DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Joel
The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Developmentmore » Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industry-driven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings dedicated to technology transfer to showcase and review SWC-funded technology. The workshops were open to the stripper well industry.« less
Consortium for Petroleum & Natural Gas Stripper Wells PART 3 OF 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Joel
The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Developmentmore » Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industrydriven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings dedicated to technology transfer to showcase and review SWC-funded technology. The workshops were open to the stripper well industry.« less
Consortium for Petroleum & Natural Gas Stripper Wells PART 2 OF 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Joel
2011-12-01
The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Developmentmore » Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industrydriven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings dedicated to technology transfer to showcase and review SWC-funded technology. The workshops were open to the stripper well industry.« less
Wang, Fei; Mu, Xingmin; Li, Rui; Fleskens, Luuk; Stringer, Lindsay C; Ritsema, Coen J
2015-03-01
Policy plays a very important role in natural resource management as it lays out a government framework for guiding long-term decisions, and evolves in light of the interactions between human and environment. This paper focuses on soil and water conservation (SWC) policy in the Yellow River Basin (YRB), China. The problems, rural poverty, severe soil erosion, great sediment loads and high flood risks, are analyzed over the period of 1949-present using the Driving force-Pressure-State-Impact-Response (DPSIR) framework as a way to organize analysis of the evolution of SWC policy. Three stages are identified in which SWC policy interacts differently with institutional, financial and technology support. In Stage 1 (1949-1979), SWC policy focused on rural development in eroded areas and on reducing sediment loads. Local farmers were mainly responsible for SWC. The aim of Stage 2 (1980-1990) was the overall development of rural industry and SWC. A more integrated management perspective was implemented taking a small watershed as a geographic interactional unit. This approach greatly improved the efficiency of SWC activities. In Stage 3 (1991 till now), SWC has been treated as the main measure for natural resource conservation, environmental protection, disaster mitigation and agriculture development. Prevention of new degradation became a priority. The government began to be responsible for SWC, using administrative, legal and financial approaches and various technologies that made large-scale SWC engineering possible. Over the historical period considered, with the implementation of the various SWC policies, the rural economic and ecological system improved continuously while the sediment load and flood risk decreased dramatically. The findings assist in providing a historical perspective that could inform more rational, scientific and effective natural resource management going forward. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Teshome, Akalu; de Graaff, Jan; Kassie, Menale
2016-03-01
Soil and water conservation (SWC) practices have been promoted in the highlands of Ethiopia during the last four decades. However, the level of adoption of SWC practices varies greatly. This paper examines the drivers of different stages of adoption of SWC technologies in the north-western highlands of Ethiopia. This study is based on a detailed farm survey among 298 households in three watersheds. Simple descriptive statistics were applied to analyze the stages of adoption. An ordered probit model was used to analyze the drivers of different stages of adoption of SWC. This model is used to analyze more than two outcomes of an ordinal dependent variable. The results indicate that sampled households are found in different phases of adoption, i.e., dis-adoption/non-adoption (18.5 %), initial adoption (30.5 %), actual adoption (20.1 %), and final adoption (30.9 %). The results of the ordered probit model show that some socio-economic and institutional factors affect the adoption phases of SWC differently. Farm labor, parcel size, ownership of tools, training in SWC, presence of SWC program, social capital (e.g., cooperation with adjacent farm owners), labor sharing scheme, and perception of erosion problem have a significant positive influence on actual and final adoption phases of SWC. In addition, the final adoption phase of SWC is positively associated with tenure security, cultivated land sizes, parcel slope, and perception on SWC profitability. Policy makers should take into consideration factors affecting (continued) adoption of SWC such as profitability, tenure security, social capital, technical support, and resource endowments (e.g., tools and labor) when designing and implementing SWC policies and programs.
NASA Astrophysics Data System (ADS)
Teshome, Akalu; de Graaff, Jan; Kassie, Menale
2016-03-01
Soil and water conservation (SWC) practices have been promoted in the highlands of Ethiopia during the last four decades. However, the level of adoption of SWC practices varies greatly. This paper examines the drivers of different stages of adoption of SWC technologies in the north-western highlands of Ethiopia. This study is based on a detailed farm survey among 298 households in three watersheds. Simple descriptive statistics were applied to analyze the stages of adoption. An ordered probit model was used to analyze the drivers of different stages of adoption of SWC. This model is used to analyze more than two outcomes of an ordinal dependent variable. The results indicate that sampled households are found in different phases of adoption, i.e., dis-adoption/non-adoption (18.5 %), initial adoption (30.5 %), actual adoption (20.1 %), and final adoption (30.9 %). The results of the ordered probit model show that some socio-economic and institutional factors affect the adoption phases of SWC differently. Farm labor, parcel size, ownership of tools, training in SWC, presence of SWC program, social capital (e.g., cooperation with adjacent farm owners), labor sharing scheme, and perception of erosion problem have a significant positive influence on actual and final adoption phases of SWC. In addition, the final adoption phase of SWC is positively associated with tenure security, cultivated land sizes, parcel slope, and perception on SWC profitability. Policy makers should take into consideration factors affecting (continued) adoption of SWC such as profitability, tenure security, social capital, technical support, and resource endowments (e.g., tools and labor) when designing and implementing SWC policies and programs.
National Stormwater Calculator: Low Impact Development ...
Stormwater discharges continue to cause impairment of our Nation’s waterbodies. EPA has developed the National Stormwater Calculator (SWC) to help support local, state, and national stormwater management objectives to reduce runoff through infiltration and retention using green infrastructure practices as low impact development (LID) controls. The primary focus of the SWC is to inform site developers on how well they can meet a desired stormwater retention target with and without the use of green infrastructure. It can also be used by landscapers and homeowners. Platform. The SWC is a Windows-based desktop program that requires an internet connection. A mobile web application version that will be compatible with all operating systems is currently being developed and is expected to be released in the fall of 2017.Cost Module. An LID cost estimation module within the application allows planners and managers to evaluate LID controls based on comparison of regional and national project planning level cost estimates (capital and average annual maintenance) and predicted LID control performance. Cost estimation is accomplished based on user-identified size configuration of the LID control infrastructure and other key project and site-specific variables. This includes whether the project is being applied as part of new development or redevelopment and if there are existing site constraints.Climate Scenarios. The SWC allows users to consider how runoff may vary based
NASA Astrophysics Data System (ADS)
Lakew, Walle; Baartman, Jantiene; Ritsema, Coen
2016-04-01
There has been little effort to systematically document the experiences and perceptions of farmers on soil erosion and soil and water conservation (SWC) even though a wealth of SWC knowledge and information exists, and there is a great demand to access it. Sustainable Land Management (SLM) has largely evolved through local traditional practices than being adopted on basis of scientific evidence. This research aimed to document the experiences of farmers on soil erosion and conservation, and to increase awareness and participation of the local community in SWC. Participatory stakeholders' workshops were undertaken at local level focused on experiences and perceptions of farmers. The workshops included group discussion and field monitoring of sheet erosion indicators, profiles of rills and gullies and impacts of SWC strategies. Systematic descriptions of the status of soil erosion, soil fertility and yield were used to assess the performances of SWC strategies. Results show that farmers were aware of the harmful effects of ongoing soil erosion and impacts of mitigation strategies on their farms. Sheet erosion was found to be the most damaging form of erosion while rill damage was critical on cereal cultivated farms on steep slopes. Farmers perceived that the desired impacts of SWC practices were attained in general: runoff and soil loss rates decreased, while soil fertility and production increased. The performance of SWC measures were found to be highly affected by the design quality and management strategies on the farm. Comparatively graded stone-faced soil bunds revealed maximum desired impacts and were liked by farmers whereas all level bunds caused water logging and traditional ditches begun incising and affected production of cereals. Bund maintenance practices were low and also distracted the stability of bunds. This calls for further improvement of design of SWC technologies and their maintenance. Further research should integrate the local knowledge for assessment of soil erosion and SWC strategies.
Changing land management practices and vegetation on the Central Plateau of Burkina Faso (1968-2002)
Reij, C.; Tappan, G.; Belemvire, A.
2005-01-01
In the early 1980s, the situation on the northern part of the Central Plateau of Burkina Faso was characterized by expanding cultivation on lands marginal to agriculture, declining rainfall, low and declining cereal yields, disappearing and impoverishing vegetation, falling ground-water levels and strong outmigration. This crisis situation provoked two reactions. Farmers, as well as technicians working for non-governmental organizations, started to experiment in improving soil and water conservation (SWC) techniques. When these experiments proved successful, donor agencies rapidly designed SWC projects based on simple, effective techniques acceptable to farmers. A study looked at the impact of SWC investments in nine villages and identified a number of major impacts, including: significant increases in millet and sorghum yields since the mid-1980s, cultivated fields treated with SWC techniques have more trees than 10-15 years ago, but the vegetation on most of the non-cultivated areas continues to degrade, greater availability of forage for livestock, increased investment in livestock by men and women and a beginning change in livestock management from extensive to semi-intensive methods, improved soil fertility management by farmers, locally rising ground-water tables, a decrease in outmigration and a significant reduction in rural poverty. Finally, data are presented on the evolution of land use in three villages between 1968 and 2002. ?? 2005 Elsevier Ltd. All rights reserved.
Masaki, Hitoshi; Yamashita, Yuki; Kyotani, Daiki; Honda, Tatsuya; Takano, Kenichi; Tamura, Toshiyasu; Mizutani, Taeko; Okano, Yuri
2018-03-30
Skin hydration is generally assessed using the parameters of skin surface water content (SWC) and trans-epidermal water loss (TEWL). To date, few studies have characterized skin conditions using correlations between skin hydration parameters and corneocyte parameters. The parameters SWC and TEWL allow the classification of skin conditions into four distinct Groups. The purpose of this study was to assess the characteristics of skin conditions classified by SWC and TEWL for correlations with parameters from corneocytes. A human volunteer test was conducted that measured SWC and TEWL. As corneocyte-derived parameters, the size and thick abrasion ratios, the ratio of sulfhydryl groups and disulfide bonds (SH/SS) and CP levels were analyzed. Volunteers were classified by their median SWC and TEWL values into 4 Groups: Group I (high SWC/low TEWL), Group II (high SWC/high TEWL), Group III (low SWC/low TEWL), and Group IV (low SWC/high TEWL). Group IV showed a significantly smaller size of corneocytes. Groups III and IV had significantly higher thick abrasion ratios and CP levels. Group I had a significantly lower SH/SS value. The SWC/TEWL value showed a decline in order from Group I to Group IV. Groups classified by their SWC and TEWL values showed characteristic skin conditions. We propose that the SWC and TEWL ratio is a comprehensive parameter to assess skin conditions. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Shen, Qin; Gao, Guangyao; Hu, Wei; Fu, Bojie
2016-09-01
Knowledge of the spatial-temporal variability of soil water content (SWC) is critical for understanding a range of hydrological processes. In this study, the spatial variance and temporal stability of SWC were investigated in a cropland-shelterbelt-desert site at the oasis-desert ecotone in the middle of the Heihe River Basin, China. The SWC was measured on 65 occasions to a depth of 2.8 m at 45 locations during two growing seasons from 2012 to 2013. The standard deviation of the SWC versus the mean SWC exhibited a convex upward relationship in the shelterbelt with the greatest spatial variation at the SWC of around 22.0%, whereas a linearly increasing relationship was observed for the cropland, desert, and land use pattern. The standard deviation of the relative difference was positively linearly correlated with the SWC (p < 0.05) for the land use pattern, whereas such a relationship was not found in the three land use types. The spatial pattern of the SWC was more time stable for the land use pattern, followed by desert, shelterbelt, and cropland. The spatial pattern of SWC changed dramatically among different soil layers. The locations representing the mean SWC varied with the depth, and no location could represent the whole soil profile due to different soil texture, root distribution and irrigation management. The representative locations of each soil layer could be used to estimate the mean SWC well. The statistics of temporal stability of the SWC could be presented equally well with a low frequency of observation (30-day interval) as with a high frequency (5-day interval). Sampling frequency had little effect on the selection of the representative locations of the field mean SWC. This study provides useful information for designing the optimal strategy for sampling SWC at the oasis-desert ecotone in the arid inland river basin.
Electrical Stimulation Technologies for Wound Healing
Kloth, Luther C.
2014-01-01
Objective: To discuss the physiological bases for using exogenously applied electric field (EF) energy to enhance wound healing with conductive electrical stimulation (ES) devices. Approach: To describe the types of electrical currents that have been reported to enhance chronic wound-healing rate and closure. Results: Commercial ES devices that generate direct current (DC), and mono and biphasic pulsed current waveforms represent the principal ES technologies which are reported to enhance wound healing. Innovation: Wafer-thin, disposable ES technologies (wound dressings) that utilize mini or micro-batteries to deliver low-level DC for wound healing and antibacterial wound-treatment purposes are commercially available. Microfluidic wound-healing chips are currently being used with greater accuracy to investigate the EF effects on cellular electrotaxis. Conclusion: Numerous clinical trials described in subsequent sections of this issue have demonstrated that ES used adjunctively with standard wound care (SWC), enhances wound healing rate faster than SWC alone. PMID:24761348
Epileptic negative drop attacks in atypical benign partial epilepsy: a neurophysiological study.
Hirano, Yoshiko; Oguni, Hirokazu; Osawa, Makiko
2009-03-01
We conducted a computer-assisted polygraphic analysis of drop attacks in a child with atypical benign partial epilepsy (ABPE) to investigate neurophysiological characteristics. The patient was a six-year two-month-old girl, who had started to have focal motor seizures, later combined with daily epileptic negative myoclonus (ENM) and drop attacks, causing multiple injuries. We studied episodes of ENM and drop attacks using video-polygraphic and computer-assisted back-averaging analysis. A total of 12 ENM episodes, seven involving the left arm (ENMlt) and five involving both arms (ENMbil), and five drop attacks were captured for analysis. All episodes were time-locked to spike-and-wave complexes (SWC) arising from both centro-temporo-parietal (CTP) areas. The latency between the onset of SWC and ENMlt, ENMbil, and drop attacks reached 68 ms, 42 ms, and 8 ms, respectively. The height of the spike as well as the slow-wave component of SWC for drop attacks were significantly larger than that for both ENMlt and ENMbil (p < 0.05). Drop attacks were considered to be epileptic negative myoclonus involving not only upper proximal but also axial muscles, causing the body to fall. Thus, drop attacks in ABPE are considered to be epileptic negative drop attacks arising from bilateral CTP foci and differ from drop attacks of a generalized origin seen in Lennox-Gastaut syndrome and myoclonic-astatic epilepsy.
Wu, Wei-Hua; Wu, Chwen-Huey; Ladurner, Andreas; Mizuguchi, Gaku; Wei, Debbie; Xiao, Hua; Luk, Ed; Ranjan, Anand; Wu, Carl
2009-03-06
Variant histone H2AZ-containing nucleosomes are involved in the regulation of gene expression. In Saccharomyces cerevisiae, chromatin deposition of histone H2AZ is mediated by the fourteen-subunit SWR1 complex, which catalyzes ATP-dependent exchange of nucleosomal histone H2A for H2AZ. Previous work defined the role of seven SWR1 subunits (Swr1 ATPase, Swc2, Swc3, Arp6, Swc5, Yaf9, and Swc6) in maintaining complex integrity and H2AZ histone replacement activity. Here we examined the function of three additional SWR1 subunits, bromodomain containing Bdf1, actin-related protein Arp4 and Swc7, by analyzing affinity-purified mutant SWR1 complexes. We observed that depletion of Arp4 (arp4-td) substantially impaired the association of Bdf1, Yaf9, and Swc4. In contrast, loss of either Bdf1 or Swc7 had minimal effects on overall complex integrity. Furthermore, the basic H2AZ histone replacement activity of SWR1 in vitro required Arp4, but not Bdf1 or Swc7. Thus, three out of fourteen SWR1 subunits, Bdf1, Swc7, and previously noted Swc3, appear to have roles auxiliary to the basic histone replacement activity. The N-terminal region of the Swr1 ATPase subunit is necessary and sufficient to direct association of Bdf1 and Swc7, as well as Arp4, Act1, Yaf9 and Swc4. This same region contains an additional H2AZ-H2B specific binding site, distinct from the previously identified Swc2 subunit. These findings suggest that one SWR1 enzyme might be capable of binding two H2AZ-H2B dimers, and provide further insight on the hierarchy and interdependency of molecular interactions within the SWR1 complex.
Higher assimilation than respiration sensitivity to drought for a desert ecosystem in Central Asia.
Gu, Daxing; Otieno, Dennis; Huang, Yuqing; Wang, Quan
2017-12-31
Responses of ecosystem assimilation and respiration to global climate change vary considerably among terrestrial ecosystems constrained by both biotic and abiotic factors. In this study, net CO 2 exchange between ecosystem and atmosphere (NEE) was measured over a 4-year period (2013-2016) using eddy covariance technology in a desert ecosystem in Central Asia. Ecosystem assimilation (gross primary production, GPP) and respiration (R eco ) were derived from NEE by fitting light response curves to NEE data based on day- and nighttime data, and their responses to soil water content (SWC) and evaporative fraction (EF) were assessed during the growing season. Results indicated that both GPP and R eco linearly decreased with declining SWC, with the sensitivity of GPP to SWC being 3.8 times higher than that of R eco during the entire growing season. As a result, ecosystem CO 2 sequestration capacity decreased from 4.00μmolm -2 s -1 to 1.00μmolm -2 s -1 , with increasing soil drought . On a seasonal scale, significant correlation between GPP and SWC was only found in spring while that between R eco and SWC was found in all growing seasons with the sensitivity increasing steadily from spring to autumn. EF had a low correlation with SWC, GPP and R eco (R 2 =0.03, 0.02, 0.05, respectively), indicating that EF was not a good proxy for soil drought and energy partitioning was not tightly coupled to ecosystem carbon exchanges in this desert ecosystem. The study deepens our knowledge of ecosystem carbon exchange and its response to drought as well as its coupling with ecosystem energy partitioning in an extreme dry desert. The information is critical for better assessing carbon sequestration capacity in dryland, and for understanding its feedback to climate change. Copyright © 2017 Elsevier B.V. All rights reserved.
Mittmann, Nicole; Chan, Brian C; Craven, B Cathy; Isogai, Pierre K; Houghton, Pamela
2011-06-01
To evaluate the incremental cost-effectiveness of electrical stimulation (ES) plus standard wound care (SWC) as compared with SWC only in a spinal cord injury (SCI) population with grade III/IV pressure ulcers (PUs) from the public payer perspective. A decision analytic model was constructed for a 1-year time horizon to determine the incremental cost-effectiveness of ES plus SWC to SWC in a cohort of participants with SCI and grade III/IV PUs. Model inputs for clinical probabilities were based on published literature. Model inputs, namely clinical probabilities and direct health system and medical resources were based on a randomized controlled trial of ES plus SWC versus SWC. Costs (Can $) included outpatient (clinic, home care, health professional) and inpatient management (surgery, complications). One way and probabilistic sensitivity (1000 Monte Carlo iterations) analyses were conducted. The perspective of this analysis is from a Canadian public health system payer. Model target population was an SCI cohort with grade III/IV PUs. Not applicable. Incremental cost per PU healed. ES plus SWC were associated with better outcomes and lower costs. There was a 16.4% increase in the PUs healed and a cost savings of $224 at 1 year. ES plus SWC were thus considered a dominant economic comparator. Probabilistic sensitivity analysis resulted in economic dominance for ES plus SWC in 62%, with another 35% having incremental cost-effectiveness ratios of $50,000 or less per PU healed. The largest driver of the economic model was the percentage of PU healed with ES plus SWC. The addition of ES to SWC improved healing in grade III/IV PU and reduced costs in an SCI population. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Wet-to-dry shift over Southwest China in 1994 tied to the warming of tropical warm pool
NASA Astrophysics Data System (ADS)
Wang, Lin; Huang, Gang; Chen, Wen; Zhou, Wen; Wang, Weiqiang
2018-01-01
The autumn climate in Southwest China (SWC) experienced a notable wet-to-dry shift in 1994. Associated with this change in precipitation, decadal signatures of large-scale atmospheric circulation and SST identify a likely dynamical origin: the tropical warm pool (TWP) consisting of tropical northwest Pacific (TNWP, 3°S-12°N and 110°E-150°E) sector and tropical east Indian Ocean (TEI, 10°S-3°N and 80°E-110°E) sector. A cold-to-warm phase switch of TWP SST occurred in 1994, coinciding exactly with the timing of the regime transition of SWC precipitation. During post-1994 period, warm states in the TNWP and TEI sectors plays in a synergistic fashion to invoke dry decades in SWC. On the one side, warm SST over the TNWP sector excites an anomalous cyclone centered on the South China Sea directed opposite to the climatological moisture transport and strengthened zonal wind to its west accompanied by a weakening of the poleward flux; on the other side, warm SST over the TEI sector acts to intensify inflow into TEI with less concurrent transfer of moisture to SWC and to steer moisture to the northern Arabic Sea and away from the SWC-oriented track. Meanwhile, the troposphere over SWC is capped by subsidence, which is jointly contributed by TNWP and TEI. It then follows a reduced moisture supply, suppressed convective activity, and anomalous divergence in SWC, bringing a precipitation deficit there. In contrast, cold TWP SST during 1961-1994 favors wet conditions in SWC, given a perfectly symmetrical circulation pattern. Further, the dominant role of TWP is confirmed, because the modeled response to TWP SST forcing alone bears a great resemblance to the observed evidence. Finally, it is also found that the teleconnected influence induced by TWP is stronger in southern SWC than in northern SWC, which explains the south-north gradient of interdecadal signal of SWC precipitation.
NASA Astrophysics Data System (ADS)
Ju, Weimin; Gao, Ping; Wang, Jun; Li, Xianfeng; Chen, Shu
2008-10-01
Soil water content (SWC) is an important factor affecting photosynthesis, growth, and final yields of crops. The information on SWC is of importance for mitigating the reduction of crop yields caused by drought through proper agricultural water management. A variety of methodologies have been developed to estimate SWC at local and regional scales, including field sampling, remote sensing monitoring and model simulations. The reliability of regional SWC simulation depends largely on the accuracy of spatial input datasets, including vegetation parameters, soil and meteorological data. Remote sensing has been proved to be an effective technique for controlling uncertainties in vegetation parameters. In this study, the vegetation parameters (leaf area index and land cover type) derived from the Moderate Resolution Imaging Spectrometer (MODIS) were assimilated into a process-based ecosystem model BEPS for simulating the variations of SWC in croplands of Jiangsu province, China. Validation shows that the BEPS model is able to capture 81% and 83% of across-site variations of SWC at 10 and 20 cm depths during the period from September to December, 2006 when a serous autumn drought occurred. The simulated SWC responded the events of rainfall well at regional scale, demonstrating the usefulness of our methodology for SWC and practical agricultural water management at large scales.
Polak, A; Taradaj, J; Nawrat-Szoltysik, A; Stania, M; Dolibog, P; Blaszczak, E; Zarzeczny, R; Juras, G; Franek, A; Kucio, C
2016-12-02
International guidelines recommend the use of ultrasound (US) and electrical stimulation (ES) for treating chronic and recurrent pressure ulcers (PUs). The methodology of these procedures, however, still needs elaboration and confirmation by clinical studies. This parallel-group, randomised, single-blind, prospective, controlled clinical trial was conducted to determine whether by using high-frequency ultrasound (HFUS) and high-voltage monophasic pulsed current (HVMPC), the rate of change in the area of older patients' PUs can be accelerated. Patients were randomly assigned to receive either: standard wound care (SWC) involving supportive care and topical treatments; SWC+US (1MHz; 0.5 W/cm 2 ; 20%; 1-3 minutes/cm2); or SWC+ES (HVMPC, 154 µs, 100 pps, 100 V, 250 µC/sec, 50 minutes/day). US and ES were administered once a day, 5 days a week. The primary outcome was change in PU surface area measured against baseline after 6 weeks of treatment with SWC, SWC+US, and SWC+ES. We recruited 77 patients, aged 60-95 years (80% aged over 70 years of age), with 88 Category II, III and IV PUs were enrolled in the study. The percentage reduction in the surface area of PUs at the end of treatment was significantly greater in the SWC+US group (mean ± standard deviation, 77.48±11.59 %; p=0.024) and the SWC+ES group (76.19±32.83%; p=0.030) versus the control group (48.97±53.42%). The SWC+ES group also had a significantly greater proportion of PUs that decreased in area by at least 50% or closed than the control group (p=0.05 and 0.031, respectively). The SWC+US and SWC+ES groups were not statistically significant different regarding treatment results. Clinical side effects were not recorded. The results show that HFUS and HVMPC are comparable regarding their effectiveness in reducing the size of PUs in older people. The authors have nothing to disclose. All research activities were funded by the Academy of Physical Education, Katowice, Poland.
Jemberu, Walle; Baartman, Jantiene E M; Fleskens, Luuk; Ritsema, Coen J
2018-02-01
Farmers possess a wealth of knowledge regarding soil erosion and soil and water conservation (SWC), and there is a great demand to access it. However, there has been little effort to systematically document farmers' experiences and perceptions of SWC measures. Sustainable Land Management (SLM) has largely evolved through local traditional practices rather than adoption based on scientific evidence. This research aimed to assess soil erosion and performance of different SWC measures from the farmers' perspective by documenting their perceptions and experiences in Koga catchment, Ethiopia. To this aim, workshops were organised in three sub-catchments differing in slopes and SWC measures. Workshops included group discussions and field monitoring of erosion indicators and systematically describing the status of soil erosion, soil fertility and yield to assess the performance of SWC measures. Results show that farmers are aware of the harmful effects of ongoing soil erosion and of the impacts of mitigation measures on their farms. Sheet erosion was found to be the most widespread form of erosion while rill damage was critical on plots cultivated to cereals on steep slopes. The average rill erosion rates were 24.2 and 47.3 t/ha/y in treated and untreated farmlands, respectively. SWC reduced rill erosion on average by more than 48%. However, the impacts of SWC measures varied significantly between sub-watersheds, and farmers believed that SWC measures did not prevent erosion completely. Comparatively, graded stone-faced soil bunds revealed maximum desired impacts and were most appreciated by farmers, whereas level bunds caused water logging. Most traditional ditches were highly graded and begun incising and affected production of cereals. Despite the semi-quantitative nature of the methodology, using farmers' perceptions and experiences to document land degradation and the impacts of SWC measures is crucial as they are the daily users of the land and therefore directly affecting the success or failure of SWC measures. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
He, Di; Wang, Jing; Dai, Tong; Feng, Liping; Zhang, Jianping; Pan, Xuebiao; Pan, Zhihua
2014-12-01
The impact of climate change on maize potential productivity and the potential productivity gap in Southwest China (SWC) are investigated in this paper. We analyze the impact of climate change on the photosynthetic, light-temperature, and climatic potential productivity of maize and their gaps in SWC, by using a crop growth dynamics statistical method. During the maize growing season from 1961 to 2010, minimum temperature increased by 0.20°C per decade ( p < 0.01) across SWC. The largest increases in average and minimum temperatures were observed mostly in areas of Yunnan Province. Growing season average sunshine hours decreased by 0.2 h day-1 per decade ( p < 0.01) and total precipitation showed an insignificant decreasing trend across SWC. Photosynthetic potential productivity decreased by 298 kg ha-1 per decade ( p < 0.05). Both light-temperature and climatic potential productivity decreased ( p < 0.05) in the northeast of SWC, whereas they increased ( p < 0.05) in the southwest of SWC. The gap between light-temperature and climatic potential productivity varied from 12 to 2729 kg ha-1, with the high value areas centered in northern and southwestern SWC. Climatic productivity of these areas reached only 10%-24% of the light-temperature potential productivity, suggesting that there is great potential to increase the maize potential yield by improving water management in these areas. In particular, the gap has become larger in the most recent 10 years. Sensitivity analysis shows that the climatic potential productivity of maize is most sensitive to changes in temperature in SWC. The findings of this study are helpful for quantification of irrigation water requirements so as to achieve maximum yield potentials in SWC.
NASA Astrophysics Data System (ADS)
Arif, Ali Talib; Maschowski, Christoph; Garra, Patxi; Garcia-Käufer, Manuel; Petithory, Tatiana; Trouvé, Gwenaëlle; Dieterlen, Alain; Mersch-Sundermann, Volker; Khanaqa, Polla; Nazarenko, Irina; Gminski, Richard; Gieré, Reto
2017-08-01
Inhalation of particulate matter (PM) from residential biomass combustion is epidemiologically associated with cardiovascular and pulmonary diseases. This study investigates PM0.4-1 emissions from combustion of commercial Miscanthus straw (MS), softwood chips (SWC) and beech wood chips (BWC) in a domestic-scale boiler (40 kW). The PM0.4-1 emitted during combustion of the MS, SWC and BWC were characterized by ICP-MS/OES, XRD, SEM, TEM, and DLS. Cytotoxicity and genotoxicity in human alveolar epithelial A549 and human bronchial epithelial BEAS-2B cells were assessed by the WST-1 assay and the DNA-Alkaline Unwinding Assay (DAUA). PM0.4-1 uptake/translocation in cells was investigated with a new method developed using a confocal reflection microscope. SWC and BWC had a inherently higher residual water content than MS. The PM0.4-1 emitted during combustion of SWC and BWC exhibited higher levels of Polycyclic Aromatic Hydrocarbons (PAHs), a greater variety of mineral species and a higher heavy metal content than PM0.4-1 from MS combustion. Exposure to PM0.4-1 from combustion of SWC and BWC induced cytotoxic and genotoxic effects in human alveolar and bronchial cells, whereby the strongest effect was observed for BWC and was comparable to that caused by diesel PM (SRM 2 975), In contrast, PM0.4-1 from MS combustion did not induce cellular responses in the studied lung cells. A high PAH content in PM emissions seems to be a reliable chemical marker of both combustion efficiency and particle toxicity. Residual biomass water content strongly affects particulate emissions and their toxic potential. Therefore, to minimize the harmful effects of fine PM on health, improvement of combustion efficiency (aiming to reduce the presence of incomplete combustion products bound to PM) and application of fly ash capture technology, as well as use of novel biomass fuels like Miscanthus straw is recommended.
The EPA Office of Research and Development released its National Stormwater Calculator (SWC) which is available at: http://www.epa.gov/nrmrl/wswrd/wq/models/swc/ (contact: SWC@EPA.gov). It is a desktop application that estimates the annual amount of rainwater and frequency of run...
de Graaff, Jan
2007-01-01
Soil and water conservation (SWC) contests among farmer groups were organized in five rural villages in the Bolivian mountain valleys. The contests were aimed at quickly achieving widespread sustainable results. This article analyzes the effectiveness of these contests as an extension tool. Mixed results were obtained. In three villages, participation rates in the SWC activities introduced in the contests were still high even 2 years after project withdrawal. These were all villages where a solid foundation for sustainable development had been laid before the contests were held. Two years later, most families were still involved in maintenance of the SWC practices introduced in the contests, and many farmers had started to experiment with different soil management practices. However, replications of these SWC practices were not widespread, Conservation Leaders did not continue with their training activities, and the quality of maintenance of the practices was often not satisfactory. In order to become a more effective extension tool and achieve widespread impact, SWC contests must receive continued support by a catalyst agency. Moreover, other SWC contests should also be organized in which practices are not predefined. Given that SWC contests are a low-budget extension tool, local municipalities could become more actively involved. PMID:17846829
NASA Astrophysics Data System (ADS)
Ju, Weimin; Chen, Jing M.; Black, T. Andrew; Barr, Alan G.; McCaughey, Harry
2010-07-01
The variations of soil water content (SWC) and its influences on the carbon (C) cycle in Canada's forests and wetlands were studied through model simulations using the Integrated Terrestrial Ecosystem Carbon (InTEC) model. It shows that Canada's forests and wetlands experienced spatially and temporally heterogeneous changes in SWC from 1901 to 2000. SWC changes caused average NPP to decrease 40.8 Tg C yr-1 from 1901 to 2000, whereas the integrated effect of non-disturbance factors (climate change, CO2 fertilization and N deposition) enhanced NPP by 9.9%. During 1981-2000, the reduction of NPP caused by changes in SWC was 58.1 Tg C yr-1 whereas non-disturbance factors together caused NPP to increase by 16.6%. SWC changes resulted in an average increase of 4.1 Tg C yr-1 in the net C uptake during 1901-2000, relatively small compared with the enhancement in C uptake of 50.2 Tg C yr-1 by the integrated effect of non-disturbance factors. During 1981-2000, changes in SWC caused a reduction of 3.8 Tg C yr-1 in net C sequestration whereas the integrated factors increased net C sequestration by 54.1 Tg C yr-1. Increase in SWC enhanced C sequestration in all ecozones.
Kaeoket, K; Dalin, A M; Magnusson, U; Persson, E
2001-10-01
Uterine samples from sows taken immediately after slaughter at late di-oestrus, pro-oestrus, oestrus, early di-oestrus and di-ocstrus, were analysed by immunohistochemistry with an avidinbiotin-peroxidase method using a monoclonal antibody (anti-SWC3) to granulocyte, monocyte and macrophage populations. The endometrium was then examined by light microscopy. In the surface and glandular epithelium, the largest numbers of SWC3-expressing cells (P < or = 0.01 and P < or = 0.05) were found at oestrus, and at pro-oestrus and oestrus, respectively. The numbers of SWC3-expressing cells in the epithelium were positively correlated with the plasma levels of oestradiol-17beta. In the connective tissue of the subepithelial and glandular layers, no significant effect of the oestrous Cycle stage was found on the number of SWC3-expressing cells. The present study showed a variation in the distribution of SWC3-expressing cells in the sow endometrium, especially in the surface and glandular epithelium, during different stages of the oestrous cycle.
NASA Astrophysics Data System (ADS)
Lai, Xiaoming; Zhu, Qing; Zhou, Zhiwen; Liao, Kaihua
2017-12-01
In this study, seven random combination sampling strategies were applied to investigate the uncertainties in estimating the hillslope mean soil water content (SWC) and correlation coefficients between the SWC and soil/terrain properties on a tea + bamboo hillslope. One of the sampling strategies is the global random sampling and the other six are the stratified random sampling on the top, middle, toe, top + mid, top + toe and mid + toe slope positions. When each sampling strategy was applied, sample sizes were gradually reduced and each sampling size contained 3000 replicates. Under each sampling size of each sampling strategy, the relative errors (REs) and coefficients of variation (CVs) of the estimated hillslope mean SWC and correlation coefficients between the SWC and soil/terrain properties were calculated to quantify the accuracy and uncertainty. The results showed that the uncertainty of the estimations decreased as the sampling size increasing. However, larger sample sizes were required to reduce the uncertainty in correlation coefficient estimation than in hillslope mean SWC estimation. Under global random sampling, 12 randomly sampled sites on this hillslope were adequate to estimate the hillslope mean SWC with RE and CV ≤10%. However, at least 72 randomly sampled sites were needed to ensure the estimated correlation coefficients with REs and CVs ≤10%. Comparing with all sampling strategies, reducing sampling sites on the middle slope had the least influence on the estimation of hillslope mean SWC and correlation coefficients. Under this strategy, 60 sites (10 on the middle slope and 50 on the top and toe slopes) were enough to ensure the estimated correlation coefficients with REs and CVs ≤10%. This suggested that when designing the SWC sampling, the proportion of sites on the middle slope can be reduced to 16.7% of the total number of sites. Findings of this study will be useful for the optimal SWC sampling design.
NASA Astrophysics Data System (ADS)
Zeng, C.; Zhang, F.
2014-12-01
Alpine meadow is one of widespread vegetation types of the Qinghai-Tibetan Plateau. However, alpine meadow ecosystem is undergoing degradation in recent years. The degradation of alpine meadow can changes soil physical and chemical properties as well as it's spatial variability. However, little research has been done that address the spatial patterns of soil properties under different degradation degrees of alpine meadow of the Qinghai-Tibetan Plateau although these changes were important to water and heat study and modelling of land surface. 296 soil surface (0-10 cm) samples were collected using grid sampling design from three different degraded alpine meadow regions (1 km2). Then soil water content (SWC) and organic carbon content (OCC) were measured. Classical statistical and geostatistical methods were employed to study the spatial heterogeneities of SWC and OCC under different degradation degrees (Non-degraded ND, moderately degraded MD, extremely degraded ED) of alpine meadow. Results show that both SWC and OCC of alpine meadow were normally distributed with the exception of SWC under ED. On average, both SWC and OCC of alpine meadow decreased in the order that ND > MD > ED. For nugget ratios, SWC and OCC of alpine meadow showed increasing spatial dependence tendency from ND to ED. For the range of spatial variation, both SWC and OCC of alpine meadow showed increasing tendency in distance with the increasing degree of degradation. In all, the degradation of alpine meadow has significant impact on spatial heterogeneities of SWC and OCC of alpine meadow. With increasing of alpine meadow degradation, soil water condition and nutrient condition become worse, and their distributions in spatial become unevenly.
NASA Astrophysics Data System (ADS)
Cai, Jingya; Pang, Zhiguo; Fu, Jun'e.
2018-04-01
To quantitatively analyze the spatial features of a cosmic-ray sensor (CRS) (i.e., the measurement support volume of the CRS and the weight of the in situ point-scale soil water content (SWC) in terms of the regionally averaged SWC derived from the CRS) in measuring the SWC, cooperative observations based on CRS, oven drying and frequency domain reflectometry (FDR) methods are performed at the point and regional scales in a desert steppe area of the Inner Mongolia Autonomous Region. This region is flat with sparse vegetation cover consisting of only grass, thereby minimizing the effects of terrain and vegetation. Considering the two possibilities of the measurement support volume of the CRS, the results of four weighting methods are compared with the SWC monitored by FDR within an appropriate measurement support volume. The weighted average calculated using the neutron intensity-based weighting method (Ni weighting method) best fits the regionally averaged SWC measured by the CRS. Therefore, we conclude that the gyroscopic support volume and the weights determined by the Ni weighting method are the closest to the actual spatial features of the CRS when measuring the SWC. Based on these findings, a scale transformation model of the SWC from the point scale to the scale of the CRS measurement support volume is established. In addition, the spatial features simulated using the Ni weighting method are visualized by developing a software system.
Reconciling water harvesting and soil erosion control by thoughtful implementation of SWC measures
NASA Astrophysics Data System (ADS)
Bellin, N.; Vanacker, V.; van Wesemael, B.
2012-04-01
Soil and water conservation (SWC) structures are largely present in Southeast Spain. Traditionally, SWC structures such as step terraces and earthen check dams were implemented in agricultural fields. They are usually found in semi-arid traditional rainfed agricultural systems that heavily rely on SWC structures to supplement the sparse rainfall. The on-site SWC measures favor water infiltration and reduce water runoff and soil erosion. In the river system (off site), large concrete/gabion check dams have been constructed since the 70's. The analysis of orthophotographs and field survey observations indicate a severe decay of on-site SWC structures in the agricultural area. This has been observed for the Cárcavo catchment (Murcia). The density of step terraces and check dams decreased by 25% between 1956 and 2005. Changes in the agricultural area can be summarized as: (i) rapid expansion of rainfed crops in marginal areas and (ii) mechanization of agriculture associated with frequent tillage operations. It became evident that the high density of SWC structures has now become a nuisance in rainfed orchards that are maintained by regular shallow tillage. We constrained the effects of SWC structures on hydrological connectivity by assessing their functioning during a heavy storm (return period 8.2 yrs in 2006). The percentage of cropland draining directly on the river system without interference of a check dam has increased from 9% in 1956 to 31% in 2005 and 40 % after the storm in November 2006. While there is a strong decrease of traditional SWC structures, several hundred large check dams have been constructed during the last decades in ephemeral streams (Almeria). 36 of them have been investigated in selected Sierras. The volume of sediment retained was found low (mean: 1.4 t ha-1 yr-1). 67% of the variability has been explained by topographical, land use and agricultural activities. After a field survey in 2009, a large majority of check dams located in non-agricultural catchments have been found only partially filled with sediments. Extensive reforestation programs, recovery of natural vegetation (dense matorral) and abandonment of agricultural fields in the Sierras led to a strong reduction of the sediment transport towards the river system. Although the effect of the check dams on the transport of sediment has not been important, the check dams have played a major role in flood control in the area. Our data indicate that thoughtful design of SWC schemes is necessary to reconcile water harvesting, erosion mitigation and flood control. Currently, the erosion hotspots are clearly localized in the agricultural fields, and not in the marginal lands in the Sierras. The combination of on-site and off-site SWC measures in the agricultural areas is highly efficient to reduce fluxes of sediment and surface water.
Rapid column heating method for subcritical water chromatography.
Fogwill, Michael O; Thurbide, Kevin B
2007-01-19
A novel resistive heating method is presented for subcritical water chromatography (SWC) that provides higher column heating rates than those conventionally obtained from temperature-programmed gas chromatography (GC) convection ovens. Since the polarity of water reduces dramatically with increasing temperature, SWC employs column heating to achieve gradient elution. As such, the rate at which the mobile phase is heated directly impacts the magnitude of such gradients applied in SWC. Data from the current study demonstrate that the maximum column heating rate attainable in a typical SWC apparatus (i.e. using a GC convection oven) is around 10 degrees C/min, even at instrument oven settings of over three times this value. Conversely, by wrapping the separation column with ceramic insulation and a resistively heated wire, the column heating rates are increased five-fold. As a result, elution times can be greatly decreased in SWC employing gradients. Separations of standard alcohol test mixtures demonstrate that the retention time of the latest eluting component decreases by 35 to 50% using the prototype method. Additionally, solute retention times in this mode deviate by less than 1% RSD over several trials, which compares very well to those obtained using a conventional GC convection oven. Results suggest that the developed method can be a useful alternative heating technique in SWC.
Opioid system of the brain and ethanol.
Gogichadze, M; Mgaloblishvili-Nemsadze, M; Oniani, N; Emukhvary, N; Basishvili, T
2009-04-01
Influence of blocking of opioid receptors with concomitant intraperitoneal injections of Naloxone (20 mg/kg) (non-selective antagonist of opioid system) on the outcomes of anesthetic dose of ethanol (4,25 ml /kg 25% solution) was investigated in the rats. The sleep-wakefulness cycle (SWC) was used as a model for identification of the effects. Alterations of the SWC structure adequately reflect the neuro-chemical changes, which may develop during pharmacological and non-pharmacological impact. Administration of anesthetic dose of ethanol evoked considerable modification of spontaneous EEG activity of the neocortex. The EEG activity was depressed and full inhibition of spinal reflexes and somatic muscular relaxation did occur. During EEG depression regular SWC did not develop. All phases of SWC were reduced. The disturbances of SWC, such as decrease of slow wave sleep and paradoxical sleep duration and increase of wakefulness, remained for several days. At concomitant administration of Naloxone and ethanol, duration of EEG depression decreased significantly. Generation of normal SWC was observed on the same experimental day. However, it should be noted that complete abolishment of ethanol effects by Naloxone was not observed. The results obtained suggest that Naloxone partially blocks ethanol depressogenic effects and duration of this effect is mediated by GABA-ergic system of the brain.
Shakil, Sadia; Lee, Chin-Hui; Keilholz, Shella Dawn
2016-01-01
A promising recent development in the study of brain function is the dynamic analysis of resting-state functional MRI scans, which can enhance understanding of normal cognition and alterations that result from brain disorders. One widely used method of capturing the dynamics of functional connectivity is sliding window correlation (SWC). However, in the absence of a “gold standard” for comparison, evaluating the performance of the SWC in typical resting-state data is challenging. This study uses simulated networks (SNs) with known transitions to examine the effects of parameters such as window length, window offset, window type, noise, filtering, and sampling rate on the SWC performance. The SWC time course was calculated for all node pairs of each SN and then clustered using the k-means algorithm to determine how resulting brain states match known configurations and transitions in the SNs. The outcomes show that the detection of state transitions and durations in the SWC is most strongly influenced by the window length and offset, followed by noise and filtering parameters. The effect of the image sampling rate was relatively insignificant. Tapered windows provide less sensitivity to state transitions than rectangular windows, which could be the result of the sharp transitions in the SNs. Overall, the SWC gave poor estimates of correlation for each brain state. Clustering based on the SWC time course did not reliably reflect the underlying state transitions unless the window length was comparable to the state duration, highlighting the need for new adaptive window analysis techniques. PMID:26952197
Estimating soil water content from ground penetrating radar coarse root reflections
NASA Astrophysics Data System (ADS)
Liu, X.; Cui, X.; Chen, J.; Li, W.; Cao, X.
2016-12-01
Soil water content (SWC) is an indispensable variable for understanding the organization of natural ecosystems and biodiversity. Especially in semiarid and arid regions, soil moisture is the plants primary source of water and largely determine their strategies for growth and survival, such as root depth, distribution and competition between them. Ground penetrating radar (GPR), a kind of noninvasive geophysical technique, has been regarded as an accurate tool for measuring soil water content at intermediate scale in past decades. For soil water content estimation with surface GPR, fixed antenna offset reflection method has been considered to have potential to obtain average soil water content between land surface and reflectors, and provide high resolution and few measurement time. In this study, 900MHz surface GPR antenna was used to estimate SWC with fixed offset reflection method; plant coarse roots (with diameters greater than 5 mm) were regarded as reflectors; a kind of advanced GPR data interpretation method, HADA (hyperbola automatic detection algorithm), was introduced to automatically obtain average velocity by recognizing coarse root hyperbolic reflection signals on GPR radargrams during estimating SWC. In addition, a formula was deduced to determine interval average SWC between two roots at different depths as well. We examined the performance of proposed method on a dataset simulated under different scenarios. Results showed that HADA could provide a reasonable average velocity to estimate SWC without knowledge of root depth and interval average SWC also be determined. When the proposed method was applied to estimation of SWC on a real-field measurement dataset, a very small soil water content vertical variation gradient about 0.006 with depth was captured as well. Therefore, the proposed method could be used to estimate average soil water content from ground penetrating radar coarse root reflections and obtain interval average SWC between two roots at different depths. It is very promising for measuring root-zone-soil-moisture and mapping soil moisture distribution around a shrub or even in field plot scale.
Sultan, Dagnenet; Tsunekawa, Atsushi; Haregeweyn, Nigussie; Adgo, Enyew; Tsubo, Mitsuru; Meshesha, Derege Tsegaye; Masunaga, Tsugiyuki; Aklog, Dagnachew; Fenta, Ayele Almaw; Ebabu, Kindiye
2018-05-01
Various soil and water conservation measures (SWC) have been widely implemented to reduce surface runoff in degraded and drought-prone watersheds. But little quantitative study has been done on to what extent such measures can reduce watershed-scale runoff, particularly from typical humid tropical highlands of Ethiopia. The overall goal of this study is to analyze the impact of SWC interventions on the runoff response by integrating field measurement with a hydrological CN model which gives a quantitative analysis future thought. Firstly, a paired-watershed approach was employed to quantify the relative difference in runoff response for the Kasiry (treated) and Akusty (untreated) watersheds. Secondly, a calibrated curve number hydrological modeling was applied to investigate the effect of various SWC management scenarios for the Kasiry watershed alone. The paired-watershed approach showed a distinct runoff response between the two watersheds however the effect of SWC measures was not clearly discerned being masked by other factors. On the other hand, the model predicts that, under the current SWC coverage at Kasiry, the seasonal runoff yield is being reduced by 5.2%. However, runoff yields from Kasiry watershed could be decreased by as much as 34% if soil bunds were installed on cultivated land and trenches were installed on grazing and plantation lands. In contrast, implementation of SWC measures on bush land and natural forest would have little effect on reducing runoff. The results on the magnitude of runoff reduction under optimal combinations of SWC measures and land use will support decision-makers in selection and promotion of valid management practices that are suited to particular biophysical niches in the tropical humid highlands of Ethiopia.
Wilksch, Simon M; Paxton, Susan J; Byrne, Susan M; Austin, S Bryn; O'Shea, Anne; Wade, Tracey D
2017-01-01
To investigate if baseline shape and weight concern (SWC) moderated outcomes in Prevention Across the Spectrum, a randomized-controlled trial (RCT) of 3 school-based programs aimed at reducing eating disorder and obesity risk factors. N = 1,316 Grade 7 and 8 girls and boys (M age = 13.21 years) across three Australian states were randomly allocated to: Media Smart; Life Smart; Helping, Encouraging, Listening and Protecting Peers Initiative (HELPP) or control (usual school class). Moderation was explored by testing interaction effects for group (Media Smart; Life Smart; HELPP; Control) × moderator (SWC: higher-SWC; lower-SWC) × time (post-program; 6-month follow-up; 12-month follow-up), with baseline risk factor scores entered as covariates. Moderation effects were found for shape concern, weight concern, eating concern, regular eating (i.e., meal skipping), physical activity, body dissatisfaction, dieting, and perfectionism. Post-hoc testing found eating concern at post-program was the only variable where higher-SWC Media Smart participants experienced a reduction in risk relative to controls. Both higher-SWC Life Smart and HELPP participants reported an increase in eating concern relative to controls and both groups were skipping more meals than controls at 12-month follow-up. Amongst lower-SWC participants, Media Smart was the only group to experience a benefit relative to controls (physical activity). This study highlights the need for moderator analyses to become more routinely conducted in universal trials, to ensure that participants across baseline risk levels are benefiting and not harmed from program participation. © 2016 Wiley Periodicals, Inc. (Int J Eat Disord 2017; 50:66-75). © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wang, Ben; Zha, Tian Shan; Jia, Xin; Gong, Jin Nan; Bourque, Charles; Feng, Wei; Tian, Yun; Wu, Bin; Qing Zhang, Yu; Peltola, Heli
2017-09-01
Explanations for the occurrence of hysteresis (asynchronicity) between diel soil respiration (Rs) and soil temperature (Ts) have evoked both biological and physical mechanisms. The specifics of these explanations, however, tend to vary with the particular ecosystem or biome being investigated. So far, the relative degree of control of biological and physical processes on hysteresis is not clear for drylands. This study examined the seasonal variation in diel hysteresis and its biological control in a desert-shrub ecosystem in northwest (NW) China. The study was based on continuous measurements of Rs, air temperature (Ta), temperature at the soil surface and below (Tsurf and Ts), volumetric soil water content (SWC), and photosynthesis in a dominant desert shrub (i.e., Artemisia ordosica) over an entire year in 2013. Trends in diel Rs were observed to vary with SWC over the growing season (April to October). Diel variations in Rs were more closely associated with variations in Tsurf than with photosynthesis as SWC increased, leading to Rs being in phase with Tsurf, particularly when SWC > 0.08 m3 m-3 (ratio of SWC to soil porosity = 0.26). However, as SWC decreased below 0.08 m3 m-3, diel variations in Rs were more closely related to variations in photosynthesis, leading to pronounced hysteresis between Rs and Tsurf. Incorporating photosynthesis into a Q10-function eliminated 84.2 % of the observed hysteresis, increasing the overall descriptive capability of the function. Our findings highlight a high degree of control by photosynthesis and SWC in regulating seasonal variation in diel hysteresis between Rs and temperature.
Reliability and Usefulness of Linear Sprint Testing in Adolescent Rugby Union and League Players.
Darrall-Jones, Joshua D; Jones, Ben; Roe, Gregory; Till, Kevin
2016-05-01
The purpose of this study was to evaluate (a) whether there were differences in sprint times at 5, 10, 20, 30, and 40 m between rugby union and rugby league players, (b) determine the reliability and usefulness of linear sprint testing in adolescent rugby players. Data were collected on 28 rugby union and league academy players over 2 testing sessions, with 3-day rest between sessions. Rugby league players were faster at 5 m than rugby union players, with further difference unclear. Sprint time at 10, 20, 30, and 40 m was all reliable (coefficient of variation [CV] = 3.1, 1.8, 2.0, and 1.3%) but greater than the smallest worthwhile change (SWC [0.2 × between-subject SD]), rating the test as marginal for usefulness. Although the test was incapable of detecting the SWC, we recommend that practitioners and researchers use Hopkins' proposed method; whereby plotting the change score of the individual at each split (±typical error [TE] expressed as a CV) against the SWC and visually inspecting whether the TE crosses into the SWC are capable of identifying whether a change is both real (greater than the noise of the test, i.e., >TE) and of practical significance (>SWC). Researchers and practitioners can use the TE and SWC from this study to assess changes in performance of adolescent rugby players when using single beam timing gates.
An underestimated role of precipitation frequency in regulating summer soil moisture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chaoyang; Chen, Jing M.; Pumpanen, Jukka
2012-04-26
Soil moisture induced droughts are expected to become more frequent under future global climate change. Precipitation has been previously assumed to be mainly responsible for variability in summer soil moisture. However, little is known about the impacts of precipitation frequency on summer soil moisture, either interannually or spatially. To better understand the temporal and spatial drivers of summer drought, 415 site yr measurements observed at 75 flux sites world wide were used to analyze the temporal and spatial relationships between summer soil water content (SWC) and the precipitation frequencies at various temporal scales, i.e., from half-hourly, 3, 6, 12 andmore » 24 h measurements. Summer precipitation was found to be an indicator of interannual SWC variability with r of 0.49 (p < 0.001) for the overall dataset. However, interannual variability in summer SWC was also significantly correlated with the five precipitation frequencies and the sub-daily precipitation frequencies seemed to explain the interannual SWC variability better than the total of precipitation. Spatially, all these precipitation frequencies were better indicators of summer SWC than precipitation totals, but these better performances were only observed in non-forest ecosystems. Our results demonstrate that precipitation frequency may play an important role in regulating both interannual and spatial variations of summer SWC, which has probably been overlooked or underestimated. However, the spatial interpretation should carefully consider other factors, such as the plant functional types and soil characteristics of diverse ecoregions.« less
NASA Astrophysics Data System (ADS)
Hu, W.; Si, B. C.
2013-10-01
Soil water content (SWC) varies in space and time. The objective of this study was to evaluate soil water content distribution using a statistical model. The model divides spatial SWC series into time-invariant spatial patterns, space-invariant temporal changes, and space- and time-dependent redistribution terms. The redistribution term is responsible for the temporal changes in spatial patterns of SWC. An empirical orthogonal function was used to separate the total variations of redistribution terms into the sum of the product of spatial structures (EOFs) and temporally-varying coefficients (ECs). Model performance was evaluated using SWC data of near-surface (0-0.2 m) and root-zone (0-1.0 m) from a Canadian Prairie landscape. Three significant EOFs were identified for redistribution term for both soil layers. EOF1 dominated the variations of redistribution terms and it resulted in more changes (recharge or discharge) in SWC at wetter locations. Depth to CaCO3 layer and organic carbon were the two most important controlling factors of EOF1, and together, they explained over 80% of the variations in EOF1. Weak correlation existed between either EOF2 or EOF3 and the observed factors. A reasonable prediction of SWC distribution was obtained with this model using cross validation. The model performed better in the root zone than in the near surface, and it outperformed conventional EOF method in case soil moisture deviated from the average conditions.
Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A.; Rice, Karen; Rich, Roy; Reich, Peter B.
2014-01-01
Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration. PMID:25363633
Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A; Rice, Karen; Rich, Roy; Reich, Peter B
2014-11-03
Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration.
Functional anatomy of the sleep-wakefulness cycle: wakefulness.
Reinoso-Suárez, Fernando; de Andrés, Isabel; Garzón, Miguel
2011-01-01
Sleep is a necessary, diverse, periodic, and an active condition circadian and homeostatically regulated and precisely meshed with waking time into the sleep-wakefulness cycle (SWC). Photic retinal stimulation modulates the suprachiasmatic nucleus, which acts as the pacemaker for SWC rhythmicity. Both the light period and social cues adjust the internal clock, making the SWC a circadian, 24-h period in the adult human. Bioelectrical and behavioral parameters characterize the different phases of the SWC. For a long time, lesions and electrical stimulation of brain structures, as well as connection studies, were the main methods used to decipher the foundations of the functional anatomy of the SWC. That is why the first section of this review presents these early historical studies to then discuss the current state of our knowledge based on our understanding of the functional anatomy of the structures underlying the SWC. Supported by this description, we then present a detailed review and update of the structures involved in the phase of wakefulness (W), including their morphological, functional, and chemical characteristics, as well as their anatomical connections. The structures for W generation are known as the "ascending reticular activating system", and they keep and maintain the "thalamo-cerebral cortex unit" awake. This system originates from the neuronal groups located within the brainstem, hypothalamus, and basal forebrain, which use known neurotransmitters and whose neurons are more active during W than during the other SWC states. Thus, synergies among several of these neurotransmitters are necessary to generate the cortical and thalamic activation that is characteristic of the W state, with all the plastic qualities and nuances present in its different behavioral circumstances. Each one of the neurotransmitters exerts powerful influences on the information and cognitive processes as well as attentional, emotional, motivational, behavioral, and arousal states. The awake "thalamo-cerebral cortex unit" controls and adjusts the activation pattern through a top-down action on the subcortical cellular groups that are the origin of the "ascending reticular activating system".
NASA Astrophysics Data System (ADS)
Ebuchi, N.; Fukamachi, Y.; Ohshima, K. I.; Wakatsuchi, M.
2007-12-01
The Soya Warm Current (SWC) is a coastal boundary current, which flows along the coast of Hokkaido in the Sea of Okhotsk. The SWC flows into the Sea of Okhotsk from the Sea of Japan through the Soya/La Perouse Strait, which is located between Hokkaido, Japan, and Sakhalin, Russia. It supplies warm, saline water in the Sea of Japan to the Sea of Okhotsk and largely affects the ocean circulation and water mass formation in the Sea of Okhotsk, and local climate, environment and fishery in the region. However, the SWC has never been continuously monitored due to the difficulties involved in field observations related to, for example, severe weather conditions in the winter, political issues at the border strait, and conflicts with fishing activities in the strait. Detailed features of the SWC and its variations have not yet been clarified. In order to monitor variations in the SWC, three HF ocean radar stations were installed around the strait. The radar covers a range of approximately 70 km from the coast. It is shown that the HF radars clearly capture seasonal and subinertial variations of the SWC. The velocity of the SWC reaches its maximum, approximately 1 m/s, in summer, and weakens in winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 50 km. The surface transport by the Soya Warm Current shows a significant correlation with the sea level difference along the strait, as derived from coastal tide gauge records. The cross-current sea level difference, which is estimated from the sea level anomalies observed by the Jason-1 altimeter and a coastal tide gauge, also exhibits variation in concert with the surface transport and along-current sea level difference.
Shift in potential evapotranspiration and its implications for dryness/wetness over Southwest China
NASA Astrophysics Data System (ADS)
Sun, Shanlei; Chen, Haishan; Wang, Guojie; Li, Jinjian; Mu, Mengyuan; Yan, Guixia; Xu, Bei; Huang, Jin; Wang, Jie; Zhang, Fangmin; Zhu, Siguang
2016-08-01
During 1961-2012, the regional average annual potential evapotranspiration (PET) of Southwest China (SWC) and the four subregions (named as SR1, SR2, SR3, and SR4) showed different decreases (excluding SR3); while the breakpoint analysis suggested that PET changes (i.e., sign and magnitude) have shifted. Based on a group of sensitivity experiments with Penman-Monteith equation and a new separating method, the contributions of each climate factor alone (i.e., net radiation, Rn; mean temperature, Tave; wind speed, Wnd; and vapor pressure deficit, Vpd) to PET changes were calculated. Results showed that declined Wnd in SR1, reduced Rn in SR2, SR4, and SWC, and increased Vpd in SR3 were responsible for the PET changes during 1961-2012. However, the determinant factor for each subregion and SWC varied in different segmented periods, which were identified using the breakpoint analysis. The impacts of PET shifts on SWC dryness/wetness (reflected by the 3 month Standardized Precipitation-Evapotranspiration index, SPEI-3) during 1961-2012 were then quantified. Briefly, SPEI-3 changes in SR3, SR4, and SWC had the determinant factor of PET in the first one or two period(s), and precipitation in the last period; while they were attributed to PET (precipitation) in SR1 (SR2) for each segmented period. It is found that PET and precipitation had comparable contributions to the variations in SWC dryness/wetness. Our findings have suggested that more attentions should be paid to the impacts of PET changes and shifts in future studies of dryness/wetness or drought.
Neuronal Ensemble Synchrony during Human Focal Seizures
Ahmed, Omar J.; Harrison, Matthew T.; Eskandar, Emad N.; Cosgrove, G. Rees; Madsen, Joseph R.; Blum, Andrew S.; Potter, N. Stevenson; Hochberg, Leigh R.; Cash, Sydney S.
2014-01-01
Seizures are classically characterized as the expression of hypersynchronous neural activity, yet the true degree of synchrony in neuronal spiking (action potentials) during human seizures remains a fundamental question. We quantified the temporal precision of spike synchrony in ensembles of neocortical neurons during seizures in people with pharmacologically intractable epilepsy. Two seizure types were analyzed: those characterized by sustained gamma (∼40–60 Hz) local field potential (LFP) oscillations or by spike-wave complexes (SWCs; ∼3 Hz). Fine (<10 ms) temporal synchrony was rarely present during gamma-band seizures, where neuronal spiking remained highly irregular and asynchronous. In SWC seizures, phase locking of neuronal spiking to the SWC spike phase induced synchrony at a coarse 50–100 ms level. In addition, transient fine synchrony occurred primarily during the initial ∼20 ms period of the SWC spike phase and varied across subjects and seizures. Sporadic coherence events between neuronal population spike counts and LFPs were observed during SWC seizures in high (∼80 Hz) gamma-band and during high-frequency oscillations (∼130 Hz). Maximum entropy models of the joint neuronal spiking probability, constrained only on single neurons' nonstationary coarse spiking rates and local network activation, explained most of the fine synchrony in both seizure types. Our findings indicate that fine neuronal ensemble synchrony occurs mostly during SWC, not gamma-band, seizures, and primarily during the initial phase of SWC spikes. Furthermore, these fine synchrony events result mostly from transient increases in overall neuronal network spiking rates, rather than changes in precise spiking correlations between specific pairs of neurons. PMID:25057195
Understanding moisture stress on light-use efficiency based on MODIS and global flux tower data
NASA Astrophysics Data System (ADS)
Zhang, Y.; Song, C.; Sun, G.
2014-12-01
Gross primary productivity (GPP) is a key indicator of terrestrial ecosystem functions and global carbon balance. However, accurately estimating GPP is still one of the major challenges in global change study. Compared with other prognostic models, remote-sensing-based light-use efficiency (LUE) modes are considered to have the most potential to characterize the spatial-temporal dynamics of GPP. However, the environmental regulations on LUE, especially from water stress, have relatively large uncertainties, which reversely constrained the applications of LUE models. Here, we used MODIS and global flux tower data to investigate the moisture stress on LUE for different biomes on daily, 8-day and monthly scales. Three groups of moisture stress indicators were adopted in our study, including atmosphere (i.e. precipitation and daytime vapor pressure deficit (VPD)), soil (i.e. soil water content (SWC) and scaled SWC (SWCs) by field capacity and wilting point) , and plant indicators (i.e. land surface wetness index (LSWI) and the ratio of latent heat to the sum of latent and sensible heat (L/(L+H)). We applied a series of steps to eliminate the effects of high/low temperature and diffuse radiation effects on observed LUE. Our analysis showed that there were great variations in moisture stress effects on LUE between and within biomes. Generally, the moisture stress effects on LUE are ranked as plant indicator (i.e. L/(L+H) & LSWI) > atmosphere indicator (i.e. VPD) > soil indicator (i.e. SWC/SWCs). Precipitation has the poorest relationship with observed LUE and doesn't show any significant lag effects. For deep-root biomes (e.g. forest), LUE shows higher sensitivity in VPD than SWC; but for short-root biomes (e.g. grass), LUE is more sensitive to SWC than VPD. Most indicators (except SWC/SWCs) are more effective in affecting LUE at the daily/8-day scale than at the monthly scale probably because the observed LUE becomes more stable as temporal scale increases. SWC do not show close relationship with LUE, suggesting that the current measured SWC in the top-soil layer may not be sufficient to capture the moisture effects on LUE for biomes with different root distributions. Our study highlights the complexity of moisture stress on observed LUE, and provides useful guidance for developing more reliable LUE models to estimate GPP.
National Stormwater Calculator - Version 1.1 (Model)
EPA’s National Stormwater Calculator (SWC) is a desktop application that estimates the annual amount of rainwater and frequency of runoff from a specific site anywhere in the United States (including Puerto Rico). The SWC estimates runoff at a site based on available information ...
77 FR 73279 - Airworthiness Directives; Saab AB, Saab Aerosystems Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-10
... AD was prompted by reports of stall events during icing conditions where the natural stall warning (buffet) was not identified. This AD requires replacing the stall warning computer (SWC) with a new SWC, which provides an artificial stall [[Page 73280
NASA Astrophysics Data System (ADS)
De Marco, Alessandra; Sicard, Pierre; Fares, Silvano; Tuovinen, Juha-Pekka; Anav, Alessandro; Paoletti, Elena
2016-12-01
Phytotoxic Ozone Dose (PODY), defined as the accumulated stomatal ozone flux over a threshold of Y, is considered an optimal metric to evaluate O3 effects on vegetation. PODY is often computed through the DO3SE model, which includes species-specific parameterizations for the environmental response of stomatal conductance. However, the effect of soil water content (SWC) on stomatal aperture is difficult to model on a regional scale and thus often ignored. In this study, we used environmental input data obtained from the WRF-CHIMERE model for 14,546 grid-based forest sites in Southern Europe. SWC was obtained for the upper 10 cm of soil, which resulted in a worst-case risk scenario. PODY was calculated either with or without water limitation for different Y thresholds. Exclusion of the SWC effect on stomatal fluxes caused a serious overestimation of PODY. The difference increased with increasing Y (78%, 128%, 237% and 565% with Y = 0, 1, 2 and 3 nmol O3 m-2 s-1, respectively). This behaviour was confirmed by applying the same approach to field data measured in a Mediterranean Quercus ilex forest. WRF-CHIMERE overestimated SWC at this field site, so under real-world conditions the SWC effect may be larger than modelled. The differences were lower for temperate species (Pinus cembra 50-340%, P. sylvestris 57-363%, Abies alba 57-371%) than for Mediterranean species (P. pinaster 87-356%, P. halepensis 96-429%, P. pinea 107-532%, Q. suber 104-1602%), although a high difference was recorded also for the temperate species Fagus sylvatica with POD3 (524%). We conclude that SWC should be considered in PODY simulations and a low Y threshold should be used for robustness.
Pediatric Surgeon-Directed Wound Classification Improves Accuracy
Zens, Tiffany J.; Rusy, Deborah A.; Gosain, Ankush
2015-01-01
Background Surgical wound classification (SWC) communicates the degree of contamination in the surgical field and is used to stratify risk of surgical site infection and compare outcomes amongst centers. We hypothesized that changing from nurse-directed to surgeon-directed SWC during a structured operative debrief we will improve accuracy of documentation. Methods An IRB-approved retrospective chart review was performed. Two time periods were defined: initially, SWC was determined and recorded by the circulating nurse (Pre-Debrief 6/2012-5/2013) and allowing six months for adoption and education, we implemented a structured operative debriefing including surgeon-directed SWC (Post-Debrief 1/2014-8/2014). Accuracy of SWC was determined for four commonly performed Pediatric General Surgery operations: inguinal hernia repair (clean), gastrostomy +/− Nissen fundoplication (clean-contaminated), appendectomy without perforation (contaminated), and appendectomy with perforation (dirty). Results 183 cases Pre-Debrief and 142 cases Post-Debrief met inclusion criteria. No differences between time periods were noted in regards to patient demographics, ASA class, or case mix. Accuracy of wound classification improved Post-Debrief (42% vs. 58.5%, p=0.003). Pre-Debrief, 26.8% of cases were overestimated or underestimated by more than one wound class, vs. 3.5% of cases Post-Debrief (p<0.001). Interestingly, the majority of Post-Debrief contaminated cases were incorrectly classified as clean-contaminated. Conclusions Implementation of a structured operative debrief including surgeon-directed SWC improves the percentage of correctly classified wounds and decreases the degree of inaccuracy in incorrectly classified cases. However, following implementation of the debriefing, we still observed a 41.5% rate of incorrect documentation, most notably in contaminated cases, indicating further education and process improvement is needed. PMID:27020829
Ionosphere-related products for communication and navigation
NASA Astrophysics Data System (ADS)
Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Carlson, H. C.; Gardner, L. C.; Scherliess, L.; Zhu, L.
2011-12-01
Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is developing and producing commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Ionosonde data from several dozen global stations is ingested every 15 minutes to improve the vertical profiles within GAIM. The global, CONUS, Europe, Asia, South America, and other regional sectors are run with a 15-minute cadence. These operational runs enable SWC to calculate and report the global radio high frequency (HF) signal strengths and near vertical incidence skywave (NVIS) maps used by amateur radio operators and emergency responders, especially during the Japan Great Earthquake and tsunami recovery period. SWC has established its first fully commercial enterprise called Q-up as a result of this activity. GPS uncertainty maps are produced by SWC to improve single-frequency GPS applications. SWC also provides the space weather smartphone app called SpaceWx for iPhone, iPad, iPod, and Android for professional users and public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example, as well as global NVIS maps. We describe upcoming improvements for moving space weather information through automated systems into final derivative products.
NASA Astrophysics Data System (ADS)
Qu, W.; Bogena, H. R.; Huisman, J. A.; Martinez, G.; Pachepsky, Y. A.; Vereecken, H.
2013-12-01
Soil water content is a key variable in the soil, vegetation and atmosphere continuum with high spatial and temporal variability. Temporal stability of soil water content (SWC) has been observed in multiple monitoring studies and the quantification of controls on soil moisture variability and temporal stability presents substantial interest. The objective of this work was to assess the effect of soil hydraulic parameters on the temporal stability. The inverse modeling based on large observed time series SWC with in-situ sensor network was used to estimate the van Genuchten-Mualem (VGM) soil hydraulic parameters in a small grassland catchment located in western Germany. For the inverse modeling, the shuffled complex evaluation (SCE) optimization algorithm was coupled with the HYDRUS 1D code. We considered two cases: without and with prior information about the correlation between VGM parameters. The temporal stability of observed SWC was well pronounced at all observation depths. Both the spatial variability of SWC and the robustness of temporal stability increased with depth. Calibrated models both with and without prior information provided reasonable correspondence between simulated and measured time series of SWC. Furthermore, we found a linear relationship between the mean relative difference (MRD) of SWC and the saturated SWC (θs). Also, the logarithm of saturated hydraulic conductivity (Ks), the VGM parameter n and logarithm of α were strongly correlated with the MRD of saturation degree for the prior information case, but no correlation was found for the non-prior information case except at the 50cm depth. Based on these results we propose that establishing relationships between temporal stability and spatial variability of soil properties presents a promising research avenue for a better understanding of the controls on soil moisture variability. Correlation between Mean Relative Difference of soil water content (or saturation degree) and inversely estimated soil hydraulic parameters (log10(Ks), log10(α), n, and θs) at 5-cm, 20-cm and 50-cm depths. Solid circles represent parameters estimated by using prior information; open circles represent parameters estimated without using prior information.
NASA Astrophysics Data System (ADS)
Karandish, Fatemeh; Šimůnek, Jiří
2016-12-01
Soil water content (SWC) is a key factor in optimizing the usage of water resources in agriculture since it provides information to make an accurate estimation of crop water demand. Methods for predicting SWC that have simple data requirements are needed to achieve an optimal irrigation schedule, especially for various water-saving irrigation strategies that are required to resolve both food and water security issues under conditions of water shortages. Thus, a two-year field investigation was carried out to provide a dataset to compare the effectiveness of HYDRUS-2D, a physically-based numerical model, with various machine-learning models, including Multiple Linear Regressions (MLR), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and Support Vector Machines (SVM), for simulating time series of SWC data under water stress conditions. SWC was monitored using TDRs during the maize growing seasons of 2010 and 2011. Eight combinations of six, simple, independent parameters, including pan evaporation and average air temperature as atmospheric parameters, cumulative growth degree days (cGDD) and crop coefficient (Kc) as crop factors, and water deficit (WD) and irrigation depth (In) as crop stress factors, were adopted for the estimation of SWCs in the machine-learning models. Having Root Mean Square Errors (RMSE) in the range of 0.54-2.07 mm, HYDRUS-2D ranked first for the SWC estimation, while the ANFIS and SVM models with input datasets of cGDD, Kc, WD and In ranked next with RMSEs ranging from 1.27 to 1.9 mm and mean bias errors of -0.07 to 0.27 mm, respectively. However, the MLR models did not perform well for SWC forecasting, mainly due to non-linear changes of SWCs under the irrigation process. The results demonstrated that despite requiring only simple input data, the ANFIS and SVM models could be favorably used for SWC predictions under water stress conditions, especially when there is a lack of data. However, process-based numerical models are undoubtedly a better choice for predicting SWCs with lower uncertainties when required data are available, and thus for designing water saving strategies for agriculture and for other environmental applications requiring estimates of SWCs.
Attribution analysis of runoff decline in a semiarid region of the Loess Plateau, China
NASA Astrophysics Data System (ADS)
Li, Binquan; Liang, Zhongmin; Zhang, Jianyun; Wang, Guoqing; Zhao, Weimin; Zhang, Hongyue; Wang, Jun; Hu, Yiming
2018-01-01
Climate variability and human activities are two main contributing attributions for runoff changes in the Yellow River, China. In the loess hilly-gully regions of the middle Yellow River, water shortage has been a serious problem, and this results in large-scale constructions of soil and water conservation (SWC) measures in the past decades in order to retain water for agricultural irrigation and industrial production. This disturbed the natural runoff characteristics. In this paper, we focused on a typical loess hilly-gully region (Wudinghe and Luhe River basins) and investigated the effects of SWC measures and climate variability on runoff during the period of 1961-2013, while the SWC measures were the main representative of human activities in this region. The nonparametric Mann-Kendall test was used to analyze the changes of annual precipitation, air temperature, potential evapotranspiration (PET), and runoff. The analysis revealed the decrease in precipitation, significant rise in temperature, and remarkable runoff reduction with a rate of more than 0.4 mm per year. It was found that runoff capacity in this region also decreased. Using the change point detection methods, the abrupt change point of annual runoff series was found at 1970, and thus, the study period was divided into the baseline period (1961-1970) and changed period (1971-2013). A conceptual framework based on four statistical runoff methods was used for attribution analysis of runoff decline in the Wudinghe and Luhe River basins (-37.3 and -56.4%, respectively). Results showed that runoff reduction can be explained by 85.2-90.3% (83.3-85.7%) with the SWC measures in the Wudinghe (Luhe) River basin while the remaining proportions were caused by climate variability. The findings suggested that the large-scale SWC measures demonstrated a dominant influence on runoff decline, and the change of precipitation extreme was also a promoting factor of the upward trending of SWC measures' contribution to runoff decline. This study enhances our understanding of runoff changes caused by SWC measures and climate variability in the typical semiarid region of Loess Plateau, China.
COSmic-ray soil moisture observing system (COSMOS) in grazing-cap fields at El Reno, Oklahoma
USDA-ARS?s Scientific Manuscript database
Soil water content (SWC), especially over large areas, is an important variable needed by hydrological, meteorological, climatological, agricultural, and environmental scientists. Point measurements of SWC are impractical to obtain over extensive areas; thus, methods that provide real-time, hectare...
What is the effect of local controls on the temporal stability of soil water contents?
NASA Astrophysics Data System (ADS)
Martinez, G.; Pachepsky, Y. A.; Vereecken, H.; Vanderlinden, K.; Hardelauf, H.; Herbst, M.
2012-04-01
Temporal stability of soil water content (TS SWC) reflects the spatio-temporal organization of SWC. Factors and their interactions that control this organization, are not completely understood and have not been quantified yet. It is understood that these factors should be classified into groups of local and non-local controls. This work is a first attempt to evaluate the effects of soil properties at a certain location as local controls Time series of SWC were generated by running water flow simulations with the HYDRUS6 code. Bare and grassed sandy loam, loam and clay soils were represented by sets of 100 independent soil columns. Within each set, values of saturated hydraulic conductivity (Ks) were generated randomly assuming for the standard deviation of the scaling factor of ln Ks a value ranging from 0.1 to 1.0. Weather conditions were the same for all of the soil columns. SWC at depths of 0.05 and 0.60 m, and the average water content of the top 1 m were analyzed. The temporal stability was characterized by calculating the mean relative differences (MRD) of soil water content. MRD distributions from simulations, developed from the log-normal distribution of Ks, agreed well with the experimental studies found in the literature. Generally, Ks was the leading variable to define the MRD rank for a specific location. Higher MRD corresponded to the lowest values of Ks when a single textural class was considered. Higher MRD were found in the finer texture when mixtures of textural classes were considered and similar values of Ks were compared. The relationships between the spread of the MRD distributions and the scaling factor of ln Ks were nonlinear. Variation in MRD was higher in coarser textures than in finer ones and more variability was seen in the topsoil than in the subsoil. Established vegetation decreased variability of MRD in the root zone and increased variability below. The dependence of MRD on Ks opens the possibility of using SWC sensor networks to relate variations of MRD of measured SWC time series to spatial variations of Ks. TS of SWC can provide information on Ks variability at ungauged watersheds if the effect of non-local controls of SWC on TS is not significant. Using the spatiotemporal statistics to convert the information about the temporal variability of soil moisture into information about the spatial variability of soil hydraulic properties presents an interesting avenue for further exploration.
Farm scale application of EMI and FDR sensors to measuring and mapping soil water content
NASA Astrophysics Data System (ADS)
Rallo, Giovanni; Provenzano, Giuseppe
2017-04-01
Soil water content (SWC) controls most water exchange processes within and between the soil-plants-atmosphere continuum and can therefore be considered as a practical variable for irrigation farmer choices. A better knowledge of spatial SWC patterns could improve farmer's awareness about critical crop water status conditions and enhance their capacity to characterize their behavior at the field or farm scale. However, accurate soil moisture measurement across spatial and temporal scales is still a challenging task and, specifically at intermediate spatial (0.1-100 ha) and temporal (minutes to days) scales, a data gap remains that limits our understanding over reliability of the SWC spatial measurements and its practical applicability in irrigation scheduling. In this work we compare the integrated EM38 (Geonics Ltd. Canada) response, collected at different sensor positions above ground to that obtained by integrating the depth profile of volumetric SWC measured with Diviner 2000 (Sentek) in conjunction with the depth response function of the EM38 when operated in both horizontal and vertical dipole configurations. On a 1.0-ha Olive grove site in Sicliy (Italy), 200 data points were collected before and after irrigation or precipitation events following a systematic sampling grid with focused measurements around the tree. Inside two different zone of the field, characterized from different soil physical properties, two Diviner 2000 access tube (1.2 m) were installed and used for the EM38 calibration. After calibration, the work aimed to propose the combined use of the FDR and EMI sensors to measuring and mapping root zone soil water content. We found strong correlations (R2 = 0.66) between Diviner 2000 SWC averaged to a depth of 1.2 m and ECa from an EM38 held in the vertical mode above the soil surface. The site-specific relationship between FDR-based SWC and ECa was linear for the purposes of estimating SWC over the explored range of ECa monitored at field levels. Volumetric SWC changes in the root zone were observed by differencing the maps, where differences in the observed ECa are primarily the result of changes in soil water status. As with the data showed in the research, more structured patterns occur after wetting event, indicating the presence of subsurface flow or root water uptake paths. A vision for the future at hydrological watershed scale is to combine EMI measurements with FDR-based sensor networks, the last with the scope to constrain calibration of the EMI measurements.
Sleep-wake cycle of the healthy term newborn infant in the immediate postnatal period.
Korotchikova, Irina; Stevenson, Nathan J; Livingstone, Vicki; Ryan, C Anthony; Boylan, Geraldine B
2016-04-01
To examine sleep-wake cycle (SWC) composition of healthy term infants in the immediate postnatal period using EEG, and investigate factors that might influence it. Multichannel video-EEG was recorded for a median of 61.9 min (IQR: 60.0-69.3). The absolute and relative scores of sleep states were calculated for each infant's recording. Parametric/non-parametric statistical tests and multiple linear regression analysis were used to investigate the influence of perinatal factors on SWC composition. Eighty healthy term infants aged 1-36 h were studied. A well-developed SWC was evident as early as within the first 6h after birth. The mean (SD) percentage of active sleep (AS) was 52.1% (12.9) and quiet sleep (QS) was 38.6% (12.5). AS was longer and QS shorter in infants delivered by elective caesarean section (CS) compared to infants delivered by vaginal delivery or emergency CS. This is the first large cohort EEG study that has quantified neonatal sleep. SWC is clearly present immediately after birth, it is dominated by AS, and is influenced by mode of delivery. This knowledge of the early neonatal EEG/SWC can be used as reference data for EEG studies of neurologically compromised infants. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Cosmic ray soil moisture observing systems comos in cap fields at El Reno Oklahoma
USDA-ARS?s Scientific Manuscript database
Soil water content (SWC) partitions rainfall into runoff and infiltration, modulates surface and atmospheric exchanges of water and energy, affects plant growth and crop yields, and impacts chemical and biological activities of soil, among other things. Thus, SWC, especially over large scales, is a...
Remediation of soils combining soil vapor extraction and bioremediation: benzene.
Soares, António Alves; Albergaria, José Tomás; Domingues, Valentina Fernandes; Alvim-Ferraz, Maria da Conceição M; Delerue-Matos, Cristina
2010-08-01
This work reports the study of the combination of soil vapor extraction (SVE) with bioremediation (BR) to remediate soils contaminated with benzene. Soils contaminated with benzene with different water and natural organic matter contents were studied. The main goals were: (i) evaluate the performance of SVE regarding the remediation time and the process efficiency; (ii) study the combination of both technologies in order to identify the best option capable to achieve the legal clean up goals; and (iii) evaluate the influence of soil water content (SWC) and natural organic matter (NOM) on SVE and BR. The remediation experiments performed in soils contaminated with benzene allowed concluding that: (i) SVE presented (a) efficiencies above 92% for sandy soils and above 78% for humic soils; (b) and remediation times from 2 to 45 h, depending on the soil; (ii) BR showed to be an efficient technology to complement SVE; (iii) (a) SWC showed minimum impact on SVE when high airflow rates were used and led to higher remediation times for lower flow rates; (b) NOM as source of microorganisms and nutrients enhanced BR but hindered the SVE due the limitation on the mass transfer of benzene from the soil to the gas phase. (c) 2010 Elsevier Ltd. All rights reserved.
Characteristics of Students on Academic or Progress Probation, Spring 1992 through Spring 1995.
ERIC Educational Resources Information Center
Southwestern Coll., Chula Vista, CA.
Between spring 1992 and spring 1995, California's Southwestern College (SWC) conducted a study on the characteristics of students on academic or progress probation. The study was done as part of the Matriculation Research and Evaluation Plan to assess academic outcomes for SWC students. The report explores the demographic and educational…
An index for plant water deficit based on root-weighted soil water content
NASA Astrophysics Data System (ADS)
Shi, Jianchu; Li, Sen; Zuo, Qiang; Ben-Gal, Alon
2015-03-01
Governed by atmospheric demand, soil water conditions and plant characteristics, plant water status is dynamic, complex, and fundamental to efficient agricultural water management. To explore a centralized signal for the evaluation of plant water status based on soil water status, two greenhouse experiments investigating the effect of the relative distribution between soil water and roots on wheat and rice were conducted. Due to the significant offset between the distributions of soil water and roots, wheat receiving subsurface irrigation suffered more from drought than wheat under surface irrigation, even when the arithmetic averaged soil water content (SWC) in the root zone was higher. A significant relationship was found between the plant water deficit index (PWDI) and the root-weighted (rather than the arithmetic) average SWC over root zone. The traditional soil-based approach for the estimation of PWDI was improved by replacing the arithmetic averaged SWC with the root-weighted SWC to take the effect of the relative distribution between soil water and roots into consideration. These results should be beneficial for scheduling irrigation, as well as for evaluating plant water consumption and root density profile.
Generic superweak chaos induced by Hall effect
NASA Astrophysics Data System (ADS)
Ben-Harush, Moti; Dana, Itzhack
2016-05-01
We introduce and study the "kicked Hall system" (KHS), i.e., charged particles periodically kicked in the presence of uniform magnetic (B ) and electric (E ) fields that are perpendicular to each other and to the kicking direction. We show that for resonant values of B and E and in the weak-chaos regime of sufficiently small nonintegrability parameter κ (the kicking strength), there exists a generic family of periodic kicking potentials for which the Hall effect from B and E significantly suppresses the weak chaos, replacing it by "superweak" chaos (SWC). This means that the system behaves as if the kicking strength were κ2 rather than κ . For E =0 , SWC is known to be a classical fingerprint of quantum antiresonance, but it occurs under much less generic conditions, in particular only for very special kicking potentials. Manifestations of SWC are a decrease in the instability of periodic orbits and a narrowing of the chaotic layers, relative to the ordinary weak-chaos case. Also, for global SWC, taking place on an infinite "stochastic web" in phase space, the chaotic diffusion on the web is much slower than the weak-chaos one. Thus, the Hall effect can be relatively stabilizing for small κ . In some special cases, the effect is shown to cause ballistic motion for almost all parameter values. The generic global SWC on stochastic webs in the KHS appears to be the two-dimensional closest analog to the Arnol'd web in higher dimensional systems.
Mochizuki, Tomoki; Amagai, Takashi; Tani, Akira
2018-09-01
Monoterpenes emitted from plants contribute to the formation of secondary pollution and affect the climate system. Monoterpene emission rates may be affected by environmental changes such as increasing CO 2 concentration caused by fossil fuel burning and drought stress induced by climate change. We measured monoterpene emissions from Cryptomeria japonica clone saplings grown under different CO 2 concentrations (control: ambient CO 2 level, elevated CO 2 : 1000μmolmol -1 ). The saplings were planted in the ground and we did not artificially control the SWC. The relationship between the monoterpene emissions and naturally varying SWC was investigated. The dominant monoterpene was α-pinene, followed by sabinene. The monoterpene emission rates were exponentially correlated with temperature for all measurements and normalized (35°C) for each measurement day. The daily normalized monoterpene emission rates (E s0.10 ) were positively and linearly correlated with SWC under both control and elevated CO 2 conditions (control: r 2 =0.55, elevated CO 2 : r 2 =0.89). The slope of the regression line of E s0.10 against SWC was significantly higher under elevated CO 2 than under control conditions (ANCOVA: P<0.01), indicating that the effect of CO 2 concentration on monoterpene emission rates differed by soil water status. The monoterpene emission rates estimated by considering temperature and SWC (Improved G93 algorithm) better agreed with the measured monoterpene emission rates, when compared with the emission rates estimated by considering temperature alone (G93 algorithm). Our results demonstrated that the combined effects of SWC and CO 2 concentration are important for controlling the monoterpene emissions from C. japonica clone saplings. If these relationships can be applied to the other coniferous tree species, our results may be useful to improve accuracy of monoterpene emission estimates from the coniferous forests as affected by climate change in the present and foreseeable future. Copyright © 2018 Elsevier B.V. All rights reserved.
Loescher, Henry; Ayres, Edward; Duffy, Paul; Luo, Hongyan; Brunke, Max
2014-01-01
Soils are highly variable at many spatial scales, which makes designing studies to accurately estimate the mean value of soil properties across space challenging. The spatial correlation structure is critical to develop robust sampling strategies (e.g., sample size and sample spacing). Current guidelines for designing studies recommend conducting preliminary investigation(s) to characterize this structure, but are rarely followed and sampling designs are often defined by logistics rather than quantitative considerations. The spatial variability of soils was assessed across ∼1 ha at 60 sites. Sites were chosen to represent key US ecosystems as part of a scaling strategy deployed by the National Ecological Observatory Network. We measured soil temperature (Ts) and water content (SWC) because these properties mediate biological/biogeochemical processes below- and above-ground, and quantified spatial variability using semivariograms to estimate spatial correlation. We developed quantitative guidelines to inform sample size and sample spacing for future soil studies, e.g., 20 samples were sufficient to measure Ts to within 10% of the mean with 90% confidence at every temperate and sub-tropical site during the growing season, whereas an order of magnitude more samples were needed to meet this accuracy at some high-latitude sites. SWC was significantly more variable than Ts at most sites, resulting in at least 10× more SWC samples needed to meet the same accuracy requirement. Previous studies investigated the relationship between the mean and variability (i.e., sill) of SWC across space at individual sites across time and have often (but not always) observed the variance or standard deviation peaking at intermediate values of SWC and decreasing at low and high SWC. Finally, we quantified how far apart samples must be spaced to be statistically independent. Semivariance structures from 10 of the 12-dominant soil orders across the US were estimated, advancing our continental-scale understanding of soil behavior. PMID:24465377
NASA Astrophysics Data System (ADS)
Dang, Xinyue; Yang, Huan; Naafs, B. David A.; Pancost, Richard D.; Xie, Shucheng
2016-09-01
The distribution of bacterial branched glycerol dialkyl glycerol tetraethers (brGDGTs) is influenced by growth temperature and pH. This results in the widespread application of the brGDGT-based MBT(‧)/CBT proxy (MBT - methylation of branched tetraethers, CBT - cyclization of branched tetraethers) in terrestrial paleo-environmental reconstructions. Recently, it was shown that the amount of precipitation could also have an impact on CBT, as well as the abundance of brGDGTs relative to that of archaeal isoprenoidal (iso)GDGTs (Ri/b) and the absolute abundance of brGDGTs, potentially complicating the use of MBT/CBT as paleothermometer. However, the full influence of hydrology, and in particular soil water content (SWC), on GDGT distributions remains unclear. Here we investigated variations in the GDGT distribution across a SWC gradient (0-61%) around Qinghai Lake in the Tibetan Plateau, an arid to semiarid region in China. Our results demonstrate that SWC affects the brGDGT distribution. In particular, we show that SWC has a clear impact on the degree of methylation of C6-methylated brGDGTs, whereas C5-methylated brGDGTs are more impacted by temperature. This results in a combined SWC and temperature control on MBT‧. In this context we propose a diagnostic parameter, the IR6ME (relative abundance of C6-methylated GDGTs) index, to evaluate the applicability of brGDGT-based paleotemperature reconstructions. Using the global dataset, expanded with our own data, MBT‧ has a significant correlation with mean annual air temperature when IR6ME < 0.5, allowing for the use of MBT‧/CBT as temperature proxy. However, MBT‧ has a significant correlation with mean annual precipitation (i.e., a substantial reflection of SWC impact) when IR6ME > 0.5, implying that MBT‧ may respond to hydrological change in these regions and can be used as a proxy for MAP.
The primary focus of the National Stormwater Calculator (SWC) is to inform site developers on how well they can meet a desired stormwater retention target, but it can also be used by landscapers and homeowners. The SWC shows users how land use decisions and low impact development...
Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Momenbeik, Fariborz; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel
2014-01-01
The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.
Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel
2014-01-01
The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater. PMID:24587723
NASA Astrophysics Data System (ADS)
Zhu, Xuchao; Cao, Ruixue; Shao, Mingan; Liang, Yin
2018-03-01
Cosmic-ray neutron probes (CRNPs) have footprint radii for measuring soil-water content (SWC). The theoretical radius is much larger at high altitude, such as the northern Tibetan Plateau, than the radius at sea level. The most probable practical radius of CRNPs for the northern Tibetan Plateau, however, is not known due to the lack of SWC data in this hostile environment. We calculated the theoretical footprint of the CRNP based on a recent simulation and analyzed the practical radius of a CRNP for the northern Tibetan Plateau by measuring SWC at 113 sampling locations on 21 measuring occasions to a depth of 30 cm in a 33.5 ha plot in an alpine meadow at 4600 m a.s.l. The temporal variability and spatial heterogeneity of SWC within the footprint were then analyzed. The theoretical footprint radius was between 360 and 420 m after accounting for the influences of air humidity, soil moisture, vegetation and air pressure. A comparison of SWCs measured by the CRNP and a neutron probe from access tubes in circles with different radii conservatively indicated that the most probable experimental footprint radius was >200 m. SWC within the CRNP footprint was moderately variable over both time and space, but the temporal variability was higher. Spatial heterogeneity was weak, but should be considered in future CRNP calibrations. This study provided theoretical and practical bases for the application and promotion of CRNPs in alpine meadows on the Tibetan Plateau.
Characteristics of the cold-water belt formed off Soya Warm Current
NASA Astrophysics Data System (ADS)
Ishizu, Miho; Kitade, Yujiro; Matsuyama, Masaji
2008-12-01
We examined the data obtained by acoustic Doppler current profiler, conductivity-temperature-depth profiler, and expendable bathythermograph observations, which were collected in the summers of 2000, 2001, and 2002, to clarify the characteristics of the cold-water belt (CWB), i.e., lower-temperature water than the surrounding water extending from the southwest coast of Sakhalin along the offshore side of Soya Warm Current (SWC) and to confirm one of the formation mechanisms of the CWB as suggested by our previous study, i.e., the upwelling due to the convergence of bottom Ekman transport off the SWC region. The CWB was observed at about 30 km off the coast, having a thickness of 14 m and a minimum temperature of 12°C at the sea surface. The CWB does not have the specific water mass, but is constituted of three representative water types off the northeast coast of Hokkaido in summer, i.e., SWC water, Fresh Surface Okhotsk Sea Water, and Okhotsk Sea Intermediate Water. In a comparison of the horizontal distributions of current and temperature, the CWB region is found to be advected to the southeast at an average of 40 ± 29% of the maximum current velocity of the SWC. The pumping speed due to the convergence of the bottom Ekman transport is estimated as (1.5-3.0) × 10-4 m s-1. We examined the mixing ratio of the CWB, and the results implied that the water mass of the CWB is advected southeastward and mixes with a water mass upwelling in a different region off SWC.
Benjamin N. Sulman; Daniel Tyler Roman; Koong Yi; Lixin Wang; Richard P. Phillips; Kimberly A. Novick
2016-01-01
When stressed by low soil water content (SWC) or high vapor pressure deficit (VPD), plants close stomata, reducing transpiration and photosynthesis. However, it has historically been difficult to disentangle the magnitudes of VPD compared to SWC limitations on ecosystem-scale fluxes. We used a 13 year record of eddy covariance measurements from a forest in south...
NASA Astrophysics Data System (ADS)
Middleton, Maarit; Närhi, Paavo; Sutinen, Raimo
In a humid northern boreal climate, the success rate of artificial regeneration to Scots pine ( Pinus sylvestris L.) can be improved by including a soil water content (SWC) based assessment of site suitability in the reforestation planning process. This paper introduces an application of airborne visible-near-infrared imaging spectroscopic data to identify suitable subregions of forest compartments for the low SWC-tolerant Scots pine. The spatial patterns of understorey plant species communities, recorded by the AISA (Airborne Imaging Spectrometer for Applications) sensor, were demonstrated to be dependant on the underlying SWC. According to the nonmetric multidimensional scaling and correlation results twelve understorey species were found to be most abundant on sites with high soil SWCs. The abundance of bare soil, rocks and abundance of more than ten species indicated low soil SWCs. The spatial patterns of understorey are attributed to time-stability of the underlying SWC patterns. A supervised artificial neural network (radial basis functional link network, probabilistic neural network) approach was taken to classify AISA imaging spectrometer data with dielectric (as a measure volumetric SWC) ground referencing into regimes suitable and unsuitable for Scots pine. The accuracy assessment with receiver operating characteristics curves demonstrated a maximum of 74.1% area under the curve values which indicated moderate success of the NN modelling. The results signified the importance of the training set's quality, adequate quantity (>2.43 points/ha) and NN algorithm selection over the NN algorithm training parameter optimization to perfection. This methodology for the analysis of site suitability of Scots pine can be recommended, especially when artificial regeneration of former mixed wood Norway spruce ( Picea abies L. Karst) - downy birch ( Betula pubenscens Ehrh.) stands is being considered, so that artificially regenerated areas to Scots pine can be optimized for forestry purposes.
NASA Astrophysics Data System (ADS)
Villarreal, Samuel; Vargas, Rodrigo; Yepez, Enrico A.; Acosta, Jose S.; Castro, Angel; Escoto-Rodriguez, Martin; Lopez, Eulogio; Martínez-Osuna, Juan; Rodriguez, Julio C.; Smith, Stephen V.; Vivoni, Enrique R.; Watts, Christopher J.
2016-02-01
Water-limited ecosystems occupy nearly 30% of the Earth, but arguably, the controls on their ecosystem processes remain largely uncertain. We analyzed six site years of eddy covariance measurements of evapotranspiration (ET) from 2008 to 2010 at two water-limited shrublands: one dominated by winter precipitation (WP site) and another dominated by summer precipitation (SP site), but with similar solar radiation patterns in the Northern Hemisphere. We determined how physical forcing factors (i.e., net radiation (Rn), soil water content (SWC), air temperature (Ta), and vapor pressure deficit (VPD)) influence annual and seasonal variability of ET. Mean annual ET at SP site was 455 ± 91 mm yr-1, was mainly influenced by SWC during the dry season, by Rn during the wet season, and was highly sensitive to changes in annual precipitation (P). Mean annual ET at WP site was 363 ± 52 mm yr-1, had less interannual variability, but multiple variables (i.e., SWC, Ta, VPD, and Rn) were needed to explain ET among years and seasons. Wavelet coherence analysis showed that ET at SP site has a consistent temporal coherency with Ta and P, but this was not the case for ET at WP site. Our results support the paradigm that SWC is the main control of ET in water-limited ecosystems when radiation and temperature are not the limiting factors. In contrast, when P and SWC are decoupled from available energy (i.e., radiation and temperature), then ET is controlled by an interaction of multiple variables. Our results bring attention to the need for better understanding how climate and soil dynamics influence ET across these globally distributed ecosystems.
Changes in wheat potential productivity and drought severity in Southwest China
NASA Astrophysics Data System (ADS)
He, Di; Wang, Jing; Pan, Zhihua; Dai, Tong; Wang, Enli; Zhang, Jianping
2017-10-01
Wheat production in Southwest China (SWC) plays a vital role in guaranteeing local grain security, but it is threatened by increasingly frequent seasonal drought in recent years. In spite of the importance, the impact of past climate change on wheat potential productivity and drought severity has not been properly addressed. In this study, we employed a relatively simple resource use efficiency model to analyze the spatiotemporal changes of the potential productivity (PP) and rainfed productivity (RP) of wheat ( Triticum aestivum L.) in Southwest China (SWC) from 1962 to 2010. A wheat drought severity index was defined as the relative difference between PP and RP, i.e., (PP-RP)/PP, to evaluate the changing frequency and severity of drought under warming SWC. Across the entire region from 1962 to 2010, the negative impact of decreasing sunshine hours (0.06 h day-1 per decade, p < 0.05) on PP was offset by the increase in average temperature of wheat growing season (0.22 °C per decade, p < 0.01). PP increased by 283 kg ha-1 per decade ( p < 0.01), while RP did not show significant trend due to increased water stress. The gap between PP and RP has increased by 26 kg ha-1 per decade ( p < 0.01). Moderate and severe drought mostly occurred in central and southern SWC. The percentage of stations experienced moderate or severe drought increased by 2.0 % ( p < 0.05) per decade, and reached 52 % in recent decade. Our results, together with the uneven distribution of rainfall, indicate great potential for irrigation development to harvest water and increase wheat yield under the warming climate in SWC.
Soil respiration sensitivities to water and temperature in a revegetated desert
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Shan; Dong, Xue-Jun; Xu, Bing-Xin; Chen, Yong-Le; Zhao, Yang; Gao, Yan-Hong; Hu, Yi-Gang; Huang, Lei
2015-04-01
Soil respiration in water-limited ecosystems is affected intricately by soil water content (SWC), temperature, and soil properties. Eight sites on sand-fixed dunes that revegetated in different years since 1950s, with several topographical positions and various biological soil crusts (BSCs) and soil properties, were selected, as well as a moving sand dune (MSD) and a reference steppe in the Tengger Desert of China. Intact soil samples of 20 cm in depth were taken and incubated randomly at 12 levels of SWC (0 to 0.4 m3 m-3) and at 9 levels of temperature (5 to 45°C) in a growth chamber; additionally, cryptogamic and microbial respirations (RM) were measured. Total soil respiration (RT, including cryptogamic, microbial, and root respiration) was measured for 2 years at the MSD and five sites of sand-fixed dunes. The relationship between RM and SWC under the optimal SWC condition (0.25 m3 m-3) is linear, as is the entire range of RT and SWC. The slope of linear function describes sensitivity of soil respiration to water (SRW) and reflects to soil water availability, which is related significantly to soil physical properties, BSCs, and soil chemical properties, in decreasing importance. Inversely, Q10 for RM is related significantly to abovementioned factors in increasing importance. However, Q10 for RT and respiration rate at 20°C are related significantly to soil texture and depth of BSCs and subsoil only. In conclusion, through affecting SRW, soil physical properties produce significant influences on soil respiration, especially for RT. This indicates that a definition of the biophysical meaning of SRW is necessary, considering the water-limited and coarse-textured soil in most desert ecosystems.
Climate change affects winter chill for temperate fruit and nut trees.
Luedeling, Eike; Girvetz, Evan H; Semenov, Mikhail A; Brown, Patrick H
2011-01-01
Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the "Dynamic Model" and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops.
Tissue adhesives for simple traumatic lacerations.
Beam, Joel W
2008-01-01
Farion K, Osmond MH, Hartling L, et al. Tissue adhesives for traumatic lacerations in children and adults. Cochrane Database Syst Rev. 2001(4);CD003326. What is the clinical evidence base for tissue adhesives in the management of simple traumatic lacerations? Studies were identified by searches of the following databases: Cochrane Wounds Group Specialized Trials Register (September 2003), Cochrane Central Register of Controlled Trials (CENTRAL) (CDROM 2003, issue 3), MEDLINE (1966 to September 2003, week 1), EMBASE (1988 to 2003, week 36), Web of Science Science Citation Index (1975 to September 13, 2003) and various clinical trials registers (September 2003). Investigators and product manufacturers were contacted to identify additional eligible studies. The search terms included wounds and injuries, laceration, face injury, nose injury, tissue adhesives, and acrylates. Each study fulfilled the following criteria: (1) The study was a randomized controlled trial that compared tissue adhesives with standard wound closure (SWC) (sutures, staples, adhesive strips) or tissue adhesive with tissue adhesive. (2) The wounds were acute, linear lacerations less than 12 hours old, resulting from blunt or sharp trauma. (3) The wound length, width, and depth allowed for approximation of the edges with minimal tension after deep sutures were placed, if required. Studies were included with no language or publication status restriction, with participants of any age recruited in an emergency department, outpatient clinic, walk-in clinic, or other primary care setting. Studies were excluded if the wounds were stellate lacerations, puncture wounds, mammalian bites, infected, heavily contaminated or devitalized, crossing joints or mucocutaneous junctions, in hair-bearing areas, or in patients with keloid formation or chronic illness. The characteristics of the study and participants, interventions, outcome measures, and findings were extracted by one author and verified by a second using a standard form. The primary measure was cosmetic outcome. Secondary measures were pain with the procedure, time to complete the procedure, and complications (erythema, infection, discharge, need for delayed closure, and dehiscence). Studies were divided into 2 groups as follows: group 1, comparisons among tissue adhesives with SWC, and group 2, comparisons among different tissue adhesives. All eligible studies were assessed for methodologic quality independently by 2 investigators using the Jadad Scale, which evaluates randomization, double blinding, withdrawals, and dropouts and is scored on a 5-point (maximum) scale. The data from the tissue adhesive and SWC studies were pooled and analyzed with a random-effects model. The I (2) statistic was used to determine heterogeneity among the studies. chi (2) analysis was performed to compare participant age, wound location, and type of tissue adhesive among the studies. The data from the studies comparing tissue adhesives were pooled and analyzed using a fixed-effects model. The search criteria identified 39 eligible studies, of which 11 met the inclusion criteria. In 10 studies, a tissue adhesive was compared with SWC. Five groups used butylcyanoacrylate, and 5 used octylcyanoacrylate. For SWC, 6 groups used sutures, 2 used adhesive strips, and 2 used a combination of methods, although most used sutures. Six studies were limited to pediatric patients and 2 to adult patients; 2 included patients of any age. Wounds were limited to facial lacerations in 2 pediatric studies and 1 group with patients of any age. Lacerations requiring deep sutures were excluded in 4 studies. One group compared tissue adhesives (butylcyanoacrylate and octylcyanoacrylate) among pediatric patients with facial lacerations not requiring deep sutures. In the 11 included studies, authors of 9 randomized and evaluated 1 laceration per patient, whereas 2 groups included patients with more than 1 laceration. In 1 group, each laceration was independently randomized and evaluated, and the other group randomized the patient and assigned all lacerations to a treatment group (tissue adhesive with SWC or tissue adhesive with tissue adhesive). The sample sizes ranged between 60 and 163 lacerations, and all 11 studies were performed in emergency departments. The primary measure in all included studies was cosmetic outcome. The majority of groups used the Cosmetic Visual Analogue Scale, the Wound Evaluation Score, or a combination of these measures. Three groups measured cosmetic outcome with nonvalidated scoring systems. Assessment time periods were grouped and reported at (1) 5 to 14 days, (2) 1 to 3 months, and (3) 9 to 12 months after wound closure. Secondary outcomes were pain (as noted on visual analogue scale) and time to complete the procedure (as mean number of minutes). The 11 studies scored from 1 to 3 on the Jadad Scale. Adequate allocation concealment was reported in only 1 group. Examining cosmetic outcome, 8 groups (565 lacerations) used the Cosmetic Visual Analogue Scale to compare tissue adhesives and SWC. The authors reported no significant differences in scores at the time periods of 5 to 14 days, 1 to 3 months, and 9 to 12 months. A subgroup analysis showed a significant ( P = .005) superiority of butylcyanoacrylate over SWC at 1 to 3 months. Using the Wound Evaluation Score, 4 studies (364 lacerations) compared tissue adhesives with SWC. No significant differences in cosmetic scores were found at 5 to 14 days, 1 to 3 months, or 9 to 12 months. One group (83 lacerations) compared butylcyanoacrylate with octylcyanoacrylate and reported no significant differences in cosmetic scores using the Cosmetic Visual Analogue Scale at 1 to 3 months and the Wound Evaluation Score at 5 to 14 days and 1 to 3 months. Examining secondary outcomes, 6 groups (570 lacerations) compared tissue adhesives with SWC using the visual analogue scale for pain. Scores reported by parents, patients, physicians, and nurses significantly favored tissue adhesives. In 6 studies (584 lacerations), tissue adhesives were significantly favored over SWC in time to complete the procedure. For complication outcomes, 8 groups (727 lacerations) demonstrated significantly fewer incidences of erythema and an increased risk of dehiscence with tissue adhesives compared with SWC. No significant differences were shown for infection, delayed closure, or discharge. Among 83 lacerations, 1 group compared butylcyanoacrylate with octylcyanoacrylate and reported no significant differences in combined patient-reported and parent-reported visual analogue pain scores, time to complete the procedure, dehiscence, or infection. This review provides evidence that tissue adhesives are an option to SWC (sutures, staples, adhesive strips) for the management of simple traumatic lacerations. Overall, no significant differences were found in cosmetic scores at the reported assessment periods between tissue adhesives and SWC. At 1 to 3 months, a subgroup analysis significantly favored butylcyanoacrylate over SWC. Tissue adhesives significantly lowered the time to complete the procedure, levels of pain, and rate of erythema. However, the data revealed a significant increase in the rate of dehiscence with the use of tissue adhesives when compared with SWC. The low methodologic quality of the evidence should be considered in the interpretation of the findings.
Superior Weapons Systems Through Castings (SWC)
2012-11-30
little or no additional processing. This reduction in finishing can eliminate more than two-thirds of the production costs for some parts...lower weight and cost with the same or better functionality. The SWC program has successfully: • developed materials that reduce weight and/or are more...critical to the capability of the DoD’s weapon systems. However supply chain constraints have made it difficult to obtain high-quality, lightweight, cost
The Sleep–Wake Cycle in the Nicotinic Alpha-9 Acetylcholine Receptor Subunit Knock-Out Mice
Madrid-López, Natalia; Estrada, Jorge; Díaz, Javier; Bassi, Alejandro; Délano, Paul H.; Ocampo-Garcés, Adrián
2017-01-01
There is a neural matrix controlling the sleep–wake cycle (SWC) embedded within high ranking integrative mechanisms in the central nervous system. Nicotinic alpha-9 acetylcholine receptor subunit (alpha-9 nAChR) participate in physiological processes occurring in sensory, endocrine and immune systems. There is a relationship between the SWC architecture, body homeostasis and sensory afferents so that disruption of afferent signaling is expected to affect the temporal organization of sleep and wake states. The analysis of the SWC of 9 nAChR knock-out animals may help to reveal the contribution of alpha-9 nAChR to sleep chronobiological determinants. Here we explore the polysomnogram in chronically implanted alpha-9 nAChR knock-out (KO) and wild-type (WT) individuals of the hybrid CBA/Sv129 mouse strain. Records were obtained in isolation chambers under a stable 12:12 light:dark cycle (LD). To unmask the 24-h modulation of the SWC a skeleton photoperiod (SP) protocol was performed. Under LD the daily quota (in %) of wakefulness (W), NREM sleep and REM sleep obtained in KO and WT animals were 45, 48 and 7, and 46, 46 and 8 respectively. Both groups exhibit nocturnal phase preference of W as well as diurnal and unimodal phase preference of NREM and REM sleep. The acrophase mean angles of KO vs. WT genotypes were not different (Zeitgeber Time: 6.5 vs. 14.9 for W, 4.3 vs. 2.8 for NREM sleep and 5.3 vs. 3.4 for REM sleep, respectively). Transference to SP do not affect daily state quotas, phase preferences and acrophases among genotypes. Unmasking phenomena of the SWC such as wake increment during the rest phase under SP was evident only among WT mice suggesting the involvement of retinal structures containing alpha-9 nAChR in masking processes. Furthermore, KO animals exhibit longer NREM and REM sleep episodes that is independent of illumination conditions. Consolidated diurnal NREM sleep contributed to obtain higher values of NREM sleep delta-EEG activity among KO mice during rest phase. In conclusion, circadian and sleep homeostatic aspects of the SWC are operative among alpha-9 nAChR KO animals. We propose that alpha-9 nAChR participate in retinal signaling processes responsible of the positive masking of sleep by light. PMID:29066952
NASA Astrophysics Data System (ADS)
Molina, Antonio Jaime; Llorens, Pilar; Aranda, Xavier; Savé, Robert; Biel, Carmen
2013-04-01
Variability of soil water content is known to increase with the size of spatial domain in which measurements are taken. At field scale, heterogeneity in soil, vegetation, topography, water input volume and management affects, among other factors, hydrologic plot behaviour under different mean soil water contents. The present work studies how the spatial variability of soil water content (SWC) is affected by soil type (texture, percentage of stones and the combination of them) in a timber-orientated plantation of cherry tree (Prunus avium) under Mediterranean climatic conditions. The experimental design is a randomized block one with 3 blocks * 4 treatments, based on two factors: irrigation (6 plots irrigated versus 6 plots not irrigated) and soil management (6 plots tillaged versus 6 plots not tillaged). SWC is continuously measured at 25, 50 and 100 cm depth with FDR sensors, located at two positions in each treatment: under tree influence and 2.5 m apart. This study presents the results of the monitoring during 2012 of the 24 sensors located at the 25 cm depth. In each of the measurement point, texture and percentage of stones were measured. Sandy-loam, sandy-clay-loam and loam textures were found together with a percentage of stones ranging from 20 to 70 %. The results indicated that the relationship between the daily mean SWC and its standard deviation, a common procedure used to study spatial variability, changed with texture, percentage of stones and the estimation of field capacity from the combination of both. Temporal stability analysis of SWC showed a clear pattern related to field capacity, with the measurement points of the sandy-loam texture and the high percentage of stones showing the maximun negative diference with the global mean. The high range in the mean relative difference observed (± 75 %), could indicate that the studied plot may be considered as a good field-laboratory to extrapolate results at higher spatial scales. Furthermore, the pattern in the temporal stability of tree growth was clearly related to that one in SWC. Nevertheless, the treatments that represent the mean conditions in growth were not exactly the same than those in SWC, which could be attributable to other characteristics than soil.
NASA Astrophysics Data System (ADS)
Foolad, Foad; Franz, Trenton E.; Wang, Tiejun; Gibson, Justin; Kilic, Ayse; Allen, Richard G.; Suyker, Andrew
2017-03-01
In this study, the feasibility of using inverse vadose zone modeling for estimating field-scale actual evapotranspiration (ETa) was explored at a long-term agricultural monitoring site in eastern Nebraska. Data from both point-scale soil water content (SWC) sensors and the area-average technique of cosmic-ray neutron probes were evaluated against independent ETa estimates from a co-located eddy covariance tower. While this methodology has been successfully used for estimates of groundwater recharge, it was essential to assess the performance of other components of the water balance such as ETa. In light of recent evaluations of land surface models (LSMs), independent estimates of hydrologic state variables and fluxes are critically needed benchmarks. The results here indicate reasonable estimates of daily and annual ETa from the point sensors, but with highly varied soil hydraulic function parameterizations due to local soil texture variability. The results of multiple soil hydraulic parameterizations leading to equally good ETa estimates is consistent with the hydrological principle of equifinality. While this study focused on one particular site, the framework can be easily applied to other SWC monitoring networks across the globe. The value-added products of groundwater recharge and ETa flux from the SWC monitoring networks will provide additional and more robust benchmarks for the validation of LSM that continues to improve their forecast skill. In addition, the value-added products of groundwater recharge and ETa often have more direct impacts on societal decision-making than SWC alone. Water flux impacts human decision-making from policies on the long-term management of groundwater resources (recharge), to yield forecasts (ETa), and to optimal irrigation scheduling (ETa). Illustrating the societal benefits of SWC monitoring is critical to insure the continued operation and expansion of these public datasets.
Climate Change Affects Winter Chill for Temperate Fruit and Nut Trees
Luedeling, Eike; Girvetz, Evan H.; Semenov, Mikhail A.; Brown, Patrick H.
2011-01-01
Background Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. Methodology/Principal Findings We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the “Dynamic Model” and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. Conclusions/Significance The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops. PMID:21629649
Science in Action: National Stormwater Calculator (SWC) ...
Stormwater discharges continue to cause impairment of our Nation’s waterbodies. Regulations that require the retention and/or treatment of frequent, small storms that dominate runoff volumes and pollutant loads are becoming more common. EPA has developed the National Stormwater Calculator (SWC) to help support local, state, and national stormwater management objectives to reduce runoff through infiltration and retention using green infrastructure practices as low impact development (LID) controls. To inform the public on what the Stormwater Calculator is used for.
NASA Astrophysics Data System (ADS)
Wang, Lei; Liu, Huizhi; Shao, Yaping; Liu, Yang; Sun, Jihua
2018-01-01
Based on eddy covariance flux data from July 15, 2014, to December 31, 2015, the water and CO2 fluxes were compared over a semiarid alpine steppe (Bange, Tibetan Plateau) and a humid alpine meadow (Lijiang, Yunnan) on the Tibetan Plateau and its surrounding region. During the wet season, the evaporative fraction (EF) was strongly and linearly correlated with the soil water content (SWC) at Bange because of its sparse green grass cover. In contrast, the correlation between the EF at Lijiang and the SWC and the normalized difference vegetation index (NDVI) was very low because the atmosphere was close to saturation and the EF was relatively constant. In the dry season, the EF at both sites decreased with the SWC. The net ecosystem exchange (NEE) at Bange was largely depressed at noon, while this phenomenon did not occur at Lijiang. The saturated NEE at Bange was 24% of that at Lijiang. The temperature sensitivity coefficient of ecosystem respiration at Bange (1.7) was also much lower than that at Lijiang (3.4). The annual total NEE in 2015 was 21.8 and -230.0 g C m-2 yr-1 at Bange and Lijiang, respectively, and the NEE was tightly controlled by the NDVI at the two sites. The distinct differences in the water and CO2 fluxes at Bange and Lijiang are attributed to the large SWC difference and its effect on vegetation growth.
Shaw, Andrew J; Ingham, Stephen A; Fudge, Barry W; Folland, Jonathan P
2013-12-01
This study assessed the between-test reliability of oxygen cost (OC) and energy cost (EC) in distance runners, and contrasted it with the smallest worthwhile change (SWC) of these measures. OC and EC displayed similar levels of within-subject variation (typical error < 3.85%). However, the typical error (2.75% vs 2.74%) was greater than the SWC (1.38% vs 1.71%) for both OC and EC, respectively, indicating insufficient sensitivity to confidently detect small, but meaningful, changes in OC and EC.
NASA Astrophysics Data System (ADS)
Liu, Z.; LU, G.; He, H.; Wu, Z.; He, J.
2017-12-01
Seasonal pluvial-drought transition processes are unique natural phenomena. To explore possible mechanisms, we considered Southwest China (SWC) as the study region and comprehensively investigated the temporal evolution of large-scale and regional atmospheric variables with the simple method of Standardized Anomalies (SA). Some key results include: (1) The net vertical integral of water vapour flux (VIWVF) across the four boundaries may be a feasible indicator of pluvial-drought transition processes over SWC, because its SA-based index is almost consistent with process development. (2) The vertical SA-based patterns of regional horizontal divergence (D) and vertical motion (ω) also coincides with the pluvial-drought transition processes well, and the SA-based index of regional D show relatively high correlation with the identified processes over SWC. (3) With respect to large-scale anomalies of circulation patterns, a well-organized Eurasian Pattern is one important feature during the pluvial-drought transition over SWC. (4) To explore the possibility of simulating drought development using previous pluvial anomalies, large-scale and regional atmospheric SA-based indices were used. As a whole, when SA-based indices of regional dynamic and water-vapor variables are introduced, simulated drought development only with large-scale anomalies can be improved a lot. (5) Eventually, pluvial-drought transition processes and associated regional atmospheric anomalies over nine Chinese drought study regions were investigated. With respect to regional D, vertically single or double "upper-positive-lower-negative" and "upper-negative-lower-positive" patterns are the most common vertical SA-based patterns during the pluvial and drought parts of transition processes, respectively.
NASA Astrophysics Data System (ADS)
Leeman, William P.; Smith, Diane R.; Hildreth, Wes; Palacz, Zen; Rogers, Nick
1990-11-01
Major volcanoes of the Southern Washington Cascades (SWC) include the large Quaternary stratovolcanoes of Mount St. Helens (MSH) and Mount Adams (MA) and the Indian Heaven (IH) and Simcoe Mountain (SIM) volcanic fields. There are significant differences among these volcanic centers in terms of their composition and evolutionary history. The stratovolcanoes consist largely of andesitic to dacitic lavas and pyroclastics with minor basalt flows. IH consists dominantly of basaltic with minor andesite lavas, all erupted from monogenetic rift and cinder cone vents. SIM has a poorly exposed andesite to rhyolite core but mainly consists of basaltic lavas erupted from numerous widely dispersed vents; it has the morphology of a shield volcano. Distribution of mafic lavas across the SWC is related to north-northwest trending faults and fissure zones that indicate a significant component of east-west extension within the area. There is overlap in eruptive history for the areas studied, but it appears that peak activity was progressively older (MSH (<40 Ka), IH (mostly <0.5 Ma), MA (<0.5 Ma), SIM (1-4 Ma)) and more alkalic toward the east. A variety of compositionally distinct mafic magma types has been identified in the SWC, including low large ion lithophile element (LILE) tholeiitic basalts, moderate LILE calcalkalic basalts, basalts transitional between these two, LILE-enriched mildly alkalic basalts, and basaltic andesites. Compositional diversity among basaltic lavas, both within individual centers as well as across the arc, is an important characteristic of the SWC traverse. The fact that the basaltic magmas either show no correlation between isotopic and trace element components or show trends quite distinct from those of the associated evolved lavas, suggests that their compositional variability is attributable to subcrustal processes. Both the primitive nature of the erupted basalts and the fact that they are relatively common in the SWC sector also imply that such magmas had little residence time in the crust. A majority of the SWC basaltic samples studies are indistinguishable from oceanic island basalts (OIB) in terms of trace element and isotopic compositions, and more importantly, most do not display the typical high field strength element (HFSE) depletion seen in subduction-related magmas in volcanic arcs elsewhere. LILE enrichment and HRSE depletion characteristics of most arc magmas are generally attributed to the role of fluids released by dehydration of subducted oceanic lithosphere and to the effects of sediment subduction. Because most SWC basalts lack these compositional features, we conclude that subducted fluids and sediments do not play an essential role in producing these magmas. Rather, we infer that they formed by variable degree melting of a mixed mantle source consisting mainly of heterogeneously distributed OIB and mid-ocean ridge basalt source domains. Relatively minor occurrences of HFSE-depleted arclike basalts may reflect the presence of a small proportion of slab-metasomatized subarc mantle. The juxtaposition of such different mantle domains within the lithospheric mantle is viewed as a consequence of (1) tectonic mixing associated with accretion of oceanic and island arc terranes along the Pacific margin of North America prior to Neogene time, and possibly (2) a seaward jump in the locus of subduction at about 40 Ma. The Cascades arc is unusual in that the subducting oceanic plate is very young and hot. We suggest that slab dehydration outboard of the volcanic front resulted in a diminished role of aqueous fluids in generating or subsequently modifying SWC magmas compared to the situation at most convergent margins. Furthermore, with low fluid flux conditions, basalt generation is presumably triggered by other processes that increase the temperature of the mantle wedge (e.g., convective mantle flow, shear heating, etc.).
Seasonal Oxygen Isotopic Variations in Marine Waters from the Caribbean and Pacific Coasts of Panama
NASA Astrophysics Data System (ADS)
Robbins, J. A.; Grossman, E. L.; Morales, J.; Thompson, R.; O'Dea, A.
2012-12-01
Stable isotopic studies of ancient tropical marine environments require a much more thorough understanding of the relative influences of freshening and upwelling on isotopic records than currently exists. To this aim we conducted twice-weekly δ18O and salinity measurements on waters collected from marine laboratories on opposite sides of the Isthmus of Panama; Naos in the Gulf of Panama (Tropical Eastern Pacific) and Galeta in the southwestern Caribbean (SWC). Data reveal the strong transition from dry to rainy season in the Gulf of Panama where upwelling in the dry-season increases coastal salinity (up to 34.4 psu) and δ18O values (-1.0 to 0.0‰), whilst the rainy season lowers marine δ18O values (as low as -1.6‰) due to the 2-3 fold increase in rainfall. In contrast, the SWC experiences no upwelling, but does reveal a significant amount of freshening caused by increasing rainfall at the transition from boreal spring to summer. Despite the greater disparity in the average rainfall between dry and wet seasons near Galeta (SWC) compared with the Gulf of Panama, a decrease in marine δ18O of only ~0.5‰ on average was found between seasons for SWC waters. The higher salinity and higher δ18O values in the coastal waters of the SWC are due in part to large scale climatic differences principally that the Caribbean experiences higher evaporation than rainfall. The relationship between salinity and δ18O in the Gulf of Panama is strong (R2=0.87; p<0.001), but is much less pronounced in the SWC (R2=0.38; p<0.001). Regression lines for these data describe the local relationship between salinity and δ18O. The slope and intercept (freshwater end-member) derived for the SWC (0.15±0.02‰/psu; -4.56±0.77‰) are similar to those from Fairbanks et al. [1] for the Atlantic as a whole (0.19‰/psu; -5.97‰) and essentially identical to those from Legrande and Schmidt [2] for the "Tropical Atlantic" (0.15±0.01‰/psu; -4.61±0.30‰). Gulf of Panama samples share a similar slope (0.28±0.01‰/psu) with those studies (0.26‰/psu [1]; 0.27±0.01‰/psu [2]) despite those studies representing huge areas in the Pacific. The δ18O of the freshwater end-member inferred from our samples is lower (-9.54±0.44‰) than Fairbanks et al. [1] and Legrande and Schmidt [2] (-8.77‰ and -8.88±0.30‰ respectively), but not significantly. Our freshwater end-member for the SWC samples (2σ ranges from -6.1 to -3.0‰) agrees well with measured freshwater sources near Galeta in the Caribbean (-2.7 to -5.2‰; [3]), but not the Gulf of Panama (our 2σ ranges from -10.4 to -8.7‰ compared to -8.4 to -6.1‰; [3]). These preliminary data show that nearshore waters share a similar relationship between salinity and δ18O as open ocean waters, which improves our ability to interpret seasonal δ18O profiles in the skeletons of coastal mollusks and corals. 1. Fairbanks et al. 1992. In: Taylor et al. eds. Radiocarbon after four decades. Springer-Verlag, New York, 473-500. 2. Lachniet & Patterson. 2006. J. Hydrol. 324: 115-140. 3. LeGrande & Schmidt, 2006. Geophys. Res. Lett. 33:L12604.
Effect of thermal state and thermal comfort on cycling performance in the heat.
Schulze, Emiel; Daanen, Hein A M; Levels, Koen; Casadio, Julia R; Plews, Daniel J; Kilding, Andrew E; Siegel, Rodney; Laursen, Paul B
2015-07-01
To determine the effect of thermal state and thermal comfort on cycling performance in the heat. Seven well-trained male triathletes completed 3 performance trials consisting of 60 min cycling at a fixed rating of perceived exertion (14) followed immediately by a 20-km time trial in hot (30°C) and humid (80% relative humidity) conditions. In a randomized order, cyclists either drank ambient-temperature (30°C) fluid ad libitum during exercise (CON), drank ice slurry (-1°C) ad libitum during exercise (ICE), or precooled with iced towels and ice slurry ingestion (15 g/kg) before drinking ice slurry ad libitum during exercise (PC+ICE). Power output, rectal temperature, and ratings of thermal comfort were measured. Overall mean power output was possibly higher in ICE (+1.4%±1.8% [90% confidence limit]; 0.4> smallest worthwhile change [SWC]) and likely higher PC+ICE (+2.5%±1.9%; 1.5>SWC) than in CON; however, no substantial differences were shown between PC+ICE and ICE (unclear). Time-trial performance was likely enhanced in ICE compared with CON (+2.4%±2.7%; 1.4>SWC) and PC+ICE (+2.9%±3.2%; 1.9>SWC). Differences in mean rectal temperature during exercise were unclear between trials. Ratings of thermal comfort were likely and very likely lower during exercise in ICE and PC+ICE, respectively, than in CON. While PC+ICE had a stronger effect on mean power output compared with CON than ICE did, the ICE strategy enhanced late-stage time-trial performance the most. Findings suggest that thermal comfort may be as important as thermal state for maximizing performance in the heat.
Vítámvás, Pavel; Urban, Milan O.; Škodáček, Zbynek; Kosová, Klára; Pitelková, Iva; Vítámvás, Jan; Renaut, Jenny; Prášil, Ilja T.
2015-01-01
Barley cultivar Amulet was used to study the quantitative proteome changes through different drought conditions utilizing two-dimensional difference gel electrophoresis (2D-DIGE). Plants were cultivated for 10 days under different drought conditions. To obtain control and differentially drought-treated plants, the soil water content was kept at 65, 35, and 30% of soil water capacity (SWC), respectively. Osmotic potential, water saturation deficit, 13C discrimination, and dehydrin accumulation were monitored during sampling of the crowns for proteome analysis. Analysis of the 2D-DIGE gels revealed 105 differentially abundant spots; most were differentially abundant between the controls and drought-treated plants, and 25 spots displayed changes between both drought conditions. Seventy-six protein spots were successfully identified by tandem mass spectrometry. The most frequent functional categories of the identified proteins can be put into the groups of: stress-associated proteins, amino acid metabolism, carbohydrate metabolism, as well as DNA and RNA regulation and processing. Their possible role in the response of barley to drought stress is discussed. Our study has shown that under drought conditions barley cv. Amulet decreased its growth and developmental rates, displayed a shift from aerobic to anaerobic metabolism, and exhibited increased levels of several protective proteins. Comparison of the two drought treatments revealed plant acclimation to milder drought (35% SWC); but plant damage under more severe drought treatment (30% SWC). The results obtained revealed that cv. Amulet is sensitive to drought stress. Additionally, four spots revealing a continuous and significant increase with decreasing SWC (UDP-glucose 6-dehydrogenase, glutathione peroxidase, and two non-identified) could be good candidates for testing of their protein phenotyping capacity together with proteins that were significantly distinguished in both drought treatments. PMID:26175745
NASA Astrophysics Data System (ADS)
Li, Xiao-Yan; Zhang, Si-Yi; Ma, Yu-Jun
2015-04-01
Interactions between surface energy flux, evapotranspiration and soil water were poorly understood in the alpine ecosystems in the Qinghai-Tibet Plateau, which is a sensitive and vulnerable region to global climate change. For the first time, we continuously measured surface energy flux and soil water content (SWC) and estimated ET using bowen ratio energy balance method in the Qinghai Lake watershed, located in the northeast of Qinghai-Tibet Plateau between 2012 and 2013. The three ecosystems were Kobresia meadow (KMd.), Potentilla fruticosa shrub (PFSh.) and Achnatherum splendens steppe (ASSt.). Results indicated that there was a good negative correlation between ecosystem Bowen ratios and SWC in the growing season for the three ecosystems. Annual ET at KMd. and PFSh. was 16% and 3% less than local annual precipitation, while that at ASSt. was 26% larger than annual precipitation. Average annual ET was 507.9, 493.2 and 413.7 mm at PFSh., KMd. and ASSt., respectively. Fluctuations of daily ET at alpine ecosystems were primarily controlled by solar radiation, especially in the growing season, whereas, at ASSt. where precipitation and SWC was limited, ET was also controlled by water supply.
Lebron, I.; Madsen, M.D.; Chandler, D.G.; Robinson, D.A.; Wendroth, O.; Belnap, J.
2007-01-01
The impact of pinyon‐juniper woodland encroachment on rangeland ecosystems is often associated with a reduction of streamflow and recharge and an increase in soil erosion. The objective of this study is to investigate vegetational control on seasonal soil hydrologic properties along a 15‐m transect in pinyon‐juniper woodland with biocrust. We demonstrate that the juniper tree controls soil water content (SWC) patterns directly under the canopy via interception, and beyond the canopy via shading in a preferred orientation, opposite to the prevailing wind direction. The juniper also controls the SWC and unsaturated hydraulic conductivity measured close to water saturation (K(h)) under the canopy by the creation of soil water repellency due to needle drop. We use this information to refine the hydrologic functional unit (HFU) concept into three interacting hydrologic units: canopy patches, intercanopy patches, and a transitional unit formed by intercanopy patches in the rain shadow of the juniper tree. Spatial autoregressive state‐space models show the close relationship between K(h) close to soil water saturation and SWC at medium and low levels, integrating a number of influences on hydraulic conductivity.
Peng, Ding-Hong; Wang, Tie-Dan; Gao, Chang-Yuan; Wang, Hua
2014-01-01
Interval-valued hesitant fuzzy set (IVHFS), which is the further generalization of hesitant fuzzy set, can overcome the barrier that the precise membership degrees are sometimes hard to be specified and permit the membership degrees of an element to a set to have a few different interval values. To efficiently and effectively aggregate the interval-valued hesitant fuzzy information, in this paper, we investigate the continuous hesitant fuzzy aggregation operators with the aid of continuous OWA operator; the C-HFOWA operator and C-HFOWG operator are presented and their essential properties are studied in detail. Then, we extend the C-HFOW operators to aggregate multiple interval-valued hesitant fuzzy elements and then develop the weighted C-HFOW (WC-HFOWA and WC-HFOWG) operators, the ordered weighted C-HFOW (OWC-HFOWA and OWC-HFOWG) operators, and the synergetic weighted C-HFOWA (SWC-HFOWA and SWC-HFOWG) operators; some properties are also discussed to support them. Furthermore, a SWC-HFOW operators-based approach for multicriteria decision making problem is developed. Finally, a practical example involving the evaluation of service quality of high-tech enterprises is carried out and some comparative analyses are performed to demonstrate the applicability and effectiveness of the developed approaches.
Wang, Tie-Dan; Gao, Chang-Yuan; Wang, Hua
2014-01-01
Interval-valued hesitant fuzzy set (IVHFS), which is the further generalization of hesitant fuzzy set, can overcome the barrier that the precise membership degrees are sometimes hard to be specified and permit the membership degrees of an element to a set to have a few different interval values. To efficiently and effectively aggregate the interval-valued hesitant fuzzy information, in this paper, we investigate the continuous hesitant fuzzy aggregation operators with the aid of continuous OWA operator; the C-HFOWA operator and C-HFOWG operator are presented and their essential properties are studied in detail. Then, we extend the C-HFOW operators to aggregate multiple interval-valued hesitant fuzzy elements and then develop the weighted C-HFOW (WC-HFOWA and WC-HFOWG) operators, the ordered weighted C-HFOW (OWC-HFOWA and OWC-HFOWG) operators, and the synergetic weighted C-HFOWA (SWC-HFOWA and SWC-HFOWG) operators; some properties are also discussed to support them. Furthermore, a SWC-HFOW operators-based approach for multicriteria decision making problem is developed. Finally, a practical example involving the evaluation of service quality of high-tech enterprises is carried out and some comparative analyses are performed to demonstrate the applicability and effectiveness of the developed approaches. PMID:24987747
Heterogeneity of porcine alveolar macrophages in experimental pneumonia.
Berndt, A; Müller, G
1997-07-01
The aim of the study was the morphological and the phenotypic characterization of the porcine non-lymphocytic bronchoalveolar lavage (BAL) cell population of unaffected- and intrabronchial with Pasteurella multocida- (P.m.) infected swine using flow cytometry. Three non-lymphocytic cell populations of the porcine bronchoalveolar lavage could be differentiated: (1) large, high autofluorescent cells, (LHC); (2) small, high autofluorescent cells, (SHC); (3) small, low autofluorescent cells, (SLC). In comparison with the control animals, the percentage of the LHC and SHC within the whole non-lymphocytic cell population was decreased, whereas the SLC was significantly enhanced after infection. In order to investigate the phenotype of these cell populations, monoclonal antibodies against porcine antigens (SWC1, SWC3a, MHC class II, 2G6 (against macrophages)) were used. The results showed that the cells of the SLC seem to belong to the granulocytes, whereas the LHC and the SHC are lung macrophages. After the infection of the animals the percentage of the SWC1 positive cells of LHC and SHC were significantly increased, indicating an entrance of more immature macrophages. The percentage of the MHC class II antibody binding cells of all three non-lymphocytic populations was-decreased after infection, indicating a restricted MHC class II dependent antigen recognition in P.m. pneumonia.
Mechanisms of shock wave induced endothelial cell injury.
Sondén, Anders; Svensson, Bengt; Roman, Nils; Brismar, Bo; Palmblad, Jan; Kjellström, B Thomas
2002-01-01
Medical procedures, for example, laser angioplasty and extracorporeal lithotripsy as well as high-energy trauma expose human tissues to shock waves (SWs) that may cause tissue injury. The mechanisms for this injury, often affecting blood vessel walls, are poorly understood. Here we sought to assess the role of two suggested factors, viz., cavitation or reactive oxygen species (ROS). A laser driven flyer-plate model was used to expose human umbilical cord vein endothelial cell (HUVEC) monolayers to SWs or to SWs plus cavitation (SWC). Cell injury was quantified with morphometry, trypan blue staining, and release of (51)Cr from labeled HUVECs. HUVECs, exposed to SWs only, could not be distinguished from controls in morphological appearance or ability to exclude trypan blue. Yet, release of (51)Cr, indicated a significant cell injury (P < 0.05). HUVEC cultures exposed to SWC, exhibited cell detachment and cell membrane damage detectable with trypan blue. Release of (51)Cr was fourfold compared to SW samples (P < 0.01). Signs of cell injury were evident at 15 minutes and did not change over the next 4 hours. No protective effects of ROS scavengers were demonstrated. Independent of ROS, SWC generated an immediate cell injury, which can explain, for example, vessel wall perturbation described in relation to SW treatments and trauma. Copyright 2002 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Liu, Liangyun; Zhang, Bing; Xu, Genxing; Zheng, Lanfen; Tong, Qingxi
2002-03-01
In this paper, the temperature-missivity separating (TES) method and normalized difference vegetation index (NDVI) are introduced, and the hyperspectral image data are analyzed using land surface temperature (LST) and NDVI channels which are acquired by Operative Module Imaging Spectral (OMIS) in Beijing Precision Agriculture Demonstration Base in Xiaotangshan town, Beijing in 26 Apr, 2001. Firstly, the 6 kinds of ground targets, which are winter wheat in booting stage and jointing stage, bare soil, water in ponds, sullage in dry ponds, aquatic grass, are well classified using LST and NDVI channels. Secondly, the triangle-like scatter-plot is built and analyzed using LST and NDVI channels, which is convenient to extract the information of vegetation growth and soil's moisture. Compared with the scatter-plot built by red and near-infrared bands, the spectral distance between different classes are larger, and the samples in the same class are more convergent. Finally, we design a logarithm VIT model to extract the surface soil water content (SWC) using LST and NDVI channel, which works well, and the coefficient of determination, R2, between the measured surface SWC and the estimated is 0.634. The mapping of surface SWC in the wheat area are calculated and illustrated, which is important for scientific irrigation and precise agriculture.
Philp, Calvin P; Buchheit, Martin; Kitic, Cecilia M; Minson, Christopher T; Fell, James W
2017-07-01
To investigate whether a 5-d cycling training block in the heat (35°C) in Australian Rules footballers was superior to exercising at the same relative intensity in cool conditions (15°C) for improving intermittent-running performance in a cool environment (<18°C). Using a parallel-group design, 12 semiprofessional football players performed 5 d of cycling exercise (70% heart-rate reserve [HRR] for 45 min [5 × 50-min sessions in total]) in a hot (HEAT, 35°C ± 1°C, 56% ± 9% RH) or cool environment (COOL, 15°C ± 3°C, 81% ± 10% RH). A 30-15 Intermittent Fitness Test to assess intermittent running performance (V IFT ) was conducted in a cool environment (17°C ± 2°C, 58 ± 5% RH) before and twice after (1 and 3 d) the intervention. There was a likely small increase in V IFT in each group (HEAT, 0.5 ± 0.3 km/h, 1.5 ± 0.8 × smallest worthwhile change [SWC]; COOL, 0.4 ± 0.4 km/h, 1.6 ± 1.2 × SWC) 3 d postintervention, with no difference in change between the groups (0.5% ± 1.9%, 0.4 ± 1.4 × SWC). Cycle power output during the intervention was almost certainly lower in the HEAT group (HEAT 1.8 ± 0.2 W/kg vs COOL 2.5 ± 0.3 W/kg, -21.7 ± 3.2 × SWC, 100/0/0). When cardiovascularexercise intensity is matched (ie, 70% HRR) between environmental conditions, there is no additional performance benefit from short-duration moderate-intensity heat exposure (5 × 50 min) for semiprofessional footballers exercising in cool conditions. However, the similar positive adaptations may occur in HEAT with 30% lower mechanical load, which may be of interest for load management during intense training or rehabilitation phases.
Y Ho, E C; Truccolo, Wilson
2016-10-01
How focal seizures initiate and evolve in human neocortex remains a fundamental problem in neuroscience. Here, we use biophysical neuronal network models of neocortical patches to study how the interaction between inhibition and extracellular potassium ([K (+)] o ) dynamics may contribute to different types of focal seizures. Three main types of propagated focal seizures observed in recent intracortical microelectrode recordings in humans were modelled: seizures characterized by sustained (∼30-60 Hz) gamma local field potential (LFP) oscillations; seizures where the onset in the propagated site consisted of LFP spikes that later evolved into rhythmic (∼2-3 Hz) spike-wave complexes (SWCs); and seizures where a brief stage of low-amplitude fast-oscillation (∼10-20 Hz) LFPs preceded the SWC activity. Our findings are fourfold: (1) The interaction between elevated [K (+)] o (due to abnormal potassium buffering by glial cells) and the strength of synaptic inhibition plays a predominant role in shaping these three types of seizures. (2) Strengthening of inhibition leads to the onset of sustained narrowband gamma seizures. (3) Transition into SWC seizures is obtained either by the weakening of inhibitory synapses, or by a transient strengthening followed by an inhibitory breakdown (e.g. GABA depletion). This reduction or breakdown of inhibition among fast-spiking (FS) inhibitory interneurons increases their spiking activity and leads them eventually into depolarization block. Ictal spike-wave discharges in the model are then sustained solely by pyramidal neurons. (4) FS cell dynamics are also critical for seizures where the evolution into SWC activity is preceded by low-amplitude fast oscillations. Different levels of elevated [K (+)] o were important for transitions into and maintenance of sustained gamma oscillations and SWC discharges. Overall, our modelling study predicts that the interaction between inhibitory interneurons and [K (+)] o glial buffering under abnormal conditions may explain different types of ictal transitions and dynamics during propagated seizures in human focal epilepsy.
NASA Astrophysics Data System (ADS)
Sun, Shanlei; Wang, Guojie; Huang, Jin; Mu, Mengyuan; Yan, Guixia; Liu, Chunwei; Gao, Chujie; Li, Xing; Yin, Yixing; Zhang, Fangmin; Zhu, Siguang; Hua, Wenjian
2017-11-01
Due to the close relationship of climate change with reference evapotranspiration (ETo), detecting changes in ETo spatial distribution and its temporal evolution at local and regional levels is favorable to comprehensively understand climate change-induced impacts on hydrology and agriculture. In this study, the objective is to identify whether climate change has caused variation of ETo spatial distribution in different analysis periods [i.e., long- (20-year), medium- (10-year), and short-term (5-year)] and to investigate its temporal evolution (namely, when these changes happened) at annual and monthly scales in Southwest China (SWC). First, we estimated ETo values using the United Nations Food and Agriculture Organization (FAO) Penman-Monteith equation, based on historical climate data measured at 269 weather sites during 1973-2012. The analysis of variance (ANOVA) results indicated that the spatial pattern of annual ETo had significantly changed during the past 40 years, particularly in west SWC for the long-term analysis period, and west and southeast SWC in both medium- and short-term periods, which corresponded to the percent area of significant differences which were 21.9, 58.0, and 48.2 %, respectively. For investigating temporal evolution of spatial patterns of annual ETo, Duncan's multiple range test was used, and we found that the most significant changes appeared during 1988-2002 with the significant area of higher than 25.0 %. In addition, for long-, medium-, and short-term analysis periods, the spatial distribution has significantly changed during March, September, November, and December, especially in the corresponding periods of 1988-1997, 1983-1992, 1973-1977, and 1988-2002. All in all, climate change has resulted in significant ETo changes in SWC since the 1970s. Knowledge of climate change-induced spatial distribution of ETo and its temporal evolution would aid in formulating strategies for water resources and agricultural managements.
Efficient fog harvesting by Stipagrostis sabulicola (Namib dune bushman grass)
NASA Astrophysics Data System (ADS)
Roth-Nebelsick, A.; Ebner, M.; Miranda, T.
2010-07-01
Stipagrostis sabulicola is an endemic species of the central Namib Desert which settles on extremely arid dune fields. Due to its ability to persistence even during exceptionally dry years it is generally assumed that water supply of this species is substantially based on fog water. In this contribution, the results of a study investigating the capability of S. sabulicola for fog harvesting are presented. For this purpose, stem flow rates of S. sabulicola during fog events, spatial gradient of soil water content (SWC) close to mounds of S. sabulicola and its leaf water potential (LWP) before and after fog events were monitored together with climate parameters. According to the data obtained during this study, S. sabulicola is able to harvest substantial amounts of water by fog catchment from nocturnal fog events. Since culms of S. sabulicola are often stiff with an upright habitus, fog harvesting occurs via stemflow that conducts water directly towards the root zone of a plant. According to this mechanism, the stem runoff is concentrated within the area of the mound. A medium-sized mound of S. sabulicola is able to collect an amount of about 4 l per fog night. This fog harvesting leads to a considerable spatial gradient of soil water content with values decreasing with increasing distance from the mound. As a result of the water input by fog drip, SWC within the mound increases significantly, particularly close to the culm bases where SWC values increased to 2.2 % after a fog event. Due to the uneven distribution of water by stemflow, SWC within a mound shows high spatial heterogeneity which is also illustrated by the numerous outliers and extreme values of SWC within the mound region. This heterogeneity is also due to the fact that several sagging leaves are always present causing fog drip which more or less irregularly scatters moisture. For bare soil outside of a mound, the water content is not substantially increased, amounting to 0.78 % on average during dry days and 0.89 % after fog events. Fog harvesting affects also leaf water potential: whereas leaf water potential declines during dry days, it remains more or less constant on days following fog events. Since mounds of S. sabulicola provide shelter and food for various other organisms such as ants and lizards, their ability for nocturnal fog catchment is of high significance for the ecosystem of the Namib dunes.
Zelen, Charles M; Serena, Thomas E; Gould, Lisa; Le, Lam; Carter, Marissa J; Keller, Jennifer; Li, William W
2016-04-01
Advanced therapies such as bioengineered skin substitutes (BSS) and dehydrated human amnion/chorion membrane (dHACM) have been shown to promote healing of chronic diabetic ulcers. An interim analysis of data from 60 patients enrolled in a prospective, randomised, controlled, parallel group, multi-centre clinical trial showed that dHACM (EpiFix, MiMedx Group Inc., Marietta, GA) is superior to standard wound care (SWC) and BSS (Apligraf, Organogenesis, Inc., Canton, MA) in achieving complete wound closure within 4-6 weeks. Rates and time to closure at a longer time interval and factors influencing outcomes remained unassessed; therefore, the study was continued in order to achieve at least 100 patients. With the larger cohort, we compare clinical outcomes at 12 weeks in 100 patients with chronic lower extremity diabetic ulcers treated with weekly applications of Apligraf (n = 33), EpiFix (n = 32) or SWC (n = 35) with collagen-alginate dressing as controls. A Cox regression was performed to analyse the time to heal within 12 weeks, adjusting for all significant covariates. A Kaplan-Meier analysis was conducted to compare time-to-heal within 12 weeks for the three treatment groups. Clinical characteristics were well matched across study groups. The proportion of wounds achieving complete closure within the 12-week study period were 73% (24/33), 97% (31/32), and 51% (18/35) for Apligraf, EpiFix and SWC, respectively (adjusted P = 0·00019). Subjects treated with EpiFix had a very significant higher probability of their wounds healing [hazard ratio (HR: 5·66; adjusted P: 1·3 x 10(-7) ] compared to SWC alone. No difference in probability of healing was observed for the Apligraf and SWC groups. Patients treated with Apligraf were less likely to heal than those treated with EpiFix [HR: 0·30; 95% confidence interval (CI): 0·17-0·54; unadjusted P: 5·8 x 10(-5) ]. Increased wound size and presence of hypertension were significant factors that influenced healing. Mean time-to-heal within 12 weeks was 47·9 days (95% CI: 38·2-57·7) with Apligraf, 23·6 days (95% CI: 17·0-30·2) with EpiFix group and 57·4 days (95%CI: 48·2-66·6) with the SWC alone group (adjusted P = 3·2 x 10(-7) ). Median number of grafts used per healed wound were six (range 1-13) and 2·5 (range 1-12) for the Apligraf and EpiFix groups, respectively. Median graft cost was $8918 (range $1,486-19,323) per healed wound for the Apligraf group and $1,517 (range $434-25,710) per healed wound in the EpiFix group (P < 0·0001). These results provide further evidence of the clinical and resource utilisation superiority of EpiFix compared to Apligraf for the treatment of lower extremity diabetic wounds. © 2015 The Authors. International Wound Journal published by Medicalhelplines.com Inc and John Wiley & Sons Ltd.
The New Era in Operational Forecasting
NASA Astrophysics Data System (ADS)
Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Carlson, H. C.; Gardner, L. C.; Scherliess, L.; Zhu, L.; Eccles, J. V.; Rice, D. D.; Bouwer, D.; Bailey, J. J.; Knipp, D. J.; Blake, J. B.; Rex, J.; Fuschino, R.; Mertens, C. J.; Gersey, B.; Wilkins, R.; Atwell, W.
2012-12-01
Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere, thermosphere, and even troposphere are key regions that are affected. The Utah State University (USU) Space Weather Center (SWC) and Space Environment Technologies (SET) are developing and producing commercial space weather applications. Key systems for providing timely information about the effects of space weather are SWC's Global Assimilation of Ionospheric Measurements (GAIM) system, SET's Magnetosphere Alert and Prediction System (MAPS), and SET's Automated Radiation Measurements for Aviation Safety (ARMAS) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Ionosonde data from several dozen global stations is ingested every 15 minutes to improve the vertical profiles within GAIM. These operational runs enable the reporting of global radio high frequency (HF) signal strengths and near vertical incidence skywave (NVIS) maps used by amateur radio operators and emergency responders via the http://q-upnow.com website. MAPS provides a forecast Dst index out to 6 days through the data-driven Anemomilos algorithm. Anemomilos uses observational proxies for the magnitude, location, and velocity of solar ejecta events. This forecast index is used by satellite operations to characterize upcoming geomagnetic storms, for example. ARMAS is demonstrating a prototype flight of microdosimeters on aircraft to capture the "weather" of the radiation environment for air-crew and passenger safety. It assimilates real-time radiation dose and dose rate data into the global NAIRAS radiation system to correct the global climatology for more accurate radiation fields along flight tracks. This team also provides the space weather smartphone app called SpaceWx for iPhone, iPad, iPod, and Android for professional users and public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example, as well as global NVIS maps. We describe recent forecasting advances for moving space weather information through automated systems into operational, derivative products for communications, aviation, and satellite operations uses.
NASA Astrophysics Data System (ADS)
Liu, Zhenchen; Lu, Guihua; He, Hai; Wu, Zhiyong; He, Jian
2017-11-01
Seasonal pluvial-drought transition processes are unique natural phenomena. To explore possible mechanisms, we considered Southwest China (SWC) as the study region and comprehensively investigated the temporal evolution or spatial patterns of large-scale and regional atmospheric variables with the simple method of Standardized Anomalies (SA). Some key procedures and results include the following: (1) Because regional atmospheric variables are more directly responsible for the transition processes, we investigate it in detail. The temporal evolution of net vertical integral water vapor flux (net VIWVF) across SWC, together with vertical SA-based patterns of regional horizontal divergence (D) and vertical motion (ω), coincides well with pluvial-drought transition processes. (2) With respect to large-scale circulation patterns, a well-organized Eurasian (EU) Pattern is one important feature during the pluvial-drought transitions over SWC. (3) Based on these large-scale and regional atmospheric anomalous features, relevant SA-based indices were built, to explore the possibility of simulating drought development using previous pluvial anomalies. As a whole, simulated drought development only with SA-based indices of large-scale circulation patterns does not perform well. Further, it can be improved a lot when SA-based indices of regional D and net VIWVF are introduced. (4) In addition, the potential drought prediction using pluvial anomalies, together with the deep understanding of physical mechanisms responsible for pluvial-drought transitions, need to be further explored.
C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland.
Morgan, Jack A; LeCain, Daniel R; Pendall, Elise; Blumenthal, Dana M; Kimball, Bruce A; Carrillo, Yolima; Williams, David G; Heisler-White, Jana; Dijkstra, Feike A; West, Mark
2011-08-03
Global warming is predicted to induce desiccation in many world regions through increases in evaporative demand. Rising CO(2) may counter that trend by improving plant water-use efficiency. However, it is not clear how important this CO(2)-enhanced water use efficiency might be in offsetting warming-induced desiccation because higher CO(2) also leads to higher plant biomass, and therefore greater transpirational surface. Furthermore, although warming is predicted to favour warm-season, C(4) grasses, rising CO(2) should favour C(3), or cool-season plants. Here we show in a semi-arid grassland that elevated CO(2) can completely reverse the desiccating effects of moderate warming. Although enrichment of air to 600 p.p.m.v. CO(2) increased soil water content (SWC), 1.5/3.0 °C day/night warming resulted in desiccation, such that combined CO(2) enrichment and warming had no effect on SWC relative to control plots. As predicted, elevated CO(2) favoured C(3) grasses and enhanced stand productivity, whereas warming favoured C(4) grasses. Combined warming and CO(2) enrichment stimulated above-ground growth of C(4) grasses in 2 of 3 years when soil moisture most limited plant productivity. The results indicate that in a warmer, CO(2)-enriched world, both SWC and productivity in semi-arid grasslands may be higher than previously expected.
National Stormwater Calculator
EPA’s National Stormwater Calculator (SWC) is a desktop application that estimates the annual amount of rainwater and frequency of runoff from a specific site anywhere in the United States (including Puerto Rico).
Soil conservation in Burkina Faso: is international cooperation effective?
NASA Astrophysics Data System (ADS)
Angeluccetti, Irene; Coviello, Velio; Grimaldi, Stefania; Vezza, Paolo; Koussubé, Alain
2017-04-01
Challenges related to Soil and Water Conservation (SWC) have been documented in Burkina Faso for many decades so far. The ever-growing population of this country, a landlocked desertification-prone one, is daily facing the visible impact of increasingly intense rainfall and concentrated rainy days. Agricultural soil erosion and reservoir siltation are two of the main issues affecting Burkina Faso subsistence agriculture sector, whose revenues largely contribute to people's income. From the sixties onwards locally-developed SWC techniques (e.g. permeable rock dams and gabion check dams) have been widely, though geographically variably, employed in the country. The effectiveness of these techniques in locally increasing soil moisture and reducing soil erosion is well proven, while their long term effect in decreasing the reservoir siltation is still under debate and shall be addressed with a whole-catchment approach often overlooked by international donors. This research aims to analyze the history of the use of these techniques by reviewing the results of several cooperation projects that dealt with the implementation of nearly 200 conservation works. These case studies are representative of 5 out of 12 regions of Burkina Faso and span over two decades. Local people levels of (i) awareness, (ii) technique appropriation, (iii) involvement and the degree of (iv) effectiveness and (v) maintenance of these SWC works have been taken into account. The analysis of the afore-mentioned five indicators let the authors draw a list of features that are needed for this kind of projects to be successful in the SWC domain. Moreover the differences that exist between the approach to the community-works, normally employed for SWC realizations, of different ethnical groups is highlighted. The degree of degradation of the environment also plays an important role in the involvement of the local community together with the familiarity of the population with these techniques. For instance in the South-Western region these techniques were applied for the first time by one of the project here analyzed, leading to mixed results that strongly depended on villages ethnical composition. Indeed, some of these projects proved unsuccessful for these techniques not being enough rooted in the local habits or for the lack of environmental local organizations to serve as means to gain the trust of local people. The latter conclusion is partially related to the undeniable perturbation that the international cooperation introduced by trying to "institutionalize" traditional practices. The history of the burkinabé tradition of kombi-naam (i.e. literally "power of the youngsters") and the evolution of these farmers organizations for them to later become partners of international NGOs, is quite explicative of the well-developed dynamics between donors and beneficiaries that can currently be observed.
Stormwater Calculator (SWC) webinar
Jason Berner presents EPA’s National Stormwater Calculator developed to help support local, state and national stormwater management objectives and regulatory efforts to reduce runoff using green infrastructure practices as low impact development controls.
Mii, Shinsuke; Tanaka, Kiyoshi; Kyuragi, Ryoichi; Ishimura, Hiroshi; Yasukawa, Shinsuke; Guntani, Atsushi; Kawakubo, Eisuke
2017-05-01
A long period is generally required for ischemic ulcer to heal after revascularization. The strategy of postoperative wound care can affect wound healing. This study was conducted to investigate the degree to which aggressive wound care (AWC) by a team of multidisciplinary specialists actually shortens the time to wound healing and increases the rate of wound healing in limbs undergoing surgical bypass for ischemic tissue loss in a real clinical setting. A total of consecutive 126 patients undergoing infrainguinal bypass for tissue loss from April 2011 to March 2015 were reviewed. Prior to March 2013, standard wound care (SWC) including typical daily dressing change with disinfection and irrigation, occasional surgical debridement, and negative pressure wound therapy (when necessary) was performed by vascular surgeons. Thereafter, in addition to SWC, AWC including intense daily bedside surgical debridement under a sciatic nerve block by an anesthesiologist and active skin grafting by a dermatologist, if necessary, was performed. Wound healing and major amputation were defined as the end points. The 1-year outcomes of the 2 groups were calculated using the Kaplan-Meier method and compared, and the significant predictors of each outcome were determined by a Cox proportional hazards analysis. The wound healing of the AWC group was superior to that of the SWC group (AWC versus SWC, 1-year wound healing rate: 92% vs. 80%; mean wound healing time: 48 days vs. 82 days; P = 0.011), and no significant difference between the 2 regimens in the freedom from major amputation was observed. AWC, Rutherford 5, no wound infection, normal serum albumin, direct angiosome, and cilostazol use were significant predictors of wound healing, and female gender and no cilostazol use were significant predictors of major amputation by a multivariate analysis. Aggressive wound care by the team consisting of multidisciplinary specialists remarkably shortened the time to wound healing and increased the rate of wound healing within 1 year. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yao, Chaolong; Luo, Zhicai
2015-12-01
The water resources crisis is intensifying in Southwest China (SWC), which includes the world's largest continuous coverage of karst landforms, due to recent severe drought events. However, because of the special properties of karstic water system, such as strong heterogeneity, monitoring the variation of karstic water resources at large scales remains still difficult. Satellite gravimetry has emerged as an effective tool for investigating the global and regional water cycles. In this study, we used GRACE (Gravity Recovery and Climate Experiment) data from January 2003 to January 2013 to investigate karstic water storage variability over the karst region of SWC. We assessed the impacts of the recent severe droughts on karst water resources, including two heavy droughts in September 2010 to May 2010 and August 2011 to January 2012. Results show a slightly water increase tend during the studied period, but these two severe droughts have resulted in significant water depletion in the studied karst region. The latter drought during 2011 and 2012 caused more water deficits than that of the drought in 2010. Strong correlation between the variations of GRACE-based total water storage and precipitation suggests that climate change is the main driving force for the significant water absent over the studied karst region. As the world's largest continuous coverage karst aquifer, the karst region of SWC offers an example of GRACE applications to a karst system incisively and will benefit for water management from a long-term perspective in karst systems throughout the world.
Influence of stand density on soil CO2 efflux for a Pinus densiflora forest in Korea.
Noh, Nam Jin; Son, Yowhan; Lee, Sue Kyoung; Yoon, Tae Kyung; Seo, Kyung Won; Kim, Choonsig; Lee, Woo-Kyun; Bae, Sang Won; Hwang, Jaehong
2010-07-01
We investigated the influence of stand density [938 tree ha(-1) for high stand density (HD), 600 tree ha(-1) for medium stand density (MD), and 375 tree ha(-1) for low stand density (LD)] on soil CO(2) efflux (R (S)) in a 70-year-old natural Pinus densiflora S. et Z. forest in central Korea. Concurrent with R (S) measurements, we measured litterfall, total belowground carbon allocation (TBCA), leaf area index (LAI), soil temperature (ST), soil water content (SWC), and soil nitrogen (N) concentration over a 2-year period. The R (S) (t C ha(-1) year(-1)) and leaf litterfall (t C ha(-1) year(-1)) values varied with stand density: 6.21 and 2.03 for HD, 7.45 and 2.37 for MD, and 6.96 and 2.23 for LD, respectively. In addition, R (S) was correlated with ST (R (2) = 0.77-0.80, P < 0.001) and SWC (R (2) = 0.31-0.35, P < 0.001). It appeared that stand density influenced R (S) via changes in leaf litterfall, LAI and SWC. Leaf litterfall (R (2) = 0.71), TBCA (R (2) = 0.64-0.87), and total soil N contents in 2007 (R (2) = 0.94) explained a significant amount of the variance in R (S) (P < 0.01). The current study showed that stand density is one of the key factors influencing R (S) due to the changing biophysical and environmental factors in P. densiflora.
ARMAS and NAIRAS Comparisons of Radiation at Aviation Altitudes
NASA Astrophysics Data System (ADS)
Bell, L. D.
2015-12-01
Space Environment Technologies and the Space Weather Center (SWC) at Utah State University are deploying and obtaining effective dose rate radiation data from dosimeters flown on research aircraft. This project is called Automated Radiation Measurements for Aerospace Safety (ARMAS). Through several dozen flights since 2013 the ARMAS project has successfully demonstrated the operation of a micro-dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from galactic cosmic rays (GCR's) and solar energetic particles (SEP's). Space weather effects upon the near Earth environment are to dynamic changes in the energy transfer process from the Sun's photons, particles, and fields. The coupling between the solar and galactic high-energy particles, and atmospheric regions can significantly affect human tissue and the aircrafts technology as a result of radiation exposure. We describe and compare the types of radiation we have been measuring with the NAIRAS global climatological model as it relates to human tissue susceptibility and as a source at different altitude regions.
NASA Astrophysics Data System (ADS)
Obereder, Eva Maria; Wakolbinger, Stefanie; Guzmán, Gema; Strohmeier, Stefan; Demelash, Nigus; Gomez, José Alfonso; Klik, Andreas
2016-04-01
Ethiopia is one of the poorest countries of the word, with over 85 % of total population dependent from agriculture. Massive deforestation in the past and missing soil and water conservation (SWC) measures cause severe soil erosion problems in the northern highlands of Ethiopia. Different SWC methods are supposed to prevent ongoing land degradation, which is triggered by rainfall driven soil erosion in the Ethiopian agricultural lands. Common technologies for soil and water conservation are stone bunds, which reduce surface runoff and sediment loss. In June 2015 two field experiments were set up in the Gumara-Maksegnit watershed in Northern Ethiopia. The objective of this study was to evaluate the impact of graded stone bunds on surface runoff and sediment yield by using conventional and tracing approaches. Three consecutive runoff plots of 20 x 4 m length and width, respectively were established along the maximum slope direction. Each one was separated to the downstream one by a stone bund. The experimental setup allowed the measurement of surface runoff along each stone bund and the measurement of overflow over the lowest stone bund. To assess the pathway and the spatial distribution of the sediments a different tracer (Magnetite, Hematite and Goethite) was applied in a 40 cm wide strip at the top of each one of the plots. The second tracer experiment was conducted on the same hillslope. It consisted of a 20 m long hillslope without borders in which a 4 m long and 40 cm wide Magnetite strip was placed at the top. At the end of August 2015 soil samples of 0-2 cm depth were taken in a 1.5 x 1.5 m grid within the area of the hillslope. Soil samples parallel to the stone bund (above and underneath) were taken along 16 m to assess the soil movement/deposition. Tracer concentrations of soil and sediment samples in both trials were analysed. Runoff and sediment were collected in weekly intervals from July to September. Runoff and erosion data, as well as the evaluation of the tracer experiments are presented. Preliminary results give an insight of the spatial pattern of sediment flow paths and accumulation areas to understand sediment dynamics within these systems. Gained knowledge on erosion processes provides information about the efficiency of the stone bunds as a SWC measure, very useful to optimize their design which affect indirectly to soil fertility and therefore to crop yield.
EPA's National Stormwater Calculator (Poster)
This poster will demonstrate how EPA's National Stormwater Calculator works. The National Stormwater Calculator (SWC) estimates the amount of stormwater runoff generated from a site under different development and control scenarios over a long period of historical rainfall. The a...
[Heavy episodic drinking, cannabis use and unsafe sex among university students].
Moure-Rodríguez, Lucía; Doallo, Sonia; Juan-Salvadores, Pablo; Corral, Montserrat; Cadaveira, Fernando; Caamaño-Isorna, Francisco
To determine the incidence of unsafe sex among university students and its association with heavy episodic drinking (HED) and cannabis use. A cohort study was carried out from 2005 to 2011 among university students of the Compostela Cohort (n=517). HED was measured using the third question of the Alcohol Use Disorders Identification Test (AUDIT). Unsafe sex was considered to be sex under the influence of alcohol (SUA) and sex without a condom (SWC). Logistic regression models were created. The incidence of SUA was 40.9% for women and 53.0% for men, while the SWC incidence ranged from 13.7% for women to 25.7% for men. HED and cannabis use were associated with SUA in both women (OR=2.08, 95% CI: 1.03-4.21; OR=2.78, 95%CI: 1.57-4.92) and men (OR=4.74 (95%CI: 1.49-15.09; OR=4.37, 95%CI: 1.17- 16.36). Moreover, cannabis use in women was associated with SWC (OR=2.96, 95%CI: 1.52-5.75). The population attributable fractions of SUA for HED were 24.7% and 52.9% for women and men, respectively. HED and cannabis use represent a public health problem due to their association with a variety of problems, including engagement in unsafe sex. Our results suggest that a significant proportion of unsafe sex could be avoided by reducing this consumption pattern of alcohol. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.
Improving the Signal-To-Noise Ratio When Monitoring Countermovement Jump Performance.
Kennedy, Rodney A; Drake, David
2018-05-08
Kennedy, RA and Drake, D. Improving the signal-to-noise ratio when monitoring countermovement jump performance. J Strength Cond Res XX(X): 000-000, 2018-Countermovement jump (CMJ) performance has been routinely used to monitor neuromuscular status. However, the protocol used to establish the criterion score is not well documented. The purpose of this study was to examine how the protocol used would influence of the sensitivity of CMJ variables in rugby union players. Fifteen male (age: 19.7 ± 0.5 years) rugby union players performed 8 CMJs on 2 occasions, separated by 7 days. The between-session coefficient of variation (CV) was calculated using 2 techniques for treating multiple trials, the average, and the trial with the best jump height (JH), and then compared with the smallest worthwhile change (SWC). The signal-to-noise ratio was measured as the group mean change in a variable divided by the CV. Using the average value across multiple trials is superior to the best trial method, based on lower CVs for all variables. Only the average performance across 6 or more trials was classified as ideal (CV < 0.5 × SWC) for peak velocity (PV). In addition, the signal-to-noise ratio for peak concentric power (PCP), PV, and JH were classified as good, irrespective of the treatment method. Although increasing the number of trials can reduce the random error, it may be pragmatic to simply take the average from 2 to 3 trials, facilitating a CV < SWC for PV, PCP, and JH. Due to its simplicity, JH may be considered the principal variable to monitor neuromuscular fatigue.
The state of knowledge on technologies and their use for fall detection: A scoping review.
Lapierre, N; Neubauer, N; Miguel-Cruz, A; Rios Rincon, A; Liu, L; Rousseau, J
2018-03-01
Globally, populations are aging with increasing life spans. The normal aging process and the resulting disabilities increase fall risks. Falls are an important cause of injury, loss of independence and institutionalization. Technologies have been developed to detect falls and reduce their consequences but their use and impact on quality of life remain debatable. Reviews on fall detection technologies exist but are not extensive. A comprehensive literature review on the state of knowledge of fall detection technologies can inform research, practice, and user adoption. To examine the extent and the diversity of current technologies for fall detection in older adults. A scoping review design was used to search peer-reviewed literature on technologies to detect falls, published in English, French or Spanish since 2006. Data from the studies were analyzed descriptively. The literature search identified 3202 studies of which 118 were included for analysis. Ten types of technologies were identified ranging from wearable (e.g., inertial sensors) to ambient sensors (e.g., vision sensors). Their Technology Readiness Level was low (mean 4.54 SD 1.25; 95% CI [4.31, 4.77] out of a maximum of 9). Outcomes were typically evaluated on technological basis and in controlled environments. Few were evaluated in home settings or care units with older adults. Acceptability, implementation cost and barriers were seldom addressed. Further research should focus on increasing Technology Readiness Levels of fall detection technologies by testing them in real-life settings with older adults. Copyright © 2017 Elsevier B.V. All rights reserved.
Determining RUSLE P-factors for stonebunds and trenches in rangeland and cropland, Northern Ethiopia
NASA Astrophysics Data System (ADS)
Taye, Gebeyehu; Poesen, Jean; Vanmaercke, Matthias; Van Wesemael, Bas; Tesfay, Samuel; Teka, Daniel; Nyssen, Jan; Deckers, Jozef; Haregeweyn, Nigussie
2017-04-01
The implementation of soil and water conservation (SWC) measures in the Ethiopian highlands is a top priority to reduce soil erosion rates and to enhance the sustainability of agroecosystem. Nonetheless, the effectiveness of many of these measures for different hillslope and land use conditions remains currently poorly understood. As a result, the overall effects of these measures at regional or catchment scale remain hard to quantify. This study addresses this knowledge gap by determining the cover-management (C) and support practice (P) factors of the Revised Universal Soil Loss Equation (RUSLE), for commonly used SWC measures in semi-arid environments (i.e. stone bunds, trenches and a combination of both). Calculations were based on soil loss data collected with runoff plots in Tigray, northern Ethiopia (i.e. 21 runoff plots of 600 to 1000 m2, monitored during 2010, 2011 and 2012). The runoff plots were installed in rangeland and cropland sites corresponding to a gentle (5%), medium (12%) and steep (16%) slope gradients. The C and P factors of the RUSLE were calculated following the recommended standard procedures. Results show that the C-factor for rangeland ranges from 0.31 to 0.98 and from 0.06 to 0.39 for cropland. For rangeland, this large variability is due to variations in vegetation cover caused by grazing. In cropland, C-factors vary with tillage practices and crop types. The calculated P-factors ranged from 0.32 to 0.74 for stone bunds, from 0.07 to 0.65 for trenches and from 0.03 to 0.22 for a combination of both stone bunds and trenches. This variability is partly due to variations in the density of the implemented measures in relation to land use (cropland vs rangeland) and slope angles. However, also annual variations in P factor values are highly significant. Especially trenches showed a very significant decline of effectiveness over time, which is attributable to their reduced static storage capacity as a result of sediment deposition (e.g. for trenches in rangeland: 0.07-0.13 in 2010 to 0.37-0.65 in 2012). Hence, the results of this work may not only help in better modelling and quantifying the average long-term impacts of SWC measures over larger areas, but also show the importance of considering temporal variations of the effectiveness of SWC measures.
NASA Astrophysics Data System (ADS)
Avery, William Alexander; Finkenbiner, Catherine; Franz, Trenton E.; Wang, Tiejun; Nguy-Robertson, Anthony L.; Suyker, Andrew; Arkebauer, Timothy; Muñoz-Arriola, Francisco
2016-09-01
The need for accurate, real-time, reliable, and multi-scale soil water content (SWC) monitoring is critical for a multitude of scientific disciplines trying to understand and predict the Earth's terrestrial energy, water, and nutrient cycles. One promising technique to help meet this demand is fixed and roving cosmic-ray neutron probes (CRNPs). However, the relationship between observed low-energy neutrons and SWC is affected by local soil and vegetation calibration parameters. This effect may be accounted for by a calibration equation based on local soil type and the amount of vegetation. However, determining the calibration parameters for this equation is labor- and time-intensive, thus limiting the full potential of the roving CRNP in large surveys and long transects, or its use in novel environments. In this work, our objective is to develop and test the accuracy of globally available datasets (clay weight percent, soil bulk density, and soil organic carbon) to support the operability of the roving CRNP. Here, we develop a 1 km product of soil lattice water over the continental United States (CONUS) using a database of in situ calibration samples and globally available soil taxonomy and soil texture data. We then test the accuracy of the global dataset in the CONUS using comparisons from 61 in situ samples of clay percent (RMSE = 5.45 wt %, R2 = 0.68), soil bulk density (RMSE = 0.173 g cm-3, R2 = 0.203), and soil organic carbon (RMSE = 1.47 wt %, R2 = 0.175). Next, we conduct an uncertainty analysis of the global soil calibration parameters using a Monte Carlo error propagation analysis (maximum RMSE ˜ 0.035 cm3 cm-3 at a SWC = 0.40 cm3 cm-3). In terms of vegetation, fast-growing crops (i.e., maize and soybeans), grasslands, and forests contribute to the CRNP signal primarily through the water within their biomass and this signal must be accounted for accurate estimation of SWC. We estimated the biomass water signal by using a vegetation index derived from MODIS imagery as a proxy for standing wet biomass (RMSE < 1 kg m-2). Lastly, we make recommendations on the design and validation of future roving CRNP experiments.
NASA Astrophysics Data System (ADS)
Gebler, S.; Hendricks Franssen, H.-J.; Kollet, S. J.; Qu, W.; Vereecken, H.
2017-04-01
The prediction of the spatial and temporal variability of land surface states and fluxes with land surface models at high spatial resolution is still a challenge. This study compares simulation results using TerrSysMP including a 3D variably saturated groundwater flow model (ParFlow) coupled to the Community Land Model (CLM) of a 38 ha managed grassland head-water catchment in the Eifel (Germany), with soil water content (SWC) measurements from a wireless sensor network, actual evapotranspiration recorded by lysimeters and eddy covariance stations and discharge observations. TerrSysMP was discretized with a 10 × 10 m lateral resolution, variable vertical resolution (0.025-0.575 m), and the following parameterization strategies of the subsurface soil hydraulic parameters: (i) completely homogeneous, (ii) homogeneous parameters for different soil horizons, (iii) different parameters for each soil unit and soil horizon and (iv) heterogeneous stochastic realizations. Hydraulic conductivity and Mualem-Van Genuchten parameters in these simulations were sampled from probability density functions, constructed from either (i) soil texture measurements and Rosetta pedotransfer functions (ROS), or (ii) estimated soil hydraulic parameters by 1D inverse modelling using shuffle complex evolution (SCE). The results indicate that the spatial variability of SWC at the scale of a small headwater catchment is dominated by topography and spatially heterogeneous soil hydraulic parameters. The spatial variability of the soil water content thereby increases as a function of heterogeneity of soil hydraulic parameters. For lower levels of complexity, spatial variability of the SWC was underrepresented in particular for the ROS-simulations. Whereas all model simulations were able to reproduce the seasonal evapotranspiration variability, the poor discharge simulations with high model bias are likely related to short-term ET dynamics and the lack of information about bedrock characteristics and an on-site drainage system in the uncalibrated model. In general, simulation performance was better for the SCE setups. The SCE-simulations had a higher inverse air entry parameter resulting in SWC dynamics in better correspondence with data than the ROS simulations during dry periods. This illustrates that small scale measurements of soil hydraulic parameters cannot be transferred to the larger scale and that interpolated 1D inverse parameter estimates result in an acceptable performance for the catchment.
Global, real-time ionosphere specification for end-user communication and navigation products
NASA Astrophysics Data System (ADS)
Tobiska, W.; Carlson, H. C.; Schunk, R. W.; Thompson, D. C.; Sojka, J. J.; Scherliess, L.; Zhu, L.; Gardner, L. C.
2010-12-01
Space weather’s effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is a developer and producer of commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Using a Kalman filter, the background output from the physics-based Ionosphere Forecast Model (IFM) is adjusted to more accurately represent the actual ionosphere. An improved ionosphere leads to more useful derivative products. For example, SWC runs operational code, using GAIM, to calculate and report the global radio high frequency (HF) signal strengths for 24 world cities. This product is updated every 15 minutes at http://spaceweather.usu.edu and used by amateur radio operators. SWC also developed and provides through Apple iTunes the widely used real-time space weather iPhone app called SpaceWx for public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example. This smart phone app is tip of the “iceberg” of automated systems that provide space weather data; it permits instant understanding of the environment surrounding Earth as it dynamically changes. SpaceWx depends upon a distributed network that connects satellite and ground-based data streams with algorithms to quickly process the measurements into geophysical data, incorporate those data into operational space physics models, and finally generate visualization products such as the images, plots, and alerts that can be viewed on SpaceWx. In a real sense, the space weather community is now able to transition research models into operations through “proofing” products such as real-time disseminated of information through smart phones. We describe upcoming improvements for moving space weather information through automated systems into final derivative products.
Science in Action: National Stormwater Calculator (SWC)
Stormwater discharges continue to cause impairment of our Nation’s waterbodies. Regulations that require the retention and/or treatment of frequent, small storms that dominate runoff volumes and pollutant loads are becoming more common. EPA has developed the National Stormwater C...
Great Lakes Sedimentation Workshop: US EPA National Stormwater Calculator
Stormwater discharges continue to cause impairment of our Nation’s waterbodies. In order to reduce impairment, EPA has developed the National Stormwater Calculator (SWC) to help support local, state, and national stormwater management objectives and regulatory efforts to re...
National Stormwater Calculator: Low Impact Development Stormwater Control Cost Estimation
Stormwater discharges continue to cause impairment of our Nation’s waterbodies. EPA has developed the National Stormwater Calculator (SWC) to help support local, state, and national stormwater management objectives to reduce runoff through infiltration and retention using green i...
Hawley-Hague, Helen; Boulton, Elisabeth; Hall, Alex; Pfeiffer, Klaus; Todd, Chris
2014-06-01
Over recent years a number of Information and Communication Technologies (ICTs) have emerged aiming at falls prevention, falls detection and alarms for use in case of fall. There are also a range of ICT interventions, which have been created or adapted to be pro-active in preventing falls, such as those which provide strength and balance training to older adults in the prevention of falls. However, there are issues related to the adoption and continued use of these technologies by older adults. This review provides an overview of older adults' perceptions of falls technologies. We undertook systematic searches of MEDLINE, EMBASE, CINAHL and PsychINFO, COMPENDEX and the Cochrane database. Key search terms included 'older adults', 'seniors', 'preference', 'attitudes' and a wide range of technologies, they also included the key word 'fall*'. We considered all studies that included older adults aged 50 and above. Studies had to include technologies related specifically to falls prevention, detection or monitoring. The Joanna Briggs Institute (JBI) tool and the Quality Assessment Tool for Quantitative Studies by the Effective Public Health Practice Project (EPHPP) were used. We identified 76 potentially relevant papers. Some 21 studies were considered for quality review. Twelve qualitative studies, three quantitative studies and 6 mixed methods studies were included. The literature related to technologies aimed at predicting, monitoring and preventing falls suggest that intrinsic factors related to older adults' attitudes around control, independence and perceived need/requirements for safety are important for their motivation to use and continue using technologies. Extrinsic factors such as usability, feedback gained and costs are important elements which support these attitudes and perceptions. Positive messages about the benefits of falls technologies for promoting healthy active ageing and independence are critical, as is ensuring that the technologies are simple, reliable and effective and tailored to individual need. The technologies need to be clearly described in research and older peoples' attitudes towards different sorts of technologies must be clarified if specific recommendations are to be made. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Novel sensing technology in fall risk assessment in older adults: a systematic review.
Sun, Ruopeng; Sosnoff, Jacob J
2018-01-16
Falls are a major health problem for older adults with significant physical and psychological consequences. A first step of successful fall prevention is to identify those at risk of falling. Recent advancement in sensing technology offers the possibility of objective, low-cost and easy-to-implement fall risk assessment. The objective of this systematic review is to assess the current state of sensing technology on providing objective fall risk assessment in older adults. A systematic review was conducted in accordance to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement (PRISMA). Twenty-two studies out of 855 articles were systematically identified and included in this review. Pertinent methodological features (sensing technique, assessment activities, outcome variables, and fall discrimination/prediction models) were extracted from each article. Four major sensing technologies (inertial sensors, video/depth camera, pressure sensing platform and laser sensing) were reported to provide accurate fall risk diagnostic in older adults. Steady state walking, static/dynamic balance, and functional mobility were used as the assessment activity. A diverse range of diagnostic accuracy across studies (47.9% - 100%) were reported, due to variation in measured kinematic/kinetic parameters and modelling techniques. A wide range of sensor technologies have been utilized in fall risk assessment in older adults. Overall, these devices have the potential to provide an accurate, inexpensive, and easy-to-implement fall risk assessment. However, the variation in measured parameters, assessment tools, sensor sites, movement tasks, and modelling techniques, precludes a firm conclusion on their ability to predict future falls. Future work is needed to determine a clinical meaningful and easy to interpret fall risk diagnosis utilizing sensing technology. Additionally, the gap between functional evaluation and user experience to technology should be addressed.
Does smart home technology prevent falls in community-dwelling older adults: a literature review.
Pietrzak, Eva; Cotea, Cristina; Pullman, Stephen
2014-01-01
Falls in older Australians are an increasingly costly public health issue, driving the development of novel modes of intervention, especially those that rely on computer-driven technologies. The aim of this paper was to gain an understanding of the state of the art of research on smart homes and computer-based monitoring technologies to prevent and detect falls in the community-dwelling elderly. Cochrane, Medline, Embase and Google databases were searched for articles on fall prevention in the elderly using pre-specified search terms. Additional papers were searched for in the reference lists of relevant reviews and by the process of 'snowballing'. Only studies that investigated outcomes related to falling such as fall prevention and detection, change in participants' fear of falling and attitudes towards monitoring technology were included. Nine papers fulfilled the inclusion criteria. The following outcomes were observed: (1) older adults' attitudes towards fall detectors and smart home technology are generally positive; (2) privacy concerns and intrusiveness of technology were perceived as less important to participants than their perception of health needs and (3) unfriendly and age-inappropriate design of the interface may be one of the deciding factors in not using the technology. So far, there is little evidence that using smart home technology may assist in fall prevention or detection, but there are some indications that it may increase older adults' confidence and sense of security, thus possibly enabling aging in place.
Hamm, Julian; Money, Arthur G; Atwal, Anita; Paraskevopoulos, Ioannis
2016-02-01
In recent years, an ever increasing range of technology-based applications have been developed with the goal of assisting in the delivery of more effective and efficient fall prevention interventions. Whilst there have been a number of studies that have surveyed technologies for a particular sub-domain of fall prevention, there is no existing research which surveys the full spectrum of falls prevention interventions and characterises the range of technologies that have augmented this landscape. This study presents a conceptual framework and survey of the state of the art of technology-based fall prevention systems which is derived from a systematic template analysis of studies presented in contemporary research literature. The framework proposes four broad categories of fall prevention intervention system: Pre-fall prevention; Post-fall prevention; Fall injury prevention; Cross-fall prevention. Other categories include, Application type, Technology deployment platform, Information sources, Deployment environment, User interface type, and Collaborative function. After presenting the conceptual framework, a detailed survey of the state of the art is presented as a function of the proposed framework. A number of research challenges emerge as a result of surveying the research literature, which include a need for: new systems that focus on overcoming extrinsic falls risk factors; systems that support the environmental risk assessment process; systems that enable patients and practitioners to develop more collaborative relationships and engage in shared decision making during falls risk assessment and prevention activities. In response to these challenges, recommendations and future research directions are proposed to overcome each respective challenge. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
National Stormwater Calculator User's Guide – VERSION 1.1
This document is the user's guide for running EPA's National Stormwater Calculator (http://www.epa.gov/nrmrl/wswrd/wq/models/swc/). The National Stormwater Calculator is a simple to use tool for computing small site hydrology for any location within the US.
NASA Astrophysics Data System (ADS)
Msita, H. B.; Kimaro, D. N.; Mtakwa, P. W.; Msanya, B. M.; Dondyene, S.; Poesen, J.; Deckers, J.
2012-04-01
Soil erosion by water is rampant mainly in mountainous areas of Tanzania leading to environmental hazards, low land productivity, low income and increased poverty. Despite the severity of the soil erosion problem, there is not much quantitative data on the erosion effects and effectiveness of indigenous soil and water conservation (SWC) measures. The consequence is that indigenous knowledge in SWC planning is ignored. The on-farm field experiment was conducted for three years in Migambo village, Lushoto district in Tanzania, to determine the effectiveness of improved Miraba (IM) an indigenous soil erosion control measure on reducing runoff and soil loss. Management practices were tested viz: control that is without any soil conservation measure (C), Miraba alone (M), Miraba with farmyard manure and mulching (MFM) replicated three times in CRD setting. Maize (Zea mays) and beans (Phaseolus vulgaris) were used as test crops, due to their importance as food crops and the high erosion rates on fields with these crops. The crops were planted in rotation, maize and beans in short and long rains respectively. Gerlach troughs and runoff plots were used to evaluate the physical effectiveness. Results show significant effects of IM against control on crop yields, soil loss, surface runoff and moisture retention. MFM is the most effective measure in reducing soil and water losses followed by MF and M. The results further showed that these management practices can be implemented to reduce soil erosion and nutrient losses in the study area and areas with similar ecological setting. To facilitate adoption of these practices further research works is recommended for identifying economically feasible indigenous SWC measures under different biophysical and socio-economic conditions.
Different dynamic resting state fMRI patterns are linked to different frequencies of neural activity
Thompson, Garth John; Pan, Wen-Ju
2015-01-01
Resting state functional magnetic resonance imaging (rsfMRI) results have indicated that network mapping can contribute to understanding behavior and disease, but it has been difficult to translate the maps created with rsfMRI to neuroelectrical states in the brain. Recently, dynamic analyses have revealed multiple patterns in the rsfMRI signal that are strongly associated with particular bands of neural activity. To further investigate these findings, simultaneously recorded invasive electrophysiology and rsfMRI from rats were used to examine two types of electrical activity (directly measured low-frequency/infraslow activity and band-limited power of higher frequencies) and two types of dynamic rsfMRI (quasi-periodic patterns or QPP, and sliding window correlation or SWC). The relationship between neural activity and dynamic rsfMRI was tested under three anesthetic states in rats: dexmedetomidine and high and low doses of isoflurane. Under dexmedetomidine, the lightest anesthetic, infraslow electrophysiology correlated with QPP but not SWC, whereas band-limited power in higher frequencies correlated with SWC but not QPP. Results were similar under isoflurane; however, the QPP was also correlated to band-limited power, possibly due to the burst-suppression state induced by the anesthetic agent. The results provide additional support for the hypothesis that the two types of dynamic rsfMRI are linked to different frequencies of neural activity, but isoflurane anesthesia may make this relationship more complicated. Understanding which neural frequency bands appear as particular dynamic patterns in rsfMRI may ultimately help isolate components of the rsfMRI signal that are of interest to disorders such as schizophrenia and attention deficit disorder. PMID:26041826
NASA Astrophysics Data System (ADS)
Koyama, A.; Webb, C. T.; Johnson, N. G.; Brewer, P. E.; von Fischer, J. C.
2015-12-01
Methane uptake rates are known to have temporal variation in response to changing soil moisture levels. However, the relative importance of soil diffusivity vs. methanotroph physiology has not been disentangled to date. Testing methanotroph physiology in the laboratory can lead to misleading results due to changes in the fine-scale habitat where methanotrophs reside. To assay the soil moisture sensitivity of methanotrophs under field conditions, we studied 22 field plots scattered across eight Great Plains grassland sites that differed in precipitation regime and soil moisture, making ca. bi-weekly measures during the growing seasons over three years. Quantification of methanotroph activity was achieved from chamber-based measures of methane uptake coincident with SF6-derived soil diffusivity, and interpretation in a reaction-diffusion model. At each plot, we also measured soil water content (SWC), soil temperature and inorganic nitrogen (N) contents. We also assessed methanotroph community composition via 454 sequencing of the pmoA gene. Statistical analyses showed that methanotroph activity had a parabolic response with SWC (concave down), and significant differences in the shape of this response among sites. Moreover, we found that the SWC at peak methanotroph activity was strongly correlated with mean annual precipitation (MAP) of the site. The sequence data revealed distinct composition patterns, with structure that was associated with variation in MAP and soil texture. These results suggest that local precipitation regime shapes methanotroph community composition, which in turn lead to unique sensitivity of methane uptake rates with soil moisture. Our findings suggest that methanotroph activity may be more accurately modeled when the biological and environmental responses are explicitly described.
NASA Astrophysics Data System (ADS)
Wang, L.; Liu, H.
2017-12-01
Alpine grasslands (alpine steppe and alpine meadow) are the main grassland types in China. Based on eddy covariance flux data from July 15, 2014, to December 31, 2015, environmental effects on water vapour and carbon dioxide exchange were analyzed over a semiarid alpine steppe (Bange, Tibet) and a humid alpine meadow (Lijiang, Yunnan) on the Tibetan Plateau. During the wet season, the evaporative fraction (EF) at Bange was strongly and linearly correlated with the soil water content (SWC) because of its sparse green grass cover. In contrast, the correlation between the EF and the SWC at Lijiang was very low because the atmosphere was close to saturation and the EF was relatively constant. Evapotranspiration (ET) at Lijiang could be predicted well by net radiation and air temperature. In the dry season, the EF at both sites decreased with the SWC. The net ecosystem exchange (NEE) at Bange was largely depressed at noon, while this phenomenon did not occur at Lijiang due to good soil water conditions. The saturated NEE at Bange was 24% of that at Lijiang. The temperature sensitivity coefficient of ecosystem respiration at Bange (1.7) was also much lower than that at Lijiang (3.4). Moreover, the annual total NEE at Lijiang from 2012 to 2015 generally decreased with the mean annual air temperature (MAT). An exception occurred in 2014, which had the highest MAT, because the GPP increased with the MAT, but became saturated due to the limit in photosynthetic capacity. The annual total GPP at Lijiang were substantially affected by the seasonal pattern of air temperature, especially in spring and autumn. This is consistent with results obtained using the homogeneity-of-slopes model.
Automated general temperature correction method for dielectric soil moisture sensors
NASA Astrophysics Data System (ADS)
Kapilaratne, R. G. C. Jeewantinie; Lu, Minjiao
2017-08-01
An effective temperature correction method for dielectric sensors is important to ensure the accuracy of soil water content (SWC) measurements of local to regional-scale soil moisture monitoring networks. These networks are extensively using highly temperature sensitive dielectric sensors due to their low cost, ease of use and less power consumption. Yet there is no general temperature correction method for dielectric sensors, instead sensor or site dependent correction algorithms are employed. Such methods become ineffective at soil moisture monitoring networks with different sensor setups and those that cover diverse climatic conditions and soil types. This study attempted to develop a general temperature correction method for dielectric sensors which can be commonly used regardless of the differences in sensor type, climatic conditions and soil type without rainfall data. In this work an automated general temperature correction method was developed by adopting previously developed temperature correction algorithms using time domain reflectometry (TDR) measurements to ThetaProbe ML2X, Stevens Hydra probe II and Decagon Devices EC-TM sensor measurements. The rainy day effects removal procedure from SWC data was automated by incorporating a statistical inference technique with temperature correction algorithms. The temperature correction method was evaluated using 34 stations from the International Soil Moisture Monitoring Network and another nine stations from a local soil moisture monitoring network in Mongolia. Soil moisture monitoring networks used in this study cover four major climates and six major soil types. Results indicated that the automated temperature correction algorithms developed in this study can eliminate temperature effects from dielectric sensor measurements successfully even without on-site rainfall data. Furthermore, it has been found that actual daily average of SWC has been changed due to temperature effects of dielectric sensors with a significant error factor comparable to ±1% manufacturer's accuracy.
Yang, Fulin; Zhang, Qiang; Wang, Runyuan; Zhou, Jing
2014-01-01
Evapotranspiration (ET) is an important component of the surface energy balance and hydrological cycle. In this study, the eddy covariance technique was used to measure ET of the semi-arid farmland ecosystem in the Loess Plateau during 2010 growing season (April to September). The characteristics and environmental regulations of ET and crop coefficient (Kc) were investigated. The results showed that the diurnal variation of latent heat flux (LE) was similar to single-peak shape for each month, with the largest peak value of LE occurring in August (151.4 W m−2). The daily ET rate of the semi-arid farmland in the Loess Plateau also showed clear seasonal variation, with the maximum daily ET rate of 4.69 mm day−1. Cumulative ET during 2010 growing season was 252.4 mm, and lower than precipitation. Radiation was the main driver of farmland ET in the Loess Plateau, which explained 88% of the variances in daily ET (p<0.001). The farmland Kc values showed the obvious seasonal fluctuation, with the average of 0.46. The correlation analysis between daily Kc and its major environmental factors indicated that wind speed (Ws), relative humidity (RH), soil water content (SWC), and atmospheric vapor pressure deficit (VPD) were the major environmental regulations of daily Kc. The regression analysis results showed that Kc exponentially decreased with Ws increase, an exponentially increased with RH, SWC increase, and a linearly decreased with VPD increase. An experiential Kc model for the semi-arid farmland in the Loess Plateau, driven by Ws, RH, SWC and VPD, was developed, showing a good consistency between the simulated and the measured Kc values. PMID:24941017
Yang, Fulin; Zhang, Qiang; Wang, Runyuan; Zhou, Jing
2014-01-01
Evapotranspiration (ET) is an important component of the surface energy balance and hydrological cycle. In this study, the eddy covariance technique was used to measure ET of the semi-arid farmland ecosystem in the Loess Plateau during 2010 growing season (April to September). The characteristics and environmental regulations of ET and crop coefficient (Kc) were investigated. The results showed that the diurnal variation of latent heat flux (LE) was similar to single-peak shape for each month, with the largest peak value of LE occurring in August (151.4 W m(-2)). The daily ET rate of the semi-arid farmland in the Loess Plateau also showed clear seasonal variation, with the maximum daily ET rate of 4.69 mm day(-1). Cumulative ET during 2010 growing season was 252.4 mm, and lower than precipitation. Radiation was the main driver of farmland ET in the Loess Plateau, which explained 88% of the variances in daily ET (p<0.001). The farmland Kc values showed the obvious seasonal fluctuation, with the average of 0.46. The correlation analysis between daily Kc and its major environmental factors indicated that wind speed (Ws), relative humidity (RH), soil water content (SWC), and atmospheric vapor pressure deficit (VPD) were the major environmental regulations of daily Kc. The regression analysis results showed that Kc exponentially decreased with Ws increase, an exponentially increased with RH, SWC increase, and a linearly decreased with VPD increase. An experiential Kc model for the semi-arid farmland in the Loess Plateau, driven by Ws, RH, SWC and VPD, was developed, showing a good consistency between the simulated and the measured Kc values.
Obtaining soil hydraulic parameters from data assimilation under different climatic/soil conditions
USDA-ARS?s Scientific Manuscript database
Obtaining reliable soil hydraulic properties is essential to correctly simulating soil water content (SWC), which is a key component of countless applications such as agricultural management, soil remediation, aquifer protection, etc. Soil hydraulic properties can be measured in the laboratory; howe...
Toolkit of Available EPA Green Infrastructure Modeling ...
This webinar will present a toolkit consisting of five EPA green infrastructure models and tools, along with communication material. This toolkit can be used as a teaching and quick reference resource for use by planners and developers when making green infrastructure implementation decisions. It can also be used for low impact development design competitions. Models and tools included: Green Infrastructure Wizard (GIWiz), Watershed Management Optimization Support Tool (WMOST), Visualizing Ecosystem Land Management Assessments (VELMA) Model, Storm Water Management Model (SWMM), and the National Stormwater Calculator (SWC). This webinar will present a toolkit consisting of five EPA green infrastructure models and tools, along with communication material. This toolkit can be used as a teaching and quick reference resource for use by planners and developers when making green infrastructure implementation decisions. It can also be used for low impact development design competitions. Models and tools included: Green Infrastructure Wizard (GIWiz), Watershed Management Optimization Support Tool (WMOST), Visualizing Ecosystem Land Management Assessments (VELMA) Model, Storm Water Management Model (SWMM), and the National Stormwater Calculator (SWC).
Technology and Teacher Preparation, 1999-2000.
ERIC Educational Resources Information Center
Lane, Sabrina, Ed.
2000-01-01
This document contains the fall 1999, fall 2000, and winter 2000 issues of "Technology and Teacher Preparation." The fall 1999 issue describes NCREL and its Higher Education Initiative; contains a faculty profile focusing on engaging science educators with technology; and describes tenth-grade students' efforts to measure the Coon River…
Concurrent temporal stability of the apparent electrical conductivity and soil water content
USDA-ARS?s Scientific Manuscript database
Knowledge of spatio-temporal soil water content (SWC) variability within agricultural fields is useful to improve crop management. Spatial patterns of soil water contents can be characterized using the temporal stability analysis, however high density sampling is required. Soil apparent electrical c...
NASA Astrophysics Data System (ADS)
Ryan, E.; Ogle, K.; Peltier, D.; Williams, D. G.; Pendall, E.
2014-12-01
The goal of this study was to quantify interannual variation of gross primary production (GPP) and evaluate potential drivers of GPP with global change using the Prairie Heating and CO2 Enrichment (PHACE) experiment in semiarid grassland in southeastern Wyoming. PHACE consists of the treatments: control, warming only, elevated CO2 (eCO2) only, eCO2 and warming, and irrigation only. We expected that GPP would be most strongly influenced by interannual variability in precipitation under all PHACE treatments, soil water availability under eCO2, and nitrogen availability. GPP data were obtained from paired measurements of net ecosystem exchange (NEE) and ecosystem respiration (Reco; GPP = Reco - NEE) made on 2-4 week intervals over six growing seasons (2007-2012). Soil temperature (T), soil water content (SWC), vapor pressure deficit (VPD), and photosynthetically active radiation (PAR) were continuously recorded at the plot (T, SWC) and site (VPD, PAR) scales. Annual, plot-level aboveground plant nitrogen content (N) was measured during peak biomass. We fit a non-linear light-response model to the GPP data within a Bayesian framework, and modeled the maximum GPP rate (Gmax) and canopy light-use efficiency (Q) as functions of N and current and antecedent SWC, T, and VPD. The model fit the GPP data well (R2 = 0.64), and regardless of the PHACE treatment the most important drivers of GPP were N (for Gmax), VPD (Gmax and Q), antecedent T (Gmax), and antecedent VPD (Q). Model simulations predicted that annual GPP increased on average by about 16% with eCO2, 14% with warming, 12% with eCO2 and warming, and 23% with irrigation. For four of the six years, annual GPP was significantly affected by either eCO2 alone or when combined with warming. The increase in annual GPP under irrigation was similar to the increase under eCO2 during a dry year (2012), but irrigation stimulated GPP to a greater degree than eCO2 during wet years (2008, 2009). Hence, increases in GPP under eCO2 appear to be indirectly due to increases in SWC, especially under dry conditions. These results suggest that future climate scenarios will lead to more productive grasslands in semiarid regions, but the overall response of the C cycle and the potential for these systems to sequester greater C will depend on the magnitude and direction of both the Reco and GPP responses.
Lu, Sen Bao; Chen, Yun Ming; Tang, Ya Kun; Wu, Xu; Wen, Jie
2017-11-01
Thermal dissipation probe (TDP) was used to continuously measure the sap flux density (F d ) of Pinus tabuliformis and Hippophae rhamnoides individuals in hilly Loess Plateau, from June to October 2015, and the environmental factors, i.e., photosynthetic active radiation (PAR), water vapor pressure deficit (VPD), and soil water content (SWC), were simultaneously monitored to clarify the difference of rainfall utilization between the two tree species in a mixed plantation. Using the methods of a Threshold-delay model, stepwise multiple regression analyses, and partial correlation analyses, this paper studied the process of F d in these two species in response to the rainfall pulses and then determined the effects of environmental factors on F d . The results showed that, with the increase of rainfall, the response percentages of F d in both P. tabuliformis and H. rhamnoides increased at first but then decreased; specifically, in the range of 0-1 mm rainfall, the F d of P. tabuliformis (-16.3%) and H. rhamnoides (-6.3%) clearly decreased; in the range of 1-5 mm rainfall, the F d of P. tabuliformis decreased (-0.4%), whereas that of H. rhamnoides significantly increased (9.0%). The lower rainfall thresholds (R L ) of F d for P. tabuliformis and H. rhamnoides were 6.4 and 1.9 mm, respectively, with a corresponding time-lag (τ) of 1.96 and 1.67 days. In the pre-rainfall period, the peak time of F d of P. tabuliformis converged upon 12:00-12:30 (70%), while the F d of H. rhamnoides peaked twice, between 10:30 and 12:00 (48%) and again between 16:00 and 16:30 (30%). In the post-rainfall period, the peak time of F d of P. tabuliformis converged upon 11:00-13:00 (40%), while that of H. rhamnoides peaked twice, between 12:00 and 13:00 (52%) and again between 16:30 and 17:00 (24%). Among the environmental factors, the rank order of factors associated with the F d of both P. tabuliformis and H. rhamnoides was PAR>VPD, before rainfall. However, the rank order of factors influencing the F d of P. tabuliformis was PAR>VPD>0-20 cm SWC (SWC 0-20 ), whereas this order was different for H. rhamnoides: SWC 0-20 >PAR >VPD, after rainfall. This mixed plantation of P. tabuliformis and H. rhamnoides trees had a high stability of water utilization.
Vandenberg, Ann E; van Beijnum, Bert-Jan; Overdevest, Vera G P; Capezuti, Elizabeth; Johnson, Theodore M
Falls remain a major geriatric problem, and the search for new solutions continues. We investigated how existing fall prevention technology was experienced within nursing home nurses' environment and workflow. Our NIH-funded study in an American nursing home was followed by a cultural learning exchange with a Dutch nursing home. We constructed two case reports from interview and observational data and compared the magnitude of falls, safety cultures, and technology characteristics and effectiveness. Falls were a high-magnitude problem at the US site, with a collectively vigilant safety culture attending to non-directional audible alarms; falls were a low-magnitude problem at the NL site which employed customizable, infrared sensors that directed text alerts to assigned staff members' mobile devices in patient-centered care culture. Across cases, 1) a coordinated communication system was essential in facilitating effective fall prevention alert response, and 2) nursing home safety culture is tightly associated with the chosen technological system. Copyright © 2016 Elsevier Inc. All rights reserved.
Permeability and selectivity of reverse osmosis membranes: correlation to swelling revisited.
Dražević, Emil; Košutić, Krešimir; Freger, Viatcheslav
2014-02-01
Membrane swelling governs both rejection of solutes and permeability of polymeric membranes, however very few data have been available on swelling in water of salt-rejecting reverse osmosis (RO) membranes. This study assesses swelling, thickness and their relation to water permeability for four commercial polyamide (PA) RO membranes (SWC4+, ESPA1, XLE and BW30) using atomic force microscopy (AFM) and attenuated total reflection Fourier transform IR spectroscopy (ATR-FTIR). ATR-FTIR offered a significantly improved estimate of the actual barrier thickness of PA, given AFM is biased by porosity ("fluffy parts") or wiggling of the active layer or presence of a coating layer. Thus obtained intrinsic permeability (permeability times thickness) and selectivity of aromatic polyamides plotted versus swelling falls well on a general trend, along with previously reported data on several common materials showing RO and NF selectivity. The observed general trend may be rationalized by viewing the polymers as a random composite medium containing molecularly small pores. The results suggest that the combination of a rigid low dielectric matrix, limiting the pore size, with multiple hydrophilic H-bonding sites may be a common feature of RO/NF membranes, allowing both high permeability and selectivity. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kitamura, Mitsuaki; Nakagawa, Yoshizumi; Nishino, Yasuto; Segawa, Susumu; Shiomoto, Akihiro
2018-03-01
Replacement of the warm water of the Soya Warm Current (SWC) and the cold water of the East Sakhalin Current (ESC) occurs seasonally along the coast of the southwestern Okhotsk Sea, and sea ice covers the surface during winter. Pseudocalanus newmani is one of the dominant copepods in coastal waters of the northern hemisphere. To better understand the population dynamics of the copepod P. newmani in coastal areas of the southwestern Okhotsk Sea, this study compared the seasonal variation in P. newmani abundance in Lagoon Notoro-ko and a coastal area of the Okhotsk Sea with regard to developmental stage. We sampled P. newmani in the lagoon, including during the ice cover season, and the coastal waters. Pseudocalanus newmani was abundant at both sites in spring. During summer-fall, adults disappeared from the populations at both sites, whereas the early developmental stages were abundant and dominated the population. Total length of adult females decreased toward summer at both sites. Pseudocalanus newmani abundance in the lagoon increased in early winter, and larger females were found in the populations at both sites. These phenomena at both sites corresponded with seasonal variation in water temperature caused by seasonal water-mass replacement and sea ice.
Follow-Up of Students Who Majored and Are Majoring in Legal Technology. Volume 10, Number 15.
ERIC Educational Resources Information Center
Hildebrandt, Sharrie; Lucas, John A.
In fall 1979, a study was conducted at William Rainey Harper College (WRHC) to determine the characteristics, attitudes, and activities of former and present students in the Legal Technology Program. All students enrolled in a selected Legal Technology course between fall 1974 and fall 1979 were included in the survey. The questionnaire solicited…
Scale issues in soil hydrology related to measurement and simulation: A case study in Colorado
USDA-ARS?s Scientific Manuscript database
State variables, such as soil water content (SWC), are typically measured or inferred at very small scales while being simulated at larger scales relevant to spatial management or hillslope areas. Thus there is an implicit spatial disparity that is often ignored. Surface runoff, on the other hand, ...
Yang, Fu-lin; Zhou, Guang-sheng; Zhang, Feng; Wang, Feng-yu; Bao, Fang; Ping, Xiao-yan
2009-12-01
Based on the meteorological and biological observation data from the temperate desert steppe ecosystem research station in Sunitezuoqi of Inner Mongolia during growth season (from May 1st to October 15th, 2008), the diurnal and seasonal characteristics of surface albedo in the steppe were analyzed, with related model constructed. In the steppe, the diurnal variation of surface albedo was mainly affected by solar altitude, being higher just after sunrise and before sunset and lower in midday. During growth season, the surface albedo was from 0.20 to 0.34, with an average of 0.25, and was higher in May, decreased in June, kept relatively stable from July to September, and increased in October. This seasonal variation was related to the phenology of canopy leaf, and affected by precipitation process. Soil water content (SWC) and leaf area index (LAI) were the key factors affecting the surface albedo. A model for the surface albedo responding to SWC and LAI was developed, which showed a good performance in consistent between simulated and observed surface albedo.
Use and clinical efficacy of standard and health information technology fall risk assessment tools.
Teh, Ruth C; Wilson, Anne; Ranasinghe, Damith; Visvanathan, Renuka
2017-12-01
To evaluate the health information technology (HIT) compared to Fall Risk for Older Persons (FROP) tool in fall risk screening. A HIT tool trial was conducted on the geriatric evaluation and management (GEM, n = 111) and acute medical units (AMU, n = 424). Health information technology and FROP scores were higher on GEM versus AMU, with no differences between people who fell and people who did not fall. Both score completion rates were similar, and their values correlated marginally (Spearman's correlation coefficient 0.33, P < 0.01). HIT and FROP scores demonstrated similar sensitivity (80 vs 82%) and specificity (32 vs 36%) for detecting hospital falls. Hospital fall rates trended towards reduction on AMU (4.20 vs 6.96, P = 0.15) and increase on GEM (10.98 vs 6.52, P = 0.54) with HIT tool implementation. Health information technology tool acceptability and scoring were comparable to FROP screening, with mixed effects on fall rate with HIT tool implementation. Clinician partnership remains key to effective tool development. © 2017 AJA Inc.
The design of a purpose-built exergame for fall prediction and prevention for older people.
Marston, Hannah R; Woodbury, Ashley; Gschwind, Yves J; Kroll, Michael; Fink, Denis; Eichberg, Sabine; Kreiner, Karl; Ejupi, Andreas; Annegarn, Janneke; de Rosario, Helios; Wienholtz, Arno; Wieching, Rainer; Delbaere, Kim
2015-01-01
Falls in older people represent a major age-related health challenge facing our society. Novel methods for delivery of falls prevention programs are required to increase effectiveness and adherence to these programs while containing costs. The primary aim of the Information and Communications Technology-based System to Predict and Prevent Falls (iStoppFalls) project was to develop innovative home-based technologies for continuous monitoring and exercise-based prevention of falls in community-dwelling older people. The aim of this paper is to describe the components of the iStoppFalls system. The system comprised of 1) a TV, 2) a PC, 3) the Microsoft Kinect, 4) a wearable sensor and 5) an assessment and training software as the main components. The iStoppFalls system implements existing technologies to deliver a tailored home-based exercise and education program aimed at reducing fall risk in older people. A risk assessment tool was designed to identify fall risk factors. The content and progression rules of the iStoppFalls exergames were developed from evidence-based fall prevention interventions targeting muscle strength and balance in older people. The iStoppFalls fall prevention program, used in conjunction with the multifactorial fall risk assessment tool, aims to provide a comprehensive and individualised, yet novel fall risk assessment and prevention program that is feasible for widespread use to prevent falls and fall-related injuries. This work provides a new approach to engage older people in home-based exercise programs to complement or provide a potentially motivational alternative to traditional exercise to reduce the risk of falling.
Evaluation of Sensor Technology to Detect Fall Risk and Prevent Falls in Acute Care.
Potter, Patricia; Allen, Kelly; Costantinou, Eileen; Klinkenberg, William Dean; Malen, Jill; Norris, Traci; O'Connor, Elizabeth; Roney, Wilhemina; Tymkew, Heidi Hahn; Wolf, Laurie
2017-08-01
Sensor technology that dynamically identifies hospitalized patients' fall risk and detects and alerts nurses of high-risk patients' early exits out of bed has potential for reducing fall rates and preventing patient harm. During Phase 1 (August 2014-January 2015) of a previously reported performance improvement project, an innovative depth sensor was evaluated on two inpatient medical units to study fall characteristics. In Phase 2 (April 2015-January 2016), a combined depth and bed sensor system designed to assign patient fall probability, detect patient bed exits, and subsequently prevent falls was evaluated. Fall detection depth sensors remained in place on two medicine units; bed sensors used to detect patient bed exits were added on only one of the medicine units. Fall rates and fall with injury rates were evaluated on both units. During Phase 2, the designated evaluation unit had 14 falls, for a fall rate of 2.22 per 1,000 patient-days-a 54.1% reduction compared with the Phase 1 fall rate. The difference in rates from Phase 1 to Phase 2 was statistically significant (z = 2.20; p = 0.0297). The comparison medicine unit had 30 falls-a fall rate of 4.69 per 1,000 patient-days, representing a 57.9% increase as compared with Phase 1. A fall detection sensor system affords a level of surveillance that standard fall alert systems do not have. Fall prevention remains a complex issue, but sensor technology is a viable fall prevention option. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.
Agegnehu, Getachew; Bass, Adrian M; Nelson, Paul N; Bird, Michael I
2016-02-01
Soil quality decline represents a significant constraint on the productivity and sustainability of agriculture in the tropics. In this study, the influence of biochar, compost and mixtures of the two on soil fertility, maize yield and greenhouse gas (GHG) emissions was investigated in a tropical Ferralsol. The treatments were: 1) control with business as usual fertilizer (F); 2) 10 t ha(-1) biochar (B)+F; 3) 25 t ha(-1) compost (Com)+F; 4) 2.5 t ha(-1) B+25 t ha(-1) Com mixed on site+F; and 5) 25 t ha(-1) co-composted biochar-compost (COMBI)+F. Total aboveground biomass and maize yield were significantly improved relative to the control for all organic amendments, with increases in grain yield between 10 and 29%. Some plant parameters such as leaf chlorophyll were significantly increased by the organic treatments. Significant differences were observed among treatments for the δ(15)N and δ(13)C contents of kernels. Soil physicochemical properties including soil water content (SWC), total soil organic carbon (SOC), total nitrogen (N), available phosphorus (P), nitrate-nitrogen (NO3(-)N), ammonium-nitrogen (NH4(+)-N), exchangeable cations and cation exchange capacity (CEC) were significantly increased by the organic amendments. Maize grain yield was correlated positively with total biomass, leaf chlorophyll, foliar N and P content, SOC and SWC. Emissions of CO2 and N2O were higher from the organic-amended soils than from the fertilizer-only control. However, N2O emissions generally decreased over time for all treatments and emission from the biochar was lower compared to other treatments. Our study concludes that the biochar and biochar-compost-based soil management approaches can improve SOC, soil nutrient status and SWC, and maize yield and may help mitigate greenhouse gas emissions in certain systems. Copyright © 2015. Published by Elsevier B.V.
Doncaster, Greg; Unnithan, Viswanath
2017-07-12
To assess the between-game variation in measures of physical performance during 11 v 11 soccer match-play, over a short period of time, in highly trained youth soccer players. A single cohort observational study design was employed. Physical match performance data were collected from 17 male, highly trained youth soccer players (age: 13.3 ± 0.4 y) over three, 2 x 20min, 11 v 11 matches. Using 10 Hz GPS, the variables selected for analyses were total distance (TD), high-speed running (HSR), very high-speed running (VHSR), number of high-speed running efforts (HSReff) and number of very high-speed running efforts (VHSReff). Match data was also separated into cumulative 5 min epochs, to identify the peak 5 min epoch and the mean of the cumulative 5 min epochs for each match. Variability was quantified using the coefficient of variation (CV), Standard error of measurement (SEM) and intra-class correlation coefficient (ICC). Between- and within-player smallest worthwhile changes (SWC) were also calculated for each variable to aid in the interpretation of the data. Analysis of the variance between games reported a low CV for TD (3.8%) but larger CVs for HSR (33.3%), HSReff (35.4%) and VHSR and VHSReff (59.6 and 57.4 %, respectively). Analysis of 5 min epochs (peak and average) found an increase in the CVs beyond that of the values reported for the whole match. Between-player SWC in high intensity physical performance data ranged from 24.7 - 42.4 %, whereas within-player SWC ranged from 1.2 - 79.9%. The between-game variability of high and very high intensity activities in youth soccer players, across three soccer matches over a short period of time (2 weeks), is relatively 'large' and specific to the individual, thus highlighting the need for caution when interpreting physical performance data between games and players.
Entopeduncular nucleus endocannabinoid system modulates sleep-waking cycle and mood in rats.
Méndez-Díaz, Mónica; Caynas-Rojas, Seraid; Arteaga Santacruz, Vianney; Ruiz-Contreras, Alejandra E; Aguilar-Roblero, Raúl; Prospéro-García, Oscar
2013-06-01
Since the pioneering work of Gadea-Ciria (Gadea-Ciria M, Stadler H, Lloyd KG, Bartholini G. Acetylcholine release within the cat striatum during the sleep-wakefulness cycle. Nature 1973; 243:518-519) indicating pointing to the involvement of acetylcholine and basal ganglia in sleep regulation; extensive literature has suggested that this brain complex participates in the control of the sleep-waking cycle (SWC). On the other hand, it has been demonstrated that the endocannabinoid system (eCBS) is prominently involved in the regulation of the SWC, mood and its related disorders. Since cannabinoid receptor 1 (CB1R) is highly expressed in basal ganglia, in particular in the entopeduncular nucleus (EP), we believe that it is important to know what the role of the EP CB1R is on SWC, depression, and anxiety. To provide insight into the role of the EP CB1R in the regulation of wakefulness (W), non-rapid eye movement sleep (NREMs) and rapid eye movement sleep (REMs), rats were recorded for 24h immediately after a single intra-EP administration of N-arachidonoylethanolamine (AEA) or 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl)pyrazole-3-carboxamide (AM251; CB1 inverse agonist). Likewise, the effect of these drugs on anxiety and depression was tested by means of the elevated plus maze (EPM) and forced swim test (FST), respectively. Results demonstrate that AEA increases NREMs expression, while AM251 increases W and decreases both NREMs and REMs. In addition, administration of AM251 decreases the time rats spent in the open arms and increases immobility time in the FST. It seems that activation of the CB1R in the EP is important to induce sleep, while its blockade promotes W, as well as anxiety and depression, somewhat resembling insomnia in humans. These results suggest that the EP CB1R is modulating sleep and mood. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Jie; Xiao, Guoliang; Kuzyakov, Yakov; Jenerette, G. Darrel; Ma, Ying; Liu, Wei; Wang, Zhengfeng; Shen, Weijun
2017-05-01
The frequency of dry-season droughts and wet-season storms has been predicted to increase in subtropical areas in the coming decades. Since subtropical forest soils are significant sources of N2O and NO3-, it is important to understand the features and determinants of N transformation responses to the predicted precipitation changes. A precipitation manipulation field experiment was conducted in a subtropical forest to reduce dry-season precipitation and increase wet-season precipitation, with annual precipitation unchanged. Net N mineralization, net nitrification, N2O emission, nitrifying (bacterial and archaeal amoA) and denitrifying (nirK, nirS and nosZ) gene abundance, microbial biomass carbon (MBC), extractable organic carbon (EOC), NO3-, NH4+ and soil water content (SWC) were monitored to characterize and explain soil N transformation responses. Dry-season precipitation reduction decreased net nitrification and N mineralization rates by 13-20 %, while wet-season precipitation addition increased both rates by 50 %. More than 20 % of the total variation of net nitrification and N mineralization could be explained by microbial abundance and SWC. Notably, archaeal amoA abundance showed the strongest correlation with net N transformation rates (r ≥ 0.35), suggesting the critical role of archaeal amoA abundance in determining N transformations. Increased net nitrification in the wet season, together with large precipitation events, caused substantial NO3- losses via leaching. However, N2O emission decreased moderately in both dry and wet seasons due to changes in nosZ gene abundance, MBC, net nitrification and SWC (decreased by 10-21 %). We conclude that reducing dry-season precipitation and increasing wet-season precipitation affect soil N transformations through altering functional microbial abundance and MBC, which are further affected by changes in EOC and NH4+ availabilities.
López-Serrano, F R; Rubio, E; Dadi, T; Moya, D; Andrés-Abellán, M; García-Morote, F A; Miettinen, H; Martínez-García, E
2016-12-15
The ecosystem recovery after wildfire and thinning practices are both key processes that have great potential to influence fluxes and storage of carbon within Mediterranean semiarid ecosystems. In this study, started 7years after a wildfire, soil respiration (SR) patterns measured from 2008 to 2010 were compared between an unmanaged-undisturbed mature forest stand (UB site) and a naturally regenerated post-wildfire stand (B site) in a Mediterranean mixed forest in Spain. The disturbed stand included a control zone (unthinned forest, BUT site) and a thinned zone (BT site). Our results indicated that SR was lower at naturally regenerated after fire sites (BUT and BT) than at unburnt one. Soil under the canopy layer of pine and oak trees exhibited higher SR rates than bare or herbaceous layer soils, regardless of the site. The effect of thinning was only manifest, with a significant increase of SR, during the 1st year after thinning practices. SR showed a clear soil temperature-dependent seasonal pattern, which was strongly modulated by soil water content (SWC), especially in summer. Site-specific polynomial regression models were defined to describe SR responses, being mainly controlled by both soil temperature (Ts) and SWC at UB site, or Ts at burnt sites. The sensitivity of SR rate to Ts variations (Q 10 ) ranged between 0.20 and 6.89, with mean annual values varying between 0.92 and 1.35. Q 10 values were higher at BT than at UB-BUT sites. The results revealed a significant, non-linear dependence, of Q 10 on both Ts and SWC at UB site, and on Ts at both burnt sites. This study contributes to (i) improve the understanding of how natural recovery and management practices affect soil respiration in a Mediterranean forest during their early stages after fire disturbance and (ii) highlight the importance of Q 10 values <1 which emphasizes drought stress effect on SR temperature sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Stormwater discharges continue to cause impairment of our Nation’s waterbodies. In order to reduce impairment, EPA has developed the National Stormwater Calculator (SWC) to help support local, state, and national stormwater management objectives and regulatory efforts to re...
Executive Headteachers: What's in a Name? Executive Summary
ERIC Educational Resources Information Center
Theobald, Katy; Lord, Pippa
2016-01-01
Executive headteachers (EHTs) are becoming increasingly prevalent as the self-improving school system matures; there are over 620 EHTs in the school workforce today; and the number recorded in the School Workforce Census (SWC) has increased by 240 per cent between 2010 and 2014. The role is still evolving locally and nationally and, as EHTs take…
NASA Astrophysics Data System (ADS)
Gibson, Marcus
2018-01-01
In reply to the news story "UK Catapults fall short, claims review of technology centres", which describes an independent review that criticized the management of the UK's network of technology innovation centres.
Automated Technology for In-home Fall Risk Assessment and Detection Sensor System
Rantz, Marilyn J.; Skubic, Marjorie; Abbott, Carmen; Galambos, Colleen; Pak, Youngju; Ho, Dominic K.C.; Stone, Erik E.; Rui, Liyang; Back, Jessica; Miller, Steven J.
2013-01-01
Falls are a major problem for older adults. A continuous, unobtrusive, environmentally mounted in-home monitoring system that automatically detects when falls have occurred or when the risk of falling is increasing could alert health care providers and family members so they could intervene to improve physical function or mange illnesses that are precipitating falls. Researchers at the University of Missouri (MU)Center for Eldercare and Rehabilitation Technology are testing such sensor systems for fall risk assessment and detection in older adults’ apartments in a senior living community. Initial results comparing ground truth fall risk assessment data and GAITRite gait parameters with gait parameters captured from Mircosoft Kinect and Pulse-Dopplar radar are reported. PMID:23675644
New methods for fall risk prediction.
Ejupi, Andreas; Lord, Stephen R; Delbaere, Kim
2014-09-01
Accidental falls are the leading cause of injury-related death and hospitalization in old age, with over one-third of the older adults experiencing at least one fall or more each year. Because of limited healthcare resources, regular objective fall risk assessments are not possible in the community on a large scale. New methods for fall prediction are necessary to identify and monitor those older people at high risk of falling who would benefit from participating in falls prevention programmes. Technological advances have enabled less expensive ways to quantify physical fall risk in clinical practice and in the homes of older people. Recently, several studies have demonstrated that sensor-based fall risk assessments of postural sway, functional mobility, stepping and walking can discriminate between fallers and nonfallers. Recent research has used low-cost, portable and objective measuring instruments to assess fall risk in older people. Future use of these technologies holds promise for assessing fall risk accurately in an unobtrusive manner in clinical and daily life settings.
Choi, Young-Seon; Lawler, Erin; Boenecke, Clayton A; Ponatoski, Edward R; Zimring, Craig M
2011-12-01
This paper reports a review that assessed the effectiveness and characteristics of fall prevention interventions implemented in hospitals. A multi-systemic fall prevention model that establishes a practical framework was developed from the evidence. Falls occur through complex interactions between patient-related and environmental risk factors, suggesting a need for multifaceted fall prevention approaches that address both factors. We searched Medline, CINAHL, PsycInfo and the Web of Science databases for references published between January 1990 and June 2009 and scrutinized secondary references from acquired papers. Due to the heterogeneity of interventions and populations, we conducted a quantitative systematic review without a meta-analysis and used a narrative summary to report findings. From the review, three distinct characteristics of fall prevention interventions emerged: (1) the physical environment, (2) the care process and culture and (3) technology. While clinically significant evidence shows the efficacy of environment-related interventions in reducing falls and fall-related injuries, the literature identified few hospitals that had introduced environment-related interventions in their multifaceted fall intervention strategies. Using the multi-systemic fall prevention model, hospitals should promote a practical strategy that benefits from the collective effects of the physical environment, the care process and culture and technology to prevent falls and fall-related injuries. By doing so, they can more effectively address the various risk factors for falling and therefore, prevent falls. Studies that test the proposed model need to be conducted to establish the efficacy of the model in practice. © 2011 The Authors. Journal of Advanced Nursing © 2011 Blackwell Publishing Ltd.
Shanlei Sun; Haishan Chen; Weimin Ju; Guojie Wang; Ge Sun; Jin Huang; Hedi Ma; Chujie Gao; Wenjian Hua; Guixia Yan
2016-01-01
Under the exacerbation of climate change, cli· mate extreme events. especially for drought, happened frequently and intensively across the globe with greater spatial differences. We used the Standardized Precipitation-Evapotranspiration Index computed from the routine meteorological observations at 269 sites in Southwest China (SWC) to study the drought characteristics...
Executive Headteachers: What's in a Name? A Full Report of the Findings
ERIC Educational Resources Information Center
Lord, Pippa; Wespieser, Karen; Harland, Jennie; Fellows, Tom; Theobald, Katy
2016-01-01
Executive headteachers (EHTs) are becoming increasingly prevalent as the self-improving school system matures; there are over 620 EHTs in the school workforce today; and the number recorded in the School Workforce Census (SWC) has increased by 240 per cent between 2010 and 2014. The role is still evolving locally and nationally and, as EHTs take…
Wang, Shaoying; Zhang, Yu; Lü, Shihua; Su, Peixi; Shang, Lunyu; Li, Zhaoguo
2016-06-01
The eddy covariance method was used to measure net ecosystem CO2 exchange (NEE) between atmosphere and an alpine meadow ecosystem in the eastern Tibetan Plateau of China in 2010. Our results show that photosynthesis was reduced under low air temperature (T a), high vapor pressure deficit (VPD), and medium soil water content (SWC) conditions, when compared to that under other T a (i.e., medium and high), VPD (i.e., low and medium), and SWC (i.e., low and high) conditions. The apparent temperature sensitivity of ecosystem respiration (Q 10) declined with progressing phenology during the growing season and decreased with an increase of soil temperature (T s) during the non-growing season. Increased ecosystem respiration (R eco) was measured during spring soil thawing. By the path analysis, T a, T s, and VPD were the main control factors of CO2 exchange at 30-min scale in this alpine meadow. Integrated NEE, gross primary production (GPP), and R eco over the measured year were -156.4, 1164.3, and 1007.9 g C m(-2), respectively. Zoige alpine meadow was a medium carbon sink based on published data for grassland ecosystems.
Changes in "hotter and wetter" events across China
NASA Astrophysics Data System (ADS)
Liu, C.; Deng, H.; Lu, Y.; Qiu, X.; Wang, D.
2017-12-01
As global warming intensifies, efforts to understand the changes in extreme climate events have increased in recent years. A combined analysis of the changes in extreme temperature and precipitation events is presented in this paper. Using observational data from 1961 to 2015, a set of hotter and wetter (HW) events is defined, and we examine the changes in these events across China. The results show that more HW events occur in Central and Eastern China than in other subregions, especially in South China (SC). The rate of increase in HW events is 2.7 and 1.9 per decade in SC and East China (EC), respectively. In China, most HW events occurred in the last 20 years of the study period, indicating that China entered a period of high-frequency HW events. Indeed, the range in anomalies in the torrential rain days is greater than that of the high-temperature days in Northwest China (NWC), Central China (CC), and EC after the mid- to late 1990s. The opposite pattern is found in Northeast China (NEC), Southwest China-region 1 (SWC1), Southwest China-region 2 (SWC2), and SC. Finally, the increase in HW events in most regions of China is closely associated with warming.
Wu, Huawu; Li, Jing; Li, Xiao-Yan; He, Bin; Liu, Jinzhao; Jiang, Zhiyun; Zhang, Cicheng
2018-01-01
Understanding species-specific changes in water-use patterns under recent climate scenarios is necessary to predict accurately the responses of seasonally dry ecosystems to future climate. In this study, we conducted a precipitation manipulation experiment to investigate the changes in water-use patterns of two coexisting species (Achnatherum splendens and Allium tanguticum) to alterations in soil water content (SWC) resulting from increased and decreased rainfall treatments. The results showed that the leaf water potential (Ψ) of A. splendens and A. tanguticum responded to changes in shallow and middle SWC at both the control and treatment plots. However, A. splendens proportionally extracted water from the shallow soil layer (0-10cm) when it was available but shifted to absorbing deep soil water (30-60 cm) during drought. By contrast, the A. tanguticum did not differ significantly in uptake depth between treatment and control plots but entirely depended on water from shallow soil layers. The flexible water-use patterns of A.splendens may be a key factor facilitating its dominance and it better acclimates the recent climate change in the alpine grassland community around Qinghai Lake.
Li, Xiao-Yan; He, Bin; Liu, Jinzhao; Jiang, Zhiyun; Zhang, Cicheng
2018-01-01
Understanding species-specific changes in water-use patterns under recent climate scenarios is necessary to predict accurately the responses of seasonally dry ecosystems to future climate. In this study, we conducted a precipitation manipulation experiment to investigate the changes in water-use patterns of two coexisting species (Achnatherum splendens and Allium tanguticum) to alterations in soil water content (SWC) resulting from increased and decreased rainfall treatments. The results showed that the leaf water potential (Ψ) of A. splendens and A. tanguticum responded to changes in shallow and middle SWC at both the control and treatment plots. However, A. splendens proportionally extracted water from the shallow soil layer (0–10cm) when it was available but shifted to absorbing deep soil water (30–60 cm) during drought. By contrast, the A. tanguticum did not differ significantly in uptake depth between treatment and control plots but entirely depended on water from shallow soil layers. The flexible water-use patterns of A.splendens may be a key factor facilitating its dominance and it better acclimates the recent climate change in the alpine grassland community around Qinghai Lake. PMID:29677195
Choi, Sang D; Guo, Liangjie; Kang, Donghun; Xiong, Shuping
2017-11-01
Training balance and promoting physical activities in the elderly can contribute to fall-prevention. Due to the low adherence of conventional physical therapy, fall interventions through exergame technologies are emerging. The purpose of this review study is to synthesize the available research reported on exergame technology and interactive interventions for fall prevention in the older population. Twenty-five relevant papers retrieved from five major databases were critically reviewed and analyzed. Results showed that the most common exergaming device for fall intervention was Nintendo Wii, followed by Xbox Kinect. Even though the exergame intervention protocols and outcome measures for assessing intervention effectiveness varied, the accumulated evidences revealed that exergame interventions improved physical or cognitive functions in the elderly. However, it remains inconclusive whether or not the exergame-based intervention for the elderly fall prevention is superior to conventional physical therapy and the effect mechanism of the exergaming on elderly's balance ability is still unclear. Copyright © 2016 Elsevier Ltd. All rights reserved.
Williams, Veronika; Victor, Christina R; McCrindle, Rachel
2013-01-01
Background. Falls and fear of falling present a major risk to older people as both can affect their quality of life and independence. Mobile assistive technologies (AT) fall detection devices may maximise the potential for older people to live independently for as long as possible within their own homes by facilitating early detection of falls. Aims. To explore the experiences and perceptions of older people and their carers as to the potential of a mobile falls detection AT device. Methods. Nine focus groups with 47 participants including both older people with a range of health conditions and their carers. Interviews were audio recorded, transcribed verbatim, and thematically analysed. Results. Four key themes were identified relating to participants' experiences and perceptions of falling and the potential impact of a mobile falls detector: cause of falling, falling as everyday vulnerability, the environmental context of falling, and regaining confidence and independence by having a mobile falls detector. Conclusion. The perceived benefits of a mobile falls detector may differ between older people and their carers. The experience of falling has to be taken into account when designing mobile assistive technology devices as these may influence perceptions of such devices and how older people utilise them.
Warren D. Devine; Constance A. Harrington
2006-01-01
We evaluated the effects of vegetation control and organic matter (OM) removal on soil water content (SWC) in a Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantation from age 3 through age 5. Treatments were presence versus absence of vegetation control through year 5 and bole only harvest of the previous stand versus total-tree harvest of...
NASA Astrophysics Data System (ADS)
Metzen, D.; Sheridan, G. J.; Benyon, R. G.; Lane, P. N. J.
2015-12-01
In topographically complex terrain, the interaction of aspect-dependent solar exposure and drainage-position-dependent flow accumulation results in energy and water partitioning that is highly spatially variable. Catchment scale rainfall-runoff relationships are dependent on these smaller scale spatial patterns. However, there remains considerable uncertainty as to how to represent this smaller scale variability within lumped parameter, catchment scale rainfall-runoff models. In this study we aim to measure and represent the key interactions between aridity and drainage position in complex terrain to inform the development of simple catchment-scale hydrologic model parameters. Six measurement plots were setup on opposing slopes in an east-west facing eucalypt forest headwater catchment. The field sites are spanning three drainage positions with two contrasting aridity indices each, while minimizing variations in other factors, e.g. geology and weather patterns. Sapflow, soil water content (SWC) and throughfall were continuously monitored on two convergent hillslopes with similar size (1.3 and 1.6ha) but contrasting aspects (north and south). Soil depth varied from 0.6m at the topslope to >2m at the bottomslope positions. Maximum tree heights ranged from 16.2m to 36.9m on the equator-facing slope and from 30.1m to 45.5m on the pole-facing slope, with height decreasing upslope on both aspects. Two evapotranspiration (ET) patterns emerged in relation to aridity and drainage position. On the equator-facing slope (AI~ 2.1), seasonal understorey and overstorey ET patterns were in sync, whereas on the pole-facing slope (AI~1.5) understorey ET showed larger seasonal fluctuations than overstorey ET. Seasonal ET patterns and competition between soil evaporation and root water uptake lead to distinct differences in profile SWC across the sites, likely caused by depletion from different depths. Topsoil water content on equator-facing slopes was generally lower and responded more rapidly to rainfall pulses than on pole-facing slopes. Future work will focus on how observed ET and SWC patterns in relation to aridity and drainage position can be implemented into a simplistic modelling framework.
Shubert, Tiffany E; Basnett, Jeanna; Chokshi, Anang; Barrett, Mark; Komatireddy, Ravi
2015-11-05
Falls in older adults are a significant public health issue. Interventions have been developed and proven effective to reduce falls in older adults, but these programs typically last several months and can be resource intensive. Virtual rehabilitation technologies may offer a solution to bring these programs to scale. Off-the-shelf and custom exergames have demonstrated to be a feasible adjunct to rehabilitation with older adults. However, it is not known if older adults will be able or willing to use a virtual rehabilitation technology to participate in an evidence-based fall prevention program. To have the greatest impact, virtual rehabilitation technologies need to be acceptable to older adults from different backgrounds and level of fall risk. If these technologies prove to be a feasible option, they offer a new distribution channel to disseminate fall prevention programs. Stand Tall (ST) is a virtual translation of the Otago Exercise Program (OEP), an evidence-based fall prevention program. Stand Tall was developed using the Virtual Exercise Rehabilitation Assistant (VERA) software, which uses a Kinect camera and a laptop to deliver physical therapy exercise programs. Our purpose in this pilot study was to explore if ST could be a feasible platform to deliver the OEP to older adults from a variety of fall risk levels, education backgrounds, and self-described level of computer expertise. Adults age 60 and over were recruited to participate in a one-time usability study. The study included orientation to the program, navigation to exercises, and completion of a series of strength and balance exercises. Quantitative analysis described participants and the user experience. A diverse group of individuals participated in the study. Twenty-one potential participants (14 women, 7 men) met the inclusion criteria. The mean age was 69.2 (± 5.8) years, 38% had a high school education, 24% had a graduate degree, and 66% classified as "at risk for falls". Eighteen participants agreed they would like to use ST to help improve their balance, and 17 agreed or strongly agreed they would feel confident using the system in either the senior center or the home. Thirteen participants felt confident they could actually set up the system in their home. The mean System Usability Scale (SUS) score was 65.5 ± 21.2 with a range of 32.5 to 97.5. Ten participants scored ST as an above average usability experience compared to other technologies and 5 participants scored a less than optimal experience. Exploratory analysis revealed no significant relationships between user experience, education background, self-described computer experience, and fall risk. Results support the virtual delivery of the OEP by a Kinect camera and an avatar may be acceptable to older adults from a variety of backgrounds. Virtual technologies, like Stand Tall, could offer an efficient and effective approach to bring evidence-based fall prevention programs to scale to address the problem of falls and fall-related injuries. Next steps include determining if similar or better outcomes are achieved by older adults using the virtual OEP, Stand Tall, compared to the standard of care. ©Tiffany E Shubert, Jeanna Basnett, Anang Chokshi, Mark Barrett, Ravi Komatireddy. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 05.11.2015.
Educational Technology in Public School Districts: Fall 2008. First Look. NCES 2010-003
ERIC Educational Resources Information Center
Gray, Lucinda; Lewis, Laurie
2009-01-01
This report provides national data on the availability and use of educational technology in public school districts during fall 2008. The data are the results of a national district-level survey that is one of a set that includes district, school, and teacher surveys on educational technology. Every year between 1994 and 2005 (with the exception…
Educational Technology in U.S. Public Schools: Fall 2008. First Look. NCES 2010-034
ERIC Educational Resources Information Center
Gray, Lucinda; Thomas, Nina; Lewis, Laurie
2010-01-01
This report provides national data on the availability and use of educational technology in public elementary and secondary schools during fall 2008. The data are the results of a national school-level survey that is one of a set that includes district, school, and teacher surveys on educational technology. Every year between 1994 and 2005 (with…
2011-01-01
The study discussed the synthesis of silica sol using the sol-gel method, doped with two different amounts of Cu nanoparticles. Cotton fabric samples were impregnated by the prepared sols and then dried and cured. To block hydroxyl groups, some samples were also treated with hexadecyltrimethoxysilane. The average particle size of colloidal silica nanoparticles were measured by the particle size analyzer. The morphology, roughness, and hydrophobic properties of the surface fabricated on cotton samples were analyzed and compared via the scanning electron microscopy, the transmission electron microscopy, the scanning probe microscopy, with static water contact angle (SWC), and water shedding angle measurements. Furthermore, the antibacterial efficiency of samples was quantitatively evaluated using AATCC 100 method. The addition of 0.5% (wt/wt) Cu into silica sol caused the silica nanoparticles to agglomerate in more grape-like clusters on cotton fabrics. Such fabricated surface revealed the highest value of SWC (155° for a 10-μl droplet) due to air trapping capability of its inclined structure. However, the presence of higher amounts of Cu nanoparticles (2% wt/wt) in silica sol resulted in the most slippery smooth surface on cotton fabrics. All fabricated surfaces containing Cu nanoparticles showed the perfect antibacterial activity against both of gram-negative and gram-positive bacteria. PMID:22085594
Wu, Junen; Liu, Wenjie; Chen, Chunfeng
2016-01-01
Rubber-based (Hevea brasiliensis) agroforestry systems are regarded as the best way to improve the sustainability of rubber monocultures, but few reports have examined water use in such systems. Accordingly, we tested whether interplanting facilitates water utilization of rubber trees using stable isotope (δD, δ18O, and δ13C) methods and by measuring soil water content (SWC), shoot potential, and leaf C and N concentrations in a Hevea-Flemingia agroforestry system in Xishuangbanna, southwestern China. We detected a big difference in the utilization of different soil layer water between both species in this agroforestry system, as evidenced by the opposite seasonal fluctuations in both δD and δ18O in stem water. However, similar predawn shoot potential of rubber trees at both sites demonstrating that the interplanted species did not affect the water requirements of rubber trees greatly. Rubber trees with higher δ13C and more stable physiological indexes in this agroforestry system showed higher water use efficiency (WUE) and tolerance ability, and the SWC results suggested this agroforestry is conductive to water conservation. Our results clearly indicated that intercropping legume plants with rubber trees can benefit rubber trees own higher N supply, increase their WUE and better utilize soil water of each soil layer. PMID:26781071
Wu, Junen; Liu, Wenjie; Chen, Chunfeng
2016-01-19
Rubber-based (Hevea brasiliensis) agroforestry systems are regarded as the best way to improve the sustainability of rubber monocultures, but few reports have examined water use in such systems. Accordingly, we tested whether interplanting facilitates water utilization of rubber trees using stable isotope (δD, δ(18)O, and δ(13)C) methods and by measuring soil water content (SWC), shoot potential, and leaf C and N concentrations in a Hevea-Flemingia agroforestry system in Xishuangbanna, southwestern China. We detected a big difference in the utilization of different soil layer water between both species in this agroforestry system, as evidenced by the opposite seasonal fluctuations in both δD and δ(18)O in stem water. However, similar predawn shoot potential of rubber trees at both sites demonstrating that the interplanted species did not affect the water requirements of rubber trees greatly. Rubber trees with higher δ(13)C and more stable physiological indexes in this agroforestry system showed higher water use efficiency (WUE) and tolerance ability, and the SWC results suggested this agroforestry is conductive to water conservation. Our results clearly indicated that intercropping legume plants with rubber trees can benefit rubber trees own higher N supply, increase their WUE and better utilize soil water of each soil layer.
NASA Astrophysics Data System (ADS)
Van Den Broeke, Matthew S.; Kalin, Andrew; Alavez, Jose Abraham Torres; Oglesby, Robert; Hu, Qi
2017-11-01
In climate modeling studies, there is a need to choose a suitable land surface model (LSM) while adhering to available resources. In this study, the viability of three LSM options (Community Land Model version 4.0 [CLM4.0], Noah-MP, and the five-layer thermal diffusion [Bucket] scheme) in the Weather Research and Forecasting model version 3.6 (WRF3.6) was examined for the warm season in a domain centered on the central USA. Model output was compared to Parameter-elevation Relationships on Independent Slopes Model (PRISM) data, a gridded observational dataset including mean monthly temperature and total monthly precipitation. Model output temperature, precipitation, latent heat (LH) flux, sensible heat (SH) flux, and soil water content (SWC) were compared to observations from sites in the Central and Southern Great Plains region. An overall warm bias was found in CLM4.0 and Noah-MP, with a cool bias of larger magnitude in the Bucket model. These three LSMs produced similar patterns of wet and dry biases. Model output of SWC and LH/SH fluxes were compared to observations, and did not show a consistent bias. Both sophisticated LSMs appear to be viable options for simulating the effects of land use change in the central USA.
Agriculture at the Edge: Landscape Variability of Soil C Stocks and Fluxes in the Tropical Andes
NASA Astrophysics Data System (ADS)
Riveros-Iregui, D. A.; Peña, C.
2015-12-01
Paramos, or tropical alpine grasslands occurring right above the forest tree-line (2,800 - 4,700 m), are among the most transformed landscapes in the humid tropics. In the Tropical Andes, Paramos form an archipelago-like pattern from Northern Colombia to Central Peru that effectively captures atmospheric moisture originated in the Amazon-Orinoco basins, while marking the highest altitude capable of sustaining vegetation growth (i.e., 'the edge'). This study investigates the role of land management on mediating soil carbon stocks and fluxes in Paramo ecosystems of the Eastern Cordillera of Colombia. Observations were collected at a Paramo site strongly modified by land use change, including active potato plantations, pasture, tillage, and land abandonment. Results show that undisturbed Paramos soils have high total organic carbon (TOC), high soil water content (SWC), and low soil CO2 efflux (RS) rates. However, Paramo soils that experience human intervention show lower TOC, higher and more variable RS rates, and lower SWC. This study demonstrates that changes in land use in Paramos affect differentially the accumulation and exchange of soil carbon with the atmosphere and offers implications for management and protection strategies of what has been deemed the fastest evolving biodiversity ecosystem in the world.
REFINE (Reducing Falls in In-patient Elderly)--a randomised controlled trial.
Vass, Catherine D; Sahota, Opinder; Drummond, Avril; Kendrick, Denise; Gladman, John; Sach, Tracey; Avis, Mark; Grainge, Matthew
2009-09-10
Falls in hospitals are common, resulting in injury and anxiety to patients, and large costs to NHS organisations. More than half of all in-patient falls in elderly people in acute care settings occur at the bedside, during transfers or whilst getting up to go to the toilet. In the majority of cases these falls are unwitnessed. There is insufficient evidence underpinning the effectiveness of interventions to guide clinical staff regarding the reduction of falls in the elderly inpatient. New patient monitoring technologies have the potential to offer advances in falls prevention. Bedside sensor equipment can alert staff, not in the immediate vicinity, to a potential problem and avert a fall. However no studies utilizing this assistive technology have demonstrated a significant reduction in falls rates in a randomised controlled trial setting. The research design is an individual patient randomised controlled trial of bedside chair and bed pressure sensors, incorporating a radio-paging alerting mode to alert staff to patients rising from their bed or chair, across five acute elderly care wards in Nottingham University Hospitals NHS Trust. Participants will be randomised to bedside chair and bed sensors or to usual care (without the use of sensors). The primary outcome is the number of bedside in-patient falls. The REFINE study is the first randomised controlled trial of bedside pressure sensors in elderly inpatients in an acute NHS Trust. We will assess whether falls can be successfully and cost effectively reduced using this technology, and report on its acceptability to both patients and staff.
This report documents the activities performed during and the results obtained from the arsenic removal treatment technology demonstration project at Oregon Institute of Technology (OIT) at Klamath Falls, OR. The objectives of the project were to evaluate: (1) the effectiveness...
Taylor-Piliae, Ruth E; Mohler, M Jane; Najafi, Bijan; Coull, Bruce M
2016-12-01
Stroke survivors often have persistent neural deficits related to motor function and sensation, which increase their risk of falling, most of which occurs at home or in community settings. The use of wearable technology to monitor fall risk and gait in stroke survivors may prove useful in enhancing recovery and/or preventing injuries. Determine the feasibility of using wearable technology (PAMSys™) to objectively monitor fall risk and gait in home and community settings in stroke survivors. In this feasibility study, we used the PAMSys to identify fall risk indicators (postural transitions: duration in seconds, and number of unsuccessful attempts), and gait (steps, speed, duration) for 48 hours during usual daily activities in stroke survivors (n = 10) compared to age-matched controls (n = 10). A questionnaire assessed device acceptability. Stroke survivors mean age was 70 ± 8 years old, were mainly Caucasian (60%) women (70%), and not significantly different than the age-matched controls (all P-values >0.20). Stroke survivors (100%) reported that the device was comfortable to wear, didn't interfere with everyday activities, and were willing to wear it for another 48 hours. None reported any difficulty with the device while sleeping, removing/putting back on for showering or changing clothes. When compared to controls, stroke survivors had significantly worse fall risk indicators and walked less (P < 0.05). Stroke survivors reported high acceptability of 48 hours of continuous PAMSys monitoring. The use of in-home wearable technology may prove useful in monitoring fall risk and gait in stroke survivors, potentially enhancing recovery.
Razjouyan, Javad; Grewal, Gurtej Singh; Rishel, Cindy; Parthasarathy, Sairam; Mohler, Jane; Najafi, Bijan
2017-07-01
Growing concern for falls in acute care settings could be addressed with objective evaluation of fall risk. The current proof-of-concept study evaluated the feasibility of using a chest-worn sensor during hospitalization to determine fall risk. Physical activity and heart rate variability (HRV) of 31 volunteers admitted to a 29-bed adult inpatient unit were recorded using a single chest-worn sensor. Sensor data during the first 24-hour recording were analyzed. Participants were stratified using the Hendrich II fall risk assessment into high and low fall risk groups. Univariate analysis revealed age, daytime activity, nighttime side lying posture, and HRV were significantly different between groups. Results suggest feasibility of wearable technology to consciously monitor physical activity, sleep postures, and HRV as potential markers of fall risk in the acute care setting. Further study is warranted to confirm the results and examine the efficacy of the proposed wearable technology to manage falls in hospitals. [Journal of Gerontological Nursing, 43(7), 53-62.]. Copyright 2017, SLACK Incorporated.
Gait and balance in the aging population: Fall prevention using innovation and technology.
Khanuja, Kavisha; Joki, Jaclyn; Bachmann, Gloria; Cuccurullo, Sara
2018-04-01
On a global basis, adults 65 years of age and older experience falls more frequently than younger individuals, and these often result in severe injuries as well as increased healthcare costs. Gait and balance disorders in this population are among the most common causes of falls and negatively influence quality of life and survivorship. Although falls are a major public health problem and guidelines/recommendations are available to physicians, many are fully aware of different assessments, tools, and resources available for intervention. Given the risk for potentially devastating outcomes if severe injuries occur secondary to a fall, fall prevention strategies in clinical offices is a timely consideration in today's health care landscape. This paper presents a three-tier model, comprising assessment, prevention, and intervention, to highlight methods, proactive programs, and innovative tools and technology that have been developed for fall prevention. Awareness of these resources will enhance the clinician's ability to accurately assess balance and gait, which can improve physical function, and decrease the risk of falls for both average-risk and high-risk older adults. Copyright © 2018 Elsevier B.V. All rights reserved.
Increasing fall risk awareness using wearables: A fall risk awareness protocol.
Danielsen, Asbjørn; Olofsen, Hans; Bremdal, Bernt Arild
2016-10-01
Each year about a third of elderly aged 65 or older experience a fall. Many of these falls may have been avoided if fall risk assessment and prevention tools where available in a daily living situation. We identify what kind of information is relevant for doing fall risk assessment and prevention using wearable sensors in a daily living environment by investigating current research, distinguishing between prospective and context-aware fall risk assessment and prevention. Based on our findings, we propose a fall risk awareness protocol as a fall prevention tool integrating both wearables and ambient sensing technology into a single platform. Copyright © 2016. Published by Elsevier Inc.
Alhuwail, Dari; Koru, Güneş; Mills, Mary Etta
2016-01-01
In the United States, home care clinicians often start the episode of care devoid of relevant fall-risk information. By collecting and analyzing qualitative data from 30 clinicians in one home health agency, this case study aimed to understand how the currently adopted information technology solutions supported the clinicians' fall-risk management (FRM) information domains, and explored opportunities to adopt other solutions to better support FRM. The currently adopted electronic health record system and fall-reporting application served only some information domains with a limited capacity. Substantial improvement in addressing the FRM information domains is possible by effectively modifying the existing solutions and purposefully adopting new solutions.
The Rise and Fall of American Technology Policy: Elite Beliefs and the Clinton Industrial Policy.
ERIC Educational Resources Information Center
Pages, Erik R.
1996-01-01
Uses the rapid rise and fall (within two years) of Clinton's industrial technology policy as an example of the creation and delegitimization of political ideas in federal government. Compares the shifting opinions on this policy to similar experiences with other policies, most notably nuclear power. (MJP)
Trees influence preferencial flow and water uptake in tropical savanna
NASA Astrophysics Data System (ADS)
Benegas, Laura; Bargues-Tobella, Aida; Hasselquist, Niles; Malmer, Anders; Ilstedt, Ulrik
2017-04-01
To address potential competition between trees and grasses for soil water, and to disentangle the main process responsible for local soil water dynamics in pasture ecosystems, we conducted a study of the soil water content and water source partitioning of grasses and trees within a pasture in the Copan River catchment, Honduras. We used differences in the 2H/1H (δD) isotopic signature of soil water (δSW) and the local meteoric water line (LMWL; δLMWL) as a relative index of evaporation, following a recent model proposed by Hasselquist et al (under review). The model uses Lc-excess calculated as the absolute value of the difference between measured δD and that predicted by the local meteoric water line (lc-excess = ¦δDM - δDP¦). Lc-excess values close to zero indicate little difference between soil water samples and local precipitation, whereas larger values indicate a greater degree of evaporation .()...(adapted from Landwehr and Coplen, 2006). From the relation between Lc-excess and SWC, we can tease apart different processes by which trees influence local soil water dynamics, where one such processes indicate that if preferential flow, i.e quick flows through macropores that by-pass the soil matrix, is the main pathway for water movement in the soil, then the Lc-excess values of soil water at deeper depths will be closer to zero than those of the surface soil, whereas relatively higher Lc-excess values would indicate increasing dominance of matrix flow. We found that soil underneath trees was wetter than underneath grasses at the dry season and we can relate this with a lack of clear relationship between Lc-excess and SWC and with the treés apparent shift to groundwater sources for root uptake especially in the dry season. Due to the positive correlation between Lc-excess and SWC under trees and due to the lower Lc-excess values found at subsoil below trees during the dry season, we can infer that preferential flow is also facilitated by the trees enhancing its contribution to groundwater recharge. The possible water losses via interception linked with trees on the soil water dynamic was counterbalanced by the positive contribution of trees to preferential flow and groundwater recharge.
Wang, Bin; Jin, Haiyan; Li, Qi; Chen, Dongdong; Zhao, Liang; Tang, Yanhong; Kato, Tomomichi; Gu, Song
2017-01-01
Carbon dioxide (CO2) exchange between the atmosphere and grassland ecosystems is very important for the global carbon balance. To assess the CO2 flux and its relationship to environmental factors, the eddy covariance method was used to evaluate the diurnal cycle and seasonal pattern of the net ecosystem CO2 exchange (NEE) of a cultivated pasture in the Three-River Source Region (TRSR) on the Qinghai−Tibetan Plateau from January 1 to December 31, 2008. The diurnal variations in the NEE and ecosystem respiration (Re) during the growing season exhibited single-peak patterns, the maximum and minimum CO2 uptake observed during the noon hours and night; and the maximum and minimum Re took place in the afternoon and early morning, respectively. The minimum hourly NEE rate and the maximum hourly Re rate were −7.89 and 5.03 μmol CO2 m−2 s−1, respectively. The NEE and Re showed clear seasonal variations, with lower values in winter and higher values in the peak growth period. The highest daily values for C uptake and Re were observed on August 12 (−2.91 g C m−2 d−1) and July 28 (5.04 g C m−2 day−1), respectively. The annual total NEE and Re were −140.01 and 403.57 g C m−2 year−1, respectively. The apparent quantum yield (α) was −0.0275 μmol μmol−1 for the entire growing period, and the α values for the pasture’s light response curve varied with the leaf area index (LAI), air temperature (Ta), soil water content (SWC) and vapor pressure deficit (VPD). Piecewise regression results indicated that the optimum Ta and VPD for the daytime NEE were 14.1°C and 0.65 kPa, respectively. The daytime NEE decreased with increasing SWC, and the temperature sensitivity of respiration (Q10) was 3.0 during the growing season, which was controlled by the SWC conditions. Path analysis suggested that the soil temperature at a depth of 5 cm (Tsoil) was the most important environmental factor affecting daily variations in NEE during the growing season, and the photosynthetic photon flux density (PPFD) was the major limiting factor for this cultivated pasture. PMID:28129406
Basnett, Jeanna; Chokshi, Anang; Barrett, Mark; Komatireddy, Ravi
2015-01-01
Background Falls in older adults are a significant public health issue. Interventions have been developed and proven effective to reduce falls in older adults, but these programs typically last several months and can be resource intensive. Virtual rehabilitation technologies may offer a solution to bring these programs to scale. Off-the-shelf and custom exergames have demonstrated to be a feasible adjunct to rehabilitation with older adults. However, it is not known if older adults will be able or willing to use a virtual rehabilitation technology to participate in an evidence-based fall prevention program. To have the greatest impact, virtual rehabilitation technologies need to be acceptable to older adults from different backgrounds and level of fall risk. If these technologies prove to be a feasible option, they offer a new distribution channel to disseminate fall prevention programs. Objective Stand Tall (ST) is a virtual translation of the Otago Exercise Program (OEP), an evidence-based fall prevention program. Stand Tall was developed using the Virtual Exercise Rehabilitation Assistant (VERA) software, which uses a Kinect camera and a laptop to deliver physical therapy exercise programs. Our purpose in this pilot study was to explore if ST could be a feasible platform to deliver the OEP to older adults from a variety of fall risk levels, education backgrounds, and self-described level of computer expertise. Methods Adults age 60 and over were recruited to participate in a one-time usability study. The study included orientation to the program, navigation to exercises, and completion of a series of strength and balance exercises. Quantitative analysis described participants and the user experience. Results A diverse group of individuals participated in the study. Twenty-one potential participants (14 women, 7 men) met the inclusion criteria. The mean age was 69.2 (± 5.8) years, 38% had a high school education, 24% had a graduate degree, and 66% classified as “at risk for falls”. Eighteen participants agreed they would like to use ST to help improve their balance, and 17 agreed or strongly agreed they would feel confident using the system in either the senior center or the home. Thirteen participants felt confident they could actually set up the system in their home. The mean System Usability Scale (SUS) score was 65.5 ± 21.2 with a range of 32.5 to 97.5. Ten participants scored ST as an above average usability experience compared to other technologies and 5 participants scored a less than optimal experience. Exploratory analysis revealed no significant relationships between user experience, education background, self-described computer experience, and fall risk. Conclusions Results support the virtual delivery of the OEP by a Kinect camera and an avatar may be acceptable to older adults from a variety of backgrounds. Virtual technologies, like Stand Tall, could offer an efficient and effective approach to bring evidence-based fall prevention programs to scale to address the problem of falls and fall-related injuries. Next steps include determining if similar or better outcomes are achieved by older adults using the virtual OEP, Stand Tall, compared to the standard of care. PMID:28582244
NASA Astrophysics Data System (ADS)
El-Azhari, O. A.; Gajam, S. Y.
2015-03-01
The gas/condensate pipe line under investigation is a 12 inch diameter, 48 km ASTM, A106 steel pipeline, carrying hydrocarbons containing wet CO2 and H2S.The pipe line had exploded in a region 100m distance from its terminal; after 24 years of service. Hydrogen induced cracking (HIC) and sour gas corrosion were expected due to the presence of wet H2S in the gas analysis. In other areas of pipe line ultrasonic testing was performed to determine whether the pipeline can be re-operated. The results have shown presence of internal planner defects, this was attributed to the existence of either laminations, type II inclusions or some service defects such as HIC and step wise cracking (SWC).Metallurgical investigations were conducted on fractured samples as per NACE standard (TM-0284-84). The obtained results had shown macroscopic cracks in the form of SWC, microstructure of steel had MnS inclusions. Crack sensitivity analyses were calculated and the microhardness testing was conducted. These results had confirmed that the line material was suffering from sour gas deteriorations. This paper correlates the field UT inspection findings with those methods investigated in the laboratory. Based on the results obtained a new HIC resistance material pipeline needs to be selected.
Boulton, Elisabeth; Hawley-Hague, Helen; Vereijken, Beatrix; Clifford, Amanda; Guldemond, Nick; Pfeiffer, Klaus; Hall, Alex; Chesani, Federico; Mellone, Sabato; Bourke, Alan; Todd, Chris
2016-06-01
Recent Cochrane reviews on falls and fall prevention have shown that it is possible to prevent falls in older adults living in the community and in care facilities. Technologies aimed at fall detection, assessment, prediction and prevention are emerging, yet there has been no consistency in describing or reporting on interventions using technologies. With the growth of eHealth and data driven interventions, a common language and classification is required. The FARSEEING Taxonomy of Technologies was developed as a tool for those in the field of biomedical informatics to classify and characterise components of studies and interventions. The Taxonomy Development Group (TDG) comprised experts from across Europe. Through face-to-face meetings and contributions via email, five domains were developed, modified and agreed: Approach; Base; Components of outcome measures; Descriptors of technologies; and Evaluation. Each domain included sub-domains and categories with accompanying definitions. The classification system was tested against published papers and further amendments undertaken, including development of an online tool. Six papers were classified by the TDG with levels of consensus recorded. Testing the taxonomy with papers highlighted difficulties in definitions across international healthcare systems, together with differences of TDG members' backgrounds. Definitions were clarified and amended accordingly, but some difficulties remained. The taxonomy and manual were large documents leading to a lengthy classification process. The development of the online application enabled a much simpler classification process, as categories and definitions appeared only when relevant. Overall consensus for the classified papers was 70.66%. Consensus scores increased as modifications were made to the taxonomy. The FARSEEING Taxonomy of Technologies presents a common language, which should now be adopted in the field of biomedical informatics. In developing the taxonomy as an online tool, it has become possible to continue to develop and modify the classification system to incorporate new technologies and interventions. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Vaziri, Daryoush D; Aal, Konstantin; Ogonowski, Corinna; Von Rekowski, Thomas; Kroll, Michael; Marston, Hannah R; Poveda, Rakel; Gschwind, Yves J; Delbaere, Kim; Wieching, Rainer; Wulf, Volker
2016-01-01
Falls are common in older adults and can result in serious injuries. Due to demographic changes, falls and related healthcare costs are likely to increase over the next years. Participation and motivation of older adults in fall prevention measures remain a challenge. The iStoppFalls project developed an information and communication technology (ICT)-based system for older adults to use at home in order to reduce common fall risk factors such as impaired balance and muscle weakness. The system aims at increasing older adults' motivation to participate in ICT-based fall prevention measures. This article reports on usability, user-experience and user-acceptance aspects affecting the use of the iStoppFalls system by older adults. In the course of a 16-week international multicenter study, 153 community-dwelling older adults aged 65+ participated in the iStoppFalls randomized controlled trial, of which half used the system in their home to exercise and assess their risk of falling. During the study, 60 participants completed questionnaires regarding the usability, user experience and user acceptance of the iStoppFalls system. Usability was measured with the System Usability Scale (SUS). For user experience the Physical Activity Enjoyment Scale (PACES) was applied. User acceptance was assessed with the Dynamic Acceptance Model for the Re-evaluation of Technologies (DART). To collect more detailed data on usability, user experience and user acceptance, additional qualitative interviews and observations were conducted with participants. Participants evaluated the usability of the system with an overall score of 62 (Standard Deviation, SD 15.58) out of 100, which suggests good usability. Most users enjoyed the iStoppFalls games and assessments, as shown by the overall PACES score of 31 (SD 8.03). With a score of 0.87 (SD 0.26), user acceptance results showed that participants accepted the iStoppFalls system for use in their own home. Interview data suggested that certain factors such as motivation, complexity or graphical design were different for gender and age. The results suggest that the iStoppFalls system has good usability, user experience and user acceptance. It will be important to take these along with factors such as motivation, gender and age into consideration when designing and further developing ICT-based fall prevention systems.
Wearable technology and ECG processing for fall risk assessment, prevention and detection.
Melillo, Paolo; Castaldo, Rossana; Sannino, Giovanna; Orrico, Ada; de Pietro, Giuseppe; Pecchia, Leandro
2015-01-01
Falls represent one of the most common causes of injury-related morbidity and mortality in later life. Subjects with cardiovascular disorders (e.g., related to autonomic dysfunctions and postural hypotension) are at higher risk of falling. Autonomic dysfunctions increasing the risk of falling in the short and mid-term could be assessed by Heart Rate Variability (HRV) extracted by electrocardiograph (ECG). We developed three trials for assessing the usefulness of ECG monitoring using wearable devices for: risk assessment of falling in the next few weeks; prevention of imminent falls due to standing hypotension; and fall detection. Statistical and data-mining methods are adopted to develop classification and regression models, validated with the cross-validation approach. The first classifier based on HRV features enabled to identify future fallers among hypertensive patients with an accuracy of 72% (sensitivity: 51.1%, specificity: 80.2%). The regression model to predict falls due to orthostatic dropdown from HRV recorded before standing achieved an overall accuracy of 80% (sensitivity: 92%, specificity: 90%). Finally, the classifier to detect simulated falls using ECG achieved an accuracy of 77.3% (sensitivity: 81.8%, specificity: 72.7%). The evidence from these three studies showed that ECG monitoring and processing could achieve satisfactory performances compared to other system for risk assessment, fall prevention and detection. This is interesting as differently from other technologies actually employed to prevent falls, ECG is recommended for many other pathologies of later life and is more accepted by senior citizens.
Project Profile Report. Fall 1993.
ERIC Educational Resources Information Center
Pennsylvania Coll. of Technology, Williamsport.
Pennsylvania College of Technology's Project Profile seeks to provide a portrait of all students entering each fall by collecting and analyzing surveys completed at the time of admission and comparing them to previous years. This report presents data on the 4,942 students who applied and matriculated in fall 1993 and includes comparisons by…
ERIC Educational Resources Information Center
Higher Education Research Inst., Inc., Los Angeles, CA.
According to the 22nd annual survey of entering freshmen in the United States, freshman interest in teaching careers has increased by more than two-thirds since 1982. However, this level of interest still falls short of the projected demand. The 1987 data also suggest potential problems with future supplies of certain technology and health care…
Dance! Don't Fall - preventing falls and promoting exercise at home.
Kerwin, Maureen; Nunes, Francisco; Silva, Paula Alexandra
2012-01-01
Falling is a serious danger to older adults that is usually only addressed after a person has fallen, when doctors administer clinical tests to determine the patient's risk of falling again. Having the technological capability of performing fall risk assessment tests with a smartphone, the authors set out to design a mobile application that would enable users to monitor their risk themselves and consequently prevent falls from occurring. The authors conducted a literature review and two observation sessions before beginning the iterative design process that resulted in the Dance! Don't Fall (DDF) game, a mobile application that enables users to both monitor their fall risk and actively reduce it through fun and easy exercise.
Selecting Power-Efficient Signal Features for a Low-Power Fall Detector.
Wang, Changhong; Redmond, Stephen J; Lu, Wei; Stevens, Michael C; Lord, Stephen R; Lovell, Nigel H
2017-11-01
Falls are a serious threat to the health of older people. A wearable fall detector can automatically detect the occurrence of a fall and alert a caregiver or an emergency response service so they may deliver immediate assistance, improving the chances of recovering from fall-related injuries. One constraint of such a wearable technology is its limited battery life. Thus, minimization of power consumption is an important design concern, all the while maintaining satisfactory accuracy of the fall detection algorithms implemented on the wearable device. This paper proposes an approach for selecting power-efficient signal features such that the minimum desirable fall detection accuracy is assured. Using data collected in simulated falls, simulated activities of daily living, and real free-living trials, all using young volunteers, the proposed approach selects four features from a set of ten commonly used features, providing a power saving of 75.3%, while limiting the error rate of a binary classification decision tree fall detection algorithm to 7.1%.Falls are a serious threat to the health of older people. A wearable fall detector can automatically detect the occurrence of a fall and alert a caregiver or an emergency response service so they may deliver immediate assistance, improving the chances of recovering from fall-related injuries. One constraint of such a wearable technology is its limited battery life. Thus, minimization of power consumption is an important design concern, all the while maintaining satisfactory accuracy of the fall detection algorithms implemented on the wearable device. This paper proposes an approach for selecting power-efficient signal features such that the minimum desirable fall detection accuracy is assured. Using data collected in simulated falls, simulated activities of daily living, and real free-living trials, all using young volunteers, the proposed approach selects four features from a set of ten commonly used features, providing a power saving of 75.3%, while limiting the error rate of a binary classification decision tree fall detection algorithm to 7.1%.
2016-06-08
server environment. While the college’s two Cisco blade -servers are located in separate buildings, these 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...college’s two Cisco blade -servers are located in separate buildings, these units now work as one unit. Critical databases and software packages are...server environment. While the college’s two Cisco blade -servers are located in separate buildings, these units now work as one unit. Critical
Fall TIPS: strategies to promote adoption and use of a fall prevention toolkit.
Dykes, Patricia C; Carroll, Diane L; Hurley, Ann; Gersh-Zaremski, Ronna; Kennedy, Ann; Kurowski, Jan; Tierney, Kim; Benoit, Angela; Chang, Frank; Lipsitz, Stuart; Pang, Justine; Tsurkova, Ruslana; Zuyov, Lyubov; Middleton, Blackford
2009-11-14
Patient falls are serious problems in hospitals. Risk factors for falls are well understood and nurses routinely assess for fall risk on all hospitalized patients. However, the link from nursing assessment of fall risk, to identification and communication of tailored interventions to prevent falls is yet to be established. The Fall TIPS (Tailoring Interventions for Patient Safety) Toolkit was developed to leverage existing practices and workflows and to employ information technology to improve fall prevention practices. The purpose of this paper is to describe the Fall TIPS Toolkit and to report on strategies used to drive adoption of the Toolkit in four acute care hospitals. Using the IHI "Framework for Spread" as a conceptual model, the research team describes the "spread" of the Fall TIPS Toolkit as means to integrate effective fall prevention practices into the workflow of interdisciplinary caregivers, patients and family members.
Technology to promote safe mobility in the elderly.
Nelson, Audrey; Powell-Cope, Gail; Gavin-Dreschnack, Deborah; Quigley, Pat; Bulat, Tatjana; Baptiste, Andrea S; Applegarth, Shawn; Friedman, Yvonne
2004-09-01
New technologies designed to help prevent adverse events related to the mobility of geriatric patients (ie, patient falls, bed-rail entrapment, patient handling, and wandering) are described. Technology offers the potential to eliminate or mitigate preventable adverse events that interfere with treatment, delay rehabilitation, potentiate impairment, and compromise patient safety. Unchecked, these adverse events can have a negative impact on patient health, functional status, and quality of life. It is not surprising that the elderly constitute the population at highest risk for adverse events, based on poor health, chronic conditions, long hospitalizations, and institutional care. Patient falls are a high-risk, high-volume, and high-cost adverse event. Key technologies to prevent falls and fall-related injuries include hip protectors, wheelchair/scooter safety features, intelligent walkers, fall alarms, and environmental aids. Bed-rail entrapment is a serious adverse event, which includes patients being trapped, entangled, or strangled in beds. New technologies to prevent bed-rail entrapment include new hospital bed designs, height-adjustable low beds, devices to close gaps in legacy beds, and bedside floor mats. Patients with mobility impairments necessitate physical assistance in transfers and other patient-handling tasks, which increases risk for the caregiver and the patient. Featured technologies to prevent patient handling injuries include innovations in floor-based lifts, new ceiling-mounted patient lifts, and improvements in powered standing lifts, new friction-reducing devices, and new patient transport technology. Wandering affects 39% of cognitively impaired nursing home residents and up to 70% of community-residing elderly persons with cognitive impairments. New technologies to prevent adverse events associated with wandering include door alarms and signal-transmitting devices. Nurses in geriatric settings would benefit from exposure to technologies that could improve patient and caregiver safety. To maximize the benefits of technology, it is critical that front-line nursing staff be involved in the testing and selection of devices that will be used in their practice. Further, to reap the full benefits of technology, a careful plan for implementation needs to be developed that would include integrating the new technology with existing infrastructure. Training needs to be provided for all staff who will be using the technology, and efforts to ensure competency over time is needed. A major barrier to widespread use of new technology is cost. Further research is needed to demonstrate the cost effectiveness of these devices. Results from these studies will help to build a business case, demonstrating that initial capital investments will result in cost savings, improved quality of care, and other benefits.
ERIC Educational Resources Information Center
Chen, May K. C.
Information on newly hired faculty in New Jersey public colleges for fall 1984 and fall 1985 is presented, including degrees held, academic rank, and teaching fields. Data are provided for the state colleges, community colleges, Rutgers University, the New Jersey Institute of Technology, and the University of Medicine and Dentistry of New Jersey…
Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.
Rajagopalan, Ramesh; Litvan, Irene; Jung, Tzyy-Ping
2017-11-01
Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems.
Kudzu (Pueraria montana) community responses to herbicides, burning, and high-density loblolly pine
DOE Office of Scientific and Technical Information (OSTI.GOV)
T.B. Harrington; L.T. Rader-Dixon; J.W. Taylor, Jr.
Kudzu is an aggressive, nonnative vine that currently dominates an estimated 810,000 ha of mesic forest communities in the eastern United States. To test an integrated method of weed control, abundances of kudzu and other plant species were compared during 4 yr after six herbicide treatments (clopyralid, triclopyr, metsulfuron, picloram 1 2,4-D, tebuthiuron, and a nonsprayed check), in which loblolly pines were planted at three densities (0, 1, and 4 seedlings m22) to induce competition and potentially delay kudzu recovery. This split-plot design was replicated on each of the four kudzu-dominated sites near Aiken, SC. Relative light intensity (RLI) andmore » soil water content (SWC) were measured periodically to identify mechanisms of interference among plant species. Two years after treatment (1999), crown coverage of kudzu averaged , 2% in herbicide plots compared with 93% in the nonsprayed check, and these differences were maintained through 2001, except in clopyralid plots where kudzu cover increased to 15%. In 2001, pine interference was associated with 33, 56, and 67% reductions in biomass of kudzu, blackberry, and herbaceous vegetation, respectively. RLI in kudzu-dominated plots (4 to 15% of full sun) generally was less than half that of herbicide-treated plots. SWC was greatest in tebuthiuron plots, where total vegetation cover averaged 26% compared with 77 to 111% in other plots. None of the treatments eradicated kudzu, but combinations of herbicides and induced pine competition delayed its recovery.« less
To Jump or Cycle? Monitoring Neuromuscular Function in Rugby Union Players.
Roe, Gregory; Darrall-Jones, Joshua; Till, Kevin; Phibbs, Padraic; Read, Dale; Weakley, Jonathon; Jones, Ben
2017-05-01
To evaluate changes in performance of a 6-s cycle-ergometer test (CET) and countermovement jump (CMJ) during a 6-wk training block in professional rugby union players. Twelve young professional rugby union players performed 2 CETs and CMJs on the 1st and 4th mornings of every week before the commencement of daily training during a 6-wk training block. Standardized changes in the highest score of 2 CET and CMJ efforts were assessed using linear mixed modeling and magnitude-based inferences. After increases in training load during wk 3 to 5, moderate decreases in CMJ peak and mean power and small decreases in flight time were observed during wk 5 and 6 that were very likely to almost certainly greater than the smallest worthwhile change (SWC), suggesting neuromuscular fatigue. However, only small decreases, possibly greater than the SWC, were observed in CET peak power. Changes in CMJ peak and mean power were moderately greater than in CET peak power during this period, while the difference between flight time and CET peak power was small. The greater weekly changes in CMJ metrics in comparison with CET may indicate differences in the capacities of these tests to measure training-induced lower-body neuromuscular fatigue in rugby union players. However, future research is needed to ascertain the specific modes of training that elicit changes in CMJ and CET to determine the efficacy of each test for monitoring neuromuscular function in rugby union players.
Fall risks assessment among community dwelling elderly using wearable wireless sensors
NASA Astrophysics Data System (ADS)
Lockhart, Thurmon E.; Soangra, Rahul; Frames, Chris
2014-06-01
Postural stability characteristics are considered to be important in maintaining functional independence free of falls and healthy life style especially for the growing elderly population. This study focuses on developing tools of clinical value in fall prevention: 1) Implementation of sensors that are minimally obtrusive and reliably record movement data. 2) Unobtrusively gather data from wearable sensors from four community centers 3) developed and implemented linear and non-linear signal analysis algorithms to extract clinically relevant information using wearable technology. In all a total of 100 community dwelling elderly individuals (66 non-fallers and 34 fallers) participated in the experiment. All participants were asked to stand-still in eyes open (EO) and eyes closed (EC) condition on forceplate with one wireless inertial sensor affixed at sternum level. Participants' history of falls had been recorded for last 2 years, with emphasis on frequency and characteristics of falls. Any participant with at least one fall in the prior year were classified as faller and the others as non-faller. The results indicated several key factors/features of postural characteristics relevant to balance control and stability during quite stance and, showed good predictive capability of fall risks among older adults. Wearable technology allowed us to gather data where it matters the most to answer fall related questions, i.e. the community setting environments. This study opens new prospects of clinical testing using postural variables with a wearable sensor that may be relevant for assessing fall risks at home and patient environment in near future.
Dockx, Kim; Alcock, Lisa; Bekkers, Esther; Ginis, Pieter; Reelick, Miriam; Pelosin, Elisa; Lagravinese, Giovanna; Hausdorff, Jeffrey M; Mirelman, Anat; Rochester, Lynn; Nieuwboer, Alice
2017-01-01
Virtual reality (VR) technology is a relatively new rehabilitation tool that can deliver a combination of cognitive and motor training for fall prevention. The attitudes of older people to such training are currently unclear. This study aimed to investigate: (1) the attitudes of fall-prone older people towards fall prevention exercise with and without VR; (2) attitudinal changes after intervention with and without VR; and (3) user satisfaction following fall prevention exercise with and without VR. A total of 281 fall-prone older people were randomly assigned to an experimental group receiving treadmill training augmented by VR (TT+VR, n = 144) or a control group receiving treadmill training alone (TT, n = 137). Two questionnaires were used to measure (1) attitudes towards fall prevention exercise with and without VR (AQ); and (2) user satisfaction (USQ). AQ was evaluated at baseline and after intervention. USQ was measured after intervention only. The AQ revealed that most participants had positive attitudes towards fall prevention exercise at baseline (82.2%) and after intervention (80.6%; p = 0.144). In contrast, only 53.6% were enthusiastic about fall prevention exercise with VR at baseline. These attitudes positively changed after intervention (83.1%; p < 0.001), and 99.2% indicated that they enjoyed TT+VR. Correlation analyses showed that postintervention attitudes were strongly related to user satisfaction (USQ: r = 0.503; p < 0.001). Older people's attitudes towards fall prevention exercise with VR were positively influenced by their experience. From the perspective of the user, VR is an attractive training mode, and thus improving service provision for older people is important. © 2017 S. Karger AG, Basel.
Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions
Rajagopalan, Ramesh; Jung, Tzyy-Ping
2017-01-01
Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems. PMID:29104256
Mei, Yi You; Marquard, Jenna; Jacelon, Cynthia; DeFeo, Audrey L
2013-11-01
Patient falls are the leading cause of unintentional injury and death among older adults. In 2000, falls resulted in over 10,300 elderly deaths, costing the United States approximately $179 million in incidence and medical costs. Furthermore, non-fatal injuries caused by falls cost the United States $19 billion annually. Health information technology (IT) applications, specifically electronic falls reporting systems, can aid quality improvement efforts to prevent patient falls. Yet, long-term residential care facilities (LTRCFs) often do not have the financial resources to implement health IT, and workers in these settings are often not ready to adopt such systems. Additionally, most health IT evaluations are conducted in large acute-care settings, so LTRCF administrators currently lack evidence to support the value of health IT. In this paper, we detail the development of a novel, easy-to-use system to facilitate electronic patient falls reporting within a LTRCF using off-the-shelf technology that can be inexpensively implemented in a wide variety of settings. We report the results of four complimentary system evaluation measures that take into consideration varied organizational stakeholders' perspectives: (1) System-level benefits and costs, (2) system usability, via scenario-based use cases, (3) a holistic assessment of users' physical, cognitive, and marcoergonomic (work system) challenges in using the system, and (4) user technology acceptance. We report the viability of collecting and analyzing data specific to each evaluation measure and detail the relative merits of each measure in judging whether the system is acceptable to each stakeholder. The electronic falls reporting system was successfully implemented, with 100% reporting at 3-months post-implementation. The system-level benefits and costs approach showed that the electronic system required no initial investment costs aside from personnel costs and significant benefits accrued from user time savings. The usability analysis revealed several fixable design flaws and demonstrated the importance of scenario-based user training. The technology acceptance model showed that users perceived the reporting system to be useful and easy to use, even more so after implementation. Finally, the holistic human factors evaluation identified challenges encountered when nurses used the system as a part of their daily work, guiding further system redesign. The four-pronged evaluation framework accounted for varied stakeholder perspectives and goals and is a highly scalable framework that can be easily applied to health IT implementations in other LTRCFs. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Radar fall detection using principal component analysis
NASA Astrophysics Data System (ADS)
Jokanovic, Branka; Amin, Moeness; Ahmad, Fauzia; Boashash, Boualem
2016-05-01
Falls are a major cause of fatal and nonfatal injuries in people aged 65 years and older. Radar has the potential to become one of the leading technologies for fall detection, thereby enabling the elderly to live independently. Existing techniques for fall detection using radar are based on manual feature extraction and require significant parameter tuning in order to provide successful detections. In this paper, we employ principal component analysis for fall detection, wherein eigen images of observed motions are employed for classification. Using real data, we demonstrate that the PCA based technique provides performance improvement over the conventional feature extraction methods.
Radar walking speed measurements of seniors in their apartments: technology for fall prevention.
Cuddihy, Paul E; Yardibi, Tarik; Legenzoff, Zachary J; Liu, Liang; Phillips, Calvin E; Abbott, Carmen; Galambos, Colleen; Keller, James; Popescu, Mihail; Back, Jessica; Skubic, Marjorie; Rantz, Marilyn J
2012-01-01
Falls are a significant cause of injury and accidental death among persons over the age of 65. Gait velocity is one of the parameters which have been correlated to the risk of falling. We aim to build a system which monitors gait in seniors and reports any changes to caregivers, who can then perform a clinical assessment and perform corrective and preventative actions to reduce the likelihood of falls. In this paper, we deploy a Doppler radar-based gait measurement system into the apartments of thirteen seniors. In scripted walks, we show the system measures gait velocity with a mean error of 14.5% compared to the time recorded by a clinician. With a calibration factor, the mean error is reduced to 10.5%. The radar is a promising sensing technology for gait velocity in a day-to-day senior living environment.
Assessment of Fall Characteristics From Depth Sensor Videos.
O'Connor, Jennifer J; Phillips, Lorraine J; Folarinde, Bunmi; Alexander, Gregory L; Rantz, Marilyn
2017-07-01
Falls are a major source of death and disability in older adults; little data, however, are available about the etiology of falls in community-dwelling older adults. Sensor systems installed in independent and assisted living residences of 105 older adults participating in an ongoing technology study were programmed to record live videos of probable fall events. Sixty-four fall video segments from 19 individuals were viewed and rated using the Falls Video Assessment Questionnaire. Raters identified that 56% (n = 36) of falls were due to an incorrect shift of body weight and 27% (n = 17) from losing support of an external object, such as an unlocked wheelchair or rolling walker. In 60% of falls, mobility aids were in the room or in use at the time of the fall. Use of environmentally embedded sensors provides a mechanism for real-time fall detection and, ultimately, may supply information to clinicians for fall prevention interventions. [Journal of Gerontological Nursing, 43(7), 13-19.]. Copyright 2017, SLACK Incorporated.
Shen, Xia; Mak, Margaret K Y
2015-02-01
Objective. To examine the effects of technology-assisted balance and gait training on reducing falls in patients with Parkinson's disease (PD). Methods. Eligible subjects were randomly allocated to an experimental group given technology-assisted balance and gait training (BAL, n = 26) and an active control group undertaking strengthening exercises (CON, n = 25). The training in each group lasted for 3 months. The number of fallers and fall rate were used as primary outcomes, and single-leg-stance-time, latency of postural response to perturbation, self-selected gait velocity, and stride length as secondary outcomes. Fall incidence was recorded over 15 months after the baseline assessment (Pre). Other tests were performed at Pre, after 3-month intervention (Post(3m)), at 3 months (Post(6m)), and 12 months (Post(15m)) after treatment completion. Results. Forty-five subjects who completed the 3-month training were included in the data analysis. There were fewer fallers in the BAL than in the CON group at Post(3m), Post(6m), and Post(15m) (P < .05). In addition, the BAL group had lower fall rate than the CON group at Post(3m) and Post(6m) (incidence rate ratio: 0.111-0.188, P < .05), and marginally so at Post(15m) (incidence rate ratio: 0.407, P = .057). Compared with the CON subjects, the BAL subjects demonstrated greater reduction in the postural response latency and increase in the stride length against baseline at each assessment interval (P < .05), and marginally more increases of single-leg-stance-time at Post(3m) (P = .064), Post(6m) (P = .041) and Post(15m) (P = .087). Conclusions. Our positive findings provide evidence for the clinical use of technology-assisted balance and gait training in reducing falls in people with PD. © The Author(s) 2014.
Non-Lethal Weapons: A Technology Gap or Lack or Available Systems, Training, and Proper Application
2016-06-10
Ibid., 190-191. 9 Jonathan D. Moreno, “Medical Ethics and Non-Lethal Weapons ,” The American Journal of Bioethics 4, no. 4 (Fall 2004): W1...Quarterly (Spring-Summer 2001): 18-22. Moreno, Jonathan D. “Medical Ethics and Non-Lethal Weapons .” The American Journal of Bioethics 4, no. 4 (Fall...NON-LETHAL WEAPONS : A TECHNOLOGY GAP OR LACK OF AVAILABLE SYSTEMS, TRAINING, AND PROPER APPLICATION A thesis presented to
A growing troubling triad: diabetes, aging, and falls.
Crews, Ryan T; Yalla, Sai V; Fleischer, Adam E; Wu, Stephanie C
2013-01-01
There is a significant and troubling link between diabetes (DM) and falls in the elderly. Individuals with DM are prone to fall for reasons such as decreased sensorimotor function, musculoskeletal/neuromuscular deficits, foot and body pain, pharmacological complications, and specialty (offloading) footwear devices. Additionally, there is some concern that DM patients are prone to have more severe problems with falls than non-DM individuals. Fractures, poorer rehabilitation, and increased number of falls are all concerns. Fortunately, efforts to mitigate falls by DM patients show promise. A number of studies have shown that balance, strength, and gait training may be utilized to successfully reduce fall risk in this population. Furthermore, new technologies such as virtual reality proprioceptive training may be able to provide this reduced risk within a safe training environment.
TAP into Learning, Fall-Winter 2000.
ERIC Educational Resources Information Center
Burns, Mary; Dimock, Vicki; Martinez, Danny
2000-01-01
This document consists of the final three issues of "TAP into Learning" (Technology Assistance Program). The double fall issue focuses on knowledge construction and on using multimedia applications in the classroom. Contents include: "Knowledge Under Construction"; "Hegel and the Dialectic"; "Implications for…
New horizons in fall prevention.
Lord, Stephen R; Close, Jacqueline C T
2018-04-25
Falls pose a major threat to the well-being and quality of life of older people. Falls can result in fractures and other injuries, disability and fear and can trigger a decline in physical function and loss of autonomy. This article synthesises recent published findings on fall risk and mobility assessments and fall prevention interventions and considers how this field of research may evolve in the future. Fall risk topics include the utility of remote monitoring using wearable sensors and recent work investigating brain activation and gait adaptability. New approaches for exercise for fall prevention including dual-task training, cognitive-motor training with exergames and reactive step training are discussed. Additional fall prevention strategies considered include the prevention of falls in older people with dementia and Parkinson's disease, drugs for fall prevention and safe flooring for preventing fall-related injuries. The review discusses how these new initiatives and technologies have potential for effective fall prevention and improved quality of life. It concludes by emphasising the need for a continued focus on translation of evidence into practice including robust effectiveness evaluations of so that resources can be appropriately targeted into the future.
Kearns, William D; Fozard, James L; Becker, Marion; Jasiewicz, Jan M; Craighead, Jeffrey D; Holtsclaw, Lori; Dion, Charles
2012-09-01
We hypothesized that variability in voluntary movement paths of assisted living facility (ALF) residents would be greater in the week preceding a fall compared with residents who did not fall. Prospective, observational study using telesurveillance technology. Two ALFs. The sample consisted of 69 older ALF residents (53 female) aged 76.9 (SD ± 11.9 years). Daytime movement in ALF common use areas was automatically tracked using a commercially available ultra-wideband radio real-time location sensor network with a spatial resolution of approximately 20 cm. Movement path variability (tortuosity) was gauged using fractal dimension (fractal D). A logistic regression was performed predicting movement related falls from fractal D, presence of a fall in the prior year, psychoactive medication use, and movement path length. Fallers and non-fallers were also compared on activities of daily living requiring supervision or assistance, performance on standardized static and dynamic balance, and stride velocity assessments gathered at the start of a 1-year fall observation period. Fall risk due to cognitive deficit was assessed by the Mini Mental Status Examination (MMSE), and by clinical dementia diagnoses from participant's activities of daily living health record. Logistic regression analysis revealed odds of falling increased 2.548 (P = .021) for every 0.1 increase in fractal D, and having a fall in the prior year increased odds of falling by 7.36 (P = .006). There was a trend for longer movement paths to reduce the odds of falling (OR .976 P = .08) but it was not significant. Number of psychoactive medications did not contribute significantly to fall prediction in the model. Fallers had more variable stride-to-stride velocities and required more activities of daily living assistance. High fractal D levels can be detected using commercially available telesurveillance technologies and offers a new tool for health services administrators seeking to reduce falls at their facilities. Copyright © 2012 American Medical Directors Association. Published by Elsevier Inc. All rights reserved.
Chen, Yi; Chen, Wei; Lin, Ye-chun; Cheng, Jian-zhong; Pan, Wen-jie
2015-12-01
Biochar is one of the research hotspots in the field of the agroforestry waste utilization. A field experiment was carried out to investigate the effects of different amounts of tobacco stem biochar (0, 1, 10, 50 t · hm⁻²) on soil micro-ecology and physiological properties of flue-cured tobacco. The results showed that soil water content (SWC) increased at all tobacco growth stages as the amounts of biochar applications increased. There were significant differences of SWC between the treatment of 50 t · hm⁻² and other treatments at the period of tobacco vigorous growth. As the application of biochar increased, the total soil porosity and capillary porosity increased, while soil bacteria, actinomyces, fungi amount increased firstly and then decreased. The amount of soil bacteria, actinomyces, fungi reached the maximum at the treatment of 10 t · hm⁻². Soil respiration rate (SRR) at earlier stage increased with the increase of biochar application. Compared with the control, SSR under biochar treatments increased by 7.9%-36.9%, and there were significant differences of SRR between high biochar application treatments (50 t · hm⁻² and 10 t · hm⁻²) and the control. Biochar improved leaf water potential, carotenoid and chlorophyll contents. Meanwhile, the dry mass of root, shoot and total dry mass under biochar application were higher than that of the control. These results indicated that the biochar played active roles in improving tobacco-planting soil micro-ecology and regulating physiological properties of flue-cured tobacco.
Paltineanu, Cristian; Septar, Leinar; Chitu, Emil
2016-03-01
The paper describes the temperature profiles determined by thermal imagery in apricot tree canopies under the semi-arid conditions of the Black Sea Coast in a chernozem of Dobrogea Region, Romania. The study analyzes the thermal vertical profile of apricot orchards for three representative cultivars during summertime. Measurements were done when the soil water content (SWC) was at field capacity (FC) within the rooting depth, after intense sprinkler irrigation applications. Canopy temperature was measured during clear sky days at three heights for both sides of the apricot trees, sunlit (south), and shaded (north). For the SWC studied, i.e., FC, canopy height did not induce a significant difference between the temperature of apricot tree leaves (Tc) and the ambient air temperature (Ta) within the entire vertical tree profile, and temperature measurements by thermal imagery can therefore be taken at any height on the tree crown leaves. Differences between sunlit and shaded sides of the canopy were significant. Because of these differences for Tc-Ta among the apricot tree cultivars studied, lower base lines (LBLs) should be determined for each cultivar separately. The use of thermal imagery technique under the conditions of semi-arid coastal areas with low range of vapor pressure deficit could be useful in irrigation scheduling of apricot trees. The paper discusses the implications of the data obtained in the experiment under the conditions of the coastal area of the Black Sea, Romania, and neighboring countries with similar climate, such as Bulgaria and Turkey.
Oleamide restores sleep in adult rats that were subjected to maternal separation.
Reyes Prieto, Nidia M; Romano López, Antonio; Pérez Morales, Marcel; Pech, Olivia; Méndez-Díaz, Mónica; Ruiz Contreras, Alejandra E; Prospéro-García, Oscar
2012-12-01
Maternal separation (MS) induces a series of changes in rats' behavior; among them a reduction in spontaneous sleep. One potentially impaired system is the endocannabinoid system (eCBs), since it contributes to generate sleep. To investigate if there are situations early in life that affect the eCBs, which would contribute to make rats vulnerable to suffering insomnia, we studied the rodent model of MS. Rats were separated from their mothers for 3h-periods daily, from postnatal day (PND) 2 to PND 16. Once they gained 250g of body weight (adult rats), they were implanted with electrodes to record the sleep-waking cycle (SWC). MS rats and non-MS (NMS) siblings were assigned to one of the following groups: vehicle, oleamide (OLE, an agonist of the cannabinoid receptor 1, CB1R), OLE+AM251 (an antagonist of the CB1R) and AM251 alone. Expression of the CBR1 receptor was also analyzed in the frontal cortex (FCx) and in the hippocampus (HIP) of both NMS and MS rats. Results indicated that MS induced a reduction in both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep with the consequent increase in waking (W) as compared to NMS siblings. OLE normalized the SWC, and AM251 blocked such an effect. CB1R expression was reduced in the FCx and in the HIP of MS rats. Our results indicate that MS reduces sleep and CB1R expression and OLE improves sleep in adult rats. Copyright © 2012 Elsevier Inc. All rights reserved.
Automated detection of tuberculosis on sputum smeared slides using stepwise classification
NASA Astrophysics Data System (ADS)
Divekar, Ajay; Pangilinan, Corina; Coetzee, Gerrit; Sondh, Tarlochan; Lure, Fleming Y. M.; Kennedy, Sean
2012-03-01
Routine visual slide screening for identification of tuberculosis (TB) bacilli in stained sputum slides under microscope system is a tedious labor-intensive task and can miss up to 50% of TB. Based on the Shannon cofactor expansion on Boolean function for classification, a stepwise classification (SWC) algorithm is developed to remove different types of false positives, one type at a time, and to increase the detection of TB bacilli at different concentrations. Both bacilli and non-bacilli objects are first analyzed and classified into several different categories including scanty positive, high concentration positive, and several non-bacilli categories: small bright objects, beaded, dim elongated objects, etc. The morphological and contrast features are extracted based on aprior clinical knowledge. The SWC is composed of several individual classifiers. Individual classifier to increase the bacilli counts utilizes an adaptive algorithm based on a microbiologist's statistical heuristic decision process. Individual classifier to reduce false positive is developed through minimization from a binary decision tree to classify different types of true and false positive based on feature vectors. Finally, the detection algorithm is was tested on 102 independent confirmed negative and 74 positive cases. A multi-class task analysis shows high accordance rate for negative, scanty, and high-concentration as 88.24%, 56.00%, and 97.96%, respectively. A binary-class task analysis using a receiver operating characteristics method with the area under the curve (Az) is also utilized to analyze the performance of this detection algorithm, showing the superior detection performance on the high-concentration cases (Az=0.913) and cases mixed with high-concentration and scanty cases (Az=0.878).
Scartazza, Andrea; Moscatello, Stefano; Matteucci, Giorgio; Battistelli, Alberto; Brugnoli, Enrico
2013-07-01
Seasonal and inter-annual dynamics of growth, non-structural carbohydrates (NSC) and carbon isotope composition (δ(13)C) of NSC were studied in a beech forest of Central Italy over a 2-year period characterized by different environmental conditions. The net C assimilated by forest trees was mainly used to sustain growth early in the season and to accumulate storage carbohydrates in trunk and root wood in the later part of the season, before leaf shedding. Growth and NSC concentration dynamics were only slightly affected by the reduced soil water content (SWC) during the drier year. Conversely, the carbon isotope analysis on NSC revealed seasonal and inter-annual variations of photosynthetic and post-carboxylation fractionation processes, with a significant increase in δ(13)C of wood and leaf soluble sugars in the drier summer year than in the wetter one. The highly significant correlation between δ(13)C of leaf soluble sugars and SWC suggests a decrease of the canopy C isotope discrimination and, hence, an increased water-use efficiency with decreasing soil water availability. This may be a relevant trait for maintaining an acceptable plant water status and a relatively high C sink capacity during dry seasonal periods. Our results suggest a short- to medium-term homeostatic response of the Collelongo beech stand to variations in water availability and solar radiation, indicating that this Mediterranean forest was able to adjust carbon-water balance in order to prevent C depletion and to sustain plant growth and reserve accumulation during relatively dry seasons.
Entity Modeling and Immersive Decision Environments
2011-09-01
Simulation Technologies (REST) Lerman, D. J. (2010). Correct Weather Modeling of non-Standard Days (10F- SIW -004). In Proceedings of 2010 Fall Simulation...Interoperability Workshop (Fall SIW ) SISO. Orlando, FL: SISO. Most flight simulators compute and fly in a weather environment that matches a
Taghvaei, Sajjad; Jahanandish, Mohammad Hasan; Kosuge, Kazuhiro
2017-01-01
Population aging of the societies requires providing the elderly with safe and dependable assistive technologies in daily life activities. Improving the fall detection algorithms can play a major role in achieving this goal. This article proposes a real-time fall prediction algorithm based on the acquired visual data of a user with walking assistive system from a depth sensor. In the lack of a coupled dynamic model of the human and the assistive walker a hybrid "system identification-machine learning" approach is used. An autoregressive-moving-average (ARMA) model is fitted on the time-series walking data to forecast the upcoming states, and a hidden Markov model (HMM) based classifier is built on the top of the ARMA model to predict falling in the upcoming time frames. The performance of the algorithm is evaluated through experiments with four subjects including an experienced physiotherapist while using a walker robot in five different falling scenarios; namely, fall forward, fall down, fall back, fall left, and fall right. The algorithm successfully predicts the fall with a rate of 84.72%.
Gschwind, Yves J; Eichberg, Sabine; Marston, Hannah R; Ejupi, Andreas; Rosario, Helios de; Kroll, Michael; Drobics, Mario; Annegarn, Janneke; Wieching, Rainer; Lord, Stephen R; Aal, Konstantin; Delbaere, Kim
2014-08-20
Falls are very common, especially in adults aged 65 years and older. Within the current international European Commission's Seventh Framework Program (FP7) project 'iStoppFalls' an Information and Communication Technology (ICT) based system has been developed to regularly assess a person's risk of falling in their own home and to deliver an individual and tailored home-based exercise and education program for fall prevention. The primary aims of iStoppFalls are to assess the feasibility and acceptability of the intervention program, and its effectiveness to improve balance, muscle strength and quality of life in older people. This international, multicenter study is designed as a single-blinded, two-group randomized controlled trial. A total of 160 community-dwelling older people aged 65 years and older will be recruited in Germany (n = 60), Spain (n = 40), and Australia (n = 60) between November 2013 and May 2014. Participants in the intervention group will conduct a 16-week exercise program using the iStoppFalls system through their television set at home. Participants are encouraged to exercise for a total duration of 180 minutes per week. The training program consists of a variety of balance and strength exercises in the form of video games using exergame technology. Educational material about a healthy lifestyle will be provided to each participant. Final reassessments will be conducted after 16 weeks. The assessments include physical and cognitive tests as well as questionnaires assessing health, fear of falling, quality of life and psychosocial determinants. Falls will be followed up for six months by monthly falls calendars. We hypothesize that the regular use of this newly developed ICT-based system for fall prevention at home is feasible for older people. By using the iStoppFalls sensor-based exercise program, older people are expected to improve in balance and strength outcomes. In addition, the exercise training may have a positive impact on quality of life by reducing the risk of falls. Taken together with expected cognitive improvements, the individual approach of the iStoppFalls program may provide an effective model for fall prevention in older people who prefer to exercise at home. Australian New Zealand Clinical Trials Registry Trial ID: ACTRN12614000096651.International Standard Randomised Controlled Trial Number: ISRCTN15932647.
Teh, Ruth C-A; Visvanathan, Renuka; Ranasinghe, Damith; Wilson, Anne
2018-06-01
To evaluate clinicians' perspectives, before and after clinical implementation (i.e. trial) of a handheld health information technology (HIT) tool, incorporating an iPad device and automatically generated visual cues for bedside display, for falls risk assessment and prevention in hospital. This pilot study utilized mixed-methods research with focus group discussions and Likert-scale surveys to elicit clinicians' attitudes. The study was conducted across three phases within two medical wards of the Queen Elizabeth Hospital. Phase 1 (pretrial) involved focus group discussion (five staff) and surveys (48 staff) to elicit preliminary perspectives on tool use, benefits and barriers to use and recommendations for improvement. Phase 2 (tool trial) involved HIT tool implementation on two hospital wards over consecutive 12-week periods. Phase 3 (post-trial) involved focus group discussion (five staff) and surveys (29 staff) following tool implementation, with similar themes as in Phase 1. Qualitative data were evaluated using content analysis, and quantitative data using descriptive statistics and logistic regression analysis, with subgroup analyses on user status (P ≤ 0.05). Four findings emerged on clinicians' experience, positive perceptions, negative perceptions and recommendations for improvement of the tool. Pretrial, clinicians were familiar with using visual cues in hospital falls prevention. They identified potential benefits of the HIT tool in obtaining timely, useful falls risk assessment to improve patient care. During the trial, the wards differed in methods of tool implementation, resulting in lower uptake by clinicians on the subacute ward. Post-trial, clinicians remained supportive for incorporating the tool into clinical practice; however, there were issues with usability and lack of time for tool use. Staff who had not used the tool had less appreciation for it improving their understanding of patients' falls risk factors (odds ratio 0.12), or effectively preventing hospital falls (odds ratio 0.12). Clinicians' recommendations resulted in subsequent technological refinement of the tool, and provision of an additional iPad device for more efficient use. This study adds to the limited pool of knowledge about clinicians' attitudes toward health technology use in falls avoidance. Clinicians were willing to use the HIT tool, and their concerns about its usability were addressed in ongoing tool improvement. Including end-users in the development and refinement processes, as well as having high staff uptake of new technologies, is important in improving their acceptance and usage, and in maximizing beneficial feedback to further inform tool development.
Technology today : Volume 31, Issue 1, Fall 2016.
DOT National Transportation Integrated Search
2016-09-01
Technology Today is a quarterly publication of the Louisiana Transportation Research Center, administered jointly by the Louisiana Department of Transportation and Development and Louisiana State University.
Mohler, M. Jane; Wendel, Christopher S.; Taylor-Piliae, Ruth E.; Toosizadeh, Nima; Najafi, Bijan
2016-01-01
Background Few studies of the association between prospective falls and sensor-based measures of motor performance and physical activity have evaluated subgroups of frailty status separately. Objective To evaluate wearable sensor-based measures of gait, balance, and physical activity (PA) that are predictive of future falls in community-dwelling older adults. Methods The Arizona Frailty Cohort Study in Tucson, Arizona followed community-dwelling adults aged 65 years and over (without baseline cognitive deficit, severe movement disorders, or recent stroke) for falls over six months. Baseline measures included Fried frailty criteria; in-home, and sensor-based gait (normal and fast walk), balance (bipedal eyes open and eyes closed), and spontaneous daily PA over 48 hours, measured using validated wearable technologies. Results Of the 119 participants (36% non-frail, 48% pre-frail, and 16% frail), 48 reported one or more fall (47% of non-frail, 33% of pre-frail, and 47% of frail). Although balance deficit and PA were independent fall predictors in pre-frail and frail groups, they were not sensitive to predict prospective falls in the non-frail group. Even though gait performance deteriorated as frailty increased, gait was not a predictor of prospective falls when participants were stratified based on frailty status. In pre-frail and frail participants combined, center of mass sway (OR= 5.9, 95% CI 2.6 – 13.7), PA mean walking bout duration (OR = 1.1, 95% CI 1.0 – 1.2), PA mean standing bout duration (OR = .94, 95% CI .91 - .99), and a fall in previous 6 months (OR = 7.3, 95% CI 1.5 – 36.4) were independent predictors for prospective falls (AUC: 0.882). Conclusion This study suggests that independent predictors of falls are dependent on frailty status. Among sensor-derived parameters, balance deficit, longer typical walking episodes, and shorter typical standing episodes were the most sensitive predictors of prospective falls in the combined pre-frail and frail sample. Gait deficit was not a sensitive fall predictor in the context of frailty status. PMID:27160666
Social-aware Event Handling within the FallRisk Project.
De Backere, Femke; Van den Bergh, Jan; Coppers, Sven; Elprama, Shirley; Nelis, Jelle; Verstichel, Stijn; Jacobs, An; Coninx, Karin; Ongenae, Femke; De Turck, Filip
2017-01-09
With the uprise of the Internet of Things, wearables and smartphones are moving to the foreground. Ambient Assisted Living solutions are, for example, created to facilitate ageing in place. One example of such systems are fall detection systems. Currently, there exists a wide variety of fall detection systems using different methodologies and technologies. However, these systems often do not take into account the fall handling process, which starts after a fall is identified or this process only consists of sending a notification. The FallRisk system delivers an accurate analysis of incidents occurring in the home of the older adults using several sensors and smart devices. Moreover, the input from these devices can be used to create a social-aware event handling process, which leads to assisting the older adult as soon as possible and in the best possible way. The FallRisk system consists of several components, located in different places. When an incident is identified by the FallRisk system, the event handling process will be followed to assess the fall incident and select the most appropriate caregiver, based on the input of the smartphones of the caregivers. In this process, availability and location are automatically taken into account. The event handling process was evaluated during a decision tree workshop to verify if the current day practices reflect the requirements of all the stakeholders. Other knowledge, which is uncovered during this workshop can be taken into account to further improve the process. The FallRisk offers a way to detect fall incidents in an accurate way and uses context information to assign the incident to the most appropriate caregiver. This way, the consequences of the fall are minimized and help is at location as fast as possible. It could be concluded that the current guidelines on fall handling reflect the needs of the stakeholders. However, current technology evolutions, such as the uptake of wearables and smartphones, enables the improvement of these guidelines, such as the automatic ordering of the caregivers based on their location and availability.
Fall Down Detection Under Smart Home System.
Juang, Li-Hong; Wu, Ming-Ni
2015-10-01
Medical technology makes an inevitable trend for the elderly population, therefore the intelligent home care is an important direction for science and technology development, in particular, elderly in-home safety management issues become more and more important. In this research, a low of operation algorithm and using the triangular pattern rule are proposed, then can quickly detect fall-down movements of humanoid by the installation of a robot with camera vision at home that will be able to judge the fall-down movements of in-home elderly people in real time. In this paper, it will present a preliminary design and experimental results of fall-down movements from body posture that utilizes image pre-processing and three triangular-mass-central points to extract the characteristics. The result shows that the proposed method would adopt some characteristic value and the accuracy can reach up to 90 % for a single character posture. Furthermore the accuracy can be up to 100 % when a continuous-time sampling criterion and support vector machine (SVM) classifier are used.
In-home fall risk assessment and detection sensor system.
Rantz, Marilyn J; Skubic, Marjorie; Abbott, Carmen; Galambos, Colleen; Pak, Youngju; Ho, Dominic K C; Stone, Erik E; Rui, Liyang; Back, Jessica; Miller, Steven J
2013-07-01
Falls are a major problem in older adults. A continuous, unobtrusive, environmentally mounted (i.e., embedded into the environment and not worn by the individual), in-home monitoring system that automatically detects when falls have occurred or when the risk of falling is increasing could alert health care providers and family members to intervene to improve physical function or manage illnesses that may precipitate falls. Researchers at the University of Missouri Center for Eldercare and Rehabilitation Technology are testing such sensor systems for fall risk assessment (FRA) and detection in older adults' apartments in a senior living community. Initial results comparing ground truth (validated measures) of FRA data and GAITRite System parameters with data captured from Microsoft(®) Kinect and pulse-Doppler radar are reported. Copyright 2013, SLACK Incorporated.
2014-01-01
Background Falls are very common, especially in adults aged 65 years and older. Within the current international European Commission’s Seventh Framework Program (FP7) project ‘iStoppFalls’ an Information and Communication Technology (ICT) based system has been developed to regularly assess a person’s risk of falling in their own home and to deliver an individual and tailored home-based exercise and education program for fall prevention. The primary aims of iStoppFalls are to assess the feasibility and acceptability of the intervention program, and its effectiveness to improve balance, muscle strength and quality of life in older people. Methods/Design This international, multicenter study is designed as a single-blinded, two-group randomized controlled trial. A total of 160 community-dwelling older people aged 65 years and older will be recruited in Germany (n = 60), Spain (n = 40), and Australia (n = 60) between November 2013 and May 2014. Participants in the intervention group will conduct a 16-week exercise program using the iStoppFalls system through their television set at home. Participants are encouraged to exercise for a total duration of 180 minutes per week. The training program consists of a variety of balance and strength exercises in the form of video games using exergame technology. Educational material about a healthy lifestyle will be provided to each participant. Final reassessments will be conducted after 16 weeks. The assessments include physical and cognitive tests as well as questionnaires assessing health, fear of falling, quality of life and psychosocial determinants. Falls will be followed up for six months by monthly falls calendars. Discussion We hypothesize that the regular use of this newly developed ICT-based system for fall prevention at home is feasible for older people. By using the iStoppFalls sensor-based exercise program, older people are expected to improve in balance and strength outcomes. In addition, the exercise training may have a positive impact on quality of life by reducing the risk of falls. Taken together with expected cognitive improvements, the individual approach of the iStoppFalls program may provide an effective model for fall prevention in older people who prefer to exercise at home. Trial registration Australian New Zealand Clinical Trials Registry Trial ID: ACTRN12614000096651. International Standard Randomised Controlled Trial Number: ISRCTN15932647. PMID:25141850
Detection of falls using accelerometers and mobile phone technology.
Lee, Raymond Y W; Carlisle, Alison J
2011-11-01
to study the sensitivity and specificity of fall detection using mobile phone technology. an experimental investigation using motion signals detected by the mobile phone. the research was conducted in a laboratory setting, and 18 healthy adults (12 males and 6 females; age = 29 ± 8.7 years) were recruited. each participant was requested to perform three trials of four different types of simulated falls (forwards, backwards, lateral left and lateral right) and eight other everyday activities (sit-to-stand, stand-to-sit, level walking, walking up- and downstairs, answering the phone, picking up an object and getting up from supine). Acceleration was measured using two devices, a mobile phone and an independent accelerometer attached to the waist of the participants. Bland-Altman analysis shows a higher degree of agreement between the data recorded by the two devices. Using individual upper and lower detection thresholds, the specificity and sensitivity for mobile phone were 0.81 and 0.77, respectively, and for external accelerometer they were 0.82 and 0.96, respectively. fall detection using a mobile phone is a feasible and highly attractive technology for older adults, especially those living alone. It may be best achieved with an accelerometer attached to the waist, which transmits signals wirelessly to a phone.
Bourke, Alan K; Klenk, Jochen; Schwickert, Lars; Aminian, Kamiar; Ihlen, Espen A F; Mellone, Sabato; Helbostad, Jorunn L; Chiari, Lorenzo; Becker, Clemens
2016-08-01
Automatic fall detection will promote independent living and reduce the consequences of falls in the elderly by ensuring people can confidently live safely at home for linger. In laboratory studies inertial sensor technology has been shown capable of distinguishing falls from normal activities. However less than 7% of fall-detection algorithm studies have used fall data recorded from elderly people in real life. The FARSEEING project has compiled a database of real life falls from elderly people, to gain new knowledge about fall events and to develop fall detection algorithms to combat the problems associated with falls. We have extracted 12 different kinematic, temporal and kinetic related features from a data-set of 89 real-world falls and 368 activities of daily living. Using the extracted features we applied machine learning techniques and produced a selection of algorithms based on different feature combinations. The best algorithm employs 10 different features and produced a sensitivity of 0.88 and a specificity of 0.87 in classifying falls correctly. This algorithm can be used distinguish real-world falls from normal activities of daily living in a sensor consisting of a tri-axial accelerometer and tri-axial gyroscope located at L5.
Engineering Technology Enrollments Fall 1986.
ERIC Educational Resources Information Center
Ellis, Richard A.
1988-01-01
Provides some of the results of the Engineering Manpower Commission's fall 1986 survey of enrollments in engineering education. Includes tabular data on those enrollments categorized by students in all institutions surveyed and for just those students in accredited programs, as well as by curriculum and by school and state. (TW)
DOT National Transportation Integrated Search
2009-03-01
This project was initiated in the fall of 1999. The results through the fall of 2005 (Phase I) have been documented in detail in an earlier report. The accomplishments of Phase I included the following: the identification of existing animal detection...
Applying high resolution remote sensing image and DEM to falling boulder hazard assessment
NASA Astrophysics Data System (ADS)
Huang, Changqing; Shi, Wenzhong; Ng, K. C.
2005-10-01
Boulder fall hazard assessing generally requires gaining the boulder information. The extensive mapping and surveying fieldwork is a time-consuming, laborious and dangerous conventional method. So this paper proposes an applying image processing technology to extract boulder and assess boulder fall hazard from high resolution remote sensing image. The method can replace the conventional method and extract the boulder information in high accuracy, include boulder size, shape, height and the slope and aspect of its position. With above boulder information, it can be satisfied for assessing, prevention and cure boulder fall hazard.
Galambos, Colleen; Rantz, Marilyn; Back, Jessie; Jun, Jung Sim; Skubic, Marjorie; Miller, Steven J
2017-07-01
Aging in place is a preferred and cost-effective living option for older adults. Research indicates that technology can assist with this goal. Information on consumer preferences will help in technology development to assist older adults to age in place. The study aim was to explore the perceptions and preferences of older adults and their family members about a fall risk assessment system. Using a qualitative approach, this study examined the perceptions, attitudes, and preferences of 13 older adults and five family members about their experience living with the fall risk assessment system during five points in time. Themes emerged in relation to preferences and expectations about the technology and how it fits into daily routines. We were able to capture changes that occurred over time for older adult participants. Results indicated that there was acceptance of the technology as participants adapted to it. Two themes were present across the five points in time-safety and usefulness. Five stages of acceptance emerged from the data from preinstallation to 2 years postinstallation. Identified themes, stages of acceptance, and design and development considerations are discussed.
Harte, Richard; Hall, Tony; Glynn, Liam; Rodríguez-Molinero, Alejandro; Scharf, Thomas; ÓLaighin, Gearóid
2018-01-01
Background Each year, millions of older adults fall, with more than 1 out of 4 older people experiencing a fall annually, thereby causing a major social and economic impact. Falling once doubles one’s chances of falling again, making fall prediction an important aspect of preventative strategies. In this study, 22 older adults aged between 65 and 85 years were trained in the use of a smartphone-based fall prediction system. The system is designed to continuously assess fall risk by measuring various gait and balance parameters using a smart insole and smartphone, and is also designed to detect falls. The use case of the fall prediction system in question required the users to interact with the smartphone via an app for device syncing, data uploads, and checking system status. Objective The objective of this study was to observe the effect that basic smartphone training could have on the user experience of a group that is not technically proficient with smartphones when using a new connected health system. It was expected that even short rudimentary training could have a large effect on user experience and therefore increase the chances of the group accepting the new technology. Methods All participants received training on how to use the system smartphone app; half of the participants (training group) also received extra training on how to use basic functions of the smartphone, such as making calls and sending text messages, whereas the other half did not receive this extra training (no extra training group). Comparison of training group and no extra training group was carried out using metrics such as satisfaction rating, time taken to complete tasks, cues required to complete tasks, and errors made during tasks. Results The training group fared better in the first 3 days of using the system. There were significant recorded differences in number of cues required and errors committed between the two groups. By the fourth and fifth day of use, both groups were performing at the same level when using the system. Conclusions Supplementary basic smartphone training may be critical in trials where a smartphone app–based system for health intervention purposes is being introduced to a population that is not proficient with technology. This training could prevent early technology rejection and increase the engagement of older participants and their overall user experience with the system. PMID:29699969
The SWAT Team: Successfully Integrating Technology into the Curriculum.
ERIC Educational Resources Information Center
Cathey, Marcy E.
The Madeira School (McLean, Virginia) had been behind on advanced technology as compared to many of its competitor schools. In the fall of 1996, the cornerstone for the Savvy With All Technology (SWAT) team program was laid. The idea of SWAT was to infiltrate departments with technology specialists and users so that technology would be used across…
NASA Astrophysics Data System (ADS)
Idris, Husni; Nurhayati, Nurhayati; Satriani, Satriani
2018-05-01
This research aims to a) identify instructional software (interactive multimedia CDs) by developing Computer-Assisted Instruction (CAI) multimedia that is eligible to be used in the instruction of the Educational Technology course; b) analysis the role of instructional software (interactive multimedia CDs) on the Educational Technology course through the development of Computer-Assisted Instruction (CAI) multimedia to improve the quality of education and instructional activities. This is Research and Development (R&D). It employed the descriptive procedural model of development, which outlines the steps to be taken to develop a product, which is instructional multimedia. The number of subjects of the research trial or respondents for each stage was 20 people. To maintain development quality, an expert in materials outside the materials under study, an expert in materials who is also a Educational Technology lecturer, a small groupof 3 students, a medium-sized group of 10 students, and 20 students to participate in the field testing took part in this research. Then, data collection instruments were developed in two stages, namely: a) developing the instruments; and b) trying out instruments. Data on students’ responses were collected using questionnaires and analyzed using descriptive statistics with percentage and categorization techniques. Based on data analysis results, it is revealed that the Computer-Assisted Instruction (CAI) multimedia developed and tried out among students during the preliminary field testing falls into the “Good” category, with the aspects of instruction, materials, and media falling into the “Good” category. Subsequently, results of the main field testing among students also suggest that it falls into the “Good” category, with the aspects of instruction, materials, and media falling into the “Good” category. Similarly, results of the operational field testing among students also suggest that it falls into the “Good” category. Thus, it can be concluded that quality of the Computer-Assisted Instruction (CAI) multimedia developed in this research falls into the “Good” category viewed from the aspects of instruction, materials, and media. In other words, overall, the quality of this multimedia belongs to the “Good” category.
Lord, Stephen R; Delbaere, Kim; Tiedemann, Anne; Smith, Stuart T; Sturnieks, Daina L
2011-06-01
Preventing falls and fall-related injuries among older people is an urgent public health challenge. This paper provides an overview of the background to and research planned for a 5-year National Health and Medical Research Council Partnership Grant on implementing falls prevention research findings into policy and practice. This program represents a partnership between key Australian falls prevention researchers, policy makers and information technology companies which aims to: (1) fill gaps in evidence relating to the prevention of falls in older people, involving new research studies of risk factor assessment and interventions for falls prevention; (2) translate evidence into policy and practice, examining the usefulness of new risk-identification tools in clinical practice; and (3) disseminate evidence to health professionals working with older people, via presentations, new evidence-based guidelines, improved resources and learning tools, to improve the workforce capacity to prevent falls and associated injuries in the future.
R&D 100, 2016: Falling Particle Receiver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Cliff; Christian, Joshua; Stein, Wesley
After several years of design and development, the world's first continuously recirculating high-temperature Falling Particle Receiver for Concentrated Solar Energy was constructed and tested at Sandia National Laboratories. This technology enables clean, renewable energy and electricity on demand with cheap, efficient storage at costs comparable with fossil-fuel-based plants.
R&D 100, 2016: Falling Particle Receiver
Ho, Cliff; Christian, Joshua; Stein, Wesley
2018-06-13
After several years of design and development, the world's first continuously recirculating high-temperature Falling Particle Receiver for Concentrated Solar Energy was constructed and tested at Sandia National Laboratories. This technology enables clean, renewable energy and electricity on demand with cheap, efficient storage at costs comparable with fossil-fuel-based plants.
SITE CHARACTERIZATION AND MONITORING TECHNOLOGY VERIFICATION: PROGRESS AND RESULTS
The Site Characterization and Monitoring Technology Pilot of the U.S. Environmental Protection Agency's Environmental Technology Verification Program (ETV) has been engaged in verification activities since the fall of 1994 (U.S. EPA, 1997). The purpose of the ETV is to promote th...
In-situ evaluation of internal drainage in layered soils (Tukulu, Sepane and Swartland)
NASA Astrophysics Data System (ADS)
Mavimbela, S. S. W.; van Rensburg, L. D.
2011-11-01
The soil water release (SWC) and permeability properties of layered soils following deep infiltration depends on the structural and layering composition of the profiles diagnostic horizons. Three layered soils, the Tukulu, Sepane and Swartland soil forms, from the Free State province of South Africa, were selected for internal drainage evaluation. The soil water release curves as a function of suction (h) and unsaturated hydraulic conductivity (K-coefficient) as a function of soil water content, SWC (θ), were characterised alongside the pedological properties of the profiles. The water hanging column in collaboration with the in-situ instantaneous profile method (IPM) was appropriate for this work. Independently, the saturated hydraulic conductivity (Ks) was measured using double ring infiltrometers. The three soils had a generic orthic A horizon but differed remarkable with depth. A clay rich layer was found in the Tukulu and Sepane at depths of 600 to 850 mm and 300 to 900 mm, respectively. The Swartland was weakly developed with a saprolite rock found at depth of 400-700 mm. During the 1200 h drainage period, soil water loss amounted to 21, 20 and 51 mm from the respective Tukulu, Sepane and Swartland profiles. An abrupt drop in Ks in conjunction with a steep K-coefficient gradient with depth was observed from the Tukulu and Sepane. Hydromorphic colours found on the clay-rich horizons suggested a wet soil water regime that implied restriction of internal drainage. It was therefore concluded that the clay rich horizons gave the Tukulu and Sepane soil types restricted internal drainage properties required for soil water storage under infield rainwater harvesting production technique. The coarseness of the Swartland promoted high drainage losses that proliferated a dry soil water regime.
NASA Astrophysics Data System (ADS)
Lu, Zheng; Sokolik, Irina N.
2017-12-01
In 2002, an enormous amount of smoke has been emitted from Yakutsk wildfires. In this study, we examine the impact of smoke on cloud properties and precipitation associated with frontal systems using the WRF-Chem-SMOKE model and satellite data. The smoke emissions are computed using the fire radiative power technique. Smoke particles are represented as an internal mixture of organic matter (OM), black carbon (BC), and other inorganic matter, and their microphysical and radiative effects are explicitly modeled. After examining the fire activities, we identified two fire periods (FP1 and FP2). During FP1, in the cloud deck with the high cloud droplet number concentration (CDNC), but the relatively small amount of ice nuclei (IN), the rain and snow water contents (RWC and SWC) were strongly reduced, because of suppressed collision-coalescence and riming processes. The cloud cells acquired the longer lifetime and traveled farther downwind. During FP2, in the cloud deck with relatively high CDNC and IN, RWC was reduced; however, the large amounts of IN triggered the glaciation indirect effect and leaded to increased SWC. Due to the competing effects of CDNC and IN, changes in the cloud lifetime were small. Consequently, smoke-induced changes in the total cloudiness cause a dipole feature. After the smoke was nearly consumed during FP1, the large-scale dynamics of the frontal system was altered by smoke. The onset of the precipitation was delayed by 1 day. In FP2, the onset of the precipitation was not delayed but occurred at different locations, and the area-averaged precipitation was slightly reduced ( 0.5 mm/day).
Men, Qiulei; Xue, Guoxi; Mu, Dan; Hu, Qingling; Huang, Minyi
2017-01-01
Dendrolimus kikuchii Matsumura, 1927 is a serious forest pest causing great damage to coniferous trees in China. Despite its economic importance, the population genetics of this pest are poorly known. We used three mitochondrial genes (COI, COII and Cytb) to investigate the genetic diversity and genetic differentiation of 15 populations collected from the main distribution regions of D. kikuchii in China. Populations show high haplotype and nucleotide diversity. Haplotype network and phylogenetic analysis divides the populations into three major clades, the central and southeastern China (CC+SEC) clade, the eastern China (EC) clade, and the southwestern China (SWC) clade. Populations collected from adjacent localities share the same clade, which is consistent with the strong relationship of isolation by distance (r = 0.74824, P = 0.00001). AMOVA analysis indicated that the major portion of this molecular genetic variation is found among the three groups of CC+SEC, EC and SWC (61.26%). Of 105 pairwise FST comparisons, 93 show high genetic differentiation. Populations of Puer (PE), Yangshuo (YS) and Leishan (LS) are separated from other populations by a larger genetic distance. Distributions of pairwise differences obtained with single and combined gene data from the overall populations are multimodal, suggesting these populations had no prior population expansion in southern China. The nonsignificant neutral test on the basis of Tajima' D and Fu's Fs, and the lack of a star-shaped haplotype network together with the multiple haplotypes support this hypothesis. Pleistocene climatic fluctuations, combined with the host specificity to Pinus species, made these regions of south China into a refuge for D. kikuchii. The high level of population genetic structuring is related to their weak flight capacity, their variations of life history and the geographic distance among populations.
Nibali, Maria L; Tombleson, Tom; Brady, Philip H; Wagner, Phillip
2015-10-01
Understanding typical variation of vertical jump (VJ) performance and confounding sources of its typical variability (i.e., familiarization and competitive level) is pertinent in the routine monitoring of athletes. We evaluated the presence of systematic error (learning effect) and nonuniformity of error (heteroscedasticity) across VJ performances of athletes that differ in competitive level and quantified the reliability of VJ kinetic and kinematic variables relative to the smallest worthwhile change (SWC). One hundred thirteen high school athletes, 30 college athletes, and 35 professional athletes completed repeat VJ trials. Average eccentric rate of force development (RFD), average concentric (CON) force, CON impulse, and jump height measurements were obtained from vertical ground reaction force (VGRF) data. Systematic error was assessed by evaluating changes in the mean of repeat trials. Heteroscedasticity was evaluated by plotting the difference score (trial 2 - trial 1) against the mean of the trials. Variability of jump variables was calculated as the typical error (TE) and coefficient of variation (%CV). No substantial systematic error (effect size range: -0.07 to 0.11) or heteroscedasticity was present for any of the VJ variables. Vertical jump can be performed without the need for familiarization trials, and the variability can be conveyed as either the raw TE or the %CV. Assessment of VGRF variables is an effective and reliable means of assessing VJ performance. Average CON force and CON impulse are highly reliable (%CV: 2.7% ×/÷ 1.10), although jump height was the only variable to display a %CV ≤SWC. Eccentric RFD is highly variable yet should not be discounted from VJ assessments on this factor alone because it may be sensitive to changes in response to training or fatigue that exceed the TE.
Baker, Daniel G
2013-02-01
The purpose of this investigation was to observe changes in maximal upper body strength and power across a 10-year period in professional athletes who were experienced resistance trainers. Six professional rugby league players were observed with test data reported according to 2 important training stages in their professional careers. The first stage (1996-1998) monitored the changes as the subjects strived to establish themselves as elite professionals in their sport. The remaining test data are from the latter stage (2000-2006), which is characterized by a longer competition schedule and shorter periods devoted to improving physical preparation. The changes in upper body strength, assessed by the 1 repetition maximum bench press and mean maximum power during bench press throws with various barbell resistances of 40-80 kg, were assessed by effect size (ES) and smallest worthwhile change (SWC) statistics. Large increases in strength and power of approximately 22-23% were reported across the 10-year period, however, only small changes (as determined by ES) in strength or power occurred after year 2000 till 2006. This result of only small changes in strength or power despite 6 years of intense resistance training was attributed to 3 main factors. Key among them are the possible existence of a "strength ceiling" for experienced resistance trainers, the Long-term Athlete Development model, and possibly an inappropriate volume of strength-endurance training from 2004 to 2005. The fact that an SWC in strength and power occurred in the year after the cessation of strength-endurance training suggests that training program manipulation is still an influencing factor in continuing strength and power gains in experienced resistance trainers.
Immune system cells in healthy ferrets: an immunohistochemical study.
Vidaña, B; Majó, N; Pérez, M; Montoya, M; Martorell, J; Martínez, J
2014-07-01
The ferret has emerged as an excellent animal model to characterize several physiologic and pathologic conditions. The distribution and characterization of different types of immune system cells were studied in healthy ferret tissues. Eight primary antibodies were tested for immunohistochemistry in formalin-fixed tissues: anti-CD3, anti-CD79α, anti-CD20, anti-HLA-DR, anti-lysozyme, anti-CD163, anti-SWC3, and anti-Mac387. The anti-CD3 antibody labeled T cells mainly in interfollicular and paracortical areas of lymph nodes, cortex and thymic medulla, and periarteriolar lymphoid sheaths in the spleen. The anti-CD79α and anti-CD20 antibodies immunolabeled B cells located in lymphoid follicles at lymph nodes, spleen, and Peyer patches. The CD79α and CD20 antibodies also labeled cells with nonlymphoid morphology in atypical B-cell locations. The anti-HLA-DR antibody labeled macrophages, some populations of B and T lymphocytes, and different populations of dendritic cells in lymph nodes, Peyer patches, spleen, and thymus. The anti-lysozyme antibody immunolabeled macrophages in the liver, lymph nodes, spleen, and thymus. The Mac-387, CD163, and SWC3 antibodies did not show any positive reaction in formalin-fixed or frozen tissues. To elucidate the origin of the uncommon CD79α/CD20 positive cells, a double immunohistochemistry was carried out using the anti-HLA-DR + the anti-CD79α, the anti-HLA-DR + the anti-CD20, and the anti-lysozyme + the anti-CD79α antibodies. Double labeling was mainly observed when the anti-HLA-DR + the anti-CD79α antibodies were combined. The immunohistologic characterization and distribution of these immune system cells in healthy ferret tissues should be of value in future comparative studies of diseases in ferrets. © The Author(s) 2013.
He, Jian; Bai, Shuang; Wang, Xiaoyi
2017-06-16
Falls are one of the main health risks among the elderly. A fall detection system based on inertial sensors can automatically detect fall event and alert a caregiver for immediate assistance, so as to reduce injuries causing by falls. Nevertheless, most inertial sensor-based fall detection technologies have focused on the accuracy of detection while neglecting quantization noise caused by inertial sensor. In this paper, an activity model based on tri-axial acceleration and gyroscope is proposed, and the difference between activities of daily living (ADLs) and falls is analyzed. Meanwhile, a Kalman filter is proposed to preprocess the raw data so as to reduce noise. A sliding window and Bayes network classifier are introduced to develop a wearable fall detection system, which is composed of a wearable motion sensor and a smart phone. The experiment shows that the proposed system distinguishes simulated falls from ADLs with a high accuracy of 95.67%, while sensitivity and specificity are 99.0% and 95.0%, respectively. Furthermore, the smart phone can issue an alarm to caregivers so as to provide timely and accurate help for the elderly, as soon as the system detects a fall.
Tchalla, Achille E; Lachal, Florent; Cardinaud, Noëlle; Saulnier, Isabelle; Rialle, Vincent; Preux, Pierre-Marie; Dantoine, Thierry
2013-01-01
Alzheimer's disease (AD) is known to increase the risk of falls. We aim to determine the effectiveness of home-based technologies coupled with teleassistance service (HBTec-TS) in older people with AD. A study of falls and the HBTec-TS system (with a light path combined with a teleassistance service) was conducted in the community. The 96 subjects, drawn from a random population of frail elderly people registered as receiving an allocation for lost autonomy from the county, were aged 65 or more and had mild-to-moderate AD with 1 year of follow-up; 49 were in the intervention group and 47 in the control group. A total of 16 (32.7%) elderly people fell in the group with HBTec-TS versus 30 (63.8%) in the group without HBTec-TS. The use of HBTec-TS was significantly associated with a reduction in the number of indoor falls among elderly people with mild-to-moderate AD (OR = 0.37, 95% CI = 0.15-0.88, p = 0.0245). The use of the HBTec-TS significantly reduced the incidence of primary indoor falling needing GP intervention or attendance at an emergency room among elderly people with AD and mild-to-moderate dementia. © 2013 S. Karger AG, Basel.
Teaching Technology from a Feminist Perspective: A Practical Guide. The Athene Series.
ERIC Educational Resources Information Center
Rothschild, Joan
Research, publications, and teaching about women in technology have been growing steadily. The level of interest and the number of courses seems to be high. This book attempts to analyze and synthesize curriculum experiences that apply new research on gender and technology to technology teaching. In fall 1985, a questionnaire and request for…
Get connected: New Fall Meeting technology
NASA Astrophysics Data System (ADS)
Moscovitch, Mirelle
2012-11-01
Kick off your 2012 Fall Meeting experience today by joining the Fall Meeting Community, an interactive Web-based community. Whether you are attending this year's Fall Meeting or are just interested in learning more, this site can help you connect with colleagues, learn about the groundbreaking research and amazing programming being presented in San Francisco, and plan your trip to the largest Earth and space science conference of the year. Available through the Fall Meeting Web site (http://fallmeeting.agu.org), the Community allows you to share your Fall Meeting experience like never before. You can join groups based on your interests, and each group includes a message board that allows you to ask questions, post comments, discuss presentations, and make plans with colleagues. You can also create your own groups and use the Community's robust search engine to find and connect with friends. And because the Fall Meeting Web site was improved for 2012 to allow for nearly seamless functionality on mobile devices, you can access much of the same Community functionality on the go.
Results of Workshops on Privacy Protection Technologies
NASA Astrophysics Data System (ADS)
Landwehr, Carl
This talk summarizes the results of a series of workshops on privacy protecting technologies convened in the fall of 2006 by the Office of the Director of National Intelligence through its Civil Liberties Protection Office and the (then) Disruptive Technology Office (now part of the Intelligence Advanced Research Projects Activity, IARPA).
Sustainable Technology: Community Surveys of Requisite Skills, Spring 2000.
ERIC Educational Resources Information Center
Pezzoli, Jean A.; Ainsworth, Don
The goal of this study was to obtain feedback from relevant community businesses regarding skills needed by employees in Sustainable Technologies. Survey results will help design the innovative Sustainable Technologies curriculum, which is under development at the Maui Community College. In the fall 1999 semester, the Sustainable Technologies…
Bridges with Trigonometry Equals Engineering Achievement
ERIC Educational Resources Information Center
Gathing, Ahmed L.
2011-01-01
Exemplary and fun technology education classes in high schools are always welcome. The author introduces bridge building to his ninth graders and other students who comprise the Introduction to Engineering and Technology course within the first two months of the fall semester. In Georgia, Introduction to Engineering and Technology is the first of…
NASA Astrophysics Data System (ADS)
Siregar, B.; Andayani, U.; Bahri, R. P.; Seniman; Fahmi, F.
2018-03-01
Most of the elderly people is experiencing a decrease in physical quality, especially the weakness in the legs. This will cause elderly easy to fall and can have a serious impact on their health if not getting help very quickly. It is, therefore, necessary to take immediate action against the falling cases experienced by the elderly. One such action is by developing supervision and detecting of falling movements in real-time, which is then the connection to a member of the family. In this research, we used Arduino Uno as a microcontroller, sensor accelerometer, and gyroscope that serves to measure falling movement of the elderly person and supported by GPS technology Ublox Neo 6M to provide information about coordinates. The result was the high accuracy of delivering notification data to server and accuracy of data delivery to family notification equal to 93,75%. The system successfully detects the direction of falling: forward, backward, left or right and able to distinguish between unintentional falling and conscious falling like a bow or prostrate position.
Harte, Richard; Hall, Tony; Glynn, Liam; Rodríguez-Molinero, Alejandro; Scharf, Thomas; Quinlan, Leo R; ÓLaighin, Gearóid
2018-04-26
Each year, millions of older adults fall, with more than 1 out of 4 older people experiencing a fall annually, thereby causing a major social and economic impact. Falling once doubles one’s chances of falling again, making fall prediction an important aspect of preventative strategies. In this study, 22 older adults aged between 65 and 85 years were trained in the use of a smartphone-based fall prediction system. The system is designed to continuously assess fall risk by measuring various gait and balance parameters using a smart insole and smartphone, and is also designed to detect falls. The use case of the fall prediction system in question required the users to interact with the smartphone via an app for device syncing, data uploads, and checking system status. The objective of this study was to observe the effect that basic smartphone training could have on the user experience of a group that is not technically proficient with smartphones when using a new connected health system. It was expected that even short rudimentary training could have a large effect on user experience and therefore increase the chances of the group accepting the new technology. All participants received training on how to use the system smartphone app; half of the participants (training group) also received extra training on how to use basic functions of the smartphone, such as making calls and sending text messages, whereas the other half did not receive this extra training (no extra training group). Comparison of training group and no extra training group was carried out using metrics such as satisfaction rating, time taken to complete tasks, cues required to complete tasks, and errors made during tasks. The training group fared better in the first 3 days of using the system. There were significant recorded differences in number of cues required and errors committed between the two groups. By the fourth and fifth day of use, both groups were performing at the same level when using the system. Supplementary basic smartphone training may be critical in trials where a smartphone app–based system for health intervention purposes is being introduced to a population that is not proficient with technology. This training could prevent early technology rejection and increase the engagement of older participants and their overall user experience with the system. ©Richard Harte, Tony Hall, Liam Glynn, Alejandro Rodríguez-Molinero, Thomas Scharf, Leo R Quinlan, Gearóid ÓLaighin. Originally published in JMIR Human Factors (http://humanfactors.jmir.org), 26.04.2018.
Aldrich, Mark
In 1948 roof falls were the number one killer of coal miners in America. While the Bureau of Mines had been formed in 1910 to improve coalmine safety, it had largely focused on explosions, for which technological solutions appeared to exist. Roof falls, by contrast, were not amenable to a technical fix. Beginning in 1948, however, the Bureau discovered roof bolting, which it promoted as a safer technology that might yield dramatic benefits. The new approach spread rapidly, yet fatality rates from roof falls failed to decline for nearly two decades. This lag reflected the need for organizational learning, while companies also traded safety for productivity. Finally, only larger mines employed bolting and its impact was masked by a growth in the employment share of small companies. After 1965, as the expansion of small mines ended and organizational learning continued, fatality rates began a long decline.
Integrating Safety with Science,Technology and Innovation at Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rich, Bethany M
2012-04-02
The mission of Los Alamos National Laboratory (LANL) is to develop and apply science, technology and engineering solutions to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve emerging national security challenges. The most important responsibility is to direct and conduct efforts to meet the mission with an emphasis on safety, security, and quality. In this article, LANL Environmental, Safety, and Health (ESH) trainers discuss how their application and use of a kinetic learning module (learn by doing) with a unique fall arrest system is helping to address one the most common industrialmore » safety challenges: slips and falls. A unique integration of Human Performance Improvement (HPI), Behavior Based Safety (BBS) and elements of the Voluntary Protection Program (VPP) combined with an interactive simulator experience is being used to address slip and fall events at Los Alamos.« less
An Interview with Roxie Ahlbrecht about Writing, Technology, and the "Apple Bytes" Project.
ERIC Educational Resources Information Center
Dalton, Bridget, Ed.; Strangman, Nicole, Ed.
2002-01-01
Presents an interview with Roxie Ahlbrecht, a second-grade teacher at Robert Frost Elementary School in Sioux Falls, South Dakota. Discusses technology and writing. Details how Internet projects support literacy. (PM)
Klamath Falls: High-Power Acoustic Well Stimulation Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Brian
Acoustic well stimulation (AWS) technology uses high-power sonic waves from specific frequency spectra in an attempt to stimulate production in a damaged or low-production wellbore. AWS technology is one of the most promising technologies in the oil and gas industry, but it has proven difficult for the industry to develop an effective downhole prototype. This collaboration between Klamath Falls Inc. and the Rocky Mountain Oilfield Testing Center (RMOTC) included a series of tests using high-power ultrasonic tools to stimulate oil and gas production. Phase I testing was designed and implemented to verify tool functionality, power requirements, and capacity of high-powermore » AWS tools. The purpose of Phase II testing was to validate the production response of wells with marginal production rates to AWS stimulation and to capture and identify any changes in the downhole environment after tool deployment. This final report presents methodology and results.« less
SEP-Kr and SEP-Xe in Lunar Ilmenite and the Ar/Kr/Xe Ratio in the Solar Wind
NASA Astrophysics Data System (ADS)
Wieler, R.; Baur, H.; Signer, P.
1992-07-01
We analyzed all five noble gases in an ilmenite sample from lunar soil 71501 by closed system stepped etching (CSSE), thus extending our CSSE studies of solar noble gases (Wieler et al., 1986; Benkert et al., 1988) to Kr and Xe. He, Ne, Ar isotopes: We observe the familiar presence of two solar noble gas components: step 1 shows ^4He/^3He = 2250, ^20Ne/^22Ne = 13.8, and ^36Ar/^38Ar=5.46. The first two ratios are essentially identical to modern solar wind values (SWC; Geiss, 1973), indicating an isotopically unfractionated SW noble gas reservoir in lunar ilmenite. The Ne data-points of later steps fall on a straight line and reach the SEP-Ne point (^20Ne/^22Ne = 11.3). The slope of this line indicates mass dependent fractionation between SW-Ne and SEP-Ne. SEP-He (^4He/^3He = 4650 +-100) and SEP-Ar (^36Ar/^38Ar = 4.89+-0.05) are also observed (latter two numbers slightly revised compared to Wieler et al., 1992). Kr, Xe isotopes: Kr in those two steps that release pure SW-Ne is very slightly lighter than atmospheric Kr (^86Kr/^84Kr = 0.3041; see also Wieler et al., 1992). We interpret this to be SW-Kr in soil 71501. Steps containing (isotopically heavier) SEP-Ne likewise release heavier Kr, interpreted accordingly as SEP-Kr (^86Kr/^84Kr = 0.323). Similarly, a light Xe component is released first (SW-Xe, ^136Xe/^132Xe = 0.3003), followed by heavier SEP-Xe (^136Xe/^132Xe = 0.319). The data are consistent with both Kr and Xe in SW and SEP components to be related by mass fractionation. The relation first proposed by Benkert et al. (1988) between a ratio R(m(sub)2,m(sub)1) of two isotopes with masses m(sub)2>m(sub)1 in SW and SEP now holds for all five noble gases: (R(sub)SW-R(sub)SEP)/R(sub)SW = (2+-0.13)*(m(sub)2- m(sub)1)/m(sub)2. Since m(sub)2~m(sub)1, this relation may also be written as: R(sub)SEP/R(sub)SW ~ (m(sub)1/m(sub)2)^2 (Geiss and Bochsler, 1991). Element ratios: ^4He/^36Ar and ^20Ne/^36Ar rise from values several times below SWC to essentially SWC ratios in the steps releasing nearly pure SEP gases, indicating element fractionation between SW-He/Ne, but essentially unfractionated SEP-He/Ne/Ar in lunar ilmenite. In contrast, Kr/Xe stays virtually constant (^84Kr/^132Xe = 8.4+-0.5), except in the first few steps. If the light three noble gases indeed are not fractionated in the SEP dominated steps, we would also expect no fractionation for Kr/Xe. The measured ^84Kr/^132Xe ratio is, however, about 2.4 times lower than the most recent "solar system" ratio (Anders and Grevesse, 1989), albeit only ~30% lower than the "solar" value preferred by Marti and Suess (1988). Kr/Xe ratios similar to those in ilmenites have been found earlier, e.g. in Peysanoe (Marti, 1969). They are often taken to indicate fractionated loss of solar noble gases. Based on the new CSSE results, we propose, instead, that lunar ilmenites retain a faithful record of ^84Kr/^132Xe in SW and SEP (and also ^36Ar/^84Kr(sub)SW = 1750+- 300). If so, this may indicate noble gas fractionation in the solar corpuscular radiation, perhaps depending on first ionization potential or a related parameter. Work supported by the Swiss National Science Foundation. References: Anders, E. and Grevesse, N. (1989) Geochim. Cosmochim. Acta. 53, 197-214. Benkert, J.-P. et al. (1988) Lunar Planet. Sci. (abstract) 19, 59-60. Geiss, J. (1973) Proc. 13th Int. Cosmic Ray Conf. 3375-3398. Geiss, J. and Bochsler, P. (1991) In The Sun in Time (eds. C. P. Sonett, M. S. Giampapa and M.S. Matthews), pp. 98-117. Univ. Arizona Press, Tucson, Arizona. Marti, K. (1969) Science. 166. 1263-1265. Marti, K. and Suess, H. E. (1988) Astrophys. Space Sci. 144. 507-517. Wieler, R. et al. (1986) Geochim. Cosmochim. Acta. 50. 1997-2017. Wieler, R. et al. (1992) Lunar Planet. Sci. (abstract) 23.
FIELD PERFORMANCE OF ADVANCED TECHNOLOGY WOODSTOVES IN GLEN FALLS, NY, 1988-89 - VOLUME I
The report gives results of an evaluation of particulate emission trends for three models of catalytic and two models of non- catalytic woodstoves under in-home burning conditions during the 1988-89 heating season in Glens Falls, NY. he results (averaging 9.4 g/h and 9.4 g/kg) sh...
The report gives results of an evaluation of particulate emission trends for three models of catalytic and two models of non- catalytic woodstoves under "in-home" burning conditions during the 1988-89 heating season in Glens Falls, NY. The results (averaging 9.4 g/h and 9.4 g/kg...
ERIC Educational Resources Information Center
Sabo, Kent
2013-01-01
Concerted efforts have been made within teacher preparation programs to integrate teaching with technology into the curriculum. Unfortunately, these efforts continue to fall short as teachers' application of educational technology is unsophisticated and not well integrated. The most prevalent approaches to integrating technology tend to ignore…
Concordance of Motion Sensor and Clinician-Rated Fall Risk Scores in Older Adults.
Elledge, Julie
2017-12-01
As the older adult population in the United States continues to grow, developing reliable, valid, and practical methods for identifying fall risk is a high priority. Falls are prevalent in older adults and contribute significantly to morbidity and mortality rates and rising health costs. Identifying at-risk older adults and intervening in a timely manner can reduce falls. Conventional fall risk assessment tools require a health professional trained in the use of each tool for administration and interpretation. Motion sensor technology, which uses three-dimensional cameras to measure patient movements, is promising for assessing older adults' fall risk because it could eliminate or reduce the need for provider oversight. The purpose of this study was to assess the concordance of fall risk scores as measured by a motion sensor device, the OmniVR Virtual Rehabilitation System, with clinician-rated fall risk scores in older adult outpatients undergoing physical rehabilitation. Three standardized fall risk assessments were administered by the OmniVR and by a clinician. Validity of the OmniVR was assessed by measuring the concordance between the two assessment methods. Stability of the OmniVR fall risk ratings was assessed by measuring test-retest reliability. The OmniVR scores showed high concordance with the clinician-rated scores and high stability over time, demonstrating comparability with provider measurements.
Highlights of Space Weather Services/Capabilities at NASA/GSFC Space Weather Center
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching; Zheng, Yihua; Hesse, Michael; Kuznetsova, Maria; Pulkkinen, Antti; Taktakishvili, Aleksandre; Mays, Leila; Chulaki, Anna; Lee, Hyesook
2012-01-01
The importance of space weather has been recognized world-wide. Our society depends increasingly on technological infrastructure, including the power grid as well as satellites used for communication and navigation. Such technologies, however, are vulnerable to space weather effects caused by the Sun's variability. NASA GSFC's Space Weather Center (SWC) (http://science.gsfc.nasa.gov//674/swx services/swx services.html) has developed space weather products/capabilities/services that not only respond to NASA's needs but also address broader interests by leveraging the latest scientific research results and state-of-the-art models hosted at the Community Coordinated Modeling Center (CCMC: http://ccmc.gsfc.nasa.gov). By combining forefront space weather science and models, employing an innovative and configurable dissemination system (iSWA.gsfc.nasa.gov), taking advantage of scientific expertise both in-house and from the broader community as well as fostering and actively participating in multilateral collaborations both nationally and internationally, NASA/GSFC space weather Center, as a sibling organization to CCMC, is poised to address NASA's space weather needs (and needs of various partners) and to help enhancing space weather forecasting capabilities collaboratively. With a large number of state-of-the-art physics-based models running in real-time covering the whole space weather domain, it offers predictive capabilities and a comprehensive view of space weather events throughout the solar system. In this paper, we will provide some highlights of our service products/capabilities. In particular, we will take the 23 January and the 27 January space weather events as examples to illustrate how we can use the iSWA system to track them in the interplanetary space and forecast their impacts.
Individual Autonomy, Law, and Technology: Should Soft Determinism Guide Legal Analysis?
ERIC Educational Resources Information Center
Cockfield, Arthur J.
2010-01-01
How one thinks about the relationship between individual autonomy (sometimes referred to as individual willpower or human agency) and technology can influence the way legal thinkers develop policy at the intersection of law and technology. Perspectives that fall toward the "machines control us" end of the spectrum may support more interventionist…
Equipping the 2015 Chemical Technology Workforce: Partnering with Key Stakeholders
ERIC Educational Resources Information Center
Aronson, Blake; Wesemann, Jodi
2007-01-01
The opportunities and challenges associated with establishing and sustaining successful chemistry-based technology programs were discussed at Equipping the 2015 Chemical Technology Workforce, a Presidential Event held at the Fall 2006 ACS National Meeting, kicking off an initiative by the same name. The initiative is based on the recent ACS…
TECH-NJ: Technology, Educators, & CHildren with Disabilities--New Jersey, 1996-1998.
ERIC Educational Resources Information Center
TECH-NJ: Technology, Educators, & CHildren with disabilities--New Jersey, 1998
1998-01-01
These six issues of "TECH-NJ" from winter 1997 to fall 1998 focus on technology and children with disabilities in New Jersey. Featured articles include: (1) "Untangling the World Wide Web" (Kathleen Foster and Gerald Quinn); (2) "Combining Technology with Cooperative Learning: The Great Solar System" (Lisa Gregory);…
NASA Astrophysics Data System (ADS)
Zhao, Na; Meng, Ping; He, Yabing; Yu, Xinxiao
2017-07-01
In the context of global warming attributable to the increasing levels of CO2, severe drought may be more frequent in areas that already experience chronic water shortages (semiarid areas). This necessitates research on the interactions between increased levels of CO2 and drought and their effect on plant photosynthesis. It is commonly reported that 13C fractionation occurs as CO2 gas diffuses from the atmosphere to the substomatal cavity. Few researchers have investigated 13C fractionation at the site of carboxylation to cytoplasm before sugars are exported outward from the leaf. This process typically progresses in response to variations in environmental conditions (i.e., CO2 concentrations and water stress), including in their interaction. Therefore, saplings of two typical plant species (Platycladus orientalis and Quercus variabilis) from semiarid areas of northern China were selected and cultivated in growth chambers with orthogonal treatments (four CO2 concentration ([CO2]) × five soil volumetric water content (SWC)). The δ13C of water-soluble compounds extracted from leaves of saplings was determined for an assessment of instantaneous water use efficiency (WUEcp) after cultivation. Instantaneous water use efficiency derived from gas-exchange measurements (WUEge) was integrated to estimate differences in δ13C signal variation before leaf-level translocation of primary assimilates. The WUEge values in P. orientalis and Q. variabilis both decreased with increased soil moisture at 35-80 % of field capacity (FC) and increased with elevated [CO2] by increasing photosynthetic capacity and reducing transpiration. Instantaneous water use efficiency (iWUE) according to environmental changes differed between the two species. The WUEge in P. orientalis was significantly greater than that in Q. variabilis, while an opposite tendency was observed when comparing WUEcp between the two species. Total 13C fractionation at the site of carboxylation to cytoplasm before sugar export (total 13C fractionation) was species-specific, as demonstrated in the interaction of [CO2] and SWC. Rising [CO2] coupled with moistened soil generated increasing disparities in δ13C between water-soluble compounds (δ13CWSC) and estimates based on gas-exchange observations (δ13Cobs) in P. orientalis, ranging between 0.0328 and 0.0472 ‰. Differences between δ13CWSC and δ13Cobs in Q. variabilis increased as [CO2] and SWC increased (0.0384-0.0466 ‰). The 13C fractionation from mesophyll conductance (gm) and post-carboxylation both contributed to the total 13C fractionation that was determined by δ13C of water-soluble compounds and gas-exchange measurements. Total 13C fractionation was linearly dependent on stomatal conductance, indicating that post-carboxylation fractionation could be attributed to environmental variation. The magnitude and environmental dependence of apparent post-carboxylation fractionation is worth our attention when addressing photosynthetic fractionation.
Involvement of older people in the development of fall detection systems: a scoping review.
Thilo, Friederike J S; Hürlimann, Barbara; Hahn, Sabine; Bilger, Selina; Schols, Jos M G A; Halfens, Ruud J G
2016-02-11
The involvement of users is recommended in the development of health related technologies, in order to address their needs and preferences and to improve the daily usage of these technologies. The objective of this literature review was to identify the nature and extent of research involving older people in the development of fall detection systems. A scoping review according to the framework of Arksey and O'Malley was carried out. A key term search was employed in eight relevant databases. Included articles were summarized using a predetermined charting form and subsequently thematically analysed. A total of 53 articles was included. In 49 of the 53 articles, older people were involved in the design and/or testing stages, and in 4 of 53 articles, they were involved in the conceptual or market deployment stages. In 38 of the 53 articles, the main focus of the involvement of older people was technical aspects. In 15 of the 53 articles, the perspectives of the elderly related to the fall detection system under development were determined using focus groups, single interviews or questionnaires. Until presently, involvement of older people in the development of fall detection systems has focused mainly on technical aspects. Little attention has been given to the specific needs and views of older people in the context of fall detection system development and usage.
ERIC Educational Resources Information Center
National Telecommunications and Information Administration (DOC), Washington, DC.
This report, the fourth in the "Falling through the Net" series, measures the extent of computer and Internet connection among U.S. households and individuals. The data, obtained from Bureau of the Census statistics and interviews with 48,000 households, show that digital inclusion is rapidly increasing--households with Internet access soared by…
Using Education Technology as a Proactive Approach to Healthy Ageing.
Rodger, Daragh; Spencer, Anne; Hussey, Pamela
2016-01-01
Bone Health in the Park was created in Ireland and is an online health promotion education resource focussing on bone health, healthy ageing and falls prevention. The programme was designed by an Advanced Nurse Practitioner in collaboration with an Education Technologist and primarily uses storytelling to promote education specifically on bone health and falls risk prevention for health care professionals, clients, families and informal carers. This paper reports on core deliverables from this programme from 2010 to 2015, and provides insight into their development, in addition to details on its clinical effectiveness by using technology enhanced learning to underpin health promotion initiatives.
The High-Tech Surge. Focus on Careers.
ERIC Educational Resources Information Center
Vo, Chuong-Dai Hong
1996-01-01
The computer industry is growing at a phenomenal rate as technology advances and prices fall, stimulating unprecedented demand from business, government, and individuals. Higher levels of education will be the key to securing employment as organizations increasingly rely on sophisticated technology. (Author)
ERIC Educational Resources Information Center
Plesch, Christine; Kaendler, Celia; Rummel, Nikol; Wiedmann, Michael; Spada, Hans
2013-01-01
Despite steady progress in research in technology-enhanced learning (TEL), the translation of research findings and technology into educational practices falls short of expectations. We present five Areas of Tension which were identified and evaluated in an international Delphi study on TEL. These tensions might impede a more comprehensive…
NASA Tech Briefs, Fall 1980. Volume 5, No. 3
NASA Technical Reports Server (NTRS)
1980-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovatio.ns of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1978. Volume 3, No. 3
NASA Technical Reports Server (NTRS)
1978-01-01
Topics covered: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall/Winter 1981. Vol. 6, No. 3
NASA Technical Reports Server (NTRS)
1981-01-01
Topics covered: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
ERIC Educational Resources Information Center
Stevenson, Heidi J.
2014-01-01
The Business Roundtable (2013) website presents a common narrative in regard to STEM (Science, Technology, Engineering and Mathematics) education, "American students are falling behind in math and science. Fewer and fewer students are pursuing careers in science, technology, engineering and mathematics, and American students are performing at…
NASA Tech Briefs, Fall 1976. Volume 1, No. 3
NASA Technical Reports Server (NTRS)
1976-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of seloc.ted Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
Choose to Use: Scaffolding for Technology Learning Needs in a Project-Based Learning Environment
ERIC Educational Resources Information Center
Weimer, Peggy D.
2017-01-01
Project-based learning is one approach used by teachers to meet the challenge of developing more technologically proficient students. This approach, however, requires students to manage a large number of tasks including the mastery of technology. If a student's perception that their capability to perform a task falls below the task's difficulty,…
NASA Tech Briefs, Fall 1977. Volume 2, No. 3
NASA Technical Reports Server (NTRS)
1977-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1982. Volume 7, No. 1
NASA Technical Reports Server (NTRS)
1982-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the develop ment of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1983. Volume 8, No. 1
NASA Technical Reports Server (NTRS)
1983-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
DOT National Transportation Integrated Search
1997-06-18
The current paper provides a discussion of the technologies available to collect/transmit process and disseminate the needed data in order to meet the needs of the Buffalo ITS data sources, system users and their needs. The technologies which could b...
NASA Tech Briefs, Fall 1979. Volume 4, No. 3
NASA Technical Reports Server (NTRS)
1979-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
Conceptualizing a Dynamic Fall Risk Model Including Intrinsic Risks and Exposures.
Klenk, Jochen; Becker, Clemens; Palumbo, Pierpaolo; Schwickert, Lars; Rapp, Kilan; Helbostad, Jorunn L; Todd, Chris; Lord, Stephen R; Kerse, Ngaire
2017-11-01
Falls are a major cause of injury and disability in older people, leading to serious health and social consequences including fractures, poor quality of life, loss of independence, and institutionalization. To design and provide adequate prevention measures, accurate understanding and identification of person's individual fall risk is important. However, to date, the performance of fall risk models is weak compared with models estimating, for example, cardiovascular risk. This deficiency may result from 2 factors. First, current models consider risk factors to be stable for each person and not change over time, an assumption that does not reflect real-life experience. Second, current models do not consider the interplay of individual exposure including type of activity (eg, walking, undertaking transfers) and environmental risks (eg, lighting, floor conditions) in which activity is performed. Therefore, we posit a dynamic fall risk model consisting of intrinsic risk factors that vary over time and exposure (activity in context). eHealth sensor technology (eg, smartphones) begins to enable the continuous measurement of both the above factors. We illustrate our model with examples of real-world falls from the FARSEEING database. This dynamic framework for fall risk adds important aspects that may improve understanding of fall mechanisms, fall risk models, and the development of fall prevention interventions. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (excluding software) falling within the definition in § 560.205 must comprise less than 10 percent of the foreign-made good (excluding software); (b) U.S.-origin software falling within the definition in § 560.205 must comprise less than 10 percent of the foreign-made software; (c) U.S.-origin technology...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (excluding software) falling within the definition in § 560.205 must comprise less than 10 percent of the foreign-made good (excluding software); (b) U.S.-origin software falling within the definition in § 560.205 must comprise less than 10 percent of the foreign-made software; (c) U.S.-origin technology...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (excluding software) falling within the definition in § 560.205 must comprise less than 10 percent of the foreign-made good (excluding software); (b) U.S.-origin software falling within the definition in § 560.205 must comprise less than 10 percent of the foreign-made software; (c) U.S.-origin technology...
Johns Hopkins University Announces Frederick CREST Classes for Fall 2016 | Poster
Johns Hopkins University’s (JHU) Advanced Academic Programs (AAP) division recently announced two classes that will be hosted at the Frederick Center for Research and Education in Science and Technology (CREST) this fall. According to a JHU press release, the classes are Biochemistry, which is part of the M.S. in Biotechnology program at JHU AAP, and Molecular Biology, a part
1986-02-27
pavement testing include the use of the falling weight deflectometer and layered -elastic analysis. The falling weight deflectometer has the advantages of...being more transportable, lighter weight, and requires fewer operational personnel. The layer -elastic analysis provides for calculation of the elastic...moduli for pavement layers and sub- grade based on deflection measurements at the pavement surface. This analysis is device independent and will
Fall prevention in acute care hospitals: a randomized trial.
Dykes, Patricia C; Carroll, Diane L; Hurley, Ann; Lipsitz, Stuart; Benoit, Angela; Chang, Frank; Meltzer, Seth; Tsurikova, Ruslana; Zuyov, Lyubov; Middleton, Blackford
2010-11-03
Falls cause injury and death for persons of all ages, but risk of falls increases markedly with age. Hospitalization further increases risk, yet no evidence exists to support short-stay hospital-based fall prevention strategies to reduce patient falls. To investigate whether a fall prevention tool kit (FPTK) using health information technology (HIT) decreases patient falls in hospitals. Cluster randomized study conducted January 1, 2009, through June 30, 2009, comparing patient fall rates in 4 urban US hospitals in units that received usual care (4 units and 5104 patients) or the intervention (4 units and 5160 patients). The FPTK integrated existing communication and workflow patterns into the HIT application. Based on a valid fall risk assessment scale completed by a nurse, the FPTK software tailored fall prevention interventions to address patients' specific determinants of fall risk. The FPTK produced bed posters composed of brief text with an accompanying icon, patient education handouts, and plans of care, all communicating patient-specific alerts to key stakeholders. The primary outcome was patient falls per 1000 patient-days adjusted for site and patient care unit. A secondary outcome was fall-related injuries. During the 6-month intervention period, the number of patients with falls differed between control (n = 87) and intervention (n = 67) units (P=.02). Site-adjusted fall rates were significantly higher in control units (4.18 [95% confidence interval {CI}, 3.45-5.06] per 1000 patient-days) than in intervention units (3.15 [95% CI, 2.54-3.90] per 1000 patient-days; P = .04). The FPTK was found to be particularly effective with patients aged 65 years or older (adjusted rate difference, 2.08 [95% CI, 0.61-3.56] per 1000 patient-days; P = .003). No significant effect was noted in fall-related injuries. The use of a fall prevention tool kit in hospital units compared with usual care significantly reduced rate of falls. clinicaltrials.gov Identifier: NCT00675935.
Fall Prevention in Acute Care Hospitals
Dykes, Patricia C.; Carroll, Diane L.; Hurley, Ann; Lipsitz, Stuart; Benoit, Angela; Chang, Frank; Meltzer, Seth; Tsurikova, Ruslana; Zuyov, Lyubov; Middleton, Blackford
2011-01-01
Context Falls cause injury and death for persons of all ages, but risk of falls increases markedly with age. Hospitalization further increases risk, yet no evidence exists to support short-stay hospital-based fall prevention strategies to reduce patient falls. Objective To investigate whether a fall prevention tool kit (FPTK) using health information technology (HIT) decreases patient falls in hospitals. Design, Setting, and Patients Cluster randomized study conducted January 1, 2009, through June 30, 2009, comparing patient fall rates in 4 urban US hospitals in units that received usual care (4 units and 5104 patients) or the intervention (4 units and 5160 patients). Intervention The FPTK integrated existing communication and workflow patterns into the HIT application. Based on a valid fall risk assessment scale completed by a nurse, the FPTK software tailored fall prevention interventions to address patients’ specific determinants of fall risk. The FPTK produced bed posters composed of brief text with an accompanying icon, patient education handouts, and plans of care, all communicating patient-specific alerts to key stakeholders. Main Outcome Measures The primary outcome was patient falls per 1000 patient-days adjusted for site and patient care unit. A secondary outcome was fall-related injuries. Results During the 6-month intervention period, the number of patients with falls differed between control (n=87) and intervention (n=67) units (P=.02). Site-adjusted fall rates were significantly higher in control units (4.18 [95% confidence interval {CI}, 3.45-5.06] per 1000 patient-days) than in intervention units (3.15 [95% CI, 2.54-3.90] per 1000 patient-days; P=.04). The FPTK was found to be particularly effective with patients aged 65 years or older (adjusted rate difference, 2.08 [95% CI, 0.61-3.56] per 1000 patient-days; P=.003). No significant effect was noted in fall-related injuries. Conclusion The use of a fall prevention tool kit in hospital units compared with usual care significantly reduced rate of falls. PMID:21045097
ERIC Educational Resources Information Center
Drake, Miriam A.
In fall 1984, the Georgia Institute of Technology administration and library staff began planning for Library 2000, a project aimed at creating a showcase library to demonstrate the application of the latest information technology in an academic and research environment. The purposes of Library 2000 include: increasing awareness of students,…
The Value of 20th Century Technology in the 21st
ERIC Educational Resources Information Center
Error, Darise
2003-01-01
In Fall 2000, Dallas Teleconferences approached a prominent higher education organization about producing a series of satellite teleconferences for them. The intended recipient was complimentary of Dallas' teleconferencing endeavors, but representatives suggested that teleconferencing was an old medium employing antiquated technology. They…
Identifying Home Care Clinicians’ Information Needs for Managing Fall Risks
Alhuwail, Dari
2016-01-01
Summary Objectives To help manage the risk of falls in home care, this study aimed to (i) identify home care clinicians’ information needs and how they manage missing or inaccurate data, (ii) identify problems that impact effectiveness and efficiency associated with retaining, exchanging, or processing information about fall risks in existing workflows and currently adopted health information technology (IT) solutions, and (iii) offer informatics-based recommendations to improve fall risk management interventions. Methods A case study was carried out in a single not-for-profit suburban Medicare-certified home health agency with three branches. Qualitative data were collected over a six month period through observations, semi-structured interviews, and focus groups. The Framework method was used for analysis. Maximum variation sampling was adopted to recruit a diverse sample of clinicians. Results Overall, the information needs for fall risk management were categorized into physiological, care delivery, educational, social, environmental, and administrative domains. Examples include a brief fall-related patient history, weight-bearing status, medications that affect balance, availability of caregivers at home, and the influence of patients’ cultures on fall management interventions. The unavailability and inaccuracy of critical information related to fall risks can delay necessary therapeutic services aimed at reducing patients’ risk for falling and thereby jeopardizing their safety. Currently adopted IT solutions did not adequately accommodate data related to fall risk management. Conclusion The results highlight the essential information for fall risk management in home care. Home care workflows and health IT solutions must effectively and efficiently retain, exchange, and process information necessary for fall risk management. Interoperability and integration of the various health IT solutions to make data sharing accessible to all clinicians is critical for fall risk management. Findings from this study can help home health agencies better understand their information needs to manage fall risks. PMID:27437035
ERIC Educational Resources Information Center
Julka, Ashley; Stehr, Grady; Parks, Denise; Trechter, David
2010-01-01
The purpose of this study was to gain a better understanding of how middle school students and their parents are using technologies and what programs citizens of Wisconsin might need with respect to these technologies. During the month of February 2010, staff from the Survey Research Center (SRC) at the University of Wisconsin-River Falls, Lori…
Learning What Works in Educational Technology with a Case Study of EDUSTAR. Policy Memo 2016-01
ERIC Educational Resources Information Center
Chatterji, Aaron K.; Jones, Benjamin F.
2016-01-01
Despite much fanfare, new technologies have yet to fundamentally advance student outcomes in K-12 schools or other educational settings. We believe that the system that supports the development and dissemination of educational technology tools is falling short. The key missing ingredient is rigorous evaluation. No one knows what works and for…
ERIC Educational Resources Information Center
Lemke, Cheryl; Vandersall, Kirk; Ravden, Daran
2004-01-01
In the fall of 2003, the State Educational Technology Directors Association (SETDA) commissioned the Metiri Group to conduct a national survey on the first year of implementation of the No Child Left Behind, Title II, Part D, Enhancing Education through Technology program. The findings in this report represent 46 states and the District of…
S.A. Bowe; R.L. Smith; D. Earl Kline; Philip A. Araman
2002-01-01
A nationwide survey of advanced scanning and optimizing technology in the hardwood sawmill industry was conducted in the fall of 1999. Three specific hardwood sawmill technologies were examined that included current edger-optimizer systems, future edger-optimizer systems, and future automated grading systems. The objectives of the research were to determine differences...
Distinguishing the causes of falls in humans using an array of wearable tri-axial accelerometers.
Aziz, Omar; Park, Edward J; Mori, Greg; Robinovitch, Stephen N
2014-01-01
Falls are the number one cause of injury in older adults. Lack of objective evidence on the cause and circumstances of falls is often a barrier to effective prevention strategies. Previous studies have established the ability of wearable miniature inertial sensors (accelerometers and gyroscopes) to automatically detect falls, for the purpose of delivering medical assistance. In the current study, we extend the applications of this technology, by developing and evaluating the accuracy of wearable sensor systems for determining the cause of falls. Twelve young adults participated in experimental trials involving falls due to seven causes: slips, trips, fainting, and incorrect shifting/transfer of body weight while sitting down, standing up from sitting, reaching and turning. Features (means and variances) of acceleration data acquired from four tri-axial accelerometers during the falling trials were input to a linear discriminant analysis technique. Data from an array of three sensors (left ankle+right ankle+sternum) provided at least 83% sensitivity and 89% specificity in classifying falls due to slips, trips, and incorrect shift of body weight during sitting, reaching and turning. Classification of falls due to fainting and incorrect shift during rising was less successful across all sensor combinations. Furthermore, similar classification accuracy was observed with data from wearable sensors and a video-based motion analysis system. These results establish a basis for the development of sensor-based fall monitoring systems that provide information on the cause and circumstances of falls, to direct fall prevention strategies at a patient or population level. Copyright © 2013 Elsevier B.V. All rights reserved.
ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE TECHNOLOGY CAPSULE
In fall 1994, anaerobic compost wetlands in both upflow and down flow configurations were constructed adjacent to and received drainage from the Burleigh tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The ...
Analysis of Android Device-Based Solutions for Fall Detection
Casilari, Eduardo; Luque, Rafael; Morón, María-José
2015-01-01
Falls are a major cause of health and psychological problems as well as hospitalization costs among older adults. Thus, the investigation on automatic Fall Detection Systems (FDSs) has received special attention from the research community during the last decade. In this area, the widespread popularity, decreasing price, computing capabilities, built-in sensors and multiplicity of wireless interfaces of Android-based devices (especially smartphones) have fostered the adoption of this technology to deploy wearable and inexpensive architectures for fall detection. This paper presents a critical and thorough analysis of those existing fall detection systems that are based on Android devices. The review systematically classifies and compares the proposals of the literature taking into account different criteria such as the system architecture, the employed sensors, the detection algorithm or the response in case of a fall alarms. The study emphasizes the analysis of the evaluation methods that are employed to assess the effectiveness of the detection process. The review reveals the complete lack of a reference framework to validate and compare the proposals. In addition, the study also shows that most research works do not evaluate the actual applicability of the Android devices (with limited battery and computing resources) to fall detection solutions. PMID:26213928
Analysis of Android Device-Based Solutions for Fall Detection.
Casilari, Eduardo; Luque, Rafael; Morón, María-José
2015-07-23
Falls are a major cause of health and psychological problems as well as hospitalization costs among older adults. Thus, the investigation on automatic Fall Detection Systems (FDSs) has received special attention from the research community during the last decade. In this area, the widespread popularity, decreasing price, computing capabilities, built-in sensors and multiplicity of wireless interfaces of Android-based devices (especially smartphones) have fostered the adoption of this technology to deploy wearable and inexpensive architectures for fall detection. This paper presents a critical and thorough analysis of those existing fall detection systems that are based on Android devices. The review systematically classifies and compares the proposals of the literature taking into account different criteria such as the system architecture, the employed sensors, the detection algorithm or the response in case of a fall alarms. The study emphasizes the analysis of the evaluation methods that are employed to assess the effectiveness of the detection process. The review reveals the complete lack of a reference framework to validate and compare the proposals. In addition, the study also shows that most research works do not evaluate the actual applicability of the Android devices (with limited battery and computing resources) to fall detection solutions.
Accurate Fall Detection in a Top View Privacy Preserving Configuration.
Ricciuti, Manola; Spinsante, Susanna; Gambi, Ennio
2018-05-29
Fall detection is one of the most investigated themes in the research on assistive solutions for aged people. In particular, a false-alarm-free discrimination between falls and non-falls is indispensable, especially to assist elderly people living alone. Current technological solutions designed to monitor several types of activities in indoor environments can guarantee absolute privacy to the people that decide to rely on them. Devices integrating RGB and depth cameras, such as the Microsoft Kinect, can ensure privacy and anonymity, since the depth information is considered to extract only meaningful information from video streams. In this paper, we propose an accurate fall detection method investigating the depth frames of the human body using a single device in a top-view configuration, with the subjects located under the device inside a room. Features extracted from depth frames train a classifier based on a binary support vector machine learning algorithm. The dataset includes 32 falls and 8 activities considered for comparison, for a total of 800 sequences performed by 20 adults. The system showed an accuracy of 98.6% and only one false positive.
Automatic segmentation of triaxial accelerometry signals for falls risk estimation.
Redmond, Stephen J; Scalzi, Maria Elena; Narayanan, Michael R; Lord, Stephen R; Cerutti, Sergio; Lovell, Nigel H
2010-01-01
Falls-related injuries in the elderly population represent one of the most significant contributors to rising health care expense in developed countries. In recent years, falls detection technologies have become more common. However, very few have adopted a preferable falls prevention strategy through unsupervised monitoring in the free-living environment. The basis of the monitoring described herein was a self-administered directed-routine (DR) comprising three separate tests measured by way of a waist-mounted triaxial accelerometer. Using features extracted from the manually segmented signals, a reasonable estimate of falls risk can be achieved. We describe here a series of algorithms for automatically segmenting these recordings, enabling the use of the DR assessment in the unsupervised and home environments. The accelerometry signals, from 68 subjects performing the DR, were manually annotated by an observer. Using the proposed signal segmentation routines, an good agreement was observed between the manually annotated markers and the automatically estimated values. However, a decrease in the correlation with falls risk to 0.73 was observed using the automatic segmentation, compared to 0.81 when using markers manually placed by an observer.
Michel-Pellegrino, Valérie; Hewson, David J; Drieux, Michèle; Duchêne, Jacques
2007-01-01
Falls in the elderly constitute a major socio-economic problem for modern healthcare. The aim of the study was to extract biomechanical parameters to indicate balance level and the risk of falling in the elderly. It is a preliminary work as part of the development of a home-test based on force-plate technology. Seven faller and 12 non-faller elderly subjects performed stepped up onto a forceplate. Each subject was tested once per weekday for three weeks. Tinetti, Mini Mental Scale test (MMS) and the Geriatric Depression Scale (GDS) scores were measured before the experimentations. Temporal and ground reaction force parameters were measured. The Tinetti test was not correlated with falls in the following six-month period. In contrast, the biomechanical parameters related to the forces measured at foot-contact and to the durations of the phases of the stepping-up were correlated with fall, as well as with MMS and GDS. These results demonstrated that biomechanical parameters could be used as indicators of balance and risk of fall.
Time lags between crown and basal sap flows in tropical lianas and co-occurring trees.
Chen, Ya-Jun; Bongers, Frans; Tomlinson, Kyle; Fan, Ze-Xin; Lin, Hua; Zhang, Shu-Bin; Zheng, Yu-Long; Li, Yang-Ping; Cao, Kun-Fang; Zhang, Jiao-Lin
2016-06-01
Water storage in the stems of woody plants contributes to their responses to short-term water shortages. To estimate the contribution of water storage to the daily water budget of trees, time lags of sap flow between different positions of trunk are used as a proxy of stem water storage. In lianas, another large group of woody species, it has rarely been studied whether stored water functions in their daily water use, despite their increasing roles in the carbon and water dynamics of tropical forests caused by their increasing abundance. We hypothesized that lianas would exhibit large time lags due to their extremely long stems, wide vessels and large volume of parenchyma in the stem. We examined time lags in sap flow, diel changes of stem volumetric water content (VWC) and biophysical properties of sapwood of 19 lianas and 26 co-occurring trees from 27 species in 4 forests (karst, tropical seasonal, flood plain and savanna) during a wet season. The plants varied in height/length from <5 to >60 m. The results showed that lianas had significantly higher saturated water content (SWC) and much lower wood density than trees. Seven of 19 liana individuals had no time lags; in contrast, only 3 of 26 tree individuals had no time lags. In general, lianas had shorter time lags than trees in our data set, but this difference was not significant for our most conservative analyses. Across trees and lianas, time lag duration increased with diurnal maximum changeable VWC but was independent of the body size, path length, wood density and SWC. The results suggest that in most lianas, internal stem water storage contributes little to daily water budget, while trees may rely more on stored water in the stem. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Bogunovic, Igor; Bilandzija, Darija; Andabaka, Zeljko; Stupic, Domagoj; Cacic, Marija; Brezinscak, Luka; Maletic, Edi; Pereira, Paulo; Kisic, Ivica
2017-04-01
Vineyards represent one of the most degradation prone types of intensively managed land on Earth. Steep slopes encourage grape producers to adopt environmental friendly soil management like mulching or continuous no-tillage. In this context, producers have concerns about efficient fertilisation practices and water competitions between vine and grasses in continuous no-tillage inter rows. Vineyards in semi-humid areas like Continental Croatia mostly not suffer from water deficit during growth. Nevertheless, lack of research of different soil management practices open dilemma about soil compaction concerns in intensively trafficked soils in vineyard of semi-humid areas. Soil compaction, determined by bulk density (BD), soil water content (SWC) and CO2 fluxes from trafficked inter row positions were recorded in 2016 in an experiment in which four different soil management systems were compared in a vineyard raised on a silty clay loam soil, near Zagreb, Croatia: No-tillage (NT) system, continuous tillage (CT) and yearly inversed grass covered (INV-GC) and tillage managed (INV-T) inter rows are subjected to intensive traffic. Grape yield and must quality of grape variety Chardonnay was also monitored. Tractor traffic increased the soil BD at 0-10 and 10-20 cm, but especially at the 0-10 cm depth. CT treatment record lowest compaction at 0-10 cm because of tillage. Soil water content showed better conservation possibilities of INV-GC in drier period. In wet period SWC possibilities are similar between treatments. The results of soil compaction under different management indicate that vineyard soil differently response to traffic intensity and impact on microfauna activity and CO2 emissions. INV-GC and NT managed soils record lower CO2 fluxes from vineyard soil compared to CT and INV-T treatments. Management treatments did not statistically influenced on grape yields. Several years of investigation is needed to confirm the overall impact of different management treatments on the proportion of degradation process and their response to proportion of tractor circulation impacts.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Novick, K. A.; Song, C.; Zhang, Q.; Hwang, T.
2017-12-01
Drought and heat waves are expected to increase both in frequency and amplitude, exhibiting a major disturbance to global carbon and water cycles under future climate change. However, how these climate anomalies translate into physiological drought, or ecosystem moisture stress are still not clear, especially under the co-limitations from soil moisture supply and atmospheric demand for water. In this study, we characterized the ecosystem-level moisture stress in a deciduous forest in the southeastern United States using the Coupled Carbon and Water (CCW) model and in-situ eddy covariance measurements. Physiologically, vapor pressure deficit (VPD) as an atmospheric water demand indicator largely controls the openness of leaf stomata, and regulates atmospheric carbon and water exchanges during periods of hydrological stress. Here, we tested three forms of VPD-related moisture scalars, i.e. exponent (K2), hyperbola (K3), and logarithm (K4) to quantify the sensitivity of light-use efficiency to VPD along different soil moisture conditions. The sensitivity indicators of K values were calibrated based on the framework of CCW using Monte Carlo simulations on the hourly scale, in which VPD and soil water content (SWC) are largely decoupled and the full carbon and water exchanging information are held. We found that three K values show similar performances in the predictions of ecosystem-level photosynthesis and transpiration after calibration. However, all K values show consistent gradient changes along SWC, indicating that this deciduous forest is less responsive to VPD as soil moisture decreases, a phenomena of isohydricity in which plants tend to close stomata to keep the leaf water potential constant and reduce the risk of hydraulic failure. Our study suggests that accounting for such isohydric information, or spectrum of moisture stress along different soil moisture conditions in models can significantly improve our ability to predict ecosystem responses to future drought.
Yooyongwech, Suravoot; Samphumphuang, Thapanee; Tisarum, Rujira; Theerawitaya, Cattarin; Cha-Um, Suriyan
2017-01-01
The objective of this study was to elevate water deficit tolerance by improving soluble sugar and free proline accumulation, photosynthetic pigment stabilization, photosynthetic abilities, growth performance and storage root yield in sweet potato cv. 'Tainung 57' using a foliar application of paclobutrazol (PBZ). The experiment followed a Completely Randomized Block Design with four concentrations of PBZ: 0 (control), 17, 34, and 51 μM before exposure to 47.5% (well irrigation), 32.3% (mild water deficit) or 17.5% (severe water deficit) soil water content. A sweet potato cultivar, 'Japanese Yellow', with water deficit tolerance attributes was the positive check in this study. Total soluble sugar content (sucrose, glucose, and fructose) increased by 3.96-folds in 'Tainung 57' plants treated with 34 μM PBZ grown under 32.3% soil water content (SWC) compared to the untreated plants, adjusting osmotic potential in the leaves and controlling stomatal closure (represented by stomatal conductance and transpiration rate). In addition, under the same treatment, free proline content (2.15 μmol g -1 FW) increased by 3.84-folds when exposed to 17.5% SWC. PBZ had an improved effect on leaf size, vine length, photosynthetic pigment stability, chlorophyll fluorescence, and net photosynthetic rate; hence, delaying wilting symptoms and maintaining storage root yield (26.93 g plant -1 ) at the harvesting stage. A positive relationship between photon yield of PSII (Φ PSII ) and net photosynthetic rate was demonstrated ( r 2 = 0.73). The study concludes that soluble sugar and free proline enrichment in PBZ-pretreated plants may play a critical role as major osmoprotectant to control leaf osmotic potential and stomatal closure when plants were subjected to low soil water content, therefore, maintaining the physiological and morphological characters as well as storage root yield.
Yooyongwech, Suravoot; Samphumphuang, Thapanee; Tisarum, Rujira; Theerawitaya, Cattarin; Cha-um, Suriyan
2017-01-01
The objective of this study was to elevate water deficit tolerance by improving soluble sugar and free proline accumulation, photosynthetic pigment stabilization, photosynthetic abilities, growth performance and storage root yield in sweet potato cv. ‘Tainung 57’ using a foliar application of paclobutrazol (PBZ). The experiment followed a Completely Randomized Block Design with four concentrations of PBZ: 0 (control), 17, 34, and 51 μM before exposure to 47.5% (well irrigation), 32.3% (mild water deficit) or 17.5% (severe water deficit) soil water content. A sweet potato cultivar, ‘Japanese Yellow’, with water deficit tolerance attributes was the positive check in this study. Total soluble sugar content (sucrose, glucose, and fructose) increased by 3.96-folds in ‘Tainung 57’ plants treated with 34 μM PBZ grown under 32.3% soil water content (SWC) compared to the untreated plants, adjusting osmotic potential in the leaves and controlling stomatal closure (represented by stomatal conductance and transpiration rate). In addition, under the same treatment, free proline content (2.15 μmol g-1 FW) increased by 3.84-folds when exposed to 17.5% SWC. PBZ had an improved effect on leaf size, vine length, photosynthetic pigment stability, chlorophyll fluorescence, and net photosynthetic rate; hence, delaying wilting symptoms and maintaining storage root yield (26.93 g plant-1) at the harvesting stage. A positive relationship between photon yield of PSII (ΦPSII) and net photosynthetic rate was demonstrated (r2 = 0.73). The study concludes that soluble sugar and free proline enrichment in PBZ-pretreated plants may play a critical role as major osmoprotectant to control leaf osmotic potential and stomatal closure when plants were subjected to low soil water content, therefore, maintaining the physiological and morphological characters as well as storage root yield. PMID:28848596
Centritto, Mauro; Brilli, Federico; Fodale, Roberta; Loreto, Francesco
2011-03-01
The effects of the interaction between high growth temperatures and water stress on gas-exchange properties of Populus nigra saplings were investigated. Water stress was expressed as a function of soil water content (SWC) or fraction of transpirable soil water (FTSW). Isoprene emission and photosynthesis (A) did not acclimate in response to elevated temperature, whereas dark (R(n)) and light (R(d)) respiration underwent thermal acclimation. R(d) was ~30% lower than R(n) irrespective of growth temperature and water stress level. Water stress induced a sharp decline, but not a complete inhibition, of both R(n) and R(d). There was no significant effect of high growth temperature on the responses of A, stomatal conductance (g(s)), isoprene emission, R(n) or R(d) to FTSW. High growth temperature resulted in a significant increase in the SWC endpoint. Photosynthesis was limited mainly by CO(2) acquisition in water-stressed plants. Impaired carbon metabolism became apparent only at the FTSW endpoint. Photosynthesis was restored in about a week following rewatering, indicating transient biochemical limitations. The kinetics of isoprene emission in response to FTSW confirmed that water stress uncouples the emission of isoprene from A, isoprene emission being unaffected by decreasing g(s). The different kinetics of A, respiration and isoprene emission in response to the interaction between high temperature and water stress led to rising R(d)/A ratio and amount of carbon lost as isoprene. Since respiration and isoprene sensitivity are much lower than A sensitivity to water stress, temperature interactions with water stress may dominate poplar acclimatory capability and maintenance of carbon homeostasis under climate change scenarios. Furthermore, predicted temperature increases in arid environments may reduce the amount of soil water that can be extracted before plant gas exchange decreases, exacerbating the effects of water stress even if soil water availability is not directly affected.
Negative pressure wound therapy versus standard wound care on quality of life: a systematic review.
Janssen, A H J; Mommers, E H H; Notter, J; de Vries Reilingh, T S; Wegdam, J A
2016-03-01
Negative pressure wound therapy (NPWT) is a widely accepted treatment modality for open or infected wounds. Premature ending of NPWT occasionally occurs due to negative effects on the quality of life (QoL), however, the actual impact on QoL is unknown. The aim of this review is to analyse the effect of NPWT versus standard wound care (SWC) on QoL when used for the treatment of open or infected wounds. A systematic literature search in a range of databases (PubMed, CINAHL, Medline, Web of Science, Science Direct Freedom Collection, SwetsWise, PSYCArticles and Infrotrac Custom Journals) using the following search terms; 'standard wound care', 'wound dressing', 'dressing', 'treatment', OR 'negative pressure wound therapy [MESH]', OR 'vacuum assisted closure' AND 'quality of life [MESH]', 'patient-satisfaction', OR 'experiences' was performed. Methodological quality was assessed using the methodological index for non-randomised studies (MINORS) checklist. There were 42 studies identified, five matched the inclusion criteria: two randomised clinical trials (RCTs), one clinical comparative study, one exploratory prospective cohort study and one quasi experimental pilot study. Median MINORS-score was 75% (58%-96%). There were seven different questionnaires used to measure QoL or a subsidiary outcome. QoL in the NPWT group was lower in the first week, though no difference in QoL was observed thereafter. This systematic review observed that QoL improved at the end of therapy independent of which therapy was used. NPWT led to a lower QoL during the first week of treatment, possible due to aniexty, after which a similar or better QoL was reported when compared with SWC. It could be suggested that NPWT might be associated with increased anxiety. All authors of this publication have received no financial support or have personal interests conflicting with the objectivity of this manuscript.
A multi-sites analysis on the ozone effects on Gross Primary Production of European forests.
Proietti, C; Anav, A; De Marco, A; Sicard, P; Vitale, M
2016-06-15
Ozone (O3) is both a greenhouse gas and a secondary air pollutant causing adverse impacts on forests ecosystems at different scales, from cellular to ecosystem level. Specifically, the phytotoxic nature of O3 can impair CO2 assimilation that, in turn affects forest productivity. This study aims to evaluate the effects of tropospheric O3 on Gross Primary Production (GPP) at 37 European forest sites during the time period 2000-2010. Due to the lack of carbon assimilation data at O3 monitoring stations (and vice-versa) this study makes a first attempt to combine high resolution MODIS Gross Primary Production (GPP) estimates and O3 measurement data. Partial Correlations, Anomalies Analysis and the Random Forests Analysis (RFA) were used to quantify the effects of tropospheric O3 concentration and its uptake on GPP and to evaluate the most important factors affecting inter-annual GPP changes. Our results showed, along a North-West/South-East European transect, a negative impact of O3 on GPP ranging from 0.4% to 30%, although a key role of meteorological parameters respect to pollutant variables in affecting GPP was found. In particular, meteorological parameters, namely air temperature (T), soil water content (SWC) and relative humidity (RH) are the most important predictors at 81% of test sites. Moreover, it is interesting to highlight a key role of SWC in the Mediterranean areas (Spanish, Italian and French test sites) confirming that, soil moisture and soil water availability affect vegetation growth and photosynthesis especially in arid or semi-arid ecosystems such as the Mediterranean climate regions. Considering the pivotal role of GPP in the global carbon balance and the O3 ability to reduce primary productivity of the forests, this study can help in assessing the O3 impacts on ecosystem services, including wood production and carbon sequestration. Copyright © 2016 Elsevier B.V. All rights reserved.
Hofmann, Marco; Lux, Robert; Schultz, Hans R.
2014-01-01
Grapes for wine production are a highly climate sensitive crop and vineyard water budget is a decisive factor in quality formation. In order to conduct risk assessments for climate change effects in viticulture models are needed which can be applied to complete growing regions. We first modified an existing simplified geometric vineyard model of radiation interception and resulting water use to incorporate numerical Monte Carlo simulations and the physical aspects of radiation interactions between canopy and vineyard slope and azimuth. We then used four regional climate models to assess for possible effects on the water budget of selected vineyard sites up 2100. The model was developed to describe the partitioning of short-wave radiation between grapevine canopy and soil surface, respectively, green cover, necessary to calculate vineyard evapotranspiration. Soil water storage was allocated to two sub reservoirs. The model was adopted for steep slope vineyards based on coordinate transformation and validated against measurements of grapevine sap flow and soil water content determined down to 1.6 m depth at three different sites over 2 years. The results showed good agreement of modeled and observed soil water dynamics of vineyards with large variations in site specific soil water holding capacity (SWC) and viticultural management. Simulated sap flow was in overall good agreement with measured sap flow but site-specific responses of sap flow to potential evapotranspiration were observed. The analyses of climate change impacts on vineyard water budget demonstrated the importance of site-specific assessment due to natural variations in SWC. The improved model was capable of describing seasonal and site-specific dynamics in soil water content and could be used in an amended version to estimate changes in the water budget of entire grape growing areas due to evolving climatic changes. PMID:25540646
Ammonia emissions from different fertilizing strategies in Mediterranean rainfed winter cereals
NASA Astrophysics Data System (ADS)
Bosch-Serra, Àngela D.; Yagüe, María R.; Teira-Esmatges, María R.
2014-02-01
Anthropogenic ammonia (NH3) emissions mainly result from agricultural activities where manure spreading plays a significant role. For a Mediterranean rainfed winter cereal system there is a lack of data regarding NH3 emissions. The aim of this work is to provide field data on N losses due to NH3 volatilization as a consequence of the introduction of slurries in fertilization strategies and also, to assess the influence of environmental conditions and slurry characteristics on emissions. The fertilizing strategies include the use of slurry from fattening pigs (PS), sows (PSS) and/or mineral fertilizer (M) as ammonium nitrate. Fertilizers were spread over the calcareous soil at sowing and/or at tillering at rates from 15 to 45 kg NH4+-N ha-1 for M and from 48.8 to 250.3 kg NH4+-N ha-1 for slurries. The NH3 emissions were quantified during three cropping seasons. Average losses from the total ammonium nitrogen applied ranged from 7 to 78% for M and from 6 to 64% for slurries and they were not directly proportional to the amounts of applied ammonium. The best results on NH3 volatilization reduction were registered when soil water content (SWC, 0-30 cm) was below 56% of its field capacity and also, when slurry dry matter (DM) was in the interval of 6.1-9.3% for PS or much lower (0.8%) for PSS. High slurry DM favoured crust formation and the lower rates promoted infiltration, both of which reduced NH3 emissions. Nevertheless, at tillering, the lower DM content was the most effective in controlling emissions (<9 kg NH3-N ha-1) and equalled M fertilizer in cumulative NH3 loss (p > 0.05). A single slurry application at tillering did not negatively affect yield biomass. The combining of recommended timing of applications with slurry DM content and SWC should allow producers to minimize volatilization while maintaining financial benefits.
Kovšca Janjatović, A; Lacković, G; Božić, F; Spoljarić, D; Popović, M; Valpotić, H; Vijtiuk, N; Pavičić, Z; Valpotić, I
2009-12-29
Colidiarrhea and colienterotoxemia caused by F4(+) and/or F18(+) enterotoxigenic E. coli (ETEC) strains are the most prevalent infections of suckling and weaned pigs. Here we tested the immunogenicity and protective effectiveness of attenuated F18ac(+) non-ETEC vaccine candidate strain against challenge infection with F4ac(+) ETEC strain by quantitative phenotypic analysis of small intestinal leukocyte subsets in weaned pigs.We also evaluated levamisole as an immune response modifier (IRM) and its adjuvanticity when given in the combination with the experimental vaccine. The pigs were parenterally immunized with either levamisole (at days -2, -1 and 0) or with levamisole and perorally given F18ac(+) non-ETEC strain (at day 0), and challenged with F4ac(+) ETEC strain 7 days later.At day 13 the pigs were euthanatized and sampled for immunohistological/histomorphometrical analyses. Lymphoid CD3(+), CD45RA(+), CD45RC(+), CD21(+), IgA(+) and myeloid SWC3(+) cell subsets were identified in jejunal and ileal epithelium, lamina propria and Peyer's patches using the avidin-biotin complex method, and their numbers were determined by computer-assisted histomorphometry. Quantitative immunophenotypic analyses showed that levamisole treated pigs had highly increased numbers of jejunal CD3(+), CD45RC(+) and SWC3(+) cells (p<0.05) as compared to those recorded in nontreated control pigs.In the ileum of these pigs we have recorded that only CD21(+) cells were significantly increased (p<0.01). The pigs that were treated with levamisole adjuvanted experimental vaccine had significantly increased numbers of all tested cell subsets in both segments of the small intestine. It was concluded that levamisole adjuvanted F18ac(+) non-ETEC vaccine was a requirement for the elicitation of protective gut immunity in this model; nonspecific immunization with levamisole was less effective, but confirmed its potential as an IRM.
Verrusio, W; Gianturco, V; Cacciafesta, M; Marigliano, V; Troisi, G; Ripani, M
2017-04-01
Fall risk in elderly has been related with physical decline, low quality of life and reduced survival. To evaluate the impact of exoskeleton human body posturizer (HBP) on the fall risk in the elderly. 150 subjects (mean age 64.85; 79 M/71 F) with mild fall risk were randomized into two groups: 75 for group treated with human body posturizer (HBP group) and 75 for physical training without HBP group (exercise group). The effects of interventions were assessed by differences in tests related to balance and falls. Medically eligible patients were screened with Tinetti balance and Gait evaluation scale, short physical performance battery and numeric pain rating scale to determine fall risk in elderly people. In the HBP group there was a significant improvement in short physical performance battery, Tinetti scale and Pain Numeric rating scale with a significant reduction in fall risk (p < 0.05). In the exercise group we observed only minimal variations in the test scores. The results at the sixth and twelfth months show a twofold positive effect in the HBP group reducing fall risk and improving quality of life by reducing pain. The use of exoskeleton human body posturizer seems to be a new significant device for prevention of fall in elderly patients. Further research should be carried out to obtain more evidence on effects of robotic technology for fall prevention in the elderly.
Schools in the Age of Technology: Ideas for Instructional Innovation.
ERIC Educational Resources Information Center
McGraw, James H., IV; Frank, Charlotte K.
This document profiles five schools that were selected as winners of the "Fifth Annual Business Week Awards for Instructional Innovation: Schools in the Age of Technology": Bailey's Elementary School for the Arts and Sciences (Falls Church, Virginia); Hunterdon Central Regional High School (Flemington, New Jersey); John Muir Elementary School…
Center for the Built Environment: About Us
technologies and design and operation techniques. Our projects fall into two broad program areas. First, we environmental quality. This feedback is directed variously at those who manage, operate, and design buildings product offerings, and facility management and design partners to apply these new technologies effectively
Technology Expands in New York State Schools.
ERIC Educational Resources Information Center
Technology Applications Quarterly, 1990
1990-01-01
The results of two statewide surveys, the fall 1989 Basic Educational Data System (BEDS) survey and surveys of school district use of the services at the Board of Cooperative Educational Services (BOCES) Regional Information and Computer Centers, dramatically underscore the continued expansion and use of technology for instructional and management…
Renewable Energy for Rural Sustainability in Developing Countries
ERIC Educational Resources Information Center
Alazraque-Cherni, Judith
2008-01-01
This article establishes the benefits of applying renewable energy and analyzes the main difficulties that have stood in the way of more widely successful renewable energy for rural areas in the developing world and discusses why outcomes from these technologies fall short. Although there is substantial recognition of technological, economic,…
ERIC Educational Resources Information Center
Saskatchewan Inst. of Applied Science and Technology, Saskatoon.
In fall 1988, the Board of Directors of the Saskatchewan Institute of Applied Science and Technology (SIAST) created a task force to study the training needs of the mining industry in the province and evaluate SIAST's responsiveness to those needs. After assessing the technological changes taking place in the industry, surveying manpower needs,…
Connecting Ed & Tech: Partnering to Drive Student Outcomes
ERIC Educational Resources Information Center
Arnett, Thomas
2016-01-01
All too often, the connection between teachers and technology falls flat. Pioneering schools and educators search for technology to support new instructional models, only to find that existing options do not align with their evolving classroom practices. This case study describes how Leadership Public Schools (LPS), a charter school management…
New Information Technologies: Some Observations on What Is in Store for Libraries.
ERIC Educational Resources Information Center
Black, John B.
This outline of new technological developments and their applications in the library and information world considers innovations in three areas: automation, telecommunications, and the publishing industry. There is mention of the growth of online systems, minicomputers, microcomputers, and word processing; the falling costs of automation; the…
PRACTICAL EXPERIENCES WITH TECHNOLOGIES FOR DECONTAMINATION OF B. ANTHRACIS IN LARGE BUILDINGS.
In the Fall of 2001 a number of buildings were contaminated with B. anthracis (B.A.) from letters processed through United States Postal Service and other mail handling facilities. All of the buildings have now been decontaminated using a variety of technologies. In a number of...
A Curriculum Innovation Framework for Science, Technology and Mathematics Education
ERIC Educational Resources Information Center
Tytler, Russell; Symington, David; Smith, Craig
2011-01-01
There is growing concern about falling levels of student engagement with school science, as evidenced by studies of student attitudes, and decreasing participation at the post compulsory level. One major response to this, the Australian School Innovation in Science, Technology and Mathematics (ASISTM) initiative, involves partnerships between…
Which Accelerates Faster--A Falling Ball or a Porsche?
ERIC Educational Resources Information Center
Rall, James D.; Abdul-Razzaq, Wathiq
2012-01-01
An introductory physics experiment has been developed to address the issues seen in conventional physics lab classes including assumption verification, technological dependencies, and real world motivation for the experiment. The experiment has little technology dependence and compares the acceleration due to gravity by using position versus time…
NASA's Long-range Technology Goals
NASA Technical Reports Server (NTRS)
1990-01-01
This document is part of the Final Report performed under contract NASW-3864, titled "NASA's Long-Range Technology Goals". The objectives of the effort were: To identify technologies whose development falls within NASA's capability and purview, and which have high potential for leapfrog advances in the national industrial posture in the 2005-2010 era. To define which of these technologies can also enable quantum jumps in the national space program. To assess mechanisms of interaction between NASA and industry constituencies for realizing the leapfrog technologies. This Volume details the findings pertaining to the advanced space-enabling technologies.
Fall attributions among middle-aged and older adults with multiple sclerosis.
Peterson, Elizabeth W; Ben Ari, Eynat; Asano, Miho; Finlayson, Marcia L
2013-05-01
To (1) explore the falls attributions of middle-aged and older adults with multiple sclerosis (MS); and (2) examine the personal, health, and MS-related factors associated with the 3 most common attributions. A cross-sectional, descriptive study using data collected through a telephone interview. Falls attributions were obtained through an open-ended question to elicit participants' stories about their most recent fall. Recruitment was done through a national volunteer MS registry. Community. People (N=354) who were ≥55 years of age were interviewed; 313 provided a falls story. Respondents were primarily married, community-dwelling women who had been living with MS for 21 years, on average. Not applicable. The 3 most common fall attributions were used as dependent variables to address the second research objective. A total of 14 falls attributions were identified. The most common were balance (41.5%), lower extremity malfunction (31%), and assistive technology (AT; 29.7%). Falls control was significantly associated with the balance attribution (odds ratio [OR]=.51; 95% confidence interval [CI], .29-.88), no variables were associated with lower extremity malfunction attribution, and use of multiple mobility devices was significantly associated with the AT attribution (OR=3.78; 95% CI, 2.09-6.85). Findings highlight the complex nature of falls among middle-aged and older adults with MS and point to the need for comprehensive fall prevention interventions for this population. Further investigation of the role that perceived control over falls plays in this population is warranted. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Carter, Bobbi Jo
2012-01-01
Utilization of technology in the classroom has become the norm in higher education. Technology has been advocated as a means of improving learning and students expect it to be present so schools have adopted it in order to stay competitive. Unfortunately, the effectiveness of the technology is frequently either unknown or falls short due to a…
ERIC Educational Resources Information Center
Moskowitz, Steven
2004-01-01
In fall 2002 the Brewster Central School District introduced teacher Web pages to a teaching staff of more than 300. One of the major goals of the project was to improve teacher computer literacy. Approximately one year prior to this project, the professional staff was asked by the district technology committee to complete a technology survey so…
ERIC Educational Resources Information Center
Whitney, Jennifer D.
2007-01-01
Background: Almost every aspect of modern life is affected in some way by technology. Many people utilize technology from dawn to dusk to communicate; make decisions; reflect, gain, synthesize, evaluate or distribute information, among many other functions. One would be hard pressed to find a single professional, regardless of career field,…
NASA Astrophysics Data System (ADS)
Fay, P. A.; Jin, V.; Jackson, R. B.; Gill, R. A.; Way, D.; Polley, W.
2011-12-01
Climate change is likely to cause nonlinear responses in ecosystem function and threshold changes in species composition. Here we report aboveground net primary productivity (ANPP) responses to a continuous CO2 concentration gradient (250 to 500 μL L-1,) in experimental grassland communities on three soils differing in water holding capacity and other properties. Communities consisting of four C4 grasses, two C3 forbs, and one legume were established on a lowland clay (vertisol, n=32), an upland clay (mollisol, n=32), and an alluvial sand (alfisol, n=16). The communities were positioned in a stratified random design in the CO2 gradient for five growing seasons, and were irrigated to mimic the average growing season rainfall regime for the study site in Central Texas. ANPP increased with CO2 almost two-fold more on the upland clay and alluvial sand than on the lowland clay (p < 0.0001), because of strong linear responses to CO2 on these soils (R2 = 0.50 to 0.59, p < 0.002) compared to a saturating response to CO2 on the lowland clay (R2 = 0.48, p= 0.01). On the two more responsive soils, the mesic tallgrass Sorghastrum nutans replaced the more drought adapted mid-grass Bouteloua curtipendula at elevated CO2, while B. curtipendula largely replaced S. nutans at low CO2, especially on the upland clay. Evidence for a similar composition change was not found on the lowland clay. Thus, two soils displayed a threshold change in community composition that accounted for up to 57% of variation in ANPP for those soils. Variation in ANPP and species composition with CO2 were accompanied by linear increases in soil water content (SWC, 0 - 20 cm, volumetric), most strongly on the alluvial sand (R2 = 0.39, p < 0.009) and by weak decreases with CO2 in soil N. Structural equation models explained 34 to 52% of the variation in ANPP, and indicated that CO2 effects on ANPP on the upland clay were primarily explained by CO2 effects on species composition, and on the alluvial sand by CO2 effects on SWC. Responses to elevated CO2 in SWC, ANPP, and species composition were explained by reduced stomatal conductance and increased photosynthetic water use efficiency (WUE) in both grasses. In addition, S. nutans gained more in WUE at elevated CO2 than B. curtipendula, while B. curtipendula at elevated CO2 had lower light saturated photosynthetic capacity, quantum use efficiency, and dark respiration than S. nutans. Thus, at elevated CO2, shading by the taller S. nutans likely lowered B. curtipendula carbon assimilation and growth. We conclude that elevated CO2 strongly increased ANPP on upland clay and alluvial sand soils where there were also gains in soil moisture and threshold changes in species composition driven by physiological differences in the two dominant grass species. As a result, CO2 effects on ANPP will likely differ with soil type across the landscape.
Klenk, Jochen; Kerse, Ngaire; Rapp, Kilian; Becker, Clemens; Rothenbacher, Dietrich; Peter, Richard; Denkinger, Michael Dieter
2015-01-01
Objectives To investigate the relationship between physical activity and two measures of fall incidence in an elderly population using person-years as well as hours walked as denominators and to compare these two approaches. Design Prospective cohort study with one-year follow-up of falls using fall calendars. Physical activity was defined as walking duration and recorded at baseline over one week using a thigh-worn uni-axial accelerometer (activPAL; PAL Technologies, Glasgow, Scotland). Average daily physical activity was extracted from these data and categorized in low (0–59 min), medium (60–119 min) and high (120 min and more) activity. Setting The ActiFE Ulm study located in Ulm and adjacent regions in Southern Germany. Participants 1,214 community-dwelling older people (≥65 years, 56.4% men). Measurements Negative-binomial regression models were used to calculate fall rates and incidence rate ratios for each activity category each with using (1) person-years and (2) hours walked as denominators stratified by gender, age group, fall history, and walking speed. All analyses were adjusted either for gender, age, or both. Results No statistically significant association was seen between falls per person-year and average daily physical activity. However, when looking at falls per 100 hours walked, those who were low active sustained more falls per hours walked. The highest incidence rates of falls were seen in low-active persons with slow walking speed (0.57 (95% confidence interval (95% CI): 0.33 to 0.98) falls per 100 hours walked) or history of falls (0.60 (95% CI: 0.36 to 0.99) falls per 100 hours walked). Conclusion Falls per hours walked is a relevant and sensitive outcome measure. It complements the concept of incidence per person years, and gives an additional perspective on falls in community-dwelling older people. PMID:26058056
Johns Hopkins University Announces Frederick CREST Classes for Fall 2016 | Poster
Johns Hopkins University’s (JHU) Advanced Academic Programs (AAP) division recently announced two classes that will be hosted at the Frederick Center for Research and Education in Science and Technology (CREST) this fall. According to a JHU press release, the classes are Biochemistry, which is part of the M.S. in Biotechnology program at JHU AAP, and Molecular Biology, a part of the M.S. in Bioinformatics program at JHU AAP.
Older adults' attitudes towards and perceptions of "smart home" technologies: a pilot study.
Demiris, George; Rantz, Marilyn; Aud, Myra; Marek, Karen; Tyrer, Harry; Skubic, Marjorie; Hussam, Ali
2004-06-01
The study aim is to explore the perceptions and expectations of seniors in regard to "smart home" technology installed and operated in their homes with the purpose of improving their quality of life and/or monitoring their health status. Three focus group sessions were conducted within this pilot study to assess older adults' perceptions of the technology and ways they believe technology can improve their daily lives. Themes discussed in these groups included participants' perceptions of the usefulness of devices and sensors in health-related issues such as preventing or detecting falls, assisting with visual or hearing impairments, improving mobility, reducing isolation, managing medications, and monitoring of physiological parameters. The audiotapes were transcribed and a content analysis was performed. A total of 15 older adults participated in three focus group sessions. Areas where advanced technologies would benefit older adult residents included emergency help, prevention and detection of falls, monitoring of physiological parameters, etc. Concerns were expressed about the user-friendliness of the devices, lack of human response and the need for training tailored to older learners. All participants had an overall positive attitude towards devices and sensors that can be installed in their homes in order to enhance their lives.
HealthBand for Dementia Patients: Fall and Scream Detector and Caretaker Helper
NASA Astrophysics Data System (ADS)
Alam, Zeeshan; Samin, Huma; Samin, Omar Bin
2018-02-01
The ratio of dementia patients is escalating with time and requires proper attention to help the people suffering from it to continue their activities of daily living (ADL). Such patients suffer from the symptoms like irregular sleep patterns, restlessness, wandering, screaming, falling, sadness and depression. Assistive Technology facilitates caretaker to aid the patient efficiently with minimum effort. Advances in technology have made possible state of the art and innovative methods of health care delivery. Home telecare; in which the patient’s health is monitored remotely at home, is one such method. This paper is proposing a cost effective and user friendly wearable product based solution (i.e. HealthBand) that monitors patient’s activities (specifically fall and scream) and notifies the caretaker in case of emergency to take appropriate action(s). These notifications are sent to the caretaker on the basis of predefined threshold and time span over Bluetooth and GSM mediums to android based application. The android app also keeps patient’s medicines’ intake record and reminds caretaker regarding medicine dosage and timings.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-17
... used to prevent the fall of roof, face, and rib. Advancements in technology of roof and rock bolts and... information technology, e.g., permitting electronic submission of responses. Agency: DOL-MSHA. Title of... Control Number: 1219-0121. Affected Public: Private Sector--businesses or other for profits. Total...
Science/Technology/Society: Model Lessons for Secondary Science Classes.
ERIC Educational Resources Information Center
Pearson, Janice V., Ed.
This volume contains 35 lessons designed to be used in secondary science classes to introduce the science/technology/society (STS) themes and issues. While the first 11 lessons focus on general STS themes, the other 24 lessons cover specific STS issues that fall under such categories as population growth, water resources, world hunger, food…
Battelle Education: Metro Institute of Technology
ERIC Educational Resources Information Center
EDUCAUSE, 2015
2015-01-01
This new district partnership school, slated to open in fall 2015, will serve Columbus, OH students in grades 6-13 in a competency-based, blended learning early college high school model that is focused on both college and career success. The Metro Institute of Technology is designed to solve two problems: (1) capable students may struggle in…
iLearning: The Future of Higher Education? Student Perceptions on Learning with Mobile Tablets
ERIC Educational Resources Information Center
Rossing, Jonathan P.; Miller, Willie M.; Cecil, Amanda K.; Stamper, Suzan E.
2012-01-01
The growing use of mobile technology on college campuses suggests the future of the classroom, including learning activities, research, and even student faculty communications, will rely heavily on mobile technology. Since Fall 2010, an interdisciplinary team of faculty from Indiana University--Purdue University Indianapolis (IUPUI) has…
Tablet Technology in Teacher Preparation: A Case Study--The Nook Initiative
ERIC Educational Resources Information Center
Jordan, Hope; Hunter, Elizabeth; Douglas, Maegan; Wighting, Mervyn
2015-01-01
Regent University's Special Education and Reading Specialist Programs introduced the Nook Initiative fall 2013. This paper discusses the implementation, the need for integrated tablet technology in teacher preparation, initial outcomes of the study, and offers suggestions for practice. A second tablet pilot program introducing the iPad mini in the…
Student Campus Technology Trends: 2001 versus 2006
ERIC Educational Resources Information Center
Crews, Tena B.; Brown, Herbert F.; Bray, Sandra; Pringle, Ernest M.
2007-01-01
Since 1999, students who reside in campus housing at the University of South Carolina have completed an annual residence hall computer and technology survey. More than 2,800 students completed surveys during the fall 2001 semester, and approximately 1,800 completed the survey in 2006. The survey has changed over the years to include questions…
ERIC Educational Resources Information Center
Pumphrey, Karyn Christine
2017-01-01
Science, Technology, Engineering and Mathematics (STEM) professionals are responsible for the development of new technologies and breaking scientific discoveries. However, in the United States, racial minorities and females are vastly underrepresented in STEM professions. This problem is multiplied for individuals falling into both categories.…
The Rise and Fall of Swedish Educational Technology 1960-1980
ERIC Educational Resources Information Center
Wallin, Erik
2005-01-01
In Sweden educational technology (EdTech) prospered during the 1960s and 1970s inspired by US experiences from primarily programmed instruction. The Departments of Education at the universities started different activities of research and other bodies developed EdTech products for commercial use. In some business firms in-service training of staff…
Swipe In, Tap Out: Advancing Student Entrepreneurship in the CIS Sandbox
ERIC Educational Resources Information Center
Charlebois, Conner; Hentschel, Nicholas; Frydenberg, Mark
2014-01-01
The Computer Information Systems Learning and Technology Sandbox (CIS Sandbox) opened as a collaborative learning lab during the fall 2011 semester at a New England business university. The facility employs 24 student workers, who, in addition to providing core tutoring services, are encouraged to explore new technologies and take on special…
Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy
NASA Astrophysics Data System (ADS)
Campiche, Jody L.; Bryant, Henry L.; Richardson, James W.
2010-01-01
Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenue from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. In the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.
Zhao, Ting; Pi, Hong-Ying; Ku, Hong-An; Pan, Li; Gong, Zhu-Yun
2018-02-08
To investigate establishing, applying and evaluating the fall prevention and control information system in elderly community. Relying on internet technology and informatization means, the fall comprehensive prevention and control strategy of elderly was guided into online from offline. The fall prevention and control information system which was a collection of risk assessment, remote education and feedback was established. One hundred and twenty-six elderly (over 60 years old) in community were screened in this study and 84 high-risk elders who were involved in the remote continuous comprehensive intervention were screened out. Intervening measures included distributing propaganda album, making mission slides and video used to play with the interpretation remotely. Then fall related situation before and after intervention was analyzed and the effectiveness of system evaluated. After remote intervention, the fall incidence of high-risk group decreased from 21.43% to 4.76%( P <0.01). The body balance and gait stability improved clearly( P <0. 01). The rate of taking proper prevention and control behavior significantly improved( P <0.01). They believed in themselves not to fall down with more confidence when taking complex behaviors( P <0.01). The security of environment at home significantly enhanced( P <0. 01). Fall prevention and control information system in elderly community was innovative and convenient. The system could roundly assess the status related to fall and accurately screen out high-risk group. The system could implement the remote continuous comprehensive intervention so that the incident of fall was decrease. In conclusion, the system is stable and effective, can be further popularization and application as a successful pilot.
Strategic avionics technology planning
NASA Technical Reports Server (NTRS)
Cox, Kenneth J.; Brown, Don C.
1991-01-01
NASA experience in development and insertion of technology into programs had led to a recognition that a Strategic Plan for Avionics is needed for space. In the fall of 1989 an Avionics Technology Symposium was held in Williamsburg, Virginia. In early 1990, as a followon, a NASA wide Strategic Avionics Technology Working Group was chartered by NASA Headquarters. This paper will describe the objectives of this working group, technology bridging, and approaches to incentivize both the federal and commercial sectors to move toward rapidly developed, simple, and reliable systems with low life cycle cost.
Working Toward a Better Environment
ERIC Educational Resources Information Center
Occupational Outlook Quarterly, 1974
1974-01-01
Career opportunities in the field of environmental protection fall into four broad categories: equipment operation, monitoring of pollution control activities, environmental technology and education, and environmental service and research. (Author)
A systematic review of balance and fall risk assessments with mobile phone technology.
Roeing, Kathleen L; Hsieh, Katherine L; Sosnoff, Jacob J
2017-11-01
Falls are a major health concern for older adults. Preventative measures can help reduce the incidence and severity of falls. Methods for assessing balance and fall risk factors are necessary to effectively implement preventative measures. Research groups are currently developing mobile applications to enable seniors, caregivers, and clinicians to monitor balance and fall risk. The following systematic review assesses the current state of mobile health apps for testing balance as a fall risk factor. Thirteen studies were identified and included in the review and analyzed based on study design, population, sample size, measures of balance, main outcome measures, and evaluation of validity and reliability. All studies successfully tested their applications, but only 38% evaluated the validity, and 23% evaluated the reliability of their applications. Of those, all applications were found to accurately and reliably measure balance on select variables. Four of the 13 studies included special populations groups. Out of the 13 studies, 12 reported clinicians as their intended user and seven reported seniors as their intended user. Further research should examine the validity of mobile health applications as well as report on the application's usability. Copyright © 2017 Elsevier B.V. All rights reserved.
Prevention of in-hospital falls: development of criteria for the conduct of a multi-site audit.
Giles, Kristy; Stephenson, Matthew; McArthur, Alexa; Aromataris, Edoardo
2015-06-01
Patient falls are a significant issue for hospitals due to the high rates of morbidity and mortality associated with these events, as well as the financial costs for the healthcare system. To establish what constitutes best practice in terms of fall prevention in acute care facilities and use this to inform the development of best practice audit criteria. Criteria for clinical audit were developed from evidence derived from systematic reviews and guidelines. While these were drawn from the best available evidence, they were also developed in conjunction with clinicians undertaking a fall-prevention clinical audit and key stakeholders from the clinical settings to ensure their relevance and applicability to the acute care setting. Current literature recommends a comprehensive and multifactorial approach to fall prevention. Eight audit criteria were derived from the best available evidence including the domains of physical environment, hospital culture and care processes, use of technology and targeted interventions. Existing research evidence and consultation with stakeholders has allowed the development of applicable, evidence-based audit criteria for fall prevention in acute care settings. This model can promote engagement, impact clinical practice and lead to improved outcomes.
The PARAChute Project: Remote Monitoring of Posture and Gait for Fall Prevention
NASA Astrophysics Data System (ADS)
Hewson, David J.; Duchêne, Jacques; Charpillet, François; Saboune, Jamal; Michel-Pellegrino, Valérie; Amoud, Hassan; Doussot, Michel; Paysant, Jean; Boyer, Anne; Hogrel, Jean-Yves
2007-12-01
Falls in the elderly are a major public health problem due to both their frequency and their medical and social consequences. In France alone, more than two million people aged over 65 years old fall each year, leading to more than 9 000 deaths, in particular in those over 75 years old (more than 8 000 deaths). This paper describes the PARAChute project, which aims to develop a methodology that will enable the detection of an increased risk of falling in community-dwelling elderly. The methods used for a remote noninvasive assessment for static and dynamic balance assessments and gait analysis are described. The final result of the project has been the development of an algorithm for movement detection during gait and a balance signature extracted from a force plate. A multicentre longitudinal evaluation of balance has commenced in order to validate the methodologies and technologies developed in the project.
NASA Tech Briefs, Fall 1985. Volume 9, No. 3
NASA Technical Reports Server (NTRS)
1985-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
ERIC Educational Resources Information Center
Ridley, William J.; Hull, McAllister H., Jr.
Designed to assist educational decision-makers at the school and district level, this report summarizes the work of the National Task Force on Educational Technology, which was formed in the fall of 1984 to investigate the potential of appropriately integrated technology for improving learning in American schools. The task force used six primary…
New technologies transform Fall Meeting
NASA Astrophysics Data System (ADS)
O'Brien, Michael
2012-02-01
The 2011 Fall Meeting was transformed by the introduction of nine new technologies, most notably, a mobile app and the AGU ePoster system. With more than 11,000 downloads and 250,000 page views, the mobile app quickly replaced the program books for many attendees. Peter Petley of Durham University and blogger for the Landslide Blog said, "I have found that one of the challenges of attending AGU is being able to identify all of the sessions that are of interest, and then creating a schedule without carrying reams of paper." He continued, "I found that the mobile app has transformed my conference experience, providing a simple means to collate all of the sessions and to plan my day. As a result, I have found the meeting to be much more enjoyable and fulfilling."
Muchna, Amy; Najafi, Bijan; Wendel, Christopher S; Schwenk, Michael; Armstrong, David G; Mohler, Jane
2018-03-01
Research on foot problems and frailty is sparse and could advance using wearable sensor-based measures of gait, balance, and physical activity (PA). This study examined the effect of foot problems on the likelihood of falls, frailty syndrome, motor performance, and PA in community-dwelling older adults. Arizona Frailty Cohort Study participants (community-dwelling adults aged ≥65 years without baseline cognitive deficit, severe movement disorders, or recent stroke) underwent Fried frailty and foot assessment. Gait, balance (bipedal eyes open and eyes closed), and spontaneous PA over 48 hours were measured using validated wearable sensor technologies. Of 117 participants, 41 (35%) were nonfrail, 56 (48%) prefrail, and 20 (17%) frail. Prevalence of foot problems (pain, peripheral neuropathy, or deformity) increased significantly as frailty category worsened (any problem: 63% in nonfrail, 80% in prefrail [odds ratio (OR) = 2.0], and 95% in frail [OR = 8.3]; P = .03 for trend) due to associations between foot problems and both weakness and exhaustion. Foot problems were associated with fear of falling but not with fall history or incident falls over 6 months. Foot pain and peripheral neuropathy were associated with lower gait speed and stride length; increased double support time; increased mediolateral sway of center of mass during walking, age adjusted; decreased eyes open sway of center of mass and ankle during quiet standing, age adjusted; and lower percentage walking, percentage standing, and total steps per day. Foot problems were associated with frailty level and decreased motor performance and PA. Wearable technology is a practical way to screen for deterioration in gait, balance, and PA that may be associated with foot problems. Routine assessment and management of foot problems could promote earlier intervention to retain motor performance and manage fear of falling in older adults, which may ultimately improve healthy aging and reduce risk of frailty.
Science/Technology/Society: Model Lessons for Secondary Social Studies Classes.
ERIC Educational Resources Information Center
LaRue, Robert D., Jr., Ed.
This volume contains 36 lessons designed to be used in secondary social studies classes to introduce the science/technology/society (STS) themes and issues. While the first 11 lessons focus on general STS themes, the other 25 lessons cover specific STS issues that fall under such categories as population growth, water resources, world hunger, food…
2011-09-19
Integration – Non-Thermal Plasma JP8 reformer & SOFC system – Lithium-Iron Phosphate Battery Technology – Lithium Ion Battery & energy storage systems...regeneration and includes a lithium ion battery energy storage – Export power capabilities meeting mission requirements (5-50 kilowatt [kW]) – Air
Attitudes of Preschool Teachers towards Using Information and Communication Technologies (ICT)
ERIC Educational Resources Information Center
Konca, Ahmet Sami; Ozel, Erdogan; Zelyurt, Hikmet
2016-01-01
The aim of the study is to determine the attitudes of preschool teachers towards using technological tools and to analyze it in terms of different variables. The research was conducted based on descriptive study model. Working group was consisted of 103 teachers working at kindergartens in city center of Kirsehir and Malatya in the fall semester…
Increasing Impact of Technology in Higher Education
ERIC Educational Resources Information Center
Utah System of Higher Education, 2016
2016-01-01
For Fall 2016, of the 175,509 students enrolled in the Utah System of Higher Education at third week, 69,535 (39.6 %) are participating in some form of technology delivered instruction. Of that total, 54,269 (30.9%) enrolled in at least one online class. Despite availability of online courses and degrees, students prefer using online courses to…
Rationalizing IT Rationing: 10 Ways to Cut the IT Budget (and What Not to Cut)
ERIC Educational Resources Information Center
Miller, Fred
2009-01-01
Whether because of falling stock values affecting institutional endowments, cutbacks in state spending, or declines in private giving, higher education has reduced spending, and information technology (IT) organizations have participated in the budget cuts. This is the tale of one institution's quest to cut technology costs while maintaining a…
Embracing E-Books: Increasing Students' Motivation to Read and Write
ERIC Educational Resources Information Center
Siegle, Del
2012-01-01
In his keynote address at the "New York Times" Schools for Tomorrow 2011 Fall Conference, Dr. Larry Summers (2011) suggested that technology implementations have an unusual growth pattern. New technology innovations usually require more time to "catch on" than one might expect, but once they catch on, their use spreads more quickly than anyone can…
Communication Problems Resolved through Portal Implementation
ERIC Educational Resources Information Center
Kruse, Tom; Skul, Jeanne; Vaassen, Anne
2005-01-01
Loras College is a technology rich campus with a ubiquitous learning environment and about 1800 laptops in the hands of students, faculty, and staff. With a focus on the incorporation of technology into the curriculum the laptop program has been embraced by the campus since its inception in the fall of 2000. In 2003 a new campus strategic plan…
Workforce Readiness: A Study of University Students' Fluency with Information Technology
ERIC Educational Resources Information Center
Kaminski, Karen; Switzer, Jamie; Gloeckner, Gene
2009-01-01
This study with data collected from a large sample of freshmen in 2001 and a random stratified sample of seniors in 2005 examined students perceived FITness (fluency with Information Technology). In the fall of 2001 freshmen at a medium sized research-one institution completed a survey and in spring 2005 a random sample of graduating seniors…
Enough to Go around? Budget and TCO Tool Kit
ERIC Educational Resources Information Center
McIntire, Todd
2004-01-01
The past four years have seen a precipitous decline in funding for school technology programs. According to Quality Education Data, spending on instructional technology peaked at $8.36 billion in the 1998-99 school year, falling by more than half a billion dollars each year for the next four years to $5.74 billion. This represents a spending…
Advanced Technological Education (ATE) Program: Building a Pipeline of Skilled Workers. Policy Brief
ERIC Educational Resources Information Center
American Youth Policy Forum, 2010
2010-01-01
In the Fall of 2008, the American Youth Policy Forum hosted a series of three Capitol Hill forums showcasing the Advanced Technological Education (ATE) program supported by the National Science Foundation (NSF). The goal of these forums was to educate national policymakers about the importance of: (1) improving the science and math competencies of…
ERIC Educational Resources Information Center
Asunda, Paul A.
2012-01-01
At a minimum, employers rely on career and technical education (CTE) and workforce training systems to supply workers able to perform in their jobs. In CTE classes that seek to integrate science, technology, engineering, and mathematics (STEM) concepts, it falls to the instructors to design and sequence the learning experiences that will promote…
Technology for All: Pittsburg State Adds TE to General Curriculum
ERIC Educational Resources Information Center
McNew, Philip
2006-01-01
In the fall of 1997, Pittsburg State University (PSU), Pittsburg, Kansas, held ribbon-cutting ceremonies on two major campus projects. The event that received the most media attention was the dedication of the University's $30 million Kansas Technology Center (KTC). The 260,000 square foot KTC would serve as the new home of the University's…
ERIC Educational Resources Information Center
Capraro, Mary Margaret
An electronic portfolio is a collection of work captured by electronic means that serves as an exhibit of individual efforts, progress, and achievements in one or more areas. Due to rapid growth and updates in technology, keeping electronic portfolios is becoming increasingly common in a variety of educational settings. In fall 2002 at one large…
Parry, Steve W; Bamford, Claire; Deary, Vincent; Finch, Tracy L; Gray, Jo; MacDonald, Claire; McMeekin, Peter; Sabin, Neil J; Steen, I Nick; Whitney, Sue L; McColl, Elaine M
2016-07-01
Falls cause fear, anxiety and loss of confidence, resulting in activity avoidance, social isolation and increasing frailty. The umbrella term for these problems is 'fear of falling', seen in up to 85% of older adults who fall. Evidence of effectiveness of physical and psychological interventions is limited, with no previous studies examining the role of an individually delivered cognitive-behavioural therapy (CBT) approach. Primary objective To develop and then determine the effectiveness of a new CBT intervention (CBTi) delivered by health-care assistants (HCAs) plus usual care compared with usual care alone in reducing fear of falling. Secondary objectives To measure the impact of the intervention on falls, injuries, functional abilities, anxiety/depression, quality of life, social participation and loneliness; investigate the acceptability of the intervention for patients, family members and professionals and factors that promote or inhibit its implementation; and measure the costs and benefits of the intervention. Phase I CBTi development. Phase II Parallel-group patient randomised controlled trial (RCT) of the new CBTi plus usual care compared with usual care alone. Multidisciplinary falls services. Consecutive community-dwelling older adults, both sexes, aged ≥ 60 years, with excessive or undue fear of falling per Falls Efficacy Scale-International (FES-I) score of > 23. Phase I Development of the CBTi. The CBTi was developed following patient interviews and taught to HCAs to maximise the potential for uptake and generalisability to a UK NHS setting. Phase II RCT. The CBTi was delivered by HCAs weekly for 8 weeks, with a 6-month booster session plus usual care. These were assessed at baseline, 8 weeks, 6 months and 12 months. Primary outcome measure Fear of falling measured by change in FES-I scores at 12 months. Secondary outcome measures These comprised falls, injuries, anxiety/depression [Hospital Anxiety and Depression Scale (HADS)], quality of life, social participation, loneliness and measures of physical function. There were process and health-economic evaluations alongside the trial. Four hundred and fifteen patients were recruited, with 210 patients randomised to CBTi group and 205 to the control group. There were significant reductions in mean FES-I [-4.02; 95% confidence interval (CI) -5.95 to -2.1], single-item numerical fear of falling scale (-1.42; 95% CI -1.87 to 1.07) and HADS (-1; 95% CI -1.6 to -0.3) scores at 12 months in the CBTi group compared with the usual care group. There were no differences in the other secondary outcome measures. Most patients found the CBTi acceptable. Factors affecting the delivery of the CBTi as part of routine practice were identified. There was no evidence that the intervention was cost-effective. Our new CBTi delivered by HCAs significantly improved fear of falling and depression scores in older adults who were attending falls services. There was no impact on other measures. Further work should focus on a joint CBTi and physical training approach to fear of falling, more rational targeting of CBTi, the possibility of mixed group and individual CBTi, and the cost-effectiveness of provision of CBTi by non-specialists. Current Controlled Trials ISRCTN78396615. This project was funded by the NIHR Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 20, No. 56. See the NIHR Journals Library website for further project information.
NASA Astrophysics Data System (ADS)
Ward, Joanna
2013-01-01
The 2012 Fall Meeting achieved many new successes, from advances in technology to presentations of exciting science. Attendance has once again grown, with more than 24,000 scientists, researchers, students, teachers, exhibitors, media, and guests convening in San Francisco to experience the week-long activities and workshops, including 6894 oral and 13,790 poster presentations, 5 general sessions, an exhibit hall with more than 270 exhibitors, more than 50 section and focus group social events and committee meetings, and 55 town hall meetings.
Nuclear Coexistence: Rethinking U.S. Policy to Promote Stability in an Era of Proliferation
1994-04-01
The Spread of Nuclear Weapons 1989 -90 (Boulder: Westview Press, 1990). 22. See William C. Martel and Steven E. Miller, "Controlling Borders and Nuclear...Security, Fall 1989 , Vol. 14, No. 2, pp. 140-41, for J. Robert Oppenheimer’s concerns about the dangers of the develop- ment of thermonuclear weapons. 4...Paradox of Technology," International Security, Vol. 14, No. 2 (Fall 1989 ), pp. 198-202. 6. Some argue that the U.S. strategy has relatively little
From managed care to consumer health insurance: the fall and rise of Aetna.
Robinson, James C
2004-01-01
This paper documents Aetna's fall as the nation's largest managed care plan and its subsequent reemergence as a smaller but more profitable multiproduct insurer. The paper emphasizes the transformation in corporate goals, product design, organizational structure, information technology, product mix, premiums, cash flow, net income, and share prices. Disciplined underwriting and pricing have restored the firm to profitability and set the foundation for new growth. The implications for the health care system as a whole are less unambiguously positive.
NASA Astrophysics Data System (ADS)
Landrock, Clinton K.
Falls are the leading cause of all external injuries. Outcomes of falls include the leading cause of traumatic brain injury and bone fractures, and high direct medical costs in the billions of dollars. This work focused on developing three areas of enabling component technology to be used in postural control monitoring tools targeting the mitigation of falls. The first was an analysis tool based on stochastic fractal analysis to reliably measure levels of motor control. The second focus was on thin film wearable pressure sensors capable of relaying data for the first tool. The third was new thin film advanced optics for improving phototherapy devices targeting postural control disorders. Two populations, athletes and elderly, were studied against control groups. The results of these studies clearly show that monitoring postural stability in at-risk groups can be achieved reliably, and an integrated wearable system can be envisioned for both monitoring and treatment purposes. Keywords: electro-active polymer, ionic polymer-metal composite, postural control, motor control, fall prevention, sports medicine, fractal analysis, physiological signals, wearable sensors, phototherapy, photobiomodulation, nano-optics.
Occupational ladder fall injuries - United States, 2011.
Socias, Christina M; Chaumont Menéndez, Cammie K; Collins, James W; Simeonov, Peter
2014-04-25
Falls remain a leading cause of unintentional injury mortality nationwide [corrected].Among workers, approximately 20% of fall injuries involve ladders. Among construction workers, an estimated 81% of fall injuries treated in U.S. emergency departments (EDs) involve a ladder. To fully characterize fatal and nonfatal injuries associated with ladder falls among workers in the United States, CDC's National Institute for Occupational Safety and Health (NIOSH) analyzed data across multiple surveillance systems: 1) the Census of Fatal Occupational Injuries (CFOI), 2) the Survey of Occupational Injuries and Illnesses (SOII), and 3) the National Electronic Injury Surveillance System-occupational supplement (NEISS-Work). In 2011, work-related ladder fall injuries (LFIs) resulted in 113 fatalities (0.09 per 100,000 full-time equivalent [FTE] workers), an estimated 15,460 nonfatal injuries reported by employers that involved ≥1 days away from work (DAFW), and an estimated 34,000 nonfatal injuries treated in EDs. Rates for nonfatal, work-related, ED-treated LFIs were higher (2.6 per 10,000 FTE) than those for such injuries reported by employers (1.2 per 10,000 FTE). LFIs represent a substantial public health burden of preventable injuries for workers. Because falls are the leading cause of work-related injuries and deaths in construction, NIOSH, the Occupational Safety and Health Administration, and the Center for Construction Research and Training are promoting a national campaign to prevent workplace falls. NIOSH is also developing innovative technologies to complement safe ladder use.
Automatic Fall Detection System Based on the Combined Use of a Smartphone and a Smartwatch.
Casilari, Eduardo; Oviedo-Jiménez, Miguel A
2015-01-01
Due to their widespread popularity, decreasing costs, built-in sensors, computing power and communication capabilities, Android-based personal devices are being seen as an appealing technology for the deployment of wearable fall detection systems. In contrast with previous solutions in the existing literature, which are based on the performance of a single element (a smartphone), this paper proposes and evaluates a fall detection system that benefits from the detection performed by two popular personal devices: a smartphone and a smartwatch (both provided with an embedded accelerometer and a gyroscope). In the proposed architecture, a specific application in each component permanently tracks and analyses the patient's movements. Diverse fall detection algorithms (commonly employed in the literature) were implemented in the developed Android apps to discriminate falls from the conventional activities of daily living of the patient. As a novelty, a fall is only assumed to have occurred if it is simultaneously and independently detected by the two Android devices (which can interact via Bluetooth communication). The system was systematically evaluated in an experimental testbed with actual test subjects simulating a set of falls and conventional movements associated with activities of daily living. The tests were repeated by varying the detection algorithm as well as the pre-defined mobility patterns executed by the subjects (i.e., the typology of the falls and non-fall movements). The proposed system was compared with the cases where only one device (the smartphone or the smartwatch) is considered to recognize and discriminate the falls. The obtained results show that the joint use of the two detection devices clearly increases the system's capability to avoid false alarms or 'false positives' (those conventional movements misidentified as falls) while maintaining the effectiveness of the detection decisions (that is to say, without increasing the ratio of 'false negatives' or actual falls that remain undetected).
Automatic Fall Detection System Based on the Combined Use of a Smartphone and a Smartwatch
Casilari, Eduardo; Oviedo-Jiménez, Miguel A.
2015-01-01
Due to their widespread popularity, decreasing costs, built-in sensors, computing power and communication capabilities, Android-based personal devices are being seen as an appealing technology for the deployment of wearable fall detection systems. In contrast with previous solutions in the existing literature, which are based on the performance of a single element (a smartphone), this paper proposes and evaluates a fall detection system that benefits from the detection performed by two popular personal devices: a smartphone and a smartwatch (both provided with an embedded accelerometer and a gyroscope). In the proposed architecture, a specific application in each component permanently tracks and analyses the patient’s movements. Diverse fall detection algorithms (commonly employed in the literature) were implemented in the developed Android apps to discriminate falls from the conventional activities of daily living of the patient. As a novelty, a fall is only assumed to have occurred if it is simultaneously and independently detected by the two Android devices (which can interact via Bluetooth communication). The system was systematically evaluated in an experimental testbed with actual test subjects simulating a set of falls and conventional movements associated with activities of daily living. The tests were repeated by varying the detection algorithm as well as the pre-defined mobility patterns executed by the subjects (i.e., the typology of the falls and non-fall movements). The proposed system was compared with the cases where only one device (the smartphone or the smartwatch) is considered to recognize and discriminate the falls. The obtained results show that the joint use of the two detection devices clearly increases the system’s capability to avoid false alarms or ‘false positives’ (those conventional movements misidentified as falls) while maintaining the effectiveness of the detection decisions (that is to say, without increasing the ratio of ‘false negatives’ or actual falls that remain undetected). PMID:26560737
LASER Tech Briefs, Fall 1994. Volume 2, No. 4
NASA Technical Reports Server (NTRS)
1994-01-01
Topics in this issue of LASER Tech briefs include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
Lai, Chin-Feng; Chen, Min; Pan, Jeng-Shyang; Youn, Chan-Hyun; Chao, Han-Chieh
2014-03-01
As cloud computing and wireless body sensor network technologies become gradually developed, ubiquitous healthcare services prevent accidents instantly and effectively, as well as provides relevant information to reduce related processing time and cost. This study proposes a co-processing intermediary framework integrated cloud and wireless body sensor networks, which is mainly applied to fall detection and 3-D motion reconstruction. In this study, the main focuses includes distributed computing and resource allocation of processing sensing data over the computing architecture, network conditions and performance evaluation. Through this framework, the transmissions and computing time of sensing data are reduced to enhance overall performance for the services of fall events detection and 3-D motion reconstruction.
NPS CubeSat Launcher Design, Process and Requirements
2009-06-01
Soviet era ICBM. The first Dnepr launch in July 2006 consisted of fourteen CubeSats in five P-PODs, while the second in April 2007 consisted of...Regulations (ITAR). ITAR restricts the export of defense-related products and technology on the United States Munitions List. Although one might not...think that CubeSat technology would fall under ITAR, in fact a large amount of Aerospace technology , including some that could be used on CubeSats is
Smartphone App for Voice Disorders
... on. Feature: Taste, Smell, Hearing, Language, Voice, Balance Smartphone App for Voice Disorders Past Issues / Fall 2013 ... developed a mobile monitoring device that relies on smartphone technology to gather a week's worth of talking, ...
Jirovetz, L; Buchbauer, G; Jäger, W; Woidich, A; Nikiforov, A
1992-01-01
After inhalation experiments with sandalwood oil and the pure fragrance compounds coumarin and alpha-terpineol, substances were detected and measured in the blood samples of test animals (mice) using gas chromatography/mass spectrometry (GC/MS) (MID) in connection with GC/FTIR (SWC), GC/AES (carbon and oxygen trace) and flame ionization detection/gas chromatography. Using tiglinic acid benzyl ester as the internal standard the following concentrations in serum could be found: alpha-santalol 6.1 ng/mL, beta-santalol 5.3 ng/mL and alpha-santalene 0.5 ng/mL. In separate inhalation experiments with coumarin and with alpha-terpineol the corresponding concentrations were 7.7 ng/mL and 6.9 ng/mL, respectively.
1981-03-01
printed frot a0silablg Peek .astI fow 060 V Newmtk, how,.? aW asterisk (*) to printed &a the data block It laoS tWa go$ ( or mre missift qbeewvatioms...SPEED (FROM HOURLY OBSERVATIONS) oflQ.nJ MAuI OPTICAL kT£ 11 NORTH TOWER __-I__ JAN__ _ _ ILL WEAlTHER 20- 3D UI ONI IO ( 1 1) I) •3 4.4 1.10 11. V...9- 14~.0 u A .2 .3.Z ). 13a sWC _ I t -: R - 1 -1 s . 3d . 1-9.. --.L .. 1..L ...L.%.L AAA..L (.L - ’~L a v~sw @g’ISVA’W. I’. ’Ii’w USAETAC
Lockie, Robert G; Schultz, Adrian B; Callaghan, Samuel J; Jeffriess, Matthew D; Berry, Simon P
2013-01-01
Field sport coaches must use reliable and valid tests to assess change-of-direction speed in their athletes. Few tests feature linear sprinting with acute change- of-direction maneuvers. The Change-of-Direction and Acceleration Test (CODAT) was designed to assess field sport change-of-direction speed, and includes a linear 5-meter (m) sprint, 45° and 90° cuts, 3- m sprints to the left and right, and a linear 10-m sprint. This study analyzed the reliability and validity of this test, through comparisons to 20-m sprint (0-5, 0-10, 0-20 m intervals) and Illinois agility run (IAR) performance. Eighteen Australian footballers (age = 23.83 ± 7.04 yrs; height = 1.79 ± 0.06 m; mass = 85.36 ± 13.21 kg) were recruited. Following familiarization, subjects completed the 20-m sprint, CODAT, and IAR in 2 sessions, 48 hours apart. Intra-class correlation coefficients (ICC) assessed relative reliability. Absolute reliability was analyzed through paired samples t-tests (p ≤ 0.05) determining between-session differences. Typical error (TE), coefficient of variation (CV), and differences between the TE and smallest worthwhile change (SWC), also assessed absolute reliability and test usefulness. For the validity analysis, Pearson's correlations (p ≤ 0.05) analyzed between-test relationships. Results showed no between-session differences for any test (p = 0.19-0.86). CODAT time averaged ~6 s, and the ICC and CV equaled 0.84 and 3.0%, respectively. The homogeneous sample of Australian footballers meant that the CODAT's TE (0.19 s) exceeded the usual 0.2 x standard deviation (SD) SWC (0.10 s). However, the CODAT is capable of detecting moderate performance changes (SWC calculated as 0.5 x SD = 0.25 s). There was a near perfect correlation between the CODAT and IAR (r = 0.92), and very large correlations with the 20-m sprint (r = 0.75-0.76), suggesting that the CODAT was a valid change-of-direction speed test. Due to movement specificity, the CODAT has value for field sport assessment. Key pointsThe change-of-direction and acceleration test (CODAT) was designed specifically for field sport athletes from specific speed research, and data derived from time-motion analyses of sports such as rugby union, soccer, and Australian football. The CODAT features a linear 5-meter (m) sprint, 45° and 90° cuts and 3-m sprints to the left and right, and a linear 10-m sprint.The CODAT was found to be a reliable change-of-direction speed assessment when considering intra-class correlations between two testing sessions, and the coefficient of variation between trials. A homogeneous sample of Australian footballers resulted in absolute reliability limitations when considering differences between the typical error and smallest worthwhile change. However, the CODAT will detect moderate (0.5 times the test's standard deviation) changes in performance.The CODAT correlated with the Illinois agility run, highlighting that it does assess change-of-direction speed. There were also significant relationships with short sprint performance (i.e. 0-5 m and 0-10 m), demonstrating that linear acceleration is assessed within the CODAT, without the extended duration and therefore metabolic limitations of the IAR. Indeed, the average duration of the test (~6 seconds) is field sport-specific. Therefore, the CODAT could be used as an assessment of change-of-direction speed in field sport athletes.
ERIC Educational Resources Information Center
Snyder, Donna L.; Miller, Andrea L.
2009-01-01
What is the relative importance of current and emerging technologies in school library media programs? In order to answer this question, in Fall 2007 the authors administered a survey to 1,053 school library media specialists (SLMSs) throughout the state of Pennsylvania. As a part of the MSLS degree with Library Science K-12 certification, Clarion…
Laser Scanning Technology as Part of a Comprehensive Condition Assessment for Covered Bridges
Brian K. Brashaw; Samuel Anderson; Robert J. Ross
2015-01-01
New noncontact technologies have been developed and implemented for determining as-built condition and current dimensions for a wide variety of objects and buildings. In this study, a three-dimensional laser scanner was used to determine the dimensions and visual condition of a historic bridge in the Amnicon Falls State Park in northern Wisconsin. 3D scanning provides...
ERIC Educational Resources Information Center
Uluay, Gulsah; Dogan, Alev
2016-01-01
The main purpose of the study is to introduce Kodu Game Lab that is created by Microsoft as an example for technology integration into learning process to pre-service science teachers with MAGDAIRE framework. The participants were in a special teaching methods course at a university in Turkey during the fall 2015 semester. Mix method research…
ERIC Educational Resources Information Center
Edgar, Leslie D.; Johnson, Donald M.; Cox, Casandra
2012-01-01
This study sought to assess required information and communication technology (ICT) tasks in selected undergraduate agriculture courses in a land-grant university during a 10-year period. Selected agriculture faculty members in the fall 1999 (n = 63), 2004 (n = 55), and 2009 (n = 64) semesters were surveyed to determine the ICT tasks they required…
ERIC Educational Resources Information Center
Glyer-Culver, Betty
In fall 2001 staff of the Los Rios Community College District Office of Institutional Research collaborated with occupational deans, academic deans, and faculty to develop and administer a survey of former Drafting and Engineering Design Technology students. The survey was designed to determine how well courses had met the needs of former drafting…
ERIC Educational Resources Information Center
Litowitz, Len S.
2014-01-01
Technology & engineering teacher preparation programs at colleges and universities in the United States have been in a state of decline since the 1970's. In the fall of 2013 a study was conducted to compare the required curricula of the 24 undergraduate programs that maintain enrollment of 20 students or more in order to determine what a…
The Decline and Fall of Joint Acquisition Programs
2014-04-30
S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Studies have...Massachusetts Institute of Technology Ed Crawley, Massachusetts Institute of Technology Acquisition Risks in a World of Joint Capabilities: A Study of...University and a graduate assistant in the CERT Insider Threat Center. In addition to information security, Collins has focused his graduate studies
ERIC Educational Resources Information Center
Doggette, John R.
This study was conducted to provide a basis for planning for needed energy-related occupational technology programs in two-year educational institutions. A questionnaire was sent to 1,152 junior, community, and technical colleges in fall 1975; 774 (67%) responded. The survey identified 62 existing one- and two-year energy-related programs and 132…
ERIC Educational Resources Information Center
National Council on Teacher Quality, 2010
2010-01-01
The basic story line of the STEM (Science, Technology, Engineering and Mathematics) crisis is, at this point, well known. In an increasingly interdependent and technology-driven economy, America is falling behind. A substantial number of students cannot perform basic math. U.S. students lag behind peers in international comparisons of science…
Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy
Bryant, Henry L.; Campiche, Jody L.; Richardson, James W.
2010-03-09
Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenuemore » from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. Thus in the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.« less
AMSNEXRAD-Automated detection of meteorite strewnfields in doppler weather radar
NASA Astrophysics Data System (ADS)
Hankey, Michael; Fries, Marc; Matson, Rob; Fries, Jeff
2017-09-01
For several years meteorite recovery in the United States has been greatly enhanced by using Doppler weather radar images to determine possible fall zones for meteorites produced by witnessed fireballs. While most fireball events leave no record on the Doppler radar, some large fireballs do. Based on the successful recovery of 10 meteorite falls 'under the radar', and the discovery of radar on more than 10 historic falls, it is believed that meteoritic dust and or actual meteorites falling to the ground have been recorded on Doppler weather radar (Fries et al., 2014). Up until this point, the process of detecting the radar signatures associated with meteorite falls has been a manual one and dependent on prior accurate knowledge of the fall time and estimated ground track. This manual detection process is labor intensive and can take several hours per event. Recent technological developments by NOAA now help enable the automation of these tasks. This in combination with advancements by the American Meteor Society (Hankey et al., 2014) in the tracking and plotting of witnessed fireballs has opened the possibility for automatic detection of meteorites in NEXRAD Radar Archives. Here in the processes for fireball triangulation, search area determination, radar interfacing, data extraction, storage, search, detection and plotting are explained.
Gschwind, Yves J; Eichberg, Sabine; Ejupi, Andreas; de Rosario, Helios; Kroll, Michael; Marston, Hannah R; Drobics, Mario; Annegarn, Janneke; Wieching, Rainer; Lord, Stephen R; Aal, Konstantin; Vaziri, Daryoush; Woodbury, Ashley; Fink, Dennis; Delbaere, Kim
2015-01-01
Falls and fall-related injuries are a serious public health issue. Exercise programs can effectively reduce fall risk in older people. The iStoppFalls project developed an Information and Communication Technology-based system to deliver an unsupervised exercise program in older people's homes. The primary aims of the iStoppFalls randomized controlled trial were to assess the feasibility (exercise adherence, acceptability and safety) of the intervention program and its effectiveness on common fall risk factors. A total of 153 community-dwelling people aged 65+ years took part in this international, multicentre, randomized controlled trial. Intervention group participants conducted the exercise program for 16 weeks, with a recommended duration of 120 min/week for balance exergames and 60 min/week for strength exercises. All intervention and control participants received educational material including advice on a healthy lifestyle and fall prevention. Assessments included physical and cognitive tests, and questionnaires for health, fear of falling, number of falls, quality of life and psychosocial outcomes. The median total exercise duration was 11.7 h (IQR = 22.0) over the 16-week intervention period. There were no adverse events. Physiological fall risk (Physiological Profile Assessment, PPA) reduced significantly more in the intervention group compared to the control group (F1,127 = 4.54, p = 0.035). There was a significant three-way interaction for fall risk assessed by the PPA between the high-adherence (>90 min/week; n = 18, 25.4 %), low-adherence (<90 min/week; n = 53, 74.6 %) and control group (F2,125 = 3.12, n = 75, p = 0.044). Post hoc analysis revealed a significantly larger effect in favour of the high-adherence group compared to the control group for fall risk (p = 0.031), postural sway (p = 0.046), stepping reaction time (p = 0.041), executive functioning (p = 0.044), and quality of life (p for trend = 0.052). The iStoppFalls exercise program reduced physiological fall risk in the study sample. Additional subgroup analyses revealed that intervention participants with better adherence also improved in postural sway, stepping reaction, and executive function. Australian New Zealand Clinical Trials Registry Trial ID: ACTRN12614000096651 International Standard Randomised Controlled Trial Number: ISRCTN15932647.
Sahota, Opinder; Drummond, Avril; Kendrick, Denise; Grainge, Matthew J.; Vass, Catherine; Sach, Tracey; Gladman, John; Avis, Mark
2014-01-01
Background: falls in hospitals are a major problem and contribute to substantial healthcare burden. Advances in sensor technology afford innovative approaches to reducing falls in acute hospital care. However, whether these are clinically effective and cost effective in the UK setting has not been evaluated. Methods: pragmatic, parallel-arm, individual randomised controlled trial of bed and bedside chair pressure sensors using radio-pagers (intervention group) compared with standard care (control group) in elderly patients admitted to acute, general medical wards, in a large UK teaching hospital. Primary outcome measure number of in-patient bedside falls per 1,000 bed days. Results: 1,839 participants were randomised (918 to the intervention group and 921 to the control group). There were 85 bedside falls (65 fallers) in the intervention group, falls rate 8.71 per 1,000 bed days compared with 83 bedside falls (64 fallers) in the control group, falls rate 9.84 per 1,000 bed days (adjusted incidence rate ratio, 0.90; 95% confidence interval [CI], 0.66–1.22; P = 0.51). There was no significant difference between the two groups with respect to time to first bedside fall (adjusted hazard ratio (HR), 0.95; 95% CI: 0.67–1.34; P= 0.12). The mean cost per patient in the intervention group was £7199 compared with £6400 in the control group, mean difference in QALYs per patient, 0.0001 (95% CI: −0.0006–0.0004, P= 0.67). Conclusions: bed and bedside chair pressure sensors as a single intervention strategy do not reduce in-patient bedside falls, time to first bedside fall and are not cost-effective in elderly patients in acute, general medical wards in the UK. Trial registration: isrctn.org identifier: ISRCTN44972300. PMID:24141253
Zhang, Senhao; Shi, Yinghua; Cheng, Ningning; Du, Hongqi; Fan, Wenna; Wang, Chengzhang
2015-01-01
Alfalfa (Medicago sativa L.) is one of the most widely cultivated perennial forage legumes worldwide. Fall dormancy is an adaptive character related to the biomass production and winter survival in alfalfa. The physiological, biochemical and molecular mechanisms causing fall dormancy and the related genes have not been well studied. In this study, we sequenced two standard varieties of alfalfa (dormant and non-dormant) at two time points and generated approximately 160 million high quality paired-end sequence reads using sequencing by synthesis (SBS) technology. The de novo transcriptome assembly generated a set of 192,875 transcripts with an average length of 856 bp representing about 165.1 Mb of the alfalfa leaf transcriptome. After assembly, 111,062 (57.6%) transcripts were annotated against the NCBI non-redundant database. A total of 30,165 (15.6%) transcripts were mapped to 323 Kyoto Encyclopedia of Genes and Genomes pathways. We also identified 41,973 simple sequence repeats, which can be used to generate markers for alfalfa, and 1,541 transcription factors were identified across 1,350 transcripts. Gene expression between dormant and non-dormant alfalfa at different time points were performed, and we identified several differentially expressed genes potentially related to fall dormancy. The Gene Ontology and pathways information were also identified. We sequenced and assembled the leaf transcriptome of alfalfa related to fall dormancy, and also identified some genes of interest involved in the fall dormancy mechanism. Thus, our research focused on studying fall dormancy in alfalfa through transcriptome sequencing. The sequencing and gene expression data generated in this study may be used further to elucidate the complete mechanisms governing fall dormancy in alfalfa.
Cheng, Ningning; Du, Hongqi; Fan, Wenna; Wang, Chengzhang
2015-01-01
Alfalfa (Medicago sativa L.) is one of the most widely cultivated perennial forage legumes worldwide. Fall dormancy is an adaptive character related to the biomass production and winter survival in alfalfa. The physiological, biochemical and molecular mechanisms causing fall dormancy and the related genes have not been well studied. In this study, we sequenced two standard varieties of alfalfa (dormant and non-dormant) at two time points and generated approximately 160 million high quality paired-end sequence reads using sequencing by synthesis (SBS) technology. The de novo transcriptome assembly generated a set of 192,875 transcripts with an average length of 856 bp representing about 165.1 Mb of the alfalfa leaf transcriptome. After assembly, 111,062 (57.6%) transcripts were annotated against the NCBI non-redundant database. A total of 30,165 (15.6%) transcripts were mapped to 323 Kyoto Encyclopedia of Genes and Genomes pathways. We also identified 41,973 simple sequence repeats, which can be used to generate markers for alfalfa, and 1,541 transcription factors were identified across 1,350 transcripts. Gene expression between dormant and non-dormant alfalfa at different time points were performed, and we identified several differentially expressed genes potentially related to fall dormancy. The Gene Ontology and pathways information were also identified. We sequenced and assembled the leaf transcriptome of alfalfa related to fall dormancy, and also identified some genes of interest involved in the fall dormancy mechanism. Thus, our research focused on studying fall dormancy in alfalfa through transcriptome sequencing. The sequencing and gene expression data generated in this study may be used further to elucidate the complete mechanisms governing fall dormancy in alfalfa. PMID:25799491
AGU Cinema: Festival of short science films at Fall Meeting
NASA Astrophysics Data System (ADS)
Harned, Douglas A.
2012-11-01
New technologies have revolutionized the use of video as a means of science communication and have made it easier to create, distribute, and view. With video having become omnipresent in our culture, it sometime supplements or even replaces writing in many science and education applications. An inaugural science film festival sponsored by AGU at the 2012 Fall Meeting in San Francisco, Calif., in December will showcase short videos—30 minutes or less in length—developed to disseminate scientific results to various audiences and to enhance learning in the classroom. AGU Cinema will feature professionally produced, big budget films alongside low-budget videos aimed at niche audiences and made by amateurs. The latter category includes videos made by governmental agency scientists, educators, communications specialists within scientific organizations, and Fall Meeting oral and poster presenters.
A multi-modal approach for activity classification and fall detection
NASA Astrophysics Data System (ADS)
Castillo, José Carlos; Carneiro, Davide; Serrano-Cuerda, Juan; Novais, Paulo; Fernández-Caballero, Antonio; Neves, José
2014-04-01
The society is changing towards a new paradigm in which an increasing number of old adults live alone. In parallel, the incidence of conditions that affect mobility and independence is also rising as a consequence of a longer life expectancy. In this paper, the specific problem of falls of old adults is addressed by devising a technological solution for monitoring these users. Video cameras, accelerometers and GPS sensors are combined in a multi-modal approach to monitor humans inside and outside the domestic environment. Machine learning techniques are used to detect falls and classify activities from accelerometer data. Video feeds and GPS are used to provide location inside and outside the domestic environment. It results in a monitoring solution that does not imply the confinement of the users to a closed environment.
Wang, Lei; Liu, Huizhi; Sun, Jihua; Feng, Jianwu
2016-02-01
Based on the eddy covariance measurements from June 2011 to December 2013, the seasonal variations and the controls of water and CO2 fluxes were investigated over an alpine meadow in Lijiang, southwest China. The year 2012 had the largest total precipitation among years from 2011 to 2013 (1037.9, 1190.4, and 1066.1 mm, respectively). A spring drought event occurred from March to May 2012, and the peak normalized difference vegetation index (NDVI) in 2012 was the lowest. Throughout the whole year, net radiation (Rn), vapor pressure deficit, and air temperature (Ta) were the primary controls on evapotranspiration (ET), and R n is the most important factor. The influence of R n on ET was much more in the wet season (R(2) = 0.93) than in the dry season (R(2) = 0.28). In the wet season, the ratio of ET to equilibrium ET (ETeq) (0.92 ± 0.14; mean ± S.D.) did not show a clear seasonal pattern with NDVI when the soil water content (SWC) was usually more than 0.25 m(3) m(-3), indicating that ET could be predicted well by ETeq (or radiation and temperature). On half-hourly and daily scales, photosynthetic active radiation (PAR) and air temperature were the main meteorological factors in determining the net ecosystem production (NEP). The seasonal trends of NEP were closely related with the change of NDVI. The integrated NEP in the 2012 wet season (157.8 g C m(-2) year(-1)) was 19.5 and 23.8 % lower than in the 2011 and 2013 wet season (207.0 and 196.1 g C m(-2) year(-1)). The mean ET/ETeq for each of the wet seasons from 2011 to 2013 was 0.88. The 2012 spring drought and its reduction in NDVI decreased the total NEP significantly but had little effect on the total ET in the wet season. The different response of NEP and ET to the spring drought was attributed to the high SWC and small vapor pressure deficit during the wet season.
Zhang, Mi; Wen, Xue Fa; Zhang, Lei Ming; Wang, Hui Min; Guo, Yi Wen; Yu, Gui Rui
2018-02-01
Extreme high temperature is one of important extreme weathers that impact forest ecosystem carbon cycle. In this study, applying CO 2 flux and routine meteorological data measured during 2003-2012, we examined the impacts of extreme high temperature and extreme high temperature event on net carbon uptake of subtropical coniferous plantation in Qianyanzhou. Combining with wavelet analysis, we analyzed environmental controls on net carbon uptake at different temporal scales, when the extreme high temperature and extreme high temperature event happened. The results showed that mean daily cumulative NEE decreased by 51% in the days with daily maximum air temperature range between 35 ℃ and 40 ℃, compared with that in the days with the range between 30 ℃ and 34 ℃. The effects of the extreme high temperature and extreme high temperature event on monthly NEE and annual NEE related to the strength and duration of extreme high tempe-rature event. In 2003, when strong extreme high temperature event happened, the sum of monthly cumulative NEE in July and August was only -11.64 g C·m -2 ·(2 month) -1 . The value decreased by 90%, compared with multi-year average value. At the same time, the relative variation of annual NEE reached -6.7%. In July and August, when the extreme high temperature and extreme high temperature event occurred, air temperature (T a ) and vapor press deficit (VPD) were the dominant controller for the daily variation of NEE. The coherency between NEE T a and NEE VPD was 0.97 and 0.95, respectively. At 8-, 16-, and 32-day periods, T a , VPD, soil water content at 5 cm depth (SWC), and precipitation (P) controlled NEE. The coherency between NEE SWC and NEE P was higher than 0.8 at monthly scale. The results indicated that atmospheric water deficit impacted NEE at short temporal scale, when the extreme high temperature and extreme high temperature event occurred, both of atmospheric water deficit and soil drought stress impacted NEE at long temporal scales in this ecosystem.
Lockie, Robert G; Farzad, Jalilvand; Orjalo, Ashley J; Giuliano, Dominic V; Moreno, Matthew R; Wright, Glenn A
2017-02-01
Lockie, RG, Jalilvand, F, Orjalo, AJ, Giuliano, DV, Moreno, MR, and Wright, GA. A methodological report: Adapting the 505 change-of-direction speed test specific to American football. J Strength Cond Res 31(2): 539-547, 2017-The 505 involves a 10-m sprint past a timing gate, followed by a 180° change-of-direction (COD) performed over 5 m. This methodological report investigated an adapted 505 (A505) designed to be football-specific by changing the distances to 10 and 5 yd. Twenty-five high school football players (6 linemen [LM]; 8 quarterbacks, running backs, and linebackers [QB/RB/LB]; 11 receivers and defensive backs [R/DB]) completed the A505 and 40-yd sprint. The difference between A505 and 0 to 10-yd time determined the COD deficit for each leg. In a follow-up session, 10 subjects completed the A505 again and 10 subjects completed the 505. Reliability was analyzed by t-tests to determine between-session differences, typical error (TE), and coefficient of variation. Test usefulness was examined via TE and smallest worthwhile change (SWC) differences. Pearson's correlations calculated relationships between the A505 and 505, and A505 and COD deficit with the 40-yd sprint. A 1-way analysis of variance (p ≤ 0.05) derived between-position differences in the A505 and COD deficit. There were no between-session differences for the A505 (p = 0.45-0.76; intraclass correlation coefficient = 0.84-0.95; TE = 2.03-4.13%). Additionally, the A505 was capable of detecting moderate performance changes (SWC0.5 > TE). The A505 correlated with the 505 and 40-yard sprint (r = 0.58-0.92), suggesting the modified version assessed similar qualities. Receivers and defensive backs were faster than LM in the A505 for both legs, and right-leg COD deficit. Quarterbacks, running backs, and linebackers were faster than LM in the right-leg A505. The A505 is reliable, can detect moderate performance changes, and can discriminate between football position groups.
ERIC Educational Resources Information Center
Urven, Lance E.; Yin, L. Roger; Bak, John D.
In fall 1997, the University of Wisconsin-Whitewater (UWW) provided Science and Technology in Society, a university general studies science literacy course, to advanced placement high school students at three local high schools, using a combination of live video presentations and World Wide Web (WWW) courseware. A total of 26 high school students…
Bridging the Technology Valley of Death in Joint Medical Development
2015-11-01
Force lieutenant colonel, is the Air Force Medical Support Agency Advanced Development Liaison Field Engineer in Falls Church, Virginia. Prusaczyk is...Awareness, communication and coordination may be mini - mal among Service S&T and AD programs. Joint Transition Planning Process A Joint Transition...Human Proof of Phase III NDA/BLA ling Approval, Launch Concept*** Launch Review Program Initiation Materiel Technology Engineering & Production
ERIC Educational Resources Information Center
Grant, Markeisha
2016-01-01
In 2015 "The Helmsley Charitable Trust" provided grants to four Achieving the Dream (ATD) Leader Colleges to engage in STEM-specific iPASS reform beginning in fall 2016. iPASS, or Integrated Planning and Advising for Student Success, is a whole-school reform approach that uses technology to promote, support, and sustain long-term,…
Cockayne, Sarah; Rodgers, Sara; Green, Lorraine; Fairhurst, Caroline; Adamson, Joy; Scantlebury, Arabella; Corbacho, Belen; Hewitt, Catherine E; Hicks, Kate; Hull, Robin; Keenan, Anne-Maree; Lamb, Sarah E; McIntosh, Caroline; Menz, Hylton B; Redmond, Anthony; Richardson, Zoe; Vernon, Wesley; Watson, Judith; Torgerson, David J
2017-04-01
Falls are a serious cause of morbidity and cost to individuals and society. Evidence suggests that foot problems and inappropriate footwear may increase the risk of falling. Podiatric interventions could help reduce falls; however, there is limited evidence regarding their clinical effectiveness and cost-effectiveness. To determine the clinical effectiveness and cost-effectiveness of a multifaceted podiatry intervention for preventing falls in community-dwelling older people at risk of falling, relative to usual care. A pragmatic, multicentred, cohort randomised controlled trial with an economic evaluation and qualitative study. Nine NHS trusts in the UK and one site in Ireland. In total, 1010 participants aged ≥ 65 years were randomised (intervention, n = 493; usual care, n = 517) via a secure, remote service. Blinding was not possible. All participants received a falls prevention leaflet and routine care from their podiatrist and general practitioner. The intervention also consisted of footwear advice, footwear provision if required, foot orthoses and foot- and ankle-strengthening exercises. The primary outcome was the incidence rate of falls per participant in the 12 months following randomisation. The secondary outcomes included the proportion of fallers and multiple fallers, time to first fall, fear of falling, fracture rate, health-related quality of life (HRQoL) and cost-effectiveness. The primary analysis consisted of 484 (98.2%) intervention and 507 (98.1%) usual-care participants. There was a non-statistically significant reduction in the incidence rate of falls in the intervention group [adjusted incidence rate ratio 0.88, 95% confidence interval (CI) 0.73 to 1.05; p = 0.16]. The proportion of participants experiencing a fall was lower (50% vs. 55%, adjusted odds ratio 0.78, 95% CI 0.60 to 1.00; p = 0.05). No differences were observed in key secondary outcomes. No serious, unexpected and related adverse events were reported. The intervention costs £252.17 more per participant (95% CI -£69.48 to £589.38) than usual care, was marginally more beneficial in terms of HRQoL measured via the EuroQoL-5 Dimensions [mean quality-adjusted life-year (QALY) difference 0.0129, 95% CI -0.0050 to 0.0314 QALYs] and had a 65% probability of being cost-effective at the National Institute for Health and Care Excellence threshold of £30,000 per QALY gained. The intervention was generally acceptable to podiatrists and trial participants. Owing to the difficulty in calculating a sample size for a count outcome, the sample size was based on detecting a difference in the proportion of participants experiencing at least one fall, and not the primary outcome. We are therefore unable to confirm if the trial was sufficiently powered for the primary outcome. The findings are not generalisable to patients who are not receiving podiatry care. The intervention was safe and potentially effective. Although the primary outcome measure did not reach significance, a lower fall rate was observed in the intervention group. The reduction in the proportion of older adults who experienced a fall was of borderline statistical significance. The economic evaluation suggests that the intervention could be cost-effective. Further research could examine whether or not the intervention could be delivered in group sessions, by physiotherapists, or in high-risk patients. Current Controlled Trials ISRCTN68240461. This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment ; Vol. 21, No. 24. See the NIHR Journals Library website for further project information.
Aeronautics Research and Technology Program and specific objectives, fiscal year 1982
NASA Technical Reports Server (NTRS)
Olstad, W. B.
1981-01-01
The Aeronautics Research and Technology program is broken down into two program areas (research and technology base, and systems technology programs) which are further broken down into succeedingly more detailed activities to form a work breakdown structure for the aeronautics program: program area, program/discipline objective, specific objective, and research and technology objective and plan (RTOP). A detailed view of this work breakdown structure down to the specific objective level is provided, and goals or objectives at each of these levels are set forth. What is to be accomplished and why are addressed, but not how. The letter falls within the domain of the RTOP.
Micro guidance and control technology overview
NASA Technical Reports Server (NTRS)
Kissel, Glen J.; Hadaegh, Fred Y.
1993-01-01
This paper gives an overview of micro-guidance and control technologies and in the process previews of the technology/user and systems issues presented in the guidance and control session at the workshop. We first present a discussion of the advantages of using micro-guidance and control components and then detail six micro-guidance and control thrusts that could have a revolutionary impact on space missions and systems. Specific technologies emerging in the micro-guidance and control field will be examined. These technologies fall into two broad categories: micro-attitude determination (inertial and celestial) and micro-actuation, control and sensing. Finally, the scope of the workshop's guidance and control panel are presented.
Lee, Sunwoo; Shin, Sungrae
2013-06-01
Diabetes in elderly adults is associated with an increased risk of fall. The aim of study was to determine whether a virtual reality exercise (VRE) program would improve balance, strength, gait, and falls efficacy in elderly adults with diabetes. Fifty-five subjects with diabetes mellitus over 65 years of age were randomly assigned to a VRE group (VREG) (n=27) and a control group (CG) (n=28). The VREG received the VRE program and diabetes education, whereas the CG received only the diabetes education. The VRE program used video gaming (PlayStation(®) 2; Sony, Tokyo, Japan) and was conducted for 50 min twice a week for 10 weeks. Balance, muscle strength, gait, and falls efficacy were measured at baseline and after intervention. Measurements were taken using a clinical tests (the one-leg-standing test, the Berg Balance Scale, the functional reach test, the timed up-and-go test, and the sit-to-stand test), and gait analysis. A self-administered questionnaire was used to measure falls efficacy. After training, the VREG showed significantly improved balance, decreased sit-to-stand times, and increased gait speed, cadence, and falls efficacy. The VRE program was to maximize the effects of exercise by triggering players was to be fully immersed into the games and enhanced major influential factors on the falls of subject. This study suggests VRE programs are feasible and effective for reduced the risk of falls in elderly adults with type 2 diabetes.
Wireless Falling Detection System Based on Community.
Xia, Yun; Wu, Yanqi; Zhang, Bobo; Li, Zhiyang; He, Nongyue; Li, Song
2015-06-01
The elderly are more likely to suffer the aches or pains from the accidental falls, and both the physiology and psychology of patients would subject to a long-term disturbance, especially when the emergency treatment was not given timely and properly. Although many methods and devices have been developed creatively and shown their efficiency in experiments, few of them are suitable for commercial applications routinely. Here, we design a wearable falling detector as a mobile terminal, and utilize the wireless technology to transfer and monitor the activity data of the host in a relatively small community. With the help of the accelerometer sensor and the Google Mapping service, information of the location and the activity data will be send to the remote server for the downstream processing. The experimental result has shown that SA (Sum-vector of all axes) value of 2.5 g is the threshold value to distinguish the falling from other activities. A three-stage detection algorithm was adopted to increase the accuracy of the real alarm, and the accuracy rate of our system was more than 95%. With the further improvement, the falling detecting device which is low-cost, accurate and user-friendly would become more and more common in everyday life.
Solid Earth science in the 1990s. Volume 3: Measurement techniques and technology
NASA Technical Reports Server (NTRS)
1991-01-01
Reports are contained from the NASA Workshop on Solid Earth Science in the 1990s. The techniques and technologies needed to address the program objectives are discussed. The Measurement Technique and Technology Panel identified (1) candidate measurement systems for each of the measurements required for the Solid Earth Science Program that would fall under the NASA purview; (2) the capabilities and limitations of each technique; and (3) the developments necessary for each technique to meet the science panel requirements. In nearly all cases, current technology or a development path with existing technology was identified as capable of meeting the requirements of the science panels. These technologies and development paths are discussed.
Giordano, Alessandro; Bonometti, Gian Pietro; Vanoglio, Fabio; Paneroni, Mara; Bernocchi, Palmira; Comini, Laura; Giordano, Amerigo
2016-12-07
Fall incidents are the third cause of chronic disablement in elderly according to the World Health Organization (WHO). Recent meta-analyses shows that a multifactorial falls risk assessment and management programmes are effective in all older population studied. However, the application of these programmes may not be the same in all National health care setting and, consequently, needs to be evaluated by cost-effectiveness studies before to plan this intervention in regular care. In Italy structured collaboration between hospital staff and primary care is generally lacking and the role of Information and Communication Technologies (ICT) in a fall prevention programme at home has never been explored. This will be a two-group randomised controlled trial aiming to evaluate the effects of a home-based intervention programme delivered by a multidisciplinary health team. The home tele-management programme, previously adopted in our Institute for chronic patients, will be proposed to elderly people affected by chronic diseases at high risk of falling at hospital discharge. The programme will involve the hospital staff and will be managed thanks to the collaboration between hospital and primary care setting. Patients will be followed for 6 months after hospital discharge. A nurse-tutor telephone support and tele-exercise will characterize the intervention programme. People in the control group will receive usual care. The main outcome measure of the study will be the percentage of patients sustaining a fall during the 6-months follow-up period. An economic evaluation will be performed from a societal perspective and will involve calculating cost-effectiveness and cost utility ratios. To date, no adequately powered studies have investigated the effect of the Information and Communication Technologies (ICT) in a home fall prevention program. We aim the program will be feasible in terms of intensity and characteristics, but particularly in terms of patient and provider compliance. The results of the economic evaluation could provide information about the cost-effectiveness of the intervention and the effects on quality of life. In case of shown effectiveness and cost effectiveness, the program could be implemented into health services settings. ClinicalTrials.gov ( NCT02487589 ).
Chang, Kyle
2006-01-01
As you can see, there are a number of different ways to protect your network with different protocols, all of which can be very confusing to people whose core business process is not technology. This article is only a brief synopsis of the dangers that lurk in the corners of the technology world. Therefore, the best course of action is to do as much research as possible rather than falling into a situation of risk and vulnerability by implementing a system or network that does not work with your business. Remember, the technology is there to support your business; the business should not have to work around the technology.
Slade Shantz, Jesse Alan; Veillette, Christian J. H.
2014-01-01
Wearable technology has become an important trend in consumer electronics in the past year. The miniaturization and mass production of myriad sensors have made possible the integration of sensors and output devices in wearable platforms. Despite the consumer focus of the wearable revolution some surgical applications are being developed. These fall into augmentative, assistive, and assessment functions and primarily layer onto current surgical workflows. Some challenges to the adoption of wearable technologies are discussed and a conceptual framework for understanding the potential of wearable technology to revolutionize surgical practice are presented. PMID:25593963
DOT National Transportation Integrated Search
2016-06-01
This report summarizes key findings from the Beyond Traffic 2045 Reimagining Transportation thought leadership speaker series held at Volpe, the National Transportation Systems Center, in the fall and winter of 2015.
LISA technology development using the UF precision torsion pendulum
NASA Astrophysics Data System (ADS)
Apple, Stephen; Chilton, Andrew; Olatunde, Taiwo; Ciani, Giacomo; Mueller, Guido; Conklin, John
2015-04-01
LISA will directly observe low-frequency gravitational waves emitted by sources ranging from super-massive black hole mergers to compact galactic binaries. A laser interferometer will measure picometer changes in the distances between free falling test masses separated by millions of kilometers. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). The demanding acceleration noise requirement for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in the fall of 2015. At the University of Florida we are developing a nearly thermally noise limited torsion pendulum for testing GRS technology enhancements that may improve the performance and/or reduce the cost of the LISA GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. Some of the technologies that will be demonstrated by this facility include a novel TM charge control scheme based on ultraviolet LEDs, an all-optical TM position and attitude sensor, and drift mode operation. This presentation will describe the design of the torsion pendulum facility, its current acceleration noise performance, and the status of the GRS technologies under development.
NASA Technical Reports Server (NTRS)
Follett, William W.; Rajagopal, Raj
2001-01-01
The focus of the AA MDO team is to reduce product development cost through the capture and automation of best design and analysis practices and through increasing the availability of low-cost, high-fidelity analysis. Implementation of robust designs reduces costs associated with the Test-Fall-Fix cycle. RD is currently focusing on several technologies to improve the design process, including optimization and robust design, expert and rule-based systems, and collaborative technologies.
Emerging Science and Technology Trends: 2017-2047
2017-11-21
genomics, coupled with the exponentially declining cost of gene editing techniques such as CRISPR , has created fertile ground for rapid technological...sequences from scratch. Falling costs and new gene editing tools like CRISPR are accelerating progress, and the global market is expected to reach...by the Bill & Melinda Gates foundation, is reengineering the bacteria found in the human gut to fight disease.121 eGensis is using CRISPR gene
Physicist falls foul of US export law
NASA Astrophysics Data System (ADS)
Gwynne, Peter
2008-10-01
A retired US plasma physicist is seeking to overturn his conviction last month of offences under the American Arms Export Control Act, which prohibits the export, without a government licence, of technology and data to foreign nationals or nations. A jury in Knoxville, Tennessee, found JReece Roth, 70, guilty of illegally exporting technical information about a military project to develop plasma technology for guiding spyplanes that operate as weapons or surveillance devices.
ERIC Educational Resources Information Center
Gordon-Patton, Princess E.
2016-01-01
This quantitative study used survey data to examine instructor use of technology in on-ground courses at a Historically Black College or University (HBCU) based on student experiences (N = 9,027) during Fall Semester 2014. The study sampled undergraduate students in the College of Liberal Arts ( n = 5,542) of one HBCU. Increasing numbers of…
ERIC Educational Resources Information Center
PEPNet 2, 2007
2007-01-01
The 2007 meeting of the English Think Tank published here represents a sample of the English Think Tank V presentations. In reading these papers one is struck by the imagination and expertise possessed by so many members in the field. The paper topics fall roughly into four categories--assessment, diversity, literacy, and technology. This…
Lucero, R; Sheehan, B; Yen, P; Velez, O; Nobile-Hernandez, D; Tiase, V
2014-01-01
We describe an innovative community-centered participatory design approach, Consumer-centered Participatory Design (C2PD), and the results of applying C2PD to design and develop a web-based fall prevention system. We conducted focus groups and design sessions with English- and Spanish-speaking community-dwelling older adults. Focus group data were summarized and used to inform the context of the design sessions. Descriptive content analysis methods were used to develop categorical descriptions of design session informant's needs related to information technology. The C2PD approach enabled the assessment and identification of informant's needs of health information technology (HIT) that informed the development of a falls prevention system. We learned that our informants needed a system that provides variation in functions/content; differentiates between actionable/non-actionable information/structures; and contains sensory cues that support wide-ranging and complex tasks in a varied, simple, and clear interface to facilitate self-management. The C2PD approach provides community-based organizations, academic researchers, and commercial entities with a systematic theoretically informed approach to develop HIT innovations. Our community-centered participatory design approach focuses on consumer's technology needs while taking into account core public health functions.
Shoe-Insole Technology for Injury Prevention in Walking
Nagano, Hanatsu
2018-01-01
Impaired walking increases injury risk during locomotion, including falls-related acute injuries and overuse damage to lower limb joints. Gait impairments seriously restrict voluntary, habitual engagement in injury prevention activities, such as recreational walking and exercise. There is, therefore, an urgent need for technology-based interventions for gait disorders that are cost effective, willingly taken-up, and provide immediate positive effects on walking. Gait control using shoe-insoles has potential as an effective population-based intervention, and new sensor technologies will enhance the effectiveness of these devices. Shoe-insole modifications include: (i) ankle joint support for falls prevention; (ii) shock absorption by utilising lower-resilience materials at the heel; (iii) improving reaction speed by stimulating cutaneous receptors; and (iv) preserving dynamic balance via foot centre of pressure control. Using sensor technology, such as in-shoe pressure measurement and motion capture systems, gait can be precisely monitored, allowing us to visualise how shoe-insoles change walking patterns. In addition, in-shoe systems, such as pressure monitoring and inertial sensors, can be incorporated into the insole to monitor gait in real-time. Inertial sensors coupled with in-shoe foot pressure sensors and global positioning systems (GPS) could be used to monitor spatiotemporal parameters in real-time. Real-time, online data management will enable ‘big-data’ applications to everyday gait control characteristics. PMID:29738486
Sheehan, B.; Yen, P.; Velez, O.; Nobile-Hernandez, D.; Tiase, V.
2014-01-01
Summary Objectives We describe an innovative community-centered participatory design approach, Consumer-centered Participatory Design (C2PD), and the results of applying C2PD to design and develop a web-based fall prevention system. Methods We conducted focus groups and design sessions with English- and Spanish-speaking community-dwelling older adults. Focus group data were summarized and used to inform the context of the design sessions. Descriptive content analysis methods were used to develop categorical descriptions of design session informant’s needs related to information technology. Results The C2PD approach enabled the assessment and identification of informant’s needs of health information technology (HIT) that informed the development of a falls prevention system. We learned that our informants needed a system that provides variation in functions/content; differentiates between actionable/non-actionable information/structures; and contains sensory cues that support wide-ranging and complex tasks in a varied, simple, and clear interface to facilitate self-management. Conclusions The C2PD approach provides community-based organizations, academic researchers, and commercial entities with a systematic theoretically informed approach to develop HIT innovations. Our community-centered participatory design approach focuses on consumer’s technology needs while taking into account core public health functions. PMID:25589909
Using commercial video games for falls prevention in older adults: the way for the future?
Pietrzak, Eva; Cotea, Cristina; Pullman, Stephen
2014-01-01
Falls in older adults are an increasingly costly public health issue. There are many fall prevention strategies that are effective. However, with an increasing population of older people and ever-decreasing availability of health practitioners and health funding, novel modes of intervention are being developed, including those relying on computer technologies.The aim of this article was to review the literature on the use of exergaming to prevent falls in older adult persons living in the community. The Cochrane, Medline, and Embase databases were searched using prespecified search terms. To be included, studies had to investigate the effect of using commercially available consoles and video games on outcome measures such as a decrease in falls, improvements in balance control or gait parameters, decreased fear of falling, and attitude to exercise in older adult persons living in the community. All study designs with the exception of single-person case studies were included. Articles had to be published in peer-reviewed journals in the English language. Nineteen studies fulfilled the inclusion criteria. The following outcomes were observed: (1) using computer-based virtual reality gaming for balance training in older adults was feasible; (2) the majority of studies showed a positive effect of exergaming on balance control; (3) some studies showed a positive effect on balance confidence and gait parameters; (4) the effect was seen across the age and sex spectrum of older adults, including those with and without balance impairment. There is as yet no evidence that using virtual reality games will prevent falls, but there is an indication that their use in balance training may improve balance control, which in turn may lead to falls prevention.
This January 2004 document contains 14 diagrams illustrating the different compliance options available for those facilities that fall under the Paper and Web Coating Maximum Achievable control Technology (MACT).
14 CFR § 1203.400 - Specific classifying guidance.
Code of Federal Regulations, 2014 CFR
2014-01-01
... and operational information and material, and in some exceptional cases scientific information falling... activities), intelligence sources or methods, or cryptology; (d) Foreign relations or foreign activities of the United States, including confidential sources; (e) Scientific, technological, or economic matters...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., Small Business Innovation Research topics, Small Business Technology Transfer Research topics, Program Research and Development Announcements, or any other Government-initiated solicitation or program. When the new and innovative ideas do not fall under topic areas publicized under those programs or techniques...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., Small Business Innovation Research topics, Small Business Technology Transfer Research topics, Program Research and Development Announcements, or any other Government-initiated solicitation or program. When the new and innovative ideas do not fall under topic areas publicized under those programs or techniques...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., Small Business Innovation Research topics, Small Business Technology Transfer Research topics, Program Research and Development Announcements, or any other Government-initiated solicitation or program. When the new and innovative ideas do not fall under topic areas publicized under those programs or techniques...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Pike, Falls Church, VA 22041-3803. Headquarters program Mail stop Business Management and Operations MS... Programs MS: FAC. International Affairs, including: • Division of Management Authority MS: IA. • Division of Scientific Authority Information Resource and Technology Management MS: IRTM. Migratory Birds...
78 FR 69884 - Investigations Regarding Eligibility To Apply for Worker Adjustment Assistance
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-21
... 10/10/13 (Workers). 83179 Gamesa Technology Trevose & Fairless 10/30/13 10/29/13 Corporation (Union...). 83191 Victor Innovative Textiles, Fall River, MA........ 11/01/13 10/30/13 LLC (Company). [FR Doc. 2013...
Young, William; Ferguson, Stuart; Brault, Sébastien; Craig, Cathy
2011-02-01
Older adults, deemed to be at a high risk of falling, are often unable to participate in dynamic exercises due to physical constraints and/or a fear of falling. Using the Nintendo 'Wii Balance Board' (WBB) (Nintendo, Kyoto, Japan), we have developed an interface that allows a user to accurately calculate a participant's centre of pressure (COP) and incorporate it into a virtual environment to create bespoke diagnostic or training programmes that exploit real-time visual feedback of current COP position. This platform allows researchers to design, control and validate tasks that both train and test balance function. This technology provides a safe, adaptable and low-cost balance training/testing solution for older adults, particularly those at high-risk of falling. Copyright © 2010 Elsevier B.V. All rights reserved.
Advances in Robotic Servicing Technology Development
NASA Technical Reports Server (NTRS)
Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin
2015-01-01
NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and near Earth asteroid boulder retrieval; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.
Advances in Robotic Servicing Technology Development
NASA Technical Reports Server (NTRS)
Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin
2015-01-01
NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and asteroid redirection; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.
Equasions for Curriculum Improvement.
ERIC Educational Resources Information Center
Eckenrod, James S.
1986-01-01
Describes the Technology in Curriculum (TIC) program resource guides which will be distributed to California schools in the fall of 1986. These guides match available instructional television programs and computer software to existing California curriculum guides in order to facilitate teachers' classroom use. (JDH)
3 CFR 8420 - Proclamation 8420 of September 21, 2009. National Farm Safety and Health Week, 2009
Code of Federal Regulations, 2010 CFR
2010-01-01
... technology and efficiency, have provided great security to the United States. As they offer great benefits to... particular care to avoid accidents involving children. As the fall harvest season approaches, I encourage...
Activities Related to Systems Engineering
2004-12-01
competencies include weapons technology including WMD; information management; modeling and simulation; operations analysis; chemical and explosive sciences...thesis students) are drawn from engineering, es • Th s on: s 19. University of Idaho at Idaho Falls Loc o daho ems Engineering; Certificate in n
MEETING DATA QUALITY OBJECTIVES WITH INTERVAL INFORMATION
Immunoassay test kits are promising technologies for measuring analytes under field conditions. Frequently, these field-test kits report the analyte concentrations as falling in an interval between minimum and maximum values. Many project managers use field-test kits only for scr...
Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water.
Jetly, Aditya; Vakarelski, Ivan U; Thoroddsen, Sigurdur T
2018-02-28
We investigate the effect of thin air layers naturally sustained on superhydrophobic surfaces on the terminal velocity and drag force of metallic spheres free falling in water. The surface of 20 mm to 60 mm steel or tungsten-carbide spheres is rendered superhydrophobic by a simple coating process that uses a commercially available hydrophobic agent. By comparing the free fall of unmodified spheres and superhydrophobic spheres in a 2.5 meter tall water tank, it is demonstrated that even a very thin air layer (∼1-2 μm) that covers the freshly dipped superhydrophobic sphere can reduce the drag force on the spheres by up to 80%, at Reynolds numbers from 10 5 to 3 × 10 5 , owing to an early drag crisis transition. This study complements prior investigations on the drag reduction efficiency of model gas layers sustained on heated metal spheres falling in liquid by the Leidenfrost effect. The drag reduction effects are expected to have significant implications for the development of sustainable air-layer-based energy saving technologies.
Blasting preparation for selective mining of complex structured ore deposition
NASA Astrophysics Data System (ADS)
Marinin, M. A.; Dolzhikov, V. V.
2017-10-01
Technological features of ore mining in the open pit development for processing of complex structured ore deposit of steeply falling occurrence have been considered. The technological schemes of ore bodies mining under different conditions of occurrence, consistency and capacity have been considered and offered in the paper. These technologies permit to reduce losses and dilution, but to increase the completeness and quality of mined ore. A method of subsequent selective excavation of ore bodies has been proposed. The method is based on the complex use of buffer-blasting technology for the muck mass and the principle of trim blasting at ore-rock junctions.
Clinical use of medical devices in the 'Bermuda Triangle'.
Kessler, Larry; Ramsey, Scott D; Tunis, Sean; Sullivan, Sean D
2004-01-01
The pace of medical technological development shows no sign of abating. Analyzing the effect of major federal health agencies on the availability of such technology is critical. This paper describes functions of three government health agencies: the Centers for Medicare and Medicaid Services (CMS), the Food and Drug Administration (FDA), and the National Institutes of Health (NIH). Certain medical technologies fall into gaps between these agencies, which pose challenges in today's era of demand for evidence-based medicine. We suggest new policy and pragmatic strategies that can close the gaps and move decision making relevant to technology forward more rapidly than is now the case.
Du, Hongqi; Sun, Xiaoge; Shi, Yinghua; Wang, Chengzhang
2014-01-01
Background MicroRNAs (miRNAs) are a class of regulatory small RNAs (sRNAs) that regulate gene post-transcriptional expression in plants and animals. High-throughput sequencing technology is capable of identifying small RNAs in plant species. Alfalfa (Medicago sativa L.) is one of the most widely cultivated perennial forage legumes worldwide, and fall dormancy is an adaptive characteristic related to the biomass production and winter survival in alfalfa. Here, we applied high-throughput sRNA sequencing to identify some miRNAs that were responsive to fall dormancy in standard variety (Maverick and CUF101) of alfalfa. Results Four sRNA libraries were generated and sequenced from alfalfa leaves in two typical varieties at distinct seasons. Through integrative analysis, we identified 51 novel miRNA candidates of 206 families. Additionally, we identified 28 miRNAs associated with fall dormancy in standard variety (Maverick and CUF101), including 20 known miRNAs and eight novel miRNAs. Both high-throughput sequencing and RT-qPCR confirmed that eight known miRNA members were up-regulated and six known miRNA members were down-regulated in response to fall dormancy in standard variety (Maverick and CUF101). Among the 51 novel miRNA candidates, five miRNAs were up-regulated and three miRNAs were down-regulated in response to fall dormancy in standard variety (Maverick and CUF101), and five of them were confirmed by Northern blot analysis. Conclusion We identified 20 known miRNAs and eight new miRNA candidates that were responsive to fall dormancy in standard variety (Maverick and CUF101) by high-throughput sequencing of small RNAs from Medicago sativa. Our data provide a useful resource for investigating miRNA-mediated regulatory mechanisms of fall dormancy in alfalfa, and these findings are important for our understanding of the roles played by miRNAs in the response of plants to abiotic stress in general and fall dormancy in alfalfa. PMID:25473944
Fan, Wenna; Zhang, Senhao; Du, Hongqi; Sun, Xiaoge; Shi, Yinghua; Wang, Chengzhang
2014-01-01
MicroRNAs (miRNAs) are a class of regulatory small RNAs (sRNAs) that regulate gene post-transcriptional expression in plants and animals. High-throughput sequencing technology is capable of identifying small RNAs in plant species. Alfalfa (Medicago sativa L.) is one of the most widely cultivated perennial forage legumes worldwide, and fall dormancy is an adaptive characteristic related to the biomass production and winter survival in alfalfa. Here, we applied high-throughput sRNA sequencing to identify some miRNAs that were responsive to fall dormancy in standard variety (Maverick and CUF101) of alfalfa. Four sRNA libraries were generated and sequenced from alfalfa leaves in two typical varieties at distinct seasons. Through integrative analysis, we identified 51 novel miRNA candidates of 206 families. Additionally, we identified 28 miRNAs associated with fall dormancy in standard variety (Maverick and CUF101), including 20 known miRNAs and eight novel miRNAs. Both high-throughput sequencing and RT-qPCR confirmed that eight known miRNA members were up-regulated and six known miRNA members were down-regulated in response to fall dormancy in standard variety (Maverick and CUF101). Among the 51 novel miRNA candidates, five miRNAs were up-regulated and three miRNAs were down-regulated in response to fall dormancy in standard variety (Maverick and CUF101), and five of them were confirmed by Northern blot analysis. We identified 20 known miRNAs and eight new miRNA candidates that were responsive to fall dormancy in standard variety (Maverick and CUF101) by high-throughput sequencing of small RNAs from Medicago sativa. Our data provide a useful resource for investigating miRNA-mediated regulatory mechanisms of fall dormancy in alfalfa, and these findings are important for our understanding of the roles played by miRNAs in the response of plants to abiotic stress in general and fall dormancy in alfalfa.
Kelly, Carolyn; Fleischer, Adam; Yalla, Sai; Grewal, Gurtej S.; Albright, Rachel; Berns, Dana; Crews, Ryan; Najafi, Bijan
2016-01-01
Background Patients with diabetic peripheral neuropathy (DPN) demonstrate gait alterations compared with their nonneuropathic counterparts, which may place them at increased risk for falling. However, it is uncertain whether patients with DPN also have a greater fear of falling. Methods A voluntary group of older adults with diabetes was asked to complete a validated fear of falling questionnaire (Falls Efficacy Scale International [FES-I]) and instructed to walk 20 m in their habitual shoes at their habitual speed. Spatiotemporal parameters of gait (eg, stride velocity and gait speed variability) were collected using a validated body-worn sensor technology. Balance during walking was also assessed using sacral motion in the mediolateral and anteroposterior directions. The level of DPN was quantified using vibration perception threshold from the great toe. Results Thirty-four diabetic patients (mean ± SD: age, 67.6 ± 9.2 years; body mass index, 30.9 ± 5.7; hemoglobin A1c, 7.9% ± 2.3%) with varying levels of neuropathy (mean ± SD vibration perception threshold, 34.6 ± 22.9 V) were recruited. Most participants (28 of 34, 82%) demonstrated moderate to high concern about falling based on their FES-I score. Age (r = 0.6), hemoglobin A1c level (r = 0.39), number of steps required to reach steady-state walking (ie, gait initiation) (r = 0.4), and duration of double support (r = 0.44) were each positively correlated with neuropathy severity (P < .05). Participants with a greater fear of falling also walked with slower stride velocities and shorter stride lengths (r = −0.3 for both, P < .05). However, no correlation was observed between level of DPN and the participant’s actual concern about falling. Conclusions Fear of falling is prevalent in older adults with diabetes mellitus but is unrelated to level of neuropathy. PMID:24297984
Technology Empowerment: Security Challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Drake Edward; Backus, George A.; Jones, Wendell
“Technology empowerment” means that innovation is increasingly accessible to ordinary people of limited means. As powerful technologies become more affordable and accessible, and as people are increasingly connected around the world, ordinary people are empowered to participate in the process of innovation and share the fruits of collaborative innovation. This annotated briefing describes technology empowerment and focuses on how empowerment may create challenges to U.S. national security. U.S. defense research as a share of global innovation has dwindled in recent years. With technology empowerment, the role of U.S. defense research is likely to shrink even further while technology empowerment willmore » continue to increase the speed of innovation. To avoid falling too far behind potential technology threats to U.S. national security, U.S. national security institutions will need to adopt many of the tools of technology empowerment.« less
Tuluri, Francis; Reddy, R. Suseela; Anjaneyulu, Y.; Colonias, John; Tchounwou, Paul
2010-01-01
Katrina (a tropical cyclone/hurricane) began to strengthen reaching a Category 5 storm on 28th August, 2005 and its winds reached peak intensity of 175 mph and pressure levels as low as 902 mb. Katrina eventually weakened to a category 3 storm and made a landfall in Plaquemines Parish, Louisiana, Gulf of Mexico, south of Buras on 29th August 2005. We investigate the time series intensity change of the hurricane Katrina using environmental modeling and technology tools to develop an early and advanced warning and prediction system. Environmental Mesoscale Model (Weather Research Forecast, WRF) simulations are used for prediction of intensity change and track of the hurricane Katrina. The model is run on a doubly nested domain centered over the central Gulf of Mexico, with grid spacing of 90 km and 30 km for 6 h periods, from August 28th to August 30th. The model results are in good agreement with the observations suggesting that the model is capable of simulating the surface features, intensity change and track and precipitation associated with hurricane Katrina. We computed the maximum vertical velocities (Wmax) using Convective Available Kinetic Energy (CAPE) obtained at the equilibrium level (EL), from atmospheric soundings over the Gulf Coast stations during the hurricane land falling for the period August 21–30, 2005. The large vertical atmospheric motions associated with the land falling hurricane Katrina produced severe weather including thunderstorms and tornadoes 2–3 days before landfall. The environmental modeling simulations in combination with sounding data show that the tools may be used as an advanced prediction and communication system (APCS) for land falling tropical cyclones/hurricanes. PMID:20623002
Research notes : detecting objects at railroad crossings.
DOT National Transportation Integrated Search
2004-04-01
The highest risks are at intersections with roadways. An object may fall off of a truck or farm vehicle, or someone may drop something. The goal of this research was to evaluate promising technologies for the detection of such objects at railroad-roa...
Organizational factors related to occupational accidents in construction.
Filho, J M Jackson; Fonseca, E D; Lima, F P A; Duarte, F J C M
2012-01-01
The purpose of this paper is to understand the influence of organizational factors on occupational accident causation. A field study was undertaken and focused on the phase of concreting the floors of a residential block in a building project in Brazil. The methodological approach was based on the analysis of carpenters' work practices and of the workers' accounts of minor falls. Observations were noted on work practices over this stage. Furthermore, interviews were conducted with the workers hired by the subcontractors and with professionals working for the main contractor. The results show that falls were related to the introduction of new building technology and its use by the workforce. The production planning and organization of activities by the subcontracted firms also led to temporary demands that were additional determining factors for falls on site. The work analysis reveals the need to consider organizational factors in prevention practices.
Learning from Experience, Volume 3: Lessons from the United Kingdom’s Astute Submarine Program
2011-01-01
Learning from Experience, Volume III what had been installed and led to significant additional, unplanned hours for rework. Although VSEL and GEC Marconi...sions, although many can fall into multiple categorizations. In this chapter, we first describe lessons learned at the strategic level. We go on to...That is, if certain operational goals are beyond the state of current technology, what operations can existing technologies support? This relates to
Wang, Zhihua; Yang, Zhaochu; Dong, Tao
2017-01-01
Rapid growth of the aged population has caused an immense increase in the demand for healthcare services. Generally, the elderly are more prone to health problems compared to other age groups. With effective monitoring and alarm systems, the adverse effects of unpredictable events such as sudden illnesses, falls, and so on can be ameliorated to some extent. Recently, advances in wearable and sensor technologies have improved the prospects of these service systems for assisting elderly people. In this article, we review state-of-the-art wearable technologies that can be used for elderly care. These technologies are categorized into three types: indoor positioning, activity recognition and real time vital sign monitoring. Positioning is the process of accurate localization and is particularly important for elderly people so that they can be found in a timely manner. Activity recognition not only helps ensure that sudden events (e.g., falls) will raise alarms but also functions as a feasible way to guide people’s activities so that they avoid dangerous behaviors. Since most elderly people suffer from age-related problems, some vital signs that can be monitored comfortably and continuously via existing techniques are also summarized. Finally, we discussed a series of considerations and future trends with regard to the construction of “smart clothing” system. PMID:28208620
Wang, Zhihua; Yang, Zhaochu; Dong, Tao
2017-02-10
Rapid growth of the aged population has caused an immense increase in the demand for healthcare services. Generally, the elderly are more prone to health problems compared to other age groups. With effective monitoring and alarm systems, the adverse effects of unpredictable events such as sudden illnesses, falls, and so on can be ameliorated to some extent. Recently, advances in wearable and sensor technologies have improved the prospects of these service systems for assisting elderly people. In this article, we review state-of-the-art wearable technologies that can be used for elderly care. These technologies are categorized into three types: indoor positioning, activity recognition and real time vital sign monitoring. Positioning is the process of accurate localization and is particularly important for elderly people so that they can be found in a timely manner. Activity recognition not only helps ensure that sudden events (e.g., falls) will raise alarms but also functions as a feasible way to guide people's activities so that they avoid dangerous behaviors. Since most elderly people suffer from age-related problems, some vital signs that can be monitored comfortably and continuously via existing techniques are also summarized. Finally, we discussed a series of considerations and future trends with regard to the construction of "smart clothing" system.
Jaume-i-Capó, Antoni; Martínez-Bueso, Pau; Moyà-Alcover, Biel; Varona, Javier
2014-03-01
The present study covers a new experimental system, designed to improve the balance and postural control of adults with cerebral palsy. This system is based on a serious game for balance rehabilitation therapy, designed using the prototype development paradigm and features for rehabilitation with serious games: feedback, adaptability, motivational elements, and monitoring. In addition, the employed interaction technology is based on computer vision because motor rehabilitation consists of body movements that can be recorded, and because vision capture technology is noninvasive and can be used for clients who have difficulties in holding physical devices. Previous research has indicated that serious games help to motivate clients in therapy sessions; however, there remains a paucity of clinical evidence involving functionality. We rigorously evaluated the effects of physiotherapy treatment on balance and gait function of adult subjects with cerebral palsy undergoing our experimental system. A 24-week physiotherapy intervention program was conducted with nine adults from a cerebral palsy center who exercised weekly in 20-min sessions. Findings demonstrated a significant increase in balance and gait function scores resulting in indicators of greater independence for our participating adults. Scores improved from 16 to 21 points in a scale of 28, according to the Tinetti Scale for risk of falls, moving from high fall risk to moderate fall risk. Our promising results indicate that our experimental system is feasible for balance rehabilitation therapy.
Implications for patient safety in the use of safe patient handling equipment: a national survey.
Elnitsky, Christine A; Lind, Jason D; Rugs, Deborah; Powell-Cope, Gail
2014-12-01
The prevalence of musculoskeletal injuries among nursing staff has been high due to patient handling and movement. Internationally, healthcare organizations are integrating technological equipment into patient handling and movement to improve safety. Although evidence shows that safe patient handling programs reduce work-related musculoskeletal injuries in nursing staff, it is not clear how safe these new programs are for patients. The objective of this study was to explore adverse patient events associated with safe patient handling programs and preventive approaches in US Veterans Affairs medical centers. The study surveyed a convenience sample of safe patient handling program managers from 51 US Department of Veterans Affairs medical centers to collect data on skin-related and fall-related adverse patient events. Both skin- and fall-related adverse patient events associated with safe patient handling occurred at VA Medical centers. Skin-related events included abrasions, contusions, pressure ulcers and lacerations. Fall-related events included sprains and strains, fractures, concussions and bleeding. Program managers described contextual factors in these adverse events and ways of preventing the events. The use of safe patient handling equipment can pose risks for patients. This study found that organizational factors, human factors and technology factors were associated with patient adverse events. The findings have implications for how nursing professionals can implement safe patient handling programs in ways that are safe for both staff and patients. Published by Elsevier Ltd.
ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE ITER
In Fall 1994, anaerobic compost wetlands in both upflow and downflow configurations were constructed adjacent to and received drainage from the Burleigh Tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The e...
77 FR 58101 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-19
... information technology. DATES: Consideration will be given to all comments received by November 19, 2012... to SNPMIS Project Officer, DHSS, 7700 Arlington Boulevard, Falls Church, VA 22042-2902 or call 703... activities data including referral, evaluation, eligibility, and service plans. The Computer Security Act of...
Innovations: Issue 2, Fall 2006
ERIC Educational Resources Information Center
Educational Testing Service, 2006
2006-01-01
Innovations, ETS's corporate magazine, provides information on educational assessment for educators, school leaders, researchers and policymakers around the world. Each issue of Innovations focuses on a particular theme in assessment. This issue reports on how new technologies in classrooms around the world are enhancing teaching, learning and…
PHOTOOXIDATION OF HYDROCARBONS TO PARTIAL OXYGENATES IN AN AQUEOUS ENVIRONMENT [EXHIBIT, POSTER
The USEPA is researching the use of alternative oxidation technologies (AOT's) as a catalytic process for the selective oxidation of hydrocarbon substrates. One AOT currently under investigation is the use of photocatalysis employed with a laminar thin-film falling reactor. Thi...
ERIC Educational Resources Information Center
Wodarz, Nan
1997-01-01
Explores how to avoid common pitfalls when schools purchase computer equipment. Purchasing tips are provided in the areas of choosing multiple platforms, buying the cheapest model available, choosing a proprietary design, falling for untested technology, purchasing systems that are not upgradable, ignoring extended warranties, and failing to plan…
Hazcon Solidification Process, Douglassville, Pa.: Applications Analysis Report
This document is an evaluation of the HAZCON solidification technology and its applicability as an on-site treatment method for waste site cleanup. A Demonstration was held at the Douglassville, Pennsylvania Superfund site in the fall of 1987. Operational data and sampling and an...
ERIC Educational Resources Information Center
Mills, Kay
2010-01-01
This article discusses the successful use of technology, rather than lectures, by Tennessee's community colleges to teach developmental reading and math. The redesign occurred with the support of the National Center for Academic Transformation (NCAT). In fall 2007, the Tennessee Board of Regents (TBR) staff convened meetings to familiarize its…
NASA Astrophysics Data System (ADS)
Ober, D.; Errington, P.; Islam, S.; Robertson, T.; Watson, J.
1997-10-01
In the fall of 1996, thirteen (13) classrooms on the Ball State campus were equipped with technological aids to enhance learning in large classrooms (for typically 100 students or larger). Each classroom was equipped with the following built-in equipment: computer, zip drive, laser disc player, VCR, LAN and Internet connection, TV monitors, and Elmo overhead camera with large-screen projection system. This past fall semester a student response system was added to a 108-seat classroom in the Physics and Astronomy department for use with large General Education courses. Each student seat was equipped with a hardwired hand-held unit possessing input capabilities and LCD feedback for the student. The introduction of the student response system was added in order enhance more active learning by students in the large classroom environment. Attendance, quizzes, hour exams, and in-class surveys are early uses for the system; initial reactions by student and faculty users will be given.
A Cultural Diffusion Model for the Rise and Fall of Programming Languages.
Valverde, Sergi; Solé, Ricard V
2015-07-01
Our interaction with complex computing machines is mediated by programming languages (PLs), which constitute one of the major innovations in the evolution of technology. PLs allow flexible, scalable, and fast use of hardware and are largely responsible for shaping the history of information technology since the rise of computers in the 1950s. The rapid growth and impact of computers were followed closely by the development of PLs. As occurs with natural, human languages, PLs have emerged and gone extinct. There has been always a diversity of coexisting PLs that compete somewhat while occupying special niches. Here we show that the statistical patterns of language adoption, rise, and fall can be accounted for by a simple model in which a set of programmers can use several PLs, decide to use existing PLs used by other programmers, or decide not to use them. Our results highlight the influence of strong communities of practice in the diffusion of PL innovations.
Sensor-derived physical activity parameters can predict future falls in people with dementia
Schwenk, Michael; Hauer, Klaus; Zieschang, Tania; Englert, Stefan; Mohler, Jane; Najafi, Bijan
2014-01-01
Background There is a need for simple clinical tools that can objectively assess fall risk in people with dementia. Wearable sensors seem to have potential for fall prediction, however, there has been limited work performed in this important area. Objective To explore the validity of sensor-derived physical activity (PA) parameters for predicting future falls in people with dementia. To compare sensor-based fall risk assessment with conventional fall risk measures. Methods A cohort study of people with confirmed dementia discharged from a geriatric rehabilitation ward. PA was quantified using 24-hour motion-sensor monitoring at the beginning of the study. PA parameters (percentage of walking, standing, sitting, lying; duration of single walking, standing, and sitting bouts) were extracted using specific algorithms. Conventional assessment included performance-based tests (Timed-up-and-go test, Performance-Oriented-Mobility-Assessment, 5-chair stand) and questionnaires (cognition, ADL-status, fear of falling, depression, previous faller). Outcome measures were fallers (at least one fall in the 3-month follow-up period) versus non-fallers. Results Seventy-seven people were included in the study (age 81.8 ± 6.3; community dwelling 88%, institutionalized 12%). Surprisingly, fallers and non-fallers did not differ on any conventional assessment (p= 0.069–0.991), except for ‘previous faller’ (p= 0.006). Interestingly, several PA parameters discriminated between groups. The ‘walking bouts average duration’, ‘longest walking bout duration’ and ‘walking bouts duration variability’ were lower in fallers, compared to non-fallers (p= 0.008–0.027). The ‘standing bouts average duration’ was higher in fallers (p= 0.050). Two variables, ‘walking bouts average duration’ [odds ratio (OR) 0.79, p= 0.012] and ‘previous faller’ [OR 4.44, p= 0.007] were identified as independent predictors for falls. The OR for a ‘walking bouts average duration’ of less than 15 seconds for predicting fallers was 6.30 (p= 0.020). Combining ‘walking bouts average duration’ and ‘previous faller’ improved fall prediction [OR 7.71, p< 0.001, sensitivity/specificity 72%/76%]. Discussion Results demonstrate that sensor-derived PA parameters are independent predictors of fall risk and may have higher diagnostic accuracy in persons with dementia compared to conventional fall risk measures. Our findings highlight the potential of telemonitoring technology for estimating fall risk. Results should be confirmed in a larger study and by measuring PA over a longer time period. PMID:25171300
Sensor-derived physical activity parameters can predict future falls in people with dementia.
Schwenk, Michael; Hauer, Klaus; Zieschang, Tania; Englert, Stefan; Mohler, Jane; Najafi, Bijan
2014-01-01
There is a need for simple clinical tools that can objectively assess the fall risk in people with dementia. Wearable sensors seem to have the potential for fall prediction; however, there has been limited work performed in this important area. To explore the validity of sensor-derived physical activity (PA) parameters for predicting future falls in people with dementia. To compare sensor-based fall risk assessment with conventional fall risk measures. This was a cohort study of people with confirmed dementia discharged from a geriatric rehabilitation ward. PA was quantified using 24-hour motion-sensor monitoring at the beginning of the study. PA parameters (percentage of walking, standing, sitting, and lying; duration of single walking, standing, and sitting bouts) were extracted using specific algorithms. Conventional assessment included performance-based tests (Timed Up and Go Test, Performance-Oriented Mobility Assessment, 5-chair stand) and questionnaires (cognition, ADL status, fear of falling, depression, previous faller). Outcome measures were fallers (at least one fall in the 3-month follow-up period) versus non-fallers. 77 people were included in the study (age 81.8 ± 6.3; community-dwelling 88%, institutionalized 12%). Surprisingly, fallers and non-fallers did not differ on any conventional assessment (p = 0.069-0.991), except for 'previous faller' (p = 0.006). Interestingly, several PA parameters discriminated between the groups. The 'walking bout average duration', 'longest walking bout duration' and 'walking bout duration variability' were lower in fallers, compared to non-fallers (p = 0.008-0.027). The 'standing bout average duration' was higher in fallers (p = 0.050). Two variables, 'walking bout average duration' [odds ratio (OR) 0.79, p = 0.012] and 'previous faller' (OR 4.44, p = 0.007) were identified as independent predictors for falls. The OR for a 'walking bout average duration' <15 s for predicting fallers was 6.30 (p = 0.020). Combining 'walking bout average duration' and 'previous faller' improved fall prediction (OR 7.71, p < 0.001, sensitivity/specificity 72%/76%). RESULTS demonstrate that sensor-derived PA parameters are independent predictors of the fall risk and may have higher diagnostic accuracy in persons with dementia compared to conventional fall risk measures. Our findings highlight the potential of telemonitoring technology for estimating the fall risk. RESULTS should be confirmed in a larger study and by measuring PA over a longer period of time. © 2014 S. Karger AG, Basel.
Powerful nuclear technology, anywhere, requires functioning system of free elections
NASA Astrophysics Data System (ADS)
Synek, Miroslav
2000-03-01
Historical development on our planet, utilizing the knowledge of physics, has reached a powerful technology of nuclear intercontinental ballistic missiles, conceivably controllable through a computerized ``push-button". Whenever this technology falls under the control of an irresponsible, miscalculating, or, insane, dictator, with powerful means of a mass-produced nuclear built-up, anywhere on our planet, the very survival of all humanity on our planet could be threatened. Therefore, it is a historical urgency that this technology is under the control by a government of the people, by the people and for the people, based on a sufficiently secure system of free elections, in any country on our planet, wherever and whenever such a threatening possibility exists.
Rimland, Joseph M.; Abraha, Iosief; Dell’Aquila, Giuseppina; Cruz-Jentoft, Alfonso; Soiza, Roy; Gudmusson, Adalsteinn; Petrovic, Mirko; O’Mahony, Denis; Todd, Chris; Cherubini, Antonio
2016-01-01
Background Falls are common events in older people, which cause considerable morbidity and mortality. Non-pharmacological interventions are an important approach to prevent falls. There are a large number of systematic reviews of non-pharmacological interventions, whose evidence needs to be synthesized in order to facilitate evidence-based clinical decision making. Objectives To systematically examine reviews and meta-analyses that evaluated non-pharmacological interventions to prevent falls in older adults in the community, care facilities and hospitals. Methods We searched the electronic databases Pubmed, the Cochrane Database of Systematic Reviews, EMBASE, CINAHL, PsycINFO, PEDRO and TRIP from January 2009 to March 2015, for systematic reviews that included at least one comparative study, evaluating any non-pharmacological intervention, to prevent falls amongst older adults. The quality of the reviews was assessed using AMSTAR and ProFaNE taxonomy was used to organize the interventions. Results Fifty-nine systematic reviews were identified which consisted of single, multiple and multifactorial non-pharmacological interventions to prevent falls in older people. The most frequent ProFaNE defined interventions were exercises either alone or combined with other interventions, followed by environment/assistive technology interventions comprising environmental modifications, assistive and protective aids, staff education and vision assessment/correction. Knowledge was the third principle class of interventions as patient education. Exercise and multifactorial interventions were the most effective treatments to reduce falls in older adults, although not all types of exercise were equally effective in all subjects and in all settings. Effective exercise programs combined balance and strength training. Reviews with a higher AMSTAR score were more likely to contain more primary studies, to be updated and to perform meta-analysis. Conclusions The aim of this overview of reviews of non-pharmacological interventions to prevent falls in older people in different settings, is to support clinicians and other healthcare workers with clinical decision-making by providing a comprehensive perspective of findings. PMID:27559744
ERIC Educational Resources Information Center
O'Hanlon, Charlene
2007-01-01
Traditionally, the high-performance computing (HPC) systems used to conduct research at universities have amounted to silos of technology scattered across the campus and falling under the purview of the researchers themselves. This article reports that a growing number of universities are now taking over the management of those systems and…
College Level Aviation Curriculum Development.
ERIC Educational Resources Information Center
Mattson, Betty J.
This document describes a college-level curriculum for airplane pilots that is expected to be available at Muskegon (Michigan) College of Business and Technology in fall 1990. The curriculum offers associate or bachelor degree, college credit for earned flight ratings, private license, transfer credit for other aviation college programs, the…
Embedding Multiple Literacies into STEM Curricula
ERIC Educational Resources Information Center
Soules, Aline; Nielsen, Sarah; LeDuc, Danika; Inouye, Caron; Singley, Jason; Wildy, Erica; Seitz, Jeff
2014-01-01
In fall 2012, an interdisciplinary team of science, English, and library faculty embedded reading, writing, and information literacy strategies in Science, Technology, Engineering, and Mathematics (STEM) curricula as a first step in improving student learning and retention in science courses and aligning them with the Next Generation Science and…
The Rise and Fall of Industrial Agriculture
ERIC Educational Resources Information Center
Geno, Larry M.
1976-01-01
This article analyzes the evolution of industrial agriculture in Canada. Population pressures and technology caused the development of industrial agriculture. Although total crop yields have increased, energy efficiency and nutritional quality have decreased. Also intensive agriculture has degraded the soil and lowered air and water qualities. (MR)
ERIC Educational Resources Information Center
PEPNet, 2009
2009-01-01
PEPNet's "Perspectives" is the collaborative newsletter of the four PEPNet regional centers. This newsletter combines each centers individual strengths into a single resource that can be used on a national level. The issue focuses on the following topics: (1) Web Tool Locates Needed Resources; (2) Family Center on Technology and Disability (Ana…
Modeling the Global Workplace Using Emerging Technologies
ERIC Educational Resources Information Center
Dorazio, Patricia; Hickok, Corey
2008-01-01
The Fall 2006 term of COM495, Senior Practicum in Communication, offered communication and information design students the privilege of taking part in a transatlantic intercultural virtual project. To emulate real world experience in today's global workplace, these students researched and completed a business communication project with German…
Human Resources and the Internet.
ERIC Educational Resources Information Center
Cohen, Suzanne; Joseph, Deborah
Concerned about falling behind the technology curve, organizations are using the Internet or intranets to provide and communicate information to their employees and create more efficient workplaces. The Internet is not just a "network of computer networks," but a medium conveying a vast, diverse amount of information. This publication is…
ERIC Educational Resources Information Center
DeYoung, H. Garrett
1984-01-01
Discusses possible reasons why the death rate from heart disease is falling. Three phenomena that are considered partly responsible are: (1) early diagnostic technology; (2) the existence of new tools for treating the disease; and (3) public awareness of risk factors. A prescription for a healthy heart is provided. (BC)
DOT National Transportation Integrated Search
2016-01-01
Members of the Peer Exchange Team identified actions Alaska should consider to : improve effectiveness of the research program: : 1. Conduct Research Strategic Visioning Workshop with Staff and Research : Advisory Board in Fall, 2016 : 2. Develop a T...
Using Publishers' Web Sites for Reference Collection Development.
ERIC Educational Resources Information Center
Holmberg, Melissa
2000-01-01
Analyzes the ways publishers' Web sites can be used by librarians to locate additional science and technology reference materials which fall within budget constraints while meeting the needs of the patrons. Reviews specific publishers' Web sites to compare features and show how they differ. (Author/LRW)
ERIC Educational Resources Information Center
Rich, Sarah
2011-01-01
When low-income students returned to Chicago public schools this fall, many had better access to technology, thanks to a public-private partnership. Chicago families with children enrolled in the National School Lunch Program are eligible for subsidized computers and Internet connections through an agreement between the city and telecom giant…
I-STEM Ed Exemplar: Implementation of the PIRPOSAL Model
ERIC Educational Resources Information Center
Wells, John G.
2016-01-01
The opening pages of the first PIRPOSAL (Problem Identification, Ideation, Research, Potential Solutions, Optimization, Solution Evaluation, Alterations, and Learned Outcomes) article make the case that the instructional models currently used in K-12 Science, Technology, Engineering, and Mathematics (STEM) Education fall short of conveying their…
The Continuity Project, Fall 1997 Report.
ERIC Educational Resources Information Center
Wasilko, Peter J.
The Continuity Project is a research, development, and technology transfer initiative aimed at creating a "Library of the Future" by combining features of an online public access catalog (OPAC) and a campus wide information system (CWIS) with advanced facilities drawn from such areas as artificial intelligence (AI), knowledge…
Insect Flight: Computation and Biomimetic Design
2008-05-31
Mechanics, 37, 183-210 (2005). • Z. Jane Wang, ”Insect Flight”, McGraw Hill Year Book of Science and Technology, 2006. • Anders Andersen, Umberto Pesavento ...Umberto Pesavento , and Z. Jane Wang, ’Analysis of transitions between fluttering, tumbling and steady descent of falling cards’, Journal of Fluid
More than Spinning Their Wheels
ERIC Educational Resources Information Center
Cassola, Joel
2007-01-01
Last fall, when Mastercam, the leading manufacturer of computer-aided manufacturing (CAM) software, announced the winners of its Innovators of the Future (IOF) contest, first, second and third prizes went to students in the advanced manufacturing program of Vincennes University's (VU's) Machine Trades Technology Department. The contest called for…
Making informed capital investment decisions for clinical technology.
Poplin, Brian
2011-02-01
Hospitals can make more-informed decisions related to clinical equipment purchases by using a variety of data sources in planning their investment strategies. Data sources generally fall into three buckets: Data that are internally generated by hospitals. Public data. Industry data that are available for purchase.
ERIC Educational Resources Information Center
Gose, Ben
1995-01-01
Most private colleges are slowing down their tuition increases for fall 1995 to 4-5%. Most public colleges have not yet set tuition. In some cases, student financial aid is being apportioned less generously to raise the student self-help level. Most tuition increases reflect cost of institutional investments in technology. (MSE)
A survey of stakeholder perspectives on exoskeleton technology.
Wolff, Jamie; Parker, Claire; Borisoff, Jaimie; Mortenson, W Ben; Mattie, Johanne
2014-12-19
Exoskeleton technology has potential benefits for wheelchair users' health and mobility. However, there are practical barriers to their everyday use as a mobility device. To further understand potential exoskeleton use, and facilitate the development of new technologies, a study was undertaken to explore perspectives of wheelchair users and healthcare professionals on reasons for use of exoskeleton technology, and the importance of a variety of device characteristics. An online survey with quantitative and qualitative components was conducted with wheelchair users and healthcare professionals working directly with individuals with mobility impairments. Respondents rated whether they would use or recommend an exoskeleton for four potential reasons. Seventeen design features were rated and compared in terms of their importance. An exploratory factor analysis was conducted to categorize the 17 design features into meaningful groupings. Content analysis was used to identify themes for the open ended questions regarding reasons for use of an exoskeleton. 481 survey responses were analyzed, 354 from wheelchair users and 127 from healthcare professionals. The most highly rated reason for potential use or recommendation of an exoskeleton was health benefits. Of the design features, 4 had a median rating of very important: minimization of falls risk, comfort, putting on/taking off the device, and purchase cost. Factor analysis identified two main categories of design features: Functional Activities and Technology Characteristics. Qualitative findings indicated that health and physical benefits, use for activity and access reasons, and psychosocial benefits were important considerations in whether to use or recommend an exoskeleton. This study emphasizes the importance of developing future exoskeletons that are comfortable, affordable, minimize fall risk, and enable functional activities. Findings from this study can be utilized to inform the priorities for future development of this technology.
Power, Sally A.; Barnett, Kirk L.; Ochoa-Hueso, Raul; Facey, Sarah L.; Gibson-Forty, Eleanor V. J.; Hartley, Susan E.; Nielsen, Uffe N.; Tissue, David T.; Johnson, Scott N.
2016-01-01
Climate models predict shifts in the amount, frequency and seasonality of rainfall. Given close links between grassland productivity and rainfall, such changes are likely to have profound effects on the functioning of grassland ecosystems and modify species interactions. Here, we introduce a unique, new experimental platform – DRI-Grass (Drought and Root Herbivore Interactions in a Grassland) – that exposes a south-eastern Australian grassland to five rainfall regimes [Ambient (AMB), increased amount (IA, +50%), reduced amount (RA, -50%), reduced frequency (RF, single rainfall event every 21 days, with total amount unchanged) and summer drought (SD, 12–14 weeks without water, December–March)], and contrasting levels of root herbivory. Incorporation of a belowground herbivore (root-feeding scarabs) addition treatment allows novel investigation of ecological responses to the twin stresses of altered rainfall and root herbivory. We quantified effects of permanently installed rain shelters on microclimate by comparison with outside plots, identifying small shelter effects on air temperature (-0.19°C day, +0.26°C night), soil water content (SWC; -8%) and photosynthetically active radiation (PAR; -16%). Shelters were associated with modest increases in net primary productivity (NPP), particularly during the cool season. Rainfall treatments generated substantial differences in SWC, with the exception of IA; the latter is likely due to a combination of higher transpiration rates associated with greater plant biomass in IA and the low water-holding capacity of the well-drained, sandy soil. Growing season NPP was strongly reduced by SD, but did not respond to the other rainfall treatments. Addition of root herbivores did not affect plant biomass and there were no interactions between herbivory and rainfall treatments in the 1st year of study. Root herbivory did, however, induce foliar silicon-based defenses in Cynodon dactylon and Eragrostis curvula. Rapid recovery of NPP following resumption of watering in SD plots indicates high functional resilience at the site, and may reflect adaptation of the vegetation to historically high variability in rainfall, both within- and between years. DRI-Grass provides a unique platform for understanding how ecological interactions will be affected by changing rainfall regimes and, specifically, how belowground herbivory modifies grassland resistance and resilience to climate extremes. PMID:27703458