle swarm as a new kind of infrared functional materials. In this paper, take Aspergillus Niger spore as an example. On the one hand, a new calculation model is established. Firstly, the cluster-cluster aggregation (CCA) model is used to simulate the structure of Aspergillus Niger spore aggregated particle. Secondly, the single scattering extinction parameters for Aspergillus Niger spore aggregated particle are calculated by using the discrete dipole approximation (DDA) method. Thirdly, the transmittance of Aspergillus Niger spore aggregated particle swarm is simulated by using Monte Carlo method. On the other hand, based on the model proposed above, what influences can wavelength causes has been studied, including the spectral distribution of scattering intensity of Aspergillus Niger spore aggregated particle and the infrared spectral transmittance of the aggregated particle swarm within the range of 8-14μm incident infrared wavelengths. Numerical results indicate that the scattering intensity of Aspergillus Niger spore aggregated particle reduces with the increase of incident wavelengths at each scattering angle. Scattering energy mainly concentrates on the scattering angle between 0-40°, forward scattering has an obvious effect. In addition, the infrared transmittance of Aspergillus Niger spore aggregated particle swarm goes up with the increase of incident wavelengths. However, some turning points of the trend are associated with the absorption capacity of the swarm. When parameters of the swarm are set as follows: each Aspergillus Niger spore aggregated particle contains 40 original particles, the radius of original particle is 1.5μm, the density of aggregated particles is around 200/cm3, the measurement area is 4 meters thick, under conditions mentioned above, the infrared transmittance can be less than 10% between the incident wavelengths of 9.5-13μm. In the end, all the results provide the basis for better developing the microorganism aggregated particle swarm as a new kind of infrared functional materials and precisely choosing the effective defiladed infrared band.

  6. Thermal and athermal three-dimensional swarms of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Nguyen, Nguyen H. P.; Jankowski, Eric; Glotzer, Sharon C.

    2012-07-01

    Swarms of self-propelled particles exhibit complex behavior that can arise from simple models, with large changes in swarm behavior resulting from small changes in model parameters. We investigate the steady-state swarms formed by self-propelled Morse particles in three dimensions using molecular dynamics simulations optimized for graphics processing units. We find a variety of swarms of different overall shape assemble spontaneously and that for certain Morse potential parameters at most two competing structures are observed. We report a rich “phase diagram” of athermal swarm structures observed across a broad range of interaction parameters. Unlike the structures formed in equilibrium self-assembly, we find that the probability of forming a self-propelled swarm can be biased by the choice of initial conditions. We investigate how thermal noise influences swarm formation and demonstrate ways it can be exploited to reconfigure one swarm into another. Our findings validate and extend previous observations of self-propelled Morse swarms and highlight open questions for predictive theories of nonequilibrium self-assembly.

  7. A two-step along-track spectral analysis for estimating the magnetic signals of magnetospheric ring current from Swarm data

    NASA Astrophysics Data System (ADS)

    Martinec, Zdeněk; Velímský, Jakub; Haagmans, Roger; Šachl, Libor

    2018-02-01

    This study deals with the analysis of Swarm vector magnetic field measurements in order to estimate the magnetic field of magnetospheric ring current. For a single Swarm satellite, the magnetic measurements are processed by along-track spectral analysis on a track-by-track basis. The main and lithospheric magnetic fields are modelled by the CHAOS-6 field model and subtracted from the along-track Swarm magnetic data. The mid-latitude residual signal is then spectrally analysed and extrapolated to the polar regions. The resulting model of the magnetosphere (model MME) is compared to the existing Swarm Level 2 magnetospheric field model (MMA_SHA_2C). The differences of up to 10 nT are found on the nightsides Swarm data from 2014 April 8 to May 10, which are due to different processing schemes used to construct the two magnetospheric magnetic field models. The forward-simulated magnetospheric magnetic field generated by the external part of model MME then demonstrates the consistency of the separation of the Swarm along-track signal into the external and internal parts by the two-step along-track spectral analysis.

  8. Multi Dimensional Honey Bee Foraging Algorithm Based on Optimal Energy Consumption

    NASA Astrophysics Data System (ADS)

    Saritha, R.; Vinod Chandra, S. S.

    2017-10-01

    In this paper a new nature inspired algorithm is proposed based on natural foraging behavior of multi-dimensional honey bee colonies. This method handles issues that arise when food is shared from multiple sources by multiple swarms at multiple destinations. The self organizing nature of natural honey bee swarms in multiple colonies is based on the principle of energy consumption. Swarms of multiple colonies select a food source to optimally fulfill the requirements of its colonies. This is based on the energy requirement for transporting food between a source and destination. Minimum use of energy leads to maximizing profit in each colony. The mathematical model proposed here is based on this principle. This has been successfully evaluated by applying it on multi-objective transportation problem for optimizing cost and time. The algorithm optimizes the needs at each destination in linear time.

  9. Gravity inversion of a fault by Particle swarm optimization (PSO).

    PubMed

    Toushmalani, Reza

    2013-01-01

    Particle swarm optimization is a heuristic global optimization method and also an optimization algorithm, which is based on swarm intelligence. It comes from the research on the bird and fish flock movement behavior. In this paper we introduce and use this method in gravity inverse problem. We discuss the solution for the inverse problem of determining the shape of a fault whose gravity anomaly is known. Application of the proposed algorithm to this problem has proven its capability to deal with difficult optimization problems. The technique proved to work efficiently when tested to a number of models.

  10. A Communications Modeling System for Swarm-Based Sensors

    DTIC Science & Technology

    2003-09-01

    6-10 6.6. Digital and Swarm System Performance Measures . . . . . . . . . . 6-21 7.1. Simulation computing hardware...detection and monitoring, and advances in computational capabilities have provided for embedded data analysis and the generation of information from raw... computing and manufacturing technology have made such systems possible. In order to harness this potential for Air Force applica- tions, a method of

  11. Fuzzy distributed cooperative tracking for a swarm of unmanned aerial vehicles with heterogeneous goals

    NASA Astrophysics Data System (ADS)

    Kladis, Georgios P.; Menon, Prathyush P.; Edwards, Christopher

    2016-12-01

    This article proposes a systematic analysis for a tracking problem which ensures cooperation amongst a swarm of unmanned aerial vehicles (UAVs), modelled as nonlinear systems with linear and angular velocity constraints, in order to achieve different goals. A distributed Takagi-Sugeno (TS) framework design is adopted for the representation of the nonlinear model of the dynamics of the UAVs. The distributed control law which is introduced is composed of both node and network level information. Firstly, feedback gains are synthesised using a parallel distributed compensation (PDC) control law structure, for a collection of isolated UAVs; ignoring communications among the swarm. Then secondly, based on an alternation-like procedure, the resulting feedback gains are used to determine Lyapunov matrices which are utilised at network level to incorporate into the control law, the relative differences in the states of the vehicles, and to induce cooperative behaviour. Eventually stability is guaranteed for the entire swarm. The control synthesis is performed using tools from linear control theory: in particular the design criteria are posed as linear matrix inequalities (LMIs). An example based on a UAV tracking scenario is included to outline the efficacy of the approach.

  12. SWARMs Ontology: A Common Information Model for the Cooperation of Underwater Robots.

    PubMed

    Li, Xin; Bilbao, Sonia; Martín-Wanton, Tamara; Bastos, Joaquim; Rodriguez, Jonathan

    2017-03-11

    In order to facilitate cooperation between underwater robots, it is a must for robots to exchange information with unambiguous meaning. However, heterogeneity, existing in information pertaining to different robots, is a major obstruction. Therefore, this paper presents a networked ontology, named the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) ontology, to address information heterogeneity and enable robots to have the same understanding of exchanged information. The SWARMs ontology uses a core ontology to interrelate a set of domain-specific ontologies, including the mission and planning, the robotic vehicle, the communication and networking, and the environment recognition and sensing ontology. In addition, the SWARMs ontology utilizes ontology constructs defined in the PR-OWL ontology to annotate context uncertainty based on the Multi-Entity Bayesian Network (MEBN) theory. Thus, the SWARMs ontology can provide both a formal specification for information that is necessarily exchanged between robots and a command and control entity, and also support for uncertainty reasoning. A scenario on chemical pollution monitoring is described and used to showcase how the SWARMs ontology can be instantiated, be extended, represent context uncertainty, and support uncertainty reasoning.

  13. Comparison result of inversion of gravity data of a fault by particle swarm optimization and Levenberg-Marquardt methods.

    PubMed

    Toushmalani, Reza

    2013-01-01

    The purpose of this study was to compare the performance of two methods for gravity inversion of a fault. First method [Particle swarm optimization (PSO)] is a heuristic global optimization method and also an optimization algorithm, which is based on swarm intelligence. It comes from the research on the bird and fish flock movement behavior. Second method [The Levenberg-Marquardt algorithm (LM)] is an approximation to the Newton method used also for training ANNs. In this paper first we discussed the gravity field of a fault, then describes the algorithms of PSO and LM And presents application of Levenberg-Marquardt algorithm, and a particle swarm algorithm in solving inverse problem of a fault. Most importantly the parameters for the algorithms are given for the individual tests. Inverse solution reveals that fault model parameters are agree quite well with the known results. A more agreement has been found between the predicted model anomaly and the observed gravity anomaly in PSO method rather than LM method.

  14. Mechanism of the 1996-97 non-eruptive volcano-tectonic earthquake swarm at Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Roman, D.C.; Power, J.A.

    2011-01-01

    A significant number of volcano-tectonic(VT) earthquake swarms, some of which are accompanied by ground deformation and/or volcanic gas emissions, do not culminate in an eruption.These swarms are often thought to represent stalled intrusions of magma into the mid- or shallow-level crust.Real-time assessment of the likelihood that a VTswarm will culminate in an eruption is one of the key challenges of volcano monitoring, and retrospective analysis of non-eruptive swarms provides an important framework for future assessments. Here we explore models for a non-eruptive VT earthquake swarm located beneath Iliamna Volcano, Alaska, in May 1996-June 1997 through calculation and inversion of fault-plane solutions for swarm and background periods, and through Coulomb stress modeling of faulting types and hypocenter locations observed during the swarm. Through a comparison of models of deep and shallow intrusions to swarm observations,we aim to test the hypothesis that the 1996-97 swarm represented a shallow intrusion, or "failed" eruption.Observations of the 1996-97 swarm are found to be consistent with several scenarios including both shallow and deep intrusion, most likely involving a relatively small volume of intruded magma and/or a low degree of magma pressurization corresponding to a relatively low likelihood of eruption. ?? 2011 Springer-Verlag.

  15. Driving Processes of Earthquake Swarms: Evidence from High Resolution Seismicity

    NASA Astrophysics Data System (ADS)

    Ellsworth, W. L.; Shelly, D. R.; Hill, D. P.; Hardebeck, J.; Hsieh, P. A.

    2017-12-01

    Earthquake swarms are transient increases in seismicity deviating from a typical mainshock-aftershock pattern. Swarms are most prevalent in volcanic and hydrothermal areas, yet also occur in other environments, such as extensional fault stepovers. Swarms provide a valuable opportunity to investigate source zone physics, including the causes of their swarm-like behavior. To gain insight into this behavior, we have used waveform-based methods to greatly enhance standard seismic catalogs. Depending on the application, we detect and precisely relocate 2-10x as many events as included in the initial catalog. Recently, we have added characterization of focal mechanisms (applied to a 2014 swarm in Long Valley Caldera, California), addressing a common shortcoming in microseismicity analyses (Shelly et al., JGR, 2016). In analysis of multiple swarms (both within and outside volcanic areas), several features stand out, including: (1) dramatic expansion of the active source region with time, (2) tendency for events to occur on the immediate fringe of prior activity, (3) overall upward migration, and (4) complex faulting structure. Some swarms also show an apparent mismatch between seismicity orientations (as defined by patterns in hypocentral locations) and slip orientations (as inferred from focal mechanisms). These features are largely distinct from those observed in mainshock-aftershock sequences. In combination, these swarm behaviors point to an important role for fluid pressure diffusion. Swarms may in fact be generated by a cascade of fluid pressure diffusion and stress transfer: in cases where faults are critically stressed, an increase in fluid pressure will trigger faulting. Faulting will in turn dramatically increase permeability in the faulted area, allowing rapid equilibration of fluid pressure to the fringe of the rupture zone. This process may perpetuate until fluid pressure perturbations drop and/or stresses become further from failure, such that any perturbation (fluid + stress transfer) is insufficient to generate further faulting. Numerical modeling supports this hypothesis - for example, the main features of the 2014 Long Valley swarm can be reproduced by a relatively simple model incorporating both stress transfer and rupture-aided fluid pressure diffusion (Hsieh et al., AGU FM, 2016).

  16. Interest rate next-day variation prediction based on hybrid feedforward neural network, particle swarm optimization, and multiresolution techniques

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim

    2016-02-01

    Multiresolution analysis techniques including continuous wavelet transform, empirical mode decomposition, and variational mode decomposition are tested in the context of interest rate next-day variation prediction. In particular, multiresolution analysis techniques are used to decompose interest rate actual variation and feedforward neural network for training and prediction. Particle swarm optimization technique is adopted to optimize its initial weights. For comparison purpose, autoregressive moving average model, random walk process and the naive model are used as main reference models. In order to show the feasibility of the presented hybrid models that combine multiresolution analysis techniques and feedforward neural network optimized by particle swarm optimization, we used a set of six illustrative interest rates; including Moody's seasoned Aaa corporate bond yield, Moody's seasoned Baa corporate bond yield, 3-Month, 6-Month and 1-Year treasury bills, and effective federal fund rate. The forecasting results show that all multiresolution-based prediction systems outperform the conventional reference models on the criteria of mean absolute error, mean absolute deviation, and root mean-squared error. Therefore, it is advantageous to adopt hybrid multiresolution techniques and soft computing models to forecast interest rate daily variations as they provide good forecasting performance.

  17. Swarm-based medicine.

    PubMed

    Putora, Paul Martin; Oldenburg, Jan

    2013-09-19

    Occasionally, medical decisions have to be taken in the absence of evidence-based guidelines. Other sources can be drawn upon to fill in the gaps, including experience and intuition. Authorities or experts, with their knowledge and experience, may provide further input--known as "eminence-based medicine". Due to the Internet and digital media, interactions among physicians now take place at a higher rate than ever before. With the rising number of interconnected individuals and their communication capabilities, the medical community is obtaining the properties of a swarm. The way individual physicians act depends on other physicians; medical societies act based on their members. Swarm behavior might facilitate the generation and distribution of knowledge as an unconscious process. As such, "swarm-based medicine" may add a further source of information to the classical approaches of evidence- and eminence-based medicine. How to integrate swarm-based medicine into practice is left to the individual physician, but even this decision will be influenced by the swarm.

  18. A Lego Mindstorms NXT based test bench for multiagent exploratory systems and distributed network partitioning

    NASA Astrophysics Data System (ADS)

    Patil, Riya Raghuvir

    Networks of communicating agents require distributed algorithms for a variety of tasks in the field of network analysis and control. For applications such as swarms of autonomous vehicles, ad hoc and wireless sensor networks, and such military and civilian applications as exploring and patrolling a robust autonomous system that uses a distributed algorithm for selfpartitioning can be significantly helpful. A single team of autonomous vehicles in a field may need to self-dissemble into multiple teams, conducive to completing multiple control tasks. Moreover, because communicating agents are subject to changes, namely, addition or failure of an agent or link, a distributed or decentralized algorithm is favorable over having a central agent. A framework to help with the study of self-partitioning of such multi agent systems that have most basic mobility model not only saves our time in conception but also gives us a cost effective prototype without negotiating the physical realization of the proposed idea. In this thesis I present my work on the implementation of a flexible and distributed stochastic partitioning algorithm on the LegoRTM Mindstorms' NXT on a graphical programming platform using National Instruments' LabVIEW(TM) forming a team of communicating agents via NXT-Bee radio module. We single out mobility, communication and self-partition as the core elements of the work. The goal is to randomly explore a precinct for reference sites. Agents who have discovered the reference sites announce their target acquisition to form a network formed based upon the distance of each agent with the other wherein the self-partitioning begins to find an optimal partition. Further, to illustrate the work, an experimental test-bench of five Lego NXT robots is presented.

  19. Developing a Novel Parameter Estimation Method for Agent-Based Model in Immune System Simulation under the Framework of History Matching: A Case Study on Influenza A Virus Infection

    PubMed Central

    Li, Tingting; Cheng, Zhengguo; Zhang, Le

    2017-01-01

    Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM) have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM) is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency. PMID:29194393

  20. Developing a Novel Parameter Estimation Method for Agent-Based Model in Immune System Simulation under the Framework of History Matching: A Case Study on Influenza A Virus Infection.

    PubMed

    Li, Tingting; Cheng, Zhengguo; Zhang, Le

    2017-12-01

    Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM) have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM) is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency.

  1. Stormwater runoff in watersheds: a system for prediciting impacts of development and climate change

    Treesearch

    Ann Blair; Denise Sanger; Susan Lovelace

    2016-01-01

    The Stormwater Runoff Modeling System (SWARM) enhances understanding of impacts of land-use and climate change on stormwater runoff in watersheds. We developed this singleevent system based on US Department of Agriculture, Natural Resources Conservation Service curve number and unit hydrograph methods. We tested SWARM using US Geological Survey discharge and rain data...

  2. Applying Biomimetic Algorithms for Extra-Terrestrial Habitat Generation

    NASA Technical Reports Server (NTRS)

    Birge, Brian

    2012-01-01

    The objective is to simulate and optimize distributed cooperation among a network of robots tasked with cooperative excavation on an extra-terrestrial surface. Additionally to examine the concept of directed Emergence among a group of limited artificially intelligent agents. Emergence is the concept of achieving complex results from very simple rules or interactions. For example, in a termite mound each individual termite does not carry a blueprint of how to make their home in a global sense, but their interactions based strictly on local desires create a complex superstructure. Leveraging this Emergence concept applied to a simulation of cooperative agents (robots) will allow an examination of the success of non-directed group strategy achieving specific results. Specifically the simulation will be a testbed to evaluate population based robotic exploration and cooperative strategies while leveraging the evolutionary teamwork approach in the face of uncertainty about the environment and partial loss of sensors. Checking against a cost function and 'social' constraints will optimize cooperation when excavating a simulated tunnel. Agents will act locally with non-local results. The rules by which the simulated robots interact will be optimized to the simplest possible for the desired result, leveraging Emergence. Sensor malfunction and line of sight issues will be incorporated into the simulation. This approach falls under Swarm Robotics, a subset of robot control concerned with finding ways to control large groups of robots. Swarm Robotics often contains biologically inspired approaches, research comes from social insect observation but also data from among groups of herding, schooling, and flocking animals. Biomimetic algorithms applied to manned space exploration is the method under consideration for further study.

  3. From Magma Fracture to a Seismic Magma Flow Meter

    NASA Astrophysics Data System (ADS)

    Neuberg, J. W.

    2007-12-01

    Seismic swarms of low-frequency events occur during periods of enhanced volcanic activity and have been related to the flow of magma at depth. Often they precede a dome collapse on volcanoes like Soufriere Hills, Montserrat, or Mt St Helens. This contribution is based on the conceptual model of magma rupture as a trigger mechanism. Several source mechanisms and radiation patterns at the focus of a single event are discussed. We investigate the accelerating event rate and seismic amplitudes during one swarm, as well as over a time period of several swarms. The seismic slip vector will be linked to magma flow parameters resulting in estimates of magma flux for a variety of flow models such as plug flow, parabolic- or friction controlled flow. In this way we try to relate conceptual models to quantitative estimations which could lead to estimations of magma flux at depth from seismic low-frequency signals.

  4. A minimal model of predator–swarm interactions

    PubMed Central

    Chen, Yuxin; Kolokolnikov, Theodore

    2014-01-01

    We propose a minimal model of predator–swarm interactions which captures many of the essential dynamics observed in nature. Different outcomes are observed depending on the predator strength. For a ‘weak’ predator, the swarm is able to escape the predator completely. As the strength is increased, the predator is able to catch up with the swarm as a whole, but the individual prey is able to escape by ‘confusing’ the predator: the prey forms a ring with the predator at the centre. For higher predator strength, complex chasing dynamics are observed which can become chaotic. For even higher strength, the predator is able to successfully capture the prey. Our model is simple enough to be amenable to a full mathematical analysis, which is used to predict the shape of the swarm as well as the resulting predator–prey dynamics as a function of model parameters. We show that, as the predator strength is increased, there is a transition (owing to a Hopf bifurcation) from confusion state to chasing dynamics, and we compute the threshold analytically. Our analysis indicates that the swarming behaviour is not helpful in avoiding the predator, suggesting that there are other reasons why the species may swarm. The complex shape of the swarm in our model during the chasing dynamics is similar to the shape of a flock of sheep avoiding a shepherd. PMID:24598204

  5. A minimal model of predator-swarm interactions.

    PubMed

    Chen, Yuxin; Kolokolnikov, Theodore

    2014-05-06

    We propose a minimal model of predator-swarm interactions which captures many of the essential dynamics observed in nature. Different outcomes are observed depending on the predator strength. For a 'weak' predator, the swarm is able to escape the predator completely. As the strength is increased, the predator is able to catch up with the swarm as a whole, but the individual prey is able to escape by 'confusing' the predator: the prey forms a ring with the predator at the centre. For higher predator strength, complex chasing dynamics are observed which can become chaotic. For even higher strength, the predator is able to successfully capture the prey. Our model is simple enough to be amenable to a full mathematical analysis, which is used to predict the shape of the swarm as well as the resulting predator-prey dynamics as a function of model parameters. We show that, as the predator strength is increased, there is a transition (owing to a Hopf bifurcation) from confusion state to chasing dynamics, and we compute the threshold analytically. Our analysis indicates that the swarming behaviour is not helpful in avoiding the predator, suggesting that there are other reasons why the species may swarm. The complex shape of the swarm in our model during the chasing dynamics is similar to the shape of a flock of sheep avoiding a shepherd.

  6. Control of Synchronization Regimes in Networks of Mobile Interacting Agents

    NASA Astrophysics Data System (ADS)

    Perez-Diaz, Fernando; Zillmer, Ruediger; Groß, Roderich

    2017-05-01

    We investigate synchronization in a population of mobile pulse-coupled agents with a view towards implementations in swarm-robotics systems and mobile sensor networks. Previous theoretical approaches dealt with range and nearest-neighbor interactions. In the latter case, a synchronization-hindering regime for intermediate agent mobility is found. We investigate the robustness of this intermediate regime under practical scenarios. We show that synchronization in the intermediate regime can be predicted by means of a suitable metric of the phase response curve. Furthermore, we study more-realistic K -nearest-neighbor and cone-of-vision interactions, showing that it is possible to control the extent of the synchronization-hindering region by appropriately tuning the size of the neighborhood. To assess the effect of noise, we analyze the propagation of perturbations over the network and draw an analogy between the response in the hindering regime and stable chaos. Our findings reveal the conditions for the control of clock or activity synchronization of agents with intermediate mobility. In addition, the emergence of the intermediate regime is validated experimentally using a swarm of physical robots interacting with cone-of-vision interactions.

  7. Swarm intelligence metaheuristics for enhanced data analysis and optimization.

    PubMed

    Hanrahan, Grady

    2011-09-21

    The swarm intelligence (SI) computing paradigm has proven itself as a comprehensive means of solving complicated analytical chemistry problems by emulating biologically-inspired processes. As global optimum search metaheuristics, associated algorithms have been widely used in training neural networks, function optimization, prediction and classification, and in a variety of process-based analytical applications. The goal of this review is to provide readers with critical insight into the utility of swarm intelligence tools as methods for solving complex chemical problems. Consideration will be given to algorithm development, ease of implementation and model performance, detailing subsequent influences on a number of application areas in the analytical, bioanalytical and detection sciences.

  8. Pigeon interaction mode switch-based UAV distributed flocking control under obstacle environments.

    PubMed

    Qiu, Huaxin; Duan, Haibin

    2017-11-01

    Unmanned aerial vehicle (UAV) flocking control is a serious and challenging problem due to local interactions and changing environments. In this paper, a pigeon flocking model and a pigeon coordinated obstacle-avoiding model are proposed based on a behavior that pigeon flocks will switch between hierarchical and egalitarian interaction mode at different flight phases. Owning to the similarity between bird flocks and UAV swarms in essence, a distributed flocking control algorithm based on the proposed pigeon flocking and coordinated obstacle-avoiding models is designed to coordinate a heterogeneous UAV swarm to fly though obstacle environments with few informed individuals. The comparative simulation results are elaborated to show the feasibility, validity and superiority of our proposed algorithm. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. P-adic valued models of swarm behaviour

    NASA Astrophysics Data System (ADS)

    Schumann, Andrew

    2017-07-01

    The swarm behaviour can be fully determined by attractants (food pieces) which change the directions of swarm propagation. If we assume that at each time step the swarm can find out not more than p - 1 attractants, then the swarm behaviour can be coded by p-adic integers. The main task of any swarm is to logistically optimize the road system connecting the reachable attractants. In the meanwhile, the transporting network of the swarm has loops (circles) and permanently changes, e.g. the swarm occupies some attractants and leaves the others. However, this complex dynamics can be effectively coded by p-adic integers. This allows us to represent the swarm behaviour as a calculation on p-adic valued strings.

  10. A comprehensive overview of the applications of artificial life.

    PubMed

    Kim, Kyung-Joong; Cho, Sung-Bae

    2006-01-01

    We review the applications of artificial life (ALife), the creation of synthetic life on computers to study, simulate, and understand living systems. The definition and features of ALife are shown by application studies. ALife application fields treated include robot control, robot manufacturing, practical robots, computer graphics, natural phenomenon modeling, entertainment, games, music, economics, Internet, information processing, industrial design, simulation software, electronics, security, data mining, and telecommunications. In order to show the status of ALife application research, this review primarily features a survey of about 180 ALife application articles rather than a selected representation of a few articles. Evolutionary computation is the most popular method for designing such applications, but recently swarm intelligence, artificial immune network, and agent-based modeling have also produced results. Applications were initially restricted to the robotics and computer graphics, but presently, many different applications in engineering areas are of interest.

  11. Gold rush - A swarm dynamics in games

    NASA Astrophysics Data System (ADS)

    Zelinka, Ivan; Bukacek, Michal

    2017-07-01

    This paper is focused on swarm intelligence techniques and its practical use in computer games. The aim is to show how a swarm dynamics can be generated by multiplayer game, then recorded, analyzed and eventually controlled. In this paper we also discuss possibility to use swarm intelligence instead of game players. Based on our previous experiments two games, using swarm algorithms are mentioned briefly here. The first one is strategy game StarCraft: Brood War, and TicTacToe in which SOMA algorithm has also take a role of player against human player. Open research reported here has shown potential benefit of swarm computation in the field of strategy games and players strategy based on swarm behavior record and analysis. We propose new game called Gold Rush as an experimental environment for human or artificial swarm behavior and consequent analysis.

  12. Long-term evolution of a planetesimal swarm in the vicinity of a protoplanet

    NASA Technical Reports Server (NTRS)

    Kary, David M.; Lissauer, Jack J.

    1991-01-01

    Many models of planet formation involve scenarios in which one or a few large protoplanets interact with a swarm of much smaller planetesimals. In such scenarios, three-body perturbations by the protoplanet as well as mutual collisions and gravitational interactions between the swarm bodies are important in determining the velocity distribution of the swarm. We are developing a model to examine the effects of these processes on the evolution of a planetesimal swarm. The model consists of a combination of numerical integrations of the gravitational influence of one (or a few) massive protoplanets on swarm bodies together with a statistical treatment of the interactions between the planetesimals. Integrating the planetesimal orbits allows us to take into account effects that are difficult to model analytically or statistically, such as three-body collision cross-sections and resonant perturbations by the protoplanet, while using a statistical treatment for the particle-particle interactions allows us to use a large enough sample to obtain meaningful results.

  13. Termites: a Retinex implementation based on a colony of agents

    NASA Astrophysics Data System (ADS)

    Simone, Gabriele; Audino, Giuseppe; Farup, Ivar; Rizzi, Alessandro

    2012-01-01

    This paper describes a novel implementation of the Retinex algorithm with the exploration of the image done by an ant swarm. In this case the purpose of the ant colony is not the optimization of some constraints but is an alternative way to explore the image content as diffused as possible, with the possibility of tuning the exploration parameters to the image content trying to better approach the Human Visual System behavior. For this reason, we used "termites", instead of ants, to underline the idea of the eager exploration of the image. The paper presents the spatial characteristics of locality and discusses differences in path exploration with other Retinex implementations. Furthermore a psychophysical experiment has been carried out on eight images with 20 observers and results indicate that a termite swarm should investigate a particular region of an image to find the local reference white.

  14. Swarm autonomic agents with self-destruct capability

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)

    2009-01-01

    Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.

  15. Swarm autonomic agents with self-destruct capability

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)

    2011-01-01

    Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.

  16. Trust Management Considerations For the Cooperative Infrastructure Defense Framework: Trust Relationships, Evidence, and Decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiden, Wendy M.

    Cooperative Infrastructure Defense (CID) is a hierarchical, agent-based, adaptive, cyber-security framework designed to collaboratively protect multiple enclaves or organizations participating in a complex infrastructure. CID employs a swarm of lightweight, mobile agents called Sensors designed to roam hosts throughout a security enclave to find indications of anomalies and report them to host-based Sentinels. The Sensors’ findings become pieces of a larger puzzle, which the Sentinel puts together to determine the problem and respond per policy as given by the enclave-level Sergeant agent. Horizontally across multiple enclaves and vertically within each enclave, authentication and access control technologies are necessary but insufficientmore » authorization mechanisms to ensure that CID agents continue to fulfill their roles in a trustworthy manner. Trust management fills the gap, providing mechanisms to detect malicious agents and offering more robust mechanisms for authorization. This paper identifies the trust relationships throughout the CID hierarchy, the types of trust evidence that could be gathered, and the actions that the CID system could take if an entity is determined to be untrustworthy.« less

  17. SWARMs Ontology: A Common Information Model for the Cooperation of Underwater Robots

    PubMed Central

    Li, Xin; Bilbao, Sonia; Martín-Wanton, Tamara; Bastos, Joaquim; Rodriguez, Jonathan

    2017-01-01

    In order to facilitate cooperation between underwater robots, it is a must for robots to exchange information with unambiguous meaning. However, heterogeneity, existing in information pertaining to different robots, is a major obstruction. Therefore, this paper presents a networked ontology, named the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) ontology, to address information heterogeneity and enable robots to have the same understanding of exchanged information. The SWARMs ontology uses a core ontology to interrelate a set of domain-specific ontologies, including the mission and planning, the robotic vehicle, the communication and networking, and the environment recognition and sensing ontology. In addition, the SWARMs ontology utilizes ontology constructs defined in the PR-OWL ontology to annotate context uncertainty based on the Multi-Entity Bayesian Network (MEBN) theory. Thus, the SWARMs ontology can provide both a formal specification for information that is necessarily exchanged between robots and a command and control entity, and also support for uncertainty reasoning. A scenario on chemical pollution monitoring is described and used to showcase how the SWARMs ontology can be instantiated, be extended, represent context uncertainty, and support uncertainty reasoning. PMID:28287468

  18. Laboratory and Modeling Studies of Insect Swarms

    DTIC Science & Technology

    2016-03-10

    and measuring the response. These novel methods allowed us for the first time to characterize precisely properties of the swarm at the group level... Time series for a randomly chosen pair as well as its continuous wavelet transform (CWT; bottom panel). Nearly all of the power in the signal for... based time -frequency analysis to identify such transient interactions, as long as they modified the frequency structure of the insect flight

  19. Collective dynamics of soft active particles

    NASA Astrophysics Data System (ADS)

    van Drongelen, Ruben; Pal, Anshuman; Goodrich, Carl P.; Idema, Timon

    2015-03-01

    We present a model of soft active particles that leads to a rich array of collective behavior found also in dense biological swarms of bacteria and other unicellular organisms. Our model uses only local interactions, such as Vicsek-type nearest-neighbor alignment, short-range repulsion, and a local boundary term. Changing the relative strength of these interactions leads to migrating swarms, rotating swarms, and jammed swarms, as well as swarms that exhibit run-and-tumble motion, alternating between migration and either rotating or jammed states. Interestingly, although a migrating swarm moves slower than an individual particle, the diffusion constant can be up to three orders of magnitude larger, suggesting that collective motion can be highly advantageous, for example, when searching for food.

  20. A bio-inspired swarm robot coordination algorithm for multiple target searching

    NASA Astrophysics Data System (ADS)

    Meng, Yan; Gan, Jing; Desai, Sachi

    2008-04-01

    The coordination of a multi-robot system searching for multi targets is challenging under dynamic environment since the multi-robot system demands group coherence (agents need to have the incentive to work together faithfully) and group competence (agents need to know how to work together well). In our previous proposed bio-inspired coordination method, Local Interaction through Virtual Stigmergy (LIVS), one problem is the considerable randomness of the robot movement during coordination, which may lead to more power consumption and longer searching time. To address these issues, an adaptive LIVS (ALIVS) method is proposed in this paper, which not only considers the travel cost and target weight, but also predicting the target/robot ratio and potential robot redundancy with respect to the detected targets. Furthermore, a dynamic weight adjustment is also applied to improve the searching performance. This new method a truly distributed method where each robot makes its own decision based on its local sensing information and the information from its neighbors. Basically, each robot only communicates with its neighbors through a virtual stigmergy mechanism and makes its local movement decision based on a Particle Swarm Optimization (PSO) algorithm. The proposed ALIVS algorithm has been implemented on the embodied robot simulator, Player/Stage, in a searching target. The simulation results demonstrate the efficiency and robustness in a power-efficient manner with the real-world constraints.

  1. A Modified Particle Swarm Optimization Technique for Finding Optimal Designs for Mixture Models

    PubMed Central

    Wong, Weng Kee; Chen, Ray-Bing; Huang, Chien-Chih; Wang, Weichung

    2015-01-01

    Particle Swarm Optimization (PSO) is a meta-heuristic algorithm that has been shown to be successful in solving a wide variety of real and complicated optimization problems in engineering and computer science. This paper introduces a projection based PSO technique, named ProjPSO, to efficiently find different types of optimal designs, or nearly optimal designs, for mixture models with and without constraints on the components, and also for related models, like the log contrast models. We also compare the modified PSO performance with Fedorov's algorithm, a popular algorithm used to generate optimal designs, Cocktail algorithm, and the recent algorithm proposed by [1]. PMID:26091237

  2. Emergence of a coherent and cohesive swarm based on mutual anticipation

    PubMed Central

    Murakami, Hisashi; Niizato, Takayuki; Gunji, Yukio-Pegio

    2017-01-01

    Collective behavior emerging out of self-organization is one of the most striking properties of an animal group. Typically, it is hypothesized that each individual in an animal group tends to align its direction of motion with those of its neighbors. Most previous models for collective behavior assume an explicit alignment rule, by which an agent matches its velocity with that of neighbors in a certain neighborhood, to reproduce a collective order pattern by simple interactions. Recent empirical studies, however, suggest that there is no evidence for explicit matching of velocity, and that collective polarization arises from interactions other than those that follow the explicit alignment rule. We here propose a new lattice-based computational model that does not incorporate the explicit alignment rule but is based instead on mutual anticipation and asynchronous updating. Moreover, we show that this model can realize densely collective motion with high polarity. Furthermore, we focus on the behavior of a pair of individuals, and find that the turning response is drastically changed depending on the distance between two individuals rather than the relative heading, and is consistent with the empirical observations. Therefore, the present results suggest that our approach provides an alternative model for collective behavior. PMID:28406173

  3. Exploring the onset of collective motion in self-organised trails of social organisms

    NASA Astrophysics Data System (ADS)

    Brigatti, E.; Hernández, A.

    2018-04-01

    We investigate the emergence of self-organised trails between two specific target areas in collective motion of social organisms by means of an agent-based model. We present numerical evidences that an increase in the efficiency of navigation, in dependence of the colony size, exists. Moreover, the shift, from the diffusive to the directed motion can be quantitatively characterised, identifying and measuring a well defined crossover point. This point corresponds to the minimal number of individuals necessary for the onset of collective cooperation. Finally, by means of a finite-size scaling analysis, we describe its scaling behaviour as a function of the environment size. This last result can be of particular interest for interpreting empirical observations or for the design of artificial swarms.

  4. The Prediction of the Gas Utilization Ratio Based on TS Fuzzy Neural Network and Particle Swarm Optimization

    PubMed Central

    Jiang, Haihe; Yin, Yixin; Xiao, Wendong; Zhao, Baoyong

    2018-01-01

    Gas utilization ratio (GUR) is an important indicator that is used to evaluate the energy consumption of blast furnaces (BFs). Currently, the existing methods cannot predict the GUR accurately. In this paper, we present a novel data-driven model for predicting the GUR. The proposed approach utilized both the TS fuzzy neural network (TS-FNN) and the particle swarm algorithm (PSO) to predict the GUR. The particle swarm algorithm (PSO) is applied to optimize the parameters of the TS-FNN in order to decrease the error caused by the inaccurate initial parameter. This paper also applied the box graph (Box-plot) method to eliminate the abnormal value of the raw data during the data preprocessing. This method can deal with the data which does not obey the normal distribution which is caused by the complex industrial environments. The prediction results demonstrate that the optimization model based on PSO and the TS-FNN approach achieves higher prediction accuracy compared with the TS-FNN model and SVM model and the proposed approach can accurately predict the GUR of the blast furnace, providing an effective way for the on-line blast furnace distribution control. PMID:29461469

  5. The Prediction of the Gas Utilization Ratio based on TS Fuzzy Neural Network and Particle Swarm Optimization.

    PubMed

    Zhang, Sen; Jiang, Haihe; Yin, Yixin; Xiao, Wendong; Zhao, Baoyong

    2018-02-20

    Gas utilization ratio (GUR) is an important indicator that is used to evaluate the energy consumption of blast furnaces (BFs). Currently, the existing methods cannot predict the GUR accurately. In this paper, we present a novel data-driven model for predicting the GUR. The proposed approach utilized both the TS fuzzy neural network (TS-FNN) and the particle swarm algorithm (PSO) to predict the GUR. The particle swarm algorithm (PSO) is applied to optimize the parameters of the TS-FNN in order to decrease the error caused by the inaccurate initial parameter. This paper also applied the box graph (Box-plot) method to eliminate the abnormal value of the raw data during the data preprocessing. This method can deal with the data which does not obey the normal distribution which is caused by the complex industrial environments. The prediction results demonstrate that the optimization model based on PSO and the TS-FNN approach achieves higher prediction accuracy compared with the TS-FNN model and SVM model and the proposed approach can accurately predict the GUR of the blast furnace, providing an effective way for the on-line blast furnace distribution control.

  6. Generating self-organizing collective behavior using separation dynamics from experimental data

    NASA Astrophysics Data System (ADS)

    Dieck Kattas, Graciano; Xu, Xiao-Ke; Small, Michael

    2012-09-01

    Mathematical models for systems of interacting agents using simple local rules have been proposed and shown to exhibit emergent swarming behavior. Most of these models are constructed by intuition or manual observations of real phenomena, and later tuned or verified to simulate desired dynamics. In contrast to this approach, we propose using a model that attempts to follow an averaged rule of the essential distance-dependent collective behavior of real pigeon flocks, which was abstracted from experimental data. By using a simple model to follow the behavioral tendencies of real data, we show that our model can exhibit a wide range of emergent self-organizing dynamics such as flocking, pattern formation, and counter-rotating vortices.

  7. Generating self-organizing collective behavior using separation dynamics from experimental data.

    PubMed

    Dieck Kattas, Graciano; Xu, Xiao-Ke; Small, Michael

    2012-09-01

    Mathematical models for systems of interacting agents using simple local rules have been proposed and shown to exhibit emergent swarming behavior. Most of these models are constructed by intuition or manual observations of real phenomena, and later tuned or verified to simulate desired dynamics. In contrast to this approach, we propose using a model that attempts to follow an averaged rule of the essential distance-dependent collective behavior of real pigeon flocks, which was abstracted from experimental data. By using a simple model to follow the behavioral tendencies of real data, we show that our model can exhibit a wide range of emergent self-organizing dynamics such as flocking, pattern formation, and counter-rotating vortices.

  8. Short-term forecasting of aftershock sequences, microseismicity and swarms inside the Corinth Gulf continental rift

    NASA Astrophysics Data System (ADS)

    Segou, Margarita

    2014-05-01

    Corinth Gulf (Central Greece) is the fastest continental rift in the world with extension rates 11-15 mm/yr with diverse seismic deformation including earthquakes with M greater than 6.0, several periods of increased microseismic activity, usually lasting few months and possibly related with fluid diffusion, and swarm episodes lasting few days. In this study I perform a retrospective forecast experiment between 1995-2012, focusing on the comparison between physics-based and statistical models for short term time classes. Even though Corinth gulf has been studied extensively in the past there is still today a debate whether earthquake activity is related with the existence of either a shallow dipping structure or steeply dipping normal faults. In the light of the above statement, two CRS realization are based on resolving Coulomb stress changes on specified receiver faults, expressing the aforementioned structural models, whereas the third CRS model uses optimally-oriented for failure planes. The CRS implementation accounts for stress changes following all major ruptures with M greater than 4.5 within the testing phase. I also estimate fault constitutive parameters from modeling the response to major earthquakes at the vicinity of the gulf (Aσ=0.2, stressing rate app. 0.02 bar/yr). The generic ETAS parameters are taken as the maximum likelihood estimates derived from the stochastic declustering of the modern seismicity catalog (1995-2012) with minimum triggering magnitude M2.5. I test whether the generic ETAS can efficiently describe the aftershock spatio-temporal clustering but also the evolution of swarm episodes and microseismicity. For the reason above, I implement likelihood tests to evaluate the forecasts for their spatial consistency and for the total amount of predicted versus observed events with M greater than 3.0 in 10-day time windows during three distinct evaluation phases; the first evaluation phase focuses on the Aigio 1995 aftershock sequence (15/06/1995, M6.4), the second covers the period between September 2006-May 2007, characterized for its intense microseismicity, and the third is related with the May 2013 swarm. The conclusions support that (1) geology based CRS models are preferred over optimally oriented planes (2) CRS models are consistent forecasters (60-70%) of transient seismicity, having in most cases comparable performance with ETAS models (3) microseismicity and swarms are not triggered by static stress changes of preceding local events with magnitude M greater than 4.5 and (4) the generic ETAS model can efficiently describe the recent swarm episode. The findings of this study have a number of important implications for future short-term forecasting and time-dependent hazard within Corinth Gulf.

  9. Parameter Selection and Performance Comparison of Particle Swarm Optimization in Sensor Networks Localization.

    PubMed

    Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong

    2017-03-01

    Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors' memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm.

  10. Parameter Selection and Performance Comparison of Particle Swarm Optimization in Sensor Networks Localization

    PubMed Central

    Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong

    2017-01-01

    Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors’ memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm. PMID:28257060

  11. Simple stochastic order-book model of swarm behavior in continuous double auction

    NASA Astrophysics Data System (ADS)

    Ichiki, Shingo; Nishinari, Katsuhiro

    2015-02-01

    In this study, we present a simple stochastic order-book model for investors' swarm behaviors seen in the continuous double auction mechanism, which is employed by major global exchanges. Our study shows a characteristic called 'fat tail' seen in the data obtained from our model that incorporates the investors' swarm behaviors. Our model captures two swarm behaviors: one is investors' behavior to follow a trend in the historical price movement, and another is investors' behavior to send orders that contradict a trend in the historical price movement. In order to capture the features of influence by the swarm behaviors, from price data derived from our simulations using these models, we analyzed the price movement range, that is, how much the price is moved when it is continuously moved in a single direction. Depending on the type of swarm behavior, we saw a difference in the cumulative frequency distribution of this price movement range. In particular, for the model of investors who followed a trend in the historical price movement, we saw the power law in the tail of the cumulative frequency distribution of this price movement range. In addition, we analyzed the shape of the tail of the cumulative frequency distribution. The result demonstrated that one of the reasons the trend following of price occurs is that orders temporarily swarm on the order book in accordance with past price trends.

  12. Swarming UAS II

    DTIC Science & Technology

    2010-05-05

    employed biomimicry to model a swarm of UAS as a colony of ants, where each UAS dynamically updates a global memory map, allowing pheromone-like...matter of design, DSE-R-0808 employed biomimicry to model a swarm of UAS as a colony of ants, where each UAS dynamically updates a global memory map

  13. Urban Growth Modeling Using Cellular Automata with Multi-Temporal Remote Sensing Images Calibrated by the Artificial Bee Colony Optimization Algorithm.

    PubMed

    Naghibi, Fereydoun; Delavar, Mahmoud Reza; Pijanowski, Bryan

    2016-12-14

    Cellular Automata (CA) is one of the most common techniques used to simulate the urbanization process. CA-based urban models use transition rules to deliver spatial patterns of urban growth and urban dynamics over time. Determining the optimum transition rules of the CA is a critical step because of the heterogeneity and nonlinearities existing among urban growth driving forces. Recently, new CA models integrated with optimization methods based on swarm intelligence algorithms were proposed to overcome this drawback. The Artificial Bee Colony (ABC) algorithm is an advanced meta-heuristic swarm intelligence-based algorithm. Here, we propose a novel CA-based urban change model that uses the ABC algorithm to extract optimum transition rules. We applied the proposed ABC-CA model to simulate future urban growth in Urmia (Iran) with multi-temporal Landsat images from 1997, 2006 and 2015. Validation of the simulation results was made through statistical methods such as overall accuracy, the figure of merit and total operating characteristics (TOC). Additionally, we calibrated the CA model by ant colony optimization (ACO) to assess the performance of our proposed model versus similar swarm intelligence algorithm methods. We showed that the overall accuracy and the figure of merit of the ABC-CA model are 90.1% and 51.7%, which are 2.9% and 8.8% higher than those of the ACO-CA model, respectively. Moreover, the allocation disagreement of the simulation results for the ABC-CA model is 9.9%, which is 2.9% less than that of the ACO-CA model. Finally, the ABC-CA model also outperforms the ACO-CA model with fewer quantity and allocation errors and slightly more hits.

  14. Urban Growth Modeling Using Cellular Automata with Multi-Temporal Remote Sensing Images Calibrated by the Artificial Bee Colony Optimization Algorithm

    PubMed Central

    Naghibi, Fereydoun; Delavar, Mahmoud Reza; Pijanowski, Bryan

    2016-01-01

    Cellular Automata (CA) is one of the most common techniques used to simulate the urbanization process. CA-based urban models use transition rules to deliver spatial patterns of urban growth and urban dynamics over time. Determining the optimum transition rules of the CA is a critical step because of the heterogeneity and nonlinearities existing among urban growth driving forces. Recently, new CA models integrated with optimization methods based on swarm intelligence algorithms were proposed to overcome this drawback. The Artificial Bee Colony (ABC) algorithm is an advanced meta-heuristic swarm intelligence-based algorithm. Here, we propose a novel CA-based urban change model that uses the ABC algorithm to extract optimum transition rules. We applied the proposed ABC-CA model to simulate future urban growth in Urmia (Iran) with multi-temporal Landsat images from 1997, 2006 and 2015. Validation of the simulation results was made through statistical methods such as overall accuracy, the figure of merit and total operating characteristics (TOC). Additionally, we calibrated the CA model by ant colony optimization (ACO) to assess the performance of our proposed model versus similar swarm intelligence algorithm methods. We showed that the overall accuracy and the figure of merit of the ABC-CA model are 90.1% and 51.7%, which are 2.9% and 8.8% higher than those of the ACO-CA model, respectively. Moreover, the allocation disagreement of the simulation results for the ABC-CA model is 9.9%, which is 2.9% less than that of the ACO-CA model. Finally, the ABC-CA model also outperforms the ACO-CA model with fewer quantity and allocation errors and slightly more hits. PMID:27983633

  15. Operation management of daily economic dispatch using novel hybrid particle swarm optimization and gravitational search algorithm with hybrid mutation strategy

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Song; Ji, Zhicheng

    2017-07-01

    This paper presents a hybrid particle swarm optimization and gravitational search algorithm based on hybrid mutation strategy (HGSAPSO-M) to optimize economic dispatch (ED) including distributed generations (DGs) considering market-based energy pricing. A daily ED model was formulated and a hybrid mutation strategy was adopted in HGSAPSO-M. The hybrid mutation strategy includes two mutation operators, chaotic mutation, Gaussian mutation. The proposed algorithm was tested on IEEE-33 bus and results show that the approach is effective for this problem.

  16. Particle swarm optimization algorithm based parameters estimation and control of epileptiform spikes in a neural mass model

    NASA Astrophysics Data System (ADS)

    Shan, Bonan; Wang, Jiang; Deng, Bin; Wei, Xile; Yu, Haitao; Zhang, Zhen; Li, Huiyan

    2016-07-01

    This paper proposes an epilepsy detection and closed-loop control strategy based on Particle Swarm Optimization (PSO) algorithm. The proposed strategy can effectively suppress the epileptic spikes in neural mass models, where the epileptiform spikes are recognized as the biomarkers of transitions from the normal (interictal) activity to the seizure (ictal) activity. In addition, the PSO algorithm shows capabilities of accurate estimation for the time evolution of key model parameters and practical detection for all the epileptic spikes. The estimation effects of unmeasurable parameters are improved significantly compared with unscented Kalman filter. When the estimated excitatory-inhibitory ratio exceeds a threshold value, the epileptiform spikes can be inhibited immediately by adopting the proportion-integration controller. Besides, numerical simulations are carried out to illustrate the effectiveness of the proposed method as well as the potential value for the model-based early seizure detection and closed-loop control treatment design.

  17. Application of free energy minimization to the design of adaptive multi-agent teams

    NASA Astrophysics Data System (ADS)

    Levchuk, Georgiy; Pattipati, Krishna; Fouse, Adam; Serfaty, Daniel

    2017-05-01

    Many novel DoD missions, from disaster relief to cyber reconnaissance, require teams of humans and machines with diverse capabilities. Current solutions do not account for heterogeneity of agent capabilities, uncertainty of team knowledge, and dynamics of and dependencies between tasks and agent roles, resulting in brittle teams. Most importantly, the state-of-the-art team design solutions are either centralized, imposing role and relation assignment onto agents, or completely distributed, suitable for only homogeneous organizations such as swarms. Centralized design models can't provide insights for team's self-organization, i.e. adapting team structure over time in distributed collaborative manner by team members with diverse expertise and responsibilities. In this paper we present an information-theoretic formalization of team composition and structure adaptation using a minimization of variational free energy. The structure adaptation is obtained in an iterative distributed and collaborative manner without the need for centralized control. We show that our model is lightweight, predictive, and produces team structures that theoretically approximate an optimal policy for team adaptation. Our model also provides a unique coupling between the structure and action policy, and captures three essential processes of learning, perception, and control.

  18. A Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations

    NASA Technical Reports Server (NTRS)

    Venter, Gerhard; Sobieszczanski-Sobieski, Jaroslaw

    2005-01-01

    A parallel Particle Swarm Optimization (PSO) algorithm is presented. Particle swarm optimization is a fairly recent addition to the family of non-gradient based, probabilistic search algorithms that is based on a simplified social model and is closely tied to swarming theory. Although PSO algorithms present several attractive properties to the designer, they are plagued by high computational cost as measured by elapsed time. One approach to reduce the elapsed time is to make use of coarse-grained parallelization to evaluate the design points. Previous parallel PSO algorithms were mostly implemented in a synchronous manner, where all design points within a design iteration are evaluated before the next iteration is started. This approach leads to poor parallel speedup in cases where a heterogeneous parallel environment is used and/or where the analysis time depends on the design point being analyzed. This paper introduces an asynchronous parallel PSO algorithm that greatly improves the parallel e ciency. The asynchronous algorithm is benchmarked on a cluster assembled of Apple Macintosh G5 desktop computers, using the multi-disciplinary optimization of a typical transport aircraft wing as an example.

  19. Swarm intelligence application for optimization of CO2 diffusivity in polystyrene-b-polybutadiene-b-polystyrene (SEBS) foaming

    NASA Astrophysics Data System (ADS)

    Sharudin, Rahida Wati; Ajib, Norshawalina Muhamad; Yusoff, Marina; Ahmad, Mohd Aizad

    2017-12-01

    Thermoplastic elastomer SEBS foams were prepared by using carbon dioxide (CO2) as a blowing agent and the process is classified as physical foaming method. During the foaming process, the diffusivity of CO2 need to be controlled since it is one of the parameter that will affect the final cellular structure of the foam. Conventionally, the rate of CO2 diffusion was measured experimentally by using a highly sensitive device called magnetic suspension balance (MSB). Besides, this expensive MSB machine is not easily available and measurement of CO2 diffusivity is quite complicated as well as time consuming process. Thus, to overcome these limitations, a computational method was introduced. Particle Swarm Optimization (PSO) is a part of Swarm Intelligence system which acts as a beneficial optimization tool where it can solve most of nonlinear complications. PSO model was developed for predicting the optimum foaming temperature and CO2 diffusion rate in SEBS foam. Results obtained by PSO model are compared with experimental results for CO2 diffusivity at various foaming temperature. It is shown that predicted optimum foaming temperature at 154.6 °C was not represented the best temperature for foaming as the cellular structure of SEBS foamed at corresponding temperature consisted pores with unstable dimension and the structure was not visibly perceived due to foam shrinkage. The predictions were not agreed well with experimental result when single parameter of CO2 diffusivity is considered in PSO model because it is not the only factor that affected the controllability of foam shrinkage. The modification on the PSO model by considering CO2 solubility and rigidity of SEBS as additional parameters needs to be done for obtaining the optimum temperature for SEBS foaming. Hence stable SEBS foam could be prepared.

  20. Magma intrusion near Volcan Tancitaro: Evidence from seismic analysis

    DOE PAGES

    Pinzon, Juan I.; Nunez-Cornu, Francisco J.; Rowe, Charlotte Anne

    2016-11-17

    Between May and June 2006, an earthquake swarm occurred near Volcan Tancítaro in Mexico, which was recorded by a temporary seismic deployment known as the MARS network. We located ~1000 events from this seismic swarm. Previous earthquake swarms in the area were reported in the years 1997, 1999 and 2000. We relocate and analyze the evolution and properties of the 2006 earthquake swarm, employing a waveform cross-correlation-based phase repicking technique. Hypocenters from 911 events were located and divided into eighteen families having a correlation coefficient at or above 0.75. 90% of the earthquakes provide at least sixteen phase picks. Wemore » used the single-event location code Hypo71 and the P-wave velocity model used by the Jalisco Seismic and Accelerometer Network to improve hypocenters based on the correlation-adjusted phase arrival times. We relocated 121 earthquakes, which show clearly two clusters, between 9–10 km and 3–4 km depth respectively. The average location error estimates are <1 km epicentrally, and <2 km in depth, for the largest event in each cluster. Depths of seismicity migrate upward from 16 to 3.5 km and exhibit a NE-SW trend. The swarm first migrated toward Paricutin Volcano but by mid-June began propagating back toward Volcán Tancítaro. In addition to its persistence, noteworthy aspects of this swarm include a quasi-exponential increase in the rate of activity within the first 15 days; a b-value of 1.47; a jug-shaped hypocenter distribution; a shoaling rate of ~5 km/month within the deeper cluster, and a composite focal mechanism solution indicating largely reverse faulting. As a result, these features of the swarm suggest a magmatic source elevating the crustal strain beneath Volcan Tancítaro.« less

  1. Magma intrusion near Volcan Tancitaro: Evidence from seismic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinzon, Juan I.; Nunez-Cornu, Francisco J.; Rowe, Charlotte Anne

    Between May and June 2006, an earthquake swarm occurred near Volcan Tancítaro in Mexico, which was recorded by a temporary seismic deployment known as the MARS network. We located ~1000 events from this seismic swarm. Previous earthquake swarms in the area were reported in the years 1997, 1999 and 2000. We relocate and analyze the evolution and properties of the 2006 earthquake swarm, employing a waveform cross-correlation-based phase repicking technique. Hypocenters from 911 events were located and divided into eighteen families having a correlation coefficient at or above 0.75. 90% of the earthquakes provide at least sixteen phase picks. Wemore » used the single-event location code Hypo71 and the P-wave velocity model used by the Jalisco Seismic and Accelerometer Network to improve hypocenters based on the correlation-adjusted phase arrival times. We relocated 121 earthquakes, which show clearly two clusters, between 9–10 km and 3–4 km depth respectively. The average location error estimates are <1 km epicentrally, and <2 km in depth, for the largest event in each cluster. Depths of seismicity migrate upward from 16 to 3.5 km and exhibit a NE-SW trend. The swarm first migrated toward Paricutin Volcano but by mid-June began propagating back toward Volcán Tancítaro. In addition to its persistence, noteworthy aspects of this swarm include a quasi-exponential increase in the rate of activity within the first 15 days; a b-value of 1.47; a jug-shaped hypocenter distribution; a shoaling rate of ~5 km/month within the deeper cluster, and a composite focal mechanism solution indicating largely reverse faulting. As a result, these features of the swarm suggest a magmatic source elevating the crustal strain beneath Volcan Tancítaro.« less

  2. Magma intrusion near Volcan Tancítaro: Evidence from seismic analysis

    NASA Astrophysics Data System (ADS)

    Pinzón, Juan I.; Núñez-Cornú, Francisco J.; Rowe, Charlotte A.

    2017-01-01

    Between May and June 2006, an earthquake swarm occurred near Volcan Tancítaro in Mexico, which was recorded by a temporary seismic deployment known as the MARS network. We located ∼1000 events from this seismic swarm. Previous earthquake swarms in the area were reported in the years 1997, 1999 and 2000. We relocate and analyze the evolution and properties of the 2006 earthquake swarm, employing a waveform cross-correlation-based phase repicking technique. Hypocenters from 911 events were located and divided into eighteen families having a correlation coefficient at or above 0.75. 90% of the earthquakes provide at least sixteen phase picks. We used the single-event location code Hypo71 and the P-wave velocity model used by the Jalisco Seismic and Accelerometer Network to improve hypocenters based on the correlation-adjusted phase arrival times. We relocated 121 earthquakes, which show clearly two clusters, between 9-10 km and 3-4 km depth respectively. The average location error estimates are <1 km epicentrally, and <2 km in depth, for the largest event in each cluster. Depths of seismicity migrate upward from 16 to 3.5 km and exhibit a NE-SW trend. The swarm first migrated toward Paricutin Volcano but by mid-June began propagating back toward Volcán Tancítaro. In addition to its persistence, noteworthy aspects of this swarm include a quasi-exponential increase in the rate of activity within the first 15 days; a b-value of 1.47; a jug-shaped hypocenter distribution; a shoaling rate of ∼5 km/month within the deeper cluster, and a composite focal mechanism solution indicating largely reverse faulting. These features of the swarm suggest a magmatic source elevating the crustal strain beneath Volcan Tancítaro.

  3. An initial ULF wave index derived from 2 years of Swarm observations

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Constantinos; Balasis, Georgios; Daglis, Ioannis A.; Giannakis, Omiros

    2018-03-01

    The ongoing Swarm satellite mission provides an opportunity for better knowledge of the near-Earth electromagnetic environment. Herein, we use a new methodological approach for the detection and classification of ultra low-frequency (ULF) wave events observed by Swarm based on an existing time-frequency analysis (TFA) tool and utilizing a state-of-the-art high-resolution magnetic field model and Swarm Level 2 products (i.e., field-aligned currents - FACs - and the Ionospheric Bubble Index - IBI). We present maps of the dependence of ULF wave power with magnetic latitude and magnetic local time (MLT) as well as geographic latitude and longitude from the three satellites at their different locations in low-Earth orbit (LEO) for a period spanning 2 years after the constellation's final configuration. We show that the inclusion of the Swarm single-spacecraft FAC product in our analysis eliminates all the wave activity at high altitudes, which is physically unrealistic. Moreover, we derive a Swarm orbit-by-orbit Pc3 wave (20-100 MHz) index for the topside ionosphere and compare its values with the corresponding variations of solar wind variables and geomagnetic activity indices. This is the first attempt, to our knowledge, to derive a ULF wave index from LEO satellite data. The technique can be potentially used to define a new Level 2 product from the mission, the Swarm ULF wave index, which would be suitable for space weather applications.

  4. Mapping Ad Hoc Communications Network of a Large Number Fixed-Wing UAV Swarm

    DTIC Science & Technology

    2017-03-01

    partitioned sub-swarms. The work covered in this thesis is to build a model of the NPS swarm’s communication network in ns-3 simulation software and use...partitioned sub- swarms. The work covered in this thesis is to build a model of the NPS swarm’s communication network in ns-3 simulation software and...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS MAPPING AD HOC COMMUNICATIONS NETWORK OF A LARGE NUMBER FIXED-WING UAV SWARM by Alexis

  5. Collection, quality control and delivery of ground-based magnetic data during ESA's Swarm mission

    NASA Astrophysics Data System (ADS)

    Macmillan, Susan; Humphries, Thomas; Flower, Simon; Swan, Anthony

    2016-04-01

    Ground-based magnetic data are used in a variety of ways when analysing satellite data. Selecting satellite data often involves the use of magnetic disturbance indices derived from ground-based stations and inverting satellite magnetic data for models of fields from various sources often requires ground-based data. Ground-based data can also be valuable independent data for validation purposes. We summarise data collection and quality control procedures in place at the British Geological Survey for global ground-based observatory and repeat station data. Whilst ongoing participation in the ICSU World Data System and INTERMAGNET facilitates this work, additional procedures have been specially developed for the Swarm mission. We describe these in detail.

  6. Emergent Runaway into an Avoidance Area in a Swarm of Soldier Crabs

    PubMed Central

    Murakami, Hisashi; Tomaru, Takenori; Nishiyama, Yuta; Moriyama, Toru; Niizato, Takayuki; Gunji, Yukio-Pegio

    2014-01-01

    Emergent behavior that arises from a mass effect is one of the most striking aspects of collective animal groups. Investigating such behavior would be important in order to understand how individuals interact with their neighbors. Although there are many experiments that have used collective animals to investigate social learning or conflict between individuals and society such as that between a fish and a school, reports on mass effects are rare. In this study, we show that a swarm of soldier crabs could spontaneously enter a water pool, which are usually avoided, by forming densely populated part of a swarm at the edge of the water pool. Moreover, we show that the observed behavior can be explained by the model of collective behavior based on inherent noise that is individuals’ different velocities in a directed group. Our results suggest that inherent noise, which is widely seen in collective animals, can contribute to formation and/or maintenance of a swarm and that the dense swarm can enter the pool by means of enhanced inherent noise. PMID:24839970

  7. The Swarm Initial Field Model for the 2014 Geomagnetic Field

    NASA Technical Reports Server (NTRS)

    Olsen, Nils; Hulot, Gauthier; Lesur, Vincent; Finlay, Christopher C.; Beggan, Ciaran; Chulliat, Arnaud; Sabaka, Terence J.; Floberghagen, Rune; Friis-Christensen, Eigil; Haagmans, Roger

    2015-01-01

    Data from the first year of ESA's Swarm constellation mission are used to derive the Swarm Initial Field Model (SIFM), a new model of the Earth's magnetic field and its time variation. In addition to the conventional magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect by including east-west magnetic intensity gradient information from the lower satellite pair. Along-track differences in magnetic intensity provide further information concerning the north-south gradient. The SIFM static field shows excellent agreement (up to at least degree 60) with recent field models derived from CHAMP data, providing an initial validation of the quality of the Swarm magnetic measurements. Use of gradient data improves the determination of both the static field and its secular variation, with the mean misfit for east-west intensity differences between the lower satellite pair being only 0.12 nT.

  8. 3D modelling of the Tejeda Caldera cone-sheet swarm, Gran Canaria, Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    Samrock, Lisa K.; Jensen, Max J.; Burchardt, Steffi; Troll, Valentin R.; Mattsson, Tobias; Geiger, Harri

    2015-04-01

    Cone-sheet swarms provide vital information on the interior of volcanic systems and their plumbing systems (e.g. Burchardt et al. 2013). This information is important for the interpretation of processes and dynamics of modern and ancient volcanic systems, and is therefore vital for assessing volcanic hazards and to reduce risks to modern society. To more realistically model cone-sheet emplacement an approximation of their 3D shape needs to be known. Most cone-sheet swarms are not sufficiently exposed laterally and/or vertically, however, which makes it difficult to determine the geometry of a cone-sheet swarm at depth, especially since different shapes (e.g. convex, straight or concave continuations) would produce a similar trace at the surface (cf. Burchardt et al. 2011, and references therein). The Miocene Tejeda Caldera on Gran Canaria, Canary Islands, Spain, hosts a cone-sheet swarm that was emplaced into volcaniclastic caldera infill at about 12.3-7.3 Ma (Schirnick et al. 1999). The dyke swarm displays over 1000 m of vertical exposure and more than 15 km of horizontal exposure, making it a superb locality to study the evolution of cone-sheet swarms in detail and to determine its actual geometry in 3D space. We have used structural data of Schirnick (1996) to model the geometry of the Tejeda cone-sheet in 3D, using the software Move® by Midland Valley Ltd. Based on previous 2D projections, Schirnick et al. (1999) suggested that the cone-sheet swarm is formed by a stack of parallel intrusive sheets which have a truncated dome geometry and form a concentric structure around a central axis, assuming straight sheet-intrusions. Our 3D model gives insight into the symmetries of the sheets and the overall geometry of the cone-sheet swarm below the surface. This visualization now allows to grasp the complexity of the Tejeda cone-sheet swarm at depth, particularly in relation to different possible cone-sheet geometries suggested in the literature (cf. Burchardt et al. 2011, and references therein), and we discuss the implications of this architecture for the feeding system of the Tejeda volcano and the associated temporal variations of cone-sheet emplacement. References: Burchardt, S., Tanner, D.C., Troll, V.R., Krumbholz, M., Gustafsson, L.E. (2011) Three-dimensional geometry of concentric intrusive sheet swarms in the Geitafell and the Dyrfjöll volcanoes, eastern Iceland. Geochemistry, Geophysics, Geosystems 12(7): Q0AB09. Burchardt, S., Troll, V.R., Mathieu, L., Emeleus, H.C., Donaldson, C.H. (2013) Ardnamruchan 3D cone-sheet architecture explained by a single elongate magma chamber. Scientific Reports 3:2891. Schirnick, C. (1996) Formation of an intracaldera cone sheet dike swarm (Tejeda Caldera, Gran Canaria) (Dissertation). Christian-Albrechts-Universität, Kiel, Germany. Schirnick, C., van den Bogaard, P., Schmincke, H.-U. (1999) Cone-sheet formation and intrusive growth of an oceanic island - The Miocene Tejeda complex on Gran Canaria (Canary Islands). Geology, 27: 207-210.

  9. Flagellar flows around bacterial swarms

    NASA Astrophysics Data System (ADS)

    Dauparas, Justas; Lauga, Eric

    2016-08-01

    Flagellated bacteria on nutrient-rich substrates can differentiate into a swarming state and move in dense swarms across surfaces. A recent experiment measured the flow in the fluid around an Escherichia coli swarm [Wu, Hosu, and Berg, Proc. Natl. Acad. Sci. USA 108, 4147 (2011)], 10.1073/pnas.1016693108. A systematic chiral flow was observed in the clockwise direction (when viewed from above) ahead of the swarm with flow speeds of about 10 μ m /s , about 3 times greater than the radial velocity at the edge of the swarm. The working hypothesis is that this flow is due to the action of cells stalled at the edge of a colony that extend their flagellar filaments outward, moving fluid over the virgin agar. In this work we quantitatively test this hypothesis. We first build an analytical model of the flow induced by a single flagellum in a thin film and then use the model, and its extension to multiple flagella, to compare with experimental measurements. The results we obtain are in agreement with the flagellar hypothesis. The model provides further quantitative insight into the flagella orientations and their spatial distributions as well as the tangential speed profile. In particular, the model suggests that flagella are on average pointing radially out of the swarm and are not wrapped tangentially.

  10. Seismicity-based estimation of the driving fluid pressure in the case of swarm activity in Western Bohemia

    NASA Astrophysics Data System (ADS)

    Hainzl, S.; Fischer, T.; Dahm, T.

    2012-10-01

    Two recent major swarms in Western Bohemia occurred in the years 2000 and 2008 within almost the same portion of a fault close to Novy Kostel. Previous analysis of the year 2000 earthquake swarm revealed that fluid intrusion seemed to initiate the activity whereas stress redistribution by the individual swarm earthquakes played a major role in the further swarm evolution. Here we analyse the new swarm, which occurred in the year 2008, with regard to its correlation to the previous swarm as well its spatiotemporal migration patterns. We find that (i) the main part of the year 2008 activity ruptured fault patches adjacent to the main activity of the swarm 2000, but that also (ii) a significant overlap exists where earthquakes occurred in patches in which stress had been already released by precursory events; (iii) the activity shows a clear migration which can be described by a 1-D (in up-dip direction) diffusion process; (iv) the migration pattern can be equally well explained by a hydrofracture growth, which additionally explains the faster migration in up-dip compared to the down-dip direction as well as the maximum up-dip extension of the activity. We use these observations to estimate the underlying fluid pressure change in two different ways: First, we calculate the stress changes induced by precursory events at the location of each swarm earthquake assuming that observed stress deficits had to be compensated by pore pressure increases; and secondly, we estimate the fluid overpressure by fitting a hydrofracture model to the asymmetric seismicity patterns. Both independent methods indicate that the fluid pressure increase was initially up to 30 MPa.

  11. A particle swarm model for estimating reliability and scheduling system maintenance

    NASA Astrophysics Data System (ADS)

    Puzis, Rami; Shirtz, Dov; Elovici, Yuval

    2016-05-01

    Modifying data and information system components may introduce new errors and deteriorate the reliability of the system. Reliability can be efficiently regained with reliability centred maintenance, which requires reliability estimation for maintenance scheduling. A variant of the particle swarm model is used to estimate reliability of systems implemented according to the model view controller paradigm. Simulations based on data collected from an online system of a large financial institute are used to compare three component-level maintenance policies. Results show that appropriately scheduled component-level maintenance greatly reduces the cost of upholding an acceptable level of reliability by reducing the need in system-wide maintenance.

  12. Han's model parameters for microalgae grown under intermittent illumination: Determined using particle swarm optimization.

    PubMed

    Pozzobon, Victor; Perre, Patrick

    2018-01-21

    This work provides a model and the associated set of parameters allowing for microalgae population growth computation under intermittent lightning. Han's model is coupled with a simple microalgae growth model to yield a relationship between illumination and population growth. The model parameters were obtained by fitting a dataset available in literature using Particle Swarm Optimization method. In their work, authors grew microalgae in excess of nutrients under flashing conditions. Light/dark cycles used for these experimentations are quite close to those found in photobioreactor, i.e. ranging from several seconds to one minute. In this work, in addition to producing the set of parameters, Particle Swarm Optimization robustness was assessed. To do so, two different swarm initialization techniques were used, i.e. uniform and random distribution throughout the search-space. Both yielded the same results. In addition, swarm distribution analysis reveals that the swarm converges to a unique minimum. Thus, the produced set of parameters can be trustfully used to link light intensity to population growth rate. Furthermore, the set is capable to describe photodamages effects on population growth. Hence, accounting for light overexposure effect on algal growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A cognitive information processing framework for distributed sensor networks

    NASA Astrophysics Data System (ADS)

    Wang, Feiyi; Qi, Hairong

    2004-09-01

    In this paper, we present a cognitive agent framework (CAF) based on swarm intelligence and self-organization principles, and demonstrate it through collaborative processing for target classification in sensor networks. The framework involves integrated designs to provide both cognitive behavior at the organization level to conquer complexity and reactive behavior at the individual agent level to retain simplicity. The design tackles various problems in the current information processing systems, including overly complex systems, maintenance difficulties, increasing vulnerability to attack, lack of capability to tolerate faults, and inability to identify and cope with low-frequency patterns. An important and distinguishing point of the presented work from classical AI research is that the acquired intelligence does not pertain to distinct individuals but to groups. It also deviates from multi-agent systems (MAS) due to sheer quantity of extremely simple agents we are able to accommodate, to the degree that some loss of coordination messages and behavior of faulty/compromised agents will not affect the collective decision made by the group.

  14. Analysis of image thresholding segmentation algorithms based on swarm intelligence

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Lu, Kai; Gao, Yinghui; Yang, Bo

    2013-03-01

    Swarm intelligence-based image thresholding segmentation algorithms are playing an important role in the research field of image segmentation. In this paper, we briefly introduce the theories of four existing image segmentation algorithms based on swarm intelligence including fish swarm algorithm, artificial bee colony, bacteria foraging algorithm and particle swarm optimization. Then some image benchmarks are tested in order to show the differences of the segmentation accuracy, time consumption, convergence and robustness for Salt & Pepper noise and Gaussian noise of these four algorithms. Through these comparisons, this paper gives qualitative analyses for the performance variance of the four algorithms. The conclusions in this paper would give a significant guide for the actual image segmentation.

  15. A Power Transformers Fault Diagnosis Model Based on Three DGA Ratios and PSO Optimization SVM

    NASA Astrophysics Data System (ADS)

    Ma, Hongzhe; Zhang, Wei; Wu, Rongrong; Yang, Chunyan

    2018-03-01

    In order to make up for the shortcomings of existing transformer fault diagnosis methods in dissolved gas-in-oil analysis (DGA) feature selection and parameter optimization, a transformer fault diagnosis model based on the three DGA ratios and particle swarm optimization (PSO) optimize support vector machine (SVM) is proposed. Using transforming support vector machine to the nonlinear and multi-classification SVM, establishing the particle swarm optimization to optimize the SVM multi classification model, and conducting transformer fault diagnosis combined with the cross validation principle. The fault diagnosis results show that the average accuracy of test method is better than the standard support vector machine and genetic algorithm support vector machine, and the proposed method can effectively improve the accuracy of transformer fault diagnosis is proved.

  16. The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm.

    PubMed

    Han, Gaining; Fu, Weiping; Wang, Wen

    2016-01-01

    In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability.

  17. The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm

    PubMed Central

    Han, Gaining; Fu, Weiping; Wang, Wen

    2016-01-01

    In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability. PMID:26880881

  18. Parameters Identification for Photovoltaic Module Based on an Improved Artificial Fish Swarm Algorithm

    PubMed Central

    Wang, Hong-Hua

    2014-01-01

    A precise mathematical model plays a pivotal role in the simulation, evaluation, and optimization of photovoltaic (PV) power systems. Different from the traditional linear model, the model of PV module has the features of nonlinearity and multiparameters. Since conventional methods are incapable of identifying the parameters of PV module, an excellent optimization algorithm is required. Artificial fish swarm algorithm (AFSA), originally inspired by the simulation of collective behavior of real fish swarms, is proposed to fast and accurately extract the parameters of PV module. In addition to the regular operation, a mutation operator (MO) is designed to enhance the searching performance of the algorithm. The feasibility of the proposed method is demonstrated by various parameters of PV module under different environmental conditions, and the testing results are compared with other studied methods in terms of final solutions and computational time. The simulation results show that the proposed method is capable of obtaining higher parameters identification precision. PMID:25243233

  19. Feature selection and classifier parameters estimation for EEG signals peak detection using particle swarm optimization.

    PubMed

    Adam, Asrul; Shapiai, Mohd Ibrahim; Tumari, Mohd Zaidi Mohd; Mohamad, Mohd Saberi; Mubin, Marizan

    2014-01-01

    Electroencephalogram (EEG) signal peak detection is widely used in clinical applications. The peak point can be detected using several approaches, including time, frequency, time-frequency, and nonlinear domains depending on various peak features from several models. However, there is no study that provides the importance of every peak feature in contributing to a good and generalized model. In this study, feature selection and classifier parameters estimation based on particle swarm optimization (PSO) are proposed as a framework for peak detection on EEG signals in time domain analysis. Two versions of PSO are used in the study: (1) standard PSO and (2) random asynchronous particle swarm optimization (RA-PSO). The proposed framework tries to find the best combination of all the available features that offers good peak detection and a high classification rate from the results in the conducted experiments. The evaluation results indicate that the accuracy of the peak detection can be improved up to 99.90% and 98.59% for training and testing, respectively, as compared to the framework without feature selection adaptation. Additionally, the proposed framework based on RA-PSO offers a better and reliable classification rate as compared to standard PSO as it produces low variance model.

  20. A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM.

    PubMed

    Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei; Song, Houbing

    2018-01-15

    Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model's performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM's parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models' performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors.

  1. InSAR observations of aseismic slip associated with an earthquake swarm in the Columbia River flood basalts

    USGS Publications Warehouse

    Wicks, Charles; Thelen, W.; Weaver, C.; Gomberg, J.; Rohay, A.; Bodin, P.

    2011-01-01

    In 2009 a swarm of small shallow earthquakes occurred within the basalt flows of the Columbia River Basalt Group (CRBG). The swarm occurred within a dense seismic network in the U.S. Department of Energys Hanford Site. Data from the seismic network along with interferometric synthetic aperture radar (InSAR) data from the European Space Agencys (ESA) ENVISAT satellite provide insight into the nature of the swarm. By modeling the InSAR deformation data we constructed a model that consists of a shallow thrust fault and a near horizontal fault. We suggest that the near horizontal lying fault is a bedding-plane fault located between basalt flows. The geodetic moment of the modeled fault system is about eight times the cumulative seismic moment of the swarm. Precise location estimates of the swarm earthquakes indicate that the area of highest slip on the thrust fault, ???70mm of slip less than ???0.5km depth, was not located within the swarm cluster. Most of the slip on the faults appears to have progressed aseismically and we suggest that interbed sediments play a central role in the slip process. Copyright 2011 by the American Geophysical Union.

  2. Swarms, swarming and entanglements of fungal hyphae and of plant roots

    PubMed Central

    Barlow, Peter W.; Fisahn, Joachim

    2013-01-01

    There has been recent interest in the possibility that plant roots can show oriented collective motion, or swarming behavior. We examine the evidence supportive of root swarming and we also present new observations on this topic. Seven criteria are proposed for the definition of a swarm, whose application can help identify putative swarming behavior in plants. Examples where these criteria are fulfilled, at many levels of organization, are presented in relation to plant roots and root systems, as well as to the root-like mycelial cords (rhizomorphs) of fungi. The ideas of both an “active” swarming, directed by a signal which imposes a common vector on swarm element aggregation, and a “passive” swarming, where aggregation results from external constraint, are introduced. Active swarming is a pattern of cooperative behavior peculiar to the sporophyte generation of vascular plants and is the antithesis of the competitive behavior shown by the gametophyte generation of such plants, where passive swarming may be found. Fungal mycelial cords could serve as a model example of swarming in a multi-cellular, non-animal system. PMID:24255743

  3. Chaotic particle swarm optimization with mutation for classification.

    PubMed

    Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza

    2015-01-01

    In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms.

  4. PSO Algorithm Particle Filters for Improving the Performance of Lane Detection and Tracking Systems in Difficult Roads

    PubMed Central

    Cheng, Wen-Chang

    2012-01-01

    In this paper we propose a robust lane detection and tracking method by combining particle filters with the particle swarm optimization method. This method mainly uses the particle filters to detect and track the local optimum of the lane model in the input image and then seeks the global optimal solution of the lane model by a particle swarm optimization method. The particle filter can effectively complete lane detection and tracking in complicated or variable lane environments. However, the result obtained is usually a local optimal system status rather than the global optimal system status. Thus, the particle swarm optimization method is used to further refine the global optimal system status in all system statuses. Since the particle swarm optimization method is a global optimization algorithm based on iterative computing, it can find the global optimal lane model by simulating the food finding way of fish school or insects under the mutual cooperation of all particles. In verification testing, the test environments included highways and ordinary roads as well as straight and curved lanes, uphill and downhill lanes, lane changes, etc. Our proposed method can complete the lane detection and tracking more accurately and effectively then existing options. PMID:23235453

  5. Rayleigh wave dispersion curve inversion by using particle swarm optimization and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Buyuk, Ersin; Zor, Ekrem; Karaman, Abdullah

    2017-04-01

    Inversion of surface wave dispersion curves with its highly nonlinear nature has some difficulties using traditional linear inverse methods due to the need and strong dependence to the initial model, possibility of trapping in local minima and evaluation of partial derivatives. There are some modern global optimization methods to overcome of these difficulties in surface wave analysis such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). GA is based on biologic evolution consisting reproduction, crossover and mutation operations, while PSO algorithm developed after GA is inspired from the social behaviour of birds or fish of swarms. Utility of these methods require plausible convergence rate, acceptable relative error and optimum computation cost that are important for modelling studies. Even though PSO and GA processes are similar in appearence, the cross-over operation in GA is not used in PSO and the mutation operation is a stochastic process for changing the genes within chromosomes in GA. Unlike GA, the particles in PSO algorithm changes their position with logical velocities according to particle's own experience and swarm's experience. In this study, we applied PSO algorithm to estimate S wave velocities and thicknesses of the layered earth model by using Rayleigh wave dispersion curve and also compared these results with GA and we emphasize on the advantage of using PSO algorithm for geophysical modelling studies considering its rapid convergence, low misfit error and computation cost.

  6. Particle Swarm Optimization with Double Learning Patterns.

    PubMed

    Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian

    2016-01-01

    Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants.

  7. A swarm-trained k-nearest prototypes adaptive classifier with automatic feature selection for interval data.

    PubMed

    Silva Filho, Telmo M; Souza, Renata M C R; Prudêncio, Ricardo B C

    2016-08-01

    Some complex data types are capable of modeling data variability and imprecision. These data types are studied in the symbolic data analysis field. One such data type is interval data, which represents ranges of values and is more versatile than classic point data for many domains. This paper proposes a new prototype-based classifier for interval data, trained by a swarm optimization method. Our work has two main contributions: a swarm method which is capable of performing both automatic selection of features and pruning of unused prototypes and a generalized weighted squared Euclidean distance for interval data. By discarding unnecessary features and prototypes, the proposed algorithm deals with typical limitations of prototype-based methods, such as the problem of prototype initialization. The proposed distance is useful for learning classes in interval datasets with different shapes, sizes and structures. When compared to other prototype-based methods, the proposed method achieves lower error rates in both synthetic and real interval datasets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Flows around bacterial swarms

    NASA Astrophysics Data System (ADS)

    Dauparas, Justas; Lauga, Eric

    2015-11-01

    Flagellated bacteria on nutrient-rich substrates can differentiate into a swarming state and move in dense swarms across surfaces. A recent experiment (HC Berg, Harvard University) measured the flow in the fluid around the swarm. A systematic chiral flow was observed in the clockwise direction (when viewed from above) ahead of a E.coli swarm with flow speeds of about 10 μm/s, about 3 times greater than the radial velocity at the edge of the swarm. The working hypothesis is that this flow is due to the flagella of cells stalled at the edge of a colony which extend their flagellar filaments outwards, moving fluid over the virgin agar. In this talk we quantitatively test his hypothesis. We first build an analytical model of the flow induced by a single flagellum in a thin film and then use the model, and its extension to multiple flagella, to compare with experimental measurements.

  9. On the Optimization of Aerospace Plane Ascent Trajectory

    NASA Astrophysics Data System (ADS)

    Al-Garni, Ahmed; Kassem, Ayman Hamdy

    A hybrid heuristic optimization technique based on genetic algorithms and particle swarm optimization has been developed and tested for trajectory optimization problems with multi-constraints and a multi-objective cost function. The technique is used to calculate control settings for two types for ascending trajectories (constant dynamic pressure and minimum-fuel-minimum-heat) for a two-dimensional model of an aerospace plane. A thorough statistical analysis is done on the hybrid technique to make comparisons with both basic genetic algorithms and particle swarm optimization techniques with respect to convergence and execution time. Genetic algorithm optimization showed better execution time performance while particle swarm optimization showed better convergence performance. The hybrid optimization technique, benefiting from both techniques, showed superior robust performance compromising convergence trends and execution time.

  10. Short-term cascaded hydroelectric system scheduling based on chaotic particle swarm optimization using improved logistic map

    NASA Astrophysics Data System (ADS)

    He, Yaoyao; Yang, Shanlin; Xu, Qifa

    2013-07-01

    In order to solve the model of short-term cascaded hydroelectric system scheduling, a novel chaotic particle swarm optimization (CPSO) algorithm using improved logistic map is introduced, which uses the water discharge as the decision variables combined with the death penalty function. According to the principle of maximum power generation, the proposed approach makes use of the ergodicity, symmetry and stochastic property of improved logistic chaotic map for enhancing the performance of particle swarm optimization (PSO) algorithm. The new hybrid method has been examined and tested on two test functions and a practical cascaded hydroelectric system. The experimental results show that the effectiveness and robustness of the proposed CPSO algorithm in comparison with other traditional algorithms.

  11. Analysis of swarm behaviors based on an inversion of the fluctuation theorem.

    PubMed

    Hamann, Heiko; Schmickl, Thomas; Crailsheim, Karl

    2014-01-01

    A grand challenge in the field of artificial life is to find a general theory of emergent self-organizing systems. In swarm systems most of the observed complexity is based on motion of simple entities. Similarly, statistical mechanics focuses on collective properties induced by the motion of many interacting particles. In this article we apply methods from statistical mechanics to swarm systems. We try to explain the emergent behavior of a simulated swarm by applying methods based on the fluctuation theorem. Empirical results indicate that swarms are able to produce negative entropy within an isolated subsystem due to frozen accidents. Individuals of a swarm are able to locally detect fluctuations of the global entropy measure and store them, if they are negative entropy productions. By accumulating these stored fluctuations over time the swarm as a whole is producing negative entropy and the system ends up in an ordered state. We claim that this indicates the existence of an inverted fluctuation theorem for emergent self-organizing dissipative systems. This approach bears the potential of general applicability.

  12. Swarm Counter-Asymmetric-Threat (CAT) 6-DOF Dynamics Simulation

    DTIC Science & Technology

    2005-07-01

    NAWCWD TP 8593 Swarm Counter-Asymmetric-Threat ( CAT ) 6-DOF Dynamics Simulation by James Bobinchak Weapons and Energetics...mathematical models used in the swarm counter- asymmetric-threat ( CAT ) simulation and the results of extensive Monte Carlo simulations. The swarm CAT ...Asymmetric-Threat ( CAT ) 6-DOF Dynamics Simulation (U) 6. AUTHOR(S) James Bobinchak and Gary Hewer 7. PERFORMING ORGANIZATION NAME(S) AND

  13. Autonomous and Autonomic Swarms

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Rash, James L.; Truszkowski, Walter F.; Rouff, Christopher A.; Sterritt, Roy

    2005-01-01

    A watershed in systems engineering is represented by the advent of swarm-based systems that accomplish missions through cooperative action by a (large) group of autonomous individuals each having simple capabilities and no global knowledge of the group s objective. Such systems, with individuals capable of surviving in hostile environments, pose unprecedented challenges to system developers. Design and testing and verification at much higher levels will be required, together with the corresponding tools, to bring such systems to fruition. Concepts for possible future NASA space exploration missions include autonomous, autonomic swarms. Engineering swarm-based missions begins with understanding autonomy and autonomicity and how to design, test, and verify systems that have those properties and, simultaneously, the capability to accomplish prescribed mission goals. Formal methods-based technologies, both projected and in development, are described in terms of their potential utility to swarm-based system developers.

  14. Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots.

    PubMed

    Duarte, Miguel; Costa, Vasco; Gomes, Jorge; Rodrigues, Tiago; Silva, Fernando; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers.

  15. Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots

    PubMed Central

    Duarte, Miguel; Costa, Vasco; Gomes, Jorge; Rodrigues, Tiago; Silva, Fernando; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers. PMID:26999614

  16. Transport of Particle Swarms Through Fractures

    NASA Astrophysics Data System (ADS)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    The transport of engineered micro- and nano-scale particles through fractured rock is often assumed to occur as dispersions or emulsions. Another potential transport mechanism is the release of particle swarms from natural or industrial processes where small liquid drops, containing thousands to millions of colloidal-size particles, are released over time from seepage or leaks. Swarms have higher velocities than any individual colloid because the interactions among the particles maintain the cohesiveness of the swarm as it falls under gravity. Thus particle swarms give rise to the possibility that engineered particles may be transported farther and faster in fractures than predicted by traditional dispersion models. In this study, the effect of fractures on colloidal swarm cohesiveness and evolution was studied as a swarm falls under gravity and interacts with fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with either (1) a uniform aperture or (2) a converging aperture followed by a uniform aperture (funnel-shaped). The samples consisted of two blocks that measured 100 x 100 x 50 mm. The separation between these blocks determined the aperture (0.5 mm to 50 mm). During experiments, a fracture was fully submerged in water and swarms were released into it. The swarms consisted of dilute suspensions of either 25 micron soda-lime glass beads (2% by mass) or 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. In the uniform aperture fracture, the speed of the swarm prior to bifurcation increased with aperture up to a maximum at a fracture width of approximately 10 mm. For apertures greater than ~15 mm, the velocity was essentially constant with fracture width (but less than at 10 mm). This peak suggests that two competing mechanisms affect swarm velocity in fractures. The wall provides both drag, which slows the swarm, and a cohesive force that prevents swarm expansion and the corresponding decrease in particle density. For apertures >15mm, though the drag force is small, the loss of swarm cohesion dominates. In small apertures (<5mm), the drag from the wall dominates causing a loss in speed even though there is strong confinement. From a force-based particle interaction approach, the initial simulation did not capture the observed experimental behavior, i.e., the distinct peak in swarm velocities was not observed. For the funnel shaped aperture, the swarm was observed to bifurcate immediately upon reaching the intersection between the converging aperture and the uniform aperture portions of the fracture. Furthermore, converging apertures resulted in the deceleration of a swarm. Thus, the rate of transport of particle swarms is strongly affected by fracture aperture. Acknowledgment: The authors wish to acknowledge support of this work by the Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DE-FG02-09ER16022).

  17. Chaotic Particle Swarm Optimization with Mutation for Classification

    PubMed Central

    Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza

    2015-01-01

    In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms. PMID:25709937

  18. Research on vehicle routing optimization for the terminal distribution of B2C E-commerce firms

    NASA Astrophysics Data System (ADS)

    Zhang, Shiyun; Lu, Yapei; Li, Shasha

    2018-05-01

    In this paper, we established a half open multi-objective optimization model for the vehicle routing problem of B2C (business-to-customer) E-Commerce firms. To minimize the current transport distance as well as the disparity between the excepted shipments and the transport capacity in the next distribution, we applied the concept of dominated solution and Pareto solutions to the standard particle swarm optimization and proposed a MOPSO (multi-objective particle swarm optimization) algorithm to support the model. Besides, we also obtained the optimization solution of MOPSO algorithm based on data randomly generated through the system, which verified the validity of the model.

  19. Next Generation System and Software Architectures: Challenges from Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Rouff, Christopher A.; Hinchey, Michael G.; Rash, James L.; Truszkowski, Walt

    2006-01-01

    The four key objective properties of a system that are required of it in order for it to qualify as "autonomic" are now well-accepted-self-configuring, self-healing, self-protecting, and self-optimizing- together with the attribute properties-viz. self-aware, environment-aware, self-monitoring and self- adjusting. This paper describes the need for next generation system software architectures, where components are agents, rather than objects masquerading as agents, and where support is provided for self-* properties (both existing self-chop and emerging self-* properties). These are discussed as exhibited in NASA missions, and in particular with reference to a NASA concept mission, ANTS, which is illustrative of future NASA exploration missions based on the technology of intelligent swarms.

  20. Feed-Forward Neural Network Soft-Sensor Modeling of Flotation Process Based on Particle Swarm Optimization and Gravitational Search Algorithm

    PubMed Central

    Wang, Jie-Sheng; Han, Shuang

    2015-01-01

    For predicting the key technology indicators (concentrate grade and tailings recovery rate) of flotation process, a feed-forward neural network (FNN) based soft-sensor model optimized by the hybrid algorithm combining particle swarm optimization (PSO) algorithm and gravitational search algorithm (GSA) is proposed. Although GSA has better optimization capability, it has slow convergence velocity and is easy to fall into local optimum. So in this paper, the velocity vector and position vector of GSA are adjusted by PSO algorithm in order to improve its convergence speed and prediction accuracy. Finally, the proposed hybrid algorithm is adopted to optimize the parameters of FNN soft-sensor model. Simulation results show that the model has better generalization and prediction accuracy for the concentrate grade and tailings recovery rate to meet the online soft-sensor requirements of the real-time control in the flotation process. PMID:26583034

  1. SWARM : a scientific workflow for supporting Bayesian approaches to improve metabolic models.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, X.; Stevens, R.; Mathematics and Computer Science

    2008-01-01

    With the exponential growth of complete genome sequences, the analysis of these sequences is becoming a powerful approach to build genome-scale metabolic models. These models can be used to study individual molecular components and their relationships, and eventually study cells as systems. However, constructing genome-scale metabolic models manually is time-consuming and labor-intensive. This property of manual model-building process causes the fact that much fewer genome-scale metabolic models are available comparing to hundreds of genome sequences available. To tackle this problem, we design SWARM, a scientific workflow that can be utilized to improve genome-scale metabolic models in high-throughput fashion. SWARM dealsmore » with a range of issues including the integration of data across distributed resources, data format conversions, data update, and data provenance. Putting altogether, SWARM streamlines the whole modeling process that includes extracting data from various resources, deriving training datasets to train a set of predictors and applying Bayesian techniques to assemble the predictors, inferring on the ensemble of predictors to insert missing data, and eventually improving draft metabolic networks automatically. By the enhancement of metabolic model construction, SWARM enables scientists to generate many genome-scale metabolic models within a short period of time and with less effort.« less

  2. Osmotic pressure in a bacterial swarm.

    PubMed

    Ping, Liyan; Wu, Yilin; Hosu, Basarab G; Tang, Jay X; Berg, Howard C

    2014-08-19

    Using Escherichia coli as a model organism, we studied how water is recruited by a bacterial swarm. A previous analysis of trajectories of small air bubbles revealed a stream of fluid flowing in a clockwise direction ahead of the swarm. A companion study suggested that water moves out of the agar into the swarm in a narrow region centered ∼ 30 μm from the leading edge of the swarm and then back into the agar (at a smaller rate) in a region centered ∼ 120 μm back from the leading edge. Presumably, these flows are driven by changes in osmolarity. Here, we utilized green/red fluorescent liposomes as reporters of osmolarity to verify this hypothesis. The stream of fluid that flows in front of the swarm contains osmolytes. Two distinct regions are observed inside the swarm near its leading edge: an outer high-osmolarity band (∼ 30 mOsm higher than the agar baseline) and an inner low-osmolarity band (isotonic or slightly hypotonic to the agar baseline). This profile supports the fluid-flow model derived from the drift of air bubbles and provides new (to our knowledge) insights into water maintenance in bacterial swarms. High osmotic pressure at the leading edge of the swarm extracts water from the underlying agar and promotes motility. The osmolyte is of high molecular weight and probably is lipopolysaccharide. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Osmotic Pressure in a Bacterial Swarm

    PubMed Central

    Ping, Liyan; Wu, Yilin; Hosu, Basarab G.; Tang, Jay X.; Berg, Howard C.

    2014-01-01

    Using Escherichia coli as a model organism, we studied how water is recruited by a bacterial swarm. A previous analysis of trajectories of small air bubbles revealed a stream of fluid flowing in a clockwise direction ahead of the swarm. A companion study suggested that water moves out of the agar into the swarm in a narrow region centered ∼30 μm from the leading edge of the swarm and then back into the agar (at a smaller rate) in a region centered ∼120 μm back from the leading edge. Presumably, these flows are driven by changes in osmolarity. Here, we utilized green/red fluorescent liposomes as reporters of osmolarity to verify this hypothesis. The stream of fluid that flows in front of the swarm contains osmolytes. Two distinct regions are observed inside the swarm near its leading edge: an outer high-osmolarity band (∼30 mOsm higher than the agar baseline) and an inner low-osmolarity band (isotonic or slightly hypotonic to the agar baseline). This profile supports the fluid-flow model derived from the drift of air bubbles and provides new (to our knowledge) insights into water maintenance in bacterial swarms. High osmotic pressure at the leading edge of the swarm extracts water from the underlying agar and promotes motility. The osmolyte is of high molecular weight and probably is lipopolysaccharide. PMID:25140422

  4. Particle Swarm Optimization with Double Learning Patterns

    PubMed Central

    Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian

    2016-01-01

    Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants. PMID:26858747

  5. Using ANTS to explore small body populations in the solar system.

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Rilee, M.; Truszkowski, W.; Curtis, S.; Marr, G.; Chapman, C.

    2001-11-01

    ANTS (Autonomous Nano-Technology Swarm), a NASA advanced mission concept, is a large (100 to 1000 member) swarm of pico-class (1 kg) totally autonomous spacecraft that prospect the asteroid belt. Little data is available for asteroids because the vast majority are too small to be observed except in close proximity. Light curves are available for thousands of asteroids, confirmed trajectories for tens of thousands, detailed shape models for approximately ten. Asteroids originated in the transitional region between the inner (rocky) and outer (solidified gases) solar system. Many have remained largely unmodified since formation, and thus have more primitive composition than planetary surfaces. Determination of the systematic distribution of physical and compositional properties within the asteroid population is crucial in the understanding of solar system formation. The traditional exploration approach of using few, large spacecraft for sequential exploration, could be improved. Our far more cost-effective approach utilizes distributed intelligence in a swarm of tiny highly maneuverable spacecraft, each with specialized instrument capability (e.g., advanced computing, imaging, spectrometry). NASA is at the forefront of Intelligent Software Agents (ISAs) research, performing experiments in space and on the ground to advance deliberative and collaborative autonomous control techniques. The advanced development under consideration here is in the use of ISAs at a strategic level, to explore remote frontiers of the solar system, potentially involving a large class of objects such as asteroids. Supervised clusters of spacecraft operate simultaneously within a broadly defined framework of goals to select targets (> 1000) from among available candidates while developing scenarios for studying targets. Swarm members use solar sails to fly directly to asteroids > 1 kilometer in diameter, and then perform maneuvers appropriate for the instrument carried, ranging from hovering to orbiting. Selected members return with data and are replaced as needed.

  6. Proc. Agent 2004 Conf. on Social Dynamics : Interaction, Reflexivity and Emergence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. M. Macal, D. Sallach, M. J. North, eds.

    I'd like to welcome you to the Agent 2004 conference. As most of you are aware, this conference is the fifth in a series of meetings that began in 1999. A conference followed the next year in 2000. The 2001 conference was skipped because of some conflicts with other conferences, and the conferences have proceeded annually since then. We have the proceedings of the previous conferences available here on CDs. One CD has the proceedings from 1999, 2000, and 2002; the other contains last year's proceedings. The purpose of these conferences is to advance the state of the computational socialmore » sciences and to integrate the social sciences with the decision sciences and something that is traditionally known as the management sciences. Those of you in the operations/research area are familiar with the traditional school of modeling simulation that emerged from that scientific area. This conference will bring together a different group of people to talk about the topic of agent-based theories and simulations. This fifth agent conference is one of a group of conferences held annually around the country. Most of you are probably aware of the CASOS Conference held at Carnegie Mellon University, usually in July. UCLA holds the Arrowhead Conference, generally around May. The University of Michigan is now holding a conference as well. Of course everyone is aware of SwarmFest, which has been held annually for about a decade. The Swarm seems to 'swarm' in different locations each year. As you're well aware, this conference is organized into a three-day program. This is the first time we've used three days for the full conference setting. Last year, we held simultaneous sessions, and that didn't work well for most of those who attended. We had complaints from people who missed sessions and papers because of scheduling, so we decided to extend this year's conference by one day. As a result, we now have a program designed to present the papers in a serial sequence rather than in a parallel manner. Today, we'll focus on toolkits. Tomorrow we'll look at computational social theory, and Saturday is application day. We'll talk about how we're taking some of the theories and toolkits to look at real-world problems in order to understand how our very complex world works and maybe even to predict how it might work in the future. In addition to the content of the papers themselves, one of the more important things about this conference is the discussion that is inspired by these papers. I invite you to ask penetrating questions, offer insightful comments, share your experiences with toolkits or your ideas on theories, and help to create an atmosphere that will help this field move along and grow. It's a fairly new science--it is just emerging--but it seems to have been gaining momentum in the last couple of years. This is a conference to get your energy going and perhaps foster your creativity. With that, I welcome you to Agent 2004; have a great time at the conference.« less

  7. Chaotic Model for Lévy Walks in Swarming Bacteria

    NASA Astrophysics Data System (ADS)

    Ariel, Gil; Be'er, Avraham; Reynolds, Andy

    2017-06-01

    We describe a new mechanism for Lévy walks, explaining the recently observed superdiffusion of swarming bacteria. The model hinges on several key physical properties of bacteria, such as an elongated cell shape, self-propulsion, and a collectively generated regular vortexlike flow. In particular, chaos and Lévy walking are a consequence of group dynamics. The model explains how cells can fine-tune the geometric properties of their trajectories. Experiments confirm the spectrum of these patterns in fluorescently labeled swarming Bacillus subtilis.

  8. An Approach for Autonomy: A Collaborative Communication Framework for Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren Russell, Jr.

    2005-01-01

    Research done during the last three years has studied the emersion properties of Complex Adaptive Systems (CAS). The deployment of Artificial Intelligence (AI) techniques applied to remote Unmanned Aerial Vehicles has led the author to investigate applications of CAS within the field of Autonomous Multi-Agent Systems. The core objective of current research efforts is focused on the simplicity of Intelligent Agents (IA) and the modeling of these agents within complex systems. This research effort looks at the communication, interaction, and adaptability of multi-agents as applied to complex systems control. The embodiment concept applied to robotics has application possibilities within multi-agent frameworks. A new framework for agent awareness within a virtual 3D world concept is possible where the vehicle is composed of collaborative agents. This approach has many possibilities for applications to complex systems. This paper describes the development of an approach to apply this virtual framework to the NASA Goddard Space Flight Center (GSFC) tetrahedron structure developed under the Autonomous Nano Technology Swarm (ANTS) program and the Super Miniaturized Addressable Reconfigurable Technology (SMART) architecture program. These projects represent an innovative set of novel concepts deploying adaptable, self-organizing structures composed of many tetrahedrons. This technology is pushing current applied Agents Concepts to new levels of requirements and adaptability.

  9. Virtual spring damper method for nonholonomic robotic swarm self-organization and leader following

    NASA Astrophysics Data System (ADS)

    Wiech, Jakub; Eremeyev, Victor A.; Giorgio, Ivan

    2018-04-01

    In this paper, we demonstrate a method for self-organization and leader following of nonholonomic robotic swarm based on spring damper mesh. By self-organization of swarm robots we mean the emergence of order in a swarm as the result of interactions among the single robots. In other words the self-organization of swarm robots mimics some natural behavior of social animals like ants among others. The dynamics of two-wheel robot is derived, and a relation between virtual forces and robot control inputs is defined in order to establish stable swarm formation. Two cases of swarm control are analyzed. In the first case the swarm cohesion is achieved by virtual spring damper mesh connecting nearest neighboring robots without designated leader. In the second case we introduce a swarm leader interacting with nearest and second neighbors allowing the swarm to follow the leader. The paper ends with numeric simulation for performance evaluation of the proposed control method.

  10. Ionospheric magnetic signals during conjunctions between ground based and Swarm satellite observations

    NASA Astrophysics Data System (ADS)

    Saturnino, Diana; Olsen, Nils; Finlay, Chris

    2017-04-01

    High-precision magnetic measurements collected by satellites such as Swarm or CHAMP,flying at altitudes between 300 and 800km, allow for improved geomagnetic field modelling. An accurate description of the internal (core and crust) field must account for contributions from other sources, such as the ionosphere and magnetosphere. However, the description of the rapidly changing external field contributions, particularly during the quiet times from which the data are selected, constitutes a major challenge of the construction of such models. Our study attempts to obtain improved knowledge on ionospheric field contributions during quiet times conditions, in particular during night local times. We use two different datasets: ground magnetic observatories time series (obtained below the ionospheric E-layer currents), and Swarm satellites measurements acquired above these currents. First, we remove from the data estimates of the core, lithospheric and large-scale magnetospheric magnetic contributions as given by the CHAOS-6 model, to obtain corrected time series. Then, we focus on the differences of the corrected time series: for a pair of ground magnetic observatories, we determine the time series of the difference, and similarly we determine time series differences at satellite altitude, given by the difference between the Swarm Alpha and Charlie satellites taken in the vicinity of the ground observatory locations. The obtained differences time series are analysed regarding their temporal and spatial scales variations, with emphasis on measurements during night local times.

  11. A Secular Variation Model for Igrf-12 Based on Swarm Data and Inverse Geodynamo Modelling

    NASA Astrophysics Data System (ADS)

    Fournier, A.; Aubert, J.; Erwan, T.

    2014-12-01

    We are proposing a secular variation candidate model for the 12th generation of the international geomagnetic reference field, spanning the years 2015-2020. The novelty of our approach stands in the initialization of a 5-yr long integration of a numerical model of Earth's dynamo by means of inverse geodynamo modelling, as introduced by Aubert (GJI, 2014). This inverse technique combines the information coming from the observations (in the form of an instantaneous estimate of the Gauss coefficients for the magnetic field and its secular variation) with that coming from the multivariate statistics of a free run of a numerical model of the geodynamo. The Gauss coefficients and their error covariance properties are determined from Swarm data along the lines detailed by Thébault et al. (EPS, 2010). The numerical model of the geodynamo is the so-called Coupled Earth Dynamo model (Aubert et al., Nature, 2013), whose variability possesses a strong level of similarity with that of the geomagnetic field. We illustrate and assess the potential of this methodology by applying it to recent time intervals, with an initialization based on CHAMP data, and conclude by presenting our SV candidate, whose initialization is based on the 1st year of Swarm data This work is supported by the French "Agence Nationale de la Recherche" under the grant ANR-11-BS56-011 (http://avsgeomag.ipgp.fr) and by the CNES. References: Aubert, J., Geophys. J. Int. 197, 1321-1334, 2014, doi: 10.1093/gji/ggu064 Aubert, J., Finlay, C., Fournier, F. Nature 502, 219-223, 2013, doi: 10.1038/nature12574 Thébault E. , A. Chulliat, S. Maus, G. Hulot, B. Langais, A. Chambodut and M. Menvielle, Earth Planets Space, Vol. 62 (No. 10), pp. 753-763, 2010.

  12. Feature Selection and Classifier Parameters Estimation for EEG Signals Peak Detection Using Particle Swarm Optimization

    PubMed Central

    Adam, Asrul; Mohd Tumari, Mohd Zaidi; Mohamad, Mohd Saberi

    2014-01-01

    Electroencephalogram (EEG) signal peak detection is widely used in clinical applications. The peak point can be detected using several approaches, including time, frequency, time-frequency, and nonlinear domains depending on various peak features from several models. However, there is no study that provides the importance of every peak feature in contributing to a good and generalized model. In this study, feature selection and classifier parameters estimation based on particle swarm optimization (PSO) are proposed as a framework for peak detection on EEG signals in time domain analysis. Two versions of PSO are used in the study: (1) standard PSO and (2) random asynchronous particle swarm optimization (RA-PSO). The proposed framework tries to find the best combination of all the available features that offers good peak detection and a high classification rate from the results in the conducted experiments. The evaluation results indicate that the accuracy of the peak detection can be improved up to 99.90% and 98.59% for training and testing, respectively, as compared to the framework without feature selection adaptation. Additionally, the proposed framework based on RA-PSO offers a better and reliable classification rate as compared to standard PSO as it produces low variance model. PMID:25243236

  13. Research on logistics scheduling based on PSO

    NASA Astrophysics Data System (ADS)

    Bao, Huifang; Zhou, Linli; Liu, Lei

    2017-08-01

    With the rapid development of e-commerce based on the network, the logistics distribution support of e-commerce is becoming more and more obvious. The optimization of vehicle distribution routing can improve the economic benefit and realize the scientific of logistics [1]. Therefore, the study of logistics distribution vehicle routing optimization problem is not only of great theoretical significance, but also of considerable value of value. Particle swarm optimization algorithm is a kind of evolutionary algorithm, which is based on the random solution and the optimal solution by iteration, and the quality of the solution is evaluated through fitness. In order to obtain a more ideal logistics scheduling scheme, this paper proposes a logistics model based on particle swarm optimization algorithm.

  14. Multi-A Graph Patrolling and Partitioning

    NASA Astrophysics Data System (ADS)

    Elor, Y.; Bruckstein, A. M.

    2012-12-01

    We introduce a novel multi agent patrolling algorithm inspired by the behavior of gas filled balloons. Very low capability ant-like agents are considered with the task of patrolling an unknown area modeled as a graph. While executing the proposed algorithm, the agents dynamically partition the graph between them using simple local interactions, every agent assuming the responsibility for patrolling his subgraph. Balanced graph partition is an emergent behavior due to the local interactions between the agents in the swarm. Extensive simulations on various graphs (environments) showed that the average time to reach a balanced partition is linear with the graph size. The simulations yielded a convincing argument for conjecturing that if the graph being patrolled contains a balanced partition, the agents will find it. However, we could not prove this. Nevertheless, we have proved that if a balanced partition is reached, the maximum time lag between two successive visits to any vertex using the proposed strategy is at most twice the optimal so the patrol quality is at least half the optimal. In case of weighted graphs the patrol quality is at least (1)/(2){lmin}/{lmax} of the optimal where lmax (lmin) is the longest (shortest) edge in the graph.

  15. Reconstruction of F-Region Electric Current Densities from more than 2 Years of Swarm Satellite Magnetic data

    NASA Astrophysics Data System (ADS)

    Tozzi, R.; Pezzopane, M.; De Michelis, P.; Pignalberi, A.; Siciliano, F.

    2016-12-01

    The constellation geometry adopted by ESA for Swarm satellites has opened the way to new investigations based on magnetic data. An example is the curl-B technique that allows reconstructing F-region electric current density in terms of its radial, meridional, and zonal components based on data from two satellites of Swarm constellation (Swarm A and B) which fly at different altitudes. Here, we apply this technique to more than 2 years of Swarm magnetic vector data and investigate the average large scale behaviour of F-region current densities as a function of local time, season and different interplanetary conditions (different strength and direction of the three IMF components and/or geomagnetic activity levels).

  16. Research on torsional vibration modelling and control of printing cylinder based on particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Xu, W. C.; Wu, S. Q.; Chai, C. W.; Liu, X.; Wang, S. H.

    2018-03-01

    The torsional oscillation is the dominant vibration form for the impression cylinder of printing machine (printing cylinder for short), directly restricting the printing speed up and reducing the quality of the prints. In order to reduce torsional vibration, the active control method for the printing cylinder is obtained. Taking the excitation force and moment from the cylinder gap and gripper teeth open & closing cam mechanism as variable parameters, authors establish the dynamic mathematical model of torsional vibration for the printing cylinder. The torsional active control method is based on Particle Swarm Optimization(PSO) algorithm to optimize input parameters for the serve motor. Furthermore, the input torque of the printing cylinder is optimized, and then compared with the numerical simulation results. The conclusions are that torsional vibration active control based on PSO is an availability method to the torsional vibration of printing cylinder.

  17. An optimized Nash nonlinear grey Bernoulli model based on particle swarm optimization and its application in prediction for the incidence of Hepatitis B in Xinjiang, China.

    PubMed

    Zhang, Liping; Zheng, Yanling; Wang, Kai; Zhang, Xueliang; Zheng, Yujian

    2014-06-01

    In this paper, by using a particle swarm optimization algorithm to solve the optimal parameter estimation problem, an improved Nash nonlinear grey Bernoulli model termed PSO-NNGBM(1,1) is proposed. To test the forecasting performance, the optimized model is applied for forecasting the incidence of hepatitis B in Xinjiang, China. Four models, traditional GM(1,1), grey Verhulst model (GVM), original nonlinear grey Bernoulli model (NGBM(1,1)) and Holt-Winters exponential smoothing method, are also established for comparison with the proposed model under the criteria of mean absolute percentage error and root mean square percent error. The prediction results show that the optimized NNGBM(1,1) model is more accurate and performs better than the traditional GM(1,1), GVM, NGBM(1,1) and Holt-Winters exponential smoothing method. Copyright © 2014. Published by Elsevier Ltd.

  18. Detection of earthquake swarms at subduction zones globally: Insights into tectonic controls on swarm activity

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Ide, S.

    2017-07-01

    Earthquake swarms are characterized by an increase in seismicity rate that lacks a distinguished main shock and does not obey Omori's law. At subduction zones, they are thought to be related to slow-slip events (SSEs) on the plate interface. Earthquake swarms in subduction zones can therefore be used as potential indicators of slow-slip events. However, the global distribution of earthquake swarms at subduction zones remains unclear. Here we present a method for detecting such earthquake sequences using the space-time epidemic-type aftershock-sequence model. We applied this method to seismicity (M ≥ 4.5) recorded in the Advanced National Seismic System catalog at subduction zones during the period of 1995-2009. We detected 453 swarms, which is about 6.7 times the number observed in a previous catalog. Foreshocks of some large earthquakes are also detected as earthquake swarms. In some subduction zones, such as at Ibaraki-Oki, Japan, swarm-like foreshocks and ordinary swarms repeatedly occur at the same location. Given that both foreshocks and swarms are related to SSEs on the plate interface, these regions may have experienced recurring SSEs. We then compare the swarm activity and tectonic properties of subduction zones, finding that swarm activity is positively correlated with curvature of the incoming plate before subduction. This result implies that swarm activity is controlled either by hydration of the incoming plate or by heterogeneity on the plate interface due to fracturing related to slab bending.

  19. Honey Bees Inspired Optimization Method: The Bees Algorithm.

    PubMed

    Yuce, Baris; Packianather, Michael S; Mastrocinque, Ernesto; Pham, Duc Truong; Lambiase, Alfredo

    2013-11-06

    Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem.

  20. Swarm robotics and complex behaviour of continuum material

    NASA Astrophysics Data System (ADS)

    dell'Erba, Ramiro

    2018-05-01

    In swarm robotics, just as for an animal swarm in nature, one of the aims is to reach and maintain a desired configuration. One of the possibilities for the team, to reach this aim, is to see what its neighbours are doing. This approach generates a rules system governing the movement of the single robot just by reference to neighbour's motion. The same approach is used in position-based dynamics to simulate behaviour of complex continuum materials under deformation. Therefore, in some previous works, we have considered a two-dimensional lattice of particles and calculated its time evolution by using a rules system derived from our experience in swarm robotics. The new position of a particle, like the element of a swarm, is determined by the spatial position of the other particles. No dynamic is considered, but it can be thought as being hidden in the behaviour rules. This method has given good results in some simple situations reproducing the behaviour of deformable bodies under imposed strain. In this paper we try to stress our model to highlight its limits and how they can be improved. Some other, more complex, examples are computed and discussed. Shear test, different lattices, different fracture mechanisms and ASTM shape sample behaviour have been investigated by the software tool we have developed.

  1. Compact cancer biomarkers discovery using a swarm intelligence feature selection algorithm.

    PubMed

    Martinez, Emmanuel; Alvarez, Mario Moises; Trevino, Victor

    2010-08-01

    Biomarker discovery is a typical application from functional genomics. Due to the large number of genes studied simultaneously in microarray data, feature selection is a key step. Swarm intelligence has emerged as a solution for the feature selection problem. However, swarm intelligence settings for feature selection fail to select small features subsets. We have proposed a swarm intelligence feature selection algorithm based on the initialization and update of only a subset of particles in the swarm. In this study, we tested our algorithm in 11 microarray datasets for brain, leukemia, lung, prostate, and others. We show that the proposed swarm intelligence algorithm successfully increase the classification accuracy and decrease the number of selected features compared to other swarm intelligence methods. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Formalization, implementation, and modeling of institutional controllers for distributed robotic systems.

    PubMed

    Pereira, José N; Silva, Porfírio; Lima, Pedro U; Martinoli, Alcherio

    2014-01-01

    The work described is part of a long term program of introducing institutional robotics, a novel framework for the coordination of robot teams that stems from institutional economics concepts. Under the framework, institutions are cumulative sets of persistent artificial modifications made to the environment or to the internal mechanisms of a subset of agents, thought to be functional for the collective order. In this article we introduce a formal model of institutional controllers based on Petri nets. We define executable Petri nets-an extension of Petri nets that takes into account robot actions and sensing-to design, program, and execute institutional controllers. We use a generalized stochastic Petri net view of the robot team controlled by the institutional controllers to model and analyze the stochastic performance of the resulting distributed robotic system. The ability of our formalism to replicate results obtained using other approaches is assessed through realistic simulations of up to 40 e-puck robots. In particular, we model a robot swarm and its institutional controller with the goal of maintaining wireless connectivity, and successfully compare our model predictions and simulation results with previously reported results, obtained by using finite state automaton models and controllers.

  3. The Bi-Directional Prediction of Carbon Fiber Production Using a Combination of Improved Particle Swarm Optimization and Support Vector Machine.

    PubMed

    Xiao, Chuncai; Hao, Kuangrong; Ding, Yongsheng

    2014-12-30

    This paper creates a bi-directional prediction model to predict the performance of carbon fiber and the productive parameters based on a support vector machine (SVM) and improved particle swarm optimization (IPSO) algorithm (SVM-IPSO). In the SVM, it is crucial to select the parameters that have an important impact on the performance of prediction. The IPSO is proposed to optimize them, and then the SVM-IPSO model is applied to the bi-directional prediction of carbon fiber production. The predictive accuracy of SVM is mainly dependent on its parameters, and IPSO is thus exploited to seek the optimal parameters for SVM in order to improve its prediction capability. Inspired by a cell communication mechanism, we propose IPSO by incorporating information of the global best solution into the search strategy to improve exploitation, and we employ IPSO to establish the bi-directional prediction model: in the direction of the forward prediction, we consider productive parameters as input and property indexes as output; in the direction of the backward prediction, we consider property indexes as input and productive parameters as output, and in this case, the model becomes a scheme design for novel style carbon fibers. The results from a set of the experimental data show that the proposed model can outperform the radial basis function neural network (RNN), the basic particle swarm optimization (PSO) method and the hybrid approach of genetic algorithm and improved particle swarm optimization (GA-IPSO) method in most of the experiments. In other words, simulation results demonstrate the effectiveness and advantages of the SVM-IPSO model in dealing with the problem of forecasting.

  4. Capture of planetesimals into a circumterrestrial swarm

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.

    1984-01-01

    The lunar origin model considered involves processing of protolunar material through a circumterrestrial swarm of particles. Once such a swarm has formed, it can gain mass by capturing infalling planetesimals and ejecta from giant impacts on the Earth, although the angular momentum supply from these sources remains a problem. Examined is the first stage of formation of a geocentric swarm by capture of planetesimals from initialy heliocentric orbits. The only plausible capture mechanism that is not dependent on very low approach velocities is the mutual collision of planetesimals passing within Earth's sphere of influence. This capture scenario was tested directly by many body numerical integration of planetesimal orbits in near Earth space. Results agree that the systematic contribution of angular momentum is insufficient to maintain an orbiting swarm under heavy bombardment. Thus, a circumterrestrial swarm can be formed rather easily, but is hard to sustain because the mean net angular momentum of a many body swarm is small.

  5. Time-delayed autosynchronous swarm control.

    PubMed

    Biggs, James D; Bennet, Derek J; Dadzie, S Kokou

    2012-01-01

    In this paper a general Morse potential model of self-propelling particles is considered in the presence of a time-delayed term and a spring potential. It is shown that the emergent swarm behavior is dependent on the delay term and weights of the time-delayed function, which can be set to induce a stationary swarm, a rotating swarm with uniform translation, and a rotating swarm with a stationary center of mass. An analysis of the mean field equations shows that without a spring potential the motion of the center of mass is determined explicitly by a multivalued function. For a nonzero spring potential the swarm converges to a vortex formation about a stationary center of mass, except at discrete bifurcation points where the center of mass will periodically trace an ellipse. The analytical results defining the behavior of the center of mass are shown to correspond with the numerical swarm simulations.

  6. Cat swarm optimization based evolutionary framework for multi document summarization

    NASA Astrophysics Data System (ADS)

    Rautray, Rasmita; Balabantaray, Rakesh Chandra

    2017-07-01

    Today, World Wide Web has brought us enormous quantity of on-line information. As a result, extracting relevant information from massive data has become a challenging issue. In recent past text summarization is recognized as one of the solution to extract useful information from vast amount documents. Based on number of documents considered for summarization, it is categorized as single document or multi document summarization. Rather than single document, multi document summarization is more challenging for the researchers to find accurate summary from multiple documents. Hence in this study, a novel Cat Swarm Optimization (CSO) based multi document summarizer is proposed to address the problem of multi document summarization. The proposed CSO based model is also compared with two other nature inspired based summarizer such as Harmony Search (HS) based summarizer and Particle Swarm Optimization (PSO) based summarizer. With respect to the benchmark Document Understanding Conference (DUC) datasets, the performance of all algorithms are compared in terms of different evaluation metrics such as ROUGE score, F score, sensitivity, positive predicate value, summary accuracy, inter sentence similarity and readability metric to validate non-redundancy, cohesiveness and readability of the summary respectively. The experimental analysis clearly reveals that the proposed approach outperforms the other summarizers included in the study.

  7. On the capability of SWARM for estimating time-variable gravity fields and mass variations

    NASA Astrophysics Data System (ADS)

    Reubelt, Tilo; Baur, Oliver; Weigelt, Matthias; Sneeuw, Nico

    2013-04-01

    Recently, the implementation of the GRACE Follow-On mission has been approved. However, this successor of GRACE is planned to become operational in 2017 at the earliest. In order to fill the impending gap of 3-4 years between GRACE and GRACE-FO, the capability of the magnetic field mission SWARM as a gap filler for time-variable gravity field determination has to be investigated. Since the three SWARM satellites, where two of them fly on a pendulum formation, are equipped with high-quality GPS receivers and accelerometers, orbit analysis from high-low Satellite-to-Satellite Tracking (hl-SST) can be applied for geopotential recovery. As data analysis from CHAMP and GRACE has shown, the detection of annual gravity signals and gravity trends from hl-SST is possible for long-wavelength features corresponding to a Gaussian radius of 1000 km, although the accuracy of a low-low SST mission like GRACE cannot be reached. However, since SWARM is a three-satellite constellation and might provide GPS data of higher quality compared to previous missions, improved gravity field recovery can be expected. We present detailed closed-loop simulation studies for a 5 years period based on time-variable gravity caused by mass changes in the hydrosphere, cryosphere and solid Earth. Models for these variations are used to simulate the SWARM satellite orbits. We recover time-variable gravity from orbit analysis adopting the acceleration approach. Finally, we convert time-variable gravity to mass change in order to compare with the a priori model input.

  8. Dynamic scaling in natural swarms

    NASA Astrophysics Data System (ADS)

    Cavagna, Andrea; Conti, Daniele; Creato, Chiara; Del Castello, Lorenzo; Giardina, Irene; Grigera, Tomas S.; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano

    2017-09-01

    Collective behaviour in biological systems presents theoretical challenges beyond the borders of classical statistical physics. The lack of concepts such as scaling and renormalization is particularly problematic, as it forces us to negotiate details whose relevance is often hard to assess. In an attempt to improve this situation, we present here experimental evidence of the emergence of dynamic scaling laws in natural swarms of midges. We find that spatio-temporal correlation functions in different swarms can be rescaled by using a single characteristic time, which grows with the correlation length with a dynamical critical exponent z ~ 1, a value not found in any other standard statistical model. To check whether out-of-equilibrium effects may be responsible for this anomalous exponent, we run simulations of the simplest model of self-propelled particles and find z ~ 2, suggesting that natural swarms belong to a novel dynamic universality class. This conclusion is strengthened by experimental evidence of the presence of non-dissipative modes in the relaxation, indicating that previously overlooked inertial effects are needed to describe swarm dynamics. The absence of a purely dissipative regime suggests that natural swarms undergo a near-critical censorship of hydrodynamics.

  9. Adaptive infinite impulse response system identification using modified-interior search algorithm with Lèvy flight.

    PubMed

    Kumar, Manjeet; Rawat, Tarun Kumar; Aggarwal, Apoorva

    2017-03-01

    In this paper, a new meta-heuristic optimization technique, called interior search algorithm (ISA) with Lèvy flight is proposed and applied to determine the optimal parameters of an unknown infinite impulse response (IIR) system for the system identification problem. ISA is based on aesthetics, which is commonly used in interior design and decoration processes. In ISA, composition phase and mirror phase are applied for addressing the nonlinear and multimodal system identification problems. System identification using modified-ISA (M-ISA) based method involves faster convergence, single parameter tuning and does not require derivative information because it uses a stochastic random search using the concepts of Lèvy flight. A proper tuning of control parameter has been performed in order to achieve a balance between intensification and diversification phases. In order to evaluate the performance of the proposed method, mean square error (MSE), computation time and percentage improvement are considered as the performance measure. To validate the performance of M-ISA based method, simulations has been carried out for three benchmarked IIR systems using same order and reduced order system. Genetic algorithm (GA), particle swarm optimization (PSO), cat swarm optimization (CSO), cuckoo search algorithm (CSA), differential evolution using wavelet mutation (DEWM), firefly algorithm (FFA), craziness based particle swarm optimization (CRPSO), harmony search (HS) algorithm, opposition based harmony search (OHS) algorithm, hybrid particle swarm optimization-gravitational search algorithm (HPSO-GSA) and ISA are also used to model the same examples and simulation results are compared. Obtained results confirm the efficiency of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Urban Convoy Escort Utilizing a Swarm of UAV’s

    DTIC Science & Technology

    2009-04-05

    at USNA for future research projects. 108 12. Endnotes [1] J. Cheng, W. Cheng, Nagpal , “Robust and Self-repairing...principles from natural multi-agent systems”, Annals of Operations Research, 1997. J. Cheng, W. Cheng, Nagpal , “Robust and Self-repairing Formation Control

  11. Evolving and Controlling Perimeter, Rendezvous, and Foraging Behaviors in a Computation-Free Robot Swarm

    DTIC Science & Technology

    2016-04-01

    cheap, disposable swarms of robots that can accomplish these tasks quickly and with- out much human supervision. While there has been a lot of work...have shown that swarms of robots so dumb that they have no computational power–they can’t even add or subtract, and have no memory can still collec...behaviors can be achieved using swarms of computation-free robots . Our work starts with the simple robot model proposed in [6] and adds a form of

  12. Optimization design of LED heat dissipation structure based on strip fins

    NASA Astrophysics Data System (ADS)

    Xue, Lingyun; Wan, Wenbin; Chen, Qingguang; Rao, Huanle; Xu, Ping

    2018-03-01

    To solve the heat dissipation problem of LED, a radiator structure based on strip fins is designed and the method to optimize the structure parameters of strip fins is proposed in this paper. The combination of RBF neural networks and particle swarm optimization (PSO) algorithm is used for modeling and optimization respectively. During the experiment, the 150 datasets of LED junction temperature when structure parameters of number of strip fins, length, width and height of the fins have different values are obtained by ANSYS software. Then RBF neural network is applied to build the non-linear regression model and the parameters optimization of structure based on particle swarm optimization algorithm is performed with this model. The experimental results show that the lowest LED junction temperature reaches 43.88 degrees when the number of hidden layer nodes in RBF neural network is 10, the two learning factors in particle swarm optimization algorithm are 0.5, 0.5 respectively, the inertia factor is 1 and the maximum number of iterations is 100, and now the number of fins is 64, the distribution structure is 8*8, and the length, width and height of fins are 4.3mm, 4.48mm and 55.3mm respectively. To compare the modeling and optimization results, LED junction temperature at the optimized structure parameters was simulated and the result is 43.592°C which approximately equals to the optimal result. Compared with the ordinary plate-fin-type radiator structure whose temperature is 56.38°C, the structure greatly enhances heat dissipation performance of the structure.

  13. 1-D DC Resistivity Modeling and Interpretation in Anisotropic Media Using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Pekşen, Ertan; Yas, Türker; Kıyak, Alper

    2014-09-01

    We examine the one-dimensional direct current method in anisotropic earth formation. We derive an analytic expression of a simple, two-layered anisotropic earth model. Further, we also consider a horizontally layered anisotropic earth response with respect to the digital filter method, which yields a quasi-analytic solution over anisotropic media. These analytic and quasi-analytic solutions are useful tests for numerical codes. A two-dimensional finite difference earth model in anisotropic media is presented in order to generate a synthetic data set for a simple one-dimensional earth. Further, we propose a particle swarm optimization method for estimating the model parameters of a layered anisotropic earth model such as horizontal and vertical resistivities, and thickness. The particle swarm optimization is a naturally inspired meta-heuristic algorithm. The proposed method finds model parameters quite successfully based on synthetic and field data. However, adding 5 % Gaussian noise to the synthetic data increases the ambiguity of the value of the model parameters. For this reason, the results should be controlled by a number of statistical tests. In this study, we use probability density function within 95 % confidence interval, parameter variation of each iteration and frequency distribution of the model parameters to reduce the ambiguity. The result is promising and the proposed method can be used for evaluating one-dimensional direct current data in anisotropic media.

  14. A novel medical information management and decision model for uncertain demand optimization.

    PubMed

    Bi, Ya

    2015-01-01

    Accurately planning the procurement volume is an effective measure for controlling the medicine inventory cost. Due to uncertain demand it is difficult to make accurate decision on procurement volume. As to the biomedicine sensitive to time and season demand, the uncertain demand fitted by the fuzzy mathematics method is obviously better than general random distribution functions. To establish a novel medical information management and decision model for uncertain demand optimization. A novel optimal management and decision model under uncertain demand has been presented based on fuzzy mathematics and a new comprehensive improved particle swarm algorithm. The optimal management and decision model can effectively reduce the medicine inventory cost. The proposed improved particle swarm optimization is a simple and effective algorithm to improve the Fuzzy interference and hence effectively reduce the calculation complexity of the optimal management and decision model. Therefore the new model can be used for accurate decision on procurement volume under uncertain demand.

  15. Modelling multi-rotor UAVs swarm deployment using virtual pheromones

    PubMed Central

    Pujol, Mar; Rizo, Ramón; Rizo, Carlos

    2018-01-01

    In this work, a swarm behaviour for multi-rotor Unmanned Aerial Vehicles (UAVs) deployment will be presented. The main contribution of this behaviour is the use of a virtual device for quantitative sematectonic stigmergy providing more adaptable behaviours in complex environments. It is a fault tolerant highly robust behaviour that does not require prior information of the area to be covered, or to assume the existence of any kind of information signals (GPS, mobile communication networks …), taking into account the specific features of UAVs. This behaviour will be oriented towards emergency tasks. Their main goal will be to cover an area of the environment for later creating an ad-hoc communication network, that can be used to establish communications inside this zone. Although there are several papers on robotic deployment it is more difficult to find applications with UAV systems, mainly because of the existence of various problems that must be overcome including limitations in available sensory and on-board processing capabilities and low flight endurance. In addition, those behaviours designed for UAVs often have significant limitations on their ability to be used in real tasks, because they assume specific features, not easily applicable in a general way. Firstly, in this article the characteristics of the simulation environment will be presented. Secondly, a microscopic model for deployment and creation of ad-hoc networks, that implicitly includes stigmergy features, will be shown. Then, the overall swarm behaviour will be modeled, providing a macroscopic model of this behaviour. This model can accurately predict the number of agents needed to cover an area as well as the time required for the deployment process. An experimental analysis through simulation will be carried out in order to verify our models. In this analysis the influence of both the complexity of the environment and the stigmergy system will be discussed, given the data obtained in the simulation. In addition, the macroscopic and microscopic models will be compared verifying the number of predicted individuals for each state regarding the simulation. PMID:29370203

  16. Genetic Particle Swarm Optimization-Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection.

    PubMed

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-07-30

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm.

  17. A dynamic programming-based particle swarm optimization algorithm for an inventory management problem under uncertainty

    NASA Astrophysics Data System (ADS)

    Xu, Jiuping; Zeng, Ziqiang; Han, Bernard; Lei, Xiao

    2013-07-01

    This article presents a dynamic programming-based particle swarm optimization (DP-based PSO) algorithm for solving an inventory management problem for large-scale construction projects under a fuzzy random environment. By taking into account the purchasing behaviour and strategy under rules of international bidding, a multi-objective fuzzy random dynamic programming model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform fuzzy random parameters into fuzzy variables that are subsequently defuzzified by using an expected value operator with optimistic-pessimistic index. The iterative nature of the authors' model motivates them to develop a DP-based PSO algorithm. More specifically, their approach treats the state variables as hidden parameters. This in turn eliminates many redundant feasibility checks during initialization and particle updates at each iteration. Results and sensitivity analysis are presented to highlight the performance of the authors' optimization method, which is very effective as compared to the standard PSO algorithm.

  18. Enhancing speech recognition using improved particle swarm optimization based hidden Markov model.

    PubMed

    Selvaraj, Lokesh; Ganesan, Balakrishnan

    2014-01-01

    Enhancing speech recognition is the primary intention of this work. In this paper a novel speech recognition method based on vector quantization and improved particle swarm optimization (IPSO) is suggested. The suggested methodology contains four stages, namely, (i) denoising, (ii) feature mining (iii), vector quantization, and (iv) IPSO based hidden Markov model (HMM) technique (IP-HMM). At first, the speech signals are denoised using median filter. Next, characteristics such as peak, pitch spectrum, Mel frequency Cepstral coefficients (MFCC), mean, standard deviation, and minimum and maximum of the signal are extorted from the denoised signal. Following that, to accomplish the training process, the extracted characteristics are given to genetic algorithm based codebook generation in vector quantization. The initial populations are created by selecting random code vectors from the training set for the codebooks for the genetic algorithm process and IP-HMM helps in doing the recognition. At this point the creativeness will be done in terms of one of the genetic operation crossovers. The proposed speech recognition technique offers 97.14% accuracy.

  19. Spiral bacterial foraging optimization method: Algorithm, evaluation and convergence analysis

    NASA Astrophysics Data System (ADS)

    Kasaiezadeh, Alireza; Khajepour, Amir; Waslander, Steven L.

    2014-04-01

    A biologically-inspired algorithm called Spiral Bacterial Foraging Optimization (SBFO) is investigated in this article. SBFO, previously proposed by the same authors, is a multi-agent, gradient-based algorithm that minimizes both the main objective function (local cost) and the distance between each agent and a temporary central point (global cost). A random jump is included normal to the connecting line of each agent to the central point, which produces a vortex around the temporary central point. This random jump is also suitable to cope with premature convergence, which is a feature of swarm-based optimization methods. The most important advantages of this algorithm are as follows: First, this algorithm involves a stochastic type of search with a deterministic convergence. Second, as gradient-based methods are employed, faster convergence is demonstrated over GA, DE, BFO, etc. Third, the algorithm can be implemented in a parallel fashion in order to decentralize large-scale computation. Fourth, the algorithm has a limited number of tunable parameters, and finally SBFO has a strong certainty of convergence which is rare in existing global optimization algorithms. A detailed convergence analysis of SBFO for continuously differentiable objective functions has also been investigated in this article.

  20. Extreme Learning Machine and Particle Swarm Optimization in optimizing CNC turning operation

    NASA Astrophysics Data System (ADS)

    Janahiraman, Tiagrajah V.; Ahmad, Nooraziah; Hani Nordin, Farah

    2018-04-01

    The CNC machine is controlled by manipulating cutting parameters that could directly influence the process performance. Many optimization methods has been applied to obtain the optimal cutting parameters for the desired performance function. Nonetheless, the industry still uses the traditional technique to obtain those values. Lack of knowledge on optimization techniques is the main reason for this issue to be prolonged. Therefore, the simple yet easy to implement, Optimal Cutting Parameters Selection System is introduced to help the manufacturer to easily understand and determine the best optimal parameters for their turning operation. This new system consists of two stages which are modelling and optimization. In modelling of input-output and in-process parameters, the hybrid of Extreme Learning Machine and Particle Swarm Optimization is applied. This modelling technique tend to converge faster than other artificial intelligent technique and give accurate result. For the optimization stage, again the Particle Swarm Optimization is used to get the optimal cutting parameters based on the performance function preferred by the manufacturer. Overall, the system can reduce the gap between academic world and the industry by introducing a simple yet easy to implement optimization technique. This novel optimization technique can give accurate result besides being the fastest technique.

  1. Swarm intelligence-based approach for optimal design of CMOS differential amplifier and comparator circuit using a hybrid salp swarm algorithm

    NASA Astrophysics Data System (ADS)

    Asaithambi, Sasikumar; Rajappa, Muthaiah

    2018-05-01

    In this paper, an automatic design method based on a swarm intelligence approach for CMOS analog integrated circuit (IC) design is presented. The hybrid meta-heuristics optimization technique, namely, the salp swarm algorithm (SSA), is applied to the optimal sizing of a CMOS differential amplifier and the comparator circuit. SSA is a nature-inspired optimization algorithm which mimics the navigating and hunting behavior of salp. The hybrid SSA is applied to optimize the circuit design parameters and to minimize the MOS transistor sizes. The proposed swarm intelligence approach was successfully implemented for an automatic design and optimization of CMOS analog ICs using Generic Process Design Kit (GPDK) 180 nm technology. The circuit design parameters and design specifications are validated through a simulation program for integrated circuit emphasis simulator. To investigate the efficiency of the proposed approach, comparisons have been carried out with other simulation-based circuit design methods. The performances of hybrid SSA based CMOS analog IC designs are better than the previously reported studies.

  2. Swarm intelligence-based approach for optimal design of CMOS differential amplifier and comparator circuit using a hybrid salp swarm algorithm.

    PubMed

    Asaithambi, Sasikumar; Rajappa, Muthaiah

    2018-05-01

    In this paper, an automatic design method based on a swarm intelligence approach for CMOS analog integrated circuit (IC) design is presented. The hybrid meta-heuristics optimization technique, namely, the salp swarm algorithm (SSA), is applied to the optimal sizing of a CMOS differential amplifier and the comparator circuit. SSA is a nature-inspired optimization algorithm which mimics the navigating and hunting behavior of salp. The hybrid SSA is applied to optimize the circuit design parameters and to minimize the MOS transistor sizes. The proposed swarm intelligence approach was successfully implemented for an automatic design and optimization of CMOS analog ICs using Generic Process Design Kit (GPDK) 180 nm technology. The circuit design parameters and design specifications are validated through a simulation program for integrated circuit emphasis simulator. To investigate the efficiency of the proposed approach, comparisons have been carried out with other simulation-based circuit design methods. The performances of hybrid SSA based CMOS analog IC designs are better than the previously reported studies.

  3. DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model

    NASA Astrophysics Data System (ADS)

    Finlay, Christopher C.; Olsen, Nils; Tøffner-Clausen, Lars

    2015-07-01

    We present DTU's candidate field models for IGRF-12 and the parent field model from which they were derived, CHAOS-5. Ten months of magnetic field observations from ESA's Swarm mission, together with up-to-date ground observatory monthly means, were used to supplement the data sources previously used to construct CHAOS-4. The internal field part of CHAOS-5, from which our IGRF-12 candidate models were extracted, is time-dependent up to spherical harmonic degree 20 and involves sixth-order splines with a 0.5 year knot spacing. In CHAOS-5, compared with CHAOS-4, we update only the low-degree internal field model (degrees 1 to 24) and the associated external field model. The high-degree internal field (degrees 25 to 90) is taken from the same model CHAOS-4h, based on low-altitude CHAMP data, which was used in CHAOS-4. We find that CHAOS-5 is able to consistently fit magnetic field data from six independent low Earth orbit satellites: Ørsted, CHAMP, SAC-C and the three Swarm satellites (A, B and C). It also adequately describes the secular variation measured at ground observatories. CHAOS-5 thus contributes to an initial validation of the quality of the Swarm magnetic data, in particular demonstrating that Huber weighted rms model residuals to Swarm vector field data are lower than those to Ørsted and CHAMP vector data (when either one or two star cameras were operating). CHAOS-5 shows three pulses of secular acceleration at the core surface over the past decade; the 2006 and 2009 pulses have previously been documented, but the 2013 pulse has only recently been identified. The spatial signature of the 2013 pulse at the core surface, under the Atlantic sector where it is strongest, is well correlated with the 2006 pulse, but anti-correlated with the 2009 pulse.

  4. Identifying and quantifying interactions in a laboratory swarm

    NASA Astrophysics Data System (ADS)

    Puckett, James; Kelley, Douglas; Ouellette, Nicholas

    2013-03-01

    Emergent collective behavior, such as in flocks of birds or swarms of bees, is exhibited throughout the animal kingdom. Many models have been developed to describe swarming and flocking behavior using systems of self-propelled particles obeying simple rules or interacting via various potentials. However, due to experimental difficulties and constraints, little empirical data exists for characterizing the exact form of the biological interactions. We study laboratory swarms of flying Chironomus riparius midges, using stereoimaging and particle tracking techniques to record three-dimensional trajectories for all the individuals in the swarm. We describe methods to identify and quantify interactions by examining these trajectories, and report results on interaction magnitude, frequency, and mutuality.

  5. Unsupervised learning in persistent sensing for target recognition by wireless ad hoc networks of ground-based sensors

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2008-04-01

    In previous work by the author, effective persistent and pervasive sensing for recognition and tracking of battlefield targets were seen to be achieved, using intelligent algorithms implemented by distributed mobile agents over a composite system of unmanned aerial vehicles (UAVs) for persistence and a wireless network of unattended ground sensors for pervasive coverage of the mission environment. While simulated performance results for the supervised algorithms of the composite system are shown to provide satisfactory target recognition over relatively brief periods of system operation, this performance can degrade by as much as 50% as target dynamics in the environment evolve beyond the period of system operation in which the training data are representative. To overcome this limitation, this paper applies the distributed approach using mobile agents to the network of ground-based wireless sensors alone, without the UAV subsystem, to provide persistent as well as pervasive sensing for target recognition and tracking. The supervised algorithms used in the earlier work are supplanted by unsupervised routines, including competitive-learning neural networks (CLNNs) and new versions of support vector machines (SVMs) for characterization of an unknown target environment. To capture the same physical phenomena from battlefield targets as the composite system, the suite of ground-based sensors can be expanded to include imaging and video capabilities. The spatial density of deployed sensor nodes is increased to allow more precise ground-based location and tracking of detected targets by active nodes. The "swarm" mobile agents enabling WSN intelligence are organized in a three processing stages: detection, recognition and sustained tracking of ground targets. Features formed from the compressed sensor data are down-selected according to an information-theoretic algorithm that reduces redundancy within the feature set, reducing the dimension of samples used in the target recognition and tracking routines. Target tracking is based on simplified versions of Kalman filtration. Accuracy of recognition and tracking of implemented versions of the proposed suite of unsupervised algorithms is somewhat degraded from the ideal. Target recognition and tracking by supervised routines and by unsupervised SVM and CLNN routines in the ground-based WSN is evaluated in simulations using published system values and sensor data from vehicular targets in ground-surveillance scenarios. Results are compared with previously published performance for the system of the ground-based sensor network (GSN) and UAV swarm.

  6. Theory of periodic swarming of bacteria: Application to Proteus mirabilis

    NASA Astrophysics Data System (ADS)

    Czirók, A.; Matsushita, M.; Vicsek, T.

    2001-03-01

    The periodic swarming of bacteria is one of the simplest examples for pattern formation produced by the self-organized collective behavior of a large number of organisms. In the spectacular colonies of Proteus mirabilis (the most common species exhibiting this type of growth), a series of concentric rings are developed as the bacteria multiply and swarm following a scenario that periodically repeats itself. We have developed a theoretical description for this process in order to obtain a deeper insight into some of the typical processes governing the phenomena in systems of many interacting living units. Our approach is based on simple assumptions directly related to the latest experimental observations on colony formation under various conditions. The corresponding one-dimensional model consists of two coupled differential equations investigated here both by numerical integrations and by analyzing the various expressions obtained from these equations using a few natural assumptions about the parameters of the model. We determine the phase diagram corresponding to systems exhibiting periodic swarming, and discuss in detail how the various stages of the colony development can be interpreted in our framework. We point out that all of our theoretical results are in excellent agreement with the complete set of available observations. Thus the present study represents one of the few examples where self-organized biological pattern formation is understood within a relatively simple theoretical approach, leading to results and predictions fully compatible with experiments.

  7. Particle Swarm Optimization

    NASA Technical Reports Server (NTRS)

    Venter, Gerhard; Sobieszczanski-Sobieski Jaroslaw

    2002-01-01

    The purpose of this paper is to show how the search algorithm known as particle swarm optimization performs. Here, particle swarm optimization is applied to structural design problems, but the method has a much wider range of possible applications. The paper's new contributions are improvements to the particle swarm optimization algorithm and conclusions and recommendations as to the utility of the algorithm, Results of numerical experiments for both continuous and discrete applications are presented in the paper. The results indicate that the particle swarm optimization algorithm does locate the constrained minimum design in continuous applications with very good precision, albeit at a much higher computational cost than that of a typical gradient based optimizer. However, the true potential of particle swarm optimization is primarily in applications with discrete and/or discontinuous functions and variables. Additionally, particle swarm optimization has the potential of efficient computation with very large numbers of concurrently operating processors.

  8. Emergent dynamics of laboratory insect swarms

    NASA Astrophysics Data System (ADS)

    Kelley, Douglas H.; Ouellette, Nicholas T.

    2013-01-01

    Collective animal behaviour occurs at nearly every biological size scale, from single-celled organisms to the largest animals on earth. It has long been known that models with simple interaction rules can reproduce qualitative features of this complex behaviour. But determining whether these models accurately capture the biology requires data from real animals, which has historically been difficult to obtain. Here, we report three-dimensional, time-resolved measurements of the positions, velocities, and accelerations of individual insects in laboratory swarms of the midge Chironomus riparius. Even though the swarms do not show an overall polarisation, we find statistical evidence for local clusters of correlated motion. We also show that the swarms display an effective large-scale potential that keeps individuals bound together, and we characterize the shape of this potential. Our results provide quantitative data against which the emergent characteristics of animal aggregation models can be benchmarked.

  9. Long-range Acoustic Interactions in Insect Swarms - An Adaptive Gravity Model

    NASA Astrophysics Data System (ADS)

    Gorbonos, Dan; Ianconescu, Reuven; Puckett, James G.; Ni, Rui; Ouellette, Nicholas T.; Gov, Nir S.

    The collective motion of groups of animals emerges from the net effect of the interactions between individual members of the group. In many cases, such as birds, fish, or ungulates, these interactions are mediated by sensory stimuli that predominantly arise from nearby neighbors. But not all stimuli in animal groups are short range. We consider mating swarms of midges, which are thought to interact primarily via long-range acoustic stimuli. We exploit the similarity in form between the decay of acoustic and gravitational sources to build a model for swarm behavior. By accounting for the adaptive nature of the midges' acoustic sensing, we show that our ``adaptive gravity'' model makes mean-field predictions that agree well with experimental observations of laboratory swarms. Our results highlight the role of sensory mechanisms and interaction range in collective animal behavior. Additionally, the adaptive interactions open a new class of equations of motion, which may appear in other biological contexts.

  10. Autonomous sensor manager agents (ASMA)

    NASA Astrophysics Data System (ADS)

    Osadciw, Lisa A.

    2004-04-01

    Autonomous sensor manager agents are presented as an algorithm to perform sensor management within a multisensor fusion network. The design of the hybrid ant system/particle swarm agents is described in detail with some insight into their performance. Although the algorithm is designed for the general sensor management problem, a simulation example involving 2 radar systems is presented. Algorithmic parameters are determined by the size of the region covered by the sensor network, the number of sensors, and the number of parameters to be selected. With straight forward modifications, this algorithm can be adapted for most sensor management problems.

  11. Swarming in viscous fluids: three-dimensional patterns in swimmer- and force-induced flows

    NASA Astrophysics Data System (ADS)

    Chuang, Yao-Li; D'Orsogna, Maria R.; Chou, Tom

    Mathematical models of self-propelled interacting particles have reproduced various fascinating ``swarming'' patterns observed in natural and artificial systems. The formulation of such models usually ignores the influence of the surrounding medium in which the particles swarm. Here we develop from first principles a three-dimensional theory of swarming particles in a viscous fluid environment and investigate how the hydrodynamic coupling among the particles may affect their collective behavior. Specifically, we examine the hydrodynamic coupling among self-propelled particles interacting through ``social'' or ``mechanical'' forces. We discover that new patterns arise as a consequence of different interactions and self-propulsion mechanisms. Examples include flocks with prolate or oblate shapes, intermittent mills, recirculating peloton-like structures, and jet-like fluid flows that kinetically destabilize mill-like structures. Our results reveal possible mechanisms for three-dimensional swarms to kinetically control their collective behaviors in fluids. Supported by NSF DMS 1021818 & 1021850, ARO W1911NF-14-1-0472, ARO MURI W1911NF-11-10332.

  12. Fault Weakening due to Erosion by Fluids: A Possible Origin of Intraplate Earthquake Swarms

    NASA Astrophysics Data System (ADS)

    Vavrycuk, V.; Hrubcova, P.

    2016-12-01

    The occurrence and specific properties of earthquake swarms in geothermal areas are usually attributed to a highly fractured rock and/or heterogeneous stress within the rock mass being triggered by magmatic or hydrothermal fluid intrusion. The increase of fluid pressure destabilizes fractures and causes their opening and subsequent shear-tensile rupture. The spreading and evolution of the seismic activity is controlled by fluid flow due to diffusion in a permeable rock and/or by the redistribution of Coulomb stress. The `fluid-injection model', however, is not valid universally. We provide evidence that this model is inconsistent with observations of earthquake swarms in West Bohemia, Czech Republic. Full seismic moment tensors of micro-earthquakes in the 1997 and 2008 swarms in West Bohemia indicate that fracturing at the starting phase of the swarm was not associated with fault openings caused by pressurized fluids but rather with fault compactions. This can physically be explained by a `fluid-erosion model', when the essential role in the swarm triggering is attributed to chemical and hydrothermal fluid-rock interactions in the focal zone. Since the rock is exposed to circulating hydrothermal, CO2-saturated fluids, the walls of fractures are weakened by dissolving and altering various minerals. If fault strength lowers to a critical value, the seismicity is triggered. The fractures are compacted during failure, the fault strength recovers and a new cycle begins.

  13. A Particle Swarm Optimization-Based Approach with Local Search for Predicting Protein Folding.

    PubMed

    Yang, Cheng-Hong; Lin, Yu-Shiun; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2017-10-01

    The hydrophobic-polar (HP) model is commonly used for predicting protein folding structures and hydrophobic interactions. This study developed a particle swarm optimization (PSO)-based algorithm combined with local search algorithms; specifically, the high exploration PSO (HEPSO) algorithm (which can execute global search processes) was combined with three local search algorithms (hill-climbing algorithm, greedy algorithm, and Tabu table), yielding the proposed HE-L-PSO algorithm. By using 20 known protein structures, we evaluated the performance of the HE-L-PSO algorithm in predicting protein folding in the HP model. The proposed HE-L-PSO algorithm exhibited favorable performance in predicting both short and long amino acid sequences with high reproducibility and stability, compared with seven reported algorithms. The HE-L-PSO algorithm yielded optimal solutions for all predicted protein folding structures. All HE-L-PSO-predicted protein folding structures possessed a hydrophobic core that is similar to normal protein folding.

  14. High Density Waves of the Bacterium Pseudomonas aeruginosa in Propagating Swarms Result in Efficient Colonization of Surfaces

    PubMed Central

    Du, Huijing; Xu, Zhiliang; Anyan, Morgen; Kim, Oleg; Leevy, W. Matthew; Shrout, Joshua D.; Alber, Mark

    2012-01-01

    This work describes a new, to our knowledge, strategy of efficient colonization and community development where bacteria substantially alter their physical environment. Many bacteria move in groups, in a mode described as swarming, to colonize surfaces and form biofilms to survive external stresses, including exposure to antibiotics. One such bacterium is Pseudomonas aeruginosa, which is an opportunistic pathogen responsible for both acute and persistent infections in susceptible individuals, as exampled by those for burn victims and people with cystic fibrosis. Pseudomonas aeruginosa often, but not always, forms branched tendril patterns during swarming; this phenomena occurs only when bacteria produce rhamnolipid, which is regulated by population-dependent signaling called quorum sensing. The experimental results of this work show that P. aeruginosa cells propagate as high density waves that move symmetrically as rings within swarms toward the extending tendrils. Biologically justified cell-based multiscale model simulations suggest a mechanism of wave propagation as well as a branched tendril formation at the edge of the population that depends upon competition between the changing viscosity of the bacterial liquid suspension and the liquid film boundary expansion caused by Marangoni forces. Therefore, P. aeruginosa efficiently colonizes surfaces by controlling the physical forces responsible for expansion of thin liquid film and by propagating toward the tendril tips. The model predictions of wave speed and swarm expansion rate as well as cell alignment in tendrils were confirmed experimentally. The study results suggest that P. aeruginosa responds to environmental cues on a very short timescale by actively exploiting local physical phenomena to develop communities and efficiently colonize new surfaces. PMID:22947877

  15. Adaptive feature selection using v-shaped binary particle swarm optimization.

    PubMed

    Teng, Xuyang; Dong, Hongbin; Zhou, Xiurong

    2017-01-01

    Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers.

  16. Adaptive feature selection using v-shaped binary particle swarm optimization

    PubMed Central

    Dong, Hongbin; Zhou, Xiurong

    2017-01-01

    Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers. PMID:28358850

  17. Direct position determination for digital modulation signals based on improved particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Wan-Ting; Yu, Hong-yi; Du, Jian-Ping; Wang, Ding

    2018-04-01

    The Direct Position Determination (DPD) algorithm has been demonstrated to achieve a better accuracy with known signal waveforms. However, the signal waveform is difficult to be completely known in the actual positioning process. To solve the problem, we proposed a DPD method for digital modulation signals based on improved particle swarm optimization algorithm. First, a DPD model is established for known modulation signals and a cost function is obtained on symbol estimation. Second, as the optimization of the cost function is a nonlinear integer optimization problem, an improved Particle Swarm Optimization (PSO) algorithm is considered for the optimal symbol search. Simulations are carried out to show the higher position accuracy of the proposed DPD method and the convergence of the fitness function under different inertia weight and population size. On the one hand, the proposed algorithm can take full advantage of the signal feature to improve the positioning accuracy. On the other hand, the improved PSO algorithm can improve the efficiency of symbol search by nearly one hundred times to achieve a global optimal solution.

  18. Color image enhancement based on particle swarm optimization with Gaussian mixture

    NASA Astrophysics Data System (ADS)

    Kattakkalil Subhashdas, Shibudas; Choi, Bong-Seok; Yoo, Ji-Hoon; Ha, Yeong-Ho

    2015-01-01

    This paper proposes a Gaussian mixture based image enhancement method which uses particle swarm optimization (PSO) to have an edge over other contemporary methods. The proposed method uses the guassian mixture model to model the lightness histogram of the input image in CIEL*a*b* space. The intersection points of the guassian components in the model are used to partition the lightness histogram. . The enhanced lightness image is generated by transforming the lightness value in each interval to appropriate output interval according to the transformation function that depends on PSO optimized parameters, weight and standard deviation of Gaussian component and cumulative distribution of the input histogram interval. In addition, chroma compensation is applied to the resulting image to reduce washout appearance. Experimental results show that the proposed method produces a better enhanced image compared to the traditional methods. Moreover, the enhanced image is free from several side effects such as washout appearance, information loss and gradation artifacts.

  19. A discrete particle model reproducing collective dynamics of a bee swarm.

    PubMed

    Bernardi, Sara; Colombi, Annachiara; Scianna, Marco

    2018-02-01

    In this article, we present a microscopic discrete mathematical model describing collective dynamics of a bee swarm. More specifically, each bee is set to move according to individual strategies and social interactions, the former involving the desire to reach a target destination, the latter accounting for repulsive/attractive stimuli and for alignment processes. The insects tend in fact to remain sufficiently close to the rest of the population, while avoiding collisions, and they are able to track and synchronize their movement to the flight of a given set of neighbors within their visual field. The resulting collective behavior of the bee cloud therefore emerges from non-local short/long-range interactions. Differently from similar approaches present in the literature, we here test different alignment mechanisms (i.e., based either on an Euclidean or on a topological neighborhood metric), which have an impact also on the other social components characterizing insect behavior. A series of numerical realizations then shows the phenomenology of the swarm (in terms of pattern configuration, collective productive movement, and flight synchronization) in different regions of the space of free model parameters (i.e., strength of attractive/repulsive forces, extension of the interaction regions). In this respect, constraints in the possible variations of such coefficients are here given both by reasonable empirical observations and by analytical results on some stability characteristics of the defined pairwise interaction kernels, which have to assure a realistic crystalline configuration of the swarm. An analysis of the effect of unconscious random fluctuations of bee dynamics is also provided. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Cosmological parameter estimation using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Prasad, J.; Souradeep, T.

    2014-03-01

    Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite.

  1. Dome growth behavior at Soufriere Hills Volcano, Montserrat, revealed by relocation of volcanic event swarms, 1995-1996

    USGS Publications Warehouse

    Rowe, C.A.; Thurber, C.H.; White, R.A.

    2004-01-01

    We have relocated a subset of events from the digital waveform catalogue of ???17,000 volcanic microearthquakes recorded between July 1995 and February 1996 at Soufriere Hills Volcano (SHV), Montserrat, using a cross-correlation-based phase repicking technique with a joint location method. Hypocenters were estimated for 3914 earthquakes having five or more corrected P-wave picks. The seismic source region collapsed to a volume of ???1 km3 from an initial ???100 km3. Relocated events represent 36 swarms, each containing nearly identical waveforms, having source dimensions of 10 to 100 m in diameter and spatial separations on the order of 500 m or less. Each swarm occurred over a span of several hours to a few days.Triggered data appear to miss between 65% and 98% of the events that occur within these swarms, based on review of helicorder records. Visual estimates of summit dome growth show a rough correspondence between episodes of intense swarming and increases in extruded magma, although dome observations are too sparse to make a direct comparison for this time period. The limited depth range over which dome-growth-related events occur is consistent with a dynamic model of cyclic plug extrusion behavior in the shallow conduit, governed by magma supply rate, overpressure buildup and physical properties of the magma and conduit geometry. Seismic sources may occur in locally overpressured regions that result from microlite formation in a zone of rapid decompression; we propose that this zone exists in the vicinity of a detachment plane associated with the cyclic plug extrusion. ?? 2004 Elsevier B.V. All rights reserved.

  2. Improved Modeling of Intelligent Tutoring Systems Using Ant Colony Optimization

    ERIC Educational Resources Information Center

    Rastegarmoghadam, Mahin; Ziarati, Koorush

    2017-01-01

    Swarm intelligence approaches, such as ant colony optimization (ACO), are used in adaptive e-learning systems and provide an effective method for finding optimal learning paths based on self-organization. The aim of this paper is to develop an improved modeling of adaptive tutoring systems using ACO. In this model, the learning object is…

  3. Shear wave velocity models retrieved using Rg wave dispersion data in shallow crust in some regions of southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Ma, Shutian; Motazedian, Dariush; Corchete, Victor

    2013-04-01

    Many crucial tasks in seismology, such as locating seismic events and estimating focal mechanisms, need crustal velocity models. The velocity models of shallow structures are particularly important in the simulation of ground motions. In southern Ontario, Canada, many small shallow earthquakes occur, generating high-frequency Rayleigh ( Rg) waves that are sensitive to shallow structures. In this research, the dispersion of Rg waves was used to obtain shear-wave velocities in the top few kilometers of the crust in the Georgian Bay, Sudbury, and Thunder Bay areas of southern Ontario. Several shallow velocity models were obtained based on the dispersion of recorded Rg waves. The Rg waves generated by an m N 3.0 natural earthquake on the northern shore of Georgian Bay were used to obtain velocity models for the area of an earthquake swarm in 2007. The Rg waves generated by a mining induced event in the Sudbury area in 2005 were used to retrieve velocity models between Georgian Bay and the Ottawa River. The Rg waves generated by the largest event in a natural earthquake swarm near Thunder Bay in 2008 were used to obtain a velocity model in that swarm area. The basic feature of all the investigated models is that there is a top low-velocity layer with a thickness of about 0.5 km. The seismic velocities changed mainly within the top 2 km, where small earthquakes often occur.

  4. Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms

    PubMed Central

    Vázquez, Roberto A.

    2015-01-01

    Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems. PMID:26221132

  5. Predator confusion is sufficient to evolve swarming behaviour

    PubMed Central

    Olson, Randal S.; Hintze, Arend; Dyer, Fred C.; Knoester, David B.; Adami, Christoph

    2013-01-01

    Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator–prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator–prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint—predator confusion—could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey. PMID:23740485

  6. Predator confusion is sufficient to evolve swarming behaviour.

    PubMed

    Olson, Randal S; Hintze, Arend; Dyer, Fred C; Knoester, David B; Adami, Christoph

    2013-08-06

    Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator-prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint--predator confusion--could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey.

  7. Genetic Particle Swarm Optimization–Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection

    PubMed Central

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-01-01

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm. PMID:27483285

  8. How do ensembles occupy space?

    NASA Astrophysics Data System (ADS)

    Daffertshofer, A.

    2008-04-01

    To find an answer to the title question, an attractiveness function between agents and locations is introduced yielding a phenomenological but generic model for the search for optimal distributions of agents over space. Agents can be seen as, e.g., members of biological populations like colonies of bacteria, swarms, and so on. The global attractiveness between agents and locations is maximized causing (self-propelled) `motion' of agents and, eventually, distinct distributions of agents over space. At the same token spontaneous changes or `decisions' are realized via competitions between agents as well as between locations. Hence, the model's solutions can be considered a sequence of decisions of agents during their search for a proper location. Depending on initial conditions both optimal as well as suboptimal configurations can be reached. For the latter early decision-making are important for avoiding possible conflicts: if the proper moment is missed, then only a few agents can find an optimal solution. Indeed, there is a delicate interplay between the values of the attractiveness function and the constraints as can be expressed by distinct terms of a potential function containing different Lagrange parameters. The model should be viewed as a top-down approach as it describes the dynamics of order parameters, i.e. macroscopic variables that reflect affiliations between agents and locations. The dynamics, however, is modified via so-called cost functions that are interpreted in terms of affinity levels. This interpretation can be seen as an original step towards an understanding of the dynamics at the underlying microscopic level. When focusing on the agent, one may say that the dynamics of an order parameter shows the evolution of an agent's intrinsic `map' for solving the problem of space occupation. Importantly, the dynamics does not necessarily distinguish between evolving (or moving) agents and evolving (or moving) locations though agents are more likely to be actors than the locations. Put differently, an order parameter describes an internal map which is linked to the expectation of an agent to find a certain location. Owing to the dynamical representation, we can therefore follow up the change of these maps over time leading from uncertainty to certainty.

  9. The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products

    NASA Astrophysics Data System (ADS)

    Olsen, Nils; Friis-Christensen, Eigil; Floberghagen, Rune; Alken, Patrick; Beggan, Ciaran D.; Chulliat, Arnaud; Doornbos, Eelco; da Encarnação, João Teixeira; Hamilton, Brian; Hulot, Gauthier; van den IJssel, Jose; Kuvshinov, Alexey; Lesur, Vincent; Lühr, Hermann; Macmillan, Susan; Maus, Stefan; Noja, Max; Olsen, Poul Erik H.; Park, Jaeheung; Plank, Gernot; Püthe, Christoph; Rauberg, Jan; Ritter, Patricia; Rother, Martin; Sabaka, Terence J.; Schachtschneider, Reyko; Sirol, Olivier; Stolle, Claudia; Thébault, Erwan; Thomson, Alan W. P.; Tøffner-Clausen, Lars; Velímský, Jakub; Vigneron, Pierre; Visser, Pieter N.

    2013-11-01

    Swarm, a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, is expected to be launched in late 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution, in order to gain new insights into the Earth system by improving our understanding of the Earth's interior and environment. In order to derive advanced models of the geomagnetic field (and other higher-level data products) it is necessary to take explicit advantage of the constellation aspect of Swarm. The Swarm SCARF ( S atellite C onstellation A pplication and R esearch F acility) has been established with the goal of deriving Level-2 products by combination of data from the three satellites, and of the various instruments. The present paper describes the Swarm input data products (Level-1b and auxiliary data) used by SCARF, the various processing chains of SCARF, and the Level-2 output data products determined by SCARF.

  10. hydroPSO: A Versatile Particle Swarm Optimisation R Package for Calibration of Environmental Models

    NASA Astrophysics Data System (ADS)

    Zambrano-Bigiarini, M.; Rojas, R.

    2012-04-01

    Particle Swarm Optimisation (PSO) is a recent and powerful population-based stochastic optimisation technique inspired by social behaviour of bird flocking, which shares similarities with other evolutionary techniques such as Genetic Algorithms (GA). In PSO, however, each individual of the population, known as particle in PSO terminology, adjusts its flying trajectory on the multi-dimensional search-space according to its own experience (best-known personal position) and the one of its neighbours in the swarm (best-known local position). PSO has recently received a surge of attention given its flexibility, ease of programming, low memory and CPU requirements, and efficiency. Despite these advantages, PSO may still get trapped into sub-optimal solutions, suffer from swarm explosion or premature convergence. Thus, the development of enhancements to the "canonical" PSO is an active area of research. To date, several modifications to the canonical PSO have been proposed in the literature, resulting into a large and dispersed collection of codes and algorithms which might well be used for similar if not identical purposes. In this work we present hydroPSO, a platform-independent R package implementing several enhancements to the canonical PSO that we consider of utmost importance to bring this technique to the attention of a broader community of scientists and practitioners. hydroPSO is model-independent, allowing the user to interface any model code with the calibration engine without having to invest considerable effort in customizing PSO to a new calibration problem. Some of the controlling options to fine-tune hydroPSO are: four alternative topologies, several types of inertia weight, time-variant acceleration coefficients, time-variant maximum velocity, regrouping of particles when premature convergence is detected, different types of boundary conditions and many others. Additionally, hydroPSO implements recent PSO variants such as: Improved Particle Swarm Optimisation (IPSO), Fully Informed Particle Swarm (FIPS), and weighted FIPS (wFIPS). Finally, an advanced sensitivity analysis using the Latin Hypercube One-At-a-Time (LH-OAT) method and user-friendly plotting summaries facilitate the interpretation and assessment of the calibration/optimisation results. We validate hydroPSO against the standard PSO algorithm (SPSO-2007) employing five test functions commonly used to assess the performance of optimisation algorithms. Additionally, we illustrate how the performance of the optimization/calibration engine is boosted by using several of the fine-tune options included in hydroPSO. Finally, we show how to interface SWAT-2005 with hydroPSO to calibrate a semi-distributed hydrological model for the Ega River basin in Spain, and how to interface MODFLOW-2000 and hydroPSO to calibrate a groundwater flow model for the regional aquifer of the Pampa del Tamarugal in Chile. We limit the applications of hydroPSO to study cases dealing with surface water and groundwater models as these two are the authors' areas of expertise. However, based on the flexibility of hydroPSO we believe this package can be implemented to any model code requiring some form of parameter estimation.

  11. Software Engineering and Swarm-Based Systems

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Sterritt, Roy; Pena, Joaquin; Rouff, Christopher A.

    2006-01-01

    We discuss two software engineering aspects in the development of complex swarm-based systems. NASA researchers have been investigating various possible concept missions that would greatly advance future space exploration capabilities. The concept mission that we have focused on exploits the principles of autonomic computing as well as being based on the use of intelligent swarms, whereby a (potentially large) number of similar spacecraft collaborate to achieve mission goals. The intent is that such systems not only can be sent to explore remote and harsh environments but also are endowed with greater degrees of protection and longevity to achieve mission goals.

  12. Swarms with canonical active Brownian motion.

    PubMed

    Glück, Alexander; Hüffel, Helmuth; Ilijić, Saša

    2011-05-01

    We present a swarm model of Brownian particles with harmonic interactions, where the individuals undergo canonical active Brownian motion, i.e., each Brownian particle can convert internal energy to mechanical energy of motion. We assume the existence of a single global internal energy of the system. Numerical simulations show amorphous swarming behavior as well as static configurations. Analytic understanding of the system is provided by studying stability properties of equilibria.

  13. Thermal Modeling in Support of the Edison Demonstration of Smallsat Networks Project

    NASA Technical Reports Server (NTRS)

    Coker, Robert

    2013-01-01

    NASA's Edison program is intending to launch a swarm of at least 8 small satellites in 2013. This swarm of 1.5U Cubesats, the Edison Demonstration of Smallsat Networks (EDSN) project, will demonstrate intra-swarm communications and multi-point in-situ space physics data acquisition. In support of the design and testing of the EDSN satellites, a geometrically accurate thermal model has been constructed. Due to the low duty cycle of most components, no significant overheating issues were found. The predicted mininum temperatures of the external antennas are low enough, however, that some mitigation may be in order. The development and application of the model will be discussed in detail.

  14. Seismogenic structures activated during the pre-eruptive and intrusive swarms of Piton de la Fournaise volcano (La Réunion island) between 2008 and 2011

    NASA Astrophysics Data System (ADS)

    Battaglia, J.; Brenguier, F.

    2011-12-01

    Piton de la Fournaise is a frequently active basaltic volcano with more than 30 fissure eruptions since 1998. These eruptions are always preceded by pre-eruptive swarms of volcano-tectonic earthquakes which accompany dike propagation. Occasionally, intrusion swarms occur without leading to any eruption. From October 2008 to May 2011, as part of the research project Undervolc, a temporary network of 15 broadband stations has been installed on the volcano to complement the local monitoring network. We examined in detail the 6 intrusive and 5 pre-eruptive swarms which occurred during the temporary experiment. All the crises lasted for a few hours and only included shallow events clustered below the summit craters, around and above sea level, showing no signs of deeper magma transfers. These characteristics are common to most swarms observed at Piton de la Fournaise arising questions about the origin of the seismicity which seems to be poorly linked with dike propagation. With the aim to identify the main seismogenic structures active during the swarms, we applied precise earthquake detection and classification techniques based on waveform cross-correlation. For each swarm, the onsets of all transients, including small amplitude ones, have been precisely detected at a single station by scanning the continuous data with reference waveforms. The classification of the detected transients indicates the presence of several families of similar earthquakes. The two main families (F01 and F02) include several hundred events. They are systematically activated at the beginning of each pre-eruptive swarm but are inactive during the intrusive ones. They group more than 50 percent of the detected events for the corresponding crises. The other clusters are mostly associated with single swarms. To determine the spatial characteristics of the structures corresponding to the main families, we applied precise relocation techniques. Based on the one-station classification, the events have first been picked at all available stations by cross-correlating waveforms with those of master events whose arrival times have been manually determined. All events have been located using a 3D velocity model to determine accurate hypocentral azimuths and take-off angles. Precise relative locations have been computed for each multiplet using cross-correlation delays calculated for all available stations between all pairs of events. The results indicate the presence at sea level of a major structure grouping families F01 and F02 and describing an East-West elongated pattern with sub-vertical extension. Small scale earthquake migrations, mostly horizontal, occur during the pre-eruptive swarms along that structure. The smaller multiplets define vertically elongated patterns extending around and above the main F01-F02 multiplet. Our results show that different processes are involved in pre-eruptive and intrusive crises and that a structure located around 2.5 km below the summit controls the occurrence of recent eruptions of Piton de la Fournaise volcano.

  15. Empirical Scaling Relations of Source Parameters For The Earthquake Swarm 2000 At Novy Kostel (vogtland/nw-bohemia)

    NASA Astrophysics Data System (ADS)

    Heuer, B.; Plenefisch, T.; Seidl, D.; Klinge, K.

    Investigations on the interdependence of different source parameters are an impor- tant task to get more insight into the mechanics and dynamics of earthquake rup- ture, to model source processes and to make predictions for ground motion at the surface. The interdependencies, providing so-called scaling relations, have often been investigated for large earthquakes. However, they are not commonly determined for micro-earthquakes and swarm-earthquakes, especially for those of the Vogtland/NW- Bohemia region. For the most recent swarm in the Vogtland/NW-Bohemia, which took place between August and December 2000 near Novy Kostel (Czech Republic), we systematically determine the most important source parameters such as energy E0, seismic moment M0, local magnitude ML, fault length L, corner frequency fc and rise time r and build their interdependencies. The swarm of 2000 is well suited for such investigations since it covers a large magnitude interval (1.5 ML 3.7) and there are also observations in the near-field at several stations. In the present paper we mostly concentrate on two near-field stations with hypocentral distances between 11 and 13 km, namely WERN (Wernitzgrün) and SBG (Schönberg). Our data processing includes restitution to true ground displacement and rotation into the ray-based prin- cipal co-ordinate system, which we determine by the covariance matrix of the P- and S-displacement, respectively. Data preparation, determination of the distinct source parameters as well as statistical interpretation of the results will be exemplary pre- sented. The results will be discussed with respect to temporal variations in the swarm activity (the swarm consists of eight distinct sub-episodes) and already existing focal mechanisms.

  16. New numerical methods for open-loop and feedback solutions to dynamic optimization problems

    NASA Astrophysics Data System (ADS)

    Ghosh, Pradipto

    The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development is that the resulting control law has an algebraic closed-form structure. The proposed method uses an optimal spatial statistical predictor called universal kriging to construct the surrogate model of a feedback controller, which is capable of quickly predicting an optimal control estimate based on current state (and time) information. With universal kriging, an approximation to the optimal feedback map is computed by conceptualizing a set of state-control samples from pre-computed extremals to be a particular realization of a jointly Gaussian spatial process. Feedback policies are computed for a variety of example dynamic optimization problems in order to evaluate the effectiveness of this methodology. This feedback synthesis approach is found to combine good numerical accuracy with low computational overhead, making it a suitable candidate for real-time applications. Particle swarm and universal kriging are combined for a capstone example, a near optimal, near-admissible, full-state feedback control law is computed and tested for the heat-load-limited atmospheric-turn guidance of an aeroassisted transfer vehicle. The performance of this explicit guidance scheme is found to be very promising; initial errors in atmospheric entry due to simulated thruster misfirings are found to be accurately corrected while closely respecting the algebraic state-inequality constraint.

  17. Long-range Acoustic Interactions in Insect Swarms: An Adaptive Gravity Model

    NASA Astrophysics Data System (ADS)

    Gorbonos, Dan; Ianconescu, Reuven; Puckett, James G.; Ni, Rui; Ouellette, Nicholas T.; Gov, Nir S.

    The collective motion of groups of animals emerges from the net effect of the interactions between individual members of the group. In many cases, such as birds, fish, or ungulates, these interactions are mediated by sensory stimuli that predominantly arise from nearby neighbors. But not all stimuli in animal groups are short range. Here, we consider mating swarms of midges, which interact primarily via long-range acoustic stimuli. We exploit the similarity in form between the decay of acoustic and gravitational sources to build a model for swarm behavior. By accounting for the adaptive nature of the midges' acoustic sensing, we show that our ``adaptive gravity'' model makes mean-field predictions that agree well with experimental observations of laboratory swarms. Our results highlight the role of sensory mechanisms and interaction range in collective animal behavior. The adaptive interactions that we present here open a new class of equations of motion, which may appear in other biological contexts.

  18. Long-range acoustic interactions in insect swarms: an adaptive gravity model

    NASA Astrophysics Data System (ADS)

    Gorbonos, Dan; Ianconescu, Reuven; Puckett, James G.; Ni, Rui; Ouellette, Nicholas T.; Gov, Nir S.

    2016-07-01

    The collective motion of groups of animals emerges from the net effect of the interactions between individual members of the group. In many cases, such as birds, fish, or ungulates, these interactions are mediated by sensory stimuli that predominantly arise from nearby neighbors. But not all stimuli in animal groups are short range. Here, we consider mating swarms of midges, which are thought to interact primarily via long-range acoustic stimuli. We exploit the similarity in form between the decay of acoustic and gravitational sources to build a model for swarm behavior. By accounting for the adaptive nature of the midges’ acoustic sensing, we show that our ‘adaptive gravity’ model makes mean-field predictions that agree well with experimental observations of laboratory swarms. Our results highlight the role of sensory mechanisms and interaction range in collective animal behavior. Additionally, the adaptive interactions that we present here open a new class of equations of motion, which may appear in other biological contexts.

  19. The S-layer homology domain-containing protein SlhA from Paenibacillus alvei CCM 2051(T) is important for swarming and biofilm formation.

    PubMed

    Janesch, Bettina; Koerdt, Andrea; Messner, Paul; Schäffer, Christina

    2013-01-01

    Swarming and biofilm formation have been studied for a variety of bacteria. While this is well investigated for Gram-negative bacteria, less is known about Gram-positive bacteria, including Paenibacillus alvei, a secondary invader of diseased honeybee colonies infected with Melissococcus pluton, the causative agent of European foulbrood (EFB). Paenibacillus alvei CCM 2051(T) is a Gram-positive bacterium which was recently shown to employ S-layer homology (SLH) domains as cell wall targeting modules to display proteins on its cell surface. This study deals with the newly identified 1335-amino acid protein SlhA from P. alvei which carries at the C‑terminus three consecutive SLH-motifs containing the predicted binding sequences SRGE, VRQD, and LRGD instead of the common TRAE motif. Based on the proof of cell surface location of SlhA by fluorescence microscopy using a SlhA-GFP chimera, the binding mechanism was investigated in an in vitro assay. To unravel a putative function of the SlhA protein, a knockout mutant was constructed. Experimental data indicated that one SLH domain is sufficient for anchoring of SlhA to the cell surface, and the SLH domains of SlhA recognize both the peptidoglycan and the secondary cell wall polymer in vitro. This is in agreement with previous data from the S-layer protein SpaA, pinpointing a wider utilization of that mechanism for cell surface display of proteins in P. alvei. Compared to the wild-type bacterium ΔslhA revealed changed colony morphology, loss of swarming motility and impaired biofilm formation. The phenotype was similar to that of the flagella knockout Δhag, possibly due to reduced EPS production influencing the functionality of the flagella of ΔslhA. This study demonstrates the involvement of the SLH domain-containing protein SlhA in swarming and biofilm formation of P. alvei CCM 2051(T).

  20. Characteristics of Swarm Seismicity in Northern California

    NASA Astrophysics Data System (ADS)

    Chiorini, S.; Lekic, V.

    2017-12-01

    Seismic swarms are characterized by an anomalously large number of earthquakes compared to the background rate of seismicity that are tightly clustered in space (typically, one to tens of kilometers) and time (typically, days to weeks). However, why and how swarms occur is poorly understood, partly because of the difficulty of identifying the range of swarm behaviors within large seismic catalogs. Previous studies have found that swarms, compared to other earthquake sequences, appear to be more common in extensional (Vidale & Shearer, 2006) and volcanic settings (Hayashi & Morita, 2003). In addition, swarms more commonly exhibit migration patterns, consistent with either fluid diffusion (Chen & Shearer, 2011; Chen et al., 2012) or aseismic creep (Lohman & McGuire, 2007), and are preferentially found in areas of enhanced heat flow (Enescu, 2009; Zaliapin & Ben Zion, 2016). While the swarm seismicity of Southern California has been studied extensively, that of Northern California has not been systematically documented and characterized. We employed two complementary methods of swarm identification: the approach of Vidale and Shearer (2006; henceforth VS2006) based on a priori threshold distances and timings of quakes, and the spatio-temporal distance metric proposed by Zaliapin et al. (2008; henceforth Z2008) in order to build a complete catalog of swarm seismicity in Northern California spanning 1984-2016 (Waldhauser & Schaff, 2008). Once filtered for aftershocks, the catalog allows us to describe the main features of swarm seismicity in Northern California, including spatial distribution, association or lack thereof with known faults and volcanic systems, and seismically quiescent regions. We then apply a robust technique to characterize the morphology of swarms, leading to subsets of swarms that are oriented either vertically or horizontally in space. When mapped, vertical swarms show a significant association with volcanic regions, and horizontal swarms with tectonic and volcanic settings. Finally, we demonstrate some swarms underlie areas that are typically quiescent, like Redding and the Sutter Buttes. Our catalog presents a more complete snapshot of the diversity of swarm characteristics in Northern California, and motivates further study of their relationship to tectonic and volcanic processes.

  1. Using modified fruit fly optimisation algorithm to perform the function test and case studies

    NASA Astrophysics Data System (ADS)

    Pan, Wen-Tsao

    2013-06-01

    Evolutionary computation is a computing mode established by practically simulating natural evolutionary processes based on the concept of Darwinian Theory, and it is a common research method. The main contribution of this paper was to reinforce the function of searching for the optimised solution using the fruit fly optimization algorithm (FOA), in order to avoid the acquisition of local extremum solutions. The evolutionary computation has grown to include the concepts of animal foraging behaviour and group behaviour. This study discussed three common evolutionary computation methods and compared them with the modified fruit fly optimization algorithm (MFOA). It further investigated the ability of the three mathematical functions in computing extreme values, as well as the algorithm execution speed and the forecast ability of the forecasting model built using the optimised general regression neural network (GRNN) parameters. The findings indicated that there was no obvious difference between particle swarm optimization and the MFOA in regards to the ability to compute extreme values; however, they were both better than the artificial fish swarm algorithm and FOA. In addition, the MFOA performed better than the particle swarm optimization in regards to the algorithm execution speed, and the forecast ability of the forecasting model built using the MFOA's GRNN parameters was better than that of the other three forecasting models.

  2. An algorithm for deriving core magnetic field models from the Swarm data set

    NASA Astrophysics Data System (ADS)

    Rother, Martin; Lesur, Vincent; Schachtschneider, Reyko

    2013-11-01

    In view of an optimal exploitation of the Swarm data set, we have prepared and tested software dedicated to the determination of accurate core magnetic field models and of the Euler angles between the magnetic sensors and the satellite reference frame. The dedicated core field model estimation is derived directly from the GFZ Reference Internal Magnetic Model (GRIMM) inversion and modeling family. The data selection techniques and the model parameterizations are similar to what were used for the derivation of the second (Lesur et al., 2010) and third versions of GRIMM, although the usage of observatory data is not planned in the framework of the application to Swarm. The regularization technique applied during the inversion process smoothes the magnetic field model in time. The algorithm to estimate the Euler angles is also derived from the CHAMP studies. The inversion scheme includes Euler angle determination with a quaternion representation for describing the rotations. It has been built to handle possible weak time variations of these angles. The modeling approach and software have been initially validated on a simple, noise-free, synthetic data set and on CHAMP vector magnetic field measurements. We present results of test runs applied to the synthetic Swarm test data set.

  3. Research on particle swarm optimization algorithm based on optimal movement probability

    NASA Astrophysics Data System (ADS)

    Ma, Jianhong; Zhang, Han; He, Baofeng

    2017-01-01

    The particle swarm optimization algorithm to improve the control precision, and has great application value training neural network and fuzzy system control fields etc.The traditional particle swarm algorithm is used for the training of feed forward neural networks,the search efficiency is low, and easy to fall into local convergence.An improved particle swarm optimization algorithm is proposed based on error back propagation gradient descent. Particle swarm optimization for Solving Least Squares Problems to meme group, the particles in the fitness ranking, optimization problem of the overall consideration, the error back propagation gradient descent training BP neural network, particle to update the velocity and position according to their individual optimal and global optimization, make the particles more to the social optimal learning and less to its optimal learning, it can avoid the particles fall into local optimum, by using gradient information can accelerate the PSO local search ability, improve the multi beam particle swarm depth zero less trajectory information search efficiency, the realization of improved particle swarm optimization algorithm. Simulation results show that the algorithm in the initial stage of rapid convergence to the global optimal solution can be near to the global optimal solution and keep close to the trend, the algorithm has faster convergence speed and search performance in the same running time, it can improve the convergence speed of the algorithm, especially the later search efficiency.

  4. Cultural-based particle swarm for dynamic optimisation problems

    NASA Astrophysics Data System (ADS)

    Daneshyari, Moayed; Yen, Gary G.

    2012-07-01

    Many practical optimisation problems are with the existence of uncertainties, among which a significant number belong to the dynamic optimisation problem (DOP) category in which the fitness function changes through time. In this study, we propose the cultural-based particle swarm optimisation (PSO) to solve DOP problems. A cultural framework is adopted incorporating the required information from the PSO into five sections of the belief space, namely situational, temporal, domain, normative and spatial knowledge. The stored information will be adopted to detect the changes in the environment and assists response to the change through a diversity-based repulsion among particles and migration among swarms in the population space, and also helps in selecting the leading particles in three different levels, personal, swarm and global levels. Comparison of the proposed heuristics over several difficult dynamic benchmark problems demonstrates the better or equal performance with respect to most of other selected state-of-the-art dynamic PSO heuristics.

  5. Observatory data and the Swarm mission

    NASA Astrophysics Data System (ADS)

    Macmillan, S.; Olsen, N.

    2013-11-01

    The ESA Swarm mission to identify and measure very accurately the different magnetic signals that arise in the Earth's core, mantle, crust, oceans, ionosphere and magnetosphere, which together form the magnetic field around the Earth, has increased interest in magnetic data collected on the surface of the Earth at observatories. The scientific use of Swarm data and Swarm-derived products is greatly enhanced by combination with observatory data and indices. As part of the Swarm Level-2 data activities plans are in place to distribute such ground-based data along with the Swarm data as auxiliary data products. We describe here the preparation of the data set of ground observatory hourly mean values, including procedures to check and select observatory data spanning the modern magnetic survey satellite era. We discuss other possible combined uses of satellite and observatory data, in particular those that may use higher cadence 1-second and 1-minute data from observatories.

  6. Formal Methods for Autonomic and Swarm-based Systems

    NASA Technical Reports Server (NTRS)

    Rouff, Christopher; Vanderbilt, Amy; Hinchey, Mike; Truszkowski, Walt; Rash, James

    2004-01-01

    Swarms of intelligent rovers and spacecraft are being considered for a number of future NASA missions. These missions will provide MSA scientist and explorers greater flexibility and the chance to gather more science than traditional single spacecraft missions. These swarms of spacecraft are intended to operate for large periods of time without contact with the Earth. To do this, they must be highly autonomous, have autonomic properties and utilize sophisticated artificial intelligence. The Autonomous Nano Technology Swarm (ANTS) mission is an example of one of the swarm type of missions NASA is considering. This mission will explore the asteroid belt using an insect colony analogy cataloging the mass, density, morphology, and chemical composition of the asteroids, including any anomalous concentrations of specific minerals. Verifying such a system would be a huge task. This paper discusses ongoing work to develop a formal method for verifying swarm and autonomic systems.

  7. Extending self-organizing particle systems to problem solving.

    PubMed

    Rodríguez, Alejandro; Reggia, James A

    2004-01-01

    Self-organizing particle systems consist of numerous autonomous, purely reflexive agents ("particles") whose collective movements through space are determined primarily by local influences they exert upon one another. Inspired by biological phenomena (bird flocking, fish schooling, etc.), particle systems have been used not only for biological modeling, but also increasingly for applications requiring the simulation of collective movements such as computer-generated animation. In this research, we take some first steps in extending particle systems so that they not only move collectively, but also solve simple problems. This is done by giving the individual particles (agents) a rudimentary intelligence in the form of a very limited memory and a top-down, goal-directed control mechanism that, triggered by appropriate conditions, switches them between different behavioral states and thus different movement dynamics. Such enhanced particle systems are shown to be able to function effectively in performing simulated search-and-collect tasks. Further, computational experiments show that collectively moving agent teams are more effective than similar but independently moving ones in carrying out such tasks, and that agent teams of either type that split off members of the collective to protect previously acquired resources are most effective. This work shows that the reflexive agents of contemporary particle systems can readily be extended to support goal-directed problem solving while retaining their collective movement behaviors. These results may prove useful not only for future modeling of animal behavior, but also in computer animation, coordinated movement control in robotic teams, particle swarm optimization, and computer games.

  8. Modeling level change in Lake Urmia using hybrid artificial intelligence approaches

    NASA Astrophysics Data System (ADS)

    Esbati, M.; Ahmadieh Khanesar, M.; Shahzadi, Ali

    2017-06-01

    The investigation of water level fluctuations in lakes for protecting them regarding the importance of these water complexes in national and regional scales has found a special place among countries in recent years. The importance of the prediction of water level balance in Lake Urmia is necessary due to several-meter fluctuations in the last decade which help the prevention from possible future losses. For this purpose, in this paper, the performance of adaptive neuro-fuzzy inference system (ANFIS) for predicting the lake water level balance has been studied. In addition, for the training of the adaptive neuro-fuzzy inference system, particle swarm optimization (PSO) and hybrid backpropagation-recursive least square method algorithm have been used. Moreover, a hybrid method based on particle swarm optimization and recursive least square (PSO-RLS) training algorithm for the training of ANFIS structure is introduced. In order to have a more fare comparison, hybrid particle swarm optimization and gradient descent are also applied. The models have been trained, tested, and validated based on lake level data between 1991 and 2014. For performance evaluation, a comparison is made between these methods. Numerical results obtained show that the proposed methods with a reasonable error have a good performance in water level balance prediction. It is also clear that with continuing the current trend, Lake Urmia will experience more drop in the water level balance in the upcoming years.

  9. Applying Adaptive Swarm Intelligence Technology with Structuration in Web-Based Collaborative Learning

    ERIC Educational Resources Information Center

    Huang, Yueh-Min; Liu, Chien-Hung

    2009-01-01

    One of the key challenges in the promotion of web-based learning is the development of effective collaborative learning environments. We posit that the structuration process strongly influences the effectiveness of technology used in web-based collaborative learning activities. In this paper, we propose an ant swarm collaborative learning (ASCL)…

  10. A Winner Determination Algorithm for Combinatorial Auctions Based on Hybrid Artificial Fish Swarm Algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Genrang; Lin, ZhengChun

    The problem of winner determination in combinatorial auctions is a hotspot electronic business, and a NP hard problem. A Hybrid Artificial Fish Swarm Algorithm(HAFSA), which is combined with First Suite Heuristic Algorithm (FSHA) and Artificial Fish Swarm Algorithm (AFSA), is proposed to solve the problem after probing it base on the theories of AFSA. Experiment results show that the HAFSA is a rapidly and efficient algorithm for The problem of winner determining. Compared with Ant colony Optimization Algorithm, it has a good performance with broad and prosperous application.

  11. Particle Swarm Transport across the Fracture-Matrix Interface

    NASA Astrophysics Data System (ADS)

    Malenda, M. G.; Pyrak-Nolte, L. J.

    2016-12-01

    A fundamental understanding of particle transport is required for many diverse applications such as effective proppant injection, for deployment of subsurface imaging micro-particles, and for removal of particulate contaminants from subsurface water systems. One method of particulate transport is the use of particle swarms that act as coherent entities. Previous work found that particle swarms travel farther and faster in single fractures than individual particles when compared to dispersions and emulsions. In this study, gravity-driven experiments were performed to characterize swarm transport across the fracture-matrix interface. Synthetic porous media with a horizontal fracture were created from layers of square-packed 3D printed (PMMA) spherical grains (12 mm diameter). The minimum fracture aperture ranged from 0 - 10 mm. Swarms (5 and 25 µL) were composed of 3.2 micron diameter fluorescent polystryene beads (1-2% by mass). Swarms were released into a fractured porous medium that was submerged in water and was illuminated with a green (528 nm) LED array. Descending swarms were imaged with a CCD camera (2 fps). Whether an intact swarm was transported across a fracture depended on the volume of the swarm, the aperture of the fracture, and the alignment of pores on the two fracture walls. Large aperture fractures caused significant deceleration of a swarm because the swarm was free to expand laterally in the fracture. Swarms tended to remain intact when the pores on the two fracture walls were vertically aligned and traveled in the lower porous medium with speeds that were 30%-50% of their original speed in the upper matrix. When the pores on opposing walls were no longer aligned, swarms were observed to bifurcate around the grain into two smaller slower-moving swarms. Understanding the physics of particle swarms in fractured porous media has important implications for enhancing target particulate injection into the subsurface as well as for contaminant particulate transport. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022) and by National Science Foundation REU program under Award Number (PHY-1460899) at Purdue University.

  12. New evidence of mating swarms of the malaria vector, Anopheles arabiensis in Tanzania

    PubMed Central

    Kaindoa, Emmanuel W.; Ngowo, Halfan S.; Limwagu, Alex; Mkandawile, Gustav; Kihonda, Japhet; Masalu, John Paliga; Bwanary, Hamis; Diabate, Abdoulaye; Okumu, Fredros O.

    2017-01-01

    Background: Malaria mosquitoes form mating swarms around sunset, often at the same locations for months or years. Unfortunately, studies of Anopheles swarms are rare in East Africa, the last recorded field observations in Tanzania having been in 1983. Methods: Mosquito swarms were surveyed by trained volunteers between August-2016 and June-2017 in Ulanga district, Tanzania. Identified Anopheles swarms were sampled using sweep nets, and collected mosquitoes killed by refrigeration then identified by sex and taxa. Sub-samples were further identified by PCR, and spermatheca of females examined for mating status. Mosquito ages were estimated by observing female ovarian tracheoles and rotation of male genitalia. GPS locations, types of swarm markers, start/end times of swarming, heights above ground, mosquito counts/swarm, and copulation events were recorded. Results: A total of 216 Anopheles swarms were identified, characterized and mapped, from which 7,142 Anopheles gambiae s.l and 13 Anopheles funestus were sampled. The An. gambiae s.l were 99.6% males and 0.4% females, while the An. funestus were all males. Of all An. gambiae s.l analyzed by PCR, 86.7% were An. arabiensis, while 13.3% returned non-amplified DNA. Mean height (±SD) of swarms was 2.74±0.64m, and median duration was 20 (IQR; 15-25) minutes. Confirmed swarm markers included rice fields (25.5%), burned grounds (17.2%), banana trees (13%), brick piles (8.8%), garbage heaps (7.9%) and ant-hills (7.4%). Visual estimates of swarm sizes by the volunteers was strongly correlated to actual sizes by sweep nets (R=0.94; P=<0.001). All females examined were nulliparous and 95.6% [N=6787] of males had rotated genitalia, indicating sexual maturity. Conclusions: This is the first report of Anopheles swarms in Tanzania in more than three decades. The study demonstrates that the swarms can be identified and characterized by trained community-based volunteers, and highlights potential new interventions, for example targeted aerosol spraying of the swarms to improve malaria control. PMID:29184918

  13. Geodynamic Setting of Proterozoic Dyke Swarms of the Leo-Man Craton, West Africa, Based on New U-Pb Dating and Geochemistry

    NASA Astrophysics Data System (ADS)

    Baratoux, L.; Jessell, M.; Söderlund, U.; Ernst, R. E.; Benoit, M.; Naba, S.; Cournede, C.; Perrouty, S.; Metelka, V.; Yatte, D.; Diallo, D. P.; Ndiaye, P. M.; Dioh, E.; Baratoux, D.

    2016-12-01

    Over 20 sets of dolerite dykes crosscutting Paleoproterozoic basement in West Africa were distinguished via the interpretation of regional and high-resolution airborne magnetic data available over the West African Craton. Some of the dykes reach over 300 km in length and are considered parts of much larger systems of mafic dyke swarms which form the plumbing system of Large Igneous Provinces (LIPs). Five different dyke swarms in Burkina Faso, Niger, Ghana and Senegal were investigated. In terms of petrography and composition, the mafic dykes correspond to tholeiitic basalts and are typically composed of plagioclase + clinopyroxene ± orthopyroxene ± olivine. They display a doleritic texture of variable grain size. Eleven ID-TIMS U-Pb ages obtained on baddeleyite define five generations of Proterozoic age. The N10 Libiri dyke swarm, found in western Niger, yielded an age of ca. 1790 Ma. The N40 Bassari swarm in Senegal was dated at ca. 1764 Ma, and is potentially linked to the 1790 Ma Libiri swarm, 1400 km away. The 300 by 400 km Korsimoro N100 dyke swarm transects central Burkina Faso and was dated at ca. 1575 Ma. Five ca. 1520 Ma ages were obtained for dykes of the Essakane swarm, three in Burkina Faso, one from Ghana (N130 orientation) and one from Senegal (E-W orientation), and document a large extent (600 km wide and 1500 km long) and short duration of dyke emplacement. The Manso N350 dyke swarm in southern Ghana, which is about 400 km long and about 200 km wide, yields a preliminary age of ca 870 Ma. A mantle plume origin is suggested for these swarms, especially the 1790-1765 Ma Libiri-Bassari swarm and the 1520 Ma Essakane swarms (which have lithosphere-contaminated E-MORB chemistry), whose scale is similar to largest giant radiating swarms (e.g. CAMP and Mackenzie). The 870 Ma Manso swarm has composition closer to OIB, consistent with a plume/hotspot origin. The 1575 Ma Korsimoro swarm has composition between EMORB and NMORB, which suggests a rift setting.

  14. Autonomic and Coevolutionary Sensor Networking

    NASA Astrophysics Data System (ADS)

    Boonma, Pruet; Suzuki, Junichi

    (WSNs) applications are often required to balance the tradeoffs among conflicting operational objectives (e.g., latency and power consumption) and operate at an optimal tradeoff. This chapter proposes and evaluates a architecture, called BiSNET/e, which allows WSN applications to overcome this issue. BiSNET/e is designed to support three major types of WSN applications: , and hybrid applications. Each application is implemented as a decentralized group of, which is analogous to a bee colony (application) consisting of bees (agents). Agents collect sensor data or detect an event (a significant change in sensor reading) on individual nodes, and carry sensor data to base stations. They perform these data collection and event detection functionalities by sensing their surrounding network conditions and adaptively invoking behaviors such as pheromone emission, reproduction, migration, swarming and death. Each agent has its own behavior policy, as a set of genes, which defines how to invoke its behaviors. BiSNET/e allows agents to evolve their behavior policies (genes) across generations and autonomously adapt their performance to given objectives. Simulation results demonstrate that, in all three types of applications, agents evolve to find optimal tradeoffs among conflicting objectives and adapt to dynamic network conditions such as traffic fluctuations and node failures/additions. Simulation results also illustrate that, in hybrid applications, data collection agents and event detection agents coevolve to augment their adaptability and performance.

  15. Optimal configuration of power grid sources based on optimal particle swarm algorithm

    NASA Astrophysics Data System (ADS)

    Wen, Yuanhua

    2018-04-01

    In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.

  16. Multiswarm comprehensive learning particle swarm optimization for solving multiobjective optimization problems.

    PubMed

    Yu, Xiang; Zhang, Xueqing

    2017-01-01

    Comprehensive learning particle swarm optimization (CLPSO) is a powerful state-of-the-art single-objective metaheuristic. Extending from CLPSO, this paper proposes multiswarm CLPSO (MSCLPSO) for multiobjective optimization. MSCLPSO involves multiple swarms, with each swarm associated with a separate original objective. Each particle's personal best position is determined just according to the corresponding single objective. Elitists are stored externally. MSCLPSO differs from existing multiobjective particle swarm optimizers in three aspects. First, each swarm focuses on optimizing the associated objective using CLPSO, without learning from the elitists or any other swarm. Second, mutation is applied to the elitists and the mutation strategy appropriately exploits the personal best positions and elitists. Third, a modified differential evolution (DE) strategy is applied to some extreme and least crowded elitists. The DE strategy updates an elitist based on the differences of the elitists. The personal best positions carry useful information about the Pareto set, and the mutation and DE strategies help MSCLPSO discover the true Pareto front. Experiments conducted on various benchmark problems demonstrate that MSCLPSO can find nondominated solutions distributed reasonably over the true Pareto front in a single run.

  17. Predictive protocol of flocks with small-world connection pattern.

    PubMed

    Zhang, Hai-Tao; Chen, Michael Z Q; Zhou, Tao

    2009-01-01

    By introducing a predictive mechanism with small-world connections, we propose a new motion protocol for self-driven flocks. The small-world connections are implemented by randomly adding long-range interactions from the leader to a few distant agents, namely, pseudoleaders. The leader can directly affect the pseudoleaders, thereby influencing all the other agents through them efficiently. Moreover, these pseudoleaders are able to predict the leader's motion several steps ahead and use this information in decision making towards coherent flocking with more stable formation. It is shown that drastic improvement can be achieved in terms of both the consensus performance and the communication cost. From the engineering point of view, the current protocol allows for a significant improvement in the cohesion and rigidity of the formation at a fairly low cost of adding a few long-range links embedded with predictive capabilities. Significantly, this work uncovers an important feature of flocks that predictive capability and long-range links can compensate for the insufficiency of each other. These conclusions are valid for both the attractive and repulsive swarm model and the Vicsek model.

  18. Crude oil price forecasting based on hybridizing wavelet multiple linear regression model, particle swarm optimization techniques, and principal component analysis.

    PubMed

    Shabri, Ani; Samsudin, Ruhaidah

    2014-01-01

    Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series.

  19. Crude Oil Price Forecasting Based on Hybridizing Wavelet Multiple Linear Regression Model, Particle Swarm Optimization Techniques, and Principal Component Analysis

    PubMed Central

    Shabri, Ani; Samsudin, Ruhaidah

    2014-01-01

    Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series. PMID:24895666

  20. A Chaotic Particle Swarm Optimization-Based Heuristic for Market-Oriented Task-Level Scheduling in Cloud Workflow Systems.

    PubMed

    Li, Xuejun; Xu, Jia; Yang, Yun

    2015-01-01

    Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO) algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts.

  1. A Chaotic Particle Swarm Optimization-Based Heuristic for Market-Oriented Task-Level Scheduling in Cloud Workflow Systems

    PubMed Central

    Li, Xuejun; Xu, Jia; Yang, Yun

    2015-01-01

    Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO) algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts. PMID:26357510

  2. [Application of near infrared spectroscopy combined with particle swarm optimization based least square support vactor machine to rapid quantitative analysis of Corni Fructus].

    PubMed

    Liu, Xue-song; Sun, Fen-fang; Jin, Ye; Wu, Yong-jiang; Gu, Zhi-xin; Zhu, Li; Yan, Dong-lan

    2015-12-01

    A novel method was developed for the rapid determination of multi-indicators in corni fructus by means of near infrared (NIR) spectroscopy. Particle swarm optimization (PSO) based least squares support vector machine was investigated to increase the levels of quality control. The calibration models of moisture, extractum, morroniside and loganin were established using the PSO-LS-SVM algorithm. The performance of PSO-LS-SVM models was compared with partial least squares regression (PLSR) and back propagation artificial neural network (BP-ANN). The calibration and validation results of PSO-LS-SVM were superior to both PLS and BP-ANN. For PSO-LS-SVM models, the correlation coefficients (r) of calibrations were all above 0.942. The optimal prediction results were also achieved by PSO-LS-SVM models with the RMSEP (root mean square error of prediction) and RSEP (relative standard errors of prediction) less than 1.176 and 15.5% respectively. The results suggest that PSO-LS-SVM algorithm has a good model performance and high prediction accuracy. NIR has a potential value for rapid determination of multi-indicators in Corni Fructus.

  3. Precursory swarms of long-period events at Redoubt Volcano (1989-1990), Alaska: Their origin and use as a forecasting tool

    USGS Publications Warehouse

    Chouet, B.A.; Page, R.A.; Stephens, C.D.; Lahr, J.C.; Power, J.A.

    1994-01-01

    During the eruption of Redoubt Volcano from December 1989 through April 1990, the Alaska Volcano Observatory issued advance warnings of several tephra eruptions based on changes in seismic activity related to the occurrence of precursory swarms of long-period (LP) seismic events (dominant period of about 0.5 s). The initial eruption on December 14 occurred after 23 years of quiescence and was heralded by a 23-hour swarm of LP events that ended abruptly with the eruption. After a series of vent-clearing explosions over the next few days, dome growth began on December 21. Another swarm, with LP events similar to those of the first, began on the 26th and ended in a major tephra eruption on January 2. Eruptions continued over the next two weeks and then ceased until February 15, when a large eruption initiated a long phase of repetitive dome-building and dome-destroying episodes that continued into April. Warnings were issued before the major events on December 14 and January 2, but as the eruptive sequence continued after January 2, the energy of the swarms decreased and forecasting became more difficult. A significant but less intense swarm preceded the February 15 eruption, which was not forecast. This eruption destroyed the only seismograph on the volcanic edifice and stymied forecasting until March 4, when the first of three new stations was installed within 3 km of the active vent. From March 4 to the end of the sequence on April 21, there were eight eruptions, six of which were preceded by detectable swarms of LP events. Although weak, these swarms provided the basis for warnings issued before the eruptions on March 23 and April 6. The initial swarm on December 13 had the following features: (1) short duration (23 hours); (2) a rapidly accelerating rate of seismic energy release over the first 18 hours of the swarm, followed by a decline of activity during the 5 hours preceding the eruption; (3) a magnitude range from -0.4 to 1.6; (4) nearly identical LP signatures with a dominant period near 0.5 s; (5) dilatational first motions everywhere; and (6) a stationary source location at a depth of 1.4 km beneath the crater. This occurrence of long-period events suggests a model involving the interaction of magma with groundwater in which magmatic gases, steam and water drive a fixed conduit at a stationary point throughout the swarm. The initiation of that sequence of events is analogous to the failure of a pressure-relief valve connecting a lower, supercharged magma-dominated reservoir to a shallow hydrothermal system. A three-dimensional model of a vibrating fluid-filled crack recently developed by Chouet is found to be compatible with the seismic data and yields the following parameters for the LP source: crack length, 280-380 m; crack width, 140-190 m; crack thickness, 0.05-0.20 m; crack stiffness, 100-200; sound speed of fluid, 0.8-1.3 km/s; compressional-wave speed of rock, 5.1 km/s; density ratio of fluid to rock, ???0.4; and ratio of bulk modulus of fluid to rigidity of rock, 0.03-0.07. The fluid-filled crack is excited intermittently by an impulsive pressure drop that varies in magnitude within the range of 0.4 to 40 bar. Such disturbance appears to be consistent with a triggering mechanism associated with choked flow conditions in the crack. ?? 1994.

  4. From hybrid swarms to swarms of hybrids

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Szalanski, Allen L; Gaskin, John F.; Young, Nicholas E.; West, Amanda; Jarnevich, Catherine S.; Tripodi, Amber

    2014-01-01

    Science has shown that the introgression or hybridization of modern humans (Homo sapiens) with Neanderthals up to 40,000 YBP may have led to the swarm of modern humans on earth. However, there is little doubt that modern trade and transportation in support of the humans has continued to introduce additional species, genotypes, and hybrids to every country on the globe. We assessed the utility of species distributions modeling of genotypes to assess the risk of current and future invaders. We evaluated 93 locations of the genus Tamarix for which genetic data were available. Maxent models of habitat suitability showed that the hybrid, T. ramosissima x T. chinensis, was slightly greater than the parent taxa (AUCs > 0.83). General linear models of Africanized honey bees, a hybrid cross of Tanzanian Apis mellifera scutellata and a variety of European honey bee including A. m. ligustica, showed that the Africanized bees (AUC = 0.81) may be displacing European honey bees (AUC > 0.76) over large areas of the southwestern U.S. More important, Maxent modeling of sub-populations (A1 and A26 mitotypes based on mDNA) could be accurately modeled (AUC > 0.9), and they responded differently to environmental drivers. This suggests that rapid evolutionary change may be underway in the Africanized bees, allowing the bees to spread into new areas and extending their total range. Protecting native species and ecosystems may benefit from risk maps of harmful invasive species, hybrids, and genotypes.

  5. Multiobjective robust design of the double wishbone suspension system based on particle swarm optimization.

    PubMed

    Cheng, Xianfu; Lin, Yuqun

    2014-01-01

    The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system.

  6. Application of Particle Swarm Optimization Algorithm for Optimizing ANN Model in Recognizing Ripeness of Citrus

    NASA Astrophysics Data System (ADS)

    Diyana Rosli, Anis; Adenan, Nur Sabrina; Hashim, Hadzli; Ezan Abdullah, Noor; Sulaiman, Suhaimi; Baharudin, Rohaiza

    2018-03-01

    This paper shows findings of the application of Particle Swarm Optimization (PSO) algorithm in optimizing an Artificial Neural Network that could categorize between ripeness and unripeness stage of citrus suhuensis. The algorithm would adjust the network connections weights and adapt its values during training for best results at the output. Initially, citrus suhuensis fruit’s skin is measured using optically non-destructive method via spectrometer. The spectrometer would transmit VIS (visible spectrum) photonic light radiation to the surface (skin of citrus) of the sample. The reflected light from the sample’s surface would be received and measured by the same spectrometer in terms of reflectance percentage based on VIS range. These measured data are used to train and test the best optimized ANN model. The accuracy is based on receiver operating characteristic (ROC) performance. The result outcomes from this investigation have shown that the achieved accuracy for the optimized is 70.5% with a sensitivity and specificity of 60.1% and 80.0% respectively.

  7. Design for sustainability of industrial symbiosis based on emergy and multi-objective particle swarm optimization.

    PubMed

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang; Sun, Lu; Gao, Zhiqiu

    2016-08-15

    Industrial symbiosis provides novel and practical pathway to the design for the sustainability. Decision support tool for its verification is necessary for practitioners and policy makers, while to date, quantitative research is limited. The objective of this work is to present an innovative approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied by the proposed method, a few of compromises between high profitability and high sustainability can be obtained for the decision-makers/stakeholders to make decision. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Understanding environment-influenced swarm behavior from a social force perspective

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Lu, D.; Jiang, Y.; Lee, Z.; Zhang, Y.; Yu, J.

    2018-02-01

    The relevant research on swarm behavior has focused on the facts that when individuals agree with other members in the system globally consistent behaviors are generated and that individual decisions are completely dominated by other members. In fact, when individuals generate their own behavior strategies, they tend to consider not only the influences of other members but also autonomically consider their current environment. For example, in the social foraging of flocks, the behavior strategy of each individual animal is influenced by the food distribution, and individual movement patterns are characterized by a highly efficient search strategy-Lévy walks. To investigate this, this paper proposes using an environment-driven social force perspective to explore the Lévy walks of individuals in a group in patchy food environments. This model adopts the concept of social force to quantify the social effects and the interactions between individuals and food. The coordination between forces is a key in the formation of individual behavior strategies. Our simulation results show a power-law frequency distribution for agent flight lengths that conforms to Lévy walks and verifies the hypothesis of a relationship between food density and the Lévy index. In our model, the flock still exhibits collective consistency and cohesion and yields a high value for the order parameter and population density when moving between food patches. In addition, our model explains the intraspecific cooperation and competition that occurs during foraging as proposed in related work. The simulation also validates the impact of two inducements for individual behaviors compared with several benchmark models.

  9. Improved Performance of Loop-Mediated Isothermal Amplification Assays via Swarm Priming.

    PubMed

    Martineau, Rhett L; Murray, Sarah A; Ci, Shufang; Gao, Weimin; Chao, Shih-Hui; Meldrum, Deirdre R

    2017-01-03

    This work describes an enhancement to the loop-mediated isothermal amplification (LAMP) reaction which results in improved performance. Enhancement is achieved by adding a new set of primers to conventional LAMP reactions. These primers are termed "swarm primers" based on their relatively high concentration and their ability to create new amplicons despite the theoretical lack of single-stranded annealing sites. The primers target a region upstream of the FIP/BIP primer recognition sequences on opposite strands, substantially overlapping F1/B1 sites. Thus, despite the addition of a new primer set to an already complex assay, no significant increase in assay complexity is incurred. Swarm priming is presented for three DNA templates: Lambda phage, Synechocystis sp. PCC 6803 rbcL gene, and human HFE. The results of adding swarm primers to conventional LAMP reactions include increased amplification speed, increased indicator contrast, and increased reaction products. For at least one template, minor improvements in assay repeatability are also shown. In addition, swarm priming is shown to be effective at increasing the reaction speed for RNA amplification via RT-LAMP. Collectively, these results suggest that the addition of swarm primers will likely benefit most if not all existing LAMP assays based on state-of-the-art, six-primer reactions.

  10. A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, China

    PubMed Central

    Yu, Xianyu; Wang, Yi; Niu, Ruiqing; Hu, Youjian

    2016-01-01

    In this study, a novel coupling model for landslide susceptibility mapping is presented. In practice, environmental factors may have different impacts at a local scale in study areas. To provide better predictions, a geographically weighted regression (GWR) technique is firstly used in our method to segment study areas into a series of prediction regions with appropriate sizes. Meanwhile, a support vector machine (SVM) classifier is exploited in each prediction region for landslide susceptibility mapping. To further improve the prediction performance, the particle swarm optimization (PSO) algorithm is used in the prediction regions to obtain optimal parameters for the SVM classifier. To evaluate the prediction performance of our model, several SVM-based prediction models are utilized for comparison on a study area of the Wanzhou district in the Three Gorges Reservoir. Experimental results, based on three objective quantitative measures and visual qualitative evaluation, indicate that our model can achieve better prediction accuracies and is more effective for landslide susceptibility mapping. For instance, our model can achieve an overall prediction accuracy of 91.10%, which is 7.8%–19.1% higher than the traditional SVM-based models. In addition, the obtained landslide susceptibility map by our model can demonstrate an intensive correlation between the classified very high-susceptibility zone and the previously investigated landslides. PMID:27187430

  11. A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, China.

    PubMed

    Yu, Xianyu; Wang, Yi; Niu, Ruiqing; Hu, Youjian

    2016-05-11

    In this study, a novel coupling model for landslide susceptibility mapping is presented. In practice, environmental factors may have different impacts at a local scale in study areas. To provide better predictions, a geographically weighted regression (GWR) technique is firstly used in our method to segment study areas into a series of prediction regions with appropriate sizes. Meanwhile, a support vector machine (SVM) classifier is exploited in each prediction region for landslide susceptibility mapping. To further improve the prediction performance, the particle swarm optimization (PSO) algorithm is used in the prediction regions to obtain optimal parameters for the SVM classifier. To evaluate the prediction performance of our model, several SVM-based prediction models are utilized for comparison on a study area of the Wanzhou district in the Three Gorges Reservoir. Experimental results, based on three objective quantitative measures and visual qualitative evaluation, indicate that our model can achieve better prediction accuracies and is more effective for landslide susceptibility mapping. For instance, our model can achieve an overall prediction accuracy of 91.10%, which is 7.8%-19.1% higher than the traditional SVM-based models. In addition, the obtained landslide susceptibility map by our model can demonstrate an intensive correlation between the classified very high-susceptibility zone and the previously investigated landslides.

  12. Dancing with Swarms: Utilizing Swarm Intelligence to Build, Investigate, and Control Complex Systems

    NASA Astrophysics Data System (ADS)

    Jacob, Christian

    We are surrounded by a natural world of massively parallel, decentralized biological "information processing" systems, a world that exhibits fascinating emergent properties in many ways. In fact, our very own bodies are the result of emergent patterns, as the development of any multi-cellular organism is determined by localized interactions among an enormous number of cells, carefully orchestrated by enzymes, signalling proteins and other molecular "agents". What is particularly striking about these highly distributed developmental processes is that a centralized control agency is completely absent. This is also the case for many other biological systems, such as termites which build their nests—without an architect that draws a plan, or brain cells evolving into a complex `mind machine'—without an explicit blueprint of a network layout.

  13. Composite Particle Swarm Optimizer With Historical Memory for Function Optimization.

    PubMed

    Li, Jie; Zhang, JunQi; Jiang, ChangJun; Zhou, MengChu

    2015-10-01

    Particle swarm optimization (PSO) algorithm is a population-based stochastic optimization technique. It is characterized by the collaborative search in which each particle is attracted toward the global best position (gbest) in the swarm and its own best position (pbest). However, all of particles' historical promising pbests in PSO are lost except their current pbests. In order to solve this problem, this paper proposes a novel composite PSO algorithm, called historical memory-based PSO (HMPSO), which uses an estimation of distribution algorithm to estimate and preserve the distribution information of particles' historical promising pbests. Each particle has three candidate positions, which are generated from the historical memory, particles' current pbests, and the swarm's gbest. Then the best candidate position is adopted. Experiments on 28 CEC2013 benchmark functions demonstrate the superiority of HMPSO over other algorithms.

  14. Multiple local feature representations and their fusion based on an SVR model for iris recognition using optimized Gabor filters

    NASA Astrophysics Data System (ADS)

    He, Fei; Liu, Yuanning; Zhu, Xiaodong; Huang, Chun; Han, Ye; Dong, Hongxing

    2014-12-01

    Gabor descriptors have been widely used in iris texture representations. However, fixed basic Gabor functions cannot match the changing nature of diverse iris datasets. Furthermore, a single form of iris feature cannot overcome difficulties in iris recognition, such as illumination variations, environmental conditions, and device variations. This paper provides multiple local feature representations and their fusion scheme based on a support vector regression (SVR) model for iris recognition using optimized Gabor filters. In our iris system, a particle swarm optimization (PSO)- and a Boolean particle swarm optimization (BPSO)-based algorithm is proposed to provide suitable Gabor filters for each involved test dataset without predefinition or manual modulation. Several comparative experiments on JLUBR-IRIS, CASIA-I, and CASIA-V4-Interval iris datasets are conducted, and the results show that our work can generate improved local Gabor features by using optimized Gabor filters for each dataset. In addition, our SVR fusion strategy may make full use of their discriminative ability to improve accuracy and reliability. Other comparative experiments show that our approach may outperform other popular iris systems.

  15. Thermospheric density and wind retrieval from Swarm observations

    NASA Astrophysics Data System (ADS)

    Visser, Pieter; Doornbos, Eelco; van den IJssel, Jose; Teixeira da Encarnação, João

    2013-11-01

    The three-satellite ESA Swarm mission aims at mapping the Earth's global geomagnetic field at unprecedented spatial and temporal resolution and precision. Swarm also aims at observing thermospheric density and possibly horizontal winds. Precise orbit determination (POD) and Thermospheric Density and Wind (TDW) chains form part of the Swarm Constellation and Application Facility (SCARF), which will provide the so-called Level 2 products. The POD and TDW chains generate the orbit, accelerometer calibration, and thermospheric density and wind Level 2 products. The POD and TDW chains have been tested with data from the CHAMP and GRACE missions, indicating that a 3D orbit precision of about 10 cm can be reached. In addition, POD allows to determine daily accelerometer bias and scale factor values with a precision of around 10-15 nm/s2 and 0.01-0.02, respectively, for the flight direction. With these accelerometer calibration parameter values, derived thermospheric density is consistent at the 9-11% level (standard deviation) with values predicted by models (taking into account that model values are 20-30% higher). The retrieval of crosswinds forms part of the processing chain, but will be challenging. The Swarm observations will be used for further developing and improving density and wind retrieval algorithms.

  16. Stationary swarming motion of active Brownian particles in parabolic external potential

    NASA Astrophysics Data System (ADS)

    Zhu, Wei Qiu; Deng, Mao Lin

    2005-08-01

    We investigate the stationary swarming motion of active Brownian particles in parabolic external potential and coupled to its mass center. Using Monte Carlo simulation we first show that the mass center approaches to rest after a sufficient long period of time. Thus, all the particles of a swarm have identical stationary motion relative to the mass center. Then the stationary probability density obtained by using the stochastic averaging method for quasi integrable Hamiltonian systems in our previous paper for the motion in 4-dimensional phase space of single active Brownian particle with Rayleigh friction model in parabolic potential is used to describe the relative stationary motion of each particle of the swarm and to obtain more probability densities including that for the total energy of the swarm. The analytical results are confirmed by comparing with those from simulation and also shown to be consistent with the existing deterministic exact steady-state solution.

  17. Multilevel selection analysis of a microbial social trait

    PubMed Central

    de Vargas Roditi, Laura; Boyle, Kerry E; Xavier, Joao B

    2013-01-01

    The study of microbial communities often leads to arguments for the evolution of cooperation due to group benefits. However, multilevel selection models caution against the uncritical assumption that group benefits will lead to the evolution of cooperation. We analyze a microbial social trait to precisely define the conditions favoring cooperation. We combine the multilevel partition of the Price equation with a laboratory model system: swarming in Pseudomonas aeruginosa. We parameterize a population dynamics model using competition experiments where we manipulate expression, and therefore the cost-to-benefit ratio of swarming cooperation. Our analysis shows that multilevel selection can favor costly swarming cooperation because it causes population expansion. However, due to high costs and diminishing returns constitutive cooperation can only be favored by natural selection when relatedness is high. Regulated expression of cooperative genes is a more robust strategy because it provides the benefits of swarming expansion without the high cost or the diminishing returns. Our analysis supports the key prediction that strong group selection does not necessarily mean that microbial cooperation will always emerge. PMID:23959025

  18. Generating a Multiphase Equation of State with Swarm Intelligence

    NASA Astrophysics Data System (ADS)

    Cox, Geoffrey

    2017-06-01

    Hydrocode calculations require knowledge of the variation of pressure of a material with density and temperature, which is given by the equation of state. An accurate model needs to account for discontinuities in energy, density and properties of a material across a phase boundary. When generating a multiphase equation of state the modeller attempts to balance the agreement between the available data for compression, expansion and phase boundary location. However, this can prove difficult because minor adjustments in the equation of state for a single phase can have a large impact on the overall phase diagram. Recently, Cox and Christie described a method for combining statistical-mechanics-based condensed matter physics models with a stochastic analysis technique called particle swarm optimisation. The models produced show good agreement with experiment over a wide range of pressure-temperature space. This talk details the general implementation of this technique, shows example results, and describes the types of analysis that can be performed with this method.

  19. An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm.

    PubMed

    Zhu, Qingling; Lin, Qiuzhen; Chen, Weineng; Wong, Ka-Chun; Coello Coello, Carlos A; Li, Jianqiang; Chen, Jianyong; Zhang, Jun

    2017-09-01

    The selection of swarm leaders (i.e., the personal best and global best), is important in the design of a multiobjective particle swarm optimization (MOPSO) algorithm. Such leaders are expected to effectively guide the swarm to approach the true Pareto optimal front. In this paper, we present a novel external archive-guided MOPSO algorithm (AgMOPSO), where the leaders for velocity update are all selected from the external archive. In our algorithm, multiobjective optimization problems (MOPs) are transformed into a set of subproblems using a decomposition approach, and then each particle is assigned accordingly to optimize each subproblem. A novel archive-guided velocity update method is designed to guide the swarm for exploration, and the external archive is also evolved using an immune-based evolutionary strategy. These proposed approaches speed up the convergence of AgMOPSO. The experimental results fully demonstrate the superiority of our proposed AgMOPSO in solving most of the test problems adopted, in terms of two commonly used performance measures. Moreover, the effectiveness of our proposed archive-guided velocity update method and immune-based evolutionary strategy is also experimentally validated on more than 30 test MOPs.

  20. Fluid-faulting interactions: Fracture-mesh and fault-valve behavior in the February 2014 Mammoth Mountain, California, earthquake swarm

    USGS Publications Warehouse

    Shelly, David R.; Taira, Taka’aki; Prejean, Stephanie; Hill, David P.; Dreger, Douglas S.

    2015-01-01

    Faulting and fluid transport in the subsurface are highly coupled processes, which may manifest seismically as earthquake swarms. A swarm in February 2014 beneath densely monitored Mammoth Mountain, California, provides an opportunity to witness these interactions in high resolution. Toward this goal, we employ massive waveform-correlation-based event detection and relative relocation, which quadruples the swarm catalog to more than 6000 earthquakes and produces high-precision locations even for very small events. The swarm's main seismic zone forms a distributed fracture mesh, with individual faults activated in short earthquake bursts. The largest event of the sequence, M 3.1, apparently acted as a fault valve and was followed by a distinct wave of earthquakes propagating ~1 km westward from the updip edge of rupture, 1–2 h later. Late in the swarm, multiple small, shallower subsidiary faults activated with pronounced hypocenter migration, suggesting that a broader fluid pressure pulse propagated through the subsurface.

  1. Sediment transport modeling in deposited bed sewers: unified form of May's equations using the particle swarm optimization algorithm.

    PubMed

    Safari, Mir Jafar Sadegh; Shirzad, Akbar; Mohammadi, Mirali

    2017-08-01

    May proposed two dimensionless parameters of transport (η) and mobility (F s ) for self-cleansing design of sewers with deposited bed condition. The relationships between those two parameters were introduced in conditional form for specific ranges of F s , which makes it difficult to use as a practical tool for sewer design. In this study, using the same experimental data used by May and employing the particle swarm optimization algorithm, a unified equation is recommended based on η and F s . The developed model is compared with original May relationships as well as corresponding models available in the literature. A large amount of data taken from the literature is used for the models' evaluation. The results demonstrate that the developed model in this study is superior to May and other existing models in the literature. Due to the fact that in May's dimensionless parameters more effective variables in the sediment transport process in sewers with deposited bed condition are considered, it is concluded that the revised May equation proposed in this study is a reliable model for sewer design.

  2. Operating Small Sat Swarms as a Single Entity: Introducing SODA

    NASA Technical Reports Server (NTRS)

    Conn, Tracie; Dono Perez, Andres

    2017-01-01

    Swarm concepts are a growing topic of interest in the small satellite community. Compared to a small satellite constellation, a swarm has the distinction of being multiple spacecraft in close proximity, in approximately the same orbit. Furthermore, we envision swarms to have capabilities for cross-link communication and station-keeping. Of particular interest is a means to maintain operator-specified geometry, alignment, and/or separation.From NASA's decadal survey, it is clear that simultaneous measurements from a 3D volume of space are desired for a variety of Earth scientific studies. As this mission concept is ultimately extended to deep space, some degree of local control for the swarm to self-correct its configuration is required. We claim that the practicality of ground commanding each individual satellite in the swarm is simply not a feasible concept of operations. In other words, the current state-of-practice does not scale to very large swarms (e.g. 100 spacecraft or more) without becoming cost prohibitive. To contain the operations costs and complexity, a new approach is required: the swarm must be operated as a unit, responding to high-level specifications for relative position and velocity.The Mission Design Division at NASA Ames Research Center is looking to the near future for opportunities to develop satellite swarm technology. As part of this effort, we are developing SODA (Swarm Orbital Dynamics Advisor), a tool that provides the orbital maneuvers required to achieve a desired type of relative swarm motion. The purpose of SODA is two-fold. First, it encompasses the algorithms and orbital dynamics model to enable the desired relative motion of the swarm satellites. The process starts with the user specifying the properties of a swarm configuration. This could be as simple as varying in-track spacing of the swarm in one orbit, or as complex as maintaining a specified 3D geometrical orientation. We presume that science objectives will drive this choice. Given these inputs, the tool provides the most efficient maneuver(s) to achieve the objective.Second, SODA provides a variety of visualization tools. We acknowledge that the relationship between a desired relative motion amongst the swarm, and the corresponding orbital parameters for each individual satellite may not be immediately apparent for ground controllers and mission planners. The purpose of SODA's visualization tools is to illustrate this concept clearly with a variety of graphics and animations. After computing the optimal orbital maneuvers to modify the swarm, these results are simulated to demonstrate successful swarm control.Our emphasis in this paper is on the importance of relating the desired motion of the swarm satellites relative to one another with the required orbital element changes. One cannot joystick a drifting swarm satellite back into position; the underlying orbital mechanics dictate the most efficient recovery maneuvers. To illustrate this point, results from several case study simulations are presented. We conclude with our forward work for ongoing SODA development and potential science applications.

  3. Dynamic Triggering of Seismic Events and Their Relation to Slow Slip in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Sims, N. E.; Holtkamp, S. G.

    2017-12-01

    We conduct a search for dynamically triggered events in the Minto Flats Fault Zone (MFFZ), a left-lateral strike-slip zone expressed as multiple, partially overlapping faults, in central Alaska. We focus on the MFFZ because we have observed slow slip processes (earthquake swarms and Very Low Frequency Earthquakes) and interaction between earthquake swarms and larger main-shock (MS) events in this area before. We utilize the Alaska Earthquake Center catalog to identify potential earthquake swarms and dynamically triggered foreshock and mainshock events along the fault zone. We find 30 swarms occurring in the last two decades, five of which we classify as foreshock (FS) swarms due to their close proximity in both time and space to MS events. Many of the earthquake swarms cluster around 15-20 km depth, which is near the seismic-aseismic transition along this fault zone. Additionally, we observe instances of large teleseismic events such as the M8.6 2012 Sumatra earthquake and M7.4 2012 Guatemala earthquake triggering seismic events within the MFFZ, with the Sumatra earthquake triggering a mainshock event that was preceded by an ongoing earthquake swarm and the Guatemala event triggering earthquake swarms that subsequently transition into a larger mainshock event. In both cases an earthquake swarm transitioned into a mainshock-aftershock event and activity continued for several days after the teleseismic waves had passed, lending some evidence to delayed dynamic triggering of seismic events. We hypothesize that large dynamic transient strain associated with the passage of teleseismic surface waves is triggering slow slip processes near the base of the seismogenic zone. These triggered aseismic transient events result in earthquake swarms, which sometimes lead to the nucleation of larger earthquakes. We utilize network matched filtering to build more robust catalogs of swarm earthquake families in this region to search for additional swarm-like or triggered activity in response to teleseismic surface waves, and to test dynamic triggering hypotheses.

  4. Exploitation of Self Organization in UAV Swarms for Optimization in Combat Environments

    DTIC Science & Technology

    2008-03-01

    behaviors and entangled hierarchy into Swarmfare [59] UAV simulation environment to include these models. • Validate this new model’s success through...Figure 4.3. The hierarchy of control emerges from the entangled hierarchy of the state relations at the simulation , swarm and rule/behaviors level...majors, major) Abstract Model Types (AMT) Figure A.1: SO Abstract Model Type Table 142 Appendix B. Simulators Comparision Name MATLAB Multi UAV MultiUAV

  5. Bacillus subtilis Swarmer Cells Lead the Swarm, Multiply, and Generate a Trail of Quiescent Descendants.

    PubMed

    Hamouche, Lina; Laalami, Soumaya; Daerr, Adrian; Song, Solène; Holland, I Barry; Séror, Simone J; Hamze, Kassem; Putzer, Harald

    2017-02-07

    Bacteria adopt social behavior to expand into new territory, led by specialized swarmers, before forming a biofilm. Such mass migration of Bacillus subtilis on a synthetic medium produces hyperbranching dendrites that transiently (equivalent to 4 to 5 generations of growth) maintain a cellular monolayer over long distances, greatly facilitating single-cell gene expression analysis. Paradoxically, while cells in the dendrites (nonswarmers) might be expected to grow exponentially, the rate of swarm expansion is constant, suggesting that some cells are not multiplying. Little attention has been paid to which cells in a swarm are actually multiplying and contributing to the overall biomass. Here, we show in situ that DNA replication, protein translation and peptidoglycan synthesis are primarily restricted to the swarmer cells at dendrite tips. Thus, these specialized cells not only lead the population forward but are apparently the source of all cells in the stems of early dendrites. We developed a simple mathematical model that supports this conclusion. Swarming motility enables rapid coordinated surface translocation of a microbial community, preceding the formation of a biofilm. This movement occurs in thin films and involves specialized swarmer cells localized to a narrow zone at the extreme swarm edge. In the B. subtilis system, using a synthetic medium, the swarm front remains as a cellular monolayer for up to 1.5 cm. Swarmers display high-velocity whirls and vortexing and are often assumed to drive community expansion at the expense of cell growth. Surprisingly, little attention has been paid to which cells in a swarm are actually growing and contributing to the overall biomass. Here, we show that swarmers not only lead the population forward but continue to multiply as a source of all cells in the community. We present a model that explains how exponential growth of only a few cells is compatible with the linear expansion rate of the swarm. Copyright © 2017 Hamouche et al.

  6. Type IV pili interactions promote intercellular association and moderate swarming of Pseudomonas aeruginosa

    PubMed Central

    Anyan, Morgen E.; Amiri, Aboutaleb; Harvey, Cameron W.; Tierra, Giordano; Morales-Soto, Nydia; Driscoll, Callan M.; Alber, Mark S.; Shrout, Joshua D.

    2014-01-01

    Pseudomonas aeruginosa is a ubiquitous bacterium that survives in many environments, including as an acute and chronic pathogen in humans. Substantial evidence shows that P. aeruginosa behavior is affected by its motility, and appendages known as flagella and type IV pili (TFP) are known to confer such motility. The role these appendages play when not facilitating motility or attachment, however, is unclear. Here we discern a passive intercellular role of TFP during flagellar-mediated swarming of P. aeruginosa that does not require TFP extension or retraction. We studied swarming at the cellular level using a combination of laboratory experiments and computational simulations to explain the resultant patterns of cells imaged from in vitro swarms. Namely, we used a computational model to simulate swarming and to probe for individual cell behavior that cannot currently be otherwise measured. Our simulations showed that TFP of swarming P. aeruginosa should be distributed all over the cell and that TFP−TFP interactions between cells should be a dominant mechanism that promotes cell−cell interaction, limits lone cell movement, and slows swarm expansion. This predicted physical mechanism involving TFP was confirmed in vitro using pairwise mixtures of strains with and without TFP where cells without TFP separate from cells with TFP. While TFP slow swarm expansion, we show in vitro that TFP help alter collective motion to avoid toxic compounds such as the antibiotic carbenicillin. Thus, TFP physically affect P. aeruginosa swarming by actively promoting cell−cell association and directional collective motion within motile groups to aid their survival. PMID:25468980

  7. Adaptive swarm cluster-based dynamic multi-objective synthetic minority oversampling technique algorithm for tackling binary imbalanced datasets in biomedical data classification.

    PubMed

    Li, Jinyan; Fong, Simon; Sung, Yunsick; Cho, Kyungeun; Wong, Raymond; Wong, Kelvin K L

    2016-01-01

    An imbalanced dataset is defined as a training dataset that has imbalanced proportions of data in both interesting and uninteresting classes. Often in biomedical applications, samples from the stimulating class are rare in a population, such as medical anomalies, positive clinical tests, and particular diseases. Although the target samples in the primitive dataset are small in number, the induction of a classification model over such training data leads to poor prediction performance due to insufficient training from the minority class. In this paper, we use a novel class-balancing method named adaptive swarm cluster-based dynamic multi-objective synthetic minority oversampling technique (ASCB_DmSMOTE) to solve this imbalanced dataset problem, which is common in biomedical applications. The proposed method combines under-sampling and over-sampling into a swarm optimisation algorithm. It adaptively selects suitable parameters for the rebalancing algorithm to find the best solution. Compared with the other versions of the SMOTE algorithm, significant improvements, which include higher accuracy and credibility, are observed with ASCB_DmSMOTE. Our proposed method tactfully combines two rebalancing techniques together. It reasonably re-allocates the majority class in the details and dynamically optimises the two parameters of SMOTE to synthesise a reasonable scale of minority class for each clustered sub-imbalanced dataset. The proposed methods ultimately overcome other conventional methods and attains higher credibility with even greater accuracy of the classification model.

  8. Improving the Adaptability of Simulated Evolutionary Swarm Robots in Dynamically Changing Environments

    PubMed Central

    Yao, Yao; Marchal, Kathleen; Van de Peer, Yves

    2014-01-01

    One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store ‘good behaviour’ and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment. PMID:24599485

  9. Alarm systems detect volcanic tremor and earthquake swarms during Redoubt eruption, 2009

    NASA Astrophysics Data System (ADS)

    Thompson, G.; West, M. E.

    2009-12-01

    We ran two alarm algorithms on real-time data from Redoubt volcano during the 2009 crisis. The first algorithm was designed to detect escalations in continuous seismicity (tremor). This is implemented within an application called IceWeb which computes reduced displacement, and produces plots of reduced displacement and spectrograms linked to the Alaska Volcano Observatory internal webpage every 10 minutes. Reduced displacement is a measure of the amplitude of volcanic tremor, and is computed by applying a geometrical spreading correction to a displacement seismogram. When the reduced displacement at multiple stations exceeds pre-defined thresholds and there has been a factor of 3 increase in reduced displacement over the previous hour, a tremor alarm is declared. The second algorithm was to designed to detect earthquake swarms. The mean and median event rates are computed every 5 minutes based on the last hour of data from a real-time event catalog. By comparing these with thresholds, three swarm alarm conditions can be declared: a new swarm, an escalation in a swarm, and the end of a swarm. The end of swarm alarm is important as it may mark a transition from swarm to continuous tremor. Alarms from both systems were dispatched using a generic alarm management system which implements a call-down list, allowing observatory scientists to be called in sequence until someone acknowledged the alarm via a confirmation web page. The results of this simple approach are encouraging. The tremor alarm algorithm detected 26 of the 27 explosive eruptions that occurred from 23 March - 4 April. The swarm alarm algorithm detected all five of the main volcanic earthquake swarm episodes which occurred during the Redoubt crisis on 26-27 February, 21-23 March, 26 March, 2-4 April and 3-7 May. The end-of-swarm alarms on 23 March and 4 April were particularly helpful as they were caused by transitions from swarm to tremor shortly preceding explosive eruptions; transitions which were detected much earlier by the swarm algorithm than they were by the tremor algorithm.

  10. Imaging the West Bohemia Seismic Zone

    NASA Astrophysics Data System (ADS)

    Alexandrakis, C.; Calo, M.; Bouchaala, F.; Vavrycuk, V.

    2013-12-01

    West Bohemia is located at the suture of three mantle lithosphere plates, the Eger Rift, the Cheb basin and is the site of Quaternary volcanism. This complex tectonic setting results in localized, periodic earthquake swarms throughout the region and many CO2 springs and gas exhalation sites. Nový Kostel, the most active swarm area, experiences frequent swarms of several hundreds to thousands of earthquakes over a period of weeks to several months. It is a unique study area, since the swarm region is surrounded by the West Bohemia Seismic Network (WEBNET), providing observations in all directions. Larger swarms, such as those in 1985/1986, 1997, 2000, 2007 and 2008, have been studied in terms of source mechanisms and swarm characteristics (Fischer and Michálek, 2003; Fischer et al., 2010; Vavryčuk, 2011). The seismicity is always located in the same area and depth range (6-15 km), however the active fault planes differ. This indicates changes to the local stress field, and may relate to the complicated tectonic situation and/or migrating fluids. Many studies have examined individual swarms and compared the earthquake episodes, however the mechanisms behind the phenomenon are still not understood. This has motivated many studies, including recent proposals for a reflection seismic profile directly over the swarm area and multidisciplinary monitoring through ICDP. In this study, we image the velocity structure within and around the swarm area using double-difference tomography (Zhang and Thurber, 2003) and Weighted Average Model (WAM) post-processing analysis (Calò et al., 2011). The WAM analysis averages together velocity models calculated with a variety of reasonable starting parameters. The velocities are weighted by the raypath proximity and density at an inversion node. This reduces starting model bias and artifacts, and yields a weighted standard deviation at each grid point. Earthquake locations and WEBNET P and S arrival times for the two most recent large swarms, 2008 and 2011, are used in this study. P-wave, S-wave and P-to-S ratio WAMs (P-to-S ratios are calculated directly from the P and S WAMs) reveal interesting features which correlate with the shallowest earthquakes. These features are interpreted in relation to the role of fluids in Nový Kostel. References: Calò, M., C. Dorbath, F. Cornet, & N. Cuenot, 2011. Geophys. J. Int., doi: 10.1111/j.1365-246X.2011.05108.x. Fischer, T., J. Horálek, J. Michálek & A. Boušková, 2010. J. Seismol., 14: 665-682. Fischer, T. & J. Michálek, 2008. Stud. Geophys. Geod., 52: 493-511. Vavryčuk, V., 2011. Earth Planet. Sci. Lett., 305: 290-296. Zhang, H. & C.H. Thurber, 2003. Bull. Seism. Soc. Am., 93: 1175-1189.

  11. Particle Swarm Learning Algorithm Based on Adjustment of Parameter and its Applications Assessment of Agricultural Projects

    NASA Astrophysics Data System (ADS)

    Yang, Shanlin; Zhu, Weidong; Chen, Li

    The particle swarm, which optimizes neural networks, has overcome its disadvantage of slow convergent speed and shortcoming of local optimum. The parameter that the particle swarm optimization relates to is not much. But it has strongly sensitivity to the parameter. In this paper, we applied PSO-BP to evaluate the environmental effect of an agricultural project, and researched application and Particle Swarm learning algorithm based on adjustment of parameter. This paper, we use MATLAB language .The particle number is 5, 30, 50, 90, and the inertia weight is 0.4, 0.6, and 0.8 separately. Calculate 10 times under each same parameter, and analyze the influence under the same parameter. Result is indicated that the number of particles is in 25 ~ 30 and the inertia weight is in 0.6 ~ 0.7, and the result of optimization is satisfied.

  12. Coordination Between the Sexes Constrains the Optimization of Reproductive Timing in Honey Bee Colonies.

    PubMed

    Lemanski, Natalie J; Fefferman, Nina H

    2017-06-01

    Honeybees are an excellent model system for examining how trade-offs shape reproductive timing in organisms with seasonal environments. Honeybee colonies reproduce two ways: producing swarms comprising a queen and thousands of workers or producing males (drones). There is an energetic trade-off between producing workers, which contribute to colony growth, and drones, which contribute only to reproduction. The timing of drone production therefore determines both the drones' likelihood of mating and when colonies reach sufficient size to swarm. Using a linear programming model, we ask when a colony should produce drones and swarms to maximize reproductive success. We find the optimal behavior for each colony is to produce all drones prior to swarming, an impossible solution on a population scale because queens and drones would never co-occur. Reproductive timing is therefore not solely determined by energetic trade-offs but by the game theoretic problem of coordinating the production of reproductives among colonies.

  13. Tectonic setting of the Wooded Island earthquake swarm, eastern Washington

    USGS Publications Warehouse

    Blakely, Richard J.; Sherrod, Brian L.; Weaver, Craig S.; Rohay, Alan C.; Wells, Ray E.

    2012-01-01

    Magnetic anomalies provide insights into the tectonic implications of a swarm of ~1500 shallow (~1 km deep) earthquakes that occurred in 2009 on the Hanford site,Washington. Epicenters were concentrated in a 2 km2 area nearWooded Island in the Columbia River. The largest earthquake (M 3.0) had first motions consistent with slip on a northwest-striking reverse fault. The swarm was accompanied by 35 mm of vertical surface deformation, seen in satellite interferometry (InSAR), interpreted to be caused by ~50 mm of slip on a northwest-striking reverse fault and associated bedding-plane fault in the underlying Columbia River Basalt Group (CRBG). A magnetic anomaly over exposed CRBG at Yakima Ridge 40 km northwest of Wooded Island extends southeastward beyond the ridge to the Columbia River, suggesting that the Yakima Ridge anticline and its associated thrust fault extend southeastward in the subsurface. In map view, the concealed anticline passes through the earthquake swarm and lies parallel to reverse faults determined from first motions and InSAR data. A forward model of the magnetic anomaly near Wooded Island is consistent with uplift of concealed CRBG, with the top surface <200 m below the surface. The earthquake swarm and the thrust and bedding-plane faults modeled from interferometry all fall within the northeastern limb of the faulted anticline. Although fluids may be responsible for triggering the Wooded Island earthquake swarm, the seismic and aseismic deformation are consistent with regional-scale tectonic compression across the concealed Yakima Ridge anticline.

  14. Calibration of Swarm accelerometer data by GPS positioning and linear temperature correction

    NASA Astrophysics Data System (ADS)

    Bezděk, Aleš; Sebera, Josef; Klokočník, Jaroslav

    2018-07-01

    Swarm, a mission of the European Space Agency, consists of three satellites orbiting the Earth since November 2013. In addition to the instrumentation aimed at fulfilling the mission's main goal, which is the observation of Earth's magnetic field, each satellite carries a geodetic quality GPS receiver and an accelerometer. Initially put in a 500-km altitude, all Swarm spacecraft slowly decay due to the action of atmospheric drag. Atmospheric particles and radiation forces impinge on the satellite's surface and thus create the main part of the nongravitational force, which together with satellite-induced thrusts can be measured by space accelerometers. Unfortunately, the Swarm accelerometer data are heavily disturbed by the varying onboard temperature. We calibrate the accelerometer data against a calibration standard derived from observed GPS positions, while making use of the models to represent the forces of gravity origin. We show that this procedure can be extended to incorporate the temperature signal. The obtained calibrated accelerations are validated in several different ways; namely by (i) physically modelled nongravitational forces, by (ii) intercomparison of calibrated accelerometer data from two Swarm satellites flying side-by-side, and by (iii) good agreement of our calibrated signals with those released by ESA, obtained via a different approach for reducing temperature effects. Finally, the presented method is applied to the Swarm C accelerometer data set covering almost two years (July 2014-April 2016), which ESA recently released to scientific users.

  15. Charging Guidance of Electric Taxis Based on Adaptive Particle Swarm Optimization

    PubMed Central

    Niu, Liyong; Zhang, Di

    2015-01-01

    Electric taxis are playing an important role in the application of electric vehicles. The actual operational data of electric taxis in Shenzhen, China, is analyzed, and, in allusion to the unbalanced time availability of the charging station equipment, the electric taxis charging guidance system is proposed basing on the charging station information and vehicle information. An electric taxis charging guidance model is established and guides the charging based on the positions of taxis and charging stations with adaptive mutation particle swarm optimization. The simulation is based on the actual data of Shenzhen charging stations, and the results show that electric taxis can be evenly distributed to the appropriate charging stations according to the charging pile numbers in charging stations after the charging guidance. The even distribution among the charging stations in the area will be achieved and the utilization of charging equipment will be improved, so the proposed charging guidance method is verified to be feasible. The improved utilization of charging equipment can save public charging infrastructure resources greatly. PMID:26236770

  16. Swarm Optimization-Based Magnetometer Calibration for Personal Handheld Devices

    PubMed Central

    Ali, Abdelrahman; Siddharth, Siddharth; Syed, Zainab; El-Sheimy, Naser

    2012-01-01

    Inertial Navigation Systems (INS) consist of accelerometers, gyroscopes and a processor that generates position and orientation solutions by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the user heading based on Earth's magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are usually corrupted by several errors, including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO)-based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometers. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. Furthermore, the proposed algorithm can help in the development of Pedestrian Navigation Devices (PNDs) when combined with inertial sensors and GPS/Wi-Fi for indoor navigation and Location Based Services (LBS) applications.

  17. Charging Guidance of Electric Taxis Based on Adaptive Particle Swarm Optimization.

    PubMed

    Niu, Liyong; Zhang, Di

    2015-01-01

    Electric taxis are playing an important role in the application of electric vehicles. The actual operational data of electric taxis in Shenzhen, China, is analyzed, and, in allusion to the unbalanced time availability of the charging station equipment, the electric taxis charging guidance system is proposed basing on the charging station information and vehicle information. An electric taxis charging guidance model is established and guides the charging based on the positions of taxis and charging stations with adaptive mutation particle swarm optimization. The simulation is based on the actual data of Shenzhen charging stations, and the results show that electric taxis can be evenly distributed to the appropriate charging stations according to the charging pile numbers in charging stations after the charging guidance. The even distribution among the charging stations in the area will be achieved and the utilization of charging equipment will be improved, so the proposed charging guidance method is verified to be feasible. The improved utilization of charging equipment can save public charging infrastructure resources greatly.

  18. Diminished tektite ablation in the wake of a swarm

    NASA Technical Reports Server (NTRS)

    Sepri, P.; Chen, K. K.; Okeefe, J. A.

    1981-01-01

    Observations of ablation markings on tektite surfaces reveal that a large variation in aerodynamic heating must have occurred among the members of a swarm during atmospheric entry. In a few cases, the existence of jagged features indicates that these tektite surfaces may have barely reached the melting temperature. Such an observation seems to be incompatible with the necessarily large heating rates suffered by other tektites which exhibit the ring wave melt flow. A reconciliation is proposed in the form of a wake shielding model which is a natural consequence of swarm entry. Calculations indicate that the observed ablation variations are actually possible for swarm entry at greater than escape velocity. This aerodynamic conclusion provides support for the arguments favoring extraterrestrial origin of tektites.

  19. Diversification amongst the South American fire ants: how when and why species barriers break down

    USDA-ARS?s Scientific Manuscript database

    Fire ants (Solenopsis) are an ideal model system for studying speciation and coexistence. Based on preliminary mitochondrial work, they appear to be a relatively recent radiation, and possibly a species swarm (ancient hybridization among young species). We are using a variety of phylogenetic, phylog...

  20. Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment.

    PubMed

    Yao, Yao; Storme, Veronique; Marchal, Kathleen; Van de Peer, Yves

    2016-01-01

    We developed a bio-inspired robot controller combining an artificial genome with an agent-based control system. The genome encodes a gene regulatory network (GRN) that is switched on by environmental cues and, following the rules of transcriptional regulation, provides output signals to actuators. Whereas the genome represents the full encoding of the transcriptional network, the agent-based system mimics the active regulatory network and signal transduction system also present in naturally occurring biological systems. Using such a design that separates the static from the conditionally active part of the gene regulatory network contributes to a better general adaptive behaviour. Here, we have explored the potential of our platform with respect to the evolution of adaptive behaviour, such as preying when food becomes scarce, in a complex and changing environment and show through simulations of swarm robots in an A-life environment that evolution of collective behaviour likely can be attributed to bio-inspired evolutionary processes acting at different levels, from the gene and the genome to the individual robot and robot population.

  1. Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment

    PubMed Central

    Yao, Yao; Storme, Veronique; Marchal, Kathleen

    2016-01-01

    We developed a bio-inspired robot controller combining an artificial genome with an agent-based control system. The genome encodes a gene regulatory network (GRN) that is switched on by environmental cues and, following the rules of transcriptional regulation, provides output signals to actuators. Whereas the genome represents the full encoding of the transcriptional network, the agent-based system mimics the active regulatory network and signal transduction system also present in naturally occurring biological systems. Using such a design that separates the static from the conditionally active part of the gene regulatory network contributes to a better general adaptive behaviour. Here, we have explored the potential of our platform with respect to the evolution of adaptive behaviour, such as preying when food becomes scarce, in a complex and changing environment and show through simulations of swarm robots in an A-life environment that evolution of collective behaviour likely can be attributed to bio-inspired evolutionary processes acting at different levels, from the gene and the genome to the individual robot and robot population. PMID:28028477

  2. Transport of Particle Swarms Through Variable Aperture Fractures

    NASA Astrophysics Data System (ADS)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2012-12-01

    Particle transport through fractured rock is a key concern with the increased use of micro- and nano-size particles in consumer products as well as from other activities in the sub- and near surface (e.g. mining, industrial waste, hydraulic fracturing, etc.). While particle transport is often studied as the transport of emulsions or dispersions, particles may also enter the subsurface from leaks or seepage that lead to particle swarms. Swarms are drop-like collections of millions of colloidal-sized particles that exhibit a number of unique characteristics when compared to dispersions and emulsions. Any contaminant or engineered particle that forms a swarm can be transported farther, faster, and more cohesively in fractures than would be expected from a traditional dispersion model. In this study, the effects of several variable aperture fractures on colloidal swarm cohesiveness and evolution were studied as a swarm fell under gravity and interacted with the fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with (1) a uniform aperture, (2) a converging region followed by a uniform region (funnel shaped), (3) a uniform region followed by a diverging region (inverted funnel), and (4) a cast of a an induced fracture from a carbonate rock. All of the samples consisted of two blocks that measured 100 x 100 x 50 mm. The minimum separation between these blocks determined the nominal aperture (0.5 mm to 20 mm). During experiments a fracture was fully submerged in water and swarms were released into it. The swarms consisted of a dilute suspension of 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. The variation in fracture aperture controlled swarm behavior. Diverging apertures caused a sudden loss of confinement that resulted in a rapid change in the swarm's shape as well as a sharp increase in its velocity. Converging apertures caused swarms to decelerate rapidly and become trapped in the transition point between the converging and parallel regions for apertures less than 2.5 mm. In uniform aperture fractures, an optimal aperture range (5 mm to 15 mm) exists where swarm velocity was higher and the swarm maintained cohesion over a longer distance. For apertures below this range the swarms were strongly slowed due to drag from the wall, while for larger apertures the swarm velocity approached an asymptote due to the loss of the walls influence. The transport of particle swarms in fractures is strongly controlled by aperture distribution. While drag from the fracture does slow swarms, especially at small apertures, much of the interesting behavior (shape changes in diverging fracture, optimal aperture in parallel fracture) is best explained by fracture induced preferential confinement that controls the evolution of the swarm. When this confinement is suddenly changed, the swarm responds quickly and dramatically to its new environment. This has important implications for the understanding of contaminant dispersal in subsurface fracture networks because the type of aperture variation can exert a strong influence on particle swarm transport. Acknowledgment: The authors wish to acknowledge support of this work by the Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DE-FG02-09ER16022).

  3. A shifted hyperbolic augmented Lagrangian-based artificial fish two-swarm algorithm with guaranteed convergence for constrained global optimization

    NASA Astrophysics Data System (ADS)

    Rocha, Ana Maria A. C.; Costa, M. Fernanda P.; Fernandes, Edite M. G. P.

    2016-12-01

    This article presents a shifted hyperbolic penalty function and proposes an augmented Lagrangian-based algorithm for non-convex constrained global optimization problems. Convergence to an ?-global minimizer is proved. At each iteration k, the algorithm requires the ?-global minimization of a bound constrained optimization subproblem, where ?. The subproblems are solved by a stochastic population-based metaheuristic that relies on the artificial fish swarm paradigm and a two-swarm strategy. To enhance the speed of convergence, the algorithm invokes the Nelder-Mead local search with a dynamically defined probability. Numerical experiments with benchmark functions and engineering design problems are presented. The results show that the proposed shifted hyperbolic augmented Lagrangian compares favorably with other deterministic and stochastic penalty-based methods.

  4. An Energy-Aware Runtime Management of Multi-Core Sensory Swarms.

    PubMed

    Kim, Sungchan; Yang, Hoeseok

    2017-08-24

    In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today's sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique.

  5. An Energy-Aware Runtime Management of Multi-Core Sensory Swarms

    PubMed Central

    Kim, Sungchan

    2017-01-01

    In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today’s sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique. PMID:28837094

  6. Method of improving system performance and survivability through changing function

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Vassev, Emil I. (Inventor)

    2012-01-01

    A biologically-inspired system and method is provided for self-adapting behavior of swarm-based exploration missions, whereby individual components, for example, spacecraft, in the system can sacrifice themselves for the greater good of the entire system. The swarm-based system can exhibit emergent self-adapting behavior. Each component can be configured to exhibit self-sacrifice behavior based on Autonomic System Specification Language (ASSL).

  7. Sendai-Okura earthquake swarm induced by the 2011 Tohoku-Oki earthquake in the stress shadow of NE Japan: Detailed fault structure and hypocenter migration

    NASA Astrophysics Data System (ADS)

    Yoshida, Keisuke; Hasegawa, Akira

    2018-05-01

    We investigated the distribution and migration of hypocenters of an earthquake swarm that occurred in Sendai-Okura (NE Japan) 15 days after the 2011 M9.0 Tohoku-Oki earthquake, despite the decrease in shear stress due to the static stress change. Hypocenters of 2476 events listed in the JMA catalogue were relocated based on the JMA unified catalogue data in conjunction with data obtained by waveform cross correlation. Hypocenter relocation was successful in delineating several thin planar structures, although the original hypocenters presented a cloud-like distribution. The hypocenters of this swarm event migrated along several planes from deeper to shallower levels rather than diffusing three-dimensionally. One of the nodal planes of the focal mechanisms was nearly parallel to the planar structure of the hypocenters, supporting the idea that each earthquake occurred by causing slip on parts of the same plane. The overall migration velocity of the hypocenters could be explained by the fluid diffusion model with a typical value of hydraulic diffusivity (0.15 m2/s); however, the occurrence of some burst-like activity with much higher migration velocity suggests the possibility that aseismic slip also contributed to triggering the earthquakes. We suggest that the 2011 Sendai-Okura earthquake swarm was generated as follows. (1) The 2011 Tohoku-Oki earthquake caused WNW-ESE extension in the focal region of the swarm, which accordingly reduced shear stress on the fault planes. However, the WNW-ESE extension allowed fluids to move upward from the S-wave reflectors in the mid-crust immediately beneath the focal region. (2) The fluids rising from the mid-crust intruded into several existing planes, which reduced their frictional strengths and caused the observed earthquake swarm. (3) The fluids, and accordingly, the hypocenters of the triggered earthquakes, migrated upward along the fault planes. It is possible that the fluids also triggered aseismic slip, which caused intermittent burst-like activity.

  8. A model for Iapetan rifting of Laurentia based on Neoproterozoic dikes and related rocks

    USGS Publications Warehouse

    Burton, William C.; Southworth, Scott

    2010-01-01

    Geologic evidence of the Neoproterozoic rifting of Laurentia during breakup of Rodinia is recorded in basement massifs of the cratonic margin by dike swarms, volcanic and plutonic rocks, and rift-related clastic sedimentary sequences. The spatial and temporal distribution of these geologic features varies both within and between the massifs but preserves evidence concerning the timing and nature of rifting. The most salient features include: (1) a rift-related magmatic event recorded in the French Broad massif and the southern and central Shenandoah massif that is distinctly older than that recorded in the northern Shenandoah massif and northward; (2) felsic volcanic centers at the north ends of both French Broad and Shenandoah massifs accompanied by dike swarms; (3) differences in volume between massifs of cover-sequence volcanic rocks and rift-related clastic rocks; and (4) WNW orientation of the Grenville dike swarm in contrast to the predominately NE orientation of other Neoproterozoic dikes. Previously proposed rifting mechanisms to explain these features include rift-transform and plume–triple-junction systems. The rift-transform system best explains features 1, 2, and 3, listed here, and we propose that it represents the dominant rifting mechanism for most of the Laurentian margin. To explain feature 4, as well as magmatic ages and geochemical trends in the Northern Appalachians, we propose that a plume–triple-junction system evolved into the rift-transform system. A ca. 600 Ma mantle plume centered east of the Sutton Mountains generated the radial dike swarm of the Adirondack massif and the Grenville dike swarm, and a collocated triple junction generated the northern part of the rift-transform system. An eastern branch of this system produced the Long Range dike swarm in Newfoundland, and a subsequent western branch produced the ca. 554 Ma Tibbit Hill volcanics and the ca. 550 Ma rift-related magmatism of Newfoundland.

  9. Swarms of repeating long-period earthquakes at Shishaldin Volcano, Alaska, 2001-2004

    USGS Publications Warehouse

    Petersen, Tanja

    2007-01-01

    During 2001–2004, a series of four periods of elevated long-period seismic activity, each lasting about 1–2 months, occurred at Shishaldin Volcano, Aleutian Islands, Alaska. The time periods are termed swarms of repeating events, reflecting an abundance of earthquakes with highly similar waveforms that indicate stable, non-destructive sources. These swarms are characterized by increased earthquake amplitudes, although the seismicity rate of one event every 0.5–5 min has remained more or less constant since Shishaldin last erupted in 1999. A method based on waveform cross-correlation is used to identify highly repetitive events, suggestive of spatially distinct source locations. The waveform analysis shows that several different families of similar events co-exist during a given swarm day, but generally only one large family dominates. A network of hydrothermal fractures may explain the events that do not belong to a dominant repeating event group, i.e. multiple sources at different locations exist next to a dominant source. The dominant waveforms exhibit systematic changes throughout each swarm, but some of these waveforms do reappear over the course of 4 years indicating repeatedly activated source locations. The choked flow model provides a plausible trigger mechanism for the repeating events observed at Shishaldin, explaining the gradual changes in waveforms over time by changes in pressure gradient across a constriction within the uppermost part of the conduit. The sustained generation of Shishaldin's long-period events may be attributed to complex dynamics of a multi-fractured hydrothermal system: the pressure gradient within the main conduit may be regulated by temporarily sealing and reopening of parallel flow pathways, by the amount of debris within the main conduit and/or by changing gas influx into the hydrothermal system. The observations suggest that Shishaldin's swarms of repeating events represent time periods during which a dominant source is activated.

  10. Electrocardiographic signals and swarm-based support vector machine for hypoglycemia detection.

    PubMed

    Nuryani, Nuryani; Ling, Steve S H; Nguyen, H T

    2012-04-01

    Cardiac arrhythmia relating to hypoglycemia is suggested as a cause of death in diabetic patients. This article introduces electrocardiographic (ECG) parameters for artificially induced hypoglycemia detection. In addition, a hybrid technique of swarm-based support vector machine (SVM) is introduced for hypoglycemia detection using the ECG parameters as inputs. In this technique, a particle swarm optimization (PSO) is proposed to optimize the SVM to detect hypoglycemia. In an experiment using medical data of patients with Type 1 diabetes, the introduced ECG parameters show significant contributions to the performance of the hypoglycemia detection and the proposed detection technique performs well in terms of sensitivity and specificity.

  11. Artificial bee colony in neuro - Symbolic integration

    NASA Astrophysics Data System (ADS)

    Kasihmuddin, Mohd Shareduwan Mohd; Sathasivam, Saratha; Mansor, Mohd. Asyraf

    2017-08-01

    Swarm intelligence is a research area that models the population of the swarm based on natural computation. Artificial bee colony (ABC) algorithm is a swarm based metaheuristic algorithm introduced by Karaboga to optimize numerical problem. Pattern-SAT is a pattern reconstruction paradigm that utilized 2SAT logical rule in representing the behavior of the desired pattern. The information of the desired pattern in terms of 2SAT logic is embedded to Hopfield neural network (HNN-P2SAT) and the desired pattern is reconstructed during the retrieval phase. Since the performance of HNN-P2SAT in Pattern-SAT deteriorates when the number of 2SAT clause increased, newly improved ABC is used to reduce the computation burden during the learning phase of HNN-P2SAT (HNN-P2SATABC). The aim of this study is to investigate the performance of Pattern-SAT produced by ABC incorporated with HNN-P2SAT and compare it with conventional standalone HNN. The comparison is examined by using Microsoft Visual Basic C++ 2013 software. The detailed comparison in doing Pattern-SAT is discussed based on global Pattern-SAT, ratio of activated clauses and computation time. The result obtained from computer simulation indicates the beneficial features of HNN-P2SATABC in doing Pattern-SAT. This finding is expected to result in a significant implication on the choice of searching method used to do Pattern-SAT.

  12. Particle Swarms in Fractures: Open Versus Partially Closed Systems

    NASA Astrophysics Data System (ADS)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2014-12-01

    In the field, fractures may be isolated or connected to fluid reservoirs anywhere along the perimeter of a fracture. These boundaries affect fluid circulation, flow paths and communication with external reservoirs. The transport of drop like collections of colloidal-sized particles (particle swarms) in open and partially closed systems was studied. A uniform aperture synthetic fracture was constructed using two blocks (100 x 100 x 50 mm) of transparent acrylic placed parallel to each other. The fracture was fully submerged a tank filled with 100cSt silicone oil. Fracture apertures were varied from 5-80 mm. Partially closed systems were created by sealing the sides of the fracture with plastic film. The four boundary conditions study were: (Case 1) open, (Case 2) closed on the sides, (Case 3) closed on the bottom, and (Case 4) closed on both the sides and bottom of the fracture. A 15 μL dilute suspension of soda-lime glass particles in oil (2% by mass) were released into the fracture. Particle swarms were illuminated using a green (525 nm) LED array and imaged with a CCD camera. The presence of the additional boundaries modified the speed of the particle swarms (see figure). In Case 1, enhanced swarm transport was observed for a range of apertures, traveling faster than either very small or very large apertures. In Case 2, swarm velocities were enhanced over a larger range of fracture apertures than in any of the other cases. Case 3 shifted the enhanced transport regime to lower apertures and also reduced swarm speed when compared to Case 2. Finally, Case 4 eliminated the enhanced transport regime entirely. Communication between the fluid in the fracture and an external fluid reservoir resulted in enhanced swarm transport in Cases 1-3. The non-rigid nature of a swarm enables drag from the fracture walls to modify the swarm geometry. The particles composing a swarm reorganize in response to the fracture, elongating the swarm and maintaining its density. Unlike a drop or solid sphere, fracture boundaries do not exclusively decelerate swarm motion but instead produce enhanced swarm transport. Acknowledgments: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).

  13. Particle Swarm-Based Translation Control for Immersed Tunnel Element in the Hong Kong-Zhuhai-Macao Bridge Project

    NASA Astrophysics Data System (ADS)

    Li, Jun-jun; Yang, Xiao-jun; Xiao, Ying-jie; Xu, Bo-wei; Wu, Hua-feng

    2018-03-01

    Immersed tunnel is an important part of the Hong Kong-Zhuhai-Macao Bridge (HZMB) project. In immersed tunnel floating, translation which includes straight and transverse movements is the main working mode. To decide the magnitude and direction of the towing force for each tug, a particle swarm-based translation control method is presented for non-power immersed tunnel element. A sort of linear weighted logarithmic function is exploited to avoid weak subgoals. In simulation, the particle swarm-based control method is evaluated and compared with traditional empirical method in the case of the HZMB project. Simulation results show that the presented method delivers performance improvement in terms of the enhanced surplus towing force.

  14. LinkMind: link optimization in swarming mobile sensor networks.

    PubMed

    Ngo, Trung Dung

    2011-01-01

    A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.

  15. LinkMind: Link Optimization in Swarming Mobile Sensor Networks

    PubMed Central

    Ngo, Trung Dung

    2011-01-01

    A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation. PMID:22164070

  16. Models of angular momentum input to a circumterrestrial swarm from encounters with heliocentric planetesimals

    NASA Technical Reports Server (NTRS)

    Herbert, F.; Davis, D. R.

    1984-01-01

    Preliminary experiments show that heliocentric planetesimals passing through the Earth environment possess significant angular momentum. However it also appears that these same planetesimals impacting a circularized circumterrestrial planetesimal swarm would likely remove angular momentum (though possibly increasing mean kinetic energy), presumably promoting both swarm infall upon the Earth and escape to heliocentric space. Only a distribution of highly eccentric satellite orbits with mean tangential velocities of a few tens of percent of local circular velocity would be immune against angular momentum loss to passing heliocentric planetesimals.

  17. Emergence of macroscopic directed motion in populations of motile colloids

    NASA Astrophysics Data System (ADS)

    Bricard, Antoine; Caussin, Jean-Baptiste; Desreumaux, Nicolas; Dauchot, Olivier; Bartolo, Denis

    2013-11-01

    From the formation of animal flocks to the emergence of coordinated motion in bacterial swarms, populations of motile organisms at all scales display coherent collective motion. This consistent behaviour strongly contrasts with the difference in communication abilities between the individuals. On the basis of this universal feature, it has been proposed that alignment rules at the individual level could solely account for the emergence of unidirectional motion at the group level. This hypothesis has been supported by agent-based simulations. However, more complex collective behaviours have been systematically found in experiments, including the formation of vortices, fluctuating swarms, clustering and swirling. All these (living and man-made) model systems (bacteria, biofilaments and molecular motors, shaken grains and reactive colloids) predominantly rely on actual collisions to generate collective motion. As a result, the potential local alignment rules are entangled with more complex, and often unknown, interactions. The large-scale behaviour of the populations therefore strongly depends on these uncontrolled microscopic couplings, which are extremely challenging to measure and describe theoretically. Here we report that dilute populations of millions of colloidal rolling particles self-organize to achieve coherent motion in a unique direction, with very few density and velocity fluctuations. Quantitatively identifying the microscopic interactions between the rollers allows a theoretical description of this polar-liquid state. Comparison of the theory with experiment suggests that hydrodynamic interactions promote the emergence of collective motion either in the form of a single macroscopic `flock', at low densities, or in that of a homogenous polar phase, at higher densities. Furthermore, hydrodynamics protects the polar-liquid state from the giant density fluctuations that were hitherto considered the hallmark of populations of self-propelled particles. Our experiments demonstrate that genuine physical interactions at the individual level are sufficient to set homogeneous active populations into stable directed motion.

  18. Intrinsic Fluctuations and Driven Response of Insect Swarms

    NASA Astrophysics Data System (ADS)

    Ni, Rui; Puckett, James G.; Dufresne, Eric R.; Ouellette, Nicholas T.

    2015-09-01

    Animals of all sizes form groups, as acting together can convey advantages over acting alone; thus, collective animal behavior has been identified as a promising template for designing engineered systems. However, models and observations have focused predominantly on characterizing the overall group morphology, and often focus on highly ordered groups such as bird flocks. We instead study a disorganized aggregation (an insect mating swarm), and compare its natural fluctuations with the group-level response to an external stimulus. We quantify the swarm's frequency-dependent linear response and its spectrum of intrinsic fluctuations, and show that the ratio of these two quantities has a simple scaling with frequency. Our results provide a new way of comparing models of collective behavior with experimental data.

  19. A Particle Swarm Optimization Algorithm for Optimal Operating Parameters of VMI Systems in a Two-Echelon Supply Chain

    NASA Astrophysics Data System (ADS)

    Sue-Ann, Goh; Ponnambalam, S. G.

    This paper focuses on the operational issues of a Two-echelon Single-Vendor-Multiple-Buyers Supply chain (TSVMBSC) under vendor managed inventory (VMI) mode of operation. To determine the optimal sales quantity for each buyer in TSVMBC, a mathematical model is formulated. Based on the optimal sales quantity can be obtained and the optimal sales price that will determine the optimal channel profit and contract price between the vendor and buyer. All this parameters depends upon the understanding of the revenue sharing between the vendor and buyers. A Particle Swarm Optimization (PSO) is proposed for this problem. Solutions obtained from PSO is compared with the best known results reported in literature.

  20. A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM

    PubMed Central

    Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei

    2018-01-01

    Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model’s performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM’s parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models’ performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors. PMID:29342942

  1. Particle Swarm Optimization Toolbox

    NASA Technical Reports Server (NTRS)

    Grant, Michael J.

    2010-01-01

    The Particle Swarm Optimization Toolbox is a library of evolutionary optimization tools developed in the MATLAB environment. The algorithms contained in the library include a genetic algorithm (GA), a single-objective particle swarm optimizer (SOPSO), and a multi-objective particle swarm optimizer (MOPSO). Development focused on both the SOPSO and MOPSO. A GA was included mainly for comparison purposes, and the particle swarm optimizers appeared to perform better for a wide variety of optimization problems. All algorithms are capable of performing unconstrained and constrained optimization. The particle swarm optimizers are capable of performing single and multi-objective optimization. The SOPSO and MOPSO algorithms are based on swarming theory and bird-flocking patterns to search the trade space for the optimal solution or optimal trade in competing objectives. The MOPSO generates Pareto fronts for objectives that are in competition. A GA, based on Darwin evolutionary theory, is also included in the library. The GA consists of individuals that form a population in the design space. The population mates to form offspring at new locations in the design space. These offspring contain traits from both of the parents. The algorithm is based on this combination of traits from parents to hopefully provide an improved solution than either of the original parents. As the algorithm progresses, individuals that hold these optimal traits will emerge as the optimal solutions. Due to the generic design of all optimization algorithms, each algorithm interfaces with a user-supplied objective function. This function serves as a "black-box" to the optimizers in which the only purpose of this function is to evaluate solutions provided by the optimizers. Hence, the user-supplied function can be numerical simulations, analytical functions, etc., since the specific detail of this function is of no concern to the optimizer. These algorithms were originally developed to support entry trajectory and guidance design for the Mars Science Laboratory mission but may be applied to any optimization problem.

  2. Biomimicry of quorum sensing using bacterial lifecycle model.

    PubMed

    Niu, Ben; Wang, Hong; Duan, Qiqi; Li, Li

    2013-01-01

    Recent microbiologic studies have shown that quorum sensing mechanisms, which serve as one of the fundamental requirements for bacterial survival, exist widely in bacterial intra- and inter-species cell-cell communication. Many simulation models, inspired by the social behavior of natural organisms, are presented to provide new approaches for solving realistic optimization problems. Most of these simulation models follow population-based modelling approaches, where all the individuals are updated according to the same rules. Therefore, it is difficult to maintain the diversity of the population. In this paper, we present a computational model termed LCM-QS, which simulates the bacterial quorum-sensing (QS) mechanism using an individual-based modelling approach under the framework of Agent-Environment-Rule (AER) scheme, i.e. bacterial lifecycle model (LCM). LCM-QS model can be classified into three main sub-models: chemotaxis with QS sub-model, reproduction and elimination sub-model and migration sub-model. The proposed model is used to not only imitate the bacterial evolution process at the single-cell level, but also concentrate on the study of bacterial macroscopic behaviour. Comparative experiments under four different scenarios have been conducted in an artificial 3-D environment with nutrients and noxious distribution. Detailed study on bacterial chemotatic processes with quorum sensing and without quorum sensing are compared. By using quorum sensing mechanisms, artificial bacteria working together can find the nutrient concentration (or global optimum) quickly in the artificial environment. Biomimicry of quorum sensing mechanisms using the lifecycle model allows the artificial bacteria endowed with the communication abilities, which are essential to obtain more valuable information to guide their search cooperatively towards the preferred nutrient concentrations. It can also provide an inspiration for designing new swarm intelligence optimization algorithms, which can be used for solving the real-world problems.

  3. Biomimicry of quorum sensing using bacterial lifecycle model

    PubMed Central

    2013-01-01

    Background Recent microbiologic studies have shown that quorum sensing mechanisms, which serve as one of the fundamental requirements for bacterial survival, exist widely in bacterial intra- and inter-species cell-cell communication. Many simulation models, inspired by the social behavior of natural organisms, are presented to provide new approaches for solving realistic optimization problems. Most of these simulation models follow population-based modelling approaches, where all the individuals are updated according to the same rules. Therefore, it is difficult to maintain the diversity of the population. Results In this paper, we present a computational model termed LCM-QS, which simulates the bacterial quorum-sensing (QS) mechanism using an individual-based modelling approach under the framework of Agent-Environment-Rule (AER) scheme, i.e. bacterial lifecycle model (LCM). LCM-QS model can be classified into three main sub-models: chemotaxis with QS sub-model, reproduction and elimination sub-model and migration sub-model. The proposed model is used to not only imitate the bacterial evolution process at the single-cell level, but also concentrate on the study of bacterial macroscopic behaviour. Comparative experiments under four different scenarios have been conducted in an artificial 3-D environment with nutrients and noxious distribution. Detailed study on bacterial chemotatic processes with quorum sensing and without quorum sensing are compared. By using quorum sensing mechanisms, artificial bacteria working together can find the nutrient concentration (or global optimum) quickly in the artificial environment. Conclusions Biomimicry of quorum sensing mechanisms using the lifecycle model allows the artificial bacteria endowed with the communication abilities, which are essential to obtain more valuable information to guide their search cooperatively towards the preferred nutrient concentrations. It can also provide an inspiration for designing new swarm intelligence optimization algorithms, which can be used for solving the real-world problems. PMID:23815296

  4. Characterization and Modeling of Insect Swarms Using tools from Fluid Dynamics

    DTIC Science & Technology

    2016-09-01

    Scientific Reports, (01 2013): 1073 . doi: 10.1038/srep01073 James G. Puckett, Douglas H. Kelley, Nicholas T. Ouellette. Searching for effective...dynamics of laboratory insect swarms,” Sci. Rep. 3, 1073 (2013). [Ouellette et al. 2006] N. T. Ouellette, H. Xu, and E. Bodenschatz, “A quantitative

  5. Physical mechanisms for chemotactic pattern formation by bacteria.

    PubMed Central

    Brenner, M P; Levitov, L S; Budrene, E O

    1998-01-01

    This paper formulates a theory for chemotactic pattern formation by the bacteria Escherichia coli in the presence of excreted attractant. In a chemotactically neutral background, through chemoattractant signaling, the bacteria organize into swarm rings and aggregates. The analysis invokes only those physical processes that are both justifiable by known biochemistry and necessary and sufficient for swarm ring migration and aggregate formation. Swarm rings migrate in the absence of an external chemoattractant gradient. The ring motion is caused by the depletion of a substrate that is necessary to produce attractant. Several scaling laws are proposed and are demonstrated to be consistent with experimental data. Aggregate formation corresponds to finite time singularities in which the bacterial density diverges at a point. Instabilities of swarm rings leading to aggregate formation occur via a mechanism similar to aggregate formation itself: when the mass density of the swarm ring exceeds a threshold, the ring collapses cylindrically and then destabilizes into aggregates. This sequence of events is demonstrated both in the theoretical model and in the experiments. PMID:9545032

  6. Research on bulbous bow optimization based on the improved PSO algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng-long; Zhang, Bao-ji; Tezdogan, Tahsin; Xu, Le-ping; Lai, Yu-yang

    2017-08-01

    In order to reduce the total resistance of a hull, an optimization framework for the bulbous bow optimization was presented. The total resistance in calm water was selected as the objective function, and the overset mesh technique was used for mesh generation. RANS method was used to calculate the total resistance of the hull. In order to improve the efficiency and smoothness of the geometric reconstruction, the arbitrary shape deformation (ASD) technique was introduced to change the shape of the bulbous bow. To improve the global search ability of the particle swarm optimization (PSO) algorithm, an improved particle swarm optimization (IPSO) algorithm was proposed to set up the optimization model. After a series of optimization analyses, the optimal hull form was found. It can be concluded that the simulation based design framework built in this paper is a promising method for bulbous bow optimization.

  7. Nontoxic colloidal particles impede antibiotic resistance of swarming bacteria by disrupting collective motion and speed

    NASA Astrophysics Data System (ADS)

    Lu, Shengtao; Liu, Fang; Xing, Bengang; Yeow, Edwin K. L.

    2015-12-01

    A monolayer of swarming B. subtilis on semisolid agar is shown to display enhanced resistance against antibacterial drugs due to their collective behavior and motility. The dynamics of swarming motion, visualized in real time using time-lapse microscopy, prevents the bacteria from prolonged exposure to lethal drug concentrations. The elevated drug resistance is significantly reduced when the collective motion of bacteria is judiciously disrupted using nontoxic polystyrene colloidal particles immobilized on the agar surface. The colloidal particles block and hinder the motion of the cells, and force large swarming rafts to break up into smaller packs in order to maneuver across narrow spaces between densely packed particles. In this manner, cohesive rafts rapidly lose their collectivity, speed, and group dynamics, and the cells become vulnerable to the drugs. The antibiotic resistance capability of swarming B. subtilis is experimentally observed to be negatively correlated with the number density of colloidal particles on the engineered surface. This relationship is further tested using an improved self-propelled particle model that takes into account interparticle alignment and hard-core repulsion. This work has pertinent implications on the design of optimal methods to treat drug resistant bacteria commonly found in swarming colonies.

  8. Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT

    PubMed Central

    2017-01-01

    Cat Swarm Optimization (CSO) algorithm was put forward in 2006. Despite a faster convergence speed compared with Particle Swarm Optimization (PSO) algorithm, the application of CSO is greatly limited by the drawback of “premature convergence,” that is, the possibility of trapping in local optimum when dealing with nonlinear optimization problem with a large number of local extreme values. In order to surmount the shortcomings of CSO, Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed in this paper. Firstly, Quantum-behaved Cat Swarm Optimization (QCSO) algorithm improves the accuracy of the CSO algorithm, because it is easy to fall into the local optimum in the later stage. Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed by introducing tent map for jumping out of local optimum in this paper. Secondly, CQCSO has been applied in the simulation of five different test functions, showing higher accuracy and less time consumption than CSO and QCSO. Finally, photovoltaic MPPT model and experimental platform are established and global maximum power point tracking control strategy is achieved by CQCSO algorithm, the effectiveness and efficiency of which have been verified by both simulation and experiment. PMID:29181020

  9. Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT.

    PubMed

    Nie, Xiaohua; Wang, Wei; Nie, Haoyao

    2017-01-01

    Cat Swarm Optimization (CSO) algorithm was put forward in 2006. Despite a faster convergence speed compared with Particle Swarm Optimization (PSO) algorithm, the application of CSO is greatly limited by the drawback of "premature convergence," that is, the possibility of trapping in local optimum when dealing with nonlinear optimization problem with a large number of local extreme values. In order to surmount the shortcomings of CSO, Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed in this paper. Firstly, Quantum-behaved Cat Swarm Optimization (QCSO) algorithm improves the accuracy of the CSO algorithm, because it is easy to fall into the local optimum in the later stage. Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed by introducing tent map for jumping out of local optimum in this paper. Secondly, CQCSO has been applied in the simulation of five different test functions, showing higher accuracy and less time consumption than CSO and QCSO. Finally, photovoltaic MPPT model and experimental platform are established and global maximum power point tracking control strategy is achieved by CQCSO algorithm, the effectiveness and efficiency of which have been verified by both simulation and experiment.

  10. A lithospheric magnetic field model derived from the Swarm satellite magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Hulot, G.; Thebault, E.; Vigneron, P.

    2015-12-01

    The Swarm constellation of satellites was launched in November 2013 and has since then delivered high quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency (ESA) to provide a number of scientific products which will be made available to the scientific community. Within this framework, specific tools were tailor-made to better extract the magnetic signal emanating from Earth's the lithospheric. These tools rely on the scalar gradient measured by the lower pair of Swarm satellites and rely on a regional modeling scheme that is more sensitive to small spatial scales and weak signals than the standard spherical harmonic modeling. In this presentation, we report on various activities related to data analysis and processing. We assess the efficiency of this dedicated chain for modeling the lithospheric magnetic field using more than one year of measurements, and finally discuss refinements that are continuously implemented in order to further improve the robustness and the spatial resolution of the lithospheric field model.

  11. Estimating of aquifer parameters from the single-well water-level measurements in response to advancing longwall mine by using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Buyuk, Ersin; Karaman, Abdullah

    2017-04-01

    We estimated transmissivity and storage coefficient values from the single well water-level measurements positioned ahead of the mining face by using particle swarm optimization (PSO) technique. The water-level response to the advancing mining face contains an semi-analytical function that is not suitable for conventional inversion shemes because the partial derivative is difficult to calculate . Morever, the logaritmic behaviour of the model create difficulty for obtaining an initial model that may lead to a stable convergence. The PSO appears to obtain a reliable solution that produce a reasonable fit between water-level data and model function response. Optimization methods have been used to find optimum conditions consisting either minimum or maximum of a given objective function with regard to some criteria. Unlike PSO, traditional non-linear optimization methods have been used for many hydrogeologic and geophysical engineering problems. These methods indicate some difficulties such as dependencies to initial model, evolution of the partial derivatives that is required while linearizing the model and trapping at local optimum. Recently, Particle swarm optimization (PSO) became the focus of modern global optimization method that is inspired from the social behaviour of birds of swarms, and appears to be a reliable and powerful algorithms for complex engineering applications. PSO that is not dependent on an initial model, and non-derivative stochastic process appears to be capable of searching all possible solutions in the model space either around local or global optimum points.

  12. Spectral method for a kinetic swarming model

    DOE PAGES

    Gamba, Irene M.; Haack, Jeffrey R.; Motsch, Sebastien

    2015-04-28

    Here we present the first numerical method for a kinetic description of the Vicsek swarming model. The kinetic model poses a unique challenge, as there is a distribution dependent collision invariant to satisfy when computing the interaction term. We use a spectral representation linked with a discrete constrained optimization to compute these interactions. To test the numerical scheme we investigate the kinetic model at different scales and compare the solution with the microscopic and macroscopic descriptions of the Vicsek model. Lastly, we observe that the kinetic model captures key features such as vortex formation and traveling waves.

  13. A multi-damages identification method for cantilever beam based on mode shape curvatures and Kriging surrogate model

    NASA Astrophysics Data System (ADS)

    Xie, Fengle; Jiang, Zhansi; Jiang, Hui

    2018-05-01

    This paper presents a multi-damages identification method for Cantilever Beam. First, the damage location is identified by using the mode shape curvatures. Second, samples of varying damage severities at the damage location and their corresponding natural frequencies are used to construct the initial Kriging surrogate model. Then a particle swarm optimization (PSO) algorithm is employed to identify the damage severities based on Kriging surrogate model. The simulation study of a double-damaged cantilever beam demonstrated that the proposed method is effective.

  14. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network

    PubMed Central

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish–Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection. PMID:26447696

  15. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network.

    PubMed

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish-Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection.

  16. Effect of swarming on biodiversity in non-symmetric rock-paper-scissor game.

    PubMed

    Bose, R

    2010-05-01

    Cyclic dominance of species is a potential mechanism for maintaining biodiversity. The author investigates the generalised scenario when the cyclic dominance of three or more interacting species is described by a non-symmetric matrix game that has multiple Nash equilibria. Modified Lotka-Volterra equations are proposed to incorporate the effects of swarming, and the condition for biodiversity is derived. The species are modelled using replicator equations, where each member of the species is assigned a fitness value. The authors show, for the first time, that the 'swarming effect' has an important role to play in the maintenance of biodiversity. The authors have also discovered the existence of a critical value of the swarming parameter for a given mobility, above which there is a high probability of existence of biodiversity.

  17. Integrated Swarming Operations for Air Base Defense: Applications in Irregular Warfare

    DTIC Science & Technology

    2006-06-01

    Giordano THIS PAGE INTENTIONALLY LEFT BLANK i REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public...Gray Approved by: John Arquilla Thesis Advisor Frank Giordano Second Reader Gordon McCormick Chairman, Department of Defense...Frank Giordano for all their help in guiding me down the path of swarming, counterinsurgency and applications for air base defense in irregular

  18. Hybrid swarm intelligence optimization approach for optimal data storage position identification in wireless sensor networks.

    PubMed

    Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam

    2015-01-01

    The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches.

  19. IRaPPA: Information retrieval based integration of biophysical models for protein assembly selection

    PubMed Central

    Moal, Iain H.; Barradas-Bautista, Didier; Jiménez-García, Brian; Torchala, Mieczyslaw; van der Velde, Arjan; Vreven, Thom; Weng, Zhiping; Bates, Paul A.; Fernández-Recio, Juan

    2018-01-01

    Motivation In order to function, proteins frequently bind to one another and form 3D assemblies. Knowledge of the atomic details of these structures helps our understanding of how proteins work together, how mutations can lead to disease, and facilitates the designing of drugs which prevent or mimic the interaction. Results Atomic modeling of protein-protein interactions requires the selection of near-native structures from a set of docked poses based on their calculable properties. By considering this as an information retrieval problem, we have adapted methods developed for Internet search ranking and electoral voting into IRaPPA, a pipeline integrating biophysical properties. The approach enhances the identification of near-native structures when applied to four docking methods, resulting in a near-native appearing in the top 10 solutions for up to 50% of complexes benchmarked, and up to 70% in the top 100. Availability IRaPPA has been implemented in the SwarmDock server (http://bmm.crick.ac.uk/~SwarmDock/), pyDock server (http://life.bsc.es/pid/pydockrescoring/) and ZDOCK server (http://zdock.umassmed.edu/), with code available on request. PMID:28200016

  20. LCS-1: a high-resolution global model of the lithospheric magnetic field derived from CHAMP and Swarm satellite observations

    NASA Astrophysics Data System (ADS)

    Olsen, Nils; Ravat, Dhananjay; Finlay, Christopher C.; Kother, Livia K.

    2017-12-01

    We derive a new model, named LCS-1, of Earth's lithospheric field based on four years (2006 September-2010 September) of magnetic observations taken by the CHAMP satellite at altitudes lower than 350 km, as well as almost three years (2014 April-2016 December) of measurements taken by the two lower Swarm satellites Alpha and Charlie. The model is determined entirely from magnetic 'gradient' data (approximated by finite differences): the north-south gradient is approximated by first differences of 15 s along-track data (for CHAMP and each of the two Swarm satellites), while the east-west gradient is approximated by the difference between observations taken by Swarm Alpha and Charlie. In total, we used 6.2 mio data points. The model is parametrized by 35 000 equivalent point sources located on an almost equal-area grid at a depth of 100 km below the surface (WGS84 ellipsoid). The amplitudes of these point sources are determined by minimizing the misfit to the magnetic satellite 'gradient' data together with the global average of |Br| at the ellipsoid surface (i.e. applying an L1 model regularization of Br). In a final step, we transform the point-source representation to a spherical harmonic expansion. The model shows very good agreement with previous satellite-derived lithospheric field models at low degree (degree correlation above 0.8 for degrees n ≤ 133). Comparison with independent near-surface aeromagnetic data from Australia yields good agreement (coherence >0.55) at horizontal wavelengths down to at least 250 km, corresponding to spherical harmonic degree n ≈ 160. The LCS-1 vertical component and field intensity anomaly maps at Earth's surface show similar features to those exhibited by the WDMAM2 and EMM2015 lithospheric field models truncated at degree 185 in regions where they include near-surface data and provide unprecedented detail where they do not. Example regions of improvement include the Bangui anomaly region in central Africa, the west African cratons, the East African Rift region, the Bay of Bengal, the southern 90°E ridge, the Cretaceous quiet zone south of the Walvis Ridge and the younger parts of the South Atlantic.

  1. Fimbriae have distinguishable roles in Proteus mirabilis biofilm formation.

    PubMed

    Scavone, Paola; Iribarnegaray, Victoria; Caetano, Ana Laura; Schlapp, Geraldine; Härtel, Steffen; Zunino, Pablo

    2016-07-01

    Proteus mirabilis is one of the most common etiological agents of complicated urinary tract infections, especially those associated with catheterization. This is related to the ability of P. mirabilis to form biofilms on different surfaces. This pathogen encodes 17 putative fimbrial operons, the highest number found in any sequenced bacterial species so far. The present study analyzed the role of four P. mirabilis fimbriae (MR/P, UCA, ATF and PMF) in biofilm formation using isogenic mutants. Experimental approaches included migration over catheter, swimming and swarming motility, the semiquantitative assay based on adhesion and crystal violet staining, and biofilm development by immunofluorescence and confocal microscopy. Different assays were performed using LB or artificial urine. Results indicated that the different fimbriae contribute to the formation of a stable and functional biofilm. Fimbriae revealed particular associated roles. First, all the mutants showed a significantly reduced ability to migrate across urinary catheter sections but neither swimming nor swarming motility were affected. However, some mutants formed smaller biofilms compared with the wild type (MRP and ATF) while others formed significantly larger biofilms (UCA and PMF) showing different bioarchitecture features. It can be concluded that P. mirabilis fimbriae have distinguishable roles in the generation of biofilms, particularly in association with catheters. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Fuzzy neural network technique for system state forecasting.

    PubMed

    Li, Dezhi; Wang, Wilson; Ismail, Fathy

    2013-10-01

    In many system state forecasting applications, the prediction is performed based on multiple datasets, each corresponding to a distinct system condition. The traditional methods dealing with multiple datasets (e.g., vector autoregressive moving average models and neural networks) have some shortcomings, such as limited modeling capability and opaque reasoning operations. To tackle these problems, a novel fuzzy neural network (FNN) is proposed in this paper to effectively extract information from multiple datasets, so as to improve forecasting accuracy. The proposed predictor consists of both autoregressive (AR) nodes modeling and nonlinear nodes modeling; AR models/nodes are used to capture the linear correlation of the datasets, and the nonlinear correlation of the datasets are modeled with nonlinear neuron nodes. A novel particle swarm technique [i.e., Laplace particle swarm (LPS) method] is proposed to facilitate parameters estimation of the predictor and improve modeling accuracy. The effectiveness of the developed FNN predictor and the associated LPS method is verified by a series of tests related to Mackey-Glass data forecast, exchange rate data prediction, and gear system prognosis. Test results show that the developed FNN predictor and the LPS method can capture the dynamics of multiple datasets effectively and track system characteristics accurately.

  3. Dissolved oxygen content prediction in crab culture using a hybrid intelligent method

    PubMed Central

    Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang

    2016-01-01

    A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds. PMID:27270206

  4. Dissolved oxygen content prediction in crab culture using a hybrid intelligent method.

    PubMed

    Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang

    2016-06-08

    A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds.

  5. Seismic imaging beneath an InSAR anomaly in eastern Washington State: Shallow faulting associated with an earthquake swarm in a low-hazard area

    USGS Publications Warehouse

    Stephenson, William J.; Odum, Jackson K.; Wicks, Chuck; Pratt, Thomas L.; Blakely, Richard J.

    2016-01-01

    In 2001, a rare swarm of small, shallow earthquakes beneath the city of Spokane, Washington, caused ground shaking as well as audible booms over a five‐month period. Subsequent Interferometric Synthetic Aperture Radar (InSAR) data analysis revealed an area of surface uplift in the vicinity of the earthquake swarm. To investigate the potential faults that may have caused both the earthquakes and the topographic uplift, we collected ∼3  km of high‐resolution seismic‐reflection profiles to image the upper‐source region of the swarm. The two profiles reveal a complex deformational pattern within Quaternary alluvial, fluvial, and flood deposits, underlain by Tertiary basalts and basin sediments. At least 100 m of arching on a basalt surface in the upper 500 m is interpreted from both the seismic profiles and magnetic modeling. Two west‐dipping faults deform Quaternary sediments and project to the surface near the location of the Spokane fault defined from modeling of the InSAR data.

  6. Solving Fractional Programming Problems based on Swarm Intelligence

    NASA Astrophysics Data System (ADS)

    Raouf, Osama Abdel; Hezam, Ibrahim M.

    2014-04-01

    This paper presents a new approach to solve Fractional Programming Problems (FPPs) based on two different Swarm Intelligence (SI) algorithms. The two algorithms are: Particle Swarm Optimization, and Firefly Algorithm. The two algorithms are tested using several FPP benchmark examples and two selected industrial applications. The test aims to prove the capability of the SI algorithms to solve any type of FPPs. The solution results employing the SI algorithms are compared with a number of exact and metaheuristic solution methods used for handling FPPs. Swarm Intelligence can be denoted as an effective technique for solving linear or nonlinear, non-differentiable fractional objective functions. Problems with an optimal solution at a finite point and an unbounded constraint set, can be solved using the proposed approach. Numerical examples are given to show the feasibility, effectiveness, and robustness of the proposed algorithm. The results obtained using the two SI algorithms revealed the superiority of the proposed technique among others in computational time. A better accuracy was remarkably observed in the solution results of the industrial application problems.

  7. Using distributed partial memories to improve self-organizing collective movements.

    PubMed

    Winder, Ransom; Reggia, James A

    2004-08-01

    Past self-organizing models of collectively moving "particles" (simulated bird flocks, fish schools, etc.) have typically been based on purely reflexive agents that have no significant memory of past movements. We hypothesized that giving such individual particles a limited distributed memory of past obstacles they encountered could lead to significantly faster travel between goal destinations. Systematic computational experiments using six terrains that had different arrangements of obstacles demonstrated that, at least in some domains, this conjecture is true. Furthermore, these experiments demonstrated that improved performance over time came not only from the avoidance of previously seen obstacles, but also (surprisingly) immediately after first encountering obstacles due to decreased delays in circumventing those obstacles. Simulations also showed that, of the four strategies we tested for removal of remembered obstacles when memory was full and a new obstacle was to be saved, none was better than random selection. These results may be useful in interpreting future experimental research on group movements in biological populations, and in improving existing methodologies for control of collective movements in computer graphics, robotic teams, particle swarm optimization, and computer games.

  8. Autonomous Shepherding Behaviors of Multiple Target Steering Robots.

    PubMed

    Lee, Wonki; Kim, DaeEun

    2017-11-25

    This paper presents a distributed coordination methodology for multi-robot systems, based on nearest-neighbor interactions. Among many interesting tasks that may be performed using swarm robots, we propose a biologically-inspired control law for a shepherding task, whereby a group of external agents drives another group of agents to a desired location. First, we generated sheep-like robots that act like a flock. We assume that each agent is capable of measuring the relative location and velocity to each of its neighbors within a limited sensing area. Then, we designed a control strategy for shepherd-like robots that have information regarding where to go and a steering ability to control the flock, according to the robots' position relative to the flock. We define several independent behavior rules; each agent calculates to what extent it will move by summarizing each rule. The flocking sheep agents detect the steering agents and try to avoid them; this tendency leads to movement of the flock. Each steering agent only needs to focus on guiding the nearest flocking agent to the desired location. Without centralized coordination, multiple steering agents produce an arc formation to control the flock effectively. In addition, we propose a new rule for collecting behavior, whereby a scattered flock or multiple flocks are consolidated. From simulation results with multiple robots, we show that each robot performs actions for the shepherding behavior, and only a few steering agents are needed to control the whole flock. The results are displayed in maps that trace the paths of the flock and steering robots. Performance is evaluated via time cost and path accuracy to demonstrate the effectiveness of this approach.

  9. Autonomous Shepherding Behaviors of Multiple Target Steering Robots

    PubMed Central

    Lee, Wonki; Kim, DaeEun

    2017-01-01

    This paper presents a distributed coordination methodology for multi-robot systems, based on nearest-neighbor interactions. Among many interesting tasks that may be performed using swarm robots, we propose a biologically-inspired control law for a shepherding task, whereby a group of external agents drives another group of agents to a desired location. First, we generated sheep-like robots that act like a flock. We assume that each agent is capable of measuring the relative location and velocity to each of its neighbors within a limited sensing area. Then, we designed a control strategy for shepherd-like robots that have information regarding where to go and a steering ability to control the flock, according to the robots’ position relative to the flock. We define several independent behavior rules; each agent calculates to what extent it will move by summarizing each rule. The flocking sheep agents detect the steering agents and try to avoid them; this tendency leads to movement of the flock. Each steering agent only needs to focus on guiding the nearest flocking agent to the desired location. Without centralized coordination, multiple steering agents produce an arc formation to control the flock effectively. In addition, we propose a new rule for collecting behavior, whereby a scattered flock or multiple flocks are consolidated. From simulation results with multiple robots, we show that each robot performs actions for the shepherding behavior, and only a few steering agents are needed to control the whole flock. The results are displayed in maps that trace the paths of the flock and steering robots. Performance is evaluated via time cost and path accuracy to demonstrate the effectiveness of this approach. PMID:29186836

  10. [The research of near-infrared blood glucose measurement using particle swarm optimization and artificial neural network].

    PubMed

    Dai, Juan; Ji, Zhong; Du, Yubao

    2017-08-01

    Existing near-infrared non-invasive blood glucose detection modelings mostly detect multi-spectral signals with different wavelength, which is not conducive to the popularization of non-invasive glucose meter at home and does not consider the physiological glucose dynamics of individuals. In order to solve these problems, this study presented a non-invasive blood glucose detection model combining particle swarm optimization (PSO) and artificial neural network (ANN) by using the 1 550 nm near-infrared absorbance as the independent variable and the concentration of blood glucose as the dependent variable, named as PSO-2ANN. The PSO-2ANN model was based on two sub-modules of neural networks with certain structures and arguments, and was built up after optimizing the weight coefficients of the two networks by particle swarm optimization. The results of 10 volunteers were predicted by PSO-2ANN. It was indicated that the relative error of 9 volunteers was less than 20%; 98.28% of the predictions of blood glucose by PSO-2ANN were distributed in the regions A and B of Clarke error grid, which confirmed that PSO-2ANN could offer higher prediction accuracy and better robustness by comparison with ANN. Additionally, even the physiological glucose dynamics of individuals may be different due to the influence of environment, temper, mental state and so on, PSO-2ANN can correct this difference only by adjusting one argument. The PSO-2ANN model provided us a new prospect to overcome individual differences in blood glucose prediction.

  11. Comparison of equilibrium ohmic and nonequilibrium swarm models for monitoring conduction electron evolution in high-altitude EMP calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric

    2016-10-17

    Here, atmospheric electromagnetic pulse (EMP) events are important physical phenomena that occur through both man-made and natural processes. Radiation-induced currents and voltages in EMP can couple with electrical systems, such as those found in satellites, and cause significant damage. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. CHAP-LA (Compton High Altitude Pulse-Los Alamos) is a state-of-the-art EMP code that solves Maxwell inline images equations for gamma source-induced electromagnetic fields in the atmosphere. In EMP, low-energy, conduction electrons constitute a conduction current that limits the EMP by opposing themore » Compton current. CHAP-LA calculates the conduction current using an equilibrium ohmic model. The equilibrium model works well at low altitudes, where the electron energy equilibration time is short compared to the rise time or duration of the EMP. At high altitudes, the equilibration time increases beyond the EMP rise time and the predicted equilibrium ionization rate becomes very large. The ohmic model predicts an unphysically large production of conduction electrons which prematurely and abruptly shorts the EMP in the simulation code. An electron swarm model, which implicitly accounts for the time evolution of the conduction electron energy distribution, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an electron swarm model previously in Pusateri et al. (2015). Here we demonstrate EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high-altitude, upward EMP modeling obtained by integrating a swarm model into CHAP-LA.« less

  12. Comparison of equilibrium ohmic and nonequilibrium swarm models for monitoring conduction electron evolution in high-altitude EMP calculations

    NASA Astrophysics Data System (ADS)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric; Ji, Wei

    2016-10-01

    Atmospheric electromagnetic pulse (EMP) events are important physical phenomena that occur through both man-made and natural processes. Radiation-induced currents and voltages in EMP can couple with electrical systems, such as those found in satellites, and cause significant damage. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. CHAP-LA (Compton High Altitude Pulse-Los Alamos) is a state-of-the-art EMP code that solves Maxwell's equations for gamma source-induced electromagnetic fields in the atmosphere. In EMP, low-energy, conduction electrons constitute a conduction current that limits the EMP by opposing the Compton current. CHAP-LA calculates the conduction current using an equilibrium ohmic model. The equilibrium model works well at low altitudes, where the electron energy equilibration time is short compared to the rise time or duration of the EMP. At high altitudes, the equilibration time increases beyond the EMP rise time and the predicted equilibrium ionization rate becomes very large. The ohmic model predicts an unphysically large production of conduction electrons which prematurely and abruptly shorts the EMP in the simulation code. An electron swarm model, which implicitly accounts for the time evolution of the conduction electron energy distribution, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an electron swarm model previously in Pusateri et al. (2015). Here we demonstrate EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high-altitude, upward EMP modeling obtained by integrating a swarm model into CHAP-LA.

  13. Distributed Pheromone-Based Swarming Control of Unmanned Air and Ground Vehicles for RSTA

    DTIC Science & Technology

    2008-03-20

    Forthcoming in Proceedings of SPIE Defense & Security Conference, March 2008, Orlando, FL Distributed Pheromone -Based Swarming Control of Unmanned...describes recent advances in a fully distributed digital pheromone algorithm that has demonstrated its effectiveness in managing the complexity of...onboard digital pheromone responding to the needs of the automatic target recognition algorithms. UAVs and UGVs controlled by the same pheromone algorithm

  14. Capture of Planetesimals into a Circumterrestrial Swarm

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.

    1985-01-01

    The lunar origin model considered in this report involves processing of protolunar material through a circumterrestrial swarm of particles. Once such a swarm has formed, it can gain mass by capturing infalling planetesimals and ejecta from giant impacts on the Earth, although the angular momentum supply from these sources remains a problem. The first stage of formation of a geocentric swarm by capture of planetesimals from initially heliocentric orbits is examined. The only plausible capture mechanism that is not dependent on very low approach velocities is the mutual collision of planetesimals passing within Earth's sphere of influence. The dissipation of energy in inelastic collisions or accretion events changes the value of the Jacobi parameter, allowing capture into bound geocentric orbits. This capture scenario was tested directly by many body numerical integration of planetesimal orbits in near Earth space.

  15. Cell-Division Behavior in a Heterogeneous Swarm Environment.

    PubMed

    Erskine, Adam; Herrmann, J Michael

    2015-01-01

    We present a system of virtual particles that interact using simple kinetic rules. It is known that heterogeneous mixtures of particles can produce particularly interesting behaviors. Here we present a two-species three-dimensional swarm in which a behavior emerges that resembles cell division. We show that the dividing behavior exists across a narrow but finite band of parameters and for a wide range of population sizes. When executed in a two-dimensional environment the swarm's characteristics and dynamism manifest differently. In further experiments we show that repeated divisions can occur if the system is extended by a biased equilibrium process to control the split of populations. We propose that this repeated division behavior provides a simple model for cell-division mechanisms and is of interest for the formation of morphological structure and to swarm robotics.

  16. Optimization of shared autonomy vehicle control architectures for swarm operations.

    PubMed

    Sengstacken, Aaron J; DeLaurentis, Daniel A; Akbarzadeh-T, Mohammad R

    2010-08-01

    The need for greater capacity in automotive transportation (in the midst of constrained resources) and the convergence of key technologies from multiple domains may eventually produce the emergence of a "swarm" concept of operations. The swarm, which is a collection of vehicles traveling at high speeds and in close proximity, will require technology and management techniques to ensure safe, efficient, and reliable vehicle interactions. We propose a shared autonomy control approach, in which the strengths of both human drivers and machines are employed in concert for this management. Building from a fuzzy logic control implementation, optimal architectures for shared autonomy addressing differing classes of drivers (represented by the driver's response time) are developed through a genetic-algorithm-based search for preferred fuzzy rules. Additionally, a form of "phase transition" from a safe to an unsafe swarm architecture as the amount of sensor capability is varied uncovers key insights on the required technology to enable successful shared autonomy for swarm operations.

  17. A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization.

    PubMed

    Sun, Tao; Xu, Ming-Hai

    2017-01-01

    Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.

  18. A candidate secular variation model for IGRF-12 based on Swarm data and inverse geodynamo modelling

    NASA Astrophysics Data System (ADS)

    Fournier, Alexandre; Aubert, Julien; Thébault, Erwan

    2015-05-01

    In the context of the 12th release of the international geomagnetic reference field (IGRF), we present the methodology we followed to design a candidate secular variation model for years 2015-2020. An initial geomagnetic field model centered around 2014.3 is first constructed, based on Swarm magnetic measurements, for both the main field and its instantaneous secular variation. This initial model is next fed to an inverse geodynamo modelling framework in order to specify, for epoch 2014.3, the initial condition for the integration of a three-dimensional numerical dynamo model. The initialization phase combines the information contained in the initial model with that coming from the numerical dynamo model, in the form of three-dimensional multivariate statistics built from a numerical dynamo run unconstrained by data. We study the performance of this novel approach over two recent 5-year long intervals, 2005-2010 and 2009-2014. For a forecast horizon of 5 years, shorter than the large-scale secular acceleration time scale (˜10 years), we find that it is safer to neglect the flow acceleration and to assume that the flow determined by the initialization is steady. This steady flow is used to advance the three-dimensional induction equation forward in time, with the benefit of estimating the effects of magnetic diffusion. The result of this deterministic integration between 2015.0 and 2020.0 yields our candidate average secular variation model for that time frame, which is thus centered on 2017.5.

  19. Sambot II: A self-assembly modular swarm robot

    NASA Astrophysics Data System (ADS)

    Zhang, Yuchao; Wei, Hongxing; Yang, Bo; Jiang, Cancan

    2018-04-01

    The new generation of self-assembly modular swarm robot Sambot II, based on the original generation of self-assembly modular swarm robot Sambot, adopting laser and camera module for information collecting, is introduced in this manuscript. The visual control algorithm of Sambot II is detailed and feasibility of the algorithm is verified by the laser and camera experiments. At the end of this manuscript, autonomous docking experiments of two Sambot II robots are presented. The results of experiments are showed and analyzed to verify the feasibility of whole scheme of Sambot II.

  20. The 2013 earthquake swarm in Helike, Greece: seismic activity at the root of old normal faults

    NASA Astrophysics Data System (ADS)

    Kapetanidis, V.; Deschamps, A.; Papadimitriou, P.; Matrullo, E.; Karakonstantis, A.; Bozionelos, G.; Kaviris, G.; Serpetsidaki, A.; Lyon-Caen, H.; Voulgaris, N.; Bernard, P.; Sokos, E.; Makropoulos, K.

    2015-09-01

    The Corinth Rift in Central Greece has been studied extensively during the past decades, as it is one of the most seismically active regions in Europe. It is characterized by normal faulting and extension rates between 6 and 15 mm yr-1 in an approximately N10E° direction. On 2013 May 21, an earthquake swarm was initiated with a series of small events 4 km southeast of Aigion city. In the next days, the seismic activity became more intense, with outbursts of several stronger events of magnitude between 3.3 and 3.7. The seismicity migrated towards the east during June, followed by a sudden activation of the western part of the swarm on July 15th. More than 1500 events have been detected and manually analysed during the period between 2013 May 21 and August 31, using over 15 local stations in epicentral distances up to 30 km and a local velocity model determined by an error minimization method. Waveform similarity-based analysis was performed, revealing several distinct multiplets within the earthquake swarm. High-resolution relocation was applied using the double-difference algorithm HypoDD, incorporating both catalogue and cross-correlation differential traveltime data, which managed to separate the initial seismic cloud into several smaller, densely concentrated spatial clusters of strongly correlated events. Focal mechanism solutions for over 170 events were determined using P-wave first motion polarities, while regional waveform modelling was applied for the calculation of moment tensors for the 18 largest events of the sequence. Selected events belonging to common spatial groups were considered for the calculation of composite mechanisms to characterize different parts of the swarm. The solutions are mainly in agreement with the regional NNE-SSW extension, representing typical normal faulting on 30-50° north-dipping planes, while a few exhibit slip in an NNE-SSW direction, on a roughly subhorizontal plane. Moment magnitudes were calculated by spectral analysis of S waves, yielding b-values between 1.1 and 1.2 in their frequency-magnitude distribution. The seismic moment release history indicates swarm-like activity during the first phase, which could have acted as a preparatory stage for the second phase (after 12 July) that presented a more typical main-shock-aftershock behaviour. The spatiotemporal analysis reveals that the swarm has occurred in a volume that is likely related with the extension at depth of the NNE-dipping Pirgaki normal fault, outcropping ˜8 km to the south. The slow velocity of eastward migration of the epicentres during June implies triggering by fluids. The situation appears different in the second phase of the sequence, which was probably triggered by a build-up of stress during the first one. The relatively deep hypocentres of the 2013 swarm, compared to the shallower seismic layer within the rift, and their coincidence with the steeply dipping Pirgaki fault, favour an immature rift detachment model. Previous results from instrumental data indicate that approximately the same region had been activated during July-August 1991. The availability of the dense permanent seismological network data thus allowed for a detailed analysis of this crisis, a better understanding of its mechanical context and of the earlier events.

  1. Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems.

    PubMed

    Huang, Shuqiang; Tao, Ming

    2017-01-22

    Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K -center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms.

  2. Prediction of Sybil attack on WSN using Bayesian network and swarm intelligence

    NASA Astrophysics Data System (ADS)

    Muraleedharan, Rajani; Ye, Xiang; Osadciw, Lisa Ann

    2008-04-01

    Security in wireless sensor networks is typically sacrificed or kept minimal due to limited resources such as memory and battery power. Hence, the sensor nodes are prone to Denial-of-service attacks and detecting the threats is crucial in any application. In this paper, the Sybil attack is analyzed and a novel prediction method, combining Bayesian algorithm and Swarm Intelligence (SI) is proposed. Bayesian Networks (BN) is used in representing and reasoning problems, by modeling the elements of uncertainty. The decision from the BN is applied to SI forming an Hybrid Intelligence Scheme (HIS) to re-route the information and disconnecting the malicious nodes in future routes. A performance comparison based on the prediction using HIS vs. Ant System (AS) helps in prioritizing applications where decisions are time-critical.

  3. Mechanism underlying the diverse collective behavior in the swarm oscillator model

    NASA Astrophysics Data System (ADS)

    Iwasa, Masatomo; Tanaka, Dan

    2017-09-01

    The swarm oscillator model describes the long-time behavior of interacting chemotactic particles, and it shows numerous types of macroscopic patterns. However, the reason why so many kinds of patterns emerge is not clear. In this study, we elucidate the mechanism underlying the diversity of the pattens by analyzing the model for two particles. Focusing on the behavior when the two particles are spatially close, we find that the dynamics is classified into eight types, which explain most of the observed 13 types of patterns.

  4. Swarming: flexible roaming plans.

    PubMed

    Partridge, Jonathan D; Harshey, Rasika M

    2013-03-01

    Movement over an agar surface via swarming motility is subject to formidable challenges not encountered during swimming. Bacteria display a great deal of flexibility in coping with these challenges, which include attracting water to the surface, overcoming frictional forces, and reducing surface tension. Bacteria that swarm on "hard" agar surfaces (robust swarmers) display a hyperflagellated and hyperelongated morphology. Bacteria requiring a "softer" agar surface (temperate swarmers) do not exhibit such a dramatic morphology. For polarly flagellated robust swarmers, there is good evidence that restriction of flagellar rotation somehow signals the induction of a large number of lateral flagella, but this scenario is apparently not relevant to temperate swarmers. Swarming bacteria can be further subdivided by their requirement for multiple stators (Mot proteins) or a stator-associated protein (FliL), secretion of essential polysaccharides, cell density-dependent gene regulation including surfactant synthesis, a functional chemotaxis signaling pathway, appropriate cyclic (c)-di-GMP levels, induction of virulence determinants, and various nutritional requirements such as iron limitation or nitrate availability. Swarming strategies are as diverse as the bacteria that utilize them. The strength of these numerous designs stems from the vantage point they offer for understanding mechanisms for effective colonization of surface niches, acquisition of pathogenic potential, and identification of environmental signals that regulate swarming. The signature swirling and streaming motion within a swarm is an interesting phenomenon in and of itself, an emergent behavior with properties similar to flocking behavior in diverse systems, including birds and fish, providing a convenient new avenue for modeling such behavior.

  5. Swarming: Flexible Roaming Plans

    PubMed Central

    Partridge, Jonathan D.

    2013-01-01

    Movement over an agar surface via swarming motility is subject to formidable challenges not encountered during swimming. Bacteria display a great deal of flexibility in coping with these challenges, which include attracting water to the surface, overcoming frictional forces, and reducing surface tension. Bacteria that swarm on “hard” agar surfaces (robust swarmers) display a hyperflagellated and hyperelongated morphology. Bacteria requiring a “softer” agar surface (temperate swarmers) do not exhibit such a dramatic morphology. For polarly flagellated robust swarmers, there is good evidence that restriction of flagellar rotation somehow signals the induction of a large number of lateral flagella, but this scenario is apparently not relevant to temperate swarmers. Swarming bacteria can be further subdivided by their requirement for multiple stators (Mot proteins) or a stator-associated protein (FliL), secretion of essential polysaccharides, cell density-dependent gene regulation including surfactant synthesis, a functional chemotaxis signaling pathway, appropriate cyclic (c)-di-GMP levels, induction of virulence determinants, and various nutritional requirements such as iron limitation or nitrate availability. Swarming strategies are as diverse as the bacteria that utilize them. The strength of these numerous designs stems from the vantage point they offer for understanding mechanisms for effective colonization of surface niches, acquisition of pathogenic potential, and identification of environmental signals that regulate swarming. The signature swirling and streaming motion within a swarm is an interesting phenomenon in and of itself, an emergent behavior with properties similar to flocking behavior in diverse systems, including birds and fish, providing a convenient new avenue for modeling such behavior. PMID:23264580

  6. Molecular Interaction and Cellular Location of RecA and CheW Proteins in Salmonella enterica during SOS Response and Their Implication in Swarming.

    PubMed

    Irazoki, Oihane; Aranda, Jesús; Zimmermann, Timo; Campoy, Susana; Barbé, Jordi

    2016-01-01

    In addition to its role in DNA damage repair and recombination, the RecA protein, through its interaction with CheW, is involved in swarming motility, a form of flagella-dependent movement across surfaces. In order to better understand how SOS response modulates swarming, in this work the location of RecA and CheW proteins within the swarming cells has been studied by using super-resolution microscopy. Further, and after in silico docking studies, the specific RecA and CheW regions associated with the RecA-CheW interaction have also been confirmed by site-directed mutagenesis and immunoprecipitation techniques. Our results point out that the CheW distribution changes, from the cell poles to foci distributed in a helical pattern along the cell axis when SOS response is activated or RecA protein is overexpressed. In this situation, the CheW presents the same subcellular location as that of RecA, pointing out that the previously described RecA storage structures may be modulators of swarming motility. Data reported herein not only confirmed that the RecA-CheW pair is essential for swarming motility but it is directly involved in the CheW distribution change associated to SOS response activation. A model explaining not only the mechanism by which DNA damage modulates swarming but also how both the lack and the excess of RecA protein impair this motility is proposed.

  7. Modeling the Lower Part of the Topside Ionospheric Vertical Electron Density Profile Over the European Region by Means of Swarm Satellites Data and IRI UP Method

    NASA Astrophysics Data System (ADS)

    Pignalberi, A.; Pezzopane, M.; Rizzi, R.

    2018-03-01

    An empirical method to model the lower part of the ionospheric topside region from the F2 layer peak height to about 500-600 km of altitude over the European region is proposed. The method is based on electron density values recorded from December 2013 to June 2016 by Swarm satellites and on foF2 and hmF2 values provided by IRI UP (International Reference Ionosphere UPdate), which is a method developed to update the IRI model relying on the assimilation of foF2 and M(3000)F2 data routinely recorded by a network of European ionosonde stations. Topside effective scale heights are calculated by fitting some definite analytical functions (α-Chapman, β-Chapman, Epstein, and exponential) through the values recorded by Swarm and the ones output by IRI UP, with the assumption that the effective scale height is constant in the altitude range considered. Calculated effective scale heights are then modeled as a function of foF2 and hmF2, in order to be operationally applicable to both ionosonde measurements and ionospheric models, like IRI. The method produces two-dimensional grids of the median effective scale height binned as a function of foF2 and hmF2, for each of the considered topside profiles. A statistical comparison with Constellation Observing System for Meteorology, Ionosphere, and Climate/FORMOsa SATellite-3 collected Radio Occultation profiles is carried out to assess the validity of the proposed method and to investigate which of the considered topside profiles is the best one. The α-Chapman topside function displays the best performance compared to the others and also when compared to the NeQuick topside option of IRI.

  8. Hybrid Support Vector Regression and Autoregressive Integrated Moving Average Models Improved by Particle Swarm Optimization for Property Crime Rates Forecasting with Economic Indicators

    PubMed Central

    Alwee, Razana; Hj Shamsuddin, Siti Mariyam; Sallehuddin, Roselina

    2013-01-01

    Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR) and autoregressive integrated moving average (ARIMA) to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models. PMID:23766729

  9. Hybrid support vector regression and autoregressive integrated moving average models improved by particle swarm optimization for property crime rates forecasting with economic indicators.

    PubMed

    Alwee, Razana; Shamsuddin, Siti Mariyam Hj; Sallehuddin, Roselina

    2013-01-01

    Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR) and autoregressive integrated moving average (ARIMA) to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models.

  10. A fluid-driven earthquake swarm on the margin of the Yellowstone caldera

    USGS Publications Warehouse

    Shelly, David R.; Hill, David P.; Massin, Frederick; Farrell, Jamie; Smith, Robert B.; Taira, Taka'aki

    2013-01-01

    Over the past several decades, the Yellowstone caldera has experienced frequent earthquake swarms and repeated cycles of uplift and subsidence, reflecting dynamic volcanic and tectonic processes. Here, we examine the detailed spatial-temporal evolution of the 2010 Madison Plateau swarm, which occurred near the northwest boundary of the Yellowstone caldera. To fully explore the evolution of the swarm, we integrated procedures for seismic waveform-based earthquake detection with precise double-difference relative relocation. Using cross-correlation of continuous seismic data and waveform templates constructed from cataloged events, we detected and precisely located 8710 earthquakes during the three-week swarm, nearly four times the number of events included in the standard catalog. This high-resolution analysis reveals distinct migration of earthquake activity over the course of the swarm. The swarm initiated abruptly on January 17, 2010 at about 10 km depth and expanded dramatically outward (both shallower and deeper) over time, primarily along a NNW-striking, ~55º ENE-dipping structure. To explain these characteristics, we hypothesize that the swarm was triggered by the rupture of a zone of confined high-pressure aqueous fluids into a pre-existing crustal fault system, prompting release of accumulated stress. The high-pressure fluid injection may have been accommodated by hybrid shear and dilatational failure, as is commonly observed in exhumed hydrothermally affected fault zones. This process has likely occurred repeatedly in Yellowstone as aqueous fluids exsolved from magma migrate into the brittle crust, and it may be a key element in the observed cycles of caldera uplift and subsidence.

  11. [Effects of "host factor" bile on adaptability and virulence of Vibrios, foodborne potential pathogenic agents].

    PubMed

    Di Pietro, A; Picerno, I; Visalli, G; Chirico, C; Scoglio, M E

    2004-01-01

    In order to improve the knowledge of host/pathogenic agent interaction and to obtain a more careful estimation of risk related to ingestion of food contaminated by Vibrio spp., the effects of bile extracts have been studied. The growth of one V. fluvialis, two V. alginolyticus, and three V. parahaemolyticus strains, isolated from mollusks and crustaceans, has been determined to evaluate their adaptability to intestinal environment. Moreover, the expression of virulence factors responsible for the colonization, as bacterial "swarming mobility", biofilm production, adherence on epithelial cells and hydrophobicity, has been evaluated. Using a bile concentration of 1.5%, all examined strains showed a constant inhibitory effect, quite moderate in the first growth phases. Bile increased the "swarming mobility" and biofilm production; also the adherence was favored, but only after adaptation and during the early logarithmic phase. The decreased hydrophobicity could explain the reduction of adherence during the stationary phase. Studying the phenotypic expression of virulence factors in "minor vibrios" in the presence of bile, it was possible to extend the knowledge about their pathogenetic mechanisms owing to the ingestion of contaminated food. That permits a more careful estimation of risk related to the contamination, considering the high frequency of isolation of these species in some seafood.

  12. A joint swarm intelligence algorithm for multi-user detection in MIMO-OFDM system

    NASA Astrophysics Data System (ADS)

    Hu, Fengye; Du, Dakun; Zhang, Peng; Wang, Zhijun

    2014-11-01

    In the multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) system, traditional multi-user detection (MUD) algorithms that usually used to suppress multiple access interference are difficult to balance system detection performance and the complexity of the algorithm. To solve this problem, this paper proposes a joint swarm intelligence algorithm called Ant Colony and Particle Swarm Optimisation (AC-PSO) by integrating particle swarm optimisation (PSO) and ant colony optimisation (ACO) algorithms. According to simulation results, it has been shown that, with low computational complexity, the MUD for the MIMO-OFDM system based on AC-PSO algorithm gains comparable MUD performance with maximum likelihood algorithm. Thus, the proposed AC-PSO algorithm provides a satisfactory trade-off between computational complexity and detection performance.

  13. Daily River Flow Forecasting with Hybrid Support Vector Machine – Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Zaini, N.; Malek, M. A.; Yusoff, M.; Mardi, N. H.; Norhisham, S.

    2018-04-01

    The application of artificial intelligence techniques for river flow forecasting can further improve the management of water resources and flood prevention. This study concerns the development of support vector machine (SVM) based model and its hybridization with particle swarm optimization (PSO) to forecast short term daily river flow at Upper Bertam Catchment located in Cameron Highland, Malaysia. Ten years duration of historical rainfall, antecedent river flow data and various meteorology parameters data from 2003 to 2012 are used in this study. Four SVM based models are proposed which are SVM1, SVM2, SVM-PSO1 and SVM-PSO2 to forecast 1 to 7 day ahead of river flow. SVM1 and SVM-PSO1 are the models with historical rainfall and antecedent river flow as its input, while SVM2 and SVM-PSO2 are the models with historical rainfall, antecedent river flow data and additional meteorological parameters as input. The performances of the proposed model are measured in term of RMSE and R2 . It is found that, SVM2 outperformed SVM1 and SVM-PSO2 outperformed SVM-PSO1 which meant the additional meteorology parameters used as input to the proposed models significantly affect the model performances. Hybrid models SVM-PSO1 and SVM-PSO2 yield higher performances as compared to SVM1 and SVM2. It is found that hybrid models are more effective in forecasting river flow at 1 to 7 day ahead at the study area.

  14. Hybrid glowworm swarm optimization for task scheduling in the cloud environment

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Dong, Shoubin

    2018-06-01

    In recent years many heuristic algorithms have been proposed to solve task scheduling problems in the cloud environment owing to their optimization capability. This article proposes a hybrid glowworm swarm optimization (HGSO) based on glowworm swarm optimization (GSO), which uses a technique of evolutionary computation, a strategy of quantum behaviour based on the principle of neighbourhood, offspring production and random walk, to achieve more efficient scheduling with reasonable scheduling costs. The proposed HGSO reduces the redundant computation and the dependence on the initialization of GSO, accelerates the convergence and more easily escapes from local optima. The conducted experiments and statistical analysis showed that in most cases the proposed HGSO algorithm outperformed previous heuristic algorithms to deal with independent tasks.

  15. Displacement back analysis for a high slope of the Dagangshan Hydroelectric Power Station based on BP neural network and particle swarm optimization.

    PubMed

    Liang, Zhengzhao; Gong, Bin; Tang, Chunan; Zhang, Yongbin; Ma, Tianhui

    2014-01-01

    The right bank high slope of the Dagangshan Hydroelectric Power Station is located in complicated geological conditions with deep fractures and unloading cracks. How to obtain the mechanical parameters and then evaluate the safety of the slope are the key problems. This paper presented a displacement back analysis for the slope using an artificial neural network model (ANN) and particle swarm optimization model (PSO). A numerical model was established to simulate the displacement increment results, acquiring training data for the artificial neural network model. The backpropagation ANN model was used to establish a mapping function between the mechanical parameters and the monitoring displacements. The PSO model was applied to initialize the weights and thresholds of the backpropagation (BP) network model and determine suitable values of the mechanical parameters. Then the elastic moduli of the rock masses were obtained according to the monitoring displacement data at different excavation stages, and the BP neural network model was proved to be valid by comparing the measured displacements, the displacements predicted by the BP neural network model, and the numerical simulation using the back-analyzed parameters. The proposed model is useful for rock mechanical parameters determination and instability investigation of rock slopes.

  16. Displacement Back Analysis for a High Slope of the Dagangshan Hydroelectric Power Station Based on BP Neural Network and Particle Swarm Optimization

    PubMed Central

    Liang, Zhengzhao; Gong, Bin; Tang, Chunan; Zhang, Yongbin; Ma, Tianhui

    2014-01-01

    The right bank high slope of the Dagangshan Hydroelectric Power Station is located in complicated geological conditions with deep fractures and unloading cracks. How to obtain the mechanical parameters and then evaluate the safety of the slope are the key problems. This paper presented a displacement back analysis for the slope using an artificial neural network model (ANN) and particle swarm optimization model (PSO). A numerical model was established to simulate the displacement increment results, acquiring training data for the artificial neural network model. The backpropagation ANN model was used to establish a mapping function between the mechanical parameters and the monitoring displacements. The PSO model was applied to initialize the weights and thresholds of the backpropagation (BP) network model and determine suitable values of the mechanical parameters. Then the elastic moduli of the rock masses were obtained according to the monitoring displacement data at different excavation stages, and the BP neural network model was proved to be valid by comparing the measured displacements, the displacements predicted by the BP neural network model, and the numerical simulation using the back-analyzed parameters. The proposed model is useful for rock mechanical parameters determination and instability investigation of rock slopes. PMID:25140345

  17. Aircraft Engine Thrust Estimator Design Based on GSA-LSSVM

    NASA Astrophysics Data System (ADS)

    Sheng, Hanlin; Zhang, Tianhong

    2017-08-01

    In view of the necessity of highly precise and reliable thrust estimator to achieve direct thrust control of aircraft engine, based on support vector regression (SVR), as well as least square support vector machine (LSSVM) and a new optimization algorithm - gravitational search algorithm (GSA), by performing integrated modelling and parameter optimization, a GSA-LSSVM-based thrust estimator design solution is proposed. The results show that compared to particle swarm optimization (PSO) algorithm, GSA can find unknown optimization parameter better and enables the model developed with better prediction and generalization ability. The model can better predict aircraft engine thrust and thus fulfills the need of direct thrust control of aircraft engine.

  18. An improved swarm optimization for parameter estimation and biological model selection.

    PubMed

    Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail

    2013-01-01

    One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data.

  19. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    PubMed Central

    Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali

    2014-01-01

    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584

  20. ANTS: A New Concept for Very Remote Exploration with Intelligent Software Agents

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Curtis, S.; Rilee, M.; Truszkowski, W.; Iyengar, J.; Crawford, H.

    2001-12-01

    ANTS (Autonomous Nano-Technology Swarm), a NASA advanced mission concept, is a large (100 to 1000 member) swarm of pico-class (1 kg) totally autonomous spacecraft that prospect the asteroid belt. As the capacity and complexity of hardware and software, and the sophistication of technical and scientific goals have increased, greater cost constraints have led to fewer resources and thus, the need to operate spacecraft with less frequent contact. At present, autonomous operation of spacecraft systems allows great capability of spacecraft to 'safe' themselves when conditions threaten spacecraft safety. To further develop spacecraft capability, NASA is at the forefront of Intelligent Software Agent (ISA) research, performing experiments in space and on the ground to advance deliberative and collaborative autonomous control techniques. Selected missions in current planning stages require small groups of spacecraft to cooperate at a tactical level to select and schedule measurements to be made by appropriate instruments to characterize rapidly unfolding real-time events on a routine basis. The next level of development, which we are considering here, is in the use of ISAs at a strategic level, to explore the final, remote frontiers of the solar system, potentially involving a large class of objects with only infrequent contact possible. Obvious mission candidates are mainbelt asteroids, a population consisting of more than a million small bodies. Although a large fraction of solar system objects are asteroids, little data is available for them because the vast majority of them are too small to be observed except in close proximity. Asteroids originated in the transitional region between the inner (rocky) and outer (solidified gases) solar system, have remained largely unmodified since formation, and thus have a more primitive composition which includes higher abundances of siderophile (metallic iron-associated) elements and volatiles than other planetary surfaces. As a result, there has been interest in asteroids as sources of exploitable resources. Far more reconnaissance is required before such a program is undertaken. A traditional mission approach (to explore larger asteroids sequentially) is not adequate for determining the systematic distribution of exploitable material in the asteroid population. Our approach involves the use of distributed intelligence in a swarm of tiny spacecraft, each with specialized instrument capability (e.g., advanced computing, imaging, spectrometry, etc.) to evaluate the resource potential of the entire population. Supervised clusters of spacecraft will operate simultaneously within a broadly defined framework of goals to select targets (>1000) from among available candidates and to develop scenarios for studying targets simultaneously. Spacecraft use solar sails to fly directly to asteroids 1 kilometer or greater in diameter. Selected swarm members return to Earth with data, replacements join the swarm as needed. We would like to acknowledge our students R. Watson, V. Cox, and F. Olukomo for their support of this work.

  1. Hybrid Swarm Intelligence Optimization Approach for Optimal Data Storage Position Identification in Wireless Sensor Networks

    PubMed Central

    Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam

    2015-01-01

    The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches. PMID:25734182

  2. Autonomous Agents on Expedition: Humans and Progenitor Ants and Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Rilee, M. L.; Clark, P. E.; Curtis, S. A.; Truszkowski, W. F.

    2002-01-01

    The Autonomous Nano-Technology Swarm (ANTS) is an advanced mission architecture based on a social insect analog of many specialized spacecraft working together to achieve mission goals. The principal mission concept driving the ANTS architecture is a Main Belt Asteroid Survey in the 2020s that will involve a thousand or more nano-technology enabled, artificially intelligent, autonomous pico-spacecraft (< 1 kg). The objective of this survey is to construct a compendium of composition, shape, and other physical parameter observations of a significant fraction of asteroid belt objects. Such an atlas will be of primary scientific importance for the understanding of Solar System origins and evolution and will lay the foundation for future exploration and capitalization of space. As the capabilities enabling ANTS are developed over the next two decades, these capabilities will need to be proven. Natural milestones for this process include the deployment of progenitors to ANTS on human expeditions to space and remote missions with interfaces for human interaction and control. These progenitors can show up in a variety of forms ranging from spacecraft subsystems and advanced handheld sensors, through complete prototypical ANTS spacecraft. A critical capability to be demonstrated is reliable, long-term autonomous operations across the ANTS architecture. High level, mission-oriented behaviors are to be managed by a control / communications layer of the swarm, whereas common low level functions required of all spacecraft, e.g. attitude control and guidance and navigation, are handled autonomically on each spacecraft. At the higher levels of mission planning and social interaction deliberative techniques are to be used. For the asteroid survey, ANTS acts as a large community of cooperative agents while for precursor missions there arises the intriguing possibility of Progenitor ANTS and humans acting together as agents. For optimal efficiency and responsiveness for individual spacecraft at the lowest levels of control we have been studying control methods based on nonlinear dynamical systems. We describe the critically important autonomous control architecture of the ANTS mission concept and a sequence of partial implementations that feature increasingly autonomous behaviors. The scientific and engineering roles that these Progenitor ANTS could play in human missions or remote missions with near real time human interactions, particularly to the Moon and Mars, will be discussed.

  3. Physics-Based and Statistical Forecasting in Slowly Stressed Environments

    NASA Astrophysics Data System (ADS)

    Segou, M.; Deschamps, A.

    2013-12-01

    We perform a retrospective forecasting experiment between 1995-2012, comparing the predictive power of physics-based and statistical models in Corinth Gulf (Central Greece), which is the fastest continental rift in the world with extension rates 11-15 mm/yr, but also at least three times lower than the motion accommodated by the San Andreas Fault System (~40 mm/yr). The seismicity of the western Corinth gulf has been characterized by significant historical events (1817 M6.6, 1861 M6.7, 1889 M7.0) whereas the modern instrumental catalog (post-1964) reveals one major event, the 1995 Aigio M6.4 (15/06/1995) together with several periods of increased microseismic activity, usually lasting few months and possibly related with fluid diffusion. We examine six predictive models, three based on the combination of Coulomb stress changes and rate-and-state theory (CRS), two epidemic type aftershock sequence (ETAS) models and one hybrid CRS-ETAS (h-ETAS) model. We investigate whether the above forecast models can adequately describe the episodic swarm activity within the gulf. Even though Corinth gulf has been studied extensively in the past there is still today a debate whether earthquake activity is related with the existence of either a shallow dipping structure or steeply dipping normal faults. In the light of the above statement, two CRS realization are based on resolving Coulomb stress changes on specified receiver faults, expressing the aforementioned structural models, whereas the third CRS model uses optimally-oriented for failure planes. In our CRS implementation we account for stress changes following all major ruptures within our testing phase with M greater than 4.5. We also estimate fault constitutive parameters from modeling the response to major earthquakes at the vicinity of the gulf (Ασ=0.2, stressing rate 0.02 bar/yr). The ETAS parameters are taken as the maximum likelihood estimates derived from stochastic declustering of the modern seismicity catalog with minimum triggering magnitude M2.5. We implement likelihood tests to evaluate our forecasts for their spatial consistency and for the total amount of predicted versus observed events with M greater than 3.0 in 10-day time intervals in two distinct evaluation phases. The first evaluation phase focuses on the Aigio 1995 aftershock sequence (15/06/1995, M6.4) whereas the second covers the period between September 2006-May 2007, characterized for the intense swarm activity.We find that (1) geology based CRS models are preferred over optimally oriented planes (2) CRS models are consistent forecasters (60-70%) of transient seismicity, having in most cases comparable performance with ETAS models (3) swarms are not triggered by static stress changes of preceding local events.

  4. Discrete particle swarm optimization to solve multi-objective limited-wait hybrid flow shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Santosa, B.; Siswanto, N.; Fiqihesa

    2018-04-01

    This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution

  5. Forecasting outpatient visits using empirical mode decomposition coupled with back-propagation artificial neural networks optimized by particle swarm optimization

    PubMed Central

    Huang, Daizheng; Wu, Zhihui

    2017-01-01

    Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods. PMID:28222194

  6. Forecasting outpatient visits using empirical mode decomposition coupled with back-propagation artificial neural networks optimized by particle swarm optimization.

    PubMed

    Huang, Daizheng; Wu, Zhihui

    2017-01-01

    Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods.

  7. Smart materials on the way to theranostic nanorobots: Molecular machines and nanomotors, advanced biosensors, and intelligent vehicles for drug delivery.

    PubMed

    Sokolov, Ilya L; Cherkasov, Vladimir R; Tregubov, Andrey A; Buiucli, Sveatoslav R; Nikitin, Maxim P

    2017-06-01

    Theranostics, a fusion of two key parts of modern medicine - diagnostics and therapy of the organism's disorders, promises to bring the efficacy of medical treatment to a fundamentally new level and to become the basis of personalized medicine. Extrapolating today's progress in the field of smart materials to the long-run prospect, we can imagine future intelligent agents capable of performing complex analysis of different physiological factors inside the living organism and implementing a built-in program thereby triggering a series of therapeutic actions. These agents, by analogy with their macroscopic counterparts, can be called nanorobots. It is quite obscure what these devices are going to look like but they will be more or less based on today's achievements in nanobiotechnology. The present Review is an attempt to systematize highly diverse nanomaterials, which may potentially serve as modules for theranostic nanorobotics, e.g., nanomotors, sensing units, and payload carriers. Biocomputing-based sensing, externally actuated or chemically "fueled" autonomous movement, swarm inter-agent communication behavior are just a few inspiring examples that nanobiotechnology can offer today for construction of truly intelligent drug delivery systems. The progress of smart nanomaterials toward fully autonomous drug delivery nanorobots is an exciting prospect for disease treatment. Synergistic combination of the available approaches and their further development may produce intelligent drugs of unmatched functionality. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Keeping speed and distance for aligned motion

    NASA Astrophysics Data System (ADS)

    Farkas, Illés J.; Kun, Jeromos; Jin, Yi; He, Gaoqi; Xu, Mingliang

    2015-01-01

    The cohesive collective motion (flocking, swarming) of autonomous agents is ubiquitously observed and exploited in both natural and man-made settings, thus, minimal models for its description are essential. In a model with continuous space and time we find that if two particles arrive symmetrically in a plane at a large angle, then (i) radial repulsion and (ii) linear self-propelling toward a fixed preferred speed are sufficient for them to depart at a smaller angle. For this local gain of momentum explicit velocity alignment is not necessary, nor are adhesion or attraction, inelasticity or anisotropy of the particles, or nonlinear drag. With many particles obeying these microscopic rules of motion we find that their spatial confinement to a square with periodic boundaries (which is an indirect form of attraction) leads to stable macroscopic ordering. As a function of the strength of added noise we see—at finite system sizes—a critical slowing down close to the order-disorder boundary and a discontinuous transition. After varying the density of particles at constant system size and varying the size of the system with constant particle density we predict that in the infinite system size (or density) limit the hysteresis loop disappears and the transition becomes continuous. We note that animals, humans, drones, etc., tend to move asynchronously and are often more responsive to motion than positions. Thus, for them velocity-based continuous models can provide higher precision than coordinate-based models. An additional characteristic and realistic feature of the model is that convergence to the ordered state is fastest at a finite density, which is in contrast to models applying (discontinuous) explicit velocity alignments and discretized time. To summarize, we find that the investigated model can provide a minimal description of flocking.

  9. Keeping speed and distance for aligned motion.

    PubMed

    Farkas, Illés J; Kun, Jeromos; Jin, Yi; He, Gaoqi; Xu, Mingliang

    2015-01-01

    The cohesive collective motion (flocking, swarming) of autonomous agents is ubiquitously observed and exploited in both natural and man-made settings, thus, minimal models for its description are essential. In a model with continuous space and time we find that if two particles arrive symmetrically in a plane at a large angle, then (i) radial repulsion and (ii) linear self-propelling toward a fixed preferred speed are sufficient for them to depart at a smaller angle. For this local gain of momentum explicit velocity alignment is not necessary, nor are adhesion or attraction, inelasticity or anisotropy of the particles, or nonlinear drag. With many particles obeying these microscopic rules of motion we find that their spatial confinement to a square with periodic boundaries (which is an indirect form of attraction) leads to stable macroscopic ordering. As a function of the strength of added noise we see--at finite system sizes--a critical slowing down close to the order-disorder boundary and a discontinuous transition. After varying the density of particles at constant system size and varying the size of the system with constant particle density we predict that in the infinite system size (or density) limit the hysteresis loop disappears and the transition becomes continuous. We note that animals, humans, drones, etc., tend to move asynchronously and are often more responsive to motion than positions. Thus, for them velocity-based continuous models can provide higher precision than coordinate-based models. An additional characteristic and realistic feature of the model is that convergence to the ordered state is fastest at a finite density, which is in contrast to models applying (discontinuous) explicit velocity alignments and discretized time. To summarize, we find that the investigated model can provide a minimal description of flocking.

  10. Fish swarm intelligent to optimize real time monitoring of chips drying using machine vision

    NASA Astrophysics Data System (ADS)

    Hendrawan, Y.; Hawa, L. C.; Damayanti, R.

    2018-03-01

    This study attempted to apply machine vision-based chips drying monitoring system which is able to optimise the drying process of cassava chips. The objective of this study is to propose fish swarm intelligent (FSI) optimization algorithms to find the most significant set of image features suitable for predicting water content of cassava chips during drying process using artificial neural network model (ANN). Feature selection entails choosing the feature subset that maximizes the prediction accuracy of ANN. Multi-Objective Optimization (MOO) was used in this study which consisted of prediction accuracy maximization and feature-subset size minimization. The results showed that the best feature subset i.e. grey mean, L(Lab) Mean, a(Lab) energy, red entropy, hue contrast, and grey homogeneity. The best feature subset has been tested successfully in ANN model to describe the relationship between image features and water content of cassava chips during drying process with R2 of real and predicted data was equal to 0.9.

  11. Main field and secular variation candidate models for the 12th IGRF generation after 10 months of Swarm measurements

    NASA Astrophysics Data System (ADS)

    Saturnino, Diana; Langlais, Benoit; Civet, François; Thébault, Erwan; Mandea, Mioara

    2015-06-01

    We describe the main field and secular variation candidate models for the 12th generation of the International Geomagnetic Reference Field model. These two models are derived from the same parent model, in which the main field is extrapolated to epoch 2015.0 using its associated secular variation. The parent model is exclusively based on measurements acquired by the European Space Agency Swarm mission between its launch on 11/22/2013 and 09/18/2014. It is computed up to spherical harmonic degree and order 25 for the main field, 13 for the secular variation, and 2 for the external field. A selection on local time rather than on true illumination of the spacecraft was chosen in order to keep more measurements. Data selection based on geomagnetic indices was used to minimize the external field contributions. Measurements were screened and outliers were carefully removed. The model uses magnetic field intensity measurements at all latitudes and magnetic field vector measurements equatorward of 50° absolute quasi-dipole magnetic latitude. A second model using only the vertical component of the measured magnetic field and the total intensity was computed. This companion model offers a slightly better fit to the measurements. These two models are compared and discussed.We discuss in particular the quality of the model which does not use the full vector measurements and underline that this approach may be used when only partial directional information is known. The candidate models and their associated companion models are retrospectively compared to the adopted IGRF which allows us to criticize our own choices.

  12. Estimate the effective connectivity in multi-coupled neural mass model using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Shan, Bonan; Wang, Jiang; Deng, Bin; Zhang, Zhen; Wei, Xile

    2017-03-01

    Assessment of the effective connectivity among different brain regions during seizure is a crucial problem in neuroscience today. As a consequence, a new model inversion framework of brain function imaging is introduced in this manuscript. This framework is based on approximating brain networks using a multi-coupled neural mass model (NMM). NMM describes the excitatory and inhibitory neural interactions, capturing the mechanisms involved in seizure initiation, evolution and termination. Particle swarm optimization method is used to estimate the effective connectivity variation (the parameters of NMM) and the epileptiform dynamics (the states of NMM) that cannot be directly measured using electrophysiological measurement alone. The estimated effective connectivity includes both the local connectivity parameters within a single region NMM and the remote connectivity parameters between multi-coupled NMMs. When the epileptiform activities are estimated, a proportional-integral controller outputs control signal so that the epileptiform spikes can be inhibited immediately. Numerical simulations are carried out to illustrate the effectiveness of the proposed framework. The framework and the results have a profound impact on the way we detect and treat epilepsy.

  13. Precise Orbit Solution for Swarm Using Space-Borne GPS Data and Optimized Pseudo-Stochastic Pulses.

    PubMed

    Zhang, Bingbing; Wang, Zhengtao; Zhou, Lv; Feng, Jiandi; Qiu, Yaodong; Li, Fupeng

    2017-03-20

    Swarm is a European Space Agency (ESA) project that was launched on 22 November 2013, which consists of three Swarm satellites. Swarm precise orbits are essential to the success of the above project. This study investigates how well Swarm zero-differenced (ZD) reduced-dynamic orbit solutions can be determined using space-borne GPS data and optimized pseudo-stochastic pulses under high ionospheric activity. We choose Swarm space-borne GPS data from 1-25 October 2014, and Swarm reduced-dynamic orbits are obtained. Orbit quality is assessed by GPS phase observation residuals and compared with Precise Science Orbits (PSOs) released by ESA. Results show that pseudo-stochastic pulses with a time interval of 6 min and a priori standard deviation (STD) of 10 -2 mm/s in radial (R), along-track (T) and cross-track (N) directions are optimized to Swarm ZD reduced-dynamic precise orbit determination (POD). During high ionospheric activity, the mean Root Mean Square (RMS) of Swarm GPS phase residuals is at 9-11 mm, Swarm orbit solutions are also compared with Swarm PSOs released by ESA and the accuracy of Swarm orbits can reach 2-4 cm in R, T and N directions. Independent Satellite Laser Ranging (SLR) validation indicates that Swarm reduced-dynamic orbits have an accuracy of 2-4 cm. Swarm-B orbit quality is better than those of Swarm-A and Swarm-C. The Swarm orbits can be applied to the geomagnetic, geoelectric and gravity field recovery.

  14. Parameter prediction based on Improved Process neural network and ARMA error compensation in Evaporation Process

    NASA Astrophysics Data System (ADS)

    Qian, Xiaoshan

    2018-01-01

    The traditional model of evaporation process parameters have continuity and cumulative characteristics of the prediction error larger issues, based on the basis of the process proposed an adaptive particle swarm neural network forecasting method parameters established on the autoregressive moving average (ARMA) error correction procedure compensated prediction model to predict the results of the neural network to improve prediction accuracy. Taking a alumina plant evaporation process to analyze production data validation, and compared with the traditional model, the new model prediction accuracy greatly improved, can be used to predict the dynamic process of evaporation of sodium aluminate solution components.

  15. Application of particle swarm optimization in path planning of mobile robot

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Cai, Feng; Wang, Ying

    2017-08-01

    In order to realize the optimal path planning of mobile robot in unknown environment, a particle swarm optimization algorithm based on path length as fitness function is proposed. The location of the global optimal particle is determined by the minimum fitness value, and the robot moves along the points of the optimal particles to the target position. The process of moving to the target point is done with MATLAB R2014a. Compared with the standard particle swarm optimization algorithm, the simulation results show that this method can effectively avoid all obstacles and get the optimal path.

  16. Biomimicry of symbiotic multi-species coevolution for discrete and continuous optimization in RFID networks.

    PubMed

    Lin, Na; Chen, Hanning; Jing, Shikai; Liu, Fang; Liang, Xiaodan

    2017-03-01

    In recent years, symbiosis as a rich source of potential engineering applications and computational model has attracted more and more attentions in the adaptive complex systems and evolution computing domains. Inspired by different symbiotic coevolution forms in nature, this paper proposed a series of multi-swarm particle swarm optimizers called PS 2 Os, which extend the single population particle swarm optimization (PSO) algorithm to interacting multi-swarms model by constructing hierarchical interaction topologies and enhanced dynamical update equations. According to different symbiotic interrelationships, four versions of PS 2 O are initiated to mimic mutualism, commensalism, predation, and competition mechanism, respectively. In the experiments, with five benchmark problems, the proposed algorithms are proved to have considerable potential for solving complex optimization problems. The coevolutionary dynamics of symbiotic species in each PS 2 O version are also studied respectively to demonstrate the heterogeneity of different symbiotic interrelationships that effect on the algorithm's performance. Then PS 2 O is used for solving the radio frequency identification (RFID) network planning (RNP) problem with a mixture of discrete and continuous variables. Simulation results show that the proposed algorithm outperforms the reference algorithms for planning RFID networks, in terms of optimization accuracy and computation robustness.

  17. Implementation of Chaotic Gaussian Particle Swarm Optimization for Optimize Learning-to-Rank Software Defect Prediction Model Construction

    NASA Astrophysics Data System (ADS)

    Buchari, M. A.; Mardiyanto, S.; Hendradjaya, B.

    2018-03-01

    Finding the existence of software defect as early as possible is the purpose of research about software defect prediction. Software defect prediction activity is required to not only state the existence of defects, but also to be able to give a list of priorities which modules require a more intensive test. Therefore, the allocation of test resources can be managed efficiently. Learning to rank is one of the approach that can provide defect module ranking data for the purposes of software testing. In this study, we propose a meta-heuristic chaotic Gaussian particle swarm optimization to improve the accuracy of learning to rank software defect prediction approach. We have used 11 public benchmark data sets as experimental data. Our overall results has demonstrated that the prediction models construct using Chaotic Gaussian Particle Swarm Optimization gets better accuracy on 5 data sets, ties in 5 data sets and gets worse in 1 data sets. Thus, we conclude that the application of Chaotic Gaussian Particle Swarm Optimization in Learning-to-Rank approach can improve the accuracy of the defect module ranking in data sets that have high-dimensional features.

  18. Monitoring the West Bohemian earthquake swarm in 2008/2009 by a temporary small-aperture seismic array

    NASA Astrophysics Data System (ADS)

    Hiemer, Stefan; Roessler, Dirk; Scherbaum, Frank

    2012-04-01

    The most recent intense earthquake swarm in West Bohemia lasted from 6 October 2008 to January 2009. Starting 12 days after the onset, the University of Potsdam monitored the swarm by a temporary small-aperture seismic array at 10 km epicentral distance. The purpose of the installation was a complete monitoring of the swarm including micro-earthquakes ( M L < 0). We identify earthquakes using a conventional short-term average/long-term average trigger combined with sliding-window frequency-wavenumber and polarisation analyses. The resulting earthquake catalogue consists of 14,530 earthquakes between 19 October 2008 and 18 March 2009 with magnitudes in the range of - 1.2 ≤ M L ≤ 2.7. The small-aperture seismic array substantially lowers the detection threshold to about M c = - 0.4, when compared to the regional networks operating in West Bohemia ( M c > 0.0). In the course of this work, the main temporal features (frequency-magnitude distribution, propagation of back azimuth and horizontal slowness, occurrence rate of aftershock sequences and interevent-time distribution) of the recent 2008/2009 earthquake swarm are presented and discussed. Temporal changes of the coefficient of variation (based on interevent times) suggest that the swarm earthquake activity of the 2008/2009 swarm terminates by 12 January 2009. During the main phase in our studied swarm period after 19 October, the b value of the Gutenberg-Richter relation decreases from 1.2 to 0.8. This trend is also reflected in the power-law behavior of the seismic moment release. The corresponding total seismic moment release of 1.02×1017 Nm is equivalent to M L,max = 5.4.

  19. Color Feature-Based Object Tracking through Particle Swarm Optimization with Improved Inertia Weight

    PubMed Central

    Guo, Siqiu; Zhang, Tao; Song, Yulong

    2018-01-01

    This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios. PMID:29690610

  20. Color Feature-Based Object Tracking through Particle Swarm Optimization with Improved Inertia Weight.

    PubMed

    Guo, Siqiu; Zhang, Tao; Song, Yulong; Qian, Feng

    2018-04-23

    This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blakely, R. J.; Sherrod, B. L.; Weaver, C. S.

    Magnetic anomalies provide insights into the tectonic implications of a swarm of ~1500 shallow (~1 km deep) earthquakes that occurred in 2009 on the Hanford site, Washington. Epicenters were concentrated in a 2 km 2 area near Wooded Island in the Columbia River. The largest earthquake (M 3.0) had first motions consistent with slip on a northwest-striking reverse fault. The swarm was accompanied by 35 mm of vertical surface deformation, seen in satellite interferometry (InSAR), interpreted to be caused by ~50 mm of slip on a northwest-striking reverse fault and associated bedding-plane fault in the underlying Columbia River Basalt Groupmore » (CRBG). A magnetic anomaly over exposed CRBG at Yakima Ridge 40 km northwest of Wooded Island extends southeastward beyond the ridge to the Columbia River, suggesting that the Yakima Ridge anticline and its associated thrust fault extend southeastward in the subsurface. In map view, the concealed anticline passes through the earthquake swarm and lies parallel to reverse faults determined from first motions and InSAR data. A forward model of the magnetic anomaly near Wooded Island is consistent with uplift of concealed CRBG, with the top surface <200 m below the surface. The earthquake swarm and the thrust and bedding-plane faults modeled from interferometry all fall within the northeastern limb of the faulted anticline. Finally, although fluids may be responsible for triggering the Wooded Island earthquake swarm, the seismic and aseismic deformation are consistent with regional-scale tectonic compression across the concealed Yakima Ridge anticline.« less

  2. Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems

    PubMed Central

    Huang, Shuqiang; Tao, Ming

    2017-01-01

    Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K-center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms. PMID:28117735

  3. Optimization of wireless sensor networks based on chicken swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Qingxi; Zhu, Lihua

    2017-05-01

    In order to reduce the energy consumption of wireless sensor network and improve the survival time of network, the clustering routing protocol of wireless sensor networks based on chicken swarm optimization algorithm was proposed. On the basis of LEACH agreement, it was improved and perfected that the points on the cluster and the selection of cluster head using the chicken group optimization algorithm, and update the location of chicken which fall into the local optimum by Levy flight, enhance population diversity, ensure the global search capability of the algorithm. The new protocol avoided the die of partial node of intensive using by making balanced use of the network nodes, improved the survival time of wireless sensor network. The simulation experiments proved that the protocol is better than LEACH protocol on energy consumption, also is better than that of clustering routing protocol based on particle swarm optimization algorithm.

  4. Automatic Clustering Using Multi-objective Particle Swarm and Simulated Annealing

    PubMed Central

    Abubaker, Ahmad; Baharum, Adam; Alrefaei, Mahmoud

    2015-01-01

    This paper puts forward a new automatic clustering algorithm based on Multi-Objective Particle Swarm Optimization and Simulated Annealing, “MOPSOSA”. The proposed algorithm is capable of automatic clustering which is appropriate for partitioning datasets to a suitable number of clusters. MOPSOSA combines the features of the multi-objective based particle swarm optimization (PSO) and the Multi-Objective Simulated Annealing (MOSA). Three cluster validity indices were optimized simultaneously to establish the suitable number of clusters and the appropriate clustering for a dataset. The first cluster validity index is centred on Euclidean distance, the second on the point symmetry distance, and the last cluster validity index is based on short distance. A number of algorithms have been compared with the MOPSOSA algorithm in resolving clustering problems by determining the actual number of clusters and optimal clustering. Computational experiments were carried out to study fourteen artificial and five real life datasets. PMID:26132309

  5. Fluid-Faulting Interactions Examined Though Massive Waveform-Based Analyses of Earthquake Swarms in Volcanic and Tectonic Settings: Mammoth Mountain, Long Valley, Lassen, and Fillmore, California Swarms, 2014-2015

    NASA Astrophysics Data System (ADS)

    Shelly, D. R.; Ellsworth, W. L.; Prejean, S. G.; Hill, D. P.; Hardebeck, J.; Hsieh, P. A.

    2015-12-01

    Earthquake swarms, sequences of sustained seismicity, convey active subsurface processes that sometimes precede larger tectonic or volcanic episodes. Their extended activity and spatiotemporal migration can often be attributed to fluid pressure transients as migrating crustal fluids (typically water and CO2) interact with subsurface structures. Although the swarms analyzed here are interpreted to be natural in origin, the mechanisms of seismic activation likely mirror those observed for earthquakes induced by industrial fluid injection. Here, we use massive-scale waveform correlation to detect and precisely locate 3-10 times as many earthquakes as included in routine catalogs for recent (2014-2015) swarms beneath Mammoth Mountain, Long Valley Caldera, Lassen Volcanic Center, and Fillmore areas of California, USA. These enhanced catalogs, with location precision as good as a few meters, reveal signatures of fluid-faulting interactions, such as systematic migration, fault-valve behavior, and fracture mesh structures, not resolved in routine catalogs. We extend this analysis to characterize source mechanism similarity even for very small newly detected events using relative P and S polarity estimates. This information complements precise locations to define fault complexities that would otherwise be invisible. In particular, although swarms often consist of groups of highly similar events, some swarms contain a population of outliers with different slip and/or fault orientations. These events highlight the complexity of fluid-faulting interactions. Despite their different settings, the four swarms analyzed here share many similarities, including pronounced hypocenter migration suggestive of a fluid pressure trigger. This includes the July 2015 Fillmore swarm, which, unlike the others, occurred outside of an obvious volcanic zone. Nevertheless, it exhibited systematic westward and downdip migration on a ~1x1.5 km low-angle, NW-dipping reverse fault at midcrustal depth.

  6. Modeling and optimization by particle swarm embedded neural network for adsorption of zinc (II) by palm kernel shell based activated carbon from aqueous environment.

    PubMed

    Karri, Rama Rao; Sahu, J N

    2018-01-15

    Zn (II) is one the common pollutant among heavy metals found in industrial effluents. Removal of pollutant from industrial effluents can be accomplished by various techniques, out of which adsorption was found to be an efficient method. Applications of adsorption limits itself due to high cost of adsorbent. In this regard, a low cost adsorbent produced from palm oil kernel shell based agricultural waste is examined for its efficiency to remove Zn (II) from waste water and aqueous solution. The influence of independent process variables like initial concentration, pH, residence time, activated carbon (AC) dosage and process temperature on the removal of Zn (II) by palm kernel shell based AC from batch adsorption process are studied systematically. Based on the design of experimental matrix, 50 experimental runs are performed with each process variable in the experimental range. The optimal values of process variables to achieve maximum removal efficiency is studied using response surface methodology (RSM) and artificial neural network (ANN) approaches. A quadratic model, which consists of first order and second order degree regressive model is developed using the analysis of variance and RSM - CCD framework. The particle swarm optimization which is a meta-heuristic optimization is embedded on the ANN architecture to optimize the search space of neural network. The optimized trained neural network well depicts the testing data and validation data with R 2 equal to 0.9106 and 0.9279 respectively. The outcomes indicates that the superiority of ANN-PSO based model predictions over the quadratic model predictions provided by RSM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. An improved design method based on polyphase components for digital FIR filters

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Kuldeep, B.; Singh, G. K.; Lee, Heung No

    2017-11-01

    This paper presents an efficient design of digital finite impulse response (FIR) filter, based on polyphase components and swarm optimisation techniques (SOTs). For this purpose, the design problem is formulated as mean square error between the actual response and ideal response in frequency domain using polyphase components of a prototype filter. To achieve more precise frequency response at some specified frequency, fractional derivative constraints (FDCs) have been applied, and optimal FDCs are computed using SOTs such as cuckoo search and modified cuckoo search algorithms. A comparative study of well-proved swarm optimisation, called particle swarm optimisation and artificial bee colony algorithm is made. The excellence of proposed method is evaluated using several important attributes of a filter. Comparative study evidences the excellence of proposed method for effective design of FIR filter.

  8. Evolving optimised decision rules for intrusion detection using particle swarm paradigm

    NASA Astrophysics Data System (ADS)

    Sivatha Sindhu, Siva S.; Geetha, S.; Kannan, A.

    2012-12-01

    The aim of this article is to construct a practical intrusion detection system (IDS) that properly analyses the statistics of network traffic pattern and classify them as normal or anomalous class. The objective of this article is to prove that the choice of effective network traffic features and a proficient machine-learning paradigm enhances the detection accuracy of IDS. In this article, a rule-based approach with a family of six decision tree classifiers, namely Decision Stump, C4.5, Naive Baye's Tree, Random Forest, Random Tree and Representative Tree model to perform the detection of anomalous network pattern is introduced. In particular, the proposed swarm optimisation-based approach selects instances that compose training set and optimised decision tree operate over this trained set producing classification rules with improved coverage, classification capability and generalisation ability. Experiment with the Knowledge Discovery and Data mining (KDD) data set which have information on traffic pattern, during normal and intrusive behaviour shows that the proposed algorithm produces optimised decision rules and outperforms other machine-learning algorithm.

  9. [Application of an Adaptive Inertia Weight Particle Swarm Algorithm in the Magnetic Resonance Bias Field Correction].

    PubMed

    Wang, Chang; Qin, Xin; Liu, Yan; Zhang, Wenchao

    2016-06-01

    An adaptive inertia weight particle swarm algorithm is proposed in this study to solve the local optimal problem with the method of traditional particle swarm optimization in the process of estimating magnetic resonance(MR)image bias field.An indicator measuring the degree of premature convergence was designed for the defect of traditional particle swarm optimization algorithm.The inertia weight was adjusted adaptively based on this indicator to ensure particle swarm to be optimized globally and to avoid it from falling into local optimum.The Legendre polynomial was used to fit bias field,the polynomial parameters were optimized globally,and finally the bias field was estimated and corrected.Compared to those with the improved entropy minimum algorithm,the entropy of corrected image was smaller and the estimated bias field was more accurate in this study.Then the corrected image was segmented and the segmentation accuracy obtained in this research was 10% higher than that with improved entropy minimum algorithm.This algorithm can be applied to the correction of MR image bias field.

  10. Precise Orbit Solution for Swarm Using Space-Borne GPS Data and Optimized Pseudo-Stochastic Pulses

    PubMed Central

    Zhang, Bingbing; Wang, Zhengtao; Zhou, Lv; Feng, Jiandi; Qiu, Yaodong; Li, Fupeng

    2017-01-01

    Swarm is a European Space Agency (ESA) project that was launched on 22 November 2013, which consists of three Swarm satellites. Swarm precise orbits are essential to the success of the above project. This study investigates how well Swarm zero-differenced (ZD) reduced-dynamic orbit solutions can be determined using space-borne GPS data and optimized pseudo-stochastic pulses under high ionospheric activity. We choose Swarm space-borne GPS data from 1–25 October 2014, and Swarm reduced-dynamic orbits are obtained. Orbit quality is assessed by GPS phase observation residuals and compared with Precise Science Orbits (PSOs) released by ESA. Results show that pseudo-stochastic pulses with a time interval of 6 min and a priori standard deviation (STD) of 10−2 mm/s in radial (R), along-track (T) and cross-track (N) directions are optimized to Swarm ZD reduced-dynamic precise orbit determination (POD). During high ionospheric activity, the mean Root Mean Square (RMS) of Swarm GPS phase residuals is at 9–11 mm, Swarm orbit solutions are also compared with Swarm PSOs released by ESA and the accuracy of Swarm orbits can reach 2–4 cm in R, T and N directions. Independent Satellite Laser Ranging (SLR) validation indicates that Swarm reduced-dynamic orbits have an accuracy of 2–4 cm. Swarm-B orbit quality is better than those of Swarm-A and Swarm-C. The Swarm orbits can be applied to the geomagnetic, geoelectric and gravity field recovery. PMID:28335538

  11. Improving Vector Evaluated Particle Swarm Optimisation by Incorporating Nondominated Solutions

    PubMed Central

    Lim, Kian Sheng; Ibrahim, Zuwairie; Buyamin, Salinda; Ahmad, Anita; Naim, Faradila; Ghazali, Kamarul Hawari; Mokhtar, Norrima

    2013-01-01

    The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution found by another swarm. However, the best solution of a swarm is only updated when a newly generated solution has better fitness than the best solution at the objective function optimised by that swarm, yielding poor solutions for the multiobjective optimisation problems. Thus, an improved Vector Evaluated Particle Swarm Optimisation algorithm is introduced by incorporating the nondominated solutions as the guidance for a swarm rather than using the best solution from another swarm. In this paper, the performance of improved Vector Evaluated Particle Swarm Optimisation algorithm is investigated using performance measures such as the number of nondominated solutions found, the generational distance, the spread, and the hypervolume. The results suggest that the improved Vector Evaluated Particle Swarm Optimisation algorithm has impressive performance compared with the conventional Vector Evaluated Particle Swarm Optimisation algorithm. PMID:23737718

  12. Improving Vector Evaluated Particle Swarm Optimisation by incorporating nondominated solutions.

    PubMed

    Lim, Kian Sheng; Ibrahim, Zuwairie; Buyamin, Salinda; Ahmad, Anita; Naim, Faradila; Ghazali, Kamarul Hawari; Mokhtar, Norrima

    2013-01-01

    The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution found by another swarm. However, the best solution of a swarm is only updated when a newly generated solution has better fitness than the best solution at the objective function optimised by that swarm, yielding poor solutions for the multiobjective optimisation problems. Thus, an improved Vector Evaluated Particle Swarm Optimisation algorithm is introduced by incorporating the nondominated solutions as the guidance for a swarm rather than using the best solution from another swarm. In this paper, the performance of improved Vector Evaluated Particle Swarm Optimisation algorithm is investigated using performance measures such as the number of nondominated solutions found, the generational distance, the spread, and the hypervolume. The results suggest that the improved Vector Evaluated Particle Swarm Optimisation algorithm has impressive performance compared with the conventional Vector Evaluated Particle Swarm Optimisation algorithm.

  13. Swarming behavior of gradient-responsive Brownian particles in a porous medium.

    PubMed

    Grančič, Peter; Štěpánek, František

    2012-07-01

    Active targeting by Brownian particles in a fluid-filled porous environment is investigated by computer simulation. The random motion of the particles is enhanced by diffusiophoresis with respect to concentration gradients of chemical signals released by the particles in the proximity of a target. The mathematical model, based on a combination of the Brownian dynamics method and a diffusion problem is formulated in terms of key parameters that include the particle diffusiophoretic mobility and the signaling threshold (the distance from the target at which the particles release their chemical signals). The results demonstrate that even a relatively simple chemical signaling scheme can lead to a complex collective behavior of the particles and can be a very efficient way of guiding a swarm of Brownian particles towards a target, similarly to the way colonies of living cells communicate via secondary messengers.

  14. Estimation of key parameters in adaptive neuron model according to firing patterns based on improved particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Yuan, Chunhua; Wang, Jiang; Yi, Guosheng

    2017-03-01

    Estimation of ion channel parameters is crucial to spike initiation of neurons. The biophysical neuron models have numerous ion channel parameters, but only a few of them play key roles in the firing patterns of the models. So we choose three parameters featuring the adaptation in the Ermentrout neuron model to be estimated. However, the traditional particle swarm optimization (PSO) algorithm is still easy to fall into local optimum and has the premature convergence phenomenon in the study of some problems. In this paper, we propose an improved method that uses a concave function and dynamic logistic chaotic mapping mixed to adjust the inertia weights of the fitness value, effectively improve the global convergence ability of the algorithm. The perfect predicting firing trajectories of the rebuilt model using the estimated parameters prove that only estimating a few important ion channel parameters can establish the model well and the proposed algorithm is effective. Estimations using two classic PSO algorithms are also compared to the improved PSO to verify that the algorithm proposed in this paper can avoid local optimum and quickly converge to the optimal value. The results provide important theoretical foundations for building biologically realistic neuron models.

  15. Particle swarm optimization algorithm for optimizing assignment of blood in blood banking system.

    PubMed

    Olusanya, Micheal O; Arasomwan, Martins A; Adewumi, Aderemi O

    2015-01-01

    This paper reports the performance of particle swarm optimization (PSO) for the assignment of blood to meet patients' blood transfusion requests for blood transfusion. While the drive for blood donation lingers, there is need for effective and efficient management of available blood in blood banking systems. Moreover, inherent danger of transfusing wrong blood types to patients, unnecessary importation of blood units from external sources, and wastage of blood products due to nonusage necessitate the development of mathematical models and techniques for effective handling of blood distribution among available blood types in order to minimize wastages and importation from external sources. This gives rise to the blood assignment problem (BAP) introduced recently in literature. We propose a queue and multiple knapsack models with PSO-based solution to address this challenge. Simulation is based on sets of randomly generated data that mimic real-world population distribution of blood types. Results obtained show the efficiency of the proposed algorithm for BAP with no blood units wasted and very low importation, where necessary, from outside the blood bank. The result therefore can serve as a benchmark and basis for decision support tools for real-life deployment.

  16. Acceleration of the Particle Swarm Optimization for Peierls-Nabarro modeling of dislocations in conventional and high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Pei, Zongrui; Eisenbach, Markus

    2017-06-01

    Dislocations are among the most important defects in determining the mechanical properties of both conventional alloys and high-entropy alloys. The Peierls-Nabarro model supplies an efficient pathway to their geometries and mobility. The difficulty in solving the integro-differential Peierls-Nabarro equation is how to effectively avoid the local minima in the energy landscape of a dislocation core. Among the other methods to optimize the dislocation core structures, we choose the algorithm of Particle Swarm Optimization, an algorithm that simulates the social behaviors of organisms. By employing more particles (bigger swarm) and more iterative steps (allowing them to explore for longer time), the local minima can be effectively avoided. But this would require more computational cost. The advantage of this algorithm is that it is readily parallelized in modern high computing architecture. We demonstrate the performance of our parallelized algorithm scales linearly with the number of employed cores.

  17. Moving without a purpose: an experimental study of swarm guidance in the Western honey bee, Apis mellifera.

    PubMed

    Makinson, James C; Beekman, Madeleine

    2014-06-01

    During reproductive swarming, honey bee scouts perform two very important functions. Firstly, they find new nesting locations and return to the swarm cluster to communicate their discoveries. Secondly, once the swarm is ready to depart, informed scout bees act as guides, leading the swarm to its final destination. We have previously hypothesised that the two processes, selecting a new nest site and swarm guidance, are tightly linked in honey bees. When swarms can be laissez faire about where they nest, reaching directional consensus prior to lift off seems unnecessary. If, in contrast, it is essential that the swarm reaches a precise location, either directional consensus must be near unanimous prior to swarm departure or only a select subgroup of the scouts guide the swarm. Here, we tested experimentally whether directional consensus is necessary for the successful guidance of swarms of the Western honey bee Apis mellifera by forcing swarms into the air prior to the completion of the decision-making process. Our results show that swarms were unable to guide themselves prior to the swarm reaching the pre-flight buzzing phase of the decision-making process, even when directional consensus was high. We therefore suggest that not all scouts involved in the decision-making process attempt to guide the swarm. © 2014. Published by The Company of Biologists Ltd.

  18. Research and application of an intelligent control system in central air-conditioning based on energy consumption simulation

    NASA Astrophysics Data System (ADS)

    Cao, Ling; Che, Wenbin

    2018-05-01

    For the central air-conditioning energy-saving, it is common practice to use a wide range of PTD controllers in engineering to optimize energy savings. However, the shortcomings of the PTD controller have also been magnified on this issue, such as: calculation accuracy is not enough, the calculation time is too long. Particle swarm optimization has the advantage of fast convergence. This paper is based on Particle Swarm Optimization apply in PTD controller tuning parameters in order to achieve the purpose of saving energy while ensuring comfort. The algorithm proposed in this paper can adjust the weight according to the change of population fitness, reduce the weights of particles with lower fitness and enhance the weights of particles with higher fitness in the population, and fully release the population vitality. The method in this paper is validated by the TRNSYS model based on the central air-conditioning system. The experimental results show that the room temperature fluctuation is small, the overshoot is small, the adjustment speed is fast, and the energy-saving fluctuates at 10%.

  19. Reversals and collisions optimize protein exchange in bacterial swarms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amiri, Aboutaleb; Harvey, Cameron; Buchmann, Amy

    Swarming groups of bacteria coordinate their behavior by self-organizing as a population to move over surfaces in search of nutrients and optimal niches for colonization. Many open questions remain about the cues used by swarming bacteria to achieve this self-organization. While chemical cue signaling known as quorum sensing is well-described, swarming bacteria often act and coordinate on time scales that could not be achieved via these extracellular quorum sensing cues. Here, cell-cell contact-dependent protein exchange is explored as amechanism of intercellular signaling for the bacterium Myxococcus xanthus. A detailed biologically calibrated computational model is used to study how M. xanthusmore » optimizes the connection rate between cells and maximizes the spread of an extracellular protein within the population. The maximum rate of protein spreading is observed for cells that reverse direction optimally for swarming. Cells that reverse too slowly or too fast fail to spread extracellular protein efficiently. In particular, a specific range of cell reversal frequencies was observed to maximize the cell-cell connection rate and minimize the time of protein spreading. Furthermore, our findings suggest that predesigned motion reversal can be employed to enhance the collective behavior of biological synthetic active systems.« less

  20. Adaptive power allocation schemes based on IAFS algorithm for OFDM-based cognitive radio systems

    NASA Astrophysics Data System (ADS)

    Zhang, Shuying; Zhao, Xiaohui; Liang, Cong; Ding, Xu

    2017-01-01

    In cognitive radio (CR) systems, reasonable power allocation can increase transmission rate of CR users or secondary users (SUs) as much as possible and at the same time insure normal communication among primary users (PUs). This study proposes an optimal power allocation scheme for the OFDM-based CR system with one SU influenced by multiple PU interference constraints. This scheme is based on an improved artificial fish swarm (IAFS) algorithm in combination with the advantage of conventional artificial fish swarm (ASF) algorithm and particle swarm optimisation (PSO) algorithm. In performance comparison of IAFS algorithm with other intelligent algorithms by simulations, the superiority of the IAFS algorithm is illustrated; this superiority results in better performance of our proposed scheme than that of the power allocation algorithms proposed by the previous studies in the same scenario. Furthermore, our proposed scheme can obtain higher transmission data rate under the multiple PU interference constraints and the total power constraint of SU than that of the other mentioned works.

Top