Sample records for swe retrieval algorithms

  1. The performance of the new enhanced-resolution satellite passive microwave dataset applied for snow water equivalent estimation

    NASA Astrophysics Data System (ADS)

    Pan, J.; Durand, M. T.; Jiang, L.; Liu, D.

    2017-12-01

    The newly-processed NASA MEaSures Calibrated Enhanced-Resolution Brightness Temperature (CETB) reconstructed using antenna measurement response function (MRF) is considered to have significantly improved fine-resolution measurements with better georegistration for time-series observations and equivalent field of view (FOV) for frequencies with the same monomial spatial resolution. We are looking forward to its potential for the global snow observing purposes, and therefore aim to test its performance for characterizing snow properties, especially the snow water equivalent (SWE) in large areas. In this research, two candidate SWE algorithms will be tested in China for the years between 2005 to 2010 using the reprocessed TB from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), with the results to be evaluated using the daily snow depth measurements at over 700 national synoptic stations. One of the algorithms is the SWE retrieval algorithm used for the FengYun (FY) - 3 Microwave Radiation Imager. This algorithm uses the multi-channel TB to calculate SWE for three major snow regions in China, with the coefficients adapted for different land cover types. The second algorithm is the newly-established Bayesian Algorithm for SWE Estimation with Passive Microwave measurements (BASE-PM). This algorithm uses the physically-based snow radiative transfer model to find the histogram of most-likely snow property that matches the multi-frequency TB from 10.65 to 90 GHz. It provides a rough estimation of snow depth and grain size at the same time and showed a 30 mm SWE RMS error using the ground radiometer measurements at Sodankyla. This study will be the first attempt to test it spatially for satellite. The use of this algorithm benefits from the high resolution and the spatial consistency between frequencies embedded in the new dataset. This research will answer three questions. First, to what extent can CETB increase the heterogeneity in the mapped SWE? Second, will the SWE estimation error statistics be improved using this high-resolution dataset? Third, how will the SWE retrieval accuracy be improved using CETB and the new SWE retrieval techniques?

  2. The AMSR2 Satellite-based Microwave Snow Algorithm (SMSA) to estimate regional to global snow depth and snow water equivalent

    NASA Astrophysics Data System (ADS)

    Kelly, R. E. J.; Saberi, N.; Li, Q.

    2017-12-01

    With moderate to high spatial resolution (<1 km) regional to global snow water equivalent (SWE) observation approaches yet to be fully scoped and developed, the long-term satellite passive microwave record remains an important tool for cryosphere-climate diagnostics. A new satellite microwave remote sensing approach is described for estimating snow depth (SD) and snow water equivalent (SWE). The algorithm, called the Satellite-based Microwave Snow Algorithm (SMSA), uses Advanced Microwave Scanning Radiometer - 2 (AMSR2) observations aboard the Global Change Observation Mission - Water mission launched by the Japan Aerospace Exploration Agency in 2012. The approach is unique since it leverages observed brightness temperatures (Tb) with static ancillary data to parameterize a physically-based retrieval without requiring parameter constraints from in situ snow depth observations or historical snow depth climatology. After screening snow from non-snow surface targets (water bodies [including freeze/thaw state], rainfall, high altitude plateau regions [e.g. Tibetan plateau]), moderate and shallow snow depths are estimated by minimizing the difference between Dense Media Radiative Transfer model estimates (Tsang et al., 2000; Picard et al., 2011) and AMSR2 Tb observations to retrieve SWE and SD. Parameterization of the model combines a parsimonious snow grain size and density approach originally developed by Kelly et al. (2003). Evaluation of the SMSA performance is achieved using in situ snow depth data from a variety of standard and experiment data sources. Results presented from winter seasons 2012-13 to 2016-17 illustrate the improved performance of the new approach in comparison with the baseline AMSR2 algorithm estimates and approach the performance of the model assimilation-based approach of GlobSnow. Given the variation in estimation power of SWE by different land surface/climate models and selected satellite-derived passive microwave approaches, SMSA provides SWE estimates that are independent of real or near real-time in situ and model data.

  3. A New Operational Snow Retrieval Algorithm Applied to Historical AMSR-E Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Tedesco, Marco; Jeyaratnam, Jeyavinoth

    2016-01-01

    Snow is a key element of the water and energy cycles and the knowledge of spatio-temporal distribution of snow depth and snow water equivalent (SWE) is fundamental for hydrological and climatological applications. SWE and snow depth estimates can be obtained from spaceborne microwave brightness temperatures at global scale and high temporal resolution (daily). In this regard, the data recorded by the Advanced Microwave Scanning Radiometer-Earth Orbiting System (EOS) (AMSR-E) onboard the National Aeronautics and Space Administration's (NASA) AQUA spacecraft have been used to generate operational estimates of SWE and snow depth, complementing estimates generated with other microwave sensors flying on other platforms. In this study, we report the results concerning the development and assessment of a new operational algorithm applied to historical AMSR-E data. The new algorithm here proposed makes use of climatological data, electromagnetic modeling and artificial neural networks for estimating snow depth as well as a spatio-temporal dynamic density scheme to convert snow depth to SWE. The outputs of the new algorithm are compared with those of the current AMSR-E operational algorithm as well as in-situ measurements and other operational snow products, specifically the Canadian Meteorological Center (CMC) and GlobSnow datasets. Our results show that the AMSR-E algorithm here proposed generally performs better than the operational one and addresses some major issues identified in the spatial distribution of snow depth fields associated with the evolution of effective grain size.

  4. BOREAS HYD-2 Estimated Snow Water Equivalent (SWE) from Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Powell, Hugh; Chang, Alfred T. C.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The surface meteorological data collected at the Boreal Ecosystem-Atmosphere Study (BOREAS) tower and ancillary sites are being used as inputs to an energy balance model to monitor the amount of snow storage in the boreal forest region. The BOREAS Hydrology (HYD)-2 team used Snow Water Equivalent (SWE) derived from an energy balance model and in situ observed SWE to compare the SWE inferred from airborne and spaceborne microwave data, and to assess the accuracy of microwave retrieval algorithms. The major external measurements that are needed are snowpack temperature profiles, in situ snow areal extent, and SWE data. The data in this data set were collected during February 1994 and cover portions of the Southern Study Area (SSA), Northern Study Area (NSA), and the transect areas. The data are available from BORIS as comma-delimited tabular ASCII files. The SWE data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  5. Spectral Profiler Probe for In Situ Snow Grain Size and Composition Stratigraphy

    NASA Technical Reports Server (NTRS)

    Berisford, Daniel F.; Molotch, Noah P.; Painter, Thomas

    2012-01-01

    An ultimate goal of the climate change, snow science, and hydrology communities is to measure snow water equivalent (SWE) from satellite measurements. Seasonal SWE is highly sensitive to climate change and provides fresh water for much of the world population. Snowmelt from mountainous regions represents the dominant water source for 60 million people in the United States and over one billion people globally. Determination of snow grain sizes comprising mountain snowpack is critical for predicting snow meltwater runoff, understanding physical properties and radiation balance, and providing necessary input for interpreting satellite measurements. Both microwave emission and radar backscatter from the snow are dominated by the snow grain size stratigraphy. As a result, retrieval algorithms for measuring snow water equivalents from orbiting satellites is largely hindered by inadequate knowledge of grain size.

  6. Shear-wave elastography of the liver and spleen identifies clinically significant portal hypertension: A prospective multicentre study.

    PubMed

    Jansen, Christian; Bogs, Christopher; Verlinden, Wim; Thiele, Maja; Möller, Philipp; Görtzen, Jan; Lehmann, Jennifer; Vanwolleghem, Thomas; Vonghia, Luisa; Praktiknjo, Michael; Chang, Johannes; Krag, Aleksander; Strassburg, Christian P; Francque, Sven; Trebicka, Jonel

    2017-03-01

    Clinically significant portal hypertension (CSPH) is associated with severe complications and decompensation of cirrhosis. Liver stiffness measured either by transient elastography (TE) or Shear-wave elastography (SWE) and spleen stiffness by TE might be helpful in the diagnosis of CSPH. We recently showed the algorithm to rule-out CSPH using sequential liver- (L-SWE) and spleen-Shear-wave elastography (S-SWE). This study investigated the diagnostic value of S-SWE for diagnosis of CSPH. One hundred and fifty-eight cirrhotic patients with pressure gradient measurements were included into this prospective multicentre study. L-SWE was measured in 155 patients, S-SWE in 112 patients, and both in 109 patients. Liver-shear-wave elastography and S-SWE correlated with clinical events and decompensation. SWE of liver and spleen revealed strong correlations with the pressure gradient and to differentiate between patients with and without CSPH. The best cut-off values were 24.6 kPa:L-SWE and 26.3 kPa:S-SWE. L-SWE ≤16.0 kPa and S-SWE ≤21.7 kPa were able to rule-out CSPH. Cut-off values of L-SWE >29.5 kPa and S-SWE >35.6 kPa were able to rule-in CSPH (specificity >92%). Patients with a L-SWE >38.0 kPa had likely CSPH. In patients with L-SWE ≤38.0 kPa, a S-SWE >27.9 kPa ruled in CSPH. This algorithm has a sensitivity of 89.2% and a specificity of 91.4% to rule-in CSPH. Patients not fulfilling these criteria may undergo HVPG measurement. Liver and spleen SWE correlate with portal pressure and can both be used as a non-invasive method to investigate CSPH. Even though external validation is still missing, these algorithms to rule-out and rule-in CSPH using sequential SWE of liver and spleen might change the clinical practice. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Estimating snow water equivalent (SWE) using interferometric synthetic aperture radar (InSAR)

    NASA Astrophysics Data System (ADS)

    Deeb, Elias J.

    Since the early 1990s, radar interferometry and interferometric synthetic aperture radar (InSAR) have been used extensively to measure changes in the Earth's surface. Previous research has presented theory for estimating snow properties, including potential for snow water equivalent (SWE) retrieval, using InSAR. The motivation behind using remote sensing to estimate SWE is to provide a more complete, continuous set of "observations" to assist in water management operations, climate change studies, and flood hazard forecasting. The research presented here primarily investigates the feasibility of using the InSAR technique at two different wavelengths (C-Band and L-Band) for SWE retrieval of dry snow within the Kuparuk watershed, North Slope, Alaska. Estimating snow distribution around meteorological towers on the coastal plain using a three-day repeat orbit of C-Band InSAR data was successful (Chapter 2). A longer wavelength L-band SAR is evaluated for SWE retrievals (Chapter 3) showing the ability to resolve larger snow accumulation events over a longer period of time. Comparisons of InSAR estimates and late spring manual sampling of SWE show a R2 = 0.61 when a coherence threshold is used to eliminate noisy SAR data. Qualitative comparisons with a high resolution digital elevation model (DEM) highlight areas of scour on windward slopes and areas of deposition on leeward slopes. When compared to a mid-winter transect of manually sampled snow depths, the InSAR SWE estimates yield a RMSE of 2.21cm when a bulk snow density is used and corrections for bracketing the satellite acquisition timing is performed. In an effort to validate the interaction of radar waves with a snowpack, the importance of the "dry snow" assumption for the estimation of SWE using InSAR is tested with an experiment in Little Cottonwood Canyon, Alta, Utah (Chapter 5). Snow wetness is shown to have a significant effect on the velocity of propagation within the snowpack. Despite the radar interaction with the snowpack being complex, the methodology for using InSAR to estimate SWE shows great promise when considering NASA's proposed L-Band, weekly repeat time interval, interferometric DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) mission.

  8. Snow Water Equivalent Retrieval Using Multitemporal COSMO Skymed X-Band SAR Images To Inform Water Systems Operation

    NASA Astrophysics Data System (ADS)

    Denaro, S.; Del Gobbo, U.; Castelletti, A.; Tebaldini, S.; Monti Guarnieri, A.

    2015-12-01

    In this work, we explore the use of exogenous snow-related information for enhancing the operation of water facilities in snow dominated watersheds. Traditionally, such information is assimilated into short-to-medium term streamflow forecasts, which are then used to inform water systems operation. Here, we adopt an alternative model-free approach, where the policy is directly conditioned upon a small set of selected observational data able to surrogate the snow-pack dynamics. In snow-fed water systems, the Snow Water Equivalent (SWE) stored in the basin often represents the largest contribution to the future season streamflow. The SWE estimation process is challenged by the high temporal and spatial variability of snow-pack and snow properties. Traditional retrieval methods, based on few ground sensors and optical satellites, often fail at representing the spatial diversity of snow conditions over large basins and at producing continuous (gap-free) data at the high sample frequency (e.g. daily) required to optimally control water systems. Against this background, SWE estimates from remote sensed radar products stand out, being able to acquire spatial information with no dependence on cloud coverage. In this work, we propose a technique for retrieving SWE estimates from Synthetic Aperture Radar (SAR) Cosmo SkyMed X-band images: a regression model, calibrated on ground SWE measurements, is implemented on dry snow maps obtained through a multi-temporal approach. The unprecedented spatial scale of this application is novel w.r.t. state of the art radar analysis conducted on limited spatial domains. The operational value of the SAR retrieved SWE estimates is evaluated based on ISA, a recently developed information selection and assessment framework. The method is demonstrated on a snow-rain fed river basin in the Italian Alps. Preliminary results show SAR images have a good potential for monitoring snow conditions and for improving water management operations.

  9. Coupling the snow thermodynamic model SNOWPACK with the microwave emission model of layered snowpacks for subarctic and arctic snow water equivalent retrievals

    NASA Astrophysics Data System (ADS)

    Langlois, A.; Royer, A.; Derksen, C.; Montpetit, B.; Dupont, F.; GoïTa, K.

    2012-12-01

    Satellite-passive microwave remote sensing has been extensively used to estimate snow water equivalent (SWE) in northern regions. Although passive microwave sensors operate independent of solar illumination and the lower frequencies are independent of atmospheric conditions, the coarse spatial resolution introduces uncertainties to SWE retrievals due to the surface heterogeneity within individual pixels. In this article, we investigate the coupling of a thermodynamic multilayered snow model with a passive microwave emission model. Results show that the snow model itself provides poor SWE simulations when compared to field measurements from two major field campaigns. Coupling the snow and microwave emission models with successive iterations to correct the influence of snow grain size and density significantly improves SWE simulations. This method was further validated using an additional independent data set, which also showed significant improvement using the two-step iteration method compared to standalone simulations with the snow model.

  10. Snow water equivalent monitoring retrieved by assimilating passive microwave observations in a coupled snowpack evolution and microwave emission models over North-Eastern Canada

    NASA Astrophysics Data System (ADS)

    Royer, A.; Larue, F.; De Sève, D.; Roy, A.; Vionnet, V.; Picard, G.; Cosme, E.

    2017-12-01

    Over northern snow-dominated basins, the snow water equivalent (SWE) is of primary interest for spring streamflow forecasting. SWE retrievals from satellite data are still not well resolved, in particular from microwave (MW) measurements, the only type of data sensible to snow mass. Also, the use of snowpack models is challenging due to the large uncertainties in meteorological input forcings. This project aims to improve SWE prediction by assimilation of satellite brightness temperature (TB), without any ground-based observations. The proposed approach is the coupling of a detailed multilayer snowpack model (Crocus) with a MW snow emission model (DMRT-ML). The assimilation scheme is a Sequential Importance Resampling Particle filter, through ensembles of perturbed meteorological forcings according to their respective uncertainties. Crocus simulations driven by operational meteorological forecasts from the Canadian Global Environmental Multiscale model at 10 km spatial resolution were compared to continuous daily SWE measurements over Québec, North-Eastern Canada (56° - 45°N). The results show a mean bias of the maximum SWE overestimated by 16% with variations up to +32%. This observed large variability could lead to dramatic consequences on spring flood forecasts. Results of Crocus-DMRT-ML coupling compared to surface-based TB measurements (at 11, 19 and 37 GHz) show that the Crocus snowpack microstructure described by sticky hard spheres within DMRT has to be scaled by a snow stickiness of 0.18, significantly reducing the overall RMSE of simulated TBs. The ability of assimilation of daily TBs to correct the simulated SWE is first presented through twin experiments with synthetic data, and then with AMSR-2 satellite time series of TBs along the winter taking into account atmospheric and forest canopy interferences (absorption and emission). The differences between TBs at 19-37 GHz and at 11-19 GHz, in vertical polarization, were assimilated. This assimilation test with synthetic data gives a SWE RMSE reduced by a factor of 2 after assimilation. Assimilation of AMSR-2 TBs shows improvement in SWE retrievals compared to continuous in-situ SWE measurements. The accuracy is discussed as a function of boreal forest density and LAI (MODIS-based data), having significant effects.

  11. Validation of Globsnow-2 Snow Water Equivalent Over Eastern Canada

    NASA Technical Reports Server (NTRS)

    Larue, Fanny; Royer, Alain; De Seve, Danielle; Langlois, Alexandre; Roy, Alexandre R.; Brucker, Ludovic

    2017-01-01

    In Qubec, Eastern Canada, snowmelt runoff contributes more than 30% of the annual energy reserve for hydroelectricity production, and uncertainties in annual maximum snow water equivalent (SWE) over the region are one of the main constraints for improved hydrological forecasting. Current satellite-based methods for mapping SWE over Qubec's main hydropower basins do not meet Hydro-Qubec operational requirements for SWE accuracies with less than 15% error. This paper assesses the accuracy of the GlobSnow-2 (GS-2) SWE product, which combines microwave satellite data and in situ measurements, for hydrological applications in Qubec. GS-2 SWE values for a 30-year period (1980 to 2009) were compared with space- and time-matched values from a comprehensive dataset of in situ SWE measurements (a total of 38,990 observations in Eastern Canada). The root mean square error (RMSE) of the GS-2 SWE product is 94.1+/- 20.3 mm, corresponding to an overall relative percentage error (RPE) of 35.9%. The main sources of uncertainty are wet and deep snow conditions (when SWE is higher than 150 mm), and forest cover type. However, compared to a typical stand-alone brightness temperature channel difference algorithm, the assimilation of surface information in the GS-2 algorithm clearly improves SWE accuracy by reducing the RPE by about 30%. Comparison of trends in annual mean and maximum SWE between surface observations and GS-2 over 1980-2009 showed agreement for increasing trends over southern Qubec, but less agreement on the sign and magnitude of trends over northern Qubec. Extended at a continental scale, the GS-2 SWE trends highlight a strong regional variability.

  12. Application of the Markov Chain Monte Carlo method for snow water equivalent retrieval based on passive microwave measurements

    NASA Astrophysics Data System (ADS)

    Pan, J.; Durand, M. T.; Vanderjagt, B. J.

    2015-12-01

    Markov Chain Monte Carlo (MCMC) method is a retrieval algorithm based on Bayes' rule, which starts from an initial state of snow/soil parameters, and updates it to a series of new states by comparing the posterior probability of simulated snow microwave signals before and after each time of random walk. It is a realization of the Bayes' rule, which gives an approximation to the probability of the snow/soil parameters in condition of the measured microwave TB signals at different bands. Although this method could solve all snow parameters including depth, density, snow grain size and temperature at the same time, it still needs prior information of these parameters for posterior probability calculation. How the priors will influence the SWE retrieval is a big concern. Therefore, in this paper at first, a sensitivity test will be carried out to study how accurate the snow emission models and how explicit the snow priors need to be to maintain the SWE error within certain amount. The synthetic TB simulated from the measured snow properties plus a 2-K observation error will be used for this purpose. It aims to provide a guidance on the MCMC application under different circumstances. Later, the method will be used for the snowpits at different sites, including Sodankyla, Finland, Churchill, Canada and Colorado, USA, using the measured TB from ground-based radiometers at different bands. Based on the previous work, the error in these practical cases will be studied, and the error sources will be separated and quantified.

  13. Estimating changing snow water resources over the Himalaya from remote sensing at the weekly scale

    NASA Astrophysics Data System (ADS)

    Ackroyd, C.; Skiles, M.

    2017-12-01

    Water resources in South Asia are critically dependent on High Mountain Asia, namely as the headwaters for the Indus, Ganges, and Brahmaputra River Basins. For water and economic security it is important to understand how the natural snow water reservoir is changing at a time scale that is relevant for water management, which can most feasibly be achieved across this vast and complex landscape through remote sensing. Here we present results from recent efforts to develop an optimal method that combines MODIS fractional snow covered area (MODSCAG) with retrievals of SWE from space borne microwave data (AMSR2) over the Hindu Kush Himalaya, which is further combined with MODIS dust radiative forcing (MODDRFS) to monitor rate of snow darkening, and provide a simple snowmelt metric that informs the contribution to melt by light absorbing particulates like dust and black carbon. For data consistency we are using 8 day composites of all products, and therefore the difference from time step to time step is a weekly, first order approximation, of the amount of SWE lost or gained from the region. MODIS retrievals are valuable for studying the hydrology of South Asia because there are mature sub kilometer scale products for the reflectance and fractional extent of the snow cover, the melt from which is mainly controlled by net solar radiation. The value of retrievals of SWE from space borne microwave data is less well established due to numerous sources of error (e.g. grain size and density, forest obscuration, penetration depth reduction, saturation) and the coarse 25 km spatial scale, which cannot capture the variation in SWE at the scale of individual mountain massifs. Despite these limitations it is currently the only available satellite based SWE product. This research effort is part of a larger NASA-SERVIR project that aims to join SWE estimates from MODIS and AMSR2, subsurface water storage variations from GRACE, and the RAPID river routing model to assess water resource variability at the management scale in South Asia and then transfer knowledge, and share developed tools and datasets, to local stakeholders.

  14. Characterization and predictability of basin scale SWE distributions using ASO snow depth and SWE retrievals

    NASA Astrophysics Data System (ADS)

    Bormann, K.; Hedrick, A. R.; Marks, D. G.; Painter, T. H.

    2017-12-01

    The spatial and temporal distribution of snow water resources (SWE) in the mountains has been examined extensively through the use of models, in-situ networks and remote sensing techniques. However, until the Airborne Snow Observatory (http://aso.jpl.nasa.gov), our understanding of SWE dynamics has been limited due to a lack of well-constrained spatial distributions of SWE in complex terrain, particularly at high elevations and at regional scales (100km+). ASO produces comprehensive snow depth measurements and well-constrained SWE products providing the opportunity to re-examine our current understanding of SWE distributions with a robust and rich data source. We collected spatially-distributed snow depth and SWE data from over 150 individual ASO acquisitions spanning seven basins in California during the five-year operational period of 2013 - 2017. For each of these acquisitions, we characterized the spatial distribution of snow depth and SWE and examined how these distributions changed with time during snowmelt. We compared these distribution patterns between each of the seven basins and finally, examined the predictability of the SWE distributions using statistical extrapolations through both space and time. We compare and contrast these observationally-based characteristics with those from a physically-based snow model to highlight the strengths and weaknesses of the implementation of our understanding of SWE processes in the model environment. In practice, these results may be used to support or challenge our current understanding of mountain SWE dynamics and provide techniques for enhanced evaluation of high-resolution snow models that go beyond in-situ point comparisons. In application, this work may provide guidance on the potential of ASO to guide backfilling of sparse spaceborne measurements of snow depth and snow water equivalent.

  15. A Case Study of Using a Multilayered Thermodynamical Snow Model for Radiance Assimilation

    NASA Technical Reports Server (NTRS)

    Toure, Ally M.; Goita, Kalifa; Royer, Alain; Kim, Edward J.; Durand, Michael; Margulis, Steven A.; Lu, Huizhong

    2011-01-01

    A microwave radiance assimilation (RA) scheme for the retrieval of snow physical state variables requires a snowpack physical model (SM) coupled to a radiative transfer model. In order to assimilate microwave brightness temperatures (Tbs) at horizontal polarization (h-pol), an SM capable of resolving melt-refreeze crusts is required. To date, it has not been shown whether an RA scheme is tractable with the large number of state variables present in such an SM or whether melt-refreeze crust densities can be estimated. In this paper, an RA scheme is presented using the CROCUS SM which is capable of resolving melt-refreeze crusts. We assimilated both vertical (v) and horizontal (h) Tbs at 18.7 and 36.5 GHz. We found that assimilating Tb at both h-pol and vertical polarization (v-pol) into CROCUS dramatically improved snow depth estimates, with a bias of 1.4 cm compared to-7.3 cm reported by previous studies. Assimilation of both h-pol and v-pol led to more accurate results than assimilation of v-pol alone. The snow water equivalent (SWE) bias of the RA scheme was 0.4 cm, while the bias of the SWE estimated by an empirical retrieval algorithm was -2.9 cm. Characterization of melt-refreeze crusts via an RA scheme is demonstrated here for the first time; the RA scheme correctly identified the location of melt-refreeze crusts observed in situ.

  16. A Machine-Learning Algorithm Toward Color Analysis for Chronic Liver Disease Classification, Employing Ultrasound Shear Wave Elastography.

    PubMed

    Gatos, Ilias; Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitris; Theotokas, Ioannis; Zoumpoulis, Pavlos; Loupas, Thanasis; Hazle, John D; Kagadis, George C

    2017-09-01

    The purpose of the present study was to employ a computer-aided diagnosis system that classifies chronic liver disease (CLD) using ultrasound shear wave elastography (SWE) imaging, with a stiffness value-clustering and machine-learning algorithm. A clinical data set of 126 patients (56 healthy controls, 70 with CLD) was analyzed. First, an RGB-to-stiffness inverse mapping technique was employed. A five-cluster segmentation was then performed associating corresponding different-color regions with certain stiffness value ranges acquired from the SWE manufacturer-provided color bar. Subsequently, 35 features (7 for each cluster), indicative of physical characteristics existing within the SWE image, were extracted. A stepwise regression analysis toward feature reduction was used to derive a reduced feature subset that was fed into the support vector machine classification algorithm to classify CLD from healthy cases. The highest accuracy in classification of healthy to CLD subject discrimination from the support vector machine model was 87.3% with sensitivity and specificity values of 93.5% and 81.2%, respectively. Receiver operating characteristic curve analysis gave an area under the curve value of 0.87 (confidence interval: 0.77-0.92). A machine-learning algorithm that quantifies color information in terms of stiffness values from SWE images and discriminates CLD from healthy cases is introduced. New objective parameters and criteria for CLD diagnosis employing SWE images provided by the present study can be considered an important step toward color-based interpretation, and could assist radiologists' diagnostic performance on a daily basis after being installed in a PC and employed retrospectively, immediately after the examination. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Simulation of Seasonal Snow Microwave TB Using Coupled Multi-Layered Snow Evolution and Microwave Emission Models

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Royer, Alain; Picard, Ghislain; Langlois, Alex; Fily, Michel

    2014-01-01

    The accurate quantification of SWE has important societal benefits, including improving domestic and agricultural water planning, flood forecasting and electric power generation. However, passive-microwave SWE algorithms suffer from variations in TB due to snow metamorphism, difficult to distinguish from those due to SWE variations. Coupled snow evolution-emission models are able to predict snow metamorphism, allowing us to account for emissivity changes. They can also be used to identify weaknesses in the snow evolution model. Moreover, thoroughly evaluating coupled models is a contribution toward the assimilation of TB, which leads to a significant increase in the accuracy of SWE estimates.

  18. Sentinels for snow science

    NASA Astrophysics Data System (ADS)

    Gascoin, S.; Grizonnet, M.; Baba, W. M.; Hagolle, O.; Fayad, A.; Mermoz, S.; Kinnard, C.; Fatima, K.; Jarlan, L.; Hanich, L.

    2017-12-01

    Current spaceborne sensors do not allow retrieving the snow water equivalent in mountain regions, "the most important unsolved problem in snow hydrology" (Dozier, 2016). While the NASA is operating an airborne mission to survey the SWE in the western USA, elsewhere, however, snow scientists and water managers do not have access to routine SWE measurements at the scale of a mountain range. In this presentation we suggest that the advent of the Copernicus Earth Observation programme opens new perspectives to address this issue in mountain regions worldwide. The Sentinel-2 mission will provide global-scale multispectral observations at 20 m resolution every 5-days (cloud permitting). The Sentinel-1 mission is already imaging the global land surface with a C-band radar at 10 m resolution every 6 days. These observations are unprecedented in terms of spatial and temporal resolution. However, the nature of the observation (radiometry, wavelength) is in the continuity of previous and ongoing missions. As a result, it is relatively straightforward to re-use algorithms that were developed by the remote sensing community over the last decades. For instance, Sentinel-2 data can be used to derive maps of the snow cover extent from the normalized difference snow index, which was initially proposed for Landsat. In addition, the 5-days repeat cycle allows the application of gap-filling algorithms, which were developed for MODIS based on the temporal dimension. The Sentinel-1 data can be used to detect the wet snow cover and track melting areas as proposed for ERS in the early 1990's. Eventually, we show an example where Sentinel-2-like data improved the simulation of the SWE in the data-scarce region of the High Atlas in Morocco through assimilation in a distributed snowpack model. We encourage snow scientists to embrace Sentinel-1 and Sentinel-2 data to enhance our knowledge on the snow cover dynamics in mountain regions.

  19. Gpm Level 1 Science Requirements: Science and Performance Viewed from the Ground

    NASA Technical Reports Server (NTRS)

    Petersen, W.; Kirstetter, P.; Wolff, D.; Kidd, C.; Tokay, A.; Chandrasekar, V.; Grecu, M.; Huffman, G.; Jackson, G. S.

    2016-01-01

    GPM meets Level 1 science requirements for rain estimation based on the strong performance of its radar algorithms. Changes in the V5 GPROF algorithm should correct errors in V4 and will likely resolve GPROF performance issues relative to L1 requirements. L1 FOV Snow detection largely verified but at unknown SWE rate threshold (likely < 0.5 –1 mm/hr/liquid equivalent). Ongoing work to improve SWE rate estimation for both satellite and GV remote sensing.

  20. Estimation de l'equivalent en eau de la neige en milieu subarctique du Quebec par teledetection micro-ondes passives

    NASA Astrophysics Data System (ADS)

    Vachon, Francois

    The snow cover (extent, depth and water equivalent) is an important factor in assessing the water balance of a territory. In a context of deregulation of electricity, better knowledge of the quantity of water resulting from snowmelt that will be available for hydroelectric power generation has become a major challenge for the managers of Hydro-Quebec's generating plant. In fact, the snow on the ground represents nearly one third of Hydro-Quebec's annual energy reserve and the proportion is even higher for northern watersheds. Snowcover knowledge would therefore help optimize the management of energy stocks. The issue is especially important when one considers that better management of water resources can lead to substantial economic benefits. The Research Institute of Hydro-Quebec (IREQ), our research partner, is currently attempting to optimize the streamfiow forecasts made by its hydrological models by improving the quality of the inputs. These include a parameter known as the snow water equivalent (SWE) which characterizes the properties of the snow cover. At the present time, SWE data is obtained from in situ measurements, which are both sporadic and scattered, and does not allow the temporal and spatial variability of SWE to be characterized adequately for the needs of hydrological models. This research project proposes to provide the Quebec utility's hydrological models with distributed SWE information about its northern watersheds. The targeted accuracy is 15% for the proposed period of analysis covering the winter months of January, February and March of 2001 to 2006. The methodology is based on the HUT snow emission model and uses the passive microwave remote sensing data acquired by the SSM/I sensor. Monitoring of the temporal and spatial variations in SWE is done by inversion of the model and benefits from the assimilation of in situ data to characterize the state of snow cover during the season. Experimental results show that the assimilation technique of in situ data (density and depth) can reproduce the temporal variations in SWE with a RMSE error of 15.9% (R2=0.76). The analysis of land cover within the SSMI pixels can reduce this error to 14.6% ( R2=0.66) for SWE values below 300 mm. Moreover, the results show that the fluctuations of SWE values are driven by changes in snow depths. Indeed, the use of a constant value for the density of snow is feasible and makes it possible to get as good if not better results. These results will allow IREQ to assess the suitability of using snow cover information provided by the remote sensing data in its forecasting models. This improvement in SWE characterization will meet the needs of IREQ for its work on optimization of the quality of hydrological simulations. The originality and relevance of this work are based primarily on the type of method used to quantify SWE and the site where it is applied. The proposed method focuses on the inversion of the HUT model from passive remote sensing data and assimilates in situ data. Moreover, this approach allows high SWE values (> 300 mm) to be quantified, which was impossible with previous methods. These high SWE values are encountered in areas with large amounts of snow such as northern Quebec. Keywords. remote sensing, microwave, snow water equivalent (SWE), model, retrieval, data assimilation, SWE monitoring, spatialization Complete reference. Vachon, F. (2009) Snow water equivalent retrieval in a subartic environment of Quebec using passive microwave remote sensing. Ph.D. Thesis, Sherbrooke University, Sherbrooke, 211 p.

  1. Ensemble-based assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at Arctic sites

    NASA Astrophysics Data System (ADS)

    Aalstad, Kristoffer; Westermann, Sebastian; Vikhamar Schuler, Thomas; Boike, Julia; Bertino, Laurent

    2018-01-01

    With its high albedo, low thermal conductivity and large water storing capacity, snow strongly modulates the surface energy and water balance, which makes it a critical factor in mid- to high-latitude and mountain environments. However, estimating the snow water equivalent (SWE) is challenging in remote-sensing applications already at medium spatial resolutions of 1 km. We present an ensemble-based data assimilation framework that estimates the peak subgrid SWE distribution (SSD) at the 1 km scale by assimilating fractional snow-covered area (fSCA) satellite retrievals in a simple snow model forced by downscaled reanalysis data. The basic idea is to relate the timing of the snow cover depletion (accessible from satellite products) to the peak SSD. Peak subgrid SWE is assumed to be lognormally distributed, which can be translated to a modeled time series of fSCA through the snow model. Assimilation of satellite-derived fSCA facilitates the estimation of the peak SSD, while taking into account uncertainties in both the model and the assimilated data sets. As an extension to previous studies, our method makes use of the novel (to snow data assimilation) ensemble smoother with multiple data assimilation (ES-MDA) scheme combined with analytical Gaussian anamorphosis to assimilate time series of Moderate Resolution Imaging Spectroradiometer (MODIS) and Sentinel-2 fSCA retrievals. The scheme is applied to Arctic sites near Ny-Ålesund (79° N, Svalbard, Norway) where field measurements of fSCA and SWE distributions are available. The method is able to successfully recover accurate estimates of peak SSD on most of the occasions considered. Through the ES-MDA assimilation, the root-mean-square error (RMSE) for the fSCA, peak mean SWE and peak subgrid coefficient of variation is improved by around 75, 60 and 20 %, respectively, when compared to the prior, yielding RMSEs of 0.01, 0.09 m water equivalent (w.e.) and 0.13, respectively. The ES-MDA either outperforms or at least nearly matches the performance of other ensemble-based batch smoother schemes with regards to various evaluation metrics. Given the modularity of the method, it could prove valuable for a range of satellite-era hydrometeorological reanalyses.

  2. Continuous monitoring of a mountain snowpack in the Austrian Alps by above-ground neutron sensing

    NASA Astrophysics Data System (ADS)

    Schattan, Paul; Baroni, Gabriele; Oswald, Sascha E.; Schöber, Johannes; Fey, Christine; Francke, Till; Huttenlau, Matthias; Achleitner, Stefan

    2017-04-01

    In alpine catchments the knowledge of the spatially and temporally heterogeneous dynamics of snow accumulation and depletion is crucial for modelling and managing water resources. While snow covered area can be retrieved operationally from remote sensing data, continuous measurements of other snow state variables like snow depth (SD) or snow water equivalent (SWE) remain challenging. Existing methods of retrieving both variables in alpine terrain face severe issues like a lack of spatial representativeness, labour-intensity or discontinuity in time. Recently, promising new measurement techniques combining a larger support with low maintenance cost like above-ground gamma-ray scintillators, GPS interferometric reflectometry or above-ground cosmic-ray neutron sensors (CRNS) have been suggested. While CRNS has proven its potential for monitoring soil moisture in a wide range of environments and applications, the empirical knowledge of using CRNS for snowpack monitoring is still very limited and restricted to shallow snowpacks with rather uniform evolution. The characteristics of an above-ground cosmic-ray neutron sensor (CRNS) were therefore evaluated for monitoring a mountain snowpack in the Austrian Alps (Kaunertal, Tyrol) during three winter seasons. The measurement campaign included a number of measurements during the period from 03/2014 to 06/2016: (i) neutron count measurements by CRNS, (ii) continuous point-scale SD and SWE measurements from an automatic weather station and (iii) 17 Terrestrial Laser Scanning (TLS) with simultaneous SD and SWE surveys. The highest accumulation in terms of SWE was found in 04/2014 with 600 mm. Neutron counts were compared to all available snow data. While previous studies suggested a signal saturation at around 100 mm of SWE, no complete signal saturation was found. A strong non-linear relation was found for both SD and SWE with best fits for spatially distributed TLS based snow data. Initially slightly different shapes were found for accumulation and melting season conditions but this could be resolved by accounting for the limited measurement depth. This depth limit is in the range of 200 mm of SWE for dense snowpacks with high liquid water contents and associated snow density values around 450 kg m-3 and above. Furthermore, the results prove that for medium to high snowpack the inter-annual transferability of the results is very high regardless of pre-snowfall soil moisture conditions. These results underline the high potential of CRNS for closing the gap between point-scale measurements, hydrological models and remote sensing in snow hydrology and alpine terrain.

  3. Effect of Different Tree canopies on the Brightness Temperature of Snowpack

    NASA Astrophysics Data System (ADS)

    Mousavi, S.; De Roo, R. D.; Brucker, L.

    2017-12-01

    Snow stores the water we drink and is essential to grow food that we eat. But changes in snow quantities such as snow water equivalent (SWE) are underway and have serious consequences. So, effective management of the freshwater reservoir requires to monitor frequently (weekly or better) the spatial distribution of SWE and snowpack wetness. Both microwave radar and radiometer systems have long been considered as relevant remote sensing tools in retrieving globally snow physical parameters of interest thanks to their all-weather operation capability. However, their observations are sensitive to the presence of tree canopies, which in turns impacts SWE estimation. To address this long-lasting challenge, we parked a truck-mounted microwave radiometer system for an entire winter in a rare area where it exists different tree types in the different cardinal directions. We used dual-polarization microwave radiometers at three different frequencies (1.4, 19, and 37 GHz), mounted on a boom truck to observe continuously the snowpack surrounding the truck. Observations were recorded at different incidence angles. These measurements have been collected in Grand Mesa National Forest, Colorado as part of the NASA SnowEx 2016-17. In this presentation, the effect of Engelmann Spruce and Aspen trees on the measured brightness temperature of snow is discussed. It is shown that Engelmann Spruce trees increases the brightness temperature of the snowpack more than Aspen trees do. Moreover, the elevation angular dependence of the measured brightness temperatures of snowpack with and without tree canopies is investigated in the context of SWE retrievals. A time-lapse camera was monitoring a snow post installed in the sensors' field of view to characterize the brightness temperature change as snow depth evolved. Also, our study takes advantage of the snowpit measurements that were collected near the radiometers' field of view.

  4. On the characterization of subpixel effects for passive microwave remote sensing of snow in montane environments

    NASA Astrophysics Data System (ADS)

    Vander Jagt, Benjamin John

    Snow and its water equivalent plays a vital role in global water and energy balances, with particular relevance in mountainous areas with arid and semi-arid climate regimes. Spaceborne passive microwave (PM) remote sensing measurements are attractive for snowpack characterization due to their continuous global coverage and historical record; over 30 years of research has been invested in the development of methods to characterize large-scale snow water resources from PM-based measurements. Historically, use of PM data for snowpack characterization in montane enviroments has been obstructed by the complex subpixel variability of snow properties within the PM measurement footprint. The main subpixel effects can be grouped as: the effect of snow microstructure (e.g. snow grain size) and stratigraphy on snow microwave emission, vegetation attenuation of PM measurements, and the sensitivity PM brightness temperature (Tb) observation to the variability of different subpixel properties at spaceborne measurement scales. This dissertation is focused on a systematic examination of these issues, which thus far have prevented the widespread integration of snow water equivalent (SWE) retrieval methods. It is meant to further our comprehension of the underlying processes at work in these rugged, remote, a hydrologically important areas. The role that snow microstructure plays in the PM retrievals of SWE is examined first. Traditional estimates of grain size are subjective and prone to error. Objective techniques to characterize grain size are described and implemented, including near infrared (NIR), stereology, and autocorrelation based approaches. Results from an intensive Colorado field study in which independent estimates of grain size and their modeled brightness temperature (Tb) emission are evaluated against PM Tb observations are included. The coarse resolution of the passive microwave measurements provides additional challenges when trying to resolve snow states via remote sensing observations. The natural heterogeneity of snowpack (e.g. depth, stratigraphy, etc) and vegetative states within the PM footprint occurs at spatial scales smaller than PM observation scales. The sensitivity to changes in snow depth given sub-pixel variability in snow and vegetation is explored and quantified using the comprehensive dataset acquired during the Cold Land Processes experiment (CLPX). Lastly, vegetation has long been an obstacle in efforts to derive snow depth and mass estimates from passive microwave (PM) measurements of brightness temperature (Tb). We introduce a vegetation transmissivity model that is derived entirely from multi-scale and multi-temporal PM Tb observations and a globally available vegetation dataset, specifically the Leaf Area Index (LAI). This newly constructed model characterizes the attenuation of PM Tb observations at frequencies typically employed for snow retrieval algorithms, as a function of LAI. Additionally, the model is used to predict how much SWE is observable within the major river basins of Colorado and the central Rockies.

  5. Potential for Monitoring Snow Cover in Boreal Forests by Combining MODIS Snow Cover and AMSR-E SWE Maps

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.; Foster, James L.

    2009-01-01

    Monitoring of snow cover extent and snow water equivalent (SWE) in boreal forests is important for determining the amount of potential runoff and beginning date of snowmelt. The great expanse of the boreal forest necessitates the use of satellite measurements to monitor snow cover. Snow cover in the boreal forest can be mapped with either the Moderate Resolution Imaging Spectroradiometer (MODIS) or the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) microwave instrument. The extent of snow cover is estimated from the MODIS data and SWE is estimated from the AMSR-E. Environmental limitations affect both sensors in different ways to limit their ability to detect snow in some situations. Forest density, snow wetness, and snow depth are factors that limit the effectiveness of both sensors for snow detection. Cloud cover is a significant hindrance to monitoring snow cover extent Using MODIS but is not a hindrance to the use of the AMSR-E. These limitations could be mitigated by combining MODIS and AMSR-E data to allow for improved interpretation of snow cover extent and SWE on a daily basis and provide temporal continuity of snow mapping across the boreal forest regions in Canada. The purpose of this study is to investigate if temporal monitoring of snow cover using a combination of MODIS and AMSR-E data could yield a better interpretation of changing snow cover conditions. The MODIS snow mapping algorithm is based on snow detection using the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI) to enhance snow detection in dense vegetation. (Other spectral threshold tests are also used to map snow using MODIS.) Snow cover under a forest canopy may have an effect on the NDVI thus we use the NDVI in snow detection. A MODIS snow fraction product is also generated but not used in this study. In this study the NDSI and NDVI components of the snow mapping algorithm were calculated and analyzed to determine how they changed through the seasons. A blended snow product, the Air Force Weather Agency and NASA (ANSA) snow algorithm and product has recently been developed. The ANSA algorithm blends the MODIS snow cover and AMSR-E SWE products into a single snow product that has been shown to improve the performance of snow cover mapping. In this study components of the ANSA snow algorithm are used along with additional MODIS data to monitor daily changes in snow cover over the period of 1 February to 30 June 2008.

  6. A finite element model to study the effect of tissue anisotropy on ex vivo arterial shear wave elastography measurements

    NASA Astrophysics Data System (ADS)

    Shcherbakova, D. A.; Debusschere, N.; Caenen, A.; Iannaccone, F.; Pernot, M.; Swillens, A.; Segers, P.

    2017-07-01

    Shear wave elastography (SWE) is an ultrasound (US) diagnostic method for measuring the stiffness of soft tissues based on generated shear waves (SWs). SWE has been applied to bulk tissues, but in arteries it is still under investigation. Previously performed studies in arteries or arterial phantoms demonstrated the potential of SWE to measure arterial wall stiffness—a relevant marker in prediction of cardiovascular diseases. This study is focused on numerical modelling of SWs in ex vivo equine aortic tissue, yet based on experimental SWE measurements with the tissue dynamically loaded while rotating the US probe to investigate the sensitivity of SWE to the anisotropic structure. A good match with experimental shear wave group speed results was obtained. SWs were sensitive to the orthotropy and nonlinearity of the material. The model also allowed to study the nature of the SWs by performing 2D FFT-based and analytical phase analyses. A good match between numerical group velocities derived using the time-of-flight algorithm and derived from the dispersion curves was found in the cross-sectional and axial arterial views. The complexity of solving analytical equations for nonlinear orthotropic stressed plates was discussed.

  7. Snowpack spatial variability: Towards understanding its effect on remote sensing measurements and snow slope stability

    NASA Astrophysics Data System (ADS)

    Marshall, Hans-Peter

    The distribution of water in the snow-covered areas of the world is an important climate change indicator, and it is a vital component of the water cycle. At local and regional scales, the snow water equivalent (SWE), the amount of liquid water a given area of the snowpack represents, is very important for water resource management, flood forecasting, and prediction of available hydropower energy. Measurements from only a few automatic weather stations, such as the SNOTEL network, or sparse manual snowpack measurements are typically extrapolated for estimating SWE over an entire basin. Widespread spatial variability in the distribution of SWE and snowpack stratigraphy at local scales causes large errors in these basin estimates. Remote sensing measurements offer a promising alternative, due to their large spatial coverage and high temporal resolution. Although snow cover extent can currently be estimated from remote sensing data, accurately quantifying SWE from remote sensing measurements has remained difficult, due to a high sensitivity to variations in grain size and stratigraphy. In alpine snowpacks, the large degree of spatial variability of snowpack properties and geometry, caused by topographic, vegetative, and microclimatic effects, also makes prediction of snow avalanches very difficult. Ground-based radar and penetrometer measurements can quickly and accurately characterize snowpack properties and SWE in the field. A portable lightweight radar was developed, and allows a real-time estimate of SWE to within 10%, as well as measurements of depths of all major density transitions within the snowpack. New analysis techniques developed in this thesis allow accurate estimates of mechanical properties and an index of grain size to be retrieved from the SnowMicroPenetrometer. These two tools together allow rapid characterization of the snowpack's geometry, mechanical properties, and SWE, and are used to guide a finite element model to study the stress distribution on a slope. The ability to accurately characterize snowpack properties at much higher resolutions and spatial extent than previously possible will hopefully help lead to a more complete understanding of spatial variability, its effect on remote sensing measurements and snow slope stability, and result in improvements in avalanche prediction and accuracy of SWE estimates from space.

  8. Snow cover data records from satellite and conventional measurements

    NASA Astrophysics Data System (ADS)

    Derksen, C.; Brown, R.; Wang, L.

    2008-12-01

    A major goal of snow-related research in the Climate Research Division of Environment Canada is the development of consistent snow cover information from satellite and in situ data sources for climate monitoring and model evaluation. This work involves new satellite algorithm development for reliable mapping of snow water equivalent (SWE), snow cover extent (SCE) and snow cover onset and melt dates, evaluation of existing snow cover products such as the NOAA weekly data set with in situ and satellite data, and the reconstruction and reanalysis of snow cover information from the application of physical snow models, geostatistics and data assimilation methods. In the context of the International Polar Year, a major effort is being made to develop and evaluate snow cover information over the Arctic region with a particular focus on the dynamic spring melt period where positive feedbacks to the climate system are more pronounced. Assessment of the NOAA daily and weekly SCE products with MODIS and QuikSCAT derived datasets identified a systematic late bias of 2-3 weeks in snow-off dates over northern Canada. This bias was not observed over northern Eurasia which suggests that regional differences in variables such as lake fraction and cloud cover are systematically influencing the accuracy of the NOAA product over northern Canada. Considerable progress has been made in deriving passive microwave derived SWE information over sub- Arctic regions of North America where pre-existing algorithms were unable to account for the influence of forest cover and lake ice. Previous uncertainties in retrieving SWE across the boreal forest have been resolved with the combination of 18.7 and 10.7 GHz measurements from the Advanced Microwave Scanning Radiometer (AMSR-E; 2002-present). Full time series development (1978-onwards) remains problematic, however, because 10.7 GHz measurements are not available from the Special Sensor Microwave/Imager (1987-present). Satellite measurements coupled with lake ice model simulations have illustrated frequency dependent, seasonally evolving relationships between brightness temperature and lake fraction across tundra regions. A potential solution based on the temporal evolution of 37 GHz AMSR-E measurements shows some promise as this was found to be significantly correlated with field measurements of tundra SWE, and to be relatively insensitive to lake fraction. New pan-Arctic (N 60°N) snowmelt onset and end date records (2000-2006) were produced from enhanced resolution (4.45 km) QuikSCAT (QSCAT) Ku-band backscatter measurements. The goal is to merge this with melt onset information from other components of the cryosphere (e.g. glaciers, ice caps, ice sheets, lake ice, sea ice) to provide an integrated circumpolar melt onset and duration dataset for climate monitoring and research on cryosphere-climate links and feedbacks. A major challenge is expanding the relatively short time period of Ku-band satellite measurements with historical C-band data (i.e. from ERS-1). Geostatistical methods and snow cover modeling were used to develop a 10-km gridded SWE dataset over Quebec from 1970-2005 for climate studies and evaluation of the performance of the Canadian Regional Climate Model.

  9. Multicore runup simulation by under water avalanche using two-layer 1D shallow water equations

    NASA Astrophysics Data System (ADS)

    Bagustara, B. A. R. H.; Simanjuntak, C. A.; Gunawan, P. H.

    2018-03-01

    The increasing of layers in shallow water equations (SWE) produces more dynamic model than the one-layer SWE model. The two-layer 1D SWE model has different density for each layer. This model becomes more dynamic and natural, for instance in the ocean, the density of water will decreasing from the bottom to the surface. Here, the source-centered hydro-static reconstruction (SCHR) numerical scheme will be used to approximate the solution of two-layer 1D SWE model, since this scheme is proved to satisfy the mathematical properties for shallow water equation. Additionally in this paper, the algorithm of SCHR is adapted to the multicore architecture. The simulation of runup by under water avalanche is elaborated here. The results show that the runup is depend on the ratio of density of each layers. Moreover by using grid sizes Nx = 8000, the speedup and efficiency by 2 threads are obtained 1.74779 times and 87.3896 % respectively. Nevertheless, by 4 threads the speedup and efficiency are obtained 2.93132 times and 73.2830 % respectively by similar number of grid sizes Nx = 8000.

  10. Assessing the utility of passive microwave data for Snow Water Equivalent (SWE) estimation in the Sutlej River Basin of the northwestern Himalaya

    NASA Astrophysics Data System (ADS)

    Brandt, T.; Bookhagen, B.; Dozier, J.

    2014-12-01

    Since 1978, space based passive microwave (PM) radiometers have been used to comprehensively measure Snow Water Equivalent (SWE) on a global basis. The ability of PM radiometers to directly measure SWE at high temporal frequencies offers some distinct advantages over optical remote sensors. Nevertheless, in mountainous terrain PM radiometers often struggle to accurately measure SWE because of wet snow, saturation in deep snow, forests, depth hoar and stratigraphy, variable relief, and subpixel heterogeneity inherent in large pixel sizes. The Himalaya, because of their high elevation and high relief—much above tree line—offer an opportunity to examine PM products in the mountains without the added complication of trees. The upper Sutlej River basin— the third largest Himalayan catchment—lies in the western Himalaya. The river is a tributary of the Indus River and seasonal snow constitutes a substantial part of the basin's hydrologic budget. The basin has a few surface stations and river gauges, which is unique for the region. As such, the Sutlej River basin is a good location to analyze the accuracy and effectiveness of the current National Snow and Ice Data Center's (NSIDC) standard AMSR-E/Aqua Daily SWE product in mountainous terrain. So far, we have observed that individual pixels can "flicker", i.e. fluctuate from day to day, over large parts of the basin. We consider whether this is an artifact of the algorithm or whether this is embedded in the raw brightness temperatures themselves. In addition, we examine how well the standard product registers winter storms, and how it varies over heavily glaciated pixels. Finally, we use a few common measures of algorithm performance (precision, recall and accuracy) to test how well the standard product detects the presence of snow, using optical imagery for validation. An improved understanding of the effectiveness of PM imagery in the mountains will help to clarify the technology's limits.

  11. Is Diagnostic Performance of Quantitative 2D-Shear Wave Elastography Optimal for Clinical Classification of Benign and Malignant Thyroid Nodules?: A Systematic Review and Meta-analysis.

    PubMed

    Nattabi, Haliimah A; Sharif, Norhafidzah M; Yahya, Noorazrul; Ahmad, Rozilawati; Mohamad, Mazlyfarina; Zaki, Faizah M; Yusoff, Ahmad N

    2017-10-17

    This study is a dedicated 2D-shear wave elastography (2D-SWE) review aimed at systematically eliciting up-to-date evidence of its clinical value in differential diagnosis of benign and malignant thyroid nodules. PubMed, Web of Science, and Scopus databases were searched for studies assessing the diagnostic value of 2D-SWE for thyroid malignancy risk stratification published until December 2016. The retrieved titles and abstracts were screened and evaluated according to the predefined inclusion and exclusion criteria. Methodological quality of the studies was assessed using the Quality Assessment of Studies of Diagnostic Accuracy included in Systematic Review 2 (QUADAS-2) tool. Extracted 2D-SWE diagnostic performance data were meta-analyzed to assess the summary sensitivity, specificity, and area under the receiver operating characteristic curve. After stepwise review, 14 studies in which 2D-SWE was used to evaluate 2851 thyroid nodules (1092 malignant, 1759 benign) from 2139 patients were selected for the current study. Study quality on QUADAS-2 assessment was moderate to high. The summary sensitivity, specificity and area under the receiver operating characteristic curve of 2D-SWE for differential diagnosis of benign and malignant thyroid nodules were 0.66 (95% confidence interval [CI]: 0.64-0.69), 0.78 (CI: 0.76-0.80), and 0.851 (Q* = 0.85), respectively. The pooled diagnostic odds ratio, negative likelihood ratio, and positive likelihood ratio were 12.73 (CI: 8.80-18.43), 0.31 (CI: 0.22-0.44), and 3.87 (CI: 2.83-5.29), respectively. Diagnostic performance of quantitative 2D-SWE for malignancy risk stratification of thyroid nodules is suboptimal with mediocre sensitivity and specificity, contrary to earlier reports of excellence. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  12. Simulations of a Canadian snowpack brightness temperatures using SURFEX-Crocus for Snow Water Equivalent (SWE) retrievals

    NASA Astrophysics Data System (ADS)

    Larue, Fanny; Royer, Alain; De Sève, Danielle; Langlois, Alexandre; Roy, Alexandre; Saint-Jean-Rondeau, Olivier

    2016-04-01

    In Quebec, the water associated to snowmelt represents 30% of the annual electricity production so that the snow cover evaluation in real time is of primary interest. The key variable is snow water equivalent (SWE) which describes the evolution of a global seasonal snow cover. However, the sparse distribution of meteorological stations in northern Québec generates great uncertainty in the extrapolation of SWE. On the contrary, the spatial and temporal coverage of satellite data offer a source of information with a high potential when considered as an alternative to the poor spatial distribution of in-situ information. Thus, this project aims to improve the prediction of SWE by assimilation of satellite passive microwave brightness temperatures (Tb) observations, independently of any ground observations. The snowpack evolution is simulated by the French snow model SURFEX-Crocus, driven by the Canadian atmospheric model GEM with a spatial resolution of 10 km. The bias of the atmospheric model and the impact of initialization errors on the simulated SWE were quantified from our ground measurements. To assimilate satellite observations, the multi-layered snow model is first coupled with a radiative transfer model using the Dense Media Radiative transfer theory (the DMRT-ML model) to estimate the microwave snow emission of the simulated snowpack. In order to retrieve simulated Tb in frequencies of interest (i.e. sensitive to snow dielectric properties), the snow microstructure needs to be well parameterized. It was shown in previous studies that the specific surface area (SSA) of snow grains is a well-defined parameter to describe the size and the shape of snow grains and which allows reproducible field measurements. SURFEX-Crocus estimates a SSA for each simulated snow layer, however, the snow microstructure in DMRT-ML is defined per layer by monodisperse optical radius of grain (~ 1/SSA) and by the stickiness which is not known. It thus becomes necessary to introduce an empirical factor (noted φ) due to the simplification of the representation of snow as non-sticky spheres of ice in the model. In other words, the measured and simulated SSA has to be converted in an effective snow grain metric by optimizing this scaling factor to minimize the root-mean-square error between the measured and simulated brightness temperatures. The φ factor scaling the Crocus simulated SSA was estimated using ground-based radiometric measurements made during several field campaigns in the James Bay territory, Nunavik (in 2013 and 2015), and Churchill, Manitoba in 2010. This new parameterization, adapted to the Canadian arctic and subarctic snowpack, represents an essential step to optimize SWE maps in this remote region which have yet to be proven accurate.

  13. Validating SWE reconstruction using Airborne Snow Observatory measurements in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Bair, N.; Rittger, K.; Davis, R. E.; Dozier, J.

    2015-12-01

    The Airborne Snow Observatory (ASO) program offers high resolution estimates of snow water equivalent (SWE) in several small basins across California during the melt season. Primarily, water managers use this information to model snowmelt runoff into reservoirs. Another, and potentially more impactful, use of ASO SWE measurements is in validating and improving satellite-based SWE estimates which can be used in austere regions with no ground-based snow or water measurements, such as Afghanistan's Hindu Kush. Using the entire ASO dataset to date (2013-2015) which is mostly from the Upper Tuolumne basin, but also includes measurements from 2015 in the Kings, Rush Creek, Merced, and Mammoth Lakes basins, we compare ASO measurements to those from a SWE reconstruction method. Briefly, SWE reconstruction involves downscaling energy balance forcings to compute potential melt energy, then using satellite-derived estimates of fractional snow covered area (fSCA) to estimate snow melt from potential melt. The snowpack can then be built in reverse, given a remotely-sensed date of snow disappearance (fSCA=0). Our model has improvements over previous iterations in that it: uses the full energy balance (compared to a modified degree-day) approach, models bulk and surface snow temperatures, accounts for ephemeral snow, and uses a remotely-sensed snow albedo adjusted for impurities. To check that ASO provides accurate snow measurements, we compare fSCA derived from ASO snow depth at 3 m resolution with fSCA from a spectral unmixing algorithm for LandSAT at 30 m, and from binary SCA estimates from Geoeye at 0.5 m from supervised classification. To conclude, we document how our reconstruction model has evolved over the years and provide specific examples where improvements have been made using ASO and other verification sources.

  14. Service Oriented Architecture for Wireless Sensor Networks in Agriculture

    NASA Astrophysics Data System (ADS)

    Sawant, S. A.; Adinarayana, J.; Durbha, S. S.; Tripathy, A. K.; Sudharsan, D.

    2012-08-01

    Rapid advances in Wireless Sensor Network (WSN) for agricultural applications has provided a platform for better decision making for crop planning and management, particularly in precision agriculture aspects. Due to the ever-increasing spread of WSNs there is a need for standards, i.e. a set of specifications and encodings to bring multiple sensor networks on common platform. Distributed sensor systems when brought together can facilitate better decision making in agricultural domain. The Open Geospatial Consortium (OGC) through Sensor Web Enablement (SWE) provides guidelines for semantic and syntactic standardization of sensor networks. In this work two distributed sensing systems (Agrisens and FieldServer) were selected to implement OGC SWE standards through a Service Oriented Architecture (SOA) approach. Online interoperable data processing was developed through SWE components such as Sensor Model Language (SensorML) and Sensor Observation Service (SOS). An integrated web client was developed to visualize the sensor observations and measurements that enables the retrieval of crop water resources availability and requirements in a systematic manner for both the sensing devices. Further, the client has also the ability to operate in an interoperable manner with any other OGC standardized WSN systems. The study of WSN systems has shown that there is need to augment the operations / processing capabilities of SOS in order to understand about collected sensor data and implement the modelling services. Also, the very low cost availability of WSN systems in future, it is possible to implement the OGC standardized SWE framework for agricultural applications with open source software tools.

  15. A remote sensing data assimilation system for cold land processes hydrologic estimation

    NASA Astrophysics Data System (ADS)

    Andreadis, Konstantinos M.

    2009-12-01

    Accurate forecasting of snow properties is important for effective water resources management, especially in mountainous areas. Model-based approaches are limited by biases and uncertainties. Remote sensing offers an opportunity for observation of snow properties over larger areas. Traditional approaches to direct estimation of snow properties from passive microwave remote sensing have been plagued by limitations such as the tendency of estimates to saturate for moderately deep snowpacks and the effects of mixed land cover. To address these complications, a data assimilation system is developed and evaluated in a three-part research. The data assimilation system requires the embedding of a microwave emissions model which uses modeled snowpack properties. In the first part of this study, such a model is evaluated using multi-scale TB measurements from the Cold Land Processes Experiment. The model's ability to reproduce snowpack microphysical properties is evaluated through comparison with snowpit measurements, while TB predictions are evaluated through comparison with in-situ, aircraft and satellite measurements. Point comparisons showed limitations in the model, while the spatial averaging and the effects of forest cover suppressed errors in comparisons with aircraft measurements. The layered character of snowpacks increases the complexity of algorithms intended to retrieve snow properties from the snowpack microwave return signal. Implementation of a retrieval strategy requires knowledge of stratigraphy, which practically can only be produced by models. In the second part of this study, we describe a multi-layer model designed for such applications. The model coupled with a radiative transfer scheme improved the estimation of TB, while potential impacts when assimilating radiances are explored. A system that merges SWE model predictions and observations of SCE and TB, is evaluated in the third part of this study over one winter season in the Upper Snake River basin. Two data assimilation techniques, the Ensemble Kalman filter and the Ensemble Multiscale Kalman filter are tested with the multilayer snow model forced by downscaled re-analysis meteorological observations. Both the EnKF and EnMKF showed modest improvements when compared with the open-loop simulation, relative to a baseline simulation which used in-situ meteorological data, while comparisons with in-situ SWE measurements showed an overall improvement.

  16. Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Zorgani, Ali; Lescanne, Maxime; Boccara, Claude; Fink, Mathias; Catheline, Stefan

    2016-12-01

    Optical coherence tomography (OCT) can map the stiffness of biological tissue by imaging mechanical perturbations (shear waves) propagating in the tissue. Most shear wave elastography (SWE) techniques rely on active shear sources to generate controlled displacements that are tracked at ultrafast imaging rates. Here, we propose a noise-correlation approach to retrieve stiffness information from the imaging of diffuse displacement fields using low-frame rate spectral-domain OCT. We demonstrated the method on tissue-mimicking phantoms and validated the results by comparison with classic ultrafast SWE. Then we investigated the in vivo feasibility on the eye of an anesthetized rat by applying noise correlation to naturally occurring displacements. The results suggest a great potential for passive elastography based on the detection of natural pulsatile motions using conventional spectral-domain OCT systems. This would facilitate the transfer of OCT-elastography to clinical practice, in particular, in ophthalmology or dermatology.

  17. Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography.

    PubMed

    Nguyen, Thu-Mai; Zorgani, Ali; Lescanne, Maxime; Boccara, Claude; Fink, Mathias; Catheline, Stefan

    2016-12-01

    Optical coherence tomography (OCT) can map the stiffness of biological tissue by imaging mechanical perturbations (shear waves) propagating in the tissue. Most shear wave elastography (SWE) techniques rely on active shear sources to generate controlled displacements that are tracked at ultrafast imaging rates. Here, we propose a noise-correlation approach to retrieve stiffness information from the imaging of diffuse displacement fields using low-frame rate spectral-domain OCT. We demonstrated the method on tissue-mimicking phantoms and validated the results by comparison with classic ultrafast SWE. Then we investigated the in vivo feasibility on the eye of an anesthetized rat by applying noise correlation to naturally occurring displacements. The results suggest a great potential for passive elastography based on the detection of natural pulsatile motions using conventional spectral-domain OCT systems. This would facilitate the transfer of OCT-elastography to clinical practice, in particular, in ophthalmology or dermatology.

  18. Quantifying the accuracy of snow water equivalent estimates using broadband radar signal phase

    NASA Astrophysics Data System (ADS)

    Deeb, E. J.; Marshall, H. P.; Lamie, N. J.; Arcone, S. A.

    2014-12-01

    Radar wave velocity in dry snow depends solely on density. Consequently, ground-based pulsed systems can be used to accurately measure snow depth and snow water equivalent (SWE) using signal travel-time, along with manual depth-probing for signal velocity calibration. Travel-time measurements require a large bandwidth pulse not possible in airborne/space-borne platforms. In addition, radar backscatter from snow cover is sensitive to grain size and to a lesser extent roughness of layers at current/proposed satellite-based frequencies (~ 8 - 18 GHz), complicating inversion for SWE. Therefore, accurate retrievals of SWE still require local calibration due to this sensitivity to microstructure and layering. Conversely, satellite radar interferometry, which senses the difference in signal phase between acquisitions, has shown a potential relationship with SWE at lower frequencies (~ 1 - 5 GHz) because the phase of the snow-refracted signal is sensitive to depth and dielectric properties of the snowpack, as opposed to its microstructure and stratigraphy. We have constructed a lab-based, experimental test bed to quantify the change in radar phase over a wide range of frequencies for varying depths of dry quartz sand, a material dielectrically similar to dry snow. We use a laboratory grade Vector Network Analyzer (0.01 - 25.6 GHz) and a pair of antennae mounted on a trolley over the test bed to measure amplitude and phase repeatedly/accurately at many frequencies. Using ground-based LiDAR instrumentation, we collect a coordinated high-resolution digital surface model (DSM) of the test bed and subsequent depth surfaces with which to compare the radar record of changes in phase. Our plans to transition this methodology to a field deployment during winter 2014-2015 using precision pan/tilt instrumentation will also be presented, as well as applications to airborne and space-borne platforms toward the estimation of SWE at high spatial resolution (on the order of meters) over large regions (> 100 square kilometers).

  19. How Much Water is in That Snowpack? Improving Basin-wide Snow Water Equivalent Estimates from the Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Bormann, K.; Painter, T. H.; Marks, D. G.; Kirchner, P. B.; Winstral, A. H.; Ramirez, P.; Goodale, C. E.; Richardson, M.; Berisford, D. F.

    2014-12-01

    In the western US, snowmelt from the mountains contribute the vast majority of fresh water supply, in an otherwise dry region. With much of California currently experiencing extreme drought, it is critical for water managers to have accurate basin-wide estimations of snow water content during the spring melt season. At the forefront of basin-scale snow monitoring is the Jet Propulsion Laboratory's Airborne Snow Observatory (ASO). With combined LiDAR /spectrometer instruments and weekly flights over key basins throughout California, the ASO suite is capable of retrieving high-resolution basin-wide snow depth and albedo observations. To make best use of these high-resolution snow depths, spatially distributed snow density data are required to leverage snow water equivalent (SWE) from the measured depths. Snow density is a spatially and temporally variable property and is difficult to estimate at basin scales. Currently, ASO uses a physically based snow model (iSnobal) to resolve distributed snow density dynamics across the basin. However, there are issues with the density algorithms in iSnobal, particularly with snow depths below 0.50 m. This shortcoming limited the use of snow density fields from iSnobal during the poor snowfall year of 2014 in the Sierra Nevada, where snow depths were generally low. A deeper understanding of iSnobal model performance and uncertainty for snow density estimation is required. In this study, the model is compared to an existing climate-based statistical method for basin-wide snow density estimation in the Tuolumne basin in the Sierra Nevada and sparse field density measurements. The objective of this study is to improve the water resource information provided to water managers during ASO operation in the future by reducing the uncertainty introduced during the snow depth to SWE conversion.

  20. A Distributive, Non-Destructive, Real-Time Approach to Snowpack Monitoring

    NASA Technical Reports Server (NTRS)

    Frolik, Jeff; Skalka, Christian

    2012-01-01

    This invention is designed to ascertain the snow water equivalence (SWE) of snowpacks with better spatial and temporal resolutions than present techniques. The approach is ground-based, as opposed to some techniques that are air-based. In addition, the approach is compact, non-destructive, and can be communicated with remotely, and thus can be deployed in areas not possible with current methods. Presently there are two principal ground-based techniques for obtaining SWE measurements. The first is manual snow core measurements of the snowpack. This approach is labor-intensive, destructive, and has poor temporal resolution. The second approach is to deploy a large (e.g., 3x3 m) snowpillow, which requires significant infrastructure, is potentially hazardous [uses a approximately equal to 200-gallon (approximately equal to 760-L) antifreeze-filled bladder], and requires deployment in a large, flat area. High deployment costs necessitate few installations, thus yielding poor spatial resolution of data. Both approaches have limited usefulness in complex and/or avalanche-prone terrains. This approach is compact, non-destructive to the snowpack, provides high temporal resolution data, and due to potential low cost, can be deployed with high spatial resolution. The invention consists of three primary components: a robust wireless network and computing platform designed for harsh climates, new SWE sensing strategies, and algorithms for smart sampling, data logging, and SWE computation.

  1. Modeling snow accumulation and ablation processes in forested environments

    NASA Astrophysics Data System (ADS)

    Andreadis, Konstantinos M.; Storck, Pascal; Lettenmaier, Dennis P.

    2009-05-01

    The effects of forest canopies on snow accumulation and ablation processes can be very important for the hydrology of midlatitude and high-latitude areas. A mass and energy balance model for snow accumulation and ablation processes in forested environments was developed utilizing extensive measurements of snow interception and release in a maritime mountainous site in Oregon. The model was evaluated using 2 years of weighing lysimeter data and was able to reproduce the snow water equivalent (SWE) evolution throughout winters both beneath the canopy and in the nearby clearing, with correlations to observations ranging from 0.81 to 0.99. Additionally, the model was evaluated using measurements from a Boreal Ecosystem-Atmosphere Study (BOREAS) field site in Canada to test the robustness of the canopy snow interception algorithm in a much different climate. Simulated SWE was relatively close to the observations for the forested sites, with discrepancies evident in some cases. Although the model formulation appeared robust for both types of climates, sensitivity to parameters such as snow roughness length and maximum interception capacity suggested the magnitude of improvements of SWE simulations that might be achieved by calibration.

  2. Determinants of Swe1p Degradation in Saccharomyces cerevisiae

    PubMed Central

    McMillan, John N.; Theesfeld, Chandra L.; Harrison, Jacob C.; Bardes, Elaine S. G.; Lew, Daniel J.

    2002-01-01

    Swe1p, the sole Wee1-family kinase in Saccharomyces cerevisiae, is synthesized during late G1 and is then degraded as cells proceed through the cell cycle. However, Swe1p degradation is halted by the morphogenesis checkpoint, which responds to insults that perturb bud formation. The Swe1p stabilization promotes cell cycle arrest through Swe1p-mediated inhibitory phosphorylation of Cdc28p until the cells can recover from the perturbation and resume bud formation. Swe1p degradation involves the relocalization of Swe1p from the nucleus to the mother-bud neck, and neck targeting requires the Swe1p-interacting protein Hsl7p. In addition, Swe1p degradation is stimulated by its substrate, cyclin/Cdc28p, and Swe1p is thought to be a target of the ubiquitin ligase SCFMet30 acting with the ubiquitin-conjugating enzyme Cdc34p. The basis for regulation of Swe1p degradation by the morphogenesis checkpoint remains unclear, and in order to elucidate that regulation we have dissected the Swe1p degradation pathway in more detail, yielding several novel findings. First, we show here that Met30p (and by implication SCFMet30) is not, in fact, required for Swe1p degradation. Second, cyclin/Cdc28p does not influence Swe1p neck targeting, but can directly phosphorylate Swe1p, suggesting that it acts downstream of neck targeting in the Swe1p degradation pathway. Third, a screen for functional but nondegradable mutants of SWE1 identified two small regions of Swe1p that are key to its degradation. One of these regions mediates interaction of Swe1p with Hsl7p, showing that the Swe1p-Hsl7p interaction is critical for Swe1p neck targeting and degradation. The other region did not appear to affect interactions with known Swe1p regulators, suggesting that other as-yet-unknown regulators exist. PMID:12388757

  3. Two-dimensional shear wave elastography of breast lesions: Comparison of two different systems.

    PubMed

    Ren, Wei-Wei; Li, Xiao-Long; He, Ya-Ping; Li, Dan-Dan; Wang, Dan; Zhao, Chong-Ke; Bo, Xiao-Wan; Liu, Bo-Ji; Yue, Wen-Wen; Xu, Hui-Xiong

    2017-01-01

    To evaluate the diagnostic performance of two different shear wave elastography (SWE) techniques in distinguishing malignant breast lesions from benign ones. From March 2016 to May 2016, a total of 153 breast lesions (mean diameter, 16.8 mm±10.5; range 4.1-90.0 mm) in 153 patients (mean age, 46.4 years±15.1; age range 20-86 years) were separately performed by two different SWE techniques (i.e. T-SWE, Aplio500, Toshiba Medical System, Tochigi, Japan; and S-SWE, the Aixplorer US system, SuperSonic Imagine, Provence, France). The maximum (Emax), mean (Emean) and standard deviation (ESD) of elasticity modulus values in T-SWE and S-SWE were analyzed. All the lesions were confirmed by ultrasound (US)-guided core needle biopsy (n = 26), surgery (n = 122), or both (n = 5), with pathological results as the gold standard. The areas under the receiver operating characteristic curves (AUROCs) were calculated. Sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV) were calculated to assess the diagnostic performance between T-SWE and S-SWE. Operator consistency was also evaluated. Among the 153 lesions, 41 (26.8%) were malignant and 112 (73.2%) were benign. Emax (T-SWE: 40.10±37.14 kPa vs. 118.78±34.41 kPa; S-SWE: 41.22±22.54 kPa vs. 134.77±60.51 kPa), Emean (T-SWE: 19.75±16.31 kPa vs. 52.93±25.75 kPa; S-SWE: 20.95±10.98 kPa vs. 55.95±22.42 kPa) and ESD (T-SWE: 9.00±8.55 kPa vs. 38.44±12.30 kPa; S-SWE: 8.17±6.14 kPa vs. 29.34±13.88 kPa) showed statistical differences in distinguishing malignant lesions from benign ones both in T-SWE and S-SWE (all p < 0.05). In T-SWE, the diagnostic performance of ESD was the highest (AUROC = 0.958), followed by Emax (AUROC = 0.909; p = 0.001 in comparison with ESD) and Emean (AUROC = 0.892; p < 0.001 in comparison with ESD), while in S-SWE, the diagnostic performance of Emax was the highest (AUROC = 0.967), followed by ESD (AUROC = 0.962, p > 0.05 in comparison with Emax) and Emean (AUROC = 0.930, p = 0.034 in comparison with Emax). AUROC-max (T-SWE: 0.909 vs. 0.967), AUROC-mean (T-SWE: 0.892 vs. 0.930) and AUROC-SD (T-SWE: 0.958 vs. 0.962) showed no significant difference between T-SWE and S-SWE (all p > 0.05). The intra-class correlation coefficients (ICC) of the intra-operator consistency and inter-operator consistency respectively were 0.961 and 0.898 in T-SWE, while 0.954 and 0.897 in S-SWE. T-SWE and S-SWE are equivalent for distinguishing the breast lesions. In T-SWE, ESD had the best diagnostic performance, while in S-SWE, Emax had the best diagnostic performance.

  4. Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation provides a brief summary of the utility of a wideband active and passive (radar and radiometer, respectively) instrument (8-40 GHz) to support the snow science community. The effort seeks to improve snow measurements through advanced calibration and expanded frequency of active and passive sensors and to demonstrate their science utility through airborne retrievals of snow water equivalent (SWE). In addition the effort seeks to advance the technology readiness of broadband current sheet array (CSA) antenna technology for spaceflight applications.

  5. Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Lambert, Kevin M.; Romanofsky, Robert R.; Durham, Tim; Speed, Kerry; Lange, Robert; Olsen, Art; Smith, Brett; Taylor, Robert; Schmidt, Mark; hide

    2016-01-01

    This presentation discusses current efforts to develop a Wideband Instrument for Snow Measurements (WISM). The objective of the effort are as follows: to advance the utility of a wideband active and passive instrument (8-40 gigahertz) to support the snow science community; improve snow measurements through advanced calibration and expanded frequency of active and passive sensors; demonstrate science utility through airborne retrievals of snow water equivalent (SWE); and advance the technology readiness of broadband current sheet array (CSA) antenna technology for spaceflight applications.

  6. Performance Characteristics of the Electronic Snow Water Equivalent (SWE) Sensor in Arctic, Marine, and Humid Continental Climates

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Gelvin, A. B.; Duvoy, P.; Schaefer, G. L.; Poole, G.; Horton, G. D.

    2011-12-01

    The USA ERDC CRREL and the USDA NRCS developed a 3-m square electronic SWE sensor (e-SWE sensor) consisting of nine perforated panels (a center panel to measure SWE and eight outer panels to buffer edge stress concentrations). Seven e-SWE sensors were installed in five different climate zones including north central and north coastal Alaska, Oregon, Newfoundland, and New York State. With the exception of New York State, the e-SWE sensors accurately measured SWE. The e-SWE sensor at Hogg Pass, OR, accurately measured SWE during five years of observations even when edge stress concentrations occurred. In windy conditions of northern Alaska, the sensor measured losses and gains in SWE with more reliability and higher accuracy than other standard methods. The sensor also detected snowdrift migration (comparing video and sensor measurements). In the thin, icy snow of New York the electronic SWE sensors over-measured SWE during midwinter. Over-measurement errors were caused by edge stress concentrations associated with strong icy layers, a shallow snow cover and possibly using a backfill material with different thermal properties and a large freeboard compared to the surrounding soil . Measurement accuracy improved in spring due to increased snow creep, associated with warming snow temperatures, which reduced edge stress concentrations.

  7. Three-dimensional shear wave elastography for differentiation of breast lesions: An initial study with quantitative analysis using three orthogonal planes.

    PubMed

    Wang, Qiao

    2018-05-25

    To prospectively evaluate the diagnostic performance of three-dimensional (3D) shear wave elastography (SWE) for breast lesions with quantitative stiffness information from transverse, sagittal and coronal planes. Conventional ultrasound (US), two-dimensional (2D)-SWE and 3D-SWE were performed for 122 consecutive patients with 122 breast lesions before biopsy or surgical excision. Maximum elasticity values of Young's modulus (Emax) were recorded on 2D-SWE and three planes of 3D-SWE. Area under the receiver operating characteristic curve (AUC), sensitivity and specificity of US, 2D-SWE and 3D-SWE were evaluated. Two combined sets (i.e., BI-RADS and 2D-SWE; BI-RADS and 3D-SWE) were compared in AUC. Observer consistency was also evaluated. On 3D-SWE, the AUC and sensitivity of sagittal plane were significantly higher than those of transverse and coronal planes (both P < 0.05). Compared with BI-RADS alone, both combined sets had significantly (P < 0.05) higher AUCs and specificities, whereas, the two combined sets showed no significant difference in AUC (P > 0.05). However, the combined set of BI-RADS and sagittal plane of 3D-SWE had significantly higher sensitivity than the combined set of BI-RADS and 2D-SWE. The sagittal plane shows the best diagnostic performance among 3D-SWE. The combination of BI-RADS and 3D-SWE is a useful tool for predicting breast malignant lesions in comparison with BI-RADS alone.

  8. Estimating Snow Water Equivalent over the American River in the Sierra Nevada Basin Using Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Welch, S. C.; Kerkez, B.; Glaser, S. D.; Bales, R. C.; Rice, R.

    2011-12-01

    We have designed a basin-scale (>2000 km2) instrument cluster, made up of 20 local-scale (1-km footprint) wireless sensor networks (WSNs), to measure patterns of snow depth and snow water equivalent (SWE) across the main snowmelt producing area within the American River basin. Each of the 20 WSNs has on the order of 25 wireless nodes, with over 10 nodes actively sensing snow depth, and thus snow accumulation and melt. When combined with existing snow density measurements and full-basin satellite snowcover data, these measurements are designed to provide dense ground-truth snow properties for research and real-time SWE for water management. The design of this large-scale network is based on rigorous testing of previous, smaller-scale studies, permitting for the development of methods to significantly, and efficiently scale up network operations. Recent advances in WSN technology have resulted in a modularized strategy that permits rapid future network deployment. To select network and sensor locations, various sensor placement approaches were compared, including random placement, placement of WSNs in locations that have captured the historical basin mean, as well as a placement algorithm leveraging the covariance structure of the SWE distribution. We show that that the optimal network locations do not exhibit a uniform grid, but rather follow strategic patterns based on physiographic terrain parameters. Uncertainty estimates are also provided to assess the confidence in the placement approach. To ensure near-optimal coverage of the full basin, we validated each placement approach with a multi-year record of SWE derived from reconstruction of historical satellite measurements.

  9. 4-D ultrafast shear-wave imaging.

    PubMed

    Gennisson, Jean-Luc; Provost, Jean; Deffieux, Thomas; Papadacci, Clément; Imbault, Marion; Pernot, Mathieu; Tanter, Mickael

    2015-06-01

    Over the last ten years, shear wave elastography (SWE) has seen considerable development and is now routinely used in clinics to provide mechanical characterization of tissues to improve diagnosis. The most advanced technique relies on the use of an ultrafast scanner to generate and image shear waves in real time in a 2-D plane at several thousands of frames per second. We have recently introduced 3-D ultrafast ultrasound imaging to acquire with matrix probes the 3-D propagation of shear waves generated by a dedicated radiation pressure transducer in a single acquisition. In this study, we demonstrate 3-D SWE based on ultrafast volumetric imaging in a clinically applicable configuration. A 32 × 32 matrix phased array driven by a customized, programmable, 1024-channel ultrasound system was designed to perform 4-D shear-wave imaging. A matrix phased array was used to generate and control in 3-D the shear waves inside the medium using the acoustic radiation force. The same matrix array was used with 3-D coherent plane wave compounding to perform high-quality ultrafast imaging of the shear wave propagation. Volumetric ultrafast acquisitions were then beamformed in 3-D using a delay-and-sum algorithm. 3-D volumetric maps of the shear modulus were reconstructed using a time-of-flight algorithm based on local multiscale cross-correlation of shear wave profiles in the three main directions using directional filters. Results are first presented in an isotropic homogeneous and elastic breast phantom. Then, a full 3-D stiffness reconstruction of the breast was performed in vivo on healthy volunteers. This new full 3-D ultrafast ultrasound system paves the way toward real-time 3-D SWE.

  10. Point shear wave ultrasound elastography with Esaote compared to real-time 2D shear wave elastography with supersonic imagine for the quantification of liver stiffness.

    PubMed

    Mulazzani, L; Salvatore, V; Ravaioli, F; Allegretti, G; Matassoni, F; Granata, R; Ferrarini, A; Stefanescu, H; Piscaglia, Fabio

    2017-09-01

    Different shear wave elastography (SWE) machines able to quantify liver stiffness (LS) have been recently introduced by various companies. The aim of this study was to investigate the agreement between point SWE with Esaote MyLab Twice (pSWE.ESA) and 2D SWE with Aixplorer SuperSonic (2D SWE.SSI). Moreover, we assessed the correlation of these machines with Fibroscan in a subgroup of patients. A total of 81 liver disease patients and 27 subjects without liver disease accessing the ultrasound lab were considered. Exclusion criteria were liver nodules, BMI >35, and severe comorbidities. LS was sampled from the same intercostal space with both pSWE.ESA and 2D SWE.SSI and values were tested with Lin's analysis and Bland-Altman analysis (B&A). Agreement between each SWE machine and Fibroscan was assessed in 26 liver disease patients with Spearman correlation. Precision and accuracy between pSWE.ESA and 2D SWE.SSI were, respectively, 0.839 and 0.999. B&A showed a mean of only -0.2 kPa, with no systematic deviation between the techniques and limits of agreement at -11.6 and 11.3 kPa. Spearman's rho correlation versus Fibroscan was 0.849 for pSWE.ESA and 0.878 for 2D SWE.SSI. The relationship became less strict in the higher range of LS (≥15.2 kPa), corresponding to cirrhosis. The overall degree of concordance of pSWE.ESA and 2D SWE.SSI in measuring LS resulted remarkable, also when compared with Fibroscan. The less strict correlation for patients with LS in the higher range would not affect the staging of disease as such patients are anyhow classified as cirrhotic.

  11. Diagnostic performance and color overlay pattern in shear wave elastography (SWE) for palpable breast mass.

    PubMed

    Park, Jiyoon; Woo, Ok Hee; Shin, Hye Seon; Cho, Kyu Ran; Seo, Bo Kyoung; Kang, Eun Young

    2015-10-01

    The purpose of this study is to evaluate the diagnostic performance of SWE in palpable breast mass and to compare with color overlay pattern in SWE with conventional US and quantitative SWE for assessing palpable breast mass. SWE and conventional breast US were performed in 133 women with 156 palpable breast lesions (81 benign, 75 malignant) between August 2013 to June 2014. Either pathology or periodic imaging surveillance more than 2 years was a reference standard. Existence of previous image was blinded to performing radiologists. US BI-RADS final assessment, qualitative and quantitative SWE measurements were evaluated. Diagnostic performances of grayscale US, SWE and US combined to SWE were calculated and compared. Correlation between pattern classification and quantitative SWE was evaluated. Both color overlay pattern and quantitative SWE improved the specificity of conventional US, from 81.48% to 96.30% (p=0.0005), without improvement in sensitivity. Color overlay pattern was significantly related to all quantitative SWE parameters and malignancy rate (p<0.0001.). The optimal cutoff of color overlay pattern was between 2 and 3. Emax with optimal cutoff at 45.1 kPa showed the highest Az value, sensitivity, specificity and accuracy among other quantitative SWE parameters (p<0.0001). Echogenic halo on grayscale US showed significant correlation with color overlay pattern and pathology (p<0.0001). In evaluation of palpable breast mass, conventional US combine to SWE improves specificity and reduces the number of biopsies that ultimately yield a benign result. Color overlay pattern classification is more quick and easy and may represent quantitative SWE measurements with similar diagnostic performances. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Cosmic-Ray Moisture Probe on North Slope of Alaska Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desilets, Darin

    2016-06-15

    In September of 2014 a wide-area snow monitoring device was installed at the U.S. Department of Energy (DOE)’s Barrow, Alaska Atmospheric Radiation Measurement (ARM) Climate Research Facility site. The device is special in that it uses measurements of cosmic-ray neutrons as a proxy for snow water equivalent (SWE) depth. A unique characteristic of the technology is that it integrates over a wide area (as much as 40 ha), in contrast to conventional ground-based technologies, which essentially give point samples. Conventional point-scale technologies are problematic in the Arctic, both because extreme weather conditions are taxing on equipment, and because point measurementsmore » can fail to accurately characterize the average SWE over a larger area, even when excellent precision is obtained. The sensor installed in Barrow is, by far, the northernmost of a constellation of sites that makeup the U.S. COsmic ray Soil Moisture Observing System (COSMOS). The sensor is used for SWE measurements in winter and soil moisture measurements in summer. The ability of this type of sensor to operate in the Arctic had not been verified until now. The cosmic-ray sensor was installed on a tripod located approximately 150 m south of the ARM User Facility (Figure 1), and within boundaries of land managed by the ARM Facility. The sensor consists of both “bare” and “moderated” channels, where the moderated channel is the primary output used to calculate SWE. A QDL2100 data logger with pressure sensor was located inside of the User Facility, and a Campbell CS215 temperature and humidity sensor was attached to a rail on the upper deck of the User Facility, to enable near-real-time absolute humidity corrections to the data. The cosmic-ray sensors are connected to the data logger using an armored Cat5e cable that lies on top of the tundra. Data are retrieved hourly via Iridium satellite link.« less

  13. Using snow data assimilation to improve ensemble streamflow forecasting for the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Micheletty, P. D.; Perrot, D.; Day, G. N.; Lhotak, J.; Quebbeman, J.; Park, G. H.; Carney, S.

    2017-12-01

    Water supply forecasting in the western United States is inextricably linked to snowmelt processes, as approximately 70-85% of total annual runoff comes from water stored in seasonal mountain snowpacks. Snowmelt-generated streamflow is vital to a variety of downstream uses; the Upper Colorado River Basin (UCRB) alone provides water supply for 25 million people, irrigation water for 3.5 million acres, and drives hydropower generation at Lake Powell. April-July water supply forecasts produced by the National Weather Service (NWS) Colorado Basin River Forecast Center (CBRFC) are critical to basin water management. The primary objective of this project as part of the NASA Water Resources Applied Science Program, is to improve water supply forecasting for the UCRB by assimilating satellite and ground snowpack observations into a distributed hydrologic model at various times during the snow accumulation and melt seasons. To do this, we have built a framework that uses an Ensemble Kalman Filter (EnKF) to update modeled snow water equivalent (SWE) states in the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) with spatially interpolated SNOTEL snow water equivalent (SWE) observations and products from the MODIS Snow Covered-Area and Grain size retrieval algorithm (when available). We have generated April-July water supply reforecasts for a 20-year period (1991-2010) for several headwater catchments in the UCRB using HL-RDHM and snow data assimilation in the Ensemble Streamflow Prediction (ESP) framework. The existing CBRFC ESP reforecasts will provide a baseline for comparison to determine whether the data assimilation process adds skill to the water supply forecasts. Preliminary results from one headwater basin show improved skill in water supply forecasting when HL-RDHM is run with the data assimilation step compared to HL-RDHM run without the data assimilation step, particularly in years when MODSCAG data were available (2000-2010). The final forecasting framework developed during this project will be delivered to CBRFC and run operationally for a set of pilot basins.

  14. Qualitative pattern classification of shear wave elastography for breast masses: how it correlates to quantitative measurements.

    PubMed

    Yoon, Jung Hyun; Ko, Kyung Hee; Jung, Hae Kyoung; Lee, Jong Tae

    2013-12-01

    To determine the correlation of qualitative shear wave elastography (SWE) pattern classification to quantitative SWE measurements and whether it is representative of quantitative SWE values with similar performances. From October 2012 to January 2013, 267 breast masses of 236 women (mean age: 45.12 ± 10.54 years, range: 21-88 years) who had undergone ultrasonography (US), SWE, and subsequent biopsy were included. US BI-RADS final assessment and qualitative and quantitative SWE measurements were recorded. Correlation between pattern classification and mean elasticity, maximum elasticity, elasticity ratio and standard deviation were evaluated. Diagnostic performances of grayscale US, SWE parameters, and US combined to SWE values were calculated and compared. Of the 267 breast masses, 208 (77.9%) were benign and 59 (22.1%) were malignant. Pattern classifications significantly correlated with all quantitative SWE measurements, showing highest correlation with maximum elasticity, r = 0.721 (P<0.001). Sensitivity was significantly decreased in US combined to SWE measurements to grayscale US: 69.5-89.8% to 100.0%, while specificity was significantly improved: 62.5-81.7% to 13.9% (P<0.001). Area under the ROC curve (Az) did not show significant differences between grayscale US to US combined to SWE (P>0.05). Pattern classification shows high correlation to maximum stiffness and may be representative of quantitative SWE values. When combined to grayscale US, SWE improves specificity of US. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Using Sensor Web Processes and Protocols to Assimilate Satellite Data into a Forecast Model

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Conover, Helen; Zavodsky, Bradley; Maskey, Manil; Jedlovec, Gary; Regner, Kathryn; Li, Xiang; Lu, Jessica; Botts, Mike; Berthiau, Gregoire

    2008-01-01

    The goal of the Sensor Management Applied Research Technologies (SMART) On-Demand Modeling project is to develop and demonstrate the readiness of the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities to integrate both space-based Earth observations and forecast model output into new data acquisition and assimilation strategies. The project is developing sensor web-enabled processing plans to assimilate Atmospheric Infrared Sounding (AIRS) satellite temperature and moisture retrievals into a regional Weather Research and Forecast (WRF) model over the southeastern United States.

  16. Evaluation and Application of Gridded Snow Water Equivalent Products for Improving Snowmelt Flood Predictions in the Red River Basin of the North

    NASA Astrophysics Data System (ADS)

    Schroeder, R.; Jacobs, J. M.; Vuyovich, C.; Cho, E.; Tuttle, S. E.

    2017-12-01

    Each spring the Red River basin (RRB) of the North, located between the states of Minnesota and North Dakota and southern Manitoba, is vulnerable to dangerous spring snowmelt floods. Flat terrain, low permeability soils and a lack of satisfactory ground observations of snow pack conditions make accurate predictions of the onset and magnitude of major spring flood events in the RRB very challenging. This study investigated the potential benefit of using gridded snow water equivalent (SWE) products from passive microwave satellite missions and model output simulations to improve snowmelt flood predictions in the RRB using NOAA's operational Community Hydrologic Prediction System (CHPS). Level-3 satellite SWE products from AMSR-E, AMSR2 and SSM/I, as well as SWE computed from Level-2 brightness temperatures (Tb) measurements, including model output simulations of SWE from SNODAS and GlobSnow-2 were chosen to support the snowmelt modeling exercises. SWE observations were aggregated spatially (i.e. to the NOAA North Central River Forecast Center forecast basins) and temporally (i.e. by obtaining daily screened and weekly unscreened maximum SWE composites) to assess the value of daily satellite SWE observations relative to weekly maximums. Data screening methods removed the impacts of snow melt and cloud contamination on SWE and consisted of diurnal SWE differences and a temperature-insensitive polarization difference ratio, respectively. We examined the ability of the satellite and model output simulations to capture peak SWE and investigated temporal accuracies of screened and unscreened satellite and model output SWE. The resulting SWE observations were employed to update the SNOW-17 snow accumulation and ablation model of CHPS to assess the benefit of using temporally and spatially consistent SWE observations for snow melt predictions in two test basins in the RRB.

  17. Application of 3D and 2D quantitative shear wave elastography (SWE) to differentiate between benign and malignant breast masses.

    PubMed

    Tian, Jie; Liu, Qianqi; Wang, Xi; Xing, Ping; Yang, Zhuowen; Wu, Changjun

    2017-01-20

    As breast cancer tissues are stiffer than normal tissues, shear wave elastography (SWE) can locally quantify tissue stiffness and provide histological information. Moreover, tissue stiffness can be observed on three-dimensional (3D) colour-coded elasticity maps. Our objective was to evaluate the diagnostic performances of quantitative features in differentiating breast masses by two-dimensional (2D) and 3D SWE. Two hundred ten consecutive women with 210 breast masses were examined with B-mode ultrasound (US) and SWE. Quantitative features of 3D and 2D SWE were assessed, including elastic modulus standard deviation (E SD E ) measured on SWE mode images and E SD U measured on B-mode images, as well as maximum elasticity (E max ). Adding quantitative features to B-mode US improved the diagnostic performance (p < 0.05) and reduced false-positive biopsies (p < 0.0001). The area under the receiver operating characteristic curve (AUC) of 3D SWE was similar to that of 2D SWE for E SD E (p = 0.026) and E SD U (p = 0.159) but inferior to that of 2D SWE for E max (p = 0.002). Compared with E SD U , E SD E showed a higher AUC on 2D (p = 0.0038) and 3D SWE (p = 0.0057). Our study indicates that quantitative features of 3D and 2D SWE can significantly improve the diagnostic performance of B-mode US, especially 3D SWE E SD E , which shows considerable clinical value.

  18. Diagnostic accuracy of point shear wave elastography in the detection of portal hypertension in pediatric patients.

    PubMed

    Burak Özkan, M; Bilgici, M C; Eren, E; Caltepe, G

    2018-03-01

    The purpose of this study was to determine the usefulness of point shear wave elastography (p-SWE) of the liver and spleen for the detection of portal hypertension in pediatric patients. The study consisted of 38 healthy children and 56 pediatric patients with biopsy-proven liver disease who underwent splenic and liver p-SWE. The diagnostic performance of p-SWE in detecting clinically significant portal hypertension was assessed using receiver operating characteristic (ROC) curves. Reliable measurements of splenic and liver stiffness with p-SWE were obtained in 76/94 (81%) and 80/94 patients (85%), respectively. The splenic stiffness was highest in the portal hypertension group (P<0.01). At ROC curve analysis, the area under the curve in the detection of portal hypertension was lower for splenic p-SWE than for liver p-SWE (0.906 vs. 0.746; P=0.0239). The cut-off value of splenic p-SWE for portal hypertension was 3.14m/s, with a specificity of 98.59% and a sensitivity of 68.18%. The cut-off value of liver p-SWE for portal hypertension was 2.09m/s, with a specificity of 80.28% and a sensitivity of 77.27%. In pediatric patients, p-SWE is a reliable method for detecting portal hypertension. However, splenic p-SWE is less accurate than liver p-SWE for the diagnosis of portal hypertension. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  19. Shear-wave elastography and greyscale assessment of palpable probably benign masses: is biopsy always required?

    PubMed

    Giannotti, Elisabetta; Vinnicombe, Sarah; Thomson, Kim; McLean, Dennis; Purdie, Colin; Jordan, Lee; Evans, Andy

    2016-06-01

    To establish if palpable breast masses with benign greyscale ultrasound features that are soft on shear-wave elastography (SWE) (mean stiffness <50 kPa) have a low enough likelihood of malignancy to negate the need for biopsy or follow-up. The study group comprised 694 lesions in 682 females (age range 17-95 years, mean age 56 years) presenting consecutively to our institution with palpable lesions corresponding to discrete masses at ultrasound. All underwent ultrasound, SWE and needle core biopsy. Static greyscale images were retrospectively assigned Breast Imaging Reporting and Data System (BI-RADS) scores by two readers blinded to the SWE and pathology findings, but aware of the patient's age. A mean stiffness of 50 kPa was used as the SWE cut-off for calling a lesion soft or stiff. Histological findings were used to establish ground truth. No cancer had benign characteristics on both modalities. 466 (99.8%) of the 467 cancers were classified BI-RADS 4a or above. The one malignant lesion classified as BI-RADS 3 was stiff on SWE. 446 (96%) of the 467 malignancies were stiff on SWE. No cancer in females under 40 years had benign SWE features. 74 (32.6%) of the 227 benign lesions were BI-RADS 3 and soft on SWE; so, biopsy could potentially have been avoided in this group. Lesions which appear benign on greyscale ultrasound and SWE do not require percutaneous biopsy or short-term follow-up, particularly in females under 40 years. None of the cancers had benign characteristics on both greyscale ultrasound and SWE, and 32% of benign lesions were BI-RADS 3 and soft on SWE; lesions that are benign on both ultrasound and SWE may not require percutaneous biopsy or short-term follow-up.

  20. Shear-wave elastography in the diagnosis of solid breast masses: what leads to false-negative or false-positive results?

    PubMed

    Yoon, Jung Hyun; Jung, Hae Kyoung; Lee, Jong Tae; Ko, Kyung Hee

    2013-09-01

    To investigate the factors that have an effect on false-positive or false-negative shear-wave elastography (SWE) results in solid breast masses. From June to December 2012, 222 breast lesions of 199 consecutive women (mean age: 45.3 ± 10.1 years; range, 21 to 88 years) who had been scheduled for biopsy or surgical excision were included. Greyscale ultrasound and SWE were performed in all women before biopsy. Final ultrasound assessments and SWE parameters (pattern classification and maximum elasticity) were recorded and compared with histopathology results. Patient and lesion factors in the 'true' and 'false' groups were compared. Of the 222 masses, 175 (78.8 %) were benign, and 47 (21.2 %) were malignant. False-positive rates of benign masses were significantly higher than false-negative rates of malignancy in SWE patterns, 36.6 % to 6.4 % (P < 0.001). Among both benign and malignant masses, factors showing significance among false SWE features were lesion size, breast thickness and lesion depth (all P < 0.05). All 47 malignant breast masses had SWE images of good quality. False SWE features were more significantly seen in benign masses. Lesion size, breast thickness and lesion depth have significance in producing false results, and this needs consideration in SWE image acquisition. • Shear-wave elastography (SWE) is widely used during breast imaging • At SWE, false-positive rates were significantly higher than false-negative rates • Larger size, breast thickness, depth and fair quality influences false-positive SWE features • Smaller size, larger breast thickness and depth influences false-negative SWE features.

  1. The microbiological and immunomodulatory effects of spray-dried versus wet dietary supplementation of seaweed extract in the pig gastrointestinal tract.

    PubMed

    Mukhopadhya, A; O'Doherty, J V; Smith, A; Bahar, B; Sweeney, T

    2012-12-01

    Seaweeds and seaweed extract (SWE) possess antimicrobial, anti-inflammatory, prebiotic, and growth-promoting properties. Extracts can be prepared in different ways including wet, spray-dried, and freeze-dried forms. The aim of this study was to determine if spray drying of laminarin and fucoidan derived from Laminaria digitata had an effect on the microbiological and cytokine profile of the gastrointestinal tract (GIT) compared to the wet SWE in newly weaned pigs. No differences in cytokine expression were observed between wet and spray dried SWE formulation in either the ileum or colon. Bifidobacteria counts were greater (P < 0.05) in the wet SWE formulation relative to both spray dried SWE and the basal diet in the ileum. In conclusion, neither of the SWE formulations had significant effects on the cytokine profile in the ileum or colon. However, a prebiotic effect observed in the ileum of piglets in response to the wet SWE formulation was lost following spray drying of the SWE.

  2. Comparison of 3D and 2D shear-wave elastography for differentiating benign and malignant breast masses: focus on the diagnostic performance.

    PubMed

    Choi, H Y; Sohn, Y-M; Seo, M

    2017-10-01

    To evaluate the diagnostic performance of three-dimensional (3D) image shear-wave elastography (SWE) for differentiating benign from malignant breast masses compared to two-dimensional (2D) SWE and B-mode ultrasound (US). This study consisted of 205 breast lesions from 199 patients who underwent B-mode US and SWE before biopsy from January 2014 to March 2016. Quantitative elasticity values (maximum and mean elasticity, Emax and Emean) obtained from 2D and 3D SWE (axial, sagittal, and coronal images) were reviewed retrospectively, in addition to the histopathological findings including immunohistochemistry profiles (luminal A, luminal B, human epidermal growth factor receptor 2 (HER2)-enriched, and triple-negative breast cancer) in cases of malignancy. Histopathological findings were regarded as the reference standard. The diagnostic performance of each data set was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) analysis to compare sensitivity and specificity. Among 205 lesions, 105 (51.22%) were malignant and 100 (48.78%) were benign. Compared to benign masses, malignant masses had higher values of Emax and Emean on both 2D and 3D SWE, the differences of which were statistically significant (p<0.001). The AUCs of 2D, 3D axial, and sagittal SWE were significantly higher than that of 3D coronal SWE (p<0.05). In addition, the sensitivities of axial, sagittal, and coronal 3D SWE were all higher than that of 2D SWE for Emean (81.9%, 87.6%, and 89.5% versus 70.5%, respectively, p<0.05). Conversely, the specificity of 2D and 3D axial SWE was higher than that of 3D sagittal and coronal SWE (Emax, 84%, 83% versus 76%, 73%; Emean, 85%, 81% versus 68%, 50%, respectively, p<0.05). We also assessed changes in Breast Imaging-Reporting and Data System (BI-RADS) category 3 and category 4a lesions by adding each of the parameters for 2D and 3D SWE in B-mode US. The specificity, PPV, and accuracy of combined 2D or combined 3D SWE with B-mode US was statistically higher than that of B-mode US alone for differentiating benign and malignant lesions (p<0.05). Among SWE images, 2D SWE, and 3D SWE axial and sagittal images exhibited superior diagnostic performance compared to 3D coronal images. Addition of 3D SWE images to B-mode US improved the diagnostic performance for distinguishing benign from malignant masses. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  3. Shear wave elastography in medullary thyroid carcinoma diagnostics.

    PubMed

    Dobruch-Sobczak, Katarzyna; Gumińska, Anna; Bakuła-Zalewska, Elwira; Mlosek, Krzysztof; Słapa, Rafał Z; Wareluk, Paweł; Krauze, Agnieszka; Ziemiecka, Agnieszka; Migda, Bartosz; Jakubowski, Wiesław; Dedecjus, Marek

    2015-12-01

    Shear wave elastography (SWE) is a modern method for the assessment of tissue stiffness. There has been a growing interest in the use of this technique for characterizing thyroid focal lesions, including preoperative diagnostics. The aim of the study was to assess the clinical usefulness of SWE in medullary thyroid carcinoma (MTC) diagnostics. A total of 169 focal lesions were identified in the study group (139 patients), including 6 MTCs in 4 patients (mean age: 45 years). B-mode ultrasound and SWE were performed using Aixplorer (SuperSonic, Aix-en-Provence), with a 4-15 MHz linear probe. The ultrasound was performed to assess the echogenicity and echostructure of the lesions, their margin, the halo sign, the height/width ratio (H/W ratio), the presence of calcifications and the vascularization pattern. This was followed by an analysis of maximum and mean Young's (E) modulus values for MTC (EmaxLR, EmeanLR) and the surrounding thyroid tissues (EmaxSR, EmeanSR), as well as mean E-values (EmeanLRz) for 2 mm region of interest in the stiffest zone of the lesion. The lesions were subject to pathological and/or cytological evaluation. The B-mode assessment showed that all MTCs were hypoechogenic, with no halo sign, and they contained micro- and/ or macrocalcifications. Ill-defined lesion margin were found in 4 out of 6 cancers; 4 out of 6 cancers had a H/W ratio > 1. Heterogeneous echostructure and type III vascularity were found in 5 out of 6 lesions. In the SWE, the mean value of EmaxLR for all of the MTCs was 89.5 kPa and (the mean value of EmaxSR for all surrounding tissues was) 39.7 kPa Mean values of EmeanLR and EmeanSR were 34.7 kPa and 24.4 kPa, respectively. The mean value of EmeanLRz was 49.2 kPa. SWE showed MTCs as stiffer lesions compared to the surrounding tissues. The lesions were qualified for fine needle aspiration biopsy based on B-mode assessment. However, the diagnostic algorithm for MTC is based on the measurement of serum calcitonin levels, B-mode ultrasound and FNAB.

  4. A novel image retrieval algorithm based on PHOG and LSH

    NASA Astrophysics Data System (ADS)

    Wu, Hongliang; Wu, Weimin; Peng, Jiajin; Zhang, Junyuan

    2017-08-01

    PHOG can describe the local shape of the image and its relationship between the spaces. The using of PHOG algorithm to extract image features in image recognition and retrieval and other aspects have achieved good results. In recent years, locality sensitive hashing (LSH) algorithm has been superior to large-scale data in solving near-nearest neighbor problems compared with traditional algorithms. This paper presents a novel image retrieval algorithm based on PHOG and LSH. First, we use PHOG to extract the feature vector of the image, then use L different LSH hash table to reduce the dimension of PHOG texture to index values and map to different bucket, and finally extract the corresponding value of the image in the bucket for second image retrieval using Manhattan distance. This algorithm can adapt to the massive image retrieval, which ensures the high accuracy of the image retrieval and reduces the time complexity of the retrieval. This algorithm is of great significance.

  5. Deriving Snow-Cover Depletion Curves for Different Spatial Scales from Remote Sensing and Snow Telemetry Data

    NASA Technical Reports Server (NTRS)

    Fassnacht, Steven R.; Sexstone, Graham A.; Kashipazha, Amir H.; Lopez-Moreno, Juan Ignacio; Jasinski, Michael F.; Kampf, Stephanie K.; Von Thaden, Benjamin C.

    2015-01-01

    During the melting of a snowpack, snow water equivalent (SWE) can be correlated to snow-covered area (SCA) once snow-free areas appear, which is when SCA begins to decrease below 100%. This amount of SWE is called the threshold SWE. Daily SWE data from snow telemetry stations were related to SCA derived from moderate-resolution imaging spectro radiometer images to produce snow-cover depletion curves. The snow depletion curves were created for an 80,000 sq km domain across southern Wyoming and northern Colorado encompassing 54 snow telemetry stations. Eight yearly snow depletion curves were compared, and it is shown that the slope of each is a function of the amount of snow received. Snow-cover depletion curves were also derived for all the individual stations, for which the threshold SWE could be estimated from peak SWE and the topography around each station. A stations peak SWE was much more important than the main topographic variables that included location, elevation, slope, and modelled clear sky solar radiation. The threshold SWE mostly illustrated inter-annual consistency.

  6. Preliminary Evaluation of the AFWA-NASA (ANSA) Blended Snow-Cover Product over the Lower Great Lakes Region

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Foster, James L.; Riggs, George A.; Kelly, Richard E. J.; Chien, Janet Y. L.; Montesano, Paul M.

    2009-01-01

    The Air Force Weather Agency (AFWA) - NASA (ANSA) blended-snow product utilizes EOS standard snow products from the Moderate-Resolution Imaging Spectroradiometer (MODIS) and the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) to map daily snow cover and snow-water equivalent (SWE) globally. We have compared ANSA-derived SWE. with SWE values calculated from snow depths reported at approx.1500 National Climatic Data Center (NCDC) coop stations in the Lower Great Lakes basin. Our preliminary results show that conversion of snow depth to SWE is very sensitive to the choice of snow density (we used either 0.2 or 03 as conversion factors). We found overall better agreement between the ANSA-derived SWE and the co-op station data when we use a snow density of 0.3 to convert the snow depths to SWE. In addition, we show that the ANSA underestimates SWE in densely-forested areas, using January and February 2008 ANSA and co-op data. Furthermore, apparent large SWE changes from one day to the next may be caused by thaw-re-freeze events, and do not always represent a real change in SWE. In the near future we will continue the analysis in the 2006-07 and 2007-08 snow seasons.

  7. Differentiation of benign from malignant solid breast masses: comparison of two-dimensional and three-dimensional shear-wave elastography.

    PubMed

    Lee, Su Hyun; Chang, Jung Min; Kim, Won Hwa; Bae, Min Sun; Cho, Nariya; Yi, Ann; Koo, Hye Ryoung; Kim, Seung Ja; Kim, Jin You; Moon, Woo Kyung

    2013-04-01

    To prospectively compare the diagnostic performances of two-dimensional (2D) and three-dimensional (3D) shear-wave elastography (SWE) for differentiating benign from malignant breast masses. B-mode ultrasound and SWE were performed for 134 consecutive women with 144 breast masses before biopsy. Quantitative elasticity values (maximum and mean elasticity in the stiffest portion of mass, Emax and Emean; lesion-to-fat elasticity ratio, Erat) were measured with both 2D and 3D SWE. The area under the receiver operating characteristic curve (AUC), sensitivity and specificity of B-mode, 2D, 3D SWE and combined data of B-mode and SWE were compared. Sixty-seven of the 144 breast masses (47 %) were malignant. Overall, higher elasticity values of 3D SWE than 2D SWE were noted for both benign and malignant masses. The AUC for 2D and 3D SWE were not significantly different: Emean, 0.938 vs 0.928; Emax, 0.939 vs 0.930; Erat, 0.907 vs 0.871. Either 2D or 3D SWE significantly improved the specificity of B-mode ultrasound from 29.9 % (23 of 77) up to 71.4 % (55 of 77) and 63.6 % (49 of 77) without a significant change in sensitivity. Two-dimensional and 3D SWE performed equally in distinguishing benign from malignant masses and both techniques improved the specificity of B-mode ultrasound.

  8. Large scale snow water status monitoring: comparison of different snow water products in the upper Colorado basins

    USGS Publications Warehouse

    Artan, G.A.; Verdin, J.P.; Lietzow, R.

    2013-01-01

    We illustrate the ability to monitor the status of snowpack over large areas by using a~spatially distributed snow accumulation and ablation model in the Upper Colorado Basin. The model was forced with precipitation fields from the National Weather Service (NWS) Multi-sensor Precipitation Estimator (MPE) and the Tropical Rainfall Measuring Mission (TRMM) datasets; remaining meteorological model input data was from NOAA's Global Forecast System (GFS) model output fields. The simulated snow water equivalent (SWE) was compared to SWEs from the Snow Data Assimilation System (SNODAS) and SNOwpack TELemetry system (SNOTEL) over a~region of the Western United States that covers parts of the Upper Colorado Basin. We also compared the SWE product estimated from the Special Sensor Microwave Imager (SSM/I) and Scanning Multichannel Microwave Radiometer (SMMR) to the SNODAS and SNOTEL SWE datasets. Agreement between the spatial distribution of the simulated SWE with both SNODAS and SNOTEL was high for the two model runs for the entire snow accumulation period. Model-simulated SWEs, both with MPE and TRMM, were significantly correlated spatially on average with the SNODAS (r = 0.81 and r = 0.54; d.f. = 543) and the SNOTEL SWE (r = 0.85 and r = 0.55; d.f. = 543), when monthly basinwide simulated average SWE the correlation was also highly significant (r = 0.95 and r = 0.73; d.f. = 12). The SWE estimated from the passive microwave imagery was not correlated either with the SNODAS SWE or (r = 0.14, d.f. = 7) SNOTEL-reported SWE values (r = 0.08, d.f. = 7). The agreement between modeled SWE and the SWE recorded by SNODAS and SNOTEL weakened during the snowmelt period due to an underestimation bias of the air temperature that was used as model input forcing.

  9. Shear wave elastography in the diagnosis of breast non-mass lesions: factors associated with false negative and false positive results.

    PubMed

    Park, So Yoon; Choi, Ji Soo; Han, Boo-Kyung; Ko, Eun Young; Ko, Eun Sook

    2017-09-01

    To investigate factors related to false shear wave elastography (SWE) results for breast non-mass lesions (NMLs) detected by B-mode US. This retrospective study enrolled 152 NMLs detected by B-mode US and later pathologically confirmed (79 malignant, 73 benign). All lesions underwent B-mode US and SWE. Quantitative (mean elasticity [E mean ]) and qualitative (maximum stiffness colour) SWE parameters were assessed, and 'E mean  > 85.1 kPa' or 'stiff colour (green to red)' determined malignancy. Final SWE results were matched to pathology results. Multivariate logistic regression analysis identified factors associated with false SWE results for diagnosis of breast NMLs. Associated calcifications (E mean : odds ratio [OR] = 7.60, P < 0.01; maximum stiffness colour: OR = 6.30, P = 0.02), in situ cancer compared to invasive cancer (maximum stiffness colour: OR = 5.29, P = 0.02), and lesion size (E mean : OR = 0.90, P < 0.01; maximum stiffness colour: OR = 0.91, P = 0.01) were significantly associated with false negative SWE results for malignant NMLs. Distance from the nipple (E mean : OR = 0.84, P = 0.03; maximum stiffness colour: OR = 0.93, P = 0.04) was significantly associated with false positive SWE results for benign NMLs. Presence of associated calcifications, absence of the invasive component, and smaller lesion size for malignant NMLs and shorter distance from the nipple for benign NMLs are factors significantly associated with false SWE results. • Calcification and size are associated with false negative SWE in malignant NMLs. • In situ cancer is associated with false negative SWE in malignant NMLs. • Distance from the nipple is associated with false positive SWE in benign NMLs. • These factors need consideration when performing SWE on breast NMLs.

  10. Two-View versus Single-View Shear-Wave Elastography: Comparison of Observer Performance in Differentiating Benign from Malignant Breast Masses.

    PubMed

    Lee, Su Hyun; Cho, Nariya; Chang, Jung Min; Koo, Hye Ryoung; Kim, Jin You; Kim, Won Hwa; Bae, Min Sun; Yi, Ann; Moon, Woo Kyung

    2013-10-28

    Purpose To determine whether two-view shear-wave elastography (SWE) improves the performance of radiologists in differentiating benign from malignant breast masses compared with single-view SWE. Materials and Methods This prospective study was conducted with institutional review board approval, and written informed consent was obtained. B-mode ultrasonographic (US) and orthogonal SWE images were obtained for 219 breast masses (136 benign and 83 malignant; mean size, 14.8 mm) in 219 consecutive women (mean age, 47.9 years; range, 20-78 years). Five blinded radiologists independently assessed the likelihood of malignancy for three data sets: B-mode US alone, B-mode US and single-view SWE, and B-mode US and two-view SWE. Interobserver agreement regarding Breast Imaging Reporting and Data System (BI-RADS) category and the area under the receiver operating characteristic curve (AUC) of each data set were compared. Results Interobserver agreement was moderate (κ = 0.560 ± 0.015 [standard error of the mean]) for BI-RADS category assessment with B-mode US alone. When SWE was added to B-mode US, five readers showed substantial interobserver agreement (κ = 0.629 ± 0.017 for single-view SWE; κ = 0.651 ± 0.014 for two-view SWE). The mean AUC of B-mode US was 0.870 (range, 0.855-0.884). The AUC of B-mode US and two-view SWE (average, 0.928; range, 0.904-0.941) was higher than that of B-mode US and single-view SWE (average, 0.900; range, 0.890-0.920), with statistically significant differences for three readers (P ≤ .003). Conclusion The performance of radiologists in differentiating benign from malignant breast masses was improved when B-mode US was combined with two-view SWE compared with that when B-mode US was combined with single-view SWE. © RSNA, 2013 Supplemental material: S1.

  11. Two-view versus single-view shear-wave elastography: comparison of observer performance in differentiating benign from malignant breast masses.

    PubMed

    Lee, Su Hyun; Cho, Nariya; Chang, Jung Min; Koo, Hye Ryoung; Kim, Jin You; Kim, Won Hwa; Bae, Min Sun; Yi, Ann; Moon, Woo Kyung

    2014-02-01

    To determine whether two-view shear-wave elastography (SWE) improves the performance of radiologists in differentiating benign from malignant breast masses compared with single-view SWE. This prospective study was conducted with institutional review board approval, and written informed consent was obtained. B-mode ultrasonographic (US) and orthogonal SWE images were obtained for 219 breast masses (136 benign and 83 malignant; mean size, 14.8 mm) in 219 consecutive women (mean age, 47.9 years; range, 20-78 years). Five blinded radiologists independently assessed the likelihood of malignancy for three data sets: B-mode US alone, B-mode US and single-view SWE, and B-mode US and two-view SWE. Interobserver agreement regarding Breast Imaging Reporting and Data System (BI-RADS) category and the area under the receiver operating characteristic curve (AUC) of each data set were compared. Interobserver agreement was moderate (κ = 0.560 ± 0.015 [standard error of the mean]) for BI-RADS category assessment with B-mode US alone. When SWE was added to B-mode US, five readers showed substantial interobserver agreement (κ = 0.629 ± 0.017 for single-view SWE; κ = 0.651 ± 0.014 for two-view SWE). The mean AUC of B-mode US was 0.870 (range, 0.855-0.884). The AUC of B-mode US and two-view SWE (average, 0.928; range, 0.904-0.941) was higher than that of B-mode US and single-view SWE (average, 0.900; range, 0.890-0.920), with statistically significant differences for three readers (P ≤ .003). The performance of radiologists in differentiating benign from malignant breast masses was improved when B-mode US was combined with two-view SWE compared with that when B-mode US was combined with single-view SWE. © RSNA, 2013

  12. Shear wave elastography for breast masses is highly reproducible.

    PubMed

    Cosgrove, David O; Berg, Wendie A; Doré, Caroline J; Skyba, Danny M; Henry, Jean-Pierre; Gay, Joel; Cohen-Bacrie, Claude

    2012-05-01

    To evaluate intra- and interobserver reproducibility of shear wave elastography (SWE) for breast masses. For intraobserver reproducibility, each observer obtained three consecutive SWE images of 758 masses that were visible on ultrasound. 144 (19%) were malignant. Weighted kappa was used to assess the agreement of qualitative elastographic features; the reliability of quantitative measurements was assessed by intraclass correlation coefficients (ICC). For the interobserver reproducibility, a blinded observer reviewed images and agreement on features was determined. Mean age was 50 years; mean mass size was 13 mm. Qualitatively, SWE images were at least reasonably similar for 666/758 (87.9%). Intraclass correlation for SWE diameter, area and perimeter was almost perfect (ICC ≥ 0.94). Intraobserver reliability for maximum and mean elasticity was almost perfect (ICC = 0.84 and 0.87) and was substantial for the ratio of mass-to-fat elasticity (ICC = 0.77). Interobserver agreement was moderate for SWE homogeneity (κ = 0.57), substantial for qualitative colour assessment of maximum elasticity (κ = 0.66), fair for SWE shape (κ = 0.40), fair for B-mode mass margins (κ = 0.38), and moderate for B-mode mass shape (κ = 0.58), orientation (κ = 0.53) and BI-RADS assessment (κ = 0.59). SWE is highly reproducible for assessing elastographic features of breast masses within and across observers. SWE interpretation is at least as consistent as that of BI-RADS ultrasound B-mode features. • Shear wave ultrasound elastography can measure the stiffness of breast tissue • It provides a qualitatively and quantitatively interpretable colour-coded map of tissue stiffness • Intraobserver reproducibility of SWE is almost perfect while intraobserver reproducibility of SWE proved to be moderate to substantial • The most reproducible SWE features between observers were SWE image homogeneity and maximum elasticity.

  13. CREST-SAFE: Snow LST validation, wetness profiler creation, and depth/SWE product development

    NASA Astrophysics Data System (ADS)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Khanbilvardi, R.; Munoz Barreto, J.; Yu, Y.

    2017-12-01

    CREST-SAFE: Snow LST validation, wetness profiler creation, and depth/SWE product development The Field Snow Research Station (also referred to as Snow Analysis and Field Experiment, SAFE) is operated by the NOAA Center for Earth System Sciences and Remote Sensing Technologies (CREST) in the City University of New York (CUNY). The field station is located within the premises of the Caribou Municipal Airport (46°52'59'' N, 68°01'07'' W) and in close proximity to the National Weather Service (NWS) Regional Forecast Office. The station was established in 2010 to support studies in snow physics and snow remote sensing. The Visible Infrared Imager Radiometer Suite (VIIRS) Land Surface Temperature (LST) Environmental Data Record (EDR) and Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (provided by the Terra and Aqua Earth Observing System satellites) were validated using in situ LST (T-skin) and near-surface air temperature (T-air) observations recorded at CREST-SAFE for the winters of 2013 and 2014. Results indicate that T-air correlates better than T-skin with VIIRS LST data and that the accuracy of nighttime LST retrievals is considerably better than that of daytime. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and night-time values. Results indicate that, although all the data sets showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C). Additionally, we created a liquid water content (LWC)-profiling instrument using time-domain reflectometry (TDR) at CREST-SAFE and tested it during the snow melt period (February-April) immediately after installation in 2014. Results displayed high agreement when compared to LWC estimates obtained using empirical formulas developed in previous studies, and minor improvement over wet snow LWC estimates. Lastly, to improve on global snow cover mapping, a snow product capable of estimating snow depth and snow water equivalent (SWE) using microwave remote sensing and the CREST Snow Depth Regression Tree Model (SDRTM) was developed. Data from AMSR2 onboard the JAXA GCOM-W1 satellite is used to produce daily global snow depth and SWE maps in automated fashion at a 10-km resolution.

  14. Using ground penetrating radar to assess the variability of snow water equivalent and melt in a mixed canopy forest, Northern Colorado

    NASA Astrophysics Data System (ADS)

    Webb, Ryan W.

    2017-09-01

    Snow is an important environmental variable in headwater systems that controls hydrological processes such as streamflow, groundwater recharge, and evapotranspiration. These processes will be affected by both the amount of snow available for melt and the rate at which it melts. Snow water equivalent (SWE) and snowmelt are known to vary within complex subalpine terrain due to terrain and canopy influences. This study assesses this variability during the melt season using ground penetrating radar to survey multiple plots in northwestern Colorado near a snow telemetry (SNOTEL) station. The plots include south aspect and flat aspect slopes with open, coniferous (subalpine fir, Abies lasiocarpa and engelman spruce, Picea engelmanii), and deciduous (aspen, populous tremuooides) canopy cover. Results show the high variability for both SWE and loss of SWE during spring snowmelt in 2014. The coefficient of variation for SWE tended to increase with time during snowmelt whereas loss of SWE remained similar. Correlation lengths for SWE were between two and five meters with melt having correlation lengths between two and four meters. The SNOTEL station regularly measured higher SWE values relative to the survey plots but was able to reasonably capture the overall mean loss of SWE during melt. Ground Penetrating Radar methods can improve future investigations with the advantage of non-destructive sampling and the ability to estimate depth, density, and SWE.

  15. Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land

    NASA Astrophysics Data System (ADS)

    Lipponen, Antti; Mielonen, Tero; Pitkänen, Mikko R. A.; Levy, Robert C.; Sawyer, Virginia R.; Romakkaniemi, Sami; Kolehmainen, Ville; Arola, Antti

    2018-03-01

    We have developed a Bayesian aerosol retrieval (BAR) algorithm for the retrieval of aerosol optical depth (AOD) over land from the Moderate Resolution Imaging Spectroradiometer (MODIS). In the BAR algorithm, we simultaneously retrieve all dark land pixels in a granule, utilize spatial correlation models for the unknown aerosol parameters, use a statistical prior model for the surface reflectance, and take into account the uncertainties due to fixed aerosol models. The retrieved parameters are total AOD at 0.55 µm, fine-mode fraction (FMF), and surface reflectances at four different wavelengths (0.47, 0.55, 0.64, and 2.1 µm). The accuracy of the new algorithm is evaluated by comparing the AOD retrievals to Aerosol Robotic Network (AERONET) AOD. The results show that the BAR significantly improves the accuracy of AOD retrievals over the operational Dark Target (DT) algorithm. A reduction of about 29 % in the AOD root mean square error and decrease of about 80 % in the median bias of AOD were found globally when the BAR was used instead of the DT algorithm. Furthermore, the fraction of AOD retrievals inside the ±(0.05+15 %) expected error envelope increased from 55 to 76 %. In addition to retrieving the values of AOD, FMF, and surface reflectance, the BAR also gives pixel-level posterior uncertainty estimates for the retrieved parameters. The BAR algorithm always results in physical, non-negative AOD values, and the average computation time for a single granule was less than a minute on a modern personal computer.

  16. Snow water equivalent determination by microwave radiometry

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Foster, J. L.; Hall, D. K.; Rango, A.; Hartline, B. K.

    1981-01-01

    One of the most important parameters for accurate snowmelt runoff prediction is snow water equivalent (SWE) which is contentionally monitored using observations made at widely scattered points in or around specific watersheds. Remote sensors which provide data with better spatial and temporal coverage can be used to improve the SWE estimates. Microwave radiation, which can penetrate through a snowpack, may be used to infer the SWE. Calculations made from a microscopic scattering model were used to simulate the effect of varying SWE on the microwave brightness temperature. Data obtained from truck mounted, airborne and spaceborne systems from various test sites were studied. The simulated SWE compares favorable with the measured SWE. In addition, whether the underlying soil is frozen or thawed can be discriminated successfully on the basis of the polarization of the microwave radiation.

  17. Automated Data Quality Assurance using OGC Sensor Web Enablement Frameworks for Marine Observatories

    NASA Astrophysics Data System (ADS)

    Toma, Daniel; Bghiel, Ikram; del Rio, Joaquin; Hidalgo, Alberto; Carreras, Normandino; Manuel, Antoni

    2014-05-01

    Over the past years, environmental sensors have continuously improved by becoming smaller, cheaper, and more intelligent. Therefore, many sensor networks are increasingly deployed to monitor our environment. But due to the large number of sensor manufacturers, accompanying protocols and data encoding, automated integration and data quality assurance of diverse sensors in an observing systems is not straightforward, requiring development of data management code and manual tedious configuration. However, over the past few years it has been demonstrated that Open-Geospatial Consortium (OGC) frameworks can enable web services with fully-described sensor systems, including data processing, sensor characteristics and quality control tests and results. So far, the SWE framework does not describe how to integrate sensors on-the-fly with minimal human intervention. The data management software which enables access to sensors, data processing and quality control tests has to be implemented and the results have to be manually mapped to the SWE models. In this contribution, we describe a Sensor Plug & Play infrastructure for the Sensor Web by combining (1) OGC PUCK protocol - a simple standard embedded instrument protocol to store and retrieve directly from the devices the declarative description of sensor characteristics and quality control tests, (2) an automatic mechanism for data processing and quality control tests underlying the Sensor Web - the Sensor Interface Descriptor (SID) concept, as well as (3) a model for the declarative description of sensor which serves as a generic data management mechanism - designed as a profile and extension of OGC SWE's SensorML standard. We implement and evaluate our approach by applying it to the OBSEA Observatory, and can be used to demonstrate the ability to assess data quality for temperature, salinity, air pressure and wind speed and direction observations off the coast of Garraf, in the north-eastern Spain.

  18. The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 aerosol extinction retrieval algorithm: theoretical basis

    NASA Astrophysics Data System (ADS)

    Loughman, Robert; Bhartia, Pawan K.; Chen, Zhong; Xu, Philippe; Nyaku, Ernest; Taha, Ghassan

    2018-05-01

    The theoretical basis of the Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 aerosol extinction retrieval algorithm is presented. The algorithm uses an assumed bimodal lognormal aerosol size distribution to retrieve aerosol extinction profiles at 675 nm from OMPS LP radiance measurements. A first-guess aerosol extinction profile is updated by iteration using the Chahine nonlinear relaxation method, based on comparisons between the measured radiance profile at 675 nm and the radiance profile calculated by the Gauss-Seidel limb-scattering (GSLS) radiative transfer model for a spherical-shell atmosphere. This algorithm is discussed in the context of previous limb-scattering aerosol extinction retrieval algorithms, and the most significant error sources are enumerated. The retrieval algorithm is limited primarily by uncertainty about the aerosol phase function. Horizontal variations in aerosol extinction, which violate the spherical-shell atmosphere assumed in the version 1 algorithm, may also limit the quality of the retrieved aerosol extinction profiles significantly.

  19. Finland Validation of the New Blended Snow Product

    NASA Technical Reports Server (NTRS)

    Kim, E. J.; Casey, K. A.; Hallikainen, M. T.; Foster, J. L.; Hall, D. K.; Riggs, G. A.

    2008-01-01

    As part of an ongoing effort to validate satellite remote sensing snow products for the recentlydeveloped U.S. Air Force Weather Agency (AFWA) - NASA blended snow product, Satellite and in-situ data for snow extent and snow water equivalent (SWE) are evaluated in Finland for the 2006-2007 snow season Finnish Meteorological Institute (FMI) daily weather station data and Finnish Environment Institute (SYKE) bi-monthly snow course data are used as ground truth. Initial comparison results display positive agreement between the AFWA NASA Snow Algorithm (ANSA) snow extent and SWE maps and in situ data, with discrepancies in accordance with known AMSR-E and MODIS snow mapping limitations. Future ANSA product improvement plans include additional validation and inclusion of fractional snow cover in the ANSA data product. Furthermore, the AMSR-E 19 GHz (horizontal channel) with the difference between ascending and descending satellite passes (Diurnal Amplitude Variations, DAV) will be used to detect the onset of melt, and QuikSCAT scatterometer data (14 GHz) will be used to map areas of actively melting snow.

  20. A new computer aided diagnosis system for evaluation of chronic liver disease with ultrasound shear wave elastography imaging.

    PubMed

    Gatos, Ilias; Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitris; Theotokas, Ioannis; Zoumpoulis, Pavlos; Loupas, Thanasis; Hazle, John D; Kagadis, George C

    2016-03-01

    Classify chronic liver disease (CLD) from ultrasound shear-wave elastography (SWE) imaging by means of a computer aided diagnosis (CAD) system. The proposed algorithm employs an inverse mapping technique (red-green-blue to stiffness) to quantify 85 SWE images (54 healthy and 31 with CLD). Texture analysis is then applied involving the automatic calculation of 330 first and second order textural features from every transformed stiffness value map to determine functional features that characterize liver elasticity and describe liver condition for all available stages. Consequently, a stepwise regression analysis feature selection procedure is utilized toward a reduced feature subset that is fed into the support vector machines (SVMs) classification algorithm in the design of the CAD system. With regard to the mapping procedure accuracy, the stiffness map values had an average difference of 0.01 ± 0.001 kPa compared to the quantification results derived from the color-box provided by the built-in software of the ultrasound system. Highest classification accuracy from the SVM model was 87.0% with sensitivity and specificity values of 83.3% and 89.1%, respectively. Receiver operating characteristic curves analysis gave an area under the curve value of 0.85 with [0.77-0.89] confidence interval. The proposed CAD system employing color to stiffness mapping and classification algorithms offered superior results, comparing the already published clinical studies. It could prove to be of value to physicians improving the diagnostic accuracy of CLD and can be employed as a second opinion tool for avoiding unnecessary invasive procedures.

  1. A retrieval algorithm of hydrometer profile for submillimeter-wave radiometer

    NASA Astrophysics Data System (ADS)

    Liu, Yuli; Buehler, Stefan; Liu, Heguang

    2017-04-01

    Vertical profiles of particle microphysics perform vital functions for the estimation of climatic feedback. This paper proposes a new algorithm to retrieve the profile of the parameters of the hydrometeor(i.e., ice, snow, rain, liquid cloud, graupel) based on passive submillimeter-wave measurements. These parameters include water content and particle size. The first part of the algorithm builds the database and retrieves the integrated quantities. Database is built up by Atmospheric Radiative Transfer Simulator(ARTS), which uses atmosphere data to simulate the corresponding brightness temperature. Neural network, trained by the precalculated database, is developed to retrieve the water path for each type of particles. The second part of the algorithm analyses the statistical relationship between water path and vertical parameters profiles. Based on the strong dependence existing between vertical layers in the profiles, Principal Component Analysis(PCA) technique is applied. The third part of the algorithm uses the forward model explicitly to retrieve the hydrometeor profiles. Cost function is calculated in each iteration, and Differential Evolution(DE) algorithm is used to adjust the parameter values during the evolutionary process. The performance of this algorithm is planning to be verified for both simulation database and measurement data, by retrieving profiles in comparison with the initial one. Results show that this algorithm has the ability to retrieve the hydrometeor profiles efficiently. The combination of ARTS and optimization algorithm can get much better results than the commonly used database approach. Meanwhile, the concept that ARTS can be used explicitly in the retrieval process shows great potential in providing solution to other retrieval problems.

  2. Assessment of liver fibrosis in chronic hepatitis: comparison of shear wave elastography and transient elastography.

    PubMed

    Paul, Shashi B; Das, Prasenjit; Mahanta, Mousumi; Sreenivas, Vishnubhatla; Kedia, Saurabh; Kalra, Nancy; Kaur, Harpreet; Vijayvargiya, Maneesh; Ghosh, Shouriyo; Gamanagatti, Shivanand R; Shalimar; Gupta, Siddhartha Dutta; Acharya, Subrat K

    2017-12-01

    To evaluate the diagnostic accuracy of shear wave elastography (SWE) and transient elastography (TE) in the evaluation of liver fibrosis in chronic hepatitis B (CHB) and C (CHC) patients taking liver biopsy as gold standard. Ethics committee approved this prospective cross-sectional study. Between October 2012 and December 2014, consecutive CHB/CHC patients fulfilling the inclusion criteria were included-age more than 18 years, informed written consent, willing and suitable for liver biopsy. SWE, TE, and biopsy were performed the same day. Liver stiffness measurement (LSM) cut-offs for various stages of fibrosis were generated for SWE and TE. AUC, sensitivity, specificity, and positive/negative predictive values were estimated individually or in combination. CH patients (n = 240, CHB 172, CHC 68), 176 males, 64 females, mean age 32.6 ± 11.6 years were enrolled. Mean LSM of patients with no histological fibrosis (F0) was 5.0 ± 0.7 and 5.1+1.4 kPa on SWE and TE, respectively. For differentiating F2 and F3-4 fibrosis on SWE, at 7.0 kPa cut-off, the sensitivity was 81.3% and specificity 77.6%. For TE, at 8.3 kPa cut-off, sensitivity was 81.8% and specificity 83.1%. For F3 vs. F4, SWE sensitivity was 83.3% and specificity 90.7%. At 14.8 kPa cut-off, TE showed similar sensitivity (83.3%) but specificity increased to 96.5%. Significant correlation between SWE and TE was observed (r = 0.33, p < 0.001). On combining SWE and TE, a drop in sensitivity with increased specificity for all stages of liver fibrosis occured. SWE is an accurate technique for evaluating liver fibrosis. SWE compares favorably with TE especially for predicting advanced fibrosis/cirrhosis. Combining SWE and TE further improves specificity.

  3. Reliability of shear wave ultrasound elastography for neck lesions identified in routine clinical practice.

    PubMed

    Bhatia, K; Tong, C S L; Cho, C C M; Yuen, E H Y; Lee, J; Ahuja, A T

    2012-10-01

    To evaluate the reliability of shear wave ultrasound elastography (SWE) in the neck. 176 neck lesions (40 thyroid, 56 lymph nodes, 46 salivary, 34 miscellaneous) identified in a routine US clinic underwent SWE by one or two blinded radiologists. For this study, SWE required the operator to acquire three 10 second dynamic colour-coded SWE cineloops per lesion, select one static image per cineloop, and place circular regions-of-interest within the entire lesion and stiffest part to generate 3 SWE measurements per static image. For logistical reasons, one radiologist evaluated all 176 lesions and the other evaluated 58 lesions. Both radiologists also reviewed 27 archived cineloops independently to assess SWE excluding practical technique. Reliability was assessed using intraclass correlation coefficients (ICCs) concordance correlation coefficients (CCCs) and coefficients of repeatability (CORs). Test-retest ICCs for the radiologist evaluating 176 lesions were 0.78 - 0.85 (fair-excellent agreement), CCCs were 0.85 - 0.88 (substantial agreement), and CORs were 14.9 - 36.1 kPa. For both radiologists evaluating 58 lesions, intra-rater and inter-rater ICCs were 0.65 - 0.78 and 0.72 - 0.77 respectively. For SWE excluding practical technique, inter-rater ICCs were 0.97 - 0.98 (excellent agreement). ICCs differed according to tissue, being higher in thyroid lesions than lymph nodes (p < 0.001), and higher in benign than malignant lesions (p values < 0.001). Intra- and inter-rater reliability of SWE is fair to excellent according to ICCs. SWE reliability is influenced appreciably by acquisition technique. Nevertheless, CORs for SWE are not negligible. To determine whether these results are acceptable clinically, further research is required to establish SWE stiffness values of normal and pathological tissues in the neck. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Diagnostic performances of shear wave elastography: which parameter to use in differential diagnosis of solid breast masses?

    PubMed

    Lee, Eun Jung; Jung, Hae Kyoung; Ko, Kyung Hee; Lee, Jong Tae; Yoon, Jung Hyun

    2013-07-01

    To evaluate which shear wave elastography (SWE) parameter proves most accurate in the differential diagnosis of solid breast masses. One hundred and fifty-six breast lesions in 139 consecutive women (mean age: 43.54 ± 9.94 years, range 21-88 years), who had been scheduled for ultrasound-guided breast biopsy, were included. Conventional ultrasound and SWE were performed in all women before biopsy procedures. Ultrasound BI-RADS final assessment and SWE parameters were recorded. Diagnostic performance of each SWE parameter was calculated and compared with those obtained when applying cut-off values of previously published data. Performance of conventional ultrasound and ultrasound combined with each parameter was also compared. Of the 156 breast masses, 120 (76.9 %) were benign and 36 (23.1 %) malignant. Maximum stiffness (Emax) with a cut-off of 82.3 kPa had the highest area under the receiver operating characteristics curve (Az) value compared with other SWE parameters, 0.860 (sensitivity 88.9 %, specificity 77.5 %, accuracy 80.1 %). Az values of conventional ultrasound combined with each SWE parameter showed lower (but not significantly) values than with conventional ultrasound alone. Maximum stiffness (82.3 kPa) provided the best diagnostic performance. However the overall diagnostic performance of ultrasound plus SWE was not significantly better than that of conventional ultrasound alone. • SWE offers new information over and above conventional breast ultrasound • Various SWE parameters were explored regarding distinction between benign and malignant lesions • An elasticity of 82.3 kPa appears optimal in differentiating solid breast masses • However, ultrasound plus SWE was not significantly better than conventional ultrasound alone.

  5. False positive or negative results of shear-wave elastography in differentiating benign from malignant breast masses: analysis of clinical and ultrasonographic characteristics.

    PubMed

    Kim, Mi Young; Choi, Nami; Yang, Jung-Hyun; Yoo, Young Bum; Park, Kyoung Sik

    2015-10-01

    Shear-wave elastography (SWE) has the potential to improve diagnostic performance of conventional ultrasound (US) in differentiating benign from malignant breast masses. To investigate false positive or negative results of SWE in differentiating benign from malignant breast masses and to analyze clinical and imaging characteristics of the masses with false SWE findings. From May to October 2013, 166 breast lesions of 164 consecutive women (mean age, 45.3 ± 10.1 years) who had been scheduled for biopsy were included. Conventional US and SWE were performed in all women before biopsy. Clinical, ultrasonographic morphologic features and SWE parameters (pattern classification and standard deviation [SD]) were recorded and compared with the histopathology results. Patient and lesion factors in the "true" and "false" groups were compared. Of the 166 masses, 118 (71.1%) were benign and 48 (28.9%) were malignant. False SWE features were more frequently observed in benign masses. False positive rates of benign masses and false negative rates of malignancy were 53% and 8.2%, respectively, using SWE pattern analysis and were 22.4% and 10.3%, respectively, using SD values. A lesion boundary of the masses on US (P = 0.039) and younger patient age (P = 0.047) were significantly associated with false SWE findings. These clinical and ultrasonographic features need to be carefully evaluated in performance and interpretation of SWE examinations. © The Foundation Acta Radiologica 2014.

  6. Pulse retrieval algorithm for interferometric frequency-resolved optical gating based on differential evolution.

    PubMed

    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter

    2017-10-01

    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.

  7. Shear-Wave Elastography for the Differential Diagnosis of Breast Papillary Lesions

    PubMed Central

    Chung, Jin; Lee, Won Kyung; Cha, Eun-Suk; Lee, Jee Eun; Kim, Jeoung Hyun; Ryu, Young Hoon

    2016-01-01

    Objective To evaluate the diagnostic performance of shear-wave elastography (SWE) for the differential diagnosis of breast papillary lesions. Methods This study was an institutional review board-approved retrospective study, with a waiver of informed consent. A total of 79 breast papillary lesions in 71 consecutive women underwent ultrasound and SWE prior to biopsy. Ultrasound features and quantitative SWE parameters were recorded for each lesion. All lesions were surgically excised or excised using an ultrasound-guided vacuum-assisted method. The diagnostic performances of the quantitative SWE parameters were compared using the area under the receiver operating characteristic curve (AUC). Results Of the 79 lesions, six (7.6%) were malignant and 12 (15.2%) were atypical. Orientation, margin, and the final BI-RADS ultrasound assessments were significantly different for the papillary lesions (p < 0.05). All qualitative SWE parameters were significantly different (p < 0.05). The AUC values for SWE parameters of benign and atypical or malignant papillary lesions ranged from 0.707 to 0.757 (sensitivity, 44.4–94.4%; specificity, 42.6–88.5%). The maximum elasticity and the mean elasticity showed the highest AUC (0.757) to differentiate papillary lesions. Conclusion SWE provides additional information for the differential diagnosis of breast papillary lesions. Quantitative SWE features were helpful to differentiate breast papillary lesions. PMID:27893857

  8. Shear wave elastography in medullary thyroid carcinoma diagnostics

    PubMed Central

    Gumińska, Anna; Bakuła-Zalewska, Elwira; Mlosek, Krzysztof; Słapa, Rafał Z.; Wareluk, Paweł; Krauze, Agnieszka; Ziemiecka, Agnieszka; Migda, Bartosz; Jakubowski, Wiesław; Dedecjus, Marek

    2015-01-01

    Shear wave elastography (SWE) is a modern method for the assessment of tissue stiffness. There has been a growing interest in the use of this technique for characterizing thyroid focal lesions, including preoperative diagnostics. Aim The aim of the study was to assess the clinical usefulness of SWE in medullary thyroid carcinoma (MTC) diagnostics. Materials and methods A total of 169 focal lesions were identified in the study group (139 patients), including 6 MTCs in 4 patients (mean age: 45 years). B-mode ultrasound and SWE were performed using Aixplorer (SuperSonic, Aix-en-Provence), with a 4–15 MHz linear probe. The ultrasound was performed to assess the echogenicity and echostructure of the lesions, their margin, the halo sign, the height/width ratio (H/W ratio), the presence of calcifications and the vascularization pattern. This was followed by an analysis of maximum and mean Young's (E) modulus values for MTC (EmaxLR, EmeanLR) and the surrounding thyroid tissues (EmaxSR, EmeanSR), as well as mean E-values (EmeanLRz) for 2 mm region of interest in the stiffest zone of the lesion. The lesions were subject to pathological and/or cytological evaluation. Results The B-mode assessment showed that all MTCs were hypoechogenic, with no halo sign, and they contained micro- and/ or macrocalcifications. Ill-defined lesion margin were found in 4 out of 6 cancers; 4 out of 6 cancers had a H/W ratio > 1. Heterogeneous echostructure and type III vascularity were found in 5 out of 6 lesions. In the SWE, the mean value of EmaxLR for all of the MTCs was 89.5 kPa and (the mean value of EmaxSR for all surrounding tissues was) 39.7 kPa Mean values of EmeanLR and EmeanSR were 34.7 kPa and 24.4 kPa, respectively. The mean value of EmeanLRz was 49.2 kPa. Conclusions SWE showed MTCs as stiffer lesions compared to the surrounding tissues. The lesions were qualified for fine needle aspiration biopsy based on B-mode assessment. However, the diagnostic algorithm for MTC is based on the measurement of serum calcitonin levels, B-mode ultrasound and FNAB. PMID:26807293

  9. Diagnostic performance of qualitative shear-wave elastography according to different color map opacities for breast masses.

    PubMed

    Kim, Hana; Youk, Ji Hyun; Gweon, Hye Mi; Kim, Jeong-Ah; Son, Eun Ju

    2013-08-01

    To compare the diagnostic performance of qualitative shear-wave elastography (SWE) according to three different color map opacities for breast masses 101 patients aged 21-77 years with 113 breast masses underwent B-mode US and SWE under three different color map opacities (50%, 19% and 100%) before biopsy or surgery. Following SWE features were reviewed: visual pattern classification (pattern 1-4), color homogeneity (Ehomo) and six-point color score of maximum elasticity (Ecol). Combined with B-mode US and SWE, the likelihood of malignancy (LOM) was also scored. The area under the curve (AUC) was obtained by ROC curve analysis to assess the diagnostic performance under each color opacity. A visual color pattern, Ehomo, Ecol and LOM scoring were significantly different between benign and malignant lesions under all color opacities (P<0.001). For 50% opacity, AUCs of visual color pattern, Ecol, Ehomo and LOM scoring were 0.902, 0.951, 0.835 and 0.975. But, for each SWE feature, there was no significant difference in the AUC among three different color opacities. For all color opacities, visual color pattern and Ecol showed significantly higher AUC than Ehomo. In addition, a combined set of B-mode US and SWE showed significantly higher AUC than SWE alone for color patterns, Ehomo, but no significant difference was found in Ecol. Qualitative SWE was useful to differentiate benign from malignant breast lesion under all color opacities. The difference in color map opacity did not significantly influence diagnostic performance of SWE. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Evaluation of Liver Stiffness After Radioembolization by Real-Time ShearWave™ Elastography: Preliminary Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bas, Ahmet, E-mail: dr.ahmetbas@hotmail.com; Samanci, Cesur, E-mail: cesursamanci@gmail.com; Gulsen, Fatih, E-mail: drfgulsen@yahoo.com

    2015-08-15

    PurposeTo evaluate the effect of ShearWave™ elastography (SWE) for the assessment of liver fibrosis after radioembolization (RE) in patients with liver malignancies.Materials and MethodsWe prospectively examined the effects of SWE before and after RE in 17 adult patients, from June 2012 to September 2013. All patients underwent SWE within 1 month before and 3 months (96.3 ± 22.9 days) after RE. Measurements were taken in segments III, IV, V, and VI (lateral/medial left lobe and anterior/posterior right lobe, respectively). Liver stiffness was studied in the 39 treated segments.ResultsThe mean stiffness of liver tissue according to the pre-RE SWE measurements was not different from the post-REmore » SWE measurements in the segments that did not undergo RE. Conversely, segments treated with RE were significantly stiffer according to the post-RE SWE measurements (mean SWE 17.4 kPa) than according to the baseline measurements (7.0 kPa) (p < 0.001). Patients with hepatocellular carcinoma and preexisting infection with hepatitis B and C viruses had higher pre-embolization stiffness, and the post-embolization stiffness of the treated segments in these patients was higher than that in the remainder of the study population.ConclusionThese data suggest that SWE measurements of liver stiffness increase as early as the third month after RE. SWE could be used as a noninvasive complementary imaging method for preliminary assessment of liver fibrosis before and after RE.« less

  11. Algorithms and sensitivity analyses for Stratospheric Aerosol and Gas Experiment II water vapor retrieval

    NASA Technical Reports Server (NTRS)

    Chu, W. P.; Chiou, E. W.; Larsen, J. C.; Thomason, L. W.; Rind, D.; Buglia, J. J.; Oltmans, S.; Mccormick, M. P.; Mcmaster, L. M.

    1993-01-01

    The operational inversion algorithm used for the retrieval of the water-vapor vertical profiles from the Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation data is presented. Unlike the algorithm used for the retrieval of aerosol, O3, and NO2, the water-vapor retrieval algorithm accounts for the nonlinear relationship between the concentration versus the broad-band absorption characteristics of water vapor. Problems related to the accuracy of the computational scheme, the accuracy of the removal of other interfering species, and the expected uncertainty of the retrieved profile are examined. Results are presented on the error analysis of the SAGE II water vapor retrieval, indicating that the SAGE II instrument produced good quality water vapor data.

  12. Effect of maternal supplementation with seaweed extracts on growth performance and aspects of gastrointestinal health of newly weaned piglets after challenge with enterotoxigenic Escherichia coli K88.

    PubMed

    Heim, G; Sweeney, T; O'Shea, C J; Doyle, D N; O'Doherty, J V

    2014-12-28

    In the present study, a 2 × 2 factorial arrangement was conducted to investigate the effect of maternal supplementation with seaweed extracts ( - SWE v. +SWE, n 20) from day 83 of gestation until weaning (day 28) on post-weaning (PW) growth performance, faecal score, faecal enterotoxigenic Escherichia coli (ETEC) toxin quantification, intestinal histology and cytokine mRNA of unchallenged and ETEC-challenged pigs. Pigs were ETEC challenged on day 9 PW. There was a maternal treatment × challenge (SWE × ETEC) interaction effect on growth performance and faecal score (P< 0.05). Pigs from SWE-supplemented sows and ETEC-challenged (SE) had higher average daily gain (ADG) during 0-13 d PW and reduced faecal score during 0-72 h post-challenge than those from basal-fed sows and ETEC-challenged (BE) (P< 0.05). However, there was no difference between unchallenged pigs from the SWE-supplemented sows (SC) and basal-fed sows (BC) (P>0.10). Pigs from the SWE-supplemented sows had reduced heat-labile enterotoxin gene copy numbers than those from the basal-fed sows (P< 0.05). Maternal SWE supplementation increased the villus height in the ileum of pigs (P< 0.05). There was a SWE × ETEC interaction effect (P< 0.05) on IL-6 mRNA and a SWE × gastrointestinal (GI) region interaction effect (P< 0.05) on transforming growth factor-β1 (TGF-β1) and TNF-α mRNA. IL-6 mRNA was down-regulated in SC pigs than BC pigs (P< 0.05). However, there was no difference in IL-6 mRNA between SE and BE pigs. The mRNA of TGF-β1 and TNF-α was down-regulated in the colon of pigs from the SWE-supplemented sows compared with those from the basal-fed sows (P< 0.05). However, there was no difference in TGF-β1 and TNF-α mRNA in the ileum between the pigs from the SWE-supplemented sows and basal-fed sows. In conclusion, maternal SWE supplementation improves ADG and the aspects of GI health of weaned pigs following an ETEC challenge.

  13. Comparative Results of AIRS AMSU and CrIS/ATMS Retrievals Using a Scientifically Equivalent Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2016-01-01

    The AIRS Science Team Version 6 retrieval algorithm is currently producing high quality level-3 Climate Data Records (CDRs) from AIRSAMSU which are critical for understanding climate processes. The AIRS Science Team is finalizing an improved Version-7 retrieval algorithm to reprocess all old and future AIRS data. AIRS CDRs should eventually cover the period September 2002 through at least 2020. CrISATMS is the only scheduled follow on to AIRSAMSU. The objective of this research is to prepare for generation of a long term CrISATMS level-3 data using a finalized retrieval algorithm that is scientifically equivalent to AIRSAMSU Version-7.

  14. Understanding Montane Snow Water Equivalent Response to Climate Change and Variability

    NASA Astrophysics Data System (ADS)

    Huning, L. S.; AghaKouchak, A.

    2017-12-01

    Large populations worldwide rely on the seasonal snowpack for the majority of their water resources. Warming temperatures and other hydrometeorological changes impact the timing, distribution, and amount of montane snow water equivalent (SWE). Therefore, developing an improved understanding of the historical response to changing atmospheric drivers across snow-dominated mountainous regions has significant societal value related to water resources management and environmental hazards (i.e. flooding and droughts) for a future warming climate. Utilizing multi-decadal snow data sets and a probabilistic risk model over mountain ranges such as the Sierra Nevada (USA), the response of snowpack characteristics (e.g. SWE/snowfall, peak SWE, day of peak SWE, melt rate, etc.) to unit changes in hydrometeorological quantities (e.g. air temperature, humidity, winds, etc.) is quantified. The likelihood that the amount of SWE will exceed specified amounts (e.g. long-term peak SWE value) is presented for a range of climatic conditions. This study compares hydrologic response of montane SWE across windward and leeward basins, elevational bands, and regions of differing physiographic characteristics to understand how projected global warming such as a unit increase in air temperature or changes in other hydrometeorological quantities impact SWE at different spatial scales (i.e. basin-wide and range-wide). It provides insight that can be used to understand vulnerabilities of the seasonal snowpack to changes in climatic and atmospheric conditions.

  15. Power Doppler Ultrasonography and Shear Wave Elastography as Complementary Imaging Methods for Suspected Local Breast Cancer Recurrence.

    PubMed

    Jales, Rodrigo Menezes; Dória, Maira Teixeira; Serra, Kátia Piton; Miranda, Mila Meneguelli; Menossi, Carlos Alberto; Schumacher, Klaus; Sarian, Luis Otávio

    2018-06-01

    To prospectively investigate the diagnostic accuracy and clinical consequences of power Doppler morphologic criteria and shear wave elastography (SWE) as complementary imaging methods for evaluation of suspected local breast cancer recurrence in the ipsilateral breast or chest wall. Thirty-two breast masses with a suspicion of local breast cancer recurrence on B-mode ultrasonography underwent complementary power Doppler and SWE evaluations. Power Doppler morphologic criteria were classified as avascular, hypovascular, or hypervascular. Shear wave elastography was classified according to a 5-point scale (SWE score) and SWE maximum elasticity. Diagnostic accuracy was assessed by the sensitivity, specificity, and area under the curve. A decision curve analysis assessed clinical consequences of each method. The reference standard for diagnosis was defined as core needle or excisional biopsy. Histopathologic examinations revealed 9 (28.2%) benign and 23 (71.8%) malignant cases. Power Doppler ultrasonography (US) had sensitivity of 34.8% (95% confidence interval [CI], 6.6%-62.9%) and specificity of 45.4% (95% CI, 19.3%-71.5%). The SWE score (≥3) had sensitivity of 87.0% (95% CI, 66.4%-97.2%) and specificity of 44.4% (95% CI, 13.7%-78.8%). The SWE maximum elasticity (velocity > 6.5cm/s) had sensitivity of 87% (95% CI, 66.4%-97.2%) and specificity of 77.8% (95% CI, 40.0% to 97.2%). The areas under the curves for the SWE score and SWE maximum elasticity were 0.71 (95% CI, 0.53-0.87) and 0.82 (95% CI, 0.64-0.93), respectively (P = .32). Power Doppler US is unsuitable for discrimination between local breast cancer recurrence and fibrosis. Although the SWE score and SWE maximum elasticity can make this discrimination, the use of these methods to determine biopsy may lead to poorer clinical outcomes than the current practice of performing biopsies of all suspicious masses. © 2017 by the American Institute of Ultrasound in Medicine.

  16. A new qualitative pattern classification of shear wave elastograghy for solid breast mass evaluation.

    PubMed

    Cong, Rui; Li, Jing; Guo, Song

    2017-02-01

    To examine the efficacy of qualitative shear wave elastography (SWE) in the classification and evaluation of solid breast masses, and to compare this method with conventional ultrasonograghy (US), quantitative SWE parameters and qualitative SWE classification proposed before. From April 2015 to March 2016, 314 consecutive females with 325 breast masses who decided to undergo core needle biopsy and/or surgical biopsy were enrolled. Conventional US and SWE were previously performed in all enrolled subjects. Each mass was classified by two different qualitative classifications. One was established in our study, herein named the Qual1. Qual1 could classify the SWE images into five color patterns by the visual evaluations: Color pattern 1 (homogeneous pattern); Color pattern 2 (comparative homogeneous pattern); Color pattern 3 (irregularly heterogeneous pattern); Color pattern 4 (intralesional echo pattern); and Color pattern 5 (the stiff rim sign pattern). The second qualitative classification was named Qual2 here, and included a four-color overlay pattern classification (Tozaki and Fukuma, Acta Radiologica, 2011). The Breast Imaging Reporting and Data System (BI-RADS) assessment and quantitative SWE parameters were recorded. Diagnostic performances of conventional US, SWE parameters, and combinations of US and SWE parameters were compared. With pathological results as the gold standard, of the 325 examined breast masses, 139 (42.77%) samples were malignant and 186 (57.23%) were benign. The Qual1 showed a higher Az value than the Qual2 and quantitative SWE parameters (all P<0.05). When applying Qual1=Color pattern 1 for downgrading and Qual1=Color pattern 5 for upgrading the BI-RADS categories, we obtained the highest Az value (0.951), and achieved a significantly higher specificity (86.56%, P=0.002) than that of the US (81.18%) with the same sensitivity (94.96%). The qualitative classification proposed in this study may be representative of SWE parameters and has potential to be relevant assistance in breast mass diagnoses. Copyright © 2016. Published by Elsevier B.V.

  17. Retrieval of Aerosol Microphysical Properties from AERONET Photo-Polarimetric Measurements. 2: A New Research Algorithm and Case Demonstration

    NASA Technical Reports Server (NTRS)

    Xu, Xiaoguang; Wang, Jun; Zeng, Jing; Spurr, Robert; Liu, Xiong; Dubovik, Oleg; Li, Li; Li, Zhengqiang; Mishchenko, Michael I.; Siniuk, Aliaksandr; hide

    2015-01-01

    A new research algorithm is presented here as the second part of a two-part study to retrieve aerosol microphysical properties from the multispectral and multiangular photopolarimetric measurements taken by Aerosol Robotic Network's (AERONET's) new-generation Sun photometer. The algorithm uses an advanced UNified and Linearized Vector Radiative Transfer Model and incorporates a statistical optimization approach.While the new algorithmhas heritage from AERONET operational inversion algorithm in constraining a priori and retrieval smoothness, it has two new features. First, the new algorithmretrieves the effective radius, effective variance, and total volume of aerosols associated with a continuous bimodal particle size distribution (PSD) function, while the AERONET operational algorithm retrieves aerosol volume over 22 size bins. Second, our algorithm retrieves complex refractive indices for both fine and coarsemodes,while the AERONET operational algorithm assumes a size-independent aerosol refractive index. Mode-resolved refractive indices can improve the estimate of the single-scattering albedo (SSA) for each aerosol mode and thus facilitate the validation of satellite products and chemistry transport models. We applied the algorithm to a suite of real cases over Beijing_RADI site and found that our retrievals are overall consistent with AERONET operational inversions but can offer mode-resolved refractive index and SSA with acceptable accuracy for the aerosol composed by spherical particles. Along with the retrieval using both radiance and polarization, we also performed radiance-only retrieval to demonstrate the improvements by adding polarization in the inversion. Contrast analysis indicates that with polarization, retrieval error can be reduced by over 50% in PSD parameters, 10-30% in the refractive index, and 10-40% in SSA, which is consistent with theoretical analysis presented in the companion paper of this two-part study.

  18. End-of-winter snow depth variability on glaciers in Alaska

    NASA Astrophysics Data System (ADS)

    McGrath, Daniel; Sass, Louis; O'Neel, Shad; Arendt, Anthony; Wolken, Gabriel; Gusmeroli, Alessio; Kienholz, Christian; McNeil, Christopher

    2015-08-01

    A quantitative understanding of snow thickness and snow water equivalent (SWE) on glaciers is essential to a wide range of scientific and resource management topics. However, robust SWE estimates are observationally challenging, in part because SWE can vary abruptly over short distances in complex terrain due to interactions between topography and meteorological processes. In spring 2013, we measured snow accumulation on several glaciers around the Gulf of Alaska using both ground- and helicopter-based ground-penetrating radar surveys, complemented by extensive ground truth observations. We found that SWE can be highly variable (40% difference) over short spatial scales (tens to hundreds of meters), especially in the ablation zone where the underlying ice surfaces are typically rough. Elevation provides the dominant basin-scale influence on SWE, with gradients ranging from 115 to 400 mm/100 m. Regionally, total accumulation and the accumulation gradient are strongly controlled by a glacier's distance from the coastal moisture source. Multiple linear regressions, used to calculate distributed SWE fields, show that robust results require adequate sampling of the true distribution of multiple terrain parameters. Final SWE estimates (comparable to winter balances) show reasonable agreement with both the Parameter-elevation Relationships on Independent Slopes Model climate data set (9-36% difference) and the U.S. Geological Survey Alaska Benchmark Glaciers (6-36% difference). All the glaciers in our study exhibit substantial sensitivity to changing snow-rain fractions, regardless of their location in a coastal or continental climate. While process-based SWE projections remain elusive, the collection of ground-penetrating radar (GPR)-derived data sets provides a greatly enhanced perspective on the spatial distribution of SWE and will pave the way for future work that may eventually allow such projections.

  19. Improving the Accuracy of the AFWA-NASA (ANSA) Blended Snow-Cover Product over the Lower Great Lakes Region

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Foster, James L.; Kumar, Sujay; Chien, Janety Y. L.; Riggs, George A.

    2012-01-01

    The Air Force Weather Agency (AFWA) -- NASA blended snow-cover product, called ANSA, utilizes Earth Observing System standard snow products from the Moderate- Resolution Imaging Spectroradiometer (MODIS) and the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) to map daily snow cover and snow-water equivalent (SWE) globally. We have compared ANSA-derived SWE with SWE values calculated from snow depths reported at 1500 National Climatic Data Center (NCDC) co-op stations in the Lower Great Lakes Basin. Compared to station data, the ANSA significantly underestimates SWE in densely-forested areas. We use two methods to remove some of the bias observed in forested areas to reduce the root-mean-square error (RMSE) between the ANSA- and station-derived SWE. First, we calculated a 5- year mean ANSA-derived SWE for the winters of 2005-06 through 2009-10, and developed a five-year mean bias-corrected SWE map for each month. For most of the months studied during the five-year period, the 5-year bias correction improved the agreement between the ANSA-derived and station-derived SWE. However, anomalous months such as when there was very little snow on the ground compared to the 5-year mean, or months in which the snow was much greater than the 5-year mean, showed poorer results (as expected). We also used a 7-day running mean (7DRM) bias correction method using days just prior to the day in question to correct the ANSA data. This method was more effective in reducing the RMSE between the ANSA- and co-op-derived SWE values, and in capturing the effects of anomalous snow conditions.

  20. Relating Satellite Gravimetry Data To Global Snow Water Equivalent Data

    NASA Astrophysics Data System (ADS)

    Baumann, Sabine

    2017-04-01

    In 04/2002, the gravimetric satellites GRACE were launched. They measure Earth's gravity via a precise microwave system. These satellites assess changes of Earth's mass. Main contributions of these changes originate from hydrological compartments as e.g. surface water, groundwater, soil moisture, or snow water equivalent (SWE). The benefit of GRACE data is to receive a direct measured signal. The data are not calibrated with other data (as e.g. done in models) or unusable due to particular Earth's surface conditions (e.g. AMSR-e for thick and wet snow surfaces). GRACE data show changes in total water storage (TWS) but cannot distinguish between different sources. Therefore, other data, models, and methods are necessary to extract the different compartments. Due to the spatial resolution of 200,000 km2 and an accuracy of 2.5 cm w.e., mostly other global products are compared with GRACE. In this study, the hydrological model WGHM (TWS and SWE), the land surface model GLDAS (TWS and SWE), and the passive microwave sensor AMSR-E (SWE) are compared with the GRACE data. All data have to be pre-processed in the same way as the GRACE data to be comparable. A correlation analysis was performed between the different products assuming that changes in TWS can be linked to changes in SWE if either SWE is the dominant compartment of TWS or if SWE changes proportionally with TWS. To focus on the SWE product a second correlation was performed only for the winter season. Spatial extent was focused on the large permafrost areas in North America and Russia. By this method, those areas were detected in which GRACE data can be integrated for SWE data assessment to, for example, improve the models.

  1. Shear Wave Elastography--A New Quantitative Assessment of Post-Irradiation Neck Fibrosis.

    PubMed

    Liu, K H; Bhatia, K; Chu, W; He, L T; Leung, S F; Ahuja, A T

    2015-08-01

    Shear wave elastography (SWE) is a new technique which provides quantitative assessment of soft tissue stiffness. The aim of this study was to assess the reliability of SWE stiffness measurements and its usefulness in evaluating post-irradiation neck fibrosis. 50 subjects (25 patients with previous radiotherapy to the neck and 25 sex and age-matched controls) were recruited for comparison of SWE stiffness measurements (Aixplorer, Supersonic Imagine). 30 subjects (16 healthy individuals and 14 post-irradiated patients) were recruited for a reliability study of SWE stiffness measurements. SWE stiffness measurements of the sternocleidomastoid muscle and the overlying subcutaneous tissues of the neck were made. The cross-sectional area and thickness of the sternocleidomastoid muscle and the overlying subcutaneous tissue thickness of the neck were also measured. The post-irradiation duration of the patients was recorded. The intraclass correlation coefficients for the intraoperator and interoperator reliability of deep and subcutaneous tissue SWE stiffness ranged from 0.90-0.99 and 0.77-0.94, respectively. The SWE stiffness measurements (mean +/- SD) of deep and subcutaneous tissues were significantly higher in the post-irradiated patients (64.6 ± 46.8 kPa and 63.9 ± 53.1 kPa, respectively) than the sex and age-matched controls (19.9 ± 7.8 kPa and 15.3 ± 8.37 respectively) (p < 0.001). The SWE stiffness increased with increasing post-irradiation therapy duration in the Kruskal Wallis test (p < 0.001) and correlated with muscle atrophy and subcutaneous tissue thinning (p < 0.01). SWE is a reliable technique and may potentially be an objective and specific tool in quantifying deep and subcutaneous tissue stiffness, which in turn reflects the severity of neck fibrosis. © Georg Thieme Verlag KG Stuttgart · New York.

  2. What are the characteristics of breast cancers misclassified as benign by quantitative ultrasound shear wave elastography?

    PubMed

    Vinnicombe, S J; Whelehan, P; Thomson, K; McLean, D; Purdie, C A; Jordan, L B; Hubbard, S; Evans, A J

    2014-04-01

    Shear wave elastography (SWE) is a promising adjunct to greyscale ultrasound in differentiating benign from malignant breast masses. The purpose of this study was to characterise breast cancers which are not stiff on quantitative SWE, to elucidate potential sources of error in clinical application of SWE to evaluation of breast masses. Three hundred and two consecutive patients examined by SWE who underwent immediate surgery for breast cancer were included. Characteristics of 280 lesions with suspicious SWE values (mean stiffness >50 kPa) were compared with 22 lesions with benign SWE values (<50 kPa). Statistical significance of the differences was assessed using non-parametric goodness-of-fit tests. Pure ductal carcinoma in situ (DCIS) masses were more often soft on SWE than masses representing invasive breast cancer. Invasive cancers that were soft were more frequently: histological grade 1, tubular subtype, ≤10 mm invasive size and detected at screening mammography. No significant differences were found with respect to the presence of invasive lobular cancer, vascular invasion, hormone and HER-2 receptor status. Lymph node positivity was less common in soft cancers. Malignant breast masses classified as benign by quantitative SWE tend to have better prognostic features than those correctly classified as malignant. • Over 90 % of cancers assessable with ultrasound have a mean stiffness >50 kPa. • 'Soft' invasive cancers are frequently small (≤10 mm), low grade and screen-detected. • Pure DCIS masses are more often soft than invasive cancers (>40 %). • Large symptomatic masses are better evaluated with SWE than small clinically occult lesions. • When assessing small lesions, 'softness' should not raise the threshold for biopsy.

  3. Diagnostic value of commercially available shear-wave elastography for breast cancers: integration into BI-RADS classification with subcategories of category 4.

    PubMed

    Youk, Ji Hyun; Gweon, Hye Mi; Son, Eun Ju; Han, Kyung Hwa; Kim, Jeong-Ah

    2013-10-01

    To evaluate the diagnostic performance of shear-wave elastography (SWE) for breast cancer and to determine whether the integration of SWE into BI-RADS with subcategories of category 4 improves the diagnostic performance. A total of 389 breast masses (malignant 120, benign 269) in 324 women who underwent SWE before ultrasound-guided core biopsy or surgery were included. The qualitative SWE feature was assessed using a four-colour overlay pattern. Quantitative elasticity values including the lesion-to-fat elasticity ratio (Eratio) were measured. Diagnostic performance of B-mode ultrasound, SWE, or their combined studies was compared using the area under the ROC curve (AUC). AUC of Eratio (0.952) was the highest among elasticity values (mean, maximum, and minimum elasticity, 0.949, 0.939, and 0.928; P = 0.04) and AUC of colour pattern was 0.947. AUC of combined studies was significantly higher than for a single study (P < 0.0001). When adding SWE to category 4 lesions, lesions were dichotomised according to % of malignancy: 2.1 % vs. 43.2 % (category 4a) and 0 % vs. 100 % (category 4b) for Eratio and 2.4 % vs. 25.8 % (category 4a) for colour pattern (P < 0.05). Shear-wave elastography showed a good diagnostic performance. Adding SWE features to BI-RADS improved the diagnostic performance and may be helpful to stratify category 4 lesions. • Quantitative and qualitative shear-wave elastography provides further diagnostic information during breast ultrasound. • The elasticity ratio (E ratio ) showed the best diagnostic performance in SWE. • E ratio and four-colour overlay pattern significantly differed between benign and malignant lesions. • SWE features allowed further stratification of BI-RADS category 4 lesions.

  4. Comparative Results of AIRS/AMSU and CrIS/ATMS Retrievals Using a Scientifically Equivalent Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2016-01-01

    The AIRS Science Team Version-6 retrieval algorithm is currently producing high quality level-3 Climate Data Records (CDRs) from AIRS/AMSU which are critical for understanding climate processes. The AIRS Science Team is finalizing an improved Version-7 retrieval algorithm to reprocess all old and future AIRS data. AIRS CDRs should eventually cover the period September 2002 through at least 2020. CrIS/ATMS is the only scheduled follow on to AIRS/AMSU. The objective of this research is to prepare for generation of long term CrIS/ATMS CDRs using a retrieval algorithm that is scientifically equivalent to AIRS/AMSU Version-7.

  5. Retrieving Liquid Water Path and Precipitable Water Vapor from the Atmospheric Radiation Measurement (ARM) Microwave Radiometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, David D.; Clough, Shepard A.; Liljegren, James C.

    2007-11-01

    Ground-based two-channel microwave radiometers have been used for over 15 years by the Atmospheric Radiation Measurement (ARM) program to provide observations of downwelling emitted radiance from which precipitable water vapor (PWV) and liquid water path (LWP) – twp geophysical parameters critical for many areas of atmospheric research – are retrieved. An algorithm that utilizes two advanced retrieval techniques, a computationally expensive physical-iterative approach and an efficient statistical method, has been developed to retrieve these parameters. An important component of this Microwave Retrieval (MWRRET) algorithm is the determination of small (< 1K) offsets that are subtracted from the observed brightness temperaturesmore » before the retrievals are performed. Accounting for these offsets removes systematic biases from the observations and/or the model spectroscopy necessary for the retrieval, significantly reducing the systematic biases in the retrieved LWP. The MWRRET algorithm provides significantly more accurate retrievals than the original ARM statistical retrieval which uses monthly retrieval coefficients. By combining the two retrieval methods with the application of brightness temperature offsets to reduce the spurious LWP bias in clear skies, the MWRRET algorithm provides significantly better retrievals of PWV and LWP from the ARM 2-channel microwave radiometers compared to the original ARM product.« less

  6. A New Estimate of North American Mountain Snow Accumulation From Regional Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Wrzesien, Melissa L.; Durand, Michael T.; Pavelsky, Tamlin M.; Kapnick, Sarah B.; Zhang, Yu; Guo, Junyi; Shum, C. K.

    2018-02-01

    Despite the importance of mountain snowpack to understanding the water and energy cycles in North America's montane regions, no reliable mountain snow climatology exists for the entire continent. We present a new estimate of mountain snow water equivalent (SWE) for North America from regional climate model simulations. Climatological peak SWE in North America mountains is 1,006 km3, 2.94 times larger than previous estimates from reanalyses. By combining this mountain SWE value with the best available global product in nonmountain areas, we estimate peak North America SWE of 1,684 km3, 55% greater than previous estimates. In our simulations, the date of maximum SWE varies widely by mountain range, from early March to mid-April. Though mountains comprise 24% of the continent's land area, we estimate that they contain 60% of North American SWE. This new estimate is a suitable benchmark for continental- and global-scale water and energy budget studies.

  7. Intra-observer reproducibility and diagnostic performance of breast shear-wave elastography in Asian women.

    PubMed

    Park, Hye Young; Han, Kyung Hwa; Yoon, Jung Hyun; Moon, Hee Jung; Kim, Min Jung; Kim, Eun-Kyung

    2014-06-01

    Our aim was to evaluate intra-observer reproducibility of shear-wave elastography (SWE) in Asian women. Sixty-four breast masses (24 malignant, 40 benign) were examined with SWE in 53 consecutive Asian women (mean age, 44.9 y old). Two SWE images were obtained for each of the lesions. The intra-observer reproducibility was assessed by intra-class correlation coefficients (ICC). We also evaluated various clinicoradiologic factors that can influence reproducibility in SWE. The ICC of intra-observer reproducibility was 0.789. In clinicoradiologic factor evaluation, masses surrounded by mixed fatty and glandular tissue (ICC: 0.619) showed lower intra-observer reproducibility compared with lesions that were surrounded by glandular tissue alone (ICC: 0.937; p < 0.05). Overall, the intra-observer reproducibility of breast SWE was excellent in Asian women. However, it may decrease when breast tissue is in a heterogeneous background. Therefore, SWE should be performed carefully in these cases. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. Combined neural network/Phillips-Tikhonov approach to aerosol retrievals over land from the NASA Research Scanning Polarimeter

    NASA Astrophysics Data System (ADS)

    Di Noia, Antonio; Hasekamp, Otto P.; Wu, Lianghai; van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John E.

    2017-11-01

    In this paper, an algorithm for the retrieval of aerosol and land surface properties from airborne spectropolarimetric measurements - combining neural networks and an iterative scheme based on Phillips-Tikhonov regularization - is described. The algorithm - which is an extension of a scheme previously designed for ground-based retrievals - is applied to measurements from the Research Scanning Polarimeter (RSP) on board the NASA ER-2 aircraft. A neural network, trained on a large data set of synthetic measurements, is applied to perform aerosol retrievals from real RSP data, and the neural network retrievals are subsequently used as a first guess for the Phillips-Tikhonov retrieval. The resulting algorithm appears capable of accurately retrieving aerosol optical thickness, fine-mode effective radius and aerosol layer height from RSP data. Among the advantages of using a neural network as initial guess for an iterative algorithm are a decrease in processing time and an increase in the number of converging retrievals.

  9. The Complexity of Bit Retrieval

    DOE PAGES

    Elser, Veit

    2018-09-20

    Bit retrieval is the problem of reconstructing a periodic binary sequence from its periodic autocorrelation, with applications in cryptography and x-ray crystallography. After defining the problem, with and without noise, we describe and compare various algorithms for solving it. A geometrical constraint satisfaction algorithm, relaxed-reflect-reflect, is currently the best algorithm for noisy bit retrieval.

  10. The Complexity of Bit Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elser, Veit

    Bit retrieval is the problem of reconstructing a periodic binary sequence from its periodic autocorrelation, with applications in cryptography and x-ray crystallography. After defining the problem, with and without noise, we describe and compare various algorithms for solving it. A geometrical constraint satisfaction algorithm, relaxed-reflect-reflect, is currently the best algorithm for noisy bit retrieval.

  11. Seasonal prediction and predictability of Eurasian spring snow water equivalent in NCEP Climate Forecast System version 2 reforecasts

    NASA Astrophysics Data System (ADS)

    He, Qiong; Zuo, Zhiyan; Zhang, Renhe; Zhang, Ruonan

    2018-01-01

    The spring snow water equivalent (SWE) over Eurasia plays an important role in East Asian and Indian monsoon rainfall. This study evaluates the seasonal prediction capability of NCEP Climate Forecast System version 2 (CFSv2) retrospective forecasts (1983-2010) for the Eurasian spring SWE. The results demonstrate that CFSv2 is able to represent the climatological distribution of the observed Eurasian spring SWE with a lead time of 1-3 months, with the maximum SWE occurring over western Siberia and Northeastern Europe. For a longer lead time, the SWE is exaggerated in CFSv2 because the start of snow ablation in CFSv2 lags behind that of the observation, and the simulated snowmelt rate is less than that in the observation. Generally, CFSv2 can simulate the interannual variations of the Eurasian spring SWE 1-5 months ahead of time but with an exaggerated magnitude. Additionally, the downtrend in CFSv2 is also overestimated. Because the initial conditions (ICs) are related to the corresponding simulation results significantly, the robust interannual variability and the downtrend in the ICs are most likely the causes for these biases. Moreover, CFSv2 exhibits a high potential predictability for the Eurasian spring SWE, especially the spring SWE over Siberia, with a lead time of 1-5 months. For forecasts with lead times longer than 5 months, the model predictability gradually decreases mainly due to the rapid decrease in the model signal.

  12. Optimizing the real-time ground level enhancement alert system based on neutron monitor measurements: Introducing GLE Alert Plus

    NASA Astrophysics Data System (ADS)

    Souvatzoglou, G.; Papaioannou, A.; Mavromichalaki, H.; Dimitroulakos, J.; Sarlanis, C.

    2014-11-01

    Whenever a significant intensity increase is being recorded by at least three neutron monitor stations in real-time mode, a ground level enhancement (GLE) event is marked and an automated alert is issued. Although, the physical concept of the algorithm is solid and has efficiently worked in a number of cases, the availability of real-time data is still an open issue and makes timely GLE alerts quite challenging. In this work we present the optimization of the GLE alert that has been set into operation since 2006 at the Athens Neutron Monitor Station. This upgrade has led to GLE Alert Plus, which is currently based upon the Neutron Monitor Database (NMDB). We have determined the critical values per station allowing us to issue reliable GLE alerts close to the initiation of the event while at the same time we keep the false alert rate at low levels. Furthermore, we have managed to treat the problem of data availability, introducing the Go-Back-N algorithm. A total of 13 GLE events have been marked from January 2000 to December 2012. GLE Alert Plus issued an alert for 12 events. These alert times are compared to the alert times of GOES Space Weather Prediction Center and Solar Energetic Particle forecaster of the University of Málaga (UMASEP). In all cases GLE Alert Plus precedes the GOES alert by ≈8-52 min. The comparison with UMASEP demonstrated a remarkably good agreement. Real-time GLE alerts by GLE Alert Plus may be retrieved by http://cosray.phys.uoa.gr/gle_alert_plus.html, http://www.nmdb.eu, and http://swe.ssa.esa.int/web/guest/space-radiation. An automated GLE alert email notification system is also available to interested users.

  13. Optimization of the GSFC TROPOZ DIAL retrieval using synthetic lidar returns and ozonesondes - Part 1: Algorithm validation

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Leblanc, T.; Sumnicht, G. K.; Twigg, L. W.

    2015-10-01

    The main purpose of the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) is to measure the vertical distribution of tropospheric ozone for science investigations. Because of the important health and climate impacts of tropospheric ozone, it is imperative to quantify background photochemical ozone concentrations and ozone layers aloft, especially during air quality episodes. For these reasons, this paper addresses the necessary procedures to validate the TROPOZ retrieval algorithm and confirm that it is properly representing ozone concentrations. This paper is focused on ensuring the TROPOZ algorithm is properly quantifying ozone concentrations, and a following paper will focus on a systematic uncertainty analysis. This methodology begins by simulating synthetic lidar returns from actual TROPOZ lidar return signals in combination with a known ozone profile. From these synthetic signals, it is possible to explicitly determine retrieval algorithm biases from the known profile. This was then systematically performed to identify any areas that need refinement for a new operational version of the TROPOZ retrieval algorithm. One immediate outcome of this exercise was that a bin registration error in the correction for detector saturation within the original retrieval was discovered and was subsequently corrected for. Another noticeable outcome was that the vertical smoothing in the retrieval algorithm was upgraded from a constant vertical resolution to a variable vertical resolution to yield a statistical uncertainty of <10 %. This new and optimized vertical-resolution scheme retains the ability to resolve fluctuations in the known ozone profile, but it now allows near-field signals to be more appropriately smoothed. With these revisions to the previous TROPOZ retrieval, the optimized TROPOZ retrieval algorithm (TROPOZopt) has been effective in retrieving nearly 200 m lower to the surface. Also, as compared to the previous version of the retrieval, the TROPOZopt had an overall mean improvement of 3.5 %, and large improvements (upwards of 10-15 % as compared to the previous algorithm) were apparent between 4.5 and 9 km. Finally, to ensure the TROPOZopt retrieval algorithm is robust enough to handle actual lidar return signals, a comparison is shown between four nearby ozonesonde measurements. The ozonesondes are mostly within the TROPOZopt retrieval uncertainty bars, which implies that this exercise was quite successful.

  14. An enhanced VIIRS aerosol optical thickness (AOT) retrieval algorithm over land using a global surface reflectance ratio database

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Kondragunta, Shobha; Laszlo, Istvan; Liu, Hongqing; Remer, Lorraine A.; Huang, Jingfeng; Superczynski, Stephen; Ciren, Pubu

    2016-09-01

    The Visible/Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite has been retrieving aerosol optical thickness (AOT), operationally and globally, over ocean and land since shortly after S-NPP launch in 2011. However, the current operational VIIRS AOT retrieval algorithm over land has two limitations in its assumptions for land surfaces: (1) it only retrieves AOT over the dark surfaces and (2) it assumes that the global surface reflectance ratios between VIIRS bands are constants. In this work, we develop a surface reflectance ratio database over land with a spatial resolution 0.1° × 0.1° using 2 years of VIIRS top of atmosphere reflectances. We enhance the current operational VIIRS AOT retrieval algorithm by applying the surface reflectance ratio database in the algorithm. The enhanced algorithm is able to retrieve AOT over both dark and bright surfaces. Over bright surfaces, the VIIRS AOT retrievals from the enhanced algorithm have a correlation of 0.79, mean bias of -0.008, and standard deviation (STD) of error of 0.139 when compared against the ground-based observations at the global AERONET (Aerosol Robotic Network) sites. Over dark surfaces, the VIIRS AOT retrievals using the surface reflectance ratio database improve the root-mean-square error from 0.150 to 0.123. The use of the surface reflectance ratio database also increases the data coverage of more than 20% over dark surfaces. The AOT retrievals over bright surfaces are comparable to MODIS Deep Blue AOT retrievals.

  15. System engineering approach to GPM retrieval algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, C. R.; Chandrasekar, V.

    2004-01-01

    System engineering principles and methods are very useful in large-scale complex systems for developing the engineering requirements from end-user needs. Integrating research into system engineering is a challenging task. The proposed Global Precipitation Mission (GPM) satellite will use a dual-wavelength precipitation radar to measure and map global precipitation with unprecedented accuracy, resolution and areal coverage. The satellite vehicle, precipitation radars, retrieval algorithms, and ground validation (GV) functions are all critical subsystems of the overall GPM system and each contributes to the success of the mission. Errors in the radar measurements and models can adversely affect the retrieved output values. Groundmore » validation (GV) systems are intended to provide timely feedback to the satellite and retrieval algorithms based on measured data. These GV sites will consist of radars and DSD measurement systems and also have intrinsic constraints. One of the retrieval algorithms being studied for use with GPM is the dual-wavelength DSD algorithm that does not use the surface reference technique (SRT). The underlying microphysics of precipitation structures and drop-size distributions (DSDs) dictate the types of models and retrieval algorithms that can be used to estimate precipitation. Many types of dual-wavelength algorithms have been studied. Meneghini (2002) analyzed the performance of single-pass dual-wavelength surface-reference-technique (SRT) based algorithms. Mardiana (2003) demonstrated that a dual-wavelength retrieval algorithm could be successfully used without the use of the SRT. It uses an iterative approach based on measured reflectivities at both wavelengths and complex microphysical models to estimate both No and Do at each range bin. More recently, Liao (2004) proposed a solution to the Do ambiguity problem in rain within the dual-wavelength algorithm and showed a possible melting layer model based on stratified spheres. With the No and Do calculated at each bin, the rain rate can then be calculated based on a suitable rain-rate model. This paper develops a system engineering interface to the retrieval algorithms while remaining cognizant of system engineering issues so that it can be used to bridge the divide between algorithm physics an d overall mission requirements. Additionally, in line with the systems approach, a methodology is developed such that the measurement requirements pass through the retrieval model and other subsystems and manifest themselves as measurement and other system constraints. A systems model has been developed for the retrieval algorithm that can be evaluated through system-analysis tools such as MATLAB/Simulink.« less

  16. Children’s Marking of Verbal –s by Nonmainstream English Dialect and Clinical Status

    PubMed Central

    Cleveland, Lesli H.; Oetting, Janna B.

    2015-01-01

    Purpose Children’s marking of verbal –s was examined by their dialect (African American English [AAE] vs. Southern White English [SWE]) and clinical status (specific language impairment [SLI] vs. typically developing [TD]) and as a function of 4 linguistic variables (verb regularity, negation, expression of a habitual activity, and expression of historical present tense). Method The data were language samples from 57 six-year-olds who varied by their dialect and clinical status (AAE: SLI = 14, TD = 12; SWE: SLI = 12, TD = 19). Results The AAE groups produced lower rates of marking than did the SWE groups, and the SWE SLI group produced lower rates of marking than did the SWE TD group. Although low numbers of verb contexts made it difficult to evaluate the linguistic variables, there was evidence of their influence, especially for verb regularity and negation. The direction and magnitude of the effects were often (but not always) consistent with what has been described in the adult dialect literature. Conclusion Verbal –s can be used to help distinguish children with and without SLI in SWE but not in AAE. Clinicians can apply these findings to other varieties of AAE and SWE and other dialects by considering rates of marking and the effects of linguistic variables on marking. PMID:23813205

  17. A role for the Swe1 checkpoint kinase during filamentous growth of Saccharomyces cerevisiae.

    PubMed Central

    La Valle, R; Wittenberg, C

    2001-01-01

    In this study we show that inactivation of Hsl1 or Hsl7, negative regulators of the Swe1 kinase, enhances the invasive behavior of haploid and diploid cells. The enhancement of filamentous growth caused by inactivation of both genes is mediated via the Swe1 protein kinase. Whereas Swe1 contributes noticeably to the effectiveness of haploid invasive growth under all conditions tested, its contribution to pseudohyphal growth is limited to the morphological response under standard assay conditions. However, Swe1 is essential for pseudohyphal differentiation under a number of nonstandard assay conditions including altered temperature and increased nitrogen. Swe1 is also required for pseudohyphal growth in the absence of Tec1 and for the induction of filamentation by butanol, a related phenomenon. Although inactivation of Hsl1 is sufficient to suppress the defect in filamentous growth caused by inactivation of Tec1 or Flo8, it is insufficient to promote filamentous growth in the absence of both factors. Moreover, inactivation of Hsl1 will not bypass the requirement for nitrogen starvation or growth on solid medium for pseudohyphal differentiation. We conclude that the Swe1 kinase modulates filamentous development under a broad spectrum of conditions and that its role is partially redundant with the Tec1 and Flo8 transcription factors. PMID:11404321

  18. The operational cloud retrieval algorithms from TROPOMI on board Sentinel-5 Precursor

    NASA Astrophysics Data System (ADS)

    Loyola, Diego G.; Gimeno García, Sebastián; Lutz, Ronny; Argyrouli, Athina; Romahn, Fabian; Spurr, Robert J. D.; Pedergnana, Mattia; Doicu, Adrian; Molina García, Víctor; Schüssler, Olena

    2018-01-01

    This paper presents the operational cloud retrieval algorithms for the TROPOspheric Monitoring Instrument (TROPOMI) on board the European Space Agency Sentinel-5 Precursor (S5P) mission scheduled for launch in 2017. Two algorithms working in tandem are used for retrieving cloud properties: OCRA (Optical Cloud Recognition Algorithm) and ROCINN (Retrieval of Cloud Information using Neural Networks). OCRA retrieves the cloud fraction using TROPOMI measurements in the ultraviolet (UV) and visible (VIS) spectral regions, and ROCINN retrieves the cloud top height (pressure) and optical thickness (albedo) using TROPOMI measurements in and around the oxygen A-band in the near infrared (NIR). Cloud parameters from TROPOMI/S5P will be used not only for enhancing the accuracy of trace gas retrievals but also for extending the satellite data record of cloud information derived from oxygen A-band measurements, a record initiated with the Global Ozone Monitoring Experiment (GOME) on board the second European Remote-Sensing Satellite (ERS-2) over 20 years ago. The OCRA and ROCINN algorithms are integrated in the S5P operational processor UPAS (Universal Processor for UV/VIS/NIR Atmospheric Spectrometers), and we present here UPAS cloud results using the Ozone Monitoring Instrument (OMI) and GOME-2 measurements. In addition, we examine anticipated challenges for the TROPOMI/S5P cloud retrieval algorithms, and we discuss the future validation needs for OCRA and ROCINN.

  19. Diagnostic potential of real-time elastography (RTE) and shear wave elastography (SWE) to differentiate benign and malignant thyroid nodules: A systematic review and meta-analysis.

    PubMed

    Hu, Xiangdong; Liu, Yujiang; Qian, Linxue

    2017-10-01

    Real-time elastography (RTE) and shear wave elastography (SWE) are noninvasive and easily available imaging techniques that measure the tissue strain, and it has been reported that the sensitivity and the specificity of elastography were better in differentiating between benign and malignant thyroid nodules than conventional technologies. Relevant articles were searched in multiple databases; the comparison of elasticity index (EI) was conducted with the Review Manager 5.0. Forest plots of the sensitivity and specificity and SROC curve of RTE and SWE were performed with STATA 10.0 software. In addition, sensitivity analysis and bias analysis of the studies were conducted to examine the quality of articles; and to estimate possible publication bias, funnel plot was used and the Egger test was conducted. Finally 22 articles which eventually satisfied the inclusion criteria were included in this study. After eliminating the inefficient, benign and malignant nodules were 2106 and 613, respectively. The meta-analysis suggested that the difference of EI between benign and malignant nodules was statistically significant (SMD = 2.11, 95% CI [1.67, 2.55], P < .00001). The overall sensitivities of RTE and SWE were roughly comparable, whereas the difference of specificities between these 2 methods was statistically significant. In addition, statistically significant difference of AUC between RTE and SWE was observed between RTE and SWE (P < .01). The specificity of RTE was statistically higher than that of SWE; which suggests that compared with SWE, RTE may be more accurate on differentiating benign and malignant thyroid nodules.

  20. Diagnostic potential of real-time elastography (RTE) and shear wave elastography (SWE) to differentiate benign and malignant thyroid nodules

    PubMed Central

    Hu, Xiangdong; Liu, Yujiang; Qian, Linxue

    2017-01-01

    Abstract Background: Real-time elastography (RTE) and shear wave elastography (SWE) are noninvasive and easily available imaging techniques that measure the tissue strain, and it has been reported that the sensitivity and the specificity of elastography were better in differentiating between benign and malignant thyroid nodules than conventional technologies. Methods: Relevant articles were searched in multiple databases; the comparison of elasticity index (EI) was conducted with the Review Manager 5.0. Forest plots of the sensitivity and specificity and SROC curve of RTE and SWE were performed with STATA 10.0 software. In addition, sensitivity analysis and bias analysis of the studies were conducted to examine the quality of articles; and to estimate possible publication bias, funnel plot was used and the Egger test was conducted. Results: Finally 22 articles which eventually satisfied the inclusion criteria were included in this study. After eliminating the inefficient, benign and malignant nodules were 2106 and 613, respectively. The meta-analysis suggested that the difference of EI between benign and malignant nodules was statistically significant (SMD = 2.11, 95% CI [1.67, 2.55], P < .00001). The overall sensitivities of RTE and SWE were roughly comparable, whereas the difference of specificities between these 2 methods was statistically significant. In addition, statistically significant difference of AUC between RTE and SWE was observed between RTE and SWE (P < .01). Conclusion: The specificity of RTE was statistically higher than that of SWE; which suggests that compared with SWE, RTE may be more accurate on differentiating benign and malignant thyroid nodules. PMID:29068996

  1. Shear Wave Elastographic Alterations in the Kidney After Extracorporeal Shock Wave Lithotripsy.

    PubMed

    Turkay, Rustu; Inci, Ercan; Bas, Derya; Atar, Arda

    2018-03-01

    Extracorporeal shock wave lithotripsy (ESWL) is a method used frequently for the treatment of renal stone disease. Although its safety is proven, there are still concerns about its unwanted effects on kidneys. In this prospective study, we aimed to evaluate renal tissue alterations with shear wave elastography (SWE) after ESWL. We also studied the correlation between SWE and resistive index (RI) changes. The study included 59 patients who underwent ESWL treatment for renal stone disease. We performed SWE and color Doppler ultrasonography to calculate SWE and RI values before, 1 hour after, and 1 week after lithotripsy treatment. A binary comparison was performed by the Bonferroni test. The correlation between SWE and RI values was evaluated by a Pearson correlation analysis. The patients included 26 women (44.1%) and 33 men (55.9%). Their ages ranged from 20 to 65 years (mean ± SD, 45.0 ± 1.1 years). Stone diameters ranged from 7 to 19 mm (mean, 13.0 ± 0.5 mm). There was a significant difference in SWE values before and 1 hour after lithotripsy treatment (P = .001; P < .01). In the follow-up measurement 1 week after treatment, this difference disappeared (P > .99; P > .05). Resistive index values increased significantly 1 hour after lithotripsy treatment and returned to prelithotripsy values 1 week after treatment. In the correlation analysis, SWE and RI values were not correlated. Measurements of alterations in SWE values after ESWL can provide useful information about renal tissue injury. © 2017 by the American Institute of Ultrasound in Medicine.

  2. Advances on Sensor Web for Internet of Things

    NASA Astrophysics Data System (ADS)

    Liang, S.; Bermudez, L. E.; Huang, C.; Jazayeri, M.; Khalafbeigi, T.

    2013-12-01

    'In much the same way that HTML and HTTP enabled WWW, the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE), envisioned in 2001 [1] will allow sensor webs to become a reality.'. Due to the large number of sensor manufacturers and differing accompanying protocols, integrating diverse sensors into observation systems is not a simple task. A coherent infrastructure is needed to treat sensors in an interoperable, platform-independent and uniform way. SWE standardizes web service interfaces, sensor descriptions and data encodings as building blocks for a Sensor Web. SWE standards are now mature specifications (version 2.0) with approved OGC compliance test suites and tens of independent implementations. Many earth and space science organizations and government agencies are using the SWE standards to publish and share their sensors and observations. While SWE has been demonstrated very effective for scientific sensors, its complexity and the computational overhead may not be suitable for resource-constrained tiny sensors. In June 2012, a new OGC Standards Working Group (SWG) was formed called the Sensor Web Interface for Internet of Things (SWE-IoT) SWG. This SWG focuses on developing one or more OGC standards for resource-constrained sensors and actuators (e.g., Internet of Things devices) while leveraging the existing OGC SWE standards. In the near future, billions to trillions of small sensors and actuators will be embedded in real- world objects and connected to the Internet facilitating a concept called the Internet of Things (IoT). By populating our environment with real-world sensor-based devices, the IoT is opening the door to exciting possibilities for a variety of application domains, such as environmental monitoring, transportation and logistics, urban informatics, smart cities, as well as personal and social applications. The current SWE-IoT development aims on modeling the IoT components and defining a standard web service that makes the observations captured by IoT devices easily accessible and allows users to task the actuators on the IoT devices. The SWE IoT model links things with sensors and reuses the OGC Observation and Model (O&M) to link sensors with features of interest and observed properties Unlike most SWE standards, the SWE-IoT defines a RESTful web interface for users to perform CRUD (i.e., create, read, update, and delete) functions on resources, including Things, Sensors, Actuators, Observations, Tasks, etc. Inspired by the OASIS Open Data Protocol (OData), the SWE-IoT web service provides the multi-faceted query, which means that users can query from different entity collections and link from one entity to other related entities. This presentation will introduce the latest development of the OGC SWE-IoT standards. Potential applications and implications in Earth and Space science will also be discussed. [1] Mike Botts, Sensor Web Enablement White Paper, Open GIS Consortium, Inc. 2002

  3. Gradient descent algorithm applied to wavefront retrieval from through-focus images by an extreme ultraviolet microscope with partially coherent source

    DOE PAGES

    Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.

    2014-12-01

    The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less

  4. Gradient descent algorithm applied to wavefront retrieval from through-focus images by an extreme ultraviolet microscope with partially coherent source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.

    The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less

  5. An Uncertainty Quantification Framework for Remote Sensing Retrievals

    NASA Astrophysics Data System (ADS)

    Braverman, A. J.; Hobbs, J.

    2017-12-01

    Remote sensing data sets produced by NASA and other space agencies are the result of complex algorithms that infer geophysical state from observed radiances using retrieval algorithms. The processing must keep up with the downlinked data flow, and this necessitates computational compromises that affect the accuracies of retrieved estimates. The algorithms are also limited by imperfect knowledge of physics and of ancillary inputs that are required. All of this contributes to uncertainties that are generally not rigorously quantified by stepping outside the assumptions that underlie the retrieval methodology. In this talk we discuss a practical framework for uncertainty quantification that can be applied to a variety of remote sensing retrieval algorithms. Ours is a statistical approach that uses Monte Carlo simulation to approximate the sampling distribution of the retrieved estimates. We will discuss the strengths and weaknesses of this approach, and provide a case-study example from the Orbiting Carbon Observatory 2 mission.

  6. A multimedia retrieval framework based on semi-supervised ranking and relevance feedback.

    PubMed

    Yang, Yi; Nie, Feiping; Xu, Dong; Luo, Jiebo; Zhuang, Yueting; Pan, Yunhe

    2012-04-01

    We present a new framework for multimedia content analysis and retrieval which consists of two independent algorithms. First, we propose a new semi-supervised algorithm called ranking with Local Regression and Global Alignment (LRGA) to learn a robust Laplacian matrix for data ranking. In LRGA, for each data point, a local linear regression model is used to predict the ranking scores of its neighboring points. A unified objective function is then proposed to globally align the local models from all the data points so that an optimal ranking score can be assigned to each data point. Second, we propose a semi-supervised long-term Relevance Feedback (RF) algorithm to refine the multimedia data representation. The proposed long-term RF algorithm utilizes both the multimedia data distribution in multimedia feature space and the history RF information provided by users. A trace ratio optimization problem is then formulated and solved by an efficient algorithm. The algorithms have been applied to several content-based multimedia retrieval applications, including cross-media retrieval, image retrieval, and 3D motion/pose data retrieval. Comprehensive experiments on four data sets have demonstrated its advantages in precision, robustness, scalability, and computational efficiency.

  7. Assessment of Liver Fibrosis Using Real-time Shear-wave Elastography for Patients with Hepatitis B e Antigen-negative Chronic Hepatitis B and Alanine Transaminase <2 Times the Upper Limit of Normal.

    PubMed

    Liu, Jing-Hua; Zou, Yu; Chang, Wei; Wu, Jun; Zou, Yu; Xie, Yu-Chen; Lu, Yong-Ping; Wei, Jia

    2017-01-01

    We assessed liver fibrosis using real-time shear-wave elastography (SWE) combined with liver biopsy (LB) for patients with hepatitis B e antigen (HBeAg)-negative chronic hepatitis B (CHB) and alanine transaminase < 2 times the upper limit of normal and hepatitis B virus DNA < 2000 IU/ml. A total of 107 patients met the inclusion criteria. Real- ime SWE and ultrasoundassisted liver biopsies were consecutively performed. Fibrosis was staged according to the METAVIR scoring system. Analyses of receiver operating characteristic curve were performed to calculate the optimal area under the receiver operating characteristic curve for F0-F1 versus F2-F4, F0-F2 versus F3-F4, and F0-F3 versus F4 for real-time SWE. The most concurrent liver fibrosis degrees were between F1 and F2 for these HBeAg-negative CHB patients. Liver stiffness increased in parallel with the degree of liver fibrosis using SWE measurements. The area under the receiver operating characteristic curves was 0.881 (95% confidence interval [CI]: 0.704-1.000) for SWE (p = 0.004); 0.912 (95% CI: 0.836-0.987) for SWE (p = 0.000); 0.981 (95% CI: 0.956-1.000) for SWE (p = 0.000); 0.974 (95% CI: 0.936-1.000) for SWE (p = 0.000) when comparing F0 versus F1-F4, F0-F1 versus F2-F4, F0-F2 versus F3-F4, and F0-F3 versus F4, respectively. SWE has the advantage of providing an image of liver stiffness in real-time. As an alternative to LB, the development of all these noninvasive methods for dynamic evaluation of liver fibrosis will decrease the need for LB, making clinical care safer and more convenient for patients with liver diseases.

  8. Effect of dietary seaweed extracts and fish oil supplementation in sows on performance, intestinal microflora, intestinal morphology, volatile fatty acid concentrations and immune status of weaned pigs.

    PubMed

    Leonard, S G; Sweeney, T; Bahar, B; Lynch, B P; O'Doherty, J V

    2011-02-01

    A 2x2 factorial experiment (ten sows per treatment) was conducted to investigate the effect of maternal dietary supplementation with a seaweed extract (SWE; 0 v. 10·0 g/d) and fish oil (FO; 0 v. 100 g/d) inclusion from day 109 of gestation until weaning (day 26) on pig performance post-weaning (PW) and intestinal morphology, selected microflora and immune status of pigs 9 d PW. The SWE contained laminarin (10 %), fucoidan (8 %) and ash (82 %) and the FO contained 40 % EPA and 25 % DHA. Pigs weaned from SWE-supplemented sows had higher daily gain (P=0·063) between days 0 and 21 PW and pigs weaned from FO-supplemented sows had higher daily gain (P<0·05) and gain to feed ratio (P<0·01) between days 7 and 14 PW. There was an interaction between maternal SWE and FO supplementation on caecal Escherichia coli numbers (P<0·05) and the villous height to crypt depth ratio in the ileum (P<0·01) and jejunum (P<0·05) in pigs 9 d PW. Pigs weaned from SWE-supplemented sows had lower caecal E. coli and a higher villous height to crypt depth ratio in the ileum and jejunum compared with non-SWE-supplemented sows (P<0·05). There was no effect of SWE on E. coli numbers and villous height to crypt depth ratio with FO inclusion. Maternal FO supplementation induced an increase in colonic mRNA abundance of IL-1α and IL-6 (P<0·05), while SWE supplementation induced an increase in ileal TNF-α (P<0·01) and colonic TFF3 mRNA expression (P<0·05). In conclusion, these results demonstrate that SWE and FO supplementation to the maternal diet influenced the gastrointestinal environment and performance of the weaned pig.

  9. Development of a remote sensing algorithm to retrieve atmospheric aerosol properties using multiwavelength and multipixel information

    NASA Astrophysics Data System (ADS)

    Hashimoto, Makiko; Nakajima, Teruyuki

    2017-06-01

    We developed a satellite remote sensing algorithm to retrieve the aerosol optical properties using satellite-received radiances for multiple wavelengths and pixels. Our algorithm utilizes spatial inhomogeneity of surface reflectance to retrieve aerosol properties, and the main target is urban aerosols. This algorithm can simultaneously retrieve aerosol optical thicknesses (AOT) for fine- and coarse-mode aerosols, soot volume fraction in fine-mode aerosols (SF), and surface reflectance over heterogeneous surfaces such as urban areas that are difficult to obtain by conventional pixel-by-pixel methods. We applied this algorithm to radiances measured by the Greenhouse Gases Observing Satellite/Thermal and Near Infrared Sensor for Carbon Observations-Cloud and Aerosol Image (GOSAT/TANSO-CAI) at four wavelengths and were able to retrieve the aerosol parameters in several urban regions and other surface types. A comparison of the retrieved AOTs with those from the Aerosol Robotic Network (AERONET) indicated retrieval accuracy within ±0.077 on average. It was also found that the column-averaged SF and the aerosol single scattering albedo (SSA) underwent seasonal changes as consistent with the ground surface measurements of SSA and black carbon at Beijing, China.

  10. The validation of the Yonsei CArbon Retrieval algorithm with improved aerosol information using GOSAT measurements

    NASA Astrophysics Data System (ADS)

    Jung, Yeonjin; Kim, Jhoon; Kim, Woogyung; Boesch, Hartmut; Goo, Tae-Young; Cho, Chunho

    2017-04-01

    Although several CO2 retrieval algorithms have been developed to improve our understanding about carbon cycle, limitations in spatial coverage and uncertainties due to aerosols and thin cirrus clouds are still remained as a problem for monitoring CO2 concentration globally. Based on an optimal estimation method, the Yonsei CArbon Retrieval (YCAR) algorithm was developed to retrieve the column-averaged dry-air mole fraction of carbon dioxide (XCO2) using the Greenhouse Gases Observing SATellite (GOSAT) measurements with optimized a priori CO2 profiles and aerosol models over East Asia. In previous studies, the aerosol optical properties (AOP) are the most important factors in CO2 retrievals since AOPs are assumed as fixed parameters during retrieval process, resulting in significant XCO2 retrieval error up to 2.5 ppm. In this study, to reduce these errors caused by inaccurate aerosol optical information, the YCAR algorithm improved with taking into account aerosol optical properties as well as aerosol vertical distribution simultaneously. The CO2 retrievals with two difference aerosol approaches have been analyzed using the GOSAT spectra and have been evaluated throughout the comparison with collocated ground-based observations at several Total Carbon Column Observing Network (TCCON) sites. The improved YCAR algorithm has biases of 0.59±0.48 ppm and 2.16±0.87 ppm at Saga and Tsukuba sites, respectively, with smaller biases and higher correlation coefficients compared to the GOSAT operational algorithm. In addition, the XCO2 retrievals will be validated at other TCCON sites and error analysis will be evaluated. These results reveal that considering better aerosol information can improve the accuracy of CO2 retrieval algorithm and provide more useful XCO2 information with reduced uncertainties. This study would be expected to provide useful information in estimating carbon sources and sinks.

  11. A New Inversion-Based Algorithm for Retrieval of Over-Water Rain Rate from SSM/I Multichannel Imagery

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.; Stettner, David R.

    1994-01-01

    This paper discusses certain aspects of a new inversion based algorithm for the retrieval of rain rate over the open ocean from the special sensor microwave/imager (SSM/I) multichannel imagery. This algorithm takes a more detailed physical approach to the retrieval problem than previously discussed algorithms that perform explicit forward radiative transfer calculations based on detailed model hydrometer profiles and attempt to match the observations to the predicted brightness temperature.

  12. HydroCube mission concept: P-Band signals of opportunity for remote sensing of snow and root zone soil moisture

    NASA Astrophysics Data System (ADS)

    Yueh, Simon; Shah, Rashmi; Xu, Xiaolan; Elder, Kelly; Chae, Chun Sik; Margulis, Steve; Liston, Glen; Durand, Michael; Derksen, Chris

    2017-09-01

    We have developed the HydroCube mission concept with a constellation of small satellites to remotely sense Snow Water Equivalent (SWE) and Root Zone Soil Moisture (RZSM). The HydroCube satellites would operate at sun-synchronous 3- day repeat polar orbits with a spatial resolution of about 1-3 Km. The mission goals would be to improve the estimation of terrestrial water storage and weather forecasts. Root-zone soil moisture and snow water storage in land are critical parameters of the water cycle. The HydroCube Signals of Opportunity (SoOp) concept utilizes passive receivers to detect the reflection of strong existing P-band radio signals from geostationary Mobile Use Objective System (MUOS) communication satellites. The SWE remote sensing measurement principle using the P-band SoOp is based on the propagation delay (or phase change) of radio signals through the snowpack. The time delay of the reflected signal due to the snowpack with respect to snow-free conditions is directly proportional to the snowpack SWE. To address the ionospheric delay at P-band frequencies, the signals from both MUOS bands (360-380 MHz and 250-270 MHz) would be used. We have conducted an analysis to trade off the spatial resolution for a space-based sensor and measurement accuracy. Through modeling analysis, we find that the dual-band MUOS signals would allow estimation of soil moisture and surface roughness together. From the two MUOS frequencies at 260 MHz and 370 MHz, we can retrieve the soil moisture from the reflectivity ratio scaled by wavenumbers using the two P-band frequencies for MUOS. A modeling analysis using layered stratified model has been completed to determine the sensitivity requirements of HydroCube measurements. For mission concept demonstration, a field campaign has been conducted at the Fraser Experimental Forest in Colorado since February 2016. The data acquired has provided support to the HydroCube concept.

  13. Interacting With A Near Real-Time Urban Digital Watershed Using Emerging Geospatial Web Technologies

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Fazio, D. J.; Abdelzaher, T.; Minsker, B.

    2007-12-01

    The value of real-time hydrologic data dissemination including river stage, streamflow, and precipitation for operational stormwater management efforts is particularly high for communities where flash flooding is common and costly. Ideally, such data would be presented within a watershed-scale geospatial context to portray a holistic view of the watershed. Local hydrologic sensor networks usually lack comprehensive integration with sensor networks managed by other agencies sharing the same watershed due to administrative, political, but mostly technical barriers. Recent efforts on providing unified access to hydrological data have concentrated on creating new SOAP-based web services and common data format (e.g. WaterML and Observation Data Model) for users to access the data (e.g. HIS and HydroSeek). Geospatial Web technology including OGC sensor web enablement (SWE), GeoRSS, Geo tags, Geospatial browsers such as Google Earth and Microsoft Virtual Earth and other location-based service tools provides possibilities for us to interact with a digital watershed in near-real-time. OGC SWE proposes a revolutionary concept towards a web-connected/controllable sensor networks. However, these efforts have not provided the capability to allow dynamic data integration/fusion among heterogeneous sources, data filtering and support for workflows or domain specific applications where both push and pull mode of retrieving data may be needed. We propose a light weight integration framework by extending SWE with open source Enterprise Service Bus (e.g., mule) as a backbone component to dynamically transform, transport, and integrate both heterogeneous sensor data sources and simulation model outputs. We will report our progress on building such framework where multi-agencies" sensor data and hydro-model outputs (with map layers) will be integrated and disseminated in a geospatial browser (e.g. Microsoft Virtual Earth). This is a collaborative project among NCSA, USGS Illinois Water Science Center, Computer Science Department at UIUC funded by the Adaptive Environmental Infrastructure Sensing and Information Systems initiative at UIUC.

  14. UWScat observations of snow on Grand Mesa, Colorado - Backscatter and polarimetric response of snow in a canopy and snow on the ground

    NASA Astrophysics Data System (ADS)

    Thompson, A. D.; Kelly, R. E. J.

    2017-12-01

    The ability to measure the amount of water stored in Earth's terrestrial snowpack is important for human development, resource management, and environmental modelling. Active microwave remote sensing offers the promise to do so however we must better understand how forest, which accounts for a large fraction of snow-covered land, affects the microwave retrieval of snow water equivalent (SWE). This is a fundamental goal of the NASA SnowEx mission and one we address using data collected during the February 2017 campaign in Grand Mesa, Colorado. We deployed UWScat, a ground-based, polarimetric scatterometer operating at 9.6 and 17.2 GHz frequencies, at 8 sites on Grand Mesa, including 2 sites observed from a platform approximately 9 m above the ground overlooking a coniferous canopy. Ancillary snowpit and snow microstructure measurements were also made and include traditional snowpit measurements along with measurements of snow specific surface area (SSA) using IRIS and IceCube systems. A snow micropenetrometer (SMP) was used to provide stratigraphic information. First, we show the influence of forest canopy on the microwave backscatter response, and how backscatter alone is insufficient to distinguish between forested and non-forested landscapes. Secondly, we show how polarimetric data can be used to identify the presence of forest canopy within the scene by revealing the depolarization that occurs in the interaction between the microwaves and the canopy structure. This result illustrates the benefits of a dual frequency polarimetric approach. While depolarization from a canopy is evident at X-band, there is less evidence of depolarization from a snowpack. At Ku-band frequencies, however, depolarization is evident both from interaction with the snowpack and the canopy. Finally we explore the relationship between SWE and backscatter in forested and un-forested environments. Together these results provide useful insights that increase our understanding of the radar polarimetric response from SWE in a forested landscape using a dual frequency Ku and X-band active microwave system.

  15. Numerical simulation of flood inundation using a well-balanced kinetic scheme for the shallow water equations with bulk recharge and discharge

    NASA Astrophysics Data System (ADS)

    Ersoy, Mehmet; Lakkis, Omar; Townsend, Philip

    2016-04-01

    The flow of water in rivers and oceans can, under general assumptions, be efficiently modelled using Saint-Venant's shallow water system of equations (SWE). SWE is a hyperbolic system of conservation laws (HSCL) which can be derived from a starting point of incompressible Navier-Stokes. A common difficulty in the numerical simulation of HSCLs is the conservation of physical entropy. Work by Audusse, Bristeau, Perthame (2000) and Perthame, Simeoni (2001), proposed numerical SWE solvers known as kinetic schemes (KSs), which can be shown to have desirable entropy-consistent properties, and are thus called well-balanced schemes. A KS is derived from kinetic equations that can be integrated into the SWE. In flood risk assessment models the SWE must be coupled with other equations describing interacting meteorological and hydrogeological phenomena such as rain and groundwater flows. The SWE must therefore be appropriately modified to accommodate source and sink terms, so kinetic schemes are no longer valid. While modifications of SWE in this direction have been recently proposed, e.g., Delestre (2010), we depart from the extant literature by proposing a novel model that is "entropy-consistent" and naturally extends the SWE by respecting its kinetic formulation connections. This allows us to derive a system of partial differential equations modelling flow of a one-dimensional river with both a precipitation term and a groundwater flow model to account for potential infiltration and recharge. We exhibit numerical simulations of the corresponding kinetic schemes. These simulations can be applied to both real world flood prediction and the tackling of wider issues on how climate and societal change are affecting flood risk.

  16. Snowpack Estimates Improve Water Resources Climate-Change Adaptation Strategies

    NASA Astrophysics Data System (ADS)

    Lestak, L.; Molotch, N. P.; Guan, B.; Granger, S. L.; Nemeth, S.; Rizzardo, D.; Gehrke, F.; Franz, K. J.; Karsten, L. R.; Margulis, S. A.; Case, K.; Anderson, M.; Painter, T. H.; Dozier, J.

    2010-12-01

    Observed climate trends over the past 50 years indicate a reduction in snowpack water storage across the Western U.S. As the primary water source for the region, the loss in snowpack water storage presents significant challenges for managing water deliveries to meet agricultural, municipal, and hydropower demands. Improved snowpack information via remote sensing shows promise for improving seasonal water supply forecasts and for informing decadal scale infrastructure planning. An ongoing project in the California Sierra Nevada and examples from the Rocky Mountains indicate the tractability of estimating snowpack water storage on daily time steps using a distributed snowpack reconstruction model. Fractional snow covered area (FSCA) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data were used with modeled snowmelt from the snowpack model to estimate snow water equivalent (SWE) in the Sierra Nevada (64,515 km2). Spatially distributed daily SWE estimates were calculated for 10 years, 2000-2009, with detailed analysis for two anamolous years, 2006, a wet year and 2009, an over-forecasted year. Sierra-wide mean SWE was 0.8 cm for 01 April 2006 versus 0.4 cm for 01 April 2009, comparing favorably with known outflow. Modeled SWE was compared to in-situ (observed) SWE for 01 April 2006 for the Feather (northern Sierra, lower-elevation) and Merced (central Sierra, higher-elevation) basins, with mean modeled SWE 80% of observed SWE. Integration of spatial SWE estimates into forecasting operations will allow for better visualization and analysis of high-altitude late-season snow missed by in-situ snow sensors and inter-annual anomalies associated with extreme precipitation events/atmospheric rivers. Collaborations with state and local entities establish protocols on how to meet current and future information needs and improve climate-change adaptation strategies.

  17. Utility of Shear Wave Elastography for Differentiating Biliary Atresia From Infantile Hepatitis Syndrome.

    PubMed

    Wang, Xiaoman; Qian, Linxue; Jia, Liqun; Bellah, Richard; Wang, Ning; Xin, Yue; Liu, Qinglin

    2016-07-01

    The purpose of this study was to investigate the potential utility of shear wave elastography (SWE) for diagnosis of biliary atresia and for differentiating biliary atresia from infantile hepatitis syndrome by measuring liver stiffness. Thirty-eight patients with biliary atresia and 17 patients with infantile hepatitis syndrome were included, along with 31 healthy control infants. The 3 groups underwent SWE. The hepatic tissue of each patient with biliary atresia had been surgically biopsied. Statistical analyses for mean values of the 3 groups were performed. Optimum cutoff values using SWE for differentiation between the biliary atresia and control groups were calculated by a receiver operating characteristic (ROC) analysis. The mean SWE values ± SD for the 3 groups were as follows: biliary atresia group, 20.46 ± 10.19 kPa; infantile hepatitis syndrome group, 6.29 ± 0.99 kPa; and control group, 6.41 ± 1.08 kPa. The mean SWE value for the biliary atresia group was higher than the values for the control and infantile hepatitis syndrome groups (P < .01). The mean SWE values between the control and infantile hepatitis syndrome groups were not statistically different. The ROC analysis showed a cutoff value of 8.68 kPa for differentiation between the biliary atresia and control groups. The area under the ROC curve was 0.997, with sensitivity of 97.4%, specificity of 100%, a positive predictive value of 100%, and a negative predictive value of 96.9%. Correlation analysis suggested a positive correlation between SWE values and age for patients with biliary atresia, with a Pearson correlation coefficient of 0.463 (P < .05). The significant increase in liver SWE values in neonates and infants with biliary atresia supports their application for differentiating biliary atresia from infantile hepatitis syndrome.

  18. Point-shear wave elastography predicts liver hypertrophy after portal vein embolization and postoperative liver failure.

    PubMed

    Hocquelet, A; Frulio, N; Gallo, G; Laurent, C; Papadopoulos, P; Salut, C; Denys, A; Trillaud, H

    2018-06-01

    To correlate point-shear wave elastography (SWE) with liver hypertrophy after right portal vein embolization (RPVE) and to determine its usefulness in predicting postoperative liver failure in patients undergoing partial liver resection. Point-SWE was performed the day before RPVE in 56 patients (41 men) with a median age of 66 years. The percentage (%) of future remnant liver (FRL) volume increase was defined as: %FRL post -%FRL pre %FRL pre ×100 and assessed on computed tomography performed 4 weeks after RPVE. Median (range) %FRL pre and %FRL post was respectively, 31.5% (12-48%) and 41% (23-61%) (P<0.001), with a median %FRL volume increase of 25.6% (-8; 123%). SWE correlated with %FRL volume increase (P=-0.510; P<0.001). SWV (P=0.003) and %FRL pre (P<0.001) were associated with %FRL volume increase at multivariate regression analysis. Forty-three patients (77%) were operated. Postoperative liver failure occurred in 14 patients (32.5%). Median SWE was different between the group with (1.68m/s) and without liver failure (1.07m/s) (P=0.018). The AUROC of SWE predicting liver failure was 0.724 with a best cut-off of 1.31m/s, corresponding to a sensitivity of 21%, specificity of 96%, positive predictive value 75% and negative predictive value of 72%. SWE was the single independent preoperative variable associated with liver failure. SWE assessed by point-SWE is a simple and useful tool to predict the FRL volume increase and postoperative liver failure in a population of patients with liver tumor. Copyright © 2018 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  19. Fast perceptual image hash based on cascade algorithm

    NASA Astrophysics Data System (ADS)

    Ruchay, Alexey; Kober, Vitaly; Yavtushenko, Evgeniya

    2017-09-01

    In this paper, we propose a perceptual image hash algorithm based on cascade algorithm, which can be applied in image authentication, retrieval, and indexing. Image perceptual hash uses for image retrieval in sense of human perception against distortions caused by compression, noise, common signal processing and geometrical modifications. The main disadvantage of perceptual hash is high time expenses. In the proposed cascade algorithm of image retrieval initializes with short hashes, and then a full hash is applied to the processed results. Computer simulation results show that the proposed hash algorithm yields a good performance in terms of robustness, discriminability, and time expenses.

  20. Bias of shear wave elasticity measurements in thin layer samples and a simple correction strategy.

    PubMed

    Mo, Jianqiang; Xu, Hao; Qiang, Bo; Giambini, Hugo; Kinnick, Randall; An, Kai-Nan; Chen, Shigao; Luo, Zongping

    2016-01-01

    Shear wave elastography (SWE) is an emerging technique for measuring biological tissue stiffness. However, the application of SWE in thin layer tissues is limited by bias due to the influence of geometry on measured shear wave speed. In this study, we investigated the bias of Young's modulus measured by SWE in thin layer gelatin-agar phantoms, and compared the result with finite element method and Lamb wave model simulation. The result indicated that the Young's modulus measured by SWE decreased continuously when the sample thickness decreased, and this effect was more significant for smaller thickness. We proposed a new empirical formula which can conveniently correct the bias without the need of using complicated mathematical modeling. In summary, we confirmed the nonlinear relation between thickness and Young's modulus measured by SWE in thin layer samples, and offered a simple and practical correction strategy which is convenient for clinicians to use.

  1. Retrieving Atmospheric Profiles Data in the Presence of Clouds from Hyperspectral Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Larar, Allen M.; Zhou, Daniel K.; Kizer, Susan H.; Wu, Wan; Barnet, Christopher; Divakarla, Murty; Guo, Guang; Blackwell, Bill; Smith, William L.; hide

    2011-01-01

    Different methods for retrieving atmospheric profiles in the presence of clouds from hyperspectral satellite remote sensing data will be described. We will present results from the JPSS cloud-clearing algorithm and NASA Langley cloud retrieval algorithm.

  2. Cloud Retrieval Intercomparisons Between SEVIRI, MODIS and VIIRS with CHIMAERA PGE06 Data Collection 6 Products

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Riedi, Jerome; Platnick, Steven; Heidinger, Andrew

    2014-01-01

    The Cross-platform HIgh resolution Multi-instrument AtmosphEric Retrieval Algorithms (CHIMAERA) system allows us to perform MODIS-like cloud top, optical and microphysical properties retrievals on any sensor that possesses a minimum set of common spectral channels. The CHIMAERA system uses a shared-core architecture that takes retrieval method out of the equation when intercomparisons are made. Here we show an example of such retrieval and a comparison of simultaneous retrievals done using SEVIRI, MODIS and VIIRS sensors. All sensor retrievals are performed using CLAVR-x (or CLAVR-x based) cloud top properties algorithm. SEVIRI uses the SAF_NWC cloud mask. MODIS and VIIRS use the IFF-based cloud mask that is a shared algorithm between MODIS and VIIRS. The MODIS and VIIRS retrievals are performed using a VIIRS branch of CHIMAERA that limits available MODIS channel set. Even though in that mode certain MODIS products such as multilayer cloud map are not available, the cloud retrieval remains fully equivalent to operational Data Collection 6.

  3. Effect of Arctic Amplification on Design Snow Loads in Alaska

    DTIC Science & Technology

    2016-09-01

    snow water equivalent UFC Unified Facilities Criteria UTC Coordinated Universal Time Keywords: Alaska, Arctic amplification, climate change...extreme value analysis, snow loads, snow water equivalent , SWE Acknowledgements: This work was conducted with support from the Strategic... equivalent (SWE) of the snowpack. We acquired SWE data from a number of sources that provide automatic or manual observations, reanalysis data, or

  4. Shear-wave elastography in breast ultrasonography: the state of the art

    PubMed Central

    2017-01-01

    Shear-wave elastography (SWE) is a recently developed ultrasound technique that can visualize and measure tissue elasticity. In breast ultrasonography, SWE has been shown to be useful for differentiating benign breast lesions from malignant breast lesions, and it has been suggested that SWE enhances the diagnostic performance of ultrasonography, potentially improving the specificity of conventional ultrasonography using the Breast Imaging Reporting and Data System criteria. More recently, not only has SWE been proven useful for the diagnosis of breast cancer, but has also been shown to provide valuable information that can be used as a preoperative predictor of the prognosis or response to chemotherapy. PMID:28513127

  5. Estimation of Snow Parameters Based on Passive Microwave Remote Sensing and Meteorological Information

    NASA Technical Reports Server (NTRS)

    Tsang, Leung; Hwang, Jenq-Neng

    1996-01-01

    A method to incorporate passive microwave remote sensing measurements within a spatially distributed snow hydrology model to provide estimates of the spatial distribution of Snow Water Equivalent (SWE) as a function of time is implemented. The passive microwave remote sensing measurements are at 25 km resolution. However, in mountain regions the spatial variability of SWE over a 25 km footprint is large due to topographic influences. On the other hand, the snow hydrology model has built-in topographic information and the capability to estimate SWE at a 1 km resolution. In our work, the snow hydrology SWE estimates are updated and corrected using SSM/I passive microwave remote sensing measurements. The method is applied to the Upper Rio Grande River Basin in the mountains of Colorado. The change in prediction of SWE from hydrology modeling with and without updating is compared with measurements from two SNOTEL sites in and near the basin. The results indicate that the method incorporating the remote sensing measurements into the hydrology model is able to more closely estimate the temporal evolution of the measured values of SWE as a function of time.

  6. Combining Passive Microwave and Optical Data to Estimate Snow Water Equivalent in Afghanistan's Hindu Kush

    NASA Astrophysics Data System (ADS)

    Dozier, J.; Bair, N.; Calfa, A. A.; Skalka, C.; Tolle, K.; Bongard, J.

    2015-12-01

    The task is to estimate spatiotemporally distributed estimates of snow water equivalent (SWE) in snow-dominated mountain environments, including those that lack on-the-ground measurements such as the Hindu Kush range in Afghanistan. During the snow season, we can use two measurements: (1) passive microwave estimates of SWE, which generally underestimate in the mountains; (2) fractional snow-covered area from MODIS. Once the snow has melted, we can reconstruct the accumulated SWE back to the last significant snowfall by calculating the energy used in melt. The reconstructed SWE values provide a training set for predictions from the passive microwave SWE and snow-covered area. We examine several machine learning methods—regression-boosted decision trees, bagged trees, neural networks, and genetic programming—to estimate SWE. All methods work reasonably well, with R2 values greater than 0.8. Predictors built with multiple years of data reduce the bias that usually appears if we predict one year from just one other year's training set. Genetic programming tends to produce results that additionally provide physical insight. Adding precipitation estimates from the Global Precipitation Measurements mission is in progress.

  7. Measuring personal recovery - psychometric properties of the Swedish Questionnaire about the Process of Recovery (QPR-Swe).

    PubMed

    Argentzell, Elisabeth; Hultqvist, Jenny; Neil, Sandra; Eklund, Mona

    2017-10-01

    Personal recovery, defined as an individual process towards meaning, is an important target within mental health services. Measuring recovery hence requires reliable and valid measures. The Process of Recovery Questionnaire (QPR) was developed for that purpose. The aim was to develop a Swedish version of the QPR (QPR-Swe) and explore its psychometric properties in terms of factor structure, internal consistency, construct validity and sensitivity to change. A total of 226 participants entered the study. The factor structure was investigated by Principal Component Analysis and Scree plot. Construct validity was addressed in terms of convergent validity against indicators of self-mastery, self-esteem, quality of life and self-rated health. A one-factor solution of QPR-Swe received better support than a two-factor solution. Good internal consistency was indicated, α = 0.92, and construct validity was satisfactory. The QPR-Swe showed preliminary sensitivity to change. The QPR-Swe showed promising initial psychometric properties in terms of internal consistency, convergent validity and sensitivity to change. The QPR-Swe is recommended for use in research and clinical contexts to assess personal recovery among people with mental illness.

  8. Feasibility Assessment of Shear Wave Elastography to Rotator Cuff Muscle

    PubMed Central

    Itoigawa, Yoshiaki; Sperling, John W.; Steinmann, Scott P.; Chen, Qingshan; Song, Pengfei; Chen, Shigao; Itoi, Eiji; Hatta, Taku; An, Kai-Nan

    2017-01-01

    Introduction Pre -surgical measurement of supraspinatus muscle extensibility would be important for rotator cuff repair. The purpose of the present study was to explore the potential feasibility of a shear wave ultrasound electrograph (SWE) based method, combined with B-mode ultrasound, to non-invasively measure in vivo stiffness of supraspinatus muscle, and thus obtaining the key information on supraspinatus muscle extensibility. Materials and Methods Our investigation consisted of 2 steps. First, we evaluated orientation of the supraspinatus muscle fiber on cadaveric shoulders without rotator cuff tear in order to optimize the ultrasound probe positions for SWE imaging. Second, we investigated the feasibility of quantifying the normal supraspinatus muscle stiffness by SWE in vivo. Results The supraspinatus muscle was divided into four anatomical regions, namely anterior superficial (AS), posterior superficial (PS), anterior deep (AD) and posterior deep (PD) regions. SWE was evaluated at each of these regions. SWE stiffness on AD, AS, PD, and PS were measured as 40.0±12.4, 34.0±9.9, 32.7±12.7, 39.1±15.7 kPa, respectively. Conclusions SWE combined with B-Mode ultrasound image may be a feasible method to quantify local tissue stiffness of the rotator cuff muscles. PMID:25557287

  9. Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: a pilot study.

    PubMed

    Ferraioli, Giovanna; Tinelli, Carmine; Dal Bello, Barbara; Zicchetti, Mabel; Filice, Gaetano; Filice, Carlo

    2012-12-01

    Real-time shear wave elastography (SWE) is a novel, noninvasive method to assess liver fibrosis by measuring liver stiffness. This single-center study was conducted to assess the accuracy of SWE in patients with chronic hepatitis C (CHC), in comparison with transient elastography (TE), by using liver biopsy (LB) as the reference standard. Consecutive patients with CHC scheduled for LB by referring physicians were studied. One hundred and twenty-one patients met inclusion criteria. On the same day, real-time SWE using the ultrasound (US) system, Aixplorer (SuperSonic Imagine S.A., Aix-en-Provence, France), TE using FibroScan (Echosens, Paris, France), and US-assisted LB were consecutively performed. Fibrosis was staged according to the METAVIR scoring system. Analyses of receiver operating characteristic (ROC) curve were performed to calculate optimal area under the ROC curve (AUROC) for F0-F1 versus F2-F4, F0- F2 versus F3-F4, and F0-F3 versus F4 for both real-time SWE and TE. Liver stiffness values increased in parallel with degree of liver fibrosis, both with SWE and TE. AUROCs were 0.92 (95% confidence interval [CI]: 0.85-0.96) for SWE and 0.84 (95% CI: 0.76-0.90) for TE (P = 0.002), 0.98 (95% CI: 0.94-1.00) for SWE and 0.96 (95% CI: 0.90-0.99) for TE (P = 0.14), and 0.98 (95% CI: 0.93-1.00) for SWE and 0.96 (95% CI: 0.91-0.99) for TE (P = 0.48), when comparing F0-F1 versus F2- F4, F0- F2 versus F3-F4, and F0 -F3 versus F4, respectively. The results of this study show that real-time SWE is more accurate than TE in assessing significant fibrosis (≥ F2). With respect to TE, SWE has the advantage of imaging liver stiffness in real time while guided by a B-mode image. Thus, the region of measurement can be guided with both anatomical and tissue stiffness information. Copyright © 2012 American Association for the Study of Liver Diseases.

  10. Assessment of Chlorophyll-a Algorithms Considering Different Trophic Statuses and Optimal Bands.

    PubMed

    Salem, Salem Ibrahim; Higa, Hiroto; Kim, Hyungjun; Kobayashi, Hiroshi; Oki, Kazuo; Oki, Taikan

    2017-07-31

    Numerous algorithms have been proposed to retrieve chlorophyll- a concentrations in Case 2 waters; however, the retrieval accuracy is far from satisfactory. In this research, seven algorithms are assessed with different band combinations of multispectral and hyperspectral bands using linear (LN), quadratic polynomial (QP) and power (PW) regression approaches, resulting in altogether 43 algorithmic combinations. These algorithms are evaluated by using simulated and measured datasets to understand the strengths and limitations of these algorithms. Two simulated datasets comprising 500,000 reflectance spectra each, both based on wide ranges of inherent optical properties (IOPs), are generated for the calibration and validation stages. Results reveal that the regression approach (i.e., LN, QP, and PW) has more influence on the simulated dataset than on the measured one. The algorithms that incorporated linear regression provide the highest retrieval accuracy for the simulated dataset. Results from simulated datasets reveal that the 3-band (3b) algorithm that incorporate 665-nm and 680-nm bands and band tuning selection approach outperformed other algorithms with root mean square error (RMSE) of 15.87 mg·m -3 , 16.25 mg·m -3 , and 19.05 mg·m -3 , respectively. The spatial distribution of the best performing algorithms, for various combinations of chlorophyll- a (Chla) and non-algal particles (NAP) concentrations, show that the 3b_tuning_QP and 3b_680_QP outperform other algorithms in terms of minimum RMSE frequency of 33.19% and 60.52%, respectively. However, the two algorithms failed to accurately retrieve Chla for many combinations of Chla and NAP, particularly for low Chla and NAP concentrations. In addition, the spatial distribution emphasizes that no single algorithm can provide outstanding accuracy for Chla retrieval and that multi-algorithms should be included to reduce the error. Comparing the results of the measured and simulated datasets reveal that the algorithms that incorporate the 665-nm band outperform other algorithms for measured dataset (RMSE = 36.84 mg·m -3 ), while algorithms that incorporate the band tuning approach provide the highest retrieval accuracy for the simulated dataset (RMSE = 25.05 mg·m -3 ).

  11. Assessment of Chlorophyll-a Algorithms Considering Different Trophic Statuses and Optimal Bands

    PubMed Central

    Higa, Hiroto; Kobayashi, Hiroshi; Oki, Kazuo

    2017-01-01

    Numerous algorithms have been proposed to retrieve chlorophyll-a concentrations in Case 2 waters; however, the retrieval accuracy is far from satisfactory. In this research, seven algorithms are assessed with different band combinations of multispectral and hyperspectral bands using linear (LN), quadratic polynomial (QP) and power (PW) regression approaches, resulting in altogether 43 algorithmic combinations. These algorithms are evaluated by using simulated and measured datasets to understand the strengths and limitations of these algorithms. Two simulated datasets comprising 500,000 reflectance spectra each, both based on wide ranges of inherent optical properties (IOPs), are generated for the calibration and validation stages. Results reveal that the regression approach (i.e., LN, QP, and PW) has more influence on the simulated dataset than on the measured one. The algorithms that incorporated linear regression provide the highest retrieval accuracy for the simulated dataset. Results from simulated datasets reveal that the 3-band (3b) algorithm that incorporate 665-nm and 680-nm bands and band tuning selection approach outperformed other algorithms with root mean square error (RMSE) of 15.87 mg·m−3, 16.25 mg·m−3, and 19.05 mg·m−3, respectively. The spatial distribution of the best performing algorithms, for various combinations of chlorophyll-a (Chla) and non-algal particles (NAP) concentrations, show that the 3b_tuning_QP and 3b_680_QP outperform other algorithms in terms of minimum RMSE frequency of 33.19% and 60.52%, respectively. However, the two algorithms failed to accurately retrieve Chla for many combinations of Chla and NAP, particularly for low Chla and NAP concentrations. In addition, the spatial distribution emphasizes that no single algorithm can provide outstanding accuracy for Chla retrieval and that multi-algorithms should be included to reduce the error. Comparing the results of the measured and simulated datasets reveal that the algorithms that incorporate the 665-nm band outperform other algorithms for measured dataset (RMSE = 36.84 mg·m−3), while algorithms that incorporate the band tuning approach provide the highest retrieval accuracy for the simulated dataset (RMSE = 25.05 mg·m−3). PMID:28758984

  12. Validation of YCAR algorithm over East Asia TCCON sites

    NASA Astrophysics Data System (ADS)

    Kim, W.; Kim, J.; Jung, Y.; Lee, H.; Goo, T. Y.; Cho, C. H.; Lee, S.

    2016-12-01

    In order to reduce the retrieval error of TANSO-FTS column averaged CO2 concentration (XCO2) induced by aerosol, we develop the Yonsei university CArbon Retrieval (YCAR) algorithm using aerosol information from TANSO-Cloud and Aerosol Imager (TANSO-CAI), providing simultaneous aerosol optical depth properties for the same geometry and optical path along with the FTS. Also we validate the retrieved results using ground-based TCCON measurement. Particularly this study first utilized the measurements at Anmyeondo, the only TCCON site located in South Korea, which can improve the quality of validation in East Asia. After the post screening process, YCAR algorithms have higher data availability by 33 - 85 % than other operational algorithms (NIES, ACOS, UoL). Although the YCAR algorithm has higher data availability, regression analysis with TCCON measurements are better or similar to other algorithms; Regression line of YCAR algorithm is close to linear identity function with RMSE of 2.05, bias of - 0.86 ppm. According to error analysis, retrieval error of YCAR algorithm is 1.394 - 1.478 ppm at East Asia. In addition, spatio-temporal sampling error of 0.324 - 0.358 ppm for each single sounding retrieval is also analyzed with Carbon Tracker - Asia data. These results of error analysis reveal the reliability and accuracy of latest version of our YCAR algorithm. Both XCO2 values retrieved using YCAR algorithm on TANSO-FTS and TCCON measurements show the consistent increasing trend about 2.3 - 2.6 ppm per year. Comparing to the increasing rate of global background CO2 amount measured in Mauna Loa, Hawaii (2 ppm per year), the increasing trend in East Asia shows about 30% higher trend due to the rapid increase of CO2 emission from the source region.

  13. An advanced retrieval algorithm for greenhouse gases using polarization information measured by GOSAT TANSO-FTS SWIR I: Simulation study

    NASA Astrophysics Data System (ADS)

    Kikuchi, N.; Yoshida, Y.; Uchino, O.; Morino, I.; Yokota, T.

    2016-11-01

    We present an algorithm for retrieving column-averaged dry air mole fraction of carbon dioxide (XCO2) and methane (XCH4) from reflected spectra in the shortwave infrared (SWIR) measured by the TANSO-FTS (Thermal And Near infrared Sensor for carbon Observation Fourier Transform Spectrometer) sensor on board the Greenhouse gases Observing SATellite (GOSAT). The algorithm uses the two linear polarizations observed by TANSO-FTS to improve corrections to the interference effects of atmospheric aerosols, which degrade the accuracy in the retrieved greenhouse gas concentrations. To account for polarization by the land surface reflection in the forward model, we introduced a bidirectional reflection matrix model that has two parameters to be retrieved simultaneously with other state parameters. The accuracy in XCO2 and XCH4 values retrieved with the algorithm was evaluated by using simulated retrievals over both land and ocean, focusing on the capability of the algorithm to correct imperfect prior knowledge of aerosols. To do this, we first generated simulated TANSO-FTS spectra using a global distribution of aerosols computed by the aerosol transport model SPRINTARS. Then the simulated spectra were submitted to the algorithms as measurements both with and without polarization information, adopting a priori profiles of aerosols that differ from the true profiles. We found that the accuracy of XCO2 and XCH4, as well as profiles of aerosols, retrieved with polarization information was considerably improved over values retrieved without polarization information, for simulated observations over land with aerosol optical thickness greater than 0.1 at 1.6 μm.

  14. Development of a generalized algorithm of satellite remote sensing using multi-wavelength and multi-pixel information (MWP method) for aerosol properties by satellite-borne imager

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Nakajima, T.; Morimoto, S.; Takenaka, H.

    2014-12-01

    We have developed a new satellite remote sensing algorithm to retrieve the aerosol optical characteristics using multi-wavelength and multi-pixel information of satellite imagers (MWP method). In this algorithm, the inversion method is a combination of maximum a posteriori (MAP) method (Rodgers, 2000) and the Phillips-Twomey method (Phillips, 1962; Twomey, 1963) as a smoothing constraint for the state vector. Furthermore, with the progress of computing technique, this method has being combined with the direct radiation transfer calculation numerically solved by each iteration step of the non-linear inverse problem, without using LUT (Look Up Table) with several constraints.Retrieved parameters in our algorithm are aerosol optical properties, such as aerosol optical thickness (AOT) of fine and coarse mode particles, a volume soot fraction in fine mode particles, and ground surface albedo of each observed wavelength. We simultaneously retrieve all the parameters that characterize pixels in each of horizontal sub-domains consisting the target area. Then we successively apply the retrieval method to all the sub-domains in the target area.We conducted numerical tests for the retrieval of aerosol properties and ground surface albedo for GOSAT/CAI imager data to test the algorithm for the land area. The result of the experiment showed that AOTs of fine mode and coarse mode, soot fraction and ground surface albedo are successfully retrieved within expected accuracy. We discuss the accuracy of the algorithm for various land surface types. Then, we applied this algorithm to GOSAT/CAI imager data, and we compared retrieved and surface-observed AOTs at the CAI pixel closest to an AERONET (Aerosol Robotic Network) or SKYNET site in each region. Comparison at several sites in urban area indicated that AOTs retrieved by our method are in agreement with surface-observed AOT within ±0.066.Our future work is to extend the algorithm for analysis of AGEOS-II/GLI and GCOM/C-SGLI data.

  15. Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases.

    PubMed

    Chang, Jung Min; Moon, Woo Kyung; Cho, Nariya; Yi, Ann; Koo, Hye Ryoung; Han, Wonsik; Noh, Dong-Young; Moon, Hyeong-Gon; Kim, Seung Ja

    2011-08-01

    Shear wave elastography (SWE) is an emerging technique which can obtain quantitative elasticity values in breast disease. We therefore evaluated the diagnostic performance of SWE for the differentiation of breast masses compared with conventional ultrasound (US). Conventional US and SWE were performed by three experienced radiologists for 158 consecutive women who had been scheduled for US-guided core biopsy or surgical excision in 182 breast masses (89 malignancies and 93 benign; mean size, 1.76 cm). For each lesion, quantitative elasticity was measured in terms of the Young's modulus (in kilopascals, kPa) with SWE, and BI-RADS final categories were assessed with conventional US. The mean elasticity values were significantly higher in malignant masses (153.3 kPa ± 58.1) than in benign masses (46.1 kPa ± 42.9), (P < 0.0001). The average mean elasticity values of invasive ductal (157.5 ± 57.07) or invasive lobular (169.5 ± 61.06) carcinomas were higher than those of ductal carcinoma in situ (117.8 kPa ± 54.72). The average mean value was 49.58 ± 43.51 for fibroadenoma, 35.3 ± 31.2 for fibrocystic changes, 69.5 ± 63.2 for intraductal papilloma, and 149.5 ± 132.4 for adenosis or stromal fibrosis. The optimal cut-off value, yielding the maximal sum of sensitivity and specificity, was 80.17 kPa, and the sensitivity and specificity of SWE were 88.8% (79 of 89) and 84.9% (79 of 93). The area under the ROC curve (Az value) was 0.898 for conventional US, 0.932 for SWE, and 0.982 for combined data. In conclusion, there were significant differences in the elasticity values of benign and malignant masses as well as invasive and intraductal cancers with SWE. Our results suggest that SWE has the potential to aid in the differentiation of benign and malignant breast lesions.

  16. Evaluating a Local Ensemble Transform Kalman Filter snow cover data assimilation method to estimate SWE within a high-resolution hydrologic modeling framework across Western US mountainous regions

    NASA Astrophysics Data System (ADS)

    Oaida, C. M.; Andreadis, K.; Reager, J. T., II; Famiglietti, J. S.; Levoe, S.

    2017-12-01

    Accurately estimating how much snow water equivalent (SWE) is stored in mountainous regions characterized by complex terrain and snowmelt-driven hydrologic cycles is not only greatly desirable, but also a big challenge. Mountain snowpack exhibits high spatial variability across a broad range of spatial and temporal scales due to a multitude of physical and climatic factors, making it difficult to observe or estimate in its entirety. Combing remotely sensed data and high resolution hydrologic modeling through data assimilation (DA) has the potential to provide a spatially and temporally continuous SWE dataset at horizontal scales that capture sub-grid snow spatial variability and are also relevant to stakeholders such as water resource managers. Here, we present the evaluation of a new snow DA approach that uses a Local Ensemble Transform Kalman Filter (LETKF) in tandem with the Variable Infiltration Capacity macro-scale hydrologic model across the Western United States, at a daily temporal resolution, and a horizontal resolution of 1.75 km x 1.75 km. The LETKF is chosen for its relative simplicity, ease of implementation, and computational efficiency and scalability. The modeling/DA system assimilates daily MODIS Snow Covered Area and Grain Size (MODSCAG) fractional snow cover over, and has been developed to efficiently calculate SWE estimates over extended periods of time and covering large regional-scale areas at relatively high spatial resolution, ultimately producing a snow reanalysis-type dataset. Here we focus on the assessment of SWE produced by the DA scheme over several basins in California's Sierra Nevada Mountain range where Airborne Snow Observatory data is available, during the last five water years (2013-2017), which include both one of the driest and one of the wettest years. Comparison against such a spatially distributed SWE observational product provides a greater understanding of the model's ability to estimate SWE and SWE spatial variability, and highlights under which conditions snow cover DA can add value in estimating SWE.

  17. Satellite-Scale Snow Water Equivalent Assimilation into a High-Resolution Land Surface Model

    NASA Technical Reports Server (NTRS)

    De Lannoy, Gabrielle J.M.; Reichle, Rolf H.; Houser, Paul R.; Arsenault, Kristi R.; Verhoest, Niko E.C.; Paulwels, Valentijn R.N.

    2009-01-01

    An ensemble Kalman filter (EnKF) is used in a suite of synthetic experiments to assimilate coarse-scale (25 km) snow water equivalent (SWE) observations (typical of satellite retrievals) into fine-scale (1 km) model simulations. Coarse-scale observations are assimilated directly using an observation operator for mapping between the coarse and fine scales or, alternatively, after disaggregation (re-gridding) to the fine-scale model resolution prior to data assimilation. In either case observations are assimilated either simultaneously or independently for each location. Results indicate that assimilating disaggregated fine-scale observations independently (method 1D-F1) is less efficient than assimilating a collection of neighboring disaggregated observations (method 3D-Fm). Direct assimilation of coarse-scale observations is superior to a priori disaggregation. Independent assimilation of individual coarse-scale observations (method 3D-C1) can bring the overall mean analyzed field close to the truth, but does not necessarily improve estimates of the fine-scale structure. There is a clear benefit to simultaneously assimilating multiple coarse-scale observations (method 3D-Cm) even as the entire domain is observed, indicating that underlying spatial error correlations can be exploited to improve SWE estimates. Method 3D-Cm avoids artificial transitions at the coarse observation pixel boundaries and can reduce the RMSE by 60% when compared to the open loop in this study.

  18. FPGA implementation of sparse matrix algorithm for information retrieval

    NASA Astrophysics Data System (ADS)

    Bojanic, Slobodan; Jevtic, Ruzica; Nieto-Taladriz, Octavio

    2005-06-01

    Information text data retrieval requires a tremendous amount of processing time because of the size of the data and the complexity of information retrieval algorithms. In this paper the solution to this problem is proposed via hardware supported information retrieval algorithms. Reconfigurable computing may adopt frequent hardware modifications through its tailorable hardware and exploits parallelism for a given application through reconfigurable and flexible hardware units. The degree of the parallelism can be tuned for data. In this work we implemented standard BLAS (basic linear algebra subprogram) sparse matrix algorithm named Compressed Sparse Row (CSR) that is showed to be more efficient in terms of storage space requirement and query-processing timing over the other sparse matrix algorithms for information retrieval application. Although inverted index algorithm is treated as the de facto standard for information retrieval for years, an alternative approach to store the index of text collection in a sparse matrix structure gains more attention. This approach performs query processing using sparse matrix-vector multiplication and due to parallelization achieves a substantial efficiency over the sequential inverted index. The parallel implementations of information retrieval kernel are presented in this work targeting the Virtex II Field Programmable Gate Arrays (FPGAs) board from Xilinx. A recent development in scientific applications is the use of FPGA to achieve high performance results. Computational results are compared to implementations on other platforms. The design achieves a high level of parallelism for the overall function while retaining highly optimised hardware within processing unit.

  19. Development, Comparisons and Evaluation of Aerosol Retrieval Algorithms

    NASA Astrophysics Data System (ADS)

    de Leeuw, G.; Holzer-Popp, T.; Aerosol-cci Team

    2011-12-01

    The Climate Change Initiative (cci) of the European Space Agency (ESA) has brought together a team of European Aerosol retrieval groups working on the development and improvement of aerosol retrieval algorithms. The goal of this cooperation is the development of methods to provide the best possible information on climate and climate change based on satellite observations. To achieve this, algorithms are characterized in detail as regards the retrieval approaches, the aerosol models used in each algorithm, cloud detection and surface treatment. A round-robin intercomparison of results from the various participating algorithms serves to identify the best modules or combinations of modules for each sensor. Annual global datasets including their uncertainties will then be produced and validated. The project builds on 9 existing algorithms to produce spectral aerosol optical depth (AOD and Ångström exponent) as well as other aerosol information; two instruments are included to provide the absorbing aerosol index (AAI) and stratospheric aerosol information. The algorithms included are: - 3 for ATSR (ORAC developed by RAL / Oxford university, ADV developed by FMI and the SU algorithm developed by Swansea University ) - 2 for MERIS (BAER by Bremen university and the ESA standard handled by HYGEOS) - 1 for POLDER over ocean (LOA) - 1 for synergetic retrieval (SYNAER by DLR ) - 1 for OMI retreival of the absorbing aerosol index with averaging kernel information (KNMI) - 1 for GOMOS stratospheric extinction profile retrieval (BIRA) The first seven algorithms aim at the retrieval of the AOD. However, each of the algorithms used differ in their approach, even for algorithms working with the same instrument such as ATSR or MERIS. To analyse the strengths and weaknesses of each algorithm several tests are made. The starting point for comparison and measurement of improvements is a retrieval run for 1 month, September 2008. The data from the same month are subsequently used for several runs with a prescribed set of aerosol models and an a priori data set derived from the median of AEROCOM model runs. The aerosol models and a priori data can be used in several ways, i.e. fully prescribed or with some freedom to choose a combination of aerosol models, based on the a priori or not. Another test gives insight in the effect of the cloud masks used, i.e. retrievals using the same cloud mask (the AATSR APOLLO cloud mask for collocated instruments) are compared with runs using the standard cloud masks. Tests to determine the influence of surface treatment are planned as well. The results of all these tests are evaluated by an independent team which compares the retrieval results with ground-based remote sensing (in particular AERONET) and in-situ data, and by a scoring method. Results are compared with other satellites such as MODIS and MISR. Blind tests using synthetic data are part of the algorithm characterization. The presentation will summarize results of the ongoing phase 1 inter-comparison and evaluation work within the Aerosol_cci project.

  20. V2.1.4 L2AS Detailed Release Description September 27, 2001

    Atmospheric Science Data Center

    2013-03-14

    ... 27, 2001 Algorithm Changes Change method of selecting radiance pixels to use in aerosol retrieval over ... het. surface retrieval algorithm over areas of 100% dark water. Modify algorithm for selecting a default aerosol model to use in ...

  1. Static and dynamic superheated water extraction of essential oil components from Thymus vulgaris L.

    PubMed

    Dawidowicz, Andrzej L; Rado, Ewelina; Wianowska, Dorota

    2009-09-01

    Superheated water extraction (SWE) performed in both static and dynamic condition (S-SWE and D-SWE, respectively) was applied for the extraction of essential oil from Thymus vulgaris L. The influence of extraction pressure, temperature, time, and flow rate on the total yield of essential oil and the influence of extraction temperature on the extraction of some chosen components are discussed in the paper. The SWE extracts are related to PLE extracts with n-hexane and essential oil obtained by steam distillation. The superheated water extraction in dynamic condition seems to be a feasible option for the extraction of essential oil components from T. vulgaris L.

  2. An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data

    USGS Publications Warehouse

    Tan, B.; Morisette, J.T.; Wolfe, R.E.; Gao, F.; Ederer, G.A.; Nightingale, J.; Pedelty, J.A.

    2011-01-01

    An enhanced TIMESAT algorithm was developed for retrieving vegetation phenology metrics from 250 m and 500 m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indexes (VI) over North America. MODIS VI data were pre-processed using snow-cover and land surface temperature data, and temporally smoothed with the enhanced TIMESAT algorithm. An objective third derivative test was applied to define key phenology dates and retrieve a set of phenology metrics. This algorithm has been applied to two MODIS VIs: Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In this paper, we describe the algorithm and use EVI as an example to compare three sets of TIMESAT algorithm/MODIS VI combinations: a) original TIMESAT algorithm with original MODIS VI, b) original TIMESAT algorithm with pre-processed MODIS VI, and c) enhanced TIMESAT and pre-processed MODIS VI. All retrievals were compared with ground phenology observations, some made available through the National Phenology Network. Our results show that for MODIS data in middle to high latitude regions, snow and land surface temperature information is critical in retrieving phenology metrics from satellite observations. The results also show that the enhanced TIMESAT algorithm can better accommodate growing season start and end dates that vary significantly from year to year. The TIMESAT algorithm improvements contribute to more spatial coverage and more accurate retrievals of the phenology metrics. Among three sets of TIMESAT/MODIS VI combinations, the start of the growing season metric predicted by the enhanced TIMESAT algorithm using pre-processed MODIS VIs has the best associations with ground observed vegetation greenup dates. ?? 2010 IEEE.

  3. An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics from MODIS Data

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Morisette, Jeffrey T.; Wolfe, Robert E.; Gao, Feng; Ederer, Gregory A.; Nightingale, Joanne; Pedelty, Jeffrey A.

    2012-01-01

    An enhanced TIMESAT algorithm was developed for retrieving vegetation phenology metrics from 250 m and 500 m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indexes (VI) over North America. MODIS VI data were pre-processed using snow-cover and land surface temperature data, and temporally smoothed with the enhanced TIMESAT algorithm. An objective third derivative test was applied to define key phenology dates and retrieve a set of phenology metrics. This algorithm has been applied to two MODIS VIs: Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In this paper, we describe the algorithm and use EVI as an example to compare three sets of TIMESAT algorithm/MODIS VI combinations: a) original TIMESAT algorithm with original MODIS VI, b) original TIMESAT algorithm with pre-processed MODIS VI, and c) enhanced TIMESAT and pre-processed MODIS VI. All retrievals were compared with ground phenology observations, some made available through the National Phenology Network. Our results show that for MODIS data in middle to high latitude regions, snow and land surface temperature information is critical in retrieving phenology metrics from satellite observations. The results also show that the enhanced TIMESAT algorithm can better accommodate growing season start and end dates that vary significantly from year to year. The TIMESAT algorithm improvements contribute to more spatial coverage and more accurate retrievals of the phenology metrics. Among three sets of TIMESAT/MODIS VI combinations, the start of the growing season metric predicted by the enhanced TIMESAT algorithm using pre-processed MODIS VIs has the best associations with ground observed vegetation greenup dates.

  4. A Parallel Relational Database Management System Approach to Relevance Feedback in Information Retrieval.

    ERIC Educational Resources Information Center

    Lundquist, Carol; Frieder, Ophir; Holmes, David O.; Grossman, David

    1999-01-01

    Describes a scalable, parallel, relational database-drive information retrieval engine. To support portability across a wide range of execution environments, all algorithms adhere to the SQL-92 standard. By incorporating relevance feedback algorithms, accuracy is enhanced over prior database-driven information retrieval efforts. Presents…

  5. GOSAT CO2 retrieval results using TANSO-CAI aerosol information over East Asia

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, W.; Jung, Y.; Lee, S.; Kim, J.; Lee, H.; Boesch, H.; Goo, T. Y.

    2015-12-01

    In the satellite remote sensing of CO2, incorrect aerosol information could induce large errors as previous studies suggested. Many factors, such as, aerosol type, wavelength dependency of AOD, aerosol polarization effect and etc. have been main error sources. Due to these aerosol effects, large number of data retrieved are screened out in quality control, or retrieval errors tend to increase if not screened out, especially in East Asia where aerosol concentrations are fairly high. To reduce these aerosol induced errors, a CO2 retrieval algorithm using the simultaneous TANSO-CAI aerosol information is developed. This algorithm adopts AOD and aerosol type information as a priori information from the CAI aerosol retrieval algorithm. The CO2 retrieval algorithm based on optimal estimation method and VLIDORT, a vector discrete ordinate radiative transfer model. The CO2 algorithm, developed with various state vectors to find accurate CO2 concentration, shows reasonable results when compared with other dataset. This study concentrates on the validation of retrieved results with the ground-based TCCON measurements in East Asia and the comparison with the previous retrieval from ACOS, NIES, and UoL. Although, the retrieved CO2 concentration is lower than previous results by ppm's, it shows similar trend and high correlation with previous results. Retrieved data and TCCON measurements data are compared at three stations of Tsukuba, Saga, Anmyeondo in East Asia, with the collocation criteria of ±2°in latitude/longitude and ±1 hours of GOSAT passing time. Compared results also show similar trend with good correlation. Based on the TCCON comparison results, bias correction equation is calculated and applied to the East Asia data.

  6. Direct Retrieval of Sulfur Dioxide Amount and Altitude from Spaceborne Hyperspectral UV Measurements: Theory and Application

    NASA Technical Reports Server (NTRS)

    Yang, Kau; Liu, Xiong; Bhartia, Pawan K.; Krotkov, Nickolay A.; Carn, Simon A.; Hughes, Eric J.; Krueger, Arlin J.; Spurr, Robert D.; Trahan, Samuel G.

    2010-01-01

    We describe the physical processes by which a vertically localized absorber perturbs the top-of-atmosphere solar backscattered ultraviolet (UV) radiance. The distinct spectral responses to perturbations of an absorber in its column amount and layer altitude provide the basis for a practical satellite retrieval technique, the Extended Iterative Spectral Fitting (EISF) algorithm, for the simultaneous retrieval of these quantities of a SO2 plume. In addition, the EISF retrieval provides an improved UV aerosol index for quantifying the spectral contrast of apparent scene reflectance at the bottom of atmosphere bounded by the surface and/or cloud; hence it can be used for detection of the presence or absence of UV absorbing aerosols. We study the performance and characterize the uncertainties of the EISF algorithm using synthetic backscattered UV radiances, retrievals from which can be compared with those used in the simulation. Our findings indicate that the presence of aerosols (both absorbing and nonabsorbing) does not cause large errors in EISF retrievals under most observing conditions when they are located below the SO2 plume. The EISF retrievals assuming a homogeneous field of view can provide accurate column amounts for inhomogeneous scenes, but they always underestimate the plume altitudes. The EISF algorithm reduces systematic errors present in existing linear retrieval algorithms that use prescribed SO2 plume heights. Applying the EISF algorithm to Ozone Monitoring Instrument satellite observations of the recent Kasatochi volcanic eruption, we demonstrate the successful retrieval of effective plume altitude of volcanic SO2, and we also show the improvement in accuracy in the corresponding SO2 columns.

  7. Comparative Analysis of Aerosol Retrievals from MODIS, OMI and MISR Over Sahara Region

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Wang, Y.; Hsu, C.; Terres, O.; Leptoukh, G.; Kalashnikova, O.; Korkin, S.

    2011-01-01

    MODIS is a wide field-of-view sensor providing daily global observations of the Earth. Currently, global MODIS aerosol retrievals over land are performed with the main Dark Target algorithm complimented with the Deep Blue (DB) Algorithm over bright deserts. The Dark Target algorithm relies on surface parameterization which relates reflectance in MODIS visible bands with the 2.1 micrometer region, whereas the Deep Blue algorithm uses an ancillary angular distribution model of surface reflectance developed from the time series of clear-sky MODIS observations. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm has been developed for MODIS. MAIAC uses a time series and an image based processing to perform simultaneous retrievals of aerosol properties and surface bidirectional reflectance. It is a generic algorithm which works over both dark vegetative surfaces and bright deserts and performs retrievals at 1 km resolution. In this work, we will provide a comparative analysis of DB, MAIAC, MISR and OMI aerosol products over bright deserts of northern Africa.

  8. Estimating the snow water equivalent on a glacierized high elevation site (Forni Glacier, Italy)

    NASA Astrophysics Data System (ADS)

    Senese, Antonella; Maugeri, Maurizio; Meraldi, Eraldo; Verza, Gian Pietro; Azzoni, Roberto Sergio; Compostella, Chiara; Diolaiuti, Guglielmina

    2018-04-01

    We present and compare 11 years of snow data (snow depth and snow water equivalent, SWE) measured by an automatic weather station (AWS) and corroborated by data from field campaigns on the Forni Glacier in Italy. The aim of the analysis is to estimate the SWE of new snowfall and the annual SWE peak based on the average density of the new snow at the site (corresponding to the snowfall during the standard observation period of 24 h) and automated snow depth measurements. The results indicate that the daily SR50 sonic ranger measurements and the available snow pit data can be used to estimate the mean new snow density value at the site, with an error of ±6 kg m-3. Once the new snow density is known, the sonic ranger makes it possible to derive SWE values with an RMSE of 45 mm water equivalent (if compared with snow pillow measurements), which turns out to be about 8 % of the total SWE yearly average. Therefore, the methodology we present is interesting for remote locations such as glaciers or high alpine regions, as it makes it possible to estimate the total SWE using a relatively inexpensive, low-power, low-maintenance, and reliable instrument such as the sonic ranger.

  9. Quantitative and noninvasive assessment of chronic liver diseases using two-dimensional shear wave elastography

    PubMed Central

    Xie, Li-Ting; Yan, Chun-Hong; Zhao, Qi-Yu; He, Meng-Na; Jiang, Tian-An

    2018-01-01

    Two-dimensional shear wave elastography (2D-SWE) is a rapid, simple and novel noninvasive method that has been proposed for assessing hepatic fibrosis in patients with chronic liver diseases (CLDs) based on measurements of liver stiffness. 2D-SWE can be performed easily at the bedside or in an outpatient clinic and yields immediate results with good reproducibility. Furthermore, 2D-SWE was an efficient method for evaluating liver fibrosis in small to moderately sized clinical trials. However, the quality criteria for the staging of liver fibrosis are not yet well defined. Liver fibrosis is the main pathological basis of liver stiffness and a key step in the progression from CLD to cirrhosis; thus, the management of CLD largely depends on the extent and progression of liver fibrosis. 2D-SWE appears to be an excellent tool for the early detection of cirrhosis and may have prognostic value in this context. Because 2D-SWE has high patient acceptance, it could be useful for monitoring fibrosis progression and regression in individual cases. However, multicenter data are needed to support its use. This study reviews the current status and future perspectives of 2D-SWE for assessments of liver fibrosis and discusses the technical advantages and limitations that impact its effective and rational clinical use. PMID:29531460

  10. [The progress in retrieving land surface temperature based on thermal infrared and microwave remote sensing technologies].

    PubMed

    Zhang, Jia-Hua; Li, Xin; Yao, Feng-Mei; Li, Xian-Hua

    2009-08-01

    Land surface temperature (LST) is an important parameter in the study on the exchange of substance and energy between land surface and air for the land surface physics process at regional and global scales. Many applications of satellites remotely sensed data must provide exact and quantificational LST, such as drought, high temperature, forest fire, earthquake, hydrology and the vegetation monitor, and the models of global circulation and regional climate also need LST as input parameter. Therefore, the retrieval of LST using remote sensing technology becomes one of the key tasks in quantificational remote sensing study. Normally, in the spectrum bands, the thermal infrared (TIR, 3-15 microm) and microwave bands (1 mm-1 m) are important for retrieval of the LST. In the present paper, firstly, several methods for estimating the LST on the basis of thermal infrared (TIR) remote sensing were synthetically reviewed, i. e., the LST measured with an ground-base infrared thermometer, the LST retrieval from mono-window algorithm (MWA), single-channel algorithm (SCA), split-window techniques (SWT) and multi-channels algorithm(MCA), single-channel & multi-angle algorithm and multi-channels algorithm & multi-angle algorithm, and retrieval method of land surface component temperature using thermal infrared remotely sensed satellite observation. Secondly, the study status of land surface emissivity (epsilon) was presented. Thirdly, in order to retrieve LST for all weather conditions, microwave remotely sensed data, instead of thermal infrared data, have been developed recently, and the LST retrieval method from passive microwave remotely sensed data was also introduced. Finally, the main merits and shortcomings of different kinds of LST retrieval methods were discussed, respectively.

  11. Satellite aerosol retrieval using dark target algorithm by coupling BRDF effect over AERONET site

    NASA Astrophysics Data System (ADS)

    Yang, Leiku; Xue, Yong; Guang, Jie; Li, Chi

    2012-11-01

    For most satellite aerosol retrieval algorithms even for multi-angle instrument, the simple forward model (FM) based on Lambertian surface assumption is employed to simulate top of the atmosphere (TOA) spectral reflectance, which does not fully consider the surface bi-directional reflectance functions (BRDF) effect. The approximating forward model largely simplifies the radiative transfer model, reduces the size of the look-up tables, and creates faster algorithm. At the same time, it creates systematic biases in the aerosol optical depth (AOD) retrieval. AOD product from the Moderate Resolution Imaging Spectro-radiometer (MODIS) data based on the dark target algorithm is considered as one of accurate satellite aerosol products at present. Though it performs well at a global scale, uncertainties are still found on regional in a lot of studies. The Lambertian surface assumpiton employed in the retrieving algorithm may be one of the uncertain factors. In this study, we first use radiative transfer simulations over dark target to assess the uncertainty to what extent is introduced from the Lambertian surface assumption. The result shows that the uncertainties of AOD retrieval could reach up to ±0.3. Then the Lambertian FM (L_FM) and the BRDF FM (BRDF_FM) are respectively employed in AOD retrieval using dark target algorithm from MODARNSS (MODIS/Terra and MODIS/Aqua Atmosphere Aeronet Subsetting Product) data over Beijing AERONET site. The validation shows that accuracy in AOD retrieval has been improved by employing the BRDF_FM accounting for the surface BRDF effect, the regression slope of scatter plots with retrieved AOD against AEROENET AOD increases from 0.7163 (for L_FM) to 0.7776 (for BRDF_FM) and the intercept decreases from 0.0778 (for L_FM) to 0.0627 (for BRDF_FM).

  12. Attribution of spring snow water equivalent (SWE) changes over the northern hemisphere to anthropogenic effects

    NASA Astrophysics Data System (ADS)

    Jeong, Dae Il; Sushama, Laxmi; Naveed Khaliq, M.

    2017-06-01

    Snow is an important component of the cryosphere and it has a direct and important influence on water storage and supply in snowmelt-dominated regions. This study evaluates the temporal evolution of snow water equivalent (SWE) for the February-April spring period using the GlobSnow observation dataset for the 1980-2012 period. The analysis is performed for different regions of hemispherical to sub-continental scales for the Northern Hemisphere. The detection-attribution analysis is then performed to demonstrate anthropogenic and natural effects on spring SWE changes for different regions, by comparing observations with six CMIP5 model simulations for three different external forcings: all major anthropogenic and natural (ALL) forcings, greenhouse gas (GHG) forcing only, and natural forcing only. The observed spring SWE generally displays a decreasing trend, due to increasing spring temperatures. However, it exhibits a remarkable increasing trend for the southern parts of East Eurasia. The six CMIP5 models with ALL forcings reproduce well the observed spring SWE decreases at the hemispherical scale and continental scales, whereas important differences are noted for smaller regions such as southern and northern parts of East Eurasia and northern part of North America. The effects of ALL and GHG forcings are clearly detected for the spring SWE decline at the hemispherical scale, based on multi-model ensemble signals. The effects of ALL and GHG forcings, however, are less clear for the smaller regions or with single-model signals, indicating the large uncertainty in regional SWE changes, possibly due to stronger influence of natural climate variability.

  13. Ensembles of satellite aerosol retrievals based on three AATSR algorithms within aerosol_cci

    NASA Astrophysics Data System (ADS)

    Kosmale, Miriam; Popp, Thomas

    2016-04-01

    Ensemble techniques are widely used in the modelling community, combining different modelling results in order to reduce uncertainties. This approach could be also adapted to satellite measurements. Aerosol_cci is an ESA funded project, where most of the European aerosol retrieval groups work together. The different algorithms are homogenized as far as it makes sense, but remain essentially different. Datasets are compared with ground based measurements and between each other. Three AATSR algorithms (Swansea university aerosol retrieval, ADV aerosol retrieval by FMI and Oxford aerosol retrieval ORAC) provide within this project 17 year global aerosol records. Each of these algorithms provides also uncertainty information on pixel level. Within the presented work, an ensembles of the three AATSR algorithms is performed. The advantage over each single algorithm is the higher spatial coverage due to more measurement pixels per gridbox. A validation to ground based AERONET measurements shows still a good correlation of the ensemble, compared to the single algorithms. Annual mean maps show the global aerosol distribution, based on a combination of the three aerosol algorithms. In addition, pixel level uncertainties of each algorithm are used for weighting the contributions, in order to reduce the uncertainty of the ensemble. Results of different versions of the ensembles for aerosol optical depth will be presented and discussed. The results are validated against ground based AERONET measurements. A higher spatial coverage on daily basis allows better results in annual mean maps. The benefit of using pixel level uncertainties is analysed.

  14. Evaluation of chlorophyll-a retrieval algorithms based on MERIS bands for optically varying eutrophic inland lakes.

    PubMed

    Lyu, Heng; Li, Xiaojun; Wang, Yannan; Jin, Qi; Cao, Kai; Wang, Qiao; Li, Yunmei

    2015-10-15

    Fourteen field campaigns were conducted in five inland lakes during different seasons between 2006 and 2013, and a total of 398 water samples with varying optical characteristics were collected. The characteristics were analyzed based on remote sensing reflectance, and an automatic cluster two-step method was applied for water classification. The inland waters could be clustered into three types, which we labeled water types I, II and III. From water types I to III, the effect of the phytoplankton on the optical characteristics gradually decreased. Four chlorophyll-a retrieval algorithms for Case II water, a two-band, three-band, four-band and SCI (Synthetic Chlorophyll Index) algorithm were evaluated for three water types based on the MERIS bands. Different MERIS bands were used for the three water types in each of the four algorithms. The four algorithms had different levels of retrieval accuracy for each water type, and no single algorithm could be successfully applied to all water types. For water types I and III, the three-band algorithm performed the best, while the four-band algorithm had the highest retrieval accuracy for water type II. However, the three-band algorithm is preferable to the two-band algorithm for turbid eutrophic inland waters. The SCI algorithm is recommended for highly turbid water with a higher concentration of total suspended solids. Our research indicates that the chlorophyll-a concentration retrieval by remote sensing for optically contrasted inland water requires a specific algorithm that is based on the optical characteristics of inland water bodies to obtain higher estimation accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA

    USGS Publications Warehouse

    Clow, David W.; Nanus, Leora; Verdin, Kristine L.; Schmidt, Jeffrey

    2012-01-01

    The National Weather Service's Snow Data Assimilation (SNODAS) program provides daily, gridded estimates of snow depth, snow water equivalent (SWE), and related snow parameters at a 1-km2 resolution for the conterminous USA. In this study, SNODAS snow depth and SWE estimates were compared with independent, ground-based snow survey data in the Colorado Rocky Mountains to assess SNODAS accuracy at the 1-km2 scale. Accuracy also was evaluated at the basin scale by comparing SNODAS model output to snowmelt runoff in 31 headwater basins with US Geological Survey stream gauges. Results from the snow surveys indicated that SNODAS performed well in forested areas, explaining 72% of the variance in snow depths and 77% of the variance in SWE. However, SNODAS showed poor agreement with measurements in alpine areas, explaining 16% of the variance in snow depth and 30% of the variance in SWE. At the basin scale, snowmelt runoff was moderately correlated (R2 = 0.52) with SNODAS model estimates. A simple method for adjusting SNODAS SWE estimates in alpine areas was developed that uses relations between prevailing wind direction, terrain, and vegetation to account for wind redistribution of snow in alpine terrain. The adjustments substantially improved agreement between measurements and SNODAS estimates, with the R2 of measured SWE values against SNODAS SWE estimates increasing from 0.42 to 0.63 and the root mean square error decreasing from 12 to 6 cm. Results from this study indicate that SNODAS can provide reliable data for input to moderate-scale to large-scale hydrologic models, which are essential for creating accurate runoff forecasts. Refinement of SNODAS SWE estimates for alpine areas to account for wind redistribution of snow could further improve model performance. Published 2011. This article is a US Government work and is in the public domain in the USA.

  16. Monitoring of snowpack dynamics in mountainous terrain by cosmic-ray neutron sensing compared to Terrestrial Laser Scanning observations

    NASA Astrophysics Data System (ADS)

    Schattan, P.; Baroni, G.; Schrön, M.; Köhli, M.; Oswald, S. E.; Huttenlau, M.; Achleitner, S.

    2017-12-01

    Monitoring a mountain snowpack in a representative domain of several hectares is challenging due to its high heterogeneity in time and space. Recent studies have suggested cosmic-ray neutron sensing (CRNS) as a promising method for monitoring snow representatively at these scales. Little is known however about the depth of sensitivity, the effects of fractional snow coverage in complex terrain or the influence of snow density profiles. Therefore, a field campaign in the Austrian Alps was conducted from March 2014 to June 2016. The main scope was to evaluate the characteristics of CRNS for monitoring a snowpack in a relatively wet and mountainous environment. During the experiment, the study site experienced a peak snow accumulation in terms of snow water equivalent (SWE) of up to 600 mm in the 2014/2015 winter season. Snow depth (SD) and SWE measurements from an automatic weather station were compared to CRNS neutron counts. Several spatially distributed Terrestrial Laser Scanning (TLS)-based SD and SWE maps were additionally used to cope with the spatial heterogeneity of the site. Furthermore, an URANOS neutron transport model was set up to provide additional insights into the response of CRNS to the presence of a complex snowpack. Therein, spatially distributed SWE scenarios and different snow density assumptions are used for hypothesis testing. The field measurements revealed an unexpectedly high potential of CRNS for monitoring heterogeneous snowpack dynamics beyond shallow snowpacks. A clear, nonlinear relation was found for both SD and SWE with neutron counts. In contrast to previous studies suggesting signal saturation at around 100 mm of SWE, complete signal saturation was observed only for SWE values beyond 500 to 600 mm. In addition, first modelling results highlight the effects of snow density profiles, small-scale changes in SWE, and the complex patterns of fractional snow cover on neutron counts. Understanding the interactions between neutrons and snow cover in complex terrain potentially improves the transferability of the results to other locations.

  17. Did Climate Change Cause the 2012-2014 California Drought?

    NASA Astrophysics Data System (ADS)

    Mao, Y.; Clark, E.; Xiao, M.; Nijssen, B.; Lettenmaier, D. P.

    2014-12-01

    California has experienced severe drought over the last three years, with especially deficient winter precipitation and mountain snowpack in 2013-2014. While the severity of California's water crisis this year is not in question, the causes of the drought are less clear, and there has been debate as to whether human-induced climate change is at least in part a cause of anomalously low winter precipitation (P) and snow water equivalent (SWE) this year, or whether the conditions are simply the result of natural variability that has been manifested in previous severe droughts in California. To provide more scientific insight to this question, we reconstructed, using the Variable Infiltration Capacity (VIC) hydrologic model, SWE and runoff from 1920 to 2014 at a spatial resolution of 1/16 degree over the Sierra Nevada range of California. We forced the VIC model with a temporally consistent set of index precipitation and temperature stations that are also used in the University of Washington's Drought Monitoring System for the West Coast Region (http://www.hydro.washington.edu/forecast/monitor_cali/index.shtml). We carried out trend analysis and examined cumulative probability for accumulated winter precipitation, SWE on Apr 1, annual, spring and winter runoff, average winter temperature (T) and SWE/P fraction. We also did correlation analysis between SWE and P as well as SWE and T. In addition, we used detrended temperature data to force the VIC model in order to analyze the role of climate change in SWE and runoff. Our results show that while the decreasing trend in SWE and earlier runoff peak in the year are related to long-term warming climate, there is no significant trend in winter P and there are lots of variability in the record of all variables. While this year's anomalously warm weather might have exacerbated the ongoing 3-year drought (and winter 2013-14 in particular), we conclude that natural variability is the main cause.

  18. Ice surface temperature retrieval from AVHRR, ATSR, and passive microwave satellite data: Algorithm development and application

    NASA Technical Reports Server (NTRS)

    Key, Jeff; Maslanik, James; Steffen, Konrad

    1995-01-01

    During the second phase project year we have made progress in the development and refinement of surface temperature retrieval algorithms and in product generation. More specifically, we have accomplished the following: (1) acquired a new advanced very high resolution radiometer (AVHRR) data set for the Beaufort Sea area spanning an entire year; (2) acquired additional along-track scanning radiometer(ATSR) data for the Arctic and Antarctic now totalling over eight months; (3) refined our AVHRR Arctic and Antarctic ice surface temperature (IST) retrieval algorithm, including work specific to Greenland; (4) developed ATSR retrieval algorithms for the Arctic and Antarctic, including work specific to Greenland; (5) developed cloud masking procedures for both AVHRR and ATSR; (6) generated a two-week bi-polar global area coverage (GAC) set of composite images from which IST is being estimated; (7) investigated the effects of clouds and the atmosphere on passive microwave 'surface' temperature retrieval algorithms; and (8) generated surface temperatures for the Beaufort Sea data set, both from AVHRR and special sensor microwave imager (SSM/I).

  19. Shear Wave Elastography (SWE) for Monitoring of Treatment of Tendinopathies: A Double-blinded, Longitudinal Clinical Study.

    PubMed

    Dirrichs, Timm; Quack, Valentin; Gatz, Matthias; Tingart, Markus; Rath, Björn; Betsch, Marcel; Kuhl, Christiane K; Schrading, Simone

    2018-03-01

    We aimed to investigate the diagnostic accuracy with which shear wave elastography (SWE) can be used to monitor response to treatment of tendinopathies, and to compare it to conventional ultrasound (US)-imaging methods (B-mode US (B-US) and power Doppler US (PD-US)). A prospective Institutional Review Board-approved longitudinal study on 35 patients with 47 symptomatic tendons (17 Achilles-, 15 patellar-, and 15 humeral-epicondylar) who underwent standardized multimodal US and standardized clinical assessment before and after 6 months of treatment (tailored stretching exercise, sport break, and local Polidocanol) was carried out. All US studies were performed by radiologists blinded to the clinical symptoms on both tendon sides to avoid biased interpretations, by B-US, PD-US, and SWE, conducted in the same order, using a high-resolution linear 15 MHz probe (Aixplorer). Orthopedic surgeons who were in turn blinded to US imaging results used established orthopedic scores (Victorian Institute of Sports Assessment questionnaire for Achilles, Victorian Institute of Sports Assessment questionnaire for patellar tendons, and Disability Arm Shoulder Hand scoring system) to rate presence, degree, and possible resolution of symptoms. We analyzed the diagnostic accuracy with which the different US imaging methods were able to detect symptomatic tendons at baseline as well as treatment effects, with orthopedic scores serving as reference standard. B-US, PD-US, and SWE detected symptomatic tendons with a sensitivity of 66% (31 of 47), 72% (34 of 47), and 87.5% (41 of 47), respectively. Positive predictive value was 0.67 for B-US, 0.87 for PD-US, and 1 for SWE. After treatment, clinical scores improved in 68% (32 of 47) of tendons. Treatment effects were observable by B-US, PD-US, and SWE with a sensitivity of 3.1% (1 of 32), 28.1% (9 of 32), and 81.3% (26 of 32), respectively. B-US was false-positive in 68.8% (20 of 32), PD-US in 46.9% (15 of 32), and SWE in 12.5% (4 of 32) (SWE). Clinical scores and B-US, PD-US, and SWE findings correlated poorly (r = 0.24), moderately (r = 0.59), and strongly (r = 0.80). Unlike B-US or PD-US, SWE is able to depict processes associated with tendon healing and may be a useful tool to monitor treatment effects. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  20. Influence of snowpack and melt energy heterogeneity on snow cover depletion and snowmelt runoff simulation in a cold mountain environment

    NASA Astrophysics Data System (ADS)

    DeBeer, Chris M.; Pomeroy, John W.

    2017-10-01

    The spatial heterogeneity of mountain snow cover and ablation is important in controlling patterns of snow cover depletion (SCD), meltwater production, and runoff, yet is not well-represented in most large-scale hydrological models and land surface schemes. Analyses were conducted in this study to examine the influence of various representations of snow cover and melt energy heterogeneity on both simulated SCD and stream discharge from a small alpine basin in the Canadian Rocky Mountains. Simulations were performed using the Cold Regions Hydrological Model (CRHM), where point-scale snowmelt computations were made using a snowpack energy balance formulation and applied to spatial frequency distributions of snow water equivalent (SWE) on individual slope-, aspect-, and landcover-based hydrological response units (HRUs) in the basin. Hydrological routines were added to represent the vertical and lateral transfers of water through the basin and channel system. From previous studies it is understood that the heterogeneity of late winter SWE is a primary control on patterns of SCD. The analyses here showed that spatial variation in applied melt energy, mainly due to differences in net radiation, has an important influence on SCD at multiple scales and basin discharge, and cannot be neglected without serious error in the prediction of these variables. A single basin SWE distribution using the basin-wide mean SWE (SWE ‾) and coefficient of variation (CV; standard deviation/mean) was found to represent the fine-scale spatial heterogeneity of SWE sufficiently well. Simulations that accounted for differences in (SWE ‾) among HRUs but neglected the sub-HRU heterogeneity of SWE were found to yield similar discharge results as simulations that included this heterogeneity, while SCD was poorly represented, even at the basin level. Finally, applying point-scale snowmelt computations based on a single SWE depth for each HRU (thereby neglecting spatial differences in internal snowpack energetics over the distributions) was found to yield similar SCD and discharge results as simulations that resolved internal energy differences. Spatial/internal snowpack melt energy effects are more pronounced at times earlier in spring before the main period of snowmelt and SCD, as shown in previously published work. The paper discusses the importance of these findings as they apply to the warranted complexity of snowmelt process simulation in cold mountain environments, and shows how the end-of-winter SWE distribution represents an effective means of resolving snow cover heterogeneity at multiple scales for modelling, even in steep and complex terrain.

  1. THE TSUNAMI SERVICE BUS, AN INTEGRATION PLATFORM FOR HETEROGENEOUS SENSOR SYSTEMS

    NASA Astrophysics Data System (ADS)

    Fleischer, J.; Häner, R.; Herrnkind, S.; Kriegel, U.; Schwarting, H.; Wächter, J.

    2009-12-01

    The Tsunami Service Bus (TSB) is the sensor integration platform of the German Indonesian Tsunami Early Warning System (GITEWS) [1]. The primary goal of GITEWS is to deliver reliable tsunami warnings as fast as possible. This is achieved on basis of various sensor systems like seismometers, ocean instrumentation, and GPS stations, all providing fundamental data to support prediction of tsunami wave propagation by the GITEWS warning center. However, all these sensors come with their own proprietary data formats and specific behavior. Also new sensor types might be added, old sensors will be replaced. To keep GITEWS flexible the TSB was developed in order to access and control sensors in a uniform way. To meet these requirements the TSB follows the architectural blueprint of a Service Oriented Architecture (SOA). The integration platform implements dedicated services communicating via a service infrastructure. The functionality required for early warnings is provided by loosely coupled services replacing the "hard-wired" coupling at data level. Changes in the sensor specification are confined to the data level without affecting the warning center. Great emphasis was laid on following the Sensor Web Enablement (SWE) standard [2], specified by the Open Geospatial Consortium (OGC) [3]. As a result the full functionality needed in GITEWS could be achieved by implementing the four SWE services: The Sensor Observation Service for retrieving sensor measurements, the Sensor Alert Service in order to deliver sensor alerts, the Sensor Planning Service for tasking sensors, and the Web Notification Service for conduction messages to various media channels. Beyond these services the TSB also follows SWE Observation & Measurements specifications (O&M) for data encoding and Sensor Model Language (SensorML) for meta information. Moreover, accessing sensors via the TSB is not restricted to GITEWS. Multiple instances of the TSB can be composed to realize federate warning system. Beside the already operating TSB at the BMKG warning center [4], two other organizations in Indonesia ([5], [6]) consider using the TSB, making their data centers available to GITEWS. The presentation takes a look at the concepts and implementation and reflects the usefulness of the mentioned standards. REFERENCES [1] GITEWS is a project of the German Federal Government to aid the recon¬struction of the tsunami-prone region of the Indian Ocean, http://www.gitews.org/ [2] SWE, www.opengeospatial.org/projects/groups/sensorweb [3] OGC, www.opengeospatial.org [4] Meteorological and Geophysical Agency of Indonesia (BMKG), www.bmg.go.id [5] National Coordinating Agency for Surveys and Mapping (BAKOSURTANAL), www.bakosurtanal.go.id [6] Agency for the Assessment & Application of Technology (BPPT), www.bppt.go.id

  2. Phase retrieval using regularization method in intensity correlation imaging

    NASA Astrophysics Data System (ADS)

    Li, Xiyu; Gao, Xin; Tang, Jia; Lu, Changming; Wang, Jianli; Wang, Bin

    2014-11-01

    Intensity correlation imaging(ICI) method can obtain high resolution image with ground-based low precision mirrors, in the imaging process, phase retrieval algorithm should be used to reconstituted the object's image. But the algorithm now used(such as hybrid input-output algorithm) is sensitive to noise and easy to stagnate. However the signal-to-noise ratio of intensity interferometry is low especially in imaging astronomical objects. In this paper, we build the mathematical model of phase retrieval and simplified it into a constrained optimization problem of a multi-dimensional function. New error function was designed by noise distribution and prior information using regularization method. The simulation results show that the regularization method can improve the performance of phase retrieval algorithm and get better image especially in low SNR condition

  3. An Alternative Retrieval Algorithm for the Ozone Mapping and Profiler Suite Limb Profiler

    DTIC Science & Technology

    2012-05-01

    behavior of aerosol extinction from the upper troposphere through the stratosphere is critical for retrieving ozone in this region. Aerosol scattering is......include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT An Alternative Retrieval Algorithm for the Ozone Mapping and

  4. Visualizing and improving the robustness of phase retrieval algorithms

    DOE PAGES

    Tripathi, Ashish; Leyffer, Sven; Munson, Todd; ...

    2015-06-01

    Coherent x-ray diffractive imaging is a novel imaging technique that utilizes phase retrieval and nonlinear optimization methods to image matter at nanometer scales. We explore how the convergence properties of a popular phase retrieval algorithm, Fienup's HIO, behave by introducing a reduced dimensionality problem allowing us to visualize and quantify convergence to local minima and the globally optimal solution. We then introduce generalizations of HIO that improve upon the original algorithm's ability to converge to the globally optimal solution.

  5. Visualizing and improving the robustness of phase retrieval algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Ashish; Leyffer, Sven; Munson, Todd

    Coherent x-ray diffractive imaging is a novel imaging technique that utilizes phase retrieval and nonlinear optimization methods to image matter at nanometer scales. We explore how the convergence properties of a popular phase retrieval algorithm, Fienup's HIO, behave by introducing a reduced dimensionality problem allowing us to visualize and quantify convergence to local minima and the globally optimal solution. We then introduce generalizations of HIO that improve upon the original algorithm's ability to converge to the globally optimal solution.

  6. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR retrievals was compared with pyranometer measurement. The results showed good agreements: the columnar values of the SKYLIDAR retrievals agreed with reliable SKYRAD.PACK retrievals, and the SKYLIDAR retrievals were sufficiently accurate to evaluate the surface solar irradiance.

  7. Information Retrieval and Graph Analysis Approaches for Book Recommendation.

    PubMed

    Benkoussas, Chahinez; Bellot, Patrice

    2015-01-01

    A combination of multiple information retrieval approaches is proposed for the purpose of book recommendation. In this paper, book recommendation is based on complex user's query. We used different theoretical retrieval models: probabilistic as InL2 (Divergence from Randomness model) and language model and tested their interpolated combination. Graph analysis algorithms such as PageRank have been successful in Web environments. We consider the application of this algorithm in a new retrieval approach to related document network comprised of social links. We called Directed Graph of Documents (DGD) a network constructed with documents and social information provided from each one of them. Specifically, this work tackles the problem of book recommendation in the context of INEX (Initiative for the Evaluation of XML retrieval) Social Book Search track. A series of reranking experiments demonstrate that combining retrieval models yields significant improvements in terms of standard ranked retrieval metrics. These results extend the applicability of link analysis algorithms to different environments.

  8. Information Retrieval and Graph Analysis Approaches for Book Recommendation

    PubMed Central

    Benkoussas, Chahinez; Bellot, Patrice

    2015-01-01

    A combination of multiple information retrieval approaches is proposed for the purpose of book recommendation. In this paper, book recommendation is based on complex user's query. We used different theoretical retrieval models: probabilistic as InL2 (Divergence from Randomness model) and language model and tested their interpolated combination. Graph analysis algorithms such as PageRank have been successful in Web environments. We consider the application of this algorithm in a new retrieval approach to related document network comprised of social links. We called Directed Graph of Documents (DGD) a network constructed with documents and social information provided from each one of them. Specifically, this work tackles the problem of book recommendation in the context of INEX (Initiative for the Evaluation of XML retrieval) Social Book Search track. A series of reranking experiments demonstrate that combining retrieval models yields significant improvements in terms of standard ranked retrieval metrics. These results extend the applicability of link analysis algorithms to different environments. PMID:26504899

  9. The GRAPE aerosol retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Thomas, G. E.; Poulsen, C. A.; Sayer, A. M.; Marsh, S. H.; Dean, S. M.; Carboni, E.; Siddans, R.; Grainger, R. G.; Lawrence, B. N.

    2009-11-01

    The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC) combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations - this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998), as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) data-set. The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.

  10. The GRAPE aerosol retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Thomas, G. E.; Poulsen, C. A.; Sayer, A. M.; Marsh, S. H.; Dean, S. M.; Carboni, E.; Siddans, R.; Grainger, R. G.; Lawrence, B. N.

    2009-04-01

    The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC) combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations - this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998), as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) data-set. The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.

  11. A 1DVAR-based snowfall rate retrieval algorithm for passive microwave radiometers

    NASA Astrophysics Data System (ADS)

    Meng, Huan; Dong, Jun; Ferraro, Ralph; Yan, Banghua; Zhao, Limin; Kongoli, Cezar; Wang, Nai-Yu; Zavodsky, Bradley

    2017-06-01

    Snowfall rate retrieval from spaceborne passive microwave (PMW) radiometers has gained momentum in recent years. PMW can be so utilized because of its ability to sense in-cloud precipitation. A physically based, overland snowfall rate (SFR) algorithm has been developed using measurements from the Advanced Microwave Sounding Unit-A/Microwave Humidity Sounder sensor pair and the Advanced Technology Microwave Sounder. Currently, these instruments are aboard five polar-orbiting satellites, namely, NOAA-18, NOAA-19, Metop-A, Metop-B, and Suomi-NPP. The SFR algorithm relies on a separate snowfall detection algorithm that is composed of a satellite-based statistical model and a set of numerical weather prediction model-based filters. There are four components in the SFR algorithm itself: cloud properties retrieval, computation of ice particle terminal velocity, ice water content adjustment, and the determination of snowfall rate. The retrieval of cloud properties is the foundation of the algorithm and is accomplished using a one-dimensional variational (1DVAR) model. An existing model is adopted to derive ice particle terminal velocity. Since no measurement of cloud ice distribution is available when SFR is retrieved in near real time, such distribution is implicitly assumed by deriving an empirical function that adjusts retrieved SFR toward radar snowfall estimates. Finally, SFR is determined numerically from a complex integral. The algorithm has been validated against both radar and ground observations of snowfall events from the contiguous United States with satisfactory results. Currently, the SFR product is operationally generated at the National Oceanic and Atmospheric Administration and can be obtained from that organization.

  12. Three-dimensional vs. two-dimensional shear-wave elastography of the testes - preliminary study on a healthy collective.

    PubMed

    Marcon, J; Trottmann, M; Rübenthaler, J; D'Anastasi, M; Stief, C G; Reiser, M F; Clevert, D A

    2016-01-01

    Shear wave elastography (SWE) and its derivative Supersonic Shear Imaging (SSI) are newer techniques for the determination of tissue elasticity by measuring the velocity of generated shear waves (SWV), which correlates positively with tissue stiffness.The techniques are integrated into many modern ultrasound systems and have been examined in the evaluation of viscoelastic properties of different organ systems. Two-dimensional shear wave elastography (2D SWE) of the testes has been found to be a useful tool in recent studies which included the determination of standard values in healthy volunteers. Three-dimensional shear wave elastography (3D SWE) is the latest development in elastography and is made possible by generation of a multiplanar three-dimensional map via volumetric acquisition with a special ultrasound transducer. This technique allows the assessment of tissue elasticity in a three-dimensional, fully accessible organ map.The aim of this preliminary study was to both evaluate the feasibility of 3D SWE and to compare 2D and 3D SWE standard values in the testes of healthy subjects. We examined the testes of healthy male volunteers (n = 32) with a mean age of 51.06±17.75 years (range 25-77 years) by B-mode ultrasound, 2D and 3D SWE techniques in September of 2016. Volunteers with a history of testicular pathologies were excluded. For all imaging procedures the SL15-4 linear transducer (bandwidth 4-15 MHz) as well as the SLV16-4 volumetric probe (bandwidth 4-16 MHz) of the Aixplorer® ultrasound device (SuperSonic Imagine, Aix-en-Provence, France) were used. Seven regions of interest (ROI, Q-Box®) within the testes were evaluated for SWV using both procedures. SWV values were described in m/s. Results were statistically evaluated using univariateanalysis. Mean SWV values were 1.05 m/s for the 2D SWE and 1.12 m/s for the 3D SWE.Comparisons of local areas delivered no statistically significant differences (p = 0.11 to p = 0.66), except for the region in the central portion in the superior part of the coronal plane (p = 0.03). Testicular volume was significanty higher by a mean of 1.72 ml when measured with 3D SWE (p = 0.001). 3D SWE proved to be a feasible diagnostic tool in the assessment of testicular tissue, providing the examiner with a fully accessible three-dimensional map in a multiplanar or multislice view. With this technique a more precise testicular imaging - especially if combined with the display of tissue stiffness in SWE - is available and therefore could improve the diagnostic work-up of scrotal masses or the routine investigation of infertile men. Further studies for a better understanding in the context of various testicular pathologies will be required.

  13. Information content of ozone retrieval algorithms

    NASA Technical Reports Server (NTRS)

    Rodgers, C.; Bhartia, P. K.; Chu, W. P.; Curran, R.; Deluisi, J.; Gille, J. C.; Hudson, R.; Mateer, C.; Rusch, D.; Thomas, R. J.

    1989-01-01

    The algorithms are characterized that were used for production processing by the major suppliers of ozone data to show quantitatively: how the retrieved profile is related to the actual profile (This characterizes the altitude range and vertical resolution of the data); the nature of systematic errors in the retrieved profiles, including their vertical structure and relation to uncertain instrumental parameters; how trends in the real ozone are reflected in trends in the retrieved ozone profile; and how trends in other quantities (both instrumental and atmospheric) might appear as trends in the ozone profile. No serious deficiencies were found in the algorithms used in generating the major available ozone data sets. As the measurements are all indirect in someway, and the retrieved profiles have different characteristics, data from different instruments are not directly comparable.

  14. Optimal Aerosol Parameterization for Remote Sensing Retrievals

    NASA Technical Reports Server (NTRS)

    Newchurch, Michael J.

    2004-01-01

    We have developed a new algorithm for the retrieval of aerosol and gases from SAGE It1 solar transmission measurements. This algorithm improves upon the NASA operational algorithm in several key aspects, including solving the problem non-linearly and incorporating a new methodology for separating the contribution of aerosols and gases. In order to extract aerosol information we have built a huge database of aerosol models for both stratospheric and tropospheric aerosols, and polar stratospheric cloud particles. This set of models allows us to calculate a vast range of possible extinction spectra for aerosols. and from these, derive a set of eigenvectors which then provide the basis set used in our inversion algorithm. Our aerosol algorithm and retrievals are described in several articles (listed in References Section) published under this grant. In particular they allow us to analyze the spectral properties of aerosols and PSCs and ultimately derive their microphysical properties. We have found some considerable differences between our spectra and the ones derived from the SAGE III operational algorithm. These are interesting as they provide an independent check on the validity of published aerosol data and, in particular, on their associated uncertainties. In order to understand these differences, we are assembling independent aerosol data from other sources with which to make comparisons. We have carried out extensive comparisons of our ozone retrievals with both SAGE III and independent lidar, ozonesonde, and satellite measurements (Polyakov et al., 2004). These show very good agreement throughout the stratosphere and help to quantify differences which can be attributed to natural variation in ozone versus that produced by algorithmic differences. In the mid - upper stratosphere, agreement with independent data was generally within 5 - 20%. but in the lower stratosphere the differences were considerably larger. We believe that a large proportion of this discrepancy in the lower stratosphere is attributable to natural variation, and is also seen in comparisons between lidar and ozonesonde measurements. NO2 profiles obtained with our algorithm were compared to those obtained through the SAGE III operational algorithm and exhibited differences of 20 - 40%. Our retrieved profiles agree with the HALOE NO2 measurements significantly better than those of the operational retrieval. In other work (described below), we are extending our aerosol retrievals into the infrared regime and plan to perform retrievals from combined uv-visible-infrared spectra. This work will allow us to use the spectra to derive the size and composition of aerosols, and we plan to employ our algorithms in the analysis of PSC spectra. We are presently also developing a limb-scattering algorithm to retrieve aerosol data from limb measurements of solar scattered radiation.

  15. Application of stochastic particle swarm optimization algorithm to determine the graded refractive index distribution in participating media

    NASA Astrophysics Data System (ADS)

    Wei, Lin-Yang; Qi, Hong; Ren, Ya-Tao; Ruan, Li-Ming

    2016-11-01

    Inverse estimation of the refractive index distribution in one-dimensional participating media with graded refractive index (GRI) is investigated. The forward radiative transfer problem is solved by the Chebyshev collocation spectral method. The stochastic particle swarm optimization (SPSO) algorithm is employed to retrieve three kinds of GRI distribution, i.e. the linear, sinusoidal and quadratic GRI distribution. The retrieval accuracy of GRI distribution with different wall emissivity, optical thickness, absorption coefficients and scattering coefficients are discussed thoroughly. To improve the retrieval accuracy of quadratic GRI distribution, a double-layer model is proposed to supply more measurement information. The influence of measurement errors upon the precision of estimated results is also investigated. Considering the GRI distribution is unknown beforehand in practice, a quadratic function is employed to retrieve the linear GRI by SPSO algorithm. All the results show that the SPSO algorithm is applicable to retrieve different GRI distributions in participating media accurately even with noisy data.

  16. Dreaming of Atmospheres

    NASA Astrophysics Data System (ADS)

    Waldmann, I. P.

    2016-04-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.

  17. Remote Sensing of Cloud Properties using Ground-based Measurements of Zenith Radiance

    NASA Technical Reports Server (NTRS)

    Chiu, J. Christine; Marshak, Alexander; Knyazikhin, Yuri; Wiscombe, Warren J.; Barker, Howard W.; Barnard, James C.; Luo, Yi

    2006-01-01

    An extensive verification of cloud property retrievals has been conducted for two algorithms using zenith radiances measured by the Atmospheric Radiation Measurement (ARM) Program ground-based passive two-channel (673 and 870 nm) Narrow Field-Of-View Radiometer. The underlying principle of these algorithms is that clouds have nearly identical optical properties at these wavelengths, but corresponding spectral surface reflectances (for vegetated surfaces) differ significantly. The first algorithm, the RED vs. NIR, works for a fully three-dimensional cloud situation. It retrieves not only cloud optical depth, but also an effective radiative cloud fraction. Importantly, due to one-second time resolution of radiance measurements, we are able, for the first time, to capture detailed changes in cloud structure at the natural time scale of cloud evolution. The cloud optical depths tau retrieved by this algorithm are comparable to those inferred from both downward fluxes in overcast situations and microwave brightness temperatures for broken clouds. Moreover, it can retrieve tau for thin patchy clouds, where flux and microwave observations fail to detect them. The second algorithm, referred to as COUPLED, couples zenith radiances with simultaneous fluxes to infer 2. In general, the COUPLED and RED vs. NIR algorithms retrieve consistent values of tau. However, the COUPLED algorithm is more sensitive to the accuracies of measured radiance, flux, and surface reflectance than the RED vs. NIR algorithm. This is especially true for thick overcast clouds where it may substantially overestimate z.

  18. Comparison of non-invasive assessment of liver fibrosis in patients with alpha1-antitrypsin deficiency using magnetic resonance elastography (MRE), acoustic radiation force impulse (ARFI) Quantification, and 2D-shear wave elastography (2D-SWE).

    PubMed

    Reiter, Rolf; Wetzel, Martin; Hamesch, Karim; Strnad, Pavel; Asbach, Patrick; Haas, Matthias; Siegmund, Britta; Trautwein, Christian; Hamm, Bernd; Klatt, Dieter; Braun, Jürgen; Sack, Ingolf; Tzschätzsch, Heiko

    2018-01-01

    Although it has been known for decades that patients with alpha1-antitrypsin deficiency (AATD) have an increased risk of cirrhosis and hepatocellular carcinoma, limited data exist on non-invasive imaging-based methods for assessing liver fibrosis such as magnetic resonance elastography (MRE) and acoustic radiation force impulse (ARFI) quantification, and no data exist on 2D-shear wave elastography (2D-SWE). Therefore, the purpose of this study is to evaluate and compare the applicability of different elastography methods for the assessment of AATD-related liver fibrosis. Fifteen clinically asymptomatic AATD patients (11 homozygous PiZZ, 4 heterozygous PiMZ) and 16 matched healthy volunteers were examined using MRE and ARFI quantification. Additionally, patients were examined with 2D-SWE. A high correlation is evident for the shear wave speed (SWS) determined with different elastography methods in AATD patients: 2D-SWE/MRE, ARFI quantification/2D-SWE, and ARFI quantification/MRE (R = 0.8587, 0.7425, and 0.6914, respectively; P≤0.0089). Four AATD patients with pathologically increased SWS were consistently identified with all three methods-MRE, ARFI quantification, and 2D-SWE. The high correlation and consistent identification of patients with pathologically increased SWS using MRE, ARFI quantification, and 2D-SWE suggest that elastography has the potential to become a suitable imaging tool for the assessment of AATD-related liver fibrosis. These promising results provide motivation for further investigation of non-invasive assessment of AATD-related liver fibrosis using elastography.

  19. Snow Process Estimation Over the Extratropical Andes Using a Data Assimilation Framework Integrating MERRA Data and Landsat Imagery

    NASA Technical Reports Server (NTRS)

    Cortes, Gonzalo; Girotto, Manuela; Margulis, Steven

    2016-01-01

    A data assimilation framework was implemented with the objective of obtaining high resolution retrospective snow water equivalent (SWE) estimates over several Andean study basins. The framework integrates Landsat fractional snow covered area (fSCA) images, a land surface and snow depletion model, and the Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis as a forcing data set. The outputs are SWE and fSCA fields (1985-2015) at a resolution of 90 m that are consistent with the observed depletion record. Verification using in-situ snow surveys showed significant improvements in the accuracy of the SWE estimates relative to forward model estimates, with increases in correlation (0.49-0.87) and reductions in root mean square error (0.316 m to 0.129 m) and mean error (-0.221 m to 0.009 m). A sensitivity analysis showed that the framework is robust to variations in physiography, fSCA data availability and a priori precipitation biases. Results from the application to the headwater basin of the Aconcagua River showed how the forward model versus the fSCA-conditioned estimate resulted in different quantifications of the relationship between runoff and SWE, and different correlation patterns between pixel-wise SWE and ENSO. The illustrative results confirm the influence that ENSO has on snow accumulation for Andean basins draining into the Pacific, with ENSO explaining approximately 25% of the variability in near-peak (1 September) SWE values. Our results show how the assimilation of fSCA data results in a significant improvement upon MERRA-forced modeled SWE estimates, further increasing the utility of the MERRA data for high-resolution snow modeling applications.

  20. Motor impulsivity in APP-SWE mice: a model of Alzheimer's disease.

    PubMed

    Adriani, Walter; Ognibene, Elisa; Heuland, Emilie; Ghirardi, Orlando; Caprioli, Antonio; Laviola, Giovanni

    2006-09-01

    Among transgenic mouse models of Alzheimer's disease, APP-SWE mice have been shown to develop beta-amyloid plaques and to exhibit progressive impairment of cognitive function. Human Alzheimer's disease, however, also includes secondary clinical manifestations, spanning from hyperactivity to agitation. The aim of this study was a better characterization of motor impulsivity in APP-SWE mice, observed at 12 months of age, when levels of soluble beta-amyloid are elevated and beta-amyloid neuritic plaques start to appear. Mice were tested for spatial learning abilities in the Morris water maze (seven daily sessions, four trials per day). The distance traveled to reach the hidden platform showed a learning curve in both groups. This profile, however, was somewhat delayed in APP-SWE mice, thus confirming slightly impaired spatial capacities. To evaluate motor impulsivity, animals were trained to nose-poke for a food reward, which was delivered after a waiting interval that increased over days (15-60 s). Further nose-poking during this signaled waiting interval resulted in food-reward loss and electric-shock punishment. APP-SWE mice received an increased quantity of punishment and were able to earn fewer food rewards, suggesting inability to wait already at the lowest delay. After the animals were killed, prefrontal cortex samples were assessed for neurochemical parameters. Serotonin turnover was elevated in the prefrontal cortex of APP-SWE mice compared with controls. The results clearly confirm cognitive deficits, and are consistent with the hypothesis of reduced behavioral-inhibition abilities. Together with recent findings, APP-SWE mice emerge as a suitable animal model, characterized by a number of specific behavioral alterations, resembling primary and secondary symptoms of human Alzheimer's disease.

  1. Enhancement of Calibrachoa growth, secondary metabolites and bioactivity using seaweed extracts.

    PubMed

    Elansary, Hosam O; Norrie, Jeff; Ali, Hayssam M; Salem, Mohamed Z M; Mahmoud, Eman A; Yessoufou, Kowiyou

    2016-09-02

    Calibrachoa x hybrida (Solanaceae) cultivars are widely used in North and South America as ornamental plants. Their potential as a source of antimicrobial compounds might be enhanced by seaweed extract (SWE) applications. SWE of Ascophyllum nodosum were applied at 5 and 7 ml/L as a soil drench or foliar spray on Calibrachoa cultivars of Superbells® 'Dreamsicle' (CHSD) and Superbells® 'Frost Fire' (CHSF). The total phenolics, tannins and antioxidants composition as well as specific flavonols in leaf extracts were determined. Further, the chemical composition of SWE was assessed. The drench and foliar SWE treatments significantly enhanced Calibrachoa cultivars leaf number and area, dry weight, plant height, antioxidant capacity as well as phenolic, flavonols and tannin content. The increased growth and composition of phenols, flavonols and tannins was attributed to the stimulatory effects of SWE mineral composition. The antifungal activity of Calibrachoa cultivars was significantly enhanced following SWE treatments and the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) were in the range of 0.07-0.31 mg/ml and from 0.16 to 0.56 mg/ml, respectively. Moreover, antibacterial activity was significantly increased and the MIC and minimum bactericidal concentration (MBC) measurements were in the range of 0.06-0.23 mg/ml and from 0.10 to 0.44 mg/ml, respectively. The most sensitive fungus to SWE treatments was C. albicans and the most sensitive bacterium was E. cloacae. The results suggest that enhanced antifungal and antibacterial activities might be attributed to significant increases of phenolic, flavonols and tannin contents, which ultimately enhance the potential of Calibrachoa as a natural source of alternative antibiotics.

  2. A new retrieval algorithm for tropospheric temperature, humidity and pressure profiling based on GNSS radio occultation data

    NASA Astrophysics Data System (ADS)

    Kirchengast, Gottfried; Li, Ying; Scherllin-Pirscher, Barbara; Schwärz, Marc; Schwarz, Jakob; Nielsen, Johannes K.

    2017-04-01

    The GNSS radio occultation (RO) technique is an important remote sensing technique for obtaining thermodynamic profiles of temperature, humidity, and pressure in the Earth's troposphere. However, due to refraction effects of both dry ambient air and water vapor in the troposphere, retrieval of accurate thermodynamic profiles at these lower altitudes is challenging and requires suitable background information in addition to the RO refractivity information. Here we introduce a new moist air retrieval algorithm aiming to improve the quality and robustness of retrieving temperature, humidity and pressure profiles in moist air tropospheric conditions. The new algorithm consists of four steps: (1) use of prescribed specific humidity and its uncertainty to retrieve temperature and its associated uncertainty; (2) use of prescribed temperature and its uncertainty to retrieve specific humidity and its associated uncertainty; (3) use of the previous results to estimate final temperature and specific humidity profiles through optimal estimation; (4) determination of air pressure and density profiles from the results obtained before. The new algorithm does not require elaborated matrix inversions which are otherwise widely used in 1D-Var retrieval algorithms, and it allows a transparent uncertainty propagation, whereby the uncertainties of prescribed variables are dynamically estimated accounting for their spatial and temporal variations. Estimated random uncertainties are calculated by constructing error covariance matrices from co-located ECMWF short-range forecast and corresponding analysis profiles. Systematic uncertainties are estimated by empirical modeling. The influence of regarding or disregarding vertical error correlations is quantified. The new scheme is implemented with static input uncertainty profiles in WEGC's current OPSv5.6 processing system and with full scope in WEGC's next-generation system, the Reference Occultation Processing System (rOPS). Results from both WEGC systems, current OPSv5.6 and next-generation rOPS, are shown and discussed, based on both insights from individual profiles and statistical ensembles, and compared to moist air retrieval results from the UCAR Boulder and ROM-SAF Copenhagen centers. The results show that the new algorithmic scheme improves the temperature, humidity and pressure retrieval performance, in particular also the robustness including for integrated uncertainty estimation for large-scale applications, over the previous algorithms. The new rOPS-implemented algorithm will therefore be used in the first large-scale reprocessing towards a tropospheric climate data record 2001-2016 by the rOPS, including its integrated uncertainty propagation.

  3. Does the Acquisition of Spatial Skill Involve a Shift from Algorithm to Memory Retrieval?

    ERIC Educational Resources Information Center

    Frank, David J.; Macnamara, Brooke N.

    2017-01-01

    Performance on verbal and mathematical tasks is enhanced when participants shift from using algorithms to retrieving information directly from memory (Siegler, 1988a). However, it is unknown whether a shift to retrieval is involved in dynamic spatial skill acquisition. For example, do athletes mentally extrapolate the trajectory of the ball, or do…

  4. Observed SWE trends and climate analysis for Northwest Pacific North America: validation for future projection of SWE using the CRCM and VIC

    NASA Astrophysics Data System (ADS)

    Bennett, K. E.; Bronaugh, D.; Rodenhuis, D.

    2008-12-01

    Observational databases of snow water equivalent (SWE) have been collected from Alaska, western US states and the Canadian provinces of British Columbia, Alberta, Saskatchewan, and territories of NWT, and the Yukon. These databases were initially validated to remove inconsistencies and errors in the station records, dates or the geographic co-ordinates of the station. The cleaned data was then analysed for historical (1950 to 2006) trend using emerging techniques for trend detection based on (first of the month) estimates for January to June. Analysis of SWE showed spatial variability in the count of records across the six month time period, and this study illustrated differences between Canadian and US (or the north and south) collection. Two different data sets (one gridded and one station) were then used to analyse April 1st records, for which there was the greatest spatial spread of station records for analysis with climate information. Initial results show spatial variability (in both magnitude and direction of trend) for trend results, and climate correlations and principal components indicate different drivers of change in SWE across the western US, Canada and north to Alaska. These results will be used to validate future predictions of SWE that are being undertaken using the Canadian Regional Climate Model (CRCM) and the Variable Infiltration Capacity (VIC) hydrologic model for Western Northern America (CRCM) and British Columbia (VIC).

  5. Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan

    NASA Astrophysics Data System (ADS)

    Bair, Edward H.; Abreu Calfa, Andre; Rittger, Karl; Dozier, Jeff

    2018-05-01

    In the mountains, snowmelt often provides most of the runoff. Operational estimates use imagery from optical and passive microwave sensors, but each has its limitations. An accurate approach, which we validate in Afghanistan and the Sierra Nevada USA, reconstructs spatially distributed snow water equivalent (SWE) by calculating snowmelt backward from a remotely sensed date of disappearance. However, reconstructed SWE estimates are available only retrospectively; they do not provide a forecast. To estimate SWE throughout the snowmelt season, we consider physiographic and remotely sensed information as predictors and reconstructed SWE as the target. The period of analysis matches the AMSR-E radiometer's lifetime from 2003 to 2011, for the months of April through June. The spatial resolution of the predictions is 3.125 km, to match the resolution of a microwave brightness temperature product. Two machine learning techniques - bagged regression trees and feed-forward neural networks - produced similar mean results, with 0-14 % bias and 46-48 mm RMSE on average. Nash-Sutcliffe efficiencies averaged 0.68 for all years. Daily SWE climatology and fractional snow-covered area are the most important predictors. We conclude that these methods can accurately estimate SWE during the snow season in remote mountains, and thereby provide an independent estimate to forecast runoff and validate other methods to assess the snow resource.

  6. Snow Water Equivalent Variations across the western United States and its relation to of El Niño Southern Oscillation

    NASA Astrophysics Data System (ADS)

    Miller, W. P.; Thakur, B.; Kalra, A.; Lamb, K. W.; Fayne, J.; Tootle, G. A.; Lakshmi, V.

    2017-12-01

    With the recent increase in global mean temperature Western US has undergone significant decline in snowpack which is the primary source of fresh water for the region. Studies suggests the decline in snowpack also being coupled with different El Niño Southern Oscillation (ENSO) phases. The study includes 1 March, 1 April and 1 May Snow Water Equivalent (SWE) data of 56 years period (1961-2016) for the estimation of long term changes. The current study also estimates monthly snow water equivalent (SWE) variations during different ENSO phases. Mann-Kendall test was utilized for trend detection while the step was evaluated with the Pettitt's test. Kolmogorov - Smirnov test was also utilized to evaluate the differences in the SWE data distribution during different ENSO phases. The results indicated both decreasing trends and decreasing shifts in majority of the SWE stations. The decline in SWE varied with the ENSO phases and also varied spatially following the geography of the region. KS tests suggested northern regions of Western US having variations in cumulative distribution function during El Niño and non- El Niño years as compared to other regions suggesting the northern regions being more impacted by ENSO phases. This analysis can bring insights into the spatiotemporal SWE variations and lead to the better reliability on snowpack for water management issues.

  7. Assessment of Uncertainty in Cloud Radiative Effects and Heating Rates through Retrieval Algorithm Differences: Analysis using 3-years of ARM data at Darwin, Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comstock, Jennifer M.; Protat, Alain; McFarlane, Sally A.

    2013-05-22

    Ground-based radar and lidar observations obtained at the Department of Energy’s Atmospheric Radiation Measurement Program’s Tropical Western Pacific site located in Darwin, Australia are used to retrieve ice cloud properties in anvil and cirrus clouds. Cloud microphysical properties derived from four different retrieval algorithms (two radar-lidar and two radar only algorithms) are compared by examining mean profiles and probability density functions of effective radius (Re), ice water content (IWC), extinction, ice number concentration, ice crystal fall speed, and vertical air velocity. Retrieval algorithm uncertainty is quantified using radiative flux closure exercises. The effect of uncertainty in retrieved quantities on themore » cloud radiative effect and radiative heating rates are presented. Our analysis shows that IWC compares well among algorithms, but Re shows significant discrepancies, which is attributed primarily to assumptions of particle shape. Uncertainty in Re and IWC translates into sometimes-large differences in cloud radiative effect (CRE) though the majority of cases have a CRE difference of roughly 10 W m-2 on average. These differences, which we believe are primarily driven by the uncertainty in Re, can cause up to 2 K/day difference in the radiative heating rates between algorithms.« less

  8. Comparison of snow depth retrieval algorithm in Northeastern China based on AMSR2 and FY3B-MWRI data

    NASA Astrophysics Data System (ADS)

    Fan, Xintong; Gu, Lingjia; Ren, Ruizhi; Zhou, Tingting

    2017-09-01

    Snow accumulation has a very important influence on the natural environment and human activities. Meanwhile, improving the estimation accuracy of passive microwave snow depth (SD) retrieval is a hotspot currently. Northeastern China is a typical snow study area including many different land cover types, such as forest, grassland and farmland. Especially, there is relatively stable snow accumulation in January every year. The brightness temperatures which are observed by the Advanced Microwave Scanning Radiometer 2 (AMSR2) on GCOM-W1 and FengYun3B Microwave Radiation Imager (FY3B-MWRI) in the same period in 2013 are selected as the study data in the research. The results of snow depth retrieval using AMSR2 standard algorithm and Jiang's FY operational algorithm are compared in the research. Moreover, to validate the accuracy of the two algorithms, the retrieval results are compared with the SD data observed at the national meteorological stations in Northeastern China. Furthermore, the retrieval SD is also compared with AMSR2 and FY standard SD products, respectively. The root mean square errors (RMSE) results using AMSR2 standard algorithms and FY operational algorithm are close in the forest surface, which are 6.33cm and 6.28cm, respectively. However, The FY operational algorithm shows a better result than the AMSR2 standard algorithms in the grassland and farmland surface. The RMSE results using FY operational algorithm in the grassland and farmland surface are 2.44cm and 6.13cm, respectively.

  9. Optimization of the GSFC TROPOZ DIAL retrieval using synthetic lidar returns and ozonesondes - Part 1: Algorithm validation

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Leblanc, T.; Sumnicht, G. K.; Twigg, L. W.

    2015-04-01

    The main purpose of the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) is to measure the vertical distribution of tropospheric ozone for science investigations. Because of the important health and climate impacts of tropospheric ozone, it is imperative to quantify background photochemical and aloft ozone concentrations, especially during air quality episodes. To better characterize tropospheric ozone, the Tropospheric Ozone Lidar Network (TOLNet) has recently been developed, which currently consists of five different ozone DIAL instruments, including the TROPOZ. This paper addresses the necessary procedures to validate the TROPOZ retrieval algorithm and develops a primary standard for retrieval consistency and optimization within TOLNet. This paper is focused on ensuring the TROPOZ and future TOLNet algorithms are properly quantifying ozone concentrations and the following paper will focus on defining a systematic uncertainty analysis standard for all TOLNet instruments. Although this paper is used to optimize the TROPOZ retrieval, the methodology presented may be extended and applied to most other DIAL instruments, even if the atmospheric product of interest is not tropospheric ozone (e.g. temperature or water vapor). The analysis begins by computing synthetic lidar returns from actual TROPOZ lidar return signals in combination with a known ozone profile. From these synthetic signals, it is possible to explicitly determine retrieval algorithm biases from the known profile, thereby identifying any areas that may need refinement for a new operational version of the TROPOZ retrieval algorithm. A new vertical resolution scheme is presented, which was upgraded from a constant vertical resolution to a variable vertical resolution, in order to yield a statistical uncertainty of <10%. The optimized vertical resolution scheme retains the ability to resolve fluctuations in the known ozone profile and now allows near field signals to be more appropriately smoothed. With these revisions, the optimized TROPOZ retrieval algorithm (TROPOZopt) has been effective in retrieving nearly 200 m lower to the surface. Also, as compared to the previous version of the retrieval, the TROPOZopt has reduced the mean profile bias by 3.5% and large reductions in bias (near 15 %) were apparent above 4.5 km. Finally, to ensure the TROPOZopt retrieval algorithm is robust enough to handle actual lidar return signals, a comparison is shown between four nearby ozonesonde measurements. The ozonesondes agree well with the retrieval and are mostly within the TROPOZopt retrieval uncertainty bars (which implies that this exercise was quite successful). A final mean percent difference plot is shown between the TROPOZopt and ozonesondes, which indicates that the new operational retrieval is mostly within 10% of the ozonesonde measurement and no systematic biases are present. The authors believe that this analysis has significantly added to the confidence in the TROPOZ instrument and provides a standard for current and future TOLNet algorithms.

  10. Dreaming of Atmospheres

    NASA Astrophysics Data System (ADS)

    Waldmann, Ingo

    2016-10-01

    Radiative transfer retrievals have become the standard in modelling of exoplanetary transmission and emission spectra. Analysing currently available observations of exoplanetary atmospheres often invoke large and correlated parameter spaces that can be difficult to map or constrain.To address these issues, we have developed the Tau-REx (tau-retrieval of exoplanets) retrieval and the RobERt spectral recognition algorithms. Tau-REx is a bayesian atmospheric retrieval framework using Nested Sampling and cluster computing to fully map these large correlated parameter spaces. Nonetheless, data volumes can become prohibitively large and we must often select a subset of potential molecular/atomic absorbers in an atmosphere.In the era of open-source, automated and self-sufficient retrieval algorithms, such manual input should be avoided. User dependent input could, in worst case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is build to address these issues. RobERt is a deep belief neural (DBN) networks trained to accurately recognise molecular signatures for a wide range of planets, atmospheric thermal profiles and compositions. Using these deep neural networks, we work towards retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.In this talk I will discuss how neural networks and Bayesian Nested Sampling can be used to solve highly degenerate spectral retrieval problems and what 'dreaming' neural networks can tell us about atmospheric characteristics.

  11. Comparison of soil moisture retrieval algorithms based on the synergy between SMAP and SMOS-IC

    NASA Astrophysics Data System (ADS)

    Ebrahimi-Khusfi, Mohsen; Alavipanah, Seyed Kazem; Hamzeh, Saeid; Amiraslani, Farshad; Neysani Samany, Najmeh; Wigneron, Jean-Pierre

    2018-05-01

    This study was carried out to evaluate possible improvements of the soil moisture (SM) retrievals from the SMAP observations, based on the synergy between SMAP and SMOS. We assessed the impacts of the vegetation and soil roughness parameters on SM retrievals from SMAP observations. To do so, the effects of three key input parameters including the vegetation optical depth (VOD), effective scattering albedo (ω) and soil roughness (HR) parameters were assessed with the emphasis on the synergy with the VOD product derived from SMOS-IC, a new and simpler version of the SMOS algorithm, over two years of data (April 2015 to April 2017). First, a comprehensive comparison of seven SM retrieval algorithms was made to find the best one for SM retrievals from the SMAP observations. All results were evaluated against in situ measurements over 548 stations from the International Soil Moisture Network (ISMN) in terms of four statistical metrics: correlation coefficient (R), root mean square error (RMSE), bias and unbiased RMSE (UbRMSE). The comparison of seven SM retrieval algorithms showed that the dual channel algorithm based on the additional use of the SMOS-IC VOD product (selected algorithm) led to the best results of SM retrievals over 378, 399, 330 and 271 stations (out of a total of 548 stations) in terms of R, RMSE, UbRMSE and both R & UbRMSE, respectively. Moreover, comparing the measured and retrieved SM values showed that this synergy approach led to an increase in median R value from 0.6 to 0.65 and a decrease in median UbRMSE from 0.09 m3/m3 to 0.06 m3/m3. Second, using the algorithm selected in a first step and defined above, the ω and HR parameters were calibrated over 218 rather homogenous ISMN stations. 72 combinations of various values of ω and HR were used for the calibration over different land cover classes. In this calibration process, the optimal values of ω and HR were found for the different land cover classes. The obtained results indicated that the impact of the VOD parameter on SM retrievals is more considerable than the effects of HR and ω. Overall, the inclusion of the VOD parameter in the SMAP SM retrieval algorithm was found to be a very interesting approach and showed the large potential benefit of the synergy between SMAP and SMOS.

  12. Cloud retrievals from satellite data using optimal estimation: evaluation and application to ATSR

    NASA Astrophysics Data System (ADS)

    Poulsen, C. A.; Siddans, R.; Thomas, G. E.; Sayer, A. M.; Grainger, R. G.; Campmany, E.; Dean, S. M.; Arnold, C.; Watts, P. D.

    2012-08-01

    Clouds play an important role in balancing the Earth's radiation budget. Hence, it is vital that cloud climatologies are produced that quantify cloud macro and micro physical parameters and the associated uncertainty. In this paper, we present an algorithm ORAC (Oxford-RAL retrieval of Aerosol and Cloud) which is based on fitting a physically consistent cloud model to satellite observations simultaneously from the visible to the mid-infrared, thereby ensuring that the resulting cloud properties provide both a good representation of the short-wave and long-wave radiative effects of the observed cloud. The advantages of the optimal estimation method are that it enables rigorous error propagation and the inclusion of all measurements and any a priori information and associated errors in a rigorous mathematical framework. The algorithm provides a measure of the consistency between retrieval representation of cloud and satellite radiances. The cloud parameters retrieved are the cloud top pressure, cloud optical depth, cloud effective radius, cloud fraction and cloud phase. The algorithm can be applied to most visible/infrared satellite instruments. In this paper, we demonstrate the applicability to the Along-Track Scanning Radiometers ATSR-2 and AATSR. Examples of applying the algorithm to ATSR-2 flight data are presented and the sensitivity of the retrievals assessed, in particular the algorithm is evaluated for a number of simulated single-layer and multi-layer conditions. The algorithm was found to perform well for single-layer cloud except when the cloud was very thin; i.e., less than 1 optical depths. For the multi-layer cloud, the algorithm was robust except when the upper ice cloud layer is less than five optical depths. In these cases the retrieved cloud top pressure and cloud effective radius become a weighted average of the 2 layers. The sum of optical depth of multi-layer cloud is retrieved well until the cloud becomes thick, greater than 50 optical depths, where the cloud begins to saturate. The cost proved a good indicator of multi-layer scenarios. Both the retrieval cost and the error need to be considered together in order to evaluate the quality of the retrieval. This algorithm in the configuration described here has been applied to both ATSR-2 and AATSR visible and infrared measurements in the context of the GRAPE (Global Retrieval and cloud Product Evaluation) project to produce a 14 yr consistent record for climate research.

  13. The role of shear wave elastography in the assessment of placenta previa-accreta.

    PubMed

    Alıcı Davutoglu, Ebru; Ariöz Habibi, Hatice; Ozel, Ayşegül; Yuksel, Mehmet Aytac; Adaletli, Ibrahim; Madazlı, Riza

    2018-06-01

    To evaluate the value of shear wave elastography (SWE) in the prediction of morbidly adherent placenta. Forty-three women with normal placental location and 26 women with anteriorly localized placenta previa were recruited for this case-control study. Placental elasticity values in both the groups were determined by SWE imaging. SWE values were higher in the placenta previa group in all regions than in normal localized placentas (p < .01). However, there was no statistically significant difference between SWE values of placenta previa with and without morbidly adherent placenta (p > .05). Placental stiffness is significantly higher in placenta previa than normal localized placentas. However, we could not demonstrate any statistically significant difference in the elasticity values between the placenta previa with and without accreta.

  14. Phase Retrieval Using a Genetic Algorithm on the Systematic Image-Based Optical Alignment Testbed

    NASA Technical Reports Server (NTRS)

    Taylor, Jaime R.

    2003-01-01

    NASA s Marshall Space Flight Center s Systematic Image-Based Optical Alignment (SIBOA) Testbed was developed to test phase retrieval algorithms and hardware techniques. Individuals working with the facility developed the idea of implementing phase retrieval by breaking the determination of the tip/tilt of each mirror apart from the piston motion (or translation) of each mirror. Presented in this report is an algorithm that determines the optimal phase correction associated only with the piston motion of the mirrors. A description of the Phase Retrieval problem is first presented. The Systematic Image-Based Optical Alignment (SIBOA) Testbeb is then described. A Discrete Fourier Transform (DFT) is necessary to transfer the incoming wavefront (or estimate of phase error) into the spatial frequency domain to compare it with the image. A method for reducing the DFT to seven scalar/matrix multiplications is presented. A genetic algorithm is then used to search for the phase error. The results of this new algorithm on a test problem are presented.

  15. An Integrated Retrieval Framework for AMSR2: Implications for Light Precipitation and Sea Ice Edge Detectability

    NASA Astrophysics Data System (ADS)

    Duncan, D.; Kummerow, C. D.; Meier, W.

    2016-12-01

    Over the lifetime of AMSR-E, operational retrieval algorithms were developed and run for precipitation, ocean suite (SST, wind speed, cloud liquid water path, and column water vapor over ocean), sea ice, snow water equivalent, and soil moisture. With a separate algorithm for each group, the retrievals were never interactive or integrated in any way despite many co-sensitivities. AMSR2, the follow-on mission to AMSR-E, retrieves the same parameters at a slightly higher spatial resolution. We have combined the operational algorithms for AMSR2 in a way that facilitates sharing information between the retrievals. Difficulties that arose were mainly related to calibration, spatial resolution, coastlines, and order of processing. The integration of all algorithms for AMSR2 has numerous benefits, including better detection of light precipitation and sea ice, fewer screened out pixels, and better quality flags. Integrating the algorithms opens up avenues for investigating the limits of detectability for precipitation from a passive microwave radiometer and the impact of spatial resolution on sea ice edge detection; these are investigated using CloudSat and MODIS coincident observations from the A-Train constellation.

  16. Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm.

    PubMed

    Yang, Mengzhao; Song, Wei; Mei, Haibin

    2017-07-23

    The rapid development of remote sensing (RS) technology has resulted in the proliferation of high-resolution images. There are challenges involved in not only storing large volumes of RS images but also in rapidly retrieving the images for ocean disaster analysis such as for storm surges and typhoon warnings. In this paper, we present an efficient retrieval of massive ocean RS images via a Cloud-based mean-shift algorithm. Distributed construction method via the pyramid model is proposed based on the maximum hierarchical layer algorithm and used to realize efficient storage structure of RS images on the Cloud platform. We achieve high-performance processing of massive RS images in the Hadoop system. Based on the pyramid Hadoop distributed file system (HDFS) storage method, an improved mean-shift algorithm for RS image retrieval is presented by fusion with the canopy algorithm via Hadoop MapReduce programming. The results show that the new method can achieve better performance for data storage than HDFS alone and WebGIS-based HDFS. Speedup and scaleup are very close to linear changes with an increase of RS images, which proves that image retrieval using our method is efficient.

  17. Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm

    PubMed Central

    Song, Wei; Mei, Haibin

    2017-01-01

    The rapid development of remote sensing (RS) technology has resulted in the proliferation of high-resolution images. There are challenges involved in not only storing large volumes of RS images but also in rapidly retrieving the images for ocean disaster analysis such as for storm surges and typhoon warnings. In this paper, we present an efficient retrieval of massive ocean RS images via a Cloud-based mean-shift algorithm. Distributed construction method via the pyramid model is proposed based on the maximum hierarchical layer algorithm and used to realize efficient storage structure of RS images on the Cloud platform. We achieve high-performance processing of massive RS images in the Hadoop system. Based on the pyramid Hadoop distributed file system (HDFS) storage method, an improved mean-shift algorithm for RS image retrieval is presented by fusion with the canopy algorithm via Hadoop MapReduce programming. The results show that the new method can achieve better performance for data storage than HDFS alone and WebGIS-based HDFS. Speedup and scaleup are very close to linear changes with an increase of RS images, which proves that image retrieval using our method is efficient. PMID:28737699

  18. Evaluating the Impact of Vegetation Cover and Atmospheric Characteristics on the Estimation of Snow Water Equivalent from Spaceborne Microwave Radiometry

    NASA Technical Reports Server (NTRS)

    Choudhury, Bhaskar J.; Foster, James L.

    2010-01-01

    A radiative transfer model for estimating snow water equivalent (SWE, mm) from satellite-observed brightness temperature (K) at 19 and 37 GHz (respectively, T(sub B(sub, sat,19)) and T(sub B(sub, sat,37)) over partially forested area is presented, as an extension of a previously published model, by considering scattering of radiation within the canopy. For the specific case of dense vegetation covering fractional area f, the model can be written as, SWE = alpha{ A. delta (T(sub B(sub, sat)) + B - C. f}/(l f), where delta T(sub B(sub, sat)), is the difference of T(sub B(sub, sat,19)) and T(sub B(sub, sat,37)), alpha(mm/K) is the slope of SWE vs. brightness temperature difference at 19 and 37 GHz that would be obtained by ignoring the presence of atmosphere, delta(T(sub B)sub g)), for a homogeneous snow cover (which varies with grain size). The parameters A, B, and C, are determined primarily by atmospheric characteristics, and for a likely range of atmospheric conditions appear to be in the range of, respectively, 1.15-1.63, 0.69-2.84 K and 0.59-2.39 K. Ignoring atmospheric correction would introduce bias towards underestimation of SWE (and also, snow cover area and snow depth). Increasing cloud liquid water path (L) has the effect of increasing A, and ignoring this variation of A with L would have the impact of biasing the estimate of SWE (and snow extent). Such biasing is further exacerbated with increasing f, because of the appearance of term (l-f) in the denominator. The impact of ignoring the intercept parameters (B and C) would be noticeable at low values of SWE (appearing as a bias towards underestimation of SWE), which has been determined to be about 6 mm for average environmental conditions. The uncertainty in estimating SWE due to variations in the atmospheric characteristics is likely to be less than 15%, but could be up to 25% for non-vegetated snow-covered areas. Better estimates of SWE (and snow extent) would be obtained by adjusting the parameters of the above model to regional differences in the atmospheric characteristics. The biases in determining SWE arising due to variations in atmospheric conditions and due to changes in fractional forest cover are not independent, since they interact as {A/(l-f)}. The present calculations also show that improvement in determining snow cover area from the microwave data is likely to occur when these data are corrected for atmospheric effects, as demonstrated by a specific case study.

  19. Impact of spatial resolution on cirrus infrared satellite retrievals in the presence of cloud heterogeneity

    NASA Astrophysics Data System (ADS)

    Fauchez, T.; Platnick, S. E.; Meyer, K.; Zhang, Z.; Cornet, C.; Szczap, F.; Dubuisson, P.

    2015-12-01

    Cirrus clouds are an important part of the Earth radiation budget but an accurate assessment of their role remains highly uncertain. Cirrus optical properties such as Cloud Optical Thickness (COT) and ice crystal effective particle size are often retrieved with a combination of Visible/Near InfraRed (VNIR) and ShortWave-InfraRed (SWIR) reflectance channels. Alternatively, Thermal InfraRed (TIR) techniques, such as the Split Window Technique (SWT), have demonstrated better accuracy for thin cirrus effective radius retrievals with small effective radii. However, current global operational algorithms for both retrieval methods assume that cloudy pixels are horizontally homogeneous (Plane Parallel Approximation (PPA)) and independent (Independent Pixel Approximation (IPA)). The impact of these approximations on ice cloud retrievals needs to be understood and, as far as possible, corrected. Horizontal heterogeneity effects in the TIR spectrum are mainly dominated by the PPA bias that primarily depends on the COT subpixel heterogeneity; for solar reflectance channels, in addition to the PPA bias, the IPA can lead to significant retrieval errors due to a significant photon horizontal transport between cloudy columns, as well as brightening and shadowing effects that are more difficult to quantify. Furthermore TIR retrievals techniques have demonstrated better retrieval accuracy for thin cirrus having small effective radii over solar reflectance techniques. The TIR range is thus particularly relevant in order to characterize, as accurately as possible, thin cirrus clouds. Heterogeneity effects in the TIR are evaluated as a function of spatial resolution in order to estimate the optimal spatial resolution for TIR retrieval applications. These investigations are performed using a cirrus 3D cloud generator (3DCloud), a 3D radiative transfer code (3DMCPOL), and two retrieval algorithms, namely the operational MODIS retrieval algorithm (MOD06) and a research-level SWT algorithm.

  20. Transfer and distortion of atmospheric information in the satellite temperature retrieval problem

    NASA Technical Reports Server (NTRS)

    Thompson, O. E.

    1981-01-01

    A systematic approach to investigating the transfer of basic ambient temperature information and its distortion by satellite systems and subsequent analysis algorithms is discussed. The retrieval analysis cycle is derived, the variance spectrum of information is examined as it takes different forms in that process, and the quality and quantity of information existing at each stop is compared with the initial ambient temperature information. Temperature retrieval algorithms can smooth, add, or further distort information, depending on how stable the algorithm is, and how heavily influenced by a priori data.

  1. Experiments at SRT Using the NOAA CrIS/ATMS Proxy Data Set

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2011-01-01

    The objectives of the talk are: (1) Assess the performance of NGAS Version-1.5.03.00 CrIS/ATMS retrieval algorithm as delivered by LaRC, modified to include the MW and IR tuning coefficients and new CrIS noise model (a) Percent acceptance (b) RMS and mean differences of T(p) vs. ECMWF truth as a function of % yield (2) Compare performance of NGAS retrieval algorithm with an AIRS Science Team Version-6 like retrieval algorithm modified at Sounder Research Team (SRT) for CrIS/ATMS

  2. The Validation of Cloud Retrieval Algorithms Using Synthetic Datasets

    NASA Astrophysics Data System (ADS)

    Kokhanovsky, Alexander; Fischer, Jurgen; Linstrot, Rasmus; Meirink, Jan Fokke; Poulsen, Caroline; Preusker, Rene; Siddans, Richard; Thomas, Gareth; Arnold, Chris; Grainger, Roy; Lilli, Luca; Rozanov, Vladimir

    2012-11-01

    We have performed the inter-comparison study of cloud property retrievals using algorithms initially developed for AATSR (ORAC, RAL-Oxford University), AVHRR and SEVIRI (CPP, KNMI), SCIAMACHY/GOME (SACURA, University of Bremen), and MERIS (ANNA, Free University of Berlin). The accuracy of retrievals of cloud optical thickness (COT), effective radius (ER) of droplets, and cloud top height (CTH) is discussed.

  3. Seasonal Snow Cold Content Dynamics in the Alpine and Sub-Alpine, Niwot Ridge, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Jennings, K. S.; Molotch, N. P.

    2015-12-01

    Cold content represents the energy required to warm a sub-freezing snowpack to an isothermal 0°C. Across daily and seasonal time scales it is a dynamic interplay between the forces of snowpack accumulation/cooling and warming. Cold content determines snowmelt timing and is an important component of the annual energy budget of mountain sites with seasonal snowpacks. However, little is understood about seasonal snowpack cold content dynamics as calculating cold content requires depth-weighted snowpack temperature and snow water equivalent (SWE) measurements, which are scarce. A spatially distributed network of snow pits has been sampled since 1993 at the Niwot Ridge Long Term Ecological Research site on the eastern slope of the Continental Divide in Colorado's Front Range mountains. This study uses data from 3 pit sites that have at least 8 years of observations and represent alpine and sub-alpine environments. For these pits, cold content is strongly related to SWE during the cold content accumulation phase, here defined as December, January, and February. Average peak cold content ranges between -2.5 MJ m-2 and -9.2 MJ m-2 for the three sites and is strongly related to peak SWE. On average, cold content reaches its maximum on February 26, which is 61 days before the average date of peak SWE (i.e., the snowpack's cold content is satisfied over an average of 61 days). At the alpine site, later peak cold content and SWE was observed relative to the lower elevation sub-alpine sites. Interestingly, the alpine site had a smaller gap between peak cold content and SWE (55 days versus 67 days for the alpine and sub-alpine sites, respectively). The gap between peak cold content and peak SWE is primarily a function of the increase in SWE between the two dates. Hence, persistent snowfall after the date of peak cold content can delay the onset of snowmelt even if peak cold content was relatively low. Improving our understanding of seasonal cold content dynamics in mountain environments will enable us to better model the future effects of climate change on snowmelt timing and associated hydrologic response.

  4. Uncertainty in Estimates of Net Seasonal Snow Accumulation on Glaciers from In Situ Measurements

    NASA Astrophysics Data System (ADS)

    Pulwicki, A.; Flowers, G. E.; Radic, V.

    2017-12-01

    Accurately estimating the net seasonal snow accumulation (or "winter balance") on glaciers is central to assessing glacier health and predicting glacier runoff. However, measuring and modeling snow distribution is inherently difficult in mountainous terrain, resulting in high uncertainties in estimates of winter balance. Our work focuses on uncertainty attribution within the process of converting direct measurements of snow depth and density to estimates of winter balance. We collected more than 9000 direct measurements of snow depth across three glaciers in the St. Elias Mountains, Yukon, Canada in May 2016. Linear regression (LR) and simple kriging (SK), combined with cross correlation and Bayesian model averaging, are used to interpolate estimates of snow water equivalent (SWE) from snow depth and density measurements. Snow distribution patterns are found to differ considerably between glaciers, highlighting strong inter- and intra-basin variability. Elevation is found to be the dominant control of the spatial distribution of SWE, but the relationship varies considerably between glaciers. A simple parameterization of wind redistribution is also a small but statistically significant predictor of SWE. The SWE estimated for one study glacier has a short range parameter (90 m) and both LR and SK estimate a winter balance of 0.6 m w.e. but are poor predictors of SWE at measurement locations. The other two glaciers have longer SWE range parameters ( 450 m) and due to differences in extrapolation, SK estimates are more than 0.1 m w.e. (up to 40%) lower than LR estimates. By using a Monte Carlo method to quantify the effects of various sources of uncertainty, we find that the interpolation of estimated values of SWE is a larger source of uncertainty than the assignment of snow density or than the representation of the SWE value within a terrain model grid cell. For our study glaciers, the total winter balance uncertainty ranges from 0.03 (8%) to 0.15 (54%) m w.e. depending primarily on the interpolation method. Despite the challenges associated with accurately and precisely estimating winter balance, our results are consistent with the previously reported regional accumulation gradient.

  5. Solar Occultation Retrieval Algorithm Development

    NASA Technical Reports Server (NTRS)

    Lumpe, Jerry D.

    2004-01-01

    This effort addresses the comparison and validation of currently operational solar occultation retrieval algorithms, and the development of generalized algorithms for future application to multiple platforms. initial development of generalized forward model algorithms capable of simulating transmission data from of the POAM II/III and SAGE II/III instruments. Work in the 2" quarter will focus on: completion of forward model algorithms, including accurate spectral characteristics for all instruments, and comparison of simulated transmission data with actual level 1 instrument data for specific occultation events.

  6. An operational retrieval algorithm for determining aerosol optical properties in the ultraviolet

    NASA Astrophysics Data System (ADS)

    Taylor, Thomas E.; L'Ecuyer, Tristan S.; Slusser, James R.; Stephens, Graeme L.; Goering, Christian D.

    2008-02-01

    This paper describes a number of practical considerations concerning the optimization and operational implementation of an algorithm used to characterize the optical properties of aerosols across part of the ultraviolet (UV) spectrum. The algorithm estimates values of aerosol optical depth (AOD) and aerosol single scattering albedo (SSA) at seven wavelengths in the UV, as well as total column ozone (TOC) and wavelength-independent asymmetry factor (g) using direct and diffuse irradiances measured with a UV multifilter rotating shadowband radiometer (UV-MFRSR). A novel method for cloud screening the irradiance data set is introduced, as well as several improvements and optimizations to the retrieval scheme which yield a more realistic physical model for the inversion and increase the efficiency of the algorithm. Introduction of a wavelength-dependent retrieval error budget generated from rigorous forward model analysis as well as broadened covariances on the a priori values of AOD, SSA and g and tightened covariances of TOC allows sufficient retrieval sensitivity and resolution to obtain unique solutions of aerosol optical properties as demonstrated by synthetic retrievals. Analysis of a cloud screened data set (May 2003) from Panther Junction, Texas, demonstrates that the algorithm produces realistic values of the optical properties that compare favorably with pseudo-independent methods for AOD, TOC and calculated Ångstrom exponents. Retrieval errors of all parameters (except TOC) are shown to be negatively correlated to AOD, while the Shannon information content is positively correlated, indicating that retrieval skill improves with increasing atmospheric turbidity. When implemented operationally on more than thirty instruments in the Ultraviolet Monitoring and Research Program's (UVMRP) network, this retrieval algorithm will provide a comprehensive and internally consistent climatology of ground-based aerosol properties in the UV spectral range that can be used for both validation of satellite measurements as well as regional aerosol and ultraviolet transmission studies.

  7. Enhanced Deep Blue Aerosol Retrieval Algorithm: The Second Generation

    NASA Technical Reports Server (NTRS)

    Hsu, N. C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A. M.; Hansell, R.; Seftor, C. S.; Huang, J.; Tsay, S.-C.

    2013-01-01

    The aerosol products retrieved using the MODIS collection 5.1 Deep Blue algorithm have provided useful information about aerosol properties over bright-reflecting land surfaces, such as desert, semi-arid, and urban regions. However, many components of the C5.1 retrieval algorithm needed to be improved; for example, the use of a static surface database to estimate surface reflectances. This is particularly important over regions of mixed vegetated and non- vegetated surfaces, which may undergo strong seasonal changes in land cover. In order to address this issue, we develop a hybrid approach, which takes advantage of the combination of pre-calculated surface reflectance database and normalized difference vegetation index in determining the surface reflectance for aerosol retrievals. As a result, the spatial coverage of aerosol data generated by the enhanced Deep Blue algorithm has been extended from the arid and semi-arid regions to the entire land areas.

  8. The Snowcloud System: Architecture and Algorithms for Snow Hydrology Studies

    NASA Astrophysics Data System (ADS)

    Skalka, C.; Brown, I.; Frolik, J.

    2013-12-01

    Snowcloud is an embedded data collection system for snow hydrology field research campaigns conducted in harsh climates and remote areas. The system combines distributed wireless sensor network technology and computational techniques to provide data at lower cost and higher spatio-temporal resolution than ground-based systems using traditional methods. Snowcloud has seen multiple Winter deployments in settings ranging from high desert to arctic, resulting in over a dozen node-years of practical experience. The Snowcloud system architecture consists of multiple TinyOS mesh-networked sensor stations collecting environmental data above and, in some deployments, below the snowpack. Monitored data modalities include snow depth, ground and air temperature, PAR and leaf-area index (LAI), and soil moisture. To enable power cycling and control of multiple sensors a custom power and sensor conditioning board was developed. The electronics and structural systems for individual stations have been designed and tested (in the lab and in situ) for ease of assembly and robustness to harsh winter conditions. Battery systems and solar chargers enable seasonal operation even under low/no light arctic conditions. Station costs range between 500 and 1000 depending on the instrumentation suite. For remote field locations, a custom designed hand-held device and data retrieval protocol serves as the primary data collection method. We are also developing and testing a Gateway device that will report data in near-real-time (NRT) over a cellular connection. Data is made available to users via web interfaces that also provide basic data analysis and visualization tools. For applications to snow hydrology studies, the better spatiotemporal resolution of snowpack data provided by Snowcloud is beneficial in several aspects. It provides insight into snowpack evolution, and allows us to investigate differences across different spatial and temporal scales in deployment areas. It enables the relation of local variations in accumulation to environmental parameters such as slope, micro-topography and vegetation cover. The relative importance of such factors is likely to change over the snow season, for example as deposition fills depressions reducing surface roughness due to micro-topography and low lying vegetation. Snowcloud has also been deployed to support the acquisition of satellite imagery from Radarsat-2 and TanDEM-X missions. In capturing spatial variability Snowcloud provides better validation data than single node systems. An important use case of Snowcloud is its application to modeling snow-water equivalent SWE evolution, and more accurate areal average SWE estimation in locations with a typical paucity of snowpack data. We are especially interested in applying machine learning techniques to find relations between average SWE in remote areas and regional infrastructure data (e.g. regional snow pillows). These techniques leverage a combination of data provided by Snowcloud systems and periodic manual snow courses in short field campaigns. Furthermore, using machine learning we can explore the importance of snowpack variables for synthetic aperture radar backscatter at co- and cross-polarizations to better understand scattering processes and unify models of scattering with in situ observations at high resolution.

  9. A circular median filter approach for resolving directional ambiguities in wind fields retrieved from spaceborne scatterometer data

    NASA Technical Reports Server (NTRS)

    Schultz, Howard

    1990-01-01

    The retrieval algorithm for spaceborne scatterometry proposed by Schultz (1985) is extended. A circular median filter (CMF) method is presented, which operates on wind directions independently of wind speed, removing any implicit wind speed dependence. A cell weighting scheme is included in the algorithm, permitting greater weights to be assigned to more reliable data. The mathematical properties of the ambiguous solutions to the wind retrieval problem are reviewed. The CMF algorithm is tested on twelve simulated data sets. The effects of spatially correlated likelihood assignment errors on the performance of the CMF algorithm are examined. Also, consideration is given to a wind field smoothing technique that uses a CMF.

  10. Generating Global Leaf Area Index from Landsat: Algorithm Formulation and Demonstration

    NASA Technical Reports Server (NTRS)

    Ganguly, Sangram; Nemani, Ramakrishna R.; Zhang, Gong; Hashimoto, Hirofumi; Milesi, Cristina; Michaelis, Andrew; Wang, Weile; Votava, Petr; Samanta, Arindam; Melton, Forrest; hide

    2012-01-01

    This paper summarizes the implementation of a physically based algorithm for the retrieval of vegetation green Leaf Area Index (LAI) from Landsat surface reflectance data. The algorithm is based on the canopy spectral invariants theory and provides a computationally efficient way of parameterizing the Bidirectional Reflectance Factor (BRF) as a function of spatial resolution and wavelength. LAI retrievals from the application of this algorithm to aggregated Landsat surface reflectances are consistent with those of MODIS for homogeneous sites represented by different herbaceous and forest cover types. Example results illustrating the physics and performance of the algorithm suggest three key factors that influence the LAI retrieval process: 1) the atmospheric correction procedures to estimate surface reflectances; 2) the proximity of Landsatobserved surface reflectance and corresponding reflectances as characterized by the model simulation; and 3) the quality of the input land cover type in accurately delineating pure vegetated components as opposed to mixed pixels. Accounting for these factors, a pilot implementation of the LAI retrieval algorithm was demonstrated for the state of California utilizing the Global Land Survey (GLS) 2005 Landsat data archive. In a separate exercise, the performance of the LAI algorithm over California was evaluated by using the short-wave infrared band in addition to the red and near-infrared bands. Results show that the algorithm, while ingesting the short-wave infrared band, has the ability to delineate open canopies with understory effects and may provide useful information compared to a more traditional two-band retrieval. Future research will involve implementation of this algorithm at continental scales and a validation exercise will be performed in evaluating the accuracy of the 30-m LAI products at several field sites. ©

  11. North Alabama Lightning Mapping Array (LMA): VHF Source Retrieval Algorithm and Error Analyses

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Solakiewicz, R. J.; Blakeslee, R. J.; Goodman, S. J.; Christian, H. J.; Hall, J.; Bailey, J.; Krider, E. P.; Bateman, M. G.; Boccippio, D.

    2003-01-01

    Two approaches are used to characterize how accurately the North Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and in time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA Marshall Space Flight Center (MSFC) and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix Theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50 ns, but all other possible errors (e.g., multiple sources per retrieval attempt) are neglected. The detailed spatial distributions of retrieval errors are provided. Given that the two methods are completely independent of one another, it is shown that they provide remarkably similar results. However, for many source locations, the Curvature Matrix Theory produces larger altitude error estimates than the (more realistic) Monte Carlo simulation.

  12. Aerosol Retrievals over the Ocean using Channel 1 and 2 AVHRR Data: A Sensitivity Analysis and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Geogdzhayev, Igor V.; Cairns, Brian; Rossow, William B.; Lacis, Andrew A.

    1999-01-01

    This paper outlines the methodology of interpreting channel 1 and 2 AVHRR radiance data over the oceans and describes a detailed analysis of the sensitivity of monthly averages of retrieved aerosol parameters to the assumptions made in different retrieval algorithms. The analysis is based on using real AVHRR data and exploiting accurate numerical techniques for computing single and multiple scattering and spectral absorption of light in the vertically inhomogeneous atmosphere-ocean system. We show that two-channel algorithms can be expected to provide significantly more accurate and less biased retrievals of the aerosol optical thickness than one-channel algorithms and that imperfect cloud screening and calibration uncertainties are by far the largest sources of errors in the retrieved aerosol parameters. Both underestimating and overestimating aerosol absorption as well as the potentially strong variability of the real part of the aerosol refractive index may lead to regional and/or seasonal biases in optical thickness retrievals. The Angstrom exponent appears to be the most invariant aerosol size characteristic and should be retrieved along with optical thickness as the second aerosol parameter.

  13. Non-invasive assessment of liver fibrosis using two-dimensional shear wave elastography in patients with autoimmune liver diseases

    PubMed Central

    Zeng, Jie; Huang, Ze-Ping; Zheng, Jian; Wu, Tao; Zheng, Rong-Qin

    2017-01-01

    AIM To determine the diagnostic accuracy of two-dimensional shear wave elastography (2D-SWE) for the non-invasive assessment of liver fibrosis in patients with autoimmune liver diseases (AILD) using liver biopsy as the reference standard. METHODS Patients with AILD who underwent liver biopsy and 2D-SWE were consecutively enrolled. Receiver operating characteristic (ROC) curves were constructed to assess the overall accuracy and to identify optimal cut-off values. RESULTS The characteristics of the diagnostic performance were determined for 114 patients with AILD. The areas under the ROC curves for significant fibrosis, severe fibrosis, and cirrhosis were 0.85, 0.85, and 0.86, respectively, and the optimal cut-off values associated with significant fibrosis (≥ F2), severe fibrosis (≥ F3), and cirrhosis (F4) were 9.7 kPa, 13.2 kPa and 16.3 kPa, respectively. 2D-SWE showed sensitivity values of 81.7% for significant fibrosis, 83.0% for severe fibrosis, and 87.0% for cirrhosis, and the respective specificity values were 81.3%, 74.6%, and 80.2%. The overall concordance rate of the liver stiffness measurements obtained using 2D-SWE vs fibrosis stages was 53.5%. CONCLUSION 2D-SWE showed promising diagnostic performance for assessing liver fibrosis stages and exhibited high cut-off values in patients with AILD. Low overall concordance rate was observed in the liver stiffness measurements obtained using 2D-SWE vs fibrosis stages. PMID:28765706

  14. Performance of 2-D shear wave elastography in liver fibrosis assessment compared with serologic tests and transient elastography in clinical routine.

    PubMed

    Bota, Simona; Paternostro, Rafael; Etschmaier, Alexandra; Schwarzer, Remy; Salzl, Petra; Mandorfer, Mattias; Kienbacher, Christian; Ferlitsch, Monika; Reiberger, Thomas; Trauner, Michael; Peck-Radosavljevic, Markus; Ferlitsch, Arnulf

    2015-09-01

    Liver stiffness values assessed with 2-D shear wave elastography (SWE), transient elastography (TE) and simple serologic tests were compared with respect to non-invasive assessment in a cohort of 127 consecutive patients with chronic liver diseases. The rate of reliable liver stiffness measurements was significantly higher with 2-D SWE than with TE: 99.2% versus 74.8%, p < 0.0001 (different reliability criteria used, according to current recommendations). In univariate analysis, liver stiffness measured with 2-D SWE correlated best with fibrosis stage estimated with TE (r = 0.699, p < 0.0001), followed by Forns score (r = 0.534, p < 0.0001) and King's score (r = 0.512, p < 0.0001). However, in multivariate analysis, only 2-D SWE-measured values remained correlated with fibrosis stage (p < 0.0001). The optimal 2-D SWE cutoff values for predicting significant fibrosis were 8.03 kPa for fibrosis stage ≥2 (area under the receiver operating characteristic curve = 0.832) and 13.1 kPa for fibrosis stage 4 (area under the receiver operating characteristic curve = 0.915), respectively. In conclusion, 2-D SWE can be used to obtain reliable liver stiffness measurements in almost all patients and performs very well in predicting the presence of liver cirrhosis. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Shear wave elastography of placenta: in vivo quantitation of placental elasticity in preeclampsia

    PubMed Central

    Kılıç, Fahrettin; Kayadibi, Yasemin; Yüksel, Mehmet Aytaç; Adaletli, İbrahim; Ustabaşıoğlu, Fethi Emre; Öncül, Mahmut; Madazlı, Rıza; Yılmaz, Mehmet Halit; Mihmanlı, İsmail; Kantarcı, Fatih

    2015-01-01

    PURPOSE We aimed to evaluate the utility of shear wave elastography (SWE) for assessing the placenta in preeclampsia disease. METHODS A total of 50 pregnant women in the second or third trimester (23 preeclampsia patients and 27 healthy control subjects) were enrolled in the study. Obstetrical grayscale and Doppler ultrasonography, SWE findings of placenta, and prenatal/postnatal clinical data were analyzed and the best SWE cutoff value which represents the diagnosis of preeclampsia was determined. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy of preeclampsia were calculated based on SWE measurements. RESULTS Mean stiffness values were much higher in preeclamptic placentas in all regions and layers than in normal controls. The most significant difference was observed in the central placental area facing the fetus where the umbilical cord inserts, with a median of 21 kPa (range, 3–71 kPa) for preeclampsia and 4 kPa (range, 1.5–14 kPa) for the control group (P < 0.01). The SWE data showed a moderate correlation with the uterine artery resistivity and pulsatility indices. The cutoff value maximizing the accuracy of diagnosis was 7.35 kPa (area under curve, 0.895; 95% confidence interval, 0.791–0.998); sensitivity, specificity, PPV, NPV, and accuracy were 90%, 86%, 82%, 92%, and 88%, respectively. CONCLUSION Stiffness of the placenta is significantly higher in patients with preeclampsia. SWE appears to be an assistive diagnostic technique for placenta evaluation in preeclampsia. PMID:25858523

  16. Non-invasive assessment of liver fibrosis using two-dimensional shear wave elastography in patients with autoimmune liver diseases.

    PubMed

    Zeng, Jie; Huang, Ze-Ping; Zheng, Jian; Wu, Tao; Zheng, Rong-Qin

    2017-07-14

    To determine the diagnostic accuracy of two-dimensional shear wave elastography (2D-SWE) for the non-invasive assessment of liver fibrosis in patients with autoimmune liver diseases (AILD) using liver biopsy as the reference standard. Patients with AILD who underwent liver biopsy and 2D-SWE were consecutively enrolled. Receiver operating characteristic (ROC) curves were constructed to assess the overall accuracy and to identify optimal cut-off values. The characteristics of the diagnostic performance were determined for 114 patients with AILD. The areas under the ROC curves for significant fibrosis, severe fibrosis, and cirrhosis were 0.85, 0.85, and 0.86, respectively, and the optimal cut-off values associated with significant fibrosis (≥ F2), severe fibrosis (≥ F3), and cirrhosis (F4) were 9.7 kPa, 13.2 kPa and 16.3 kPa, respectively. 2D-SWE showed sensitivity values of 81.7% for significant fibrosis, 83.0% for severe fibrosis, and 87.0% for cirrhosis, and the respective specificity values were 81.3%, 74.6%, and 80.2%. The overall concordance rate of the liver stiffness measurements obtained using 2D-SWE vs fibrosis stages was 53.5%. 2D-SWE showed promising diagnostic performance for assessing liver fibrosis stages and exhibited high cut-off values in patients with AILD. Low overall concordance rate was observed in the liver stiffness measurements obtained using 2D-SWE vs fibrosis stages.

  17. Validation of Shear Wave Elastography in Skeletal Muscle

    PubMed Central

    Eby, Sarah F.; Song, Pengfei; Chen, Shigao; Chen, Qingshan; Greenleaf, James F.; An, Kai-Nan

    2013-01-01

    Skeletal muscle is a very dynamic tissue, thus accurate quantification of skeletal muscle stiffness throughout its functional range is crucial to improve the physical functioning and independence following pathology. Shear wave elastography (SWE) is an ultrasound-based technique that characterizes tissue mechanical properties based on the propagation of remotely induced shear waves. The objective of this study is to validate SWE throughout the functional range of motion of skeletal muscle for three ultrasound transducer orientations. We hypothesized that combining traditional materials testing (MTS) techniques with SWE measurements will show increased stiffness measures with increasing tensile load, and will correlate well with each other for trials in which the transducer is parallel to underlying muscle fibers. To evaluate this hypothesis, we monitored the deformation throughout tensile loading of four porcine brachialis whole-muscle tissue specimens, while simultaneously making SWE measurements of the same specimen. We used regression to examine the correlation between Young's modulus from MTS and shear modulus from SWE for each of the transducer orientations. We applied a generalized linear model to account for repeated testing. Model parameters were estimated via generalized estimating equations. The regression coefficient was 0.1944, with a 95% confidence interval of (0.1463 – 0.2425) for parallel transducer trials. Shear waves did not propagate well for both the 45° and perpendicular transducer orientations. Both parallel SWE and MTS showed increased stiffness with increasing tensile load. This study provides the necessary first step for additional studies that can evaluate the distribution of stiffness throughout muscle. PMID:23953670

  18. 3-Dimensional shear wave elastography of breast lesions

    PubMed Central

    Chen, Ya-ling; Chang, Cai; Zeng, Wei; Wang, Fen; Chen, Jia-jian; Qu, Ning

    2016-01-01

    Abstract Color patterns of 3-dimensional (3D) shear wave elastography (SWE) is a promising method in differentiating tumoral nodules recently. This study was to evaluate the diagnostic accuracy of color patterns of 3D SWE in breast lesions, with special emphasis on coronal planes. A total of 198 consecutive women with 198 breast lesions (125 malignant and 73 benign) were included, who underwent conventional ultrasound (US), 3D B-mode, and 3D SWE before surgical excision. SWE color patterns of Views A (transverse), T (sagittal), and C (coronal) were determined. Sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC) were calculated. Distribution of SWE color patterns was significantly different between malignant and benign lesions (P = 0.001). In malignant lesions, “Stiff Rim” was significantly more frequent in View C (crater sign, 60.8%) than in View A (51.2%, P = 0.013) and View T (54.1%, P = 0.035). AUC for combination of “Crater Sign” and conventional US was significantly higher than View A (0.929 vs 0.902, P = 0.004) and View T (0.929 vs 0.907, P = 0.009), and specificity significantly increased (90.4% vs 78.1%, P = 0.013) without significant change in sensitivity (85.6% vs 88.0%, P = 0.664) as compared with conventional US. In conclusion, combination of conventional US with 3D SWE color patterns significantly increased diagnostic accuracy, with “Crater Sign” in coronal plane of the highest value. PMID:27684820

  19. Topography and vegetation as predictors of snow water equivalent across the alpine treeline ecotone at Lee Ridge, Glacier National Park, Montana, U.S.A.

    USGS Publications Warehouse

    Geddes, C.A.; Brown, D.G.; Fagre, D.B.

    2005-01-01

    We derived and implemented two spatial models of May snow water equivalent (SWE) at Lee Ridge in Glacier National Park, Montana. We used the models to test the hypothesis that vegetation structure is a control on snow redistribution at the alpine treeline ecotone (ATE). The statistical models were derived using stepwise and "best" subsets regression techniques. The first model was derived from field measurements of SWE, topography, and vegetation taken at 27 sample points. The second model was derived using GIS-based measures of topography and vegetation. Both the field- (R² = 0.93) and GIS-based models (R² = 0.69) of May SWE included the following variables: site type (based on vegetation), elevation, maximum slope, and general slope aspect. Site type was identified as the most important predictor of SWE in both models, accounting for 74.0% and 29.5% of the variation, respectively. The GIS-based model was applied to create a predictive map of SWE across Lee Ridge, predicting little snow accumulation on the top of the ridge where vegetation is scarce. The GIS model failed in large depressions, including ephemeral stream channels. The models supported the hypothesis that upright vegetation has a positive effect on accumulation of SWE above and beyond the effects of topography. Vegetation, therefore, creates a positive feedback in which it modifies its, environment and could affect the ability of additional vegetation to become established.

  20. Millimeter-wave Imaging Radiometer (MIR) data processing and development of water vapor retrieval algorithms

    NASA Technical Reports Server (NTRS)

    Chang, L. Aron

    1995-01-01

    This document describes the progress of the task of the Millimeter-wave Imaging Radiometer (MIR) data processing and the development of water vapor retrieval algorithms, for the second six-month performing period. Aircraft MIR data from two 1995 field experiments were collected and processed with a revised data processing software. Two revised versions of water vapor retrieval algorithm were developed, one for the execution of retrieval on a supercomputer platform, and one for using pressure as the vertical coordinate. Two implementations of incorporating products from other sensors into the water vapor retrieval system, one from the Special Sensor Microwave Imager (SSM/I), the other from the High-resolution Interferometer Sounder (HIS). Water vapor retrievals were performed for both airborne MIR data and spaceborne SSM/T-2 data, during field experiments of TOGA/COARE, CAMEX-1, and CAMEX-2. The climatology of water vapor during TOGA/COARE was examined by SSM/T-2 soundings and conventional rawinsonde.

  1. Ten Years of Cloud Optical and Microphysical Retrievals from MODIS

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; King, Michael D.; Wind, Galina; Hubanks, Paul; Arnold, G. Thomas; Amarasinghe, Nandana

    2010-01-01

    The MODIS cloud optical properties algorithm (MOD06/MYD06 for Terra and Aqua MODIS, respectively) has undergone extensive improvements and enhancements since the launch of Terra. These changes have included: improvements in the cloud thermodynamic phase algorithm; substantial changes in the ice cloud light scattering look up tables (LUTs); a clear-sky restoral algorithm for flagging heavy aerosol and sunglint; greatly improved spectral surface albedo maps, including the spectral albedo of snow by ecosystem; inclusion of pixel-level uncertainty estimates for cloud optical thickness, effective radius, and water path derived for three error sources that includes the sensitivity of the retrievals to solar and viewing geometries. To improve overall retrieval quality, we have also implemented cloud edge removal and partly cloudy detection (using MOD35 cloud mask 250m tests), added a supplementary cloud optical thickness and effective radius algorithm over snow and sea ice surfaces and over the ocean, which enables comparison with the "standard" 2.1 11m effective radius retrieval, and added a multi-layer cloud detection algorithm. We will discuss the status of the MOD06 algorithm and show examples of pixellevel (Level-2) cloud retrievals for selected data granules, as well as gridded (Level-3) statistics, notably monthly means and histograms (lD and 2D, with the latter giving correlations between cloud optical thickness and effective radius, and other cloud product pairs).

  2. Modified retrieval algorithm for three types of precipitation distribution using x-band synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Xie, Yanan; Zhou, Mingliang; Pan, Dengke

    2017-10-01

    The forward-scattering model is introduced to describe the response of normalized radar cross section (NRCS) of precipitation with synthetic aperture radar (SAR). Since the distribution of near-surface rainfall is related to the rate of near-surface rainfall and horizontal distribution factor, a retrieval algorithm called modified regression empirical and model-oriented statistical (M-M) based on the volterra integration theory is proposed. Compared with the model-oriented statistical and volterra integration (MOSVI) algorithm, the biggest difference is that the M-M algorithm is based on the modified regression empirical algorithm rather than the linear regression formula to retrieve the value of near-surface rainfall rate. Half of the empirical parameters are reduced in the weighted integral work and a smaller average relative error is received while the rainfall rate is less than 100 mm/h. Therefore, the algorithm proposed in this paper can obtain high-precision rainfall information.

  3. Passive microwave algorithm development and evaluation

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.

    1995-01-01

    The scientific objectives of this grant are: (1) thoroughly evaluate, both theoretically and empirically, all available Special Sensor Microwave Imager (SSM/I) retrieval algorithms for column water vapor, column liquid water, and surface wind speed; (2) where both appropriate and feasible, develop, validate, and document satellite passive microwave retrieval algorithms that offer significantly improved performance compared with currently available algorithms; and (3) refine and validate a novel physical inversion scheme for retrieving rain rate over the ocean. This report summarizes work accomplished or in progress during the first year of a three year grant. The emphasis during the first year has been on the validation and refinement of the rain rate algorithm published by Petty and on the analysis of independent data sets that can be used to help evaluate the performance of rain rate algorithms over remote areas of the ocean. Two articles in the area of global oceanic precipitation are attached.

  4. Information retrieval algorithms: A survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghavan, P.

    We give an overview of some algorithmic problems arising in the representation of text/image/multimedia objects in a form amenable to automated searching, and in conducting these searches efficiently. These operations are central to information retrieval and digital library systems.

  5. A New, More Physically Based Algorithm, for Retrieving Aerosol Properties over Land from MODIS

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Kaufman, Yoram J.; Remer, Lorraine A.; Mattoo, Shana

    2004-01-01

    The MOD Imaging Spectrometer (MODIS) has been successfully retrieving aerosol properties, beginning in early 2000 from Terra and from mid 2002 from Aqua. Over land, the retrieval algorithm makes use of three MODIS channels, in the blue, red and infrared wavelengths. As part of the validation exercises, retrieved spectral aerosol optical thickness (AOT) has been compared via scatterplots against spectral AOT measured by the global Aerosol Robotic NETwork (AERONET). On one hand, global and long term validation looks promising, with two-thirds (average plus and minus one standard deviation) of all points falling between published expected error bars. On the other hand, regression of these points shows a positive y-offset and a slope less than 1.0. For individual regions, such as along the U.S. East Coast, the offset and slope are even worse. Here, we introduce an overhaul of the algorithm for retrieving aerosol properties over land. Some well-known weaknesses in the current aerosol retrieval from MODIS include: a) rigid assumptions about the underlying surface reflectance, b) limited aerosol models to choose from, c) simplified (scalar) radiative transfer (RT) calculations used to simulate satellite observations, and d) assumption that aerosol is transparent in the infrared channel. The new algorithm attempts to address all four problems: a) The new algorithm will include surface type information, instead of fixed ratios of the reflectance in the visible channels to the mid-IR reflectance. b) It will include updated aerosol optical properties to reflect the growing aerosol retrieved from eight-plus years of AERONE". operation. c) The effects of polarization will be including using vector RT calculations. d) Most importantly, the new algorithm does not assume that aerosol is transparent in the infrared channel. It will be an inversion of reflectance observed in the three channels (blue, red, and infrared), rather than iterative single channel retrievals. Thus, this new formulation of the MODIS aerosol retrieval over land includes more physically based surface, aerosol and radiative transfer with fewer potentially erroneous assumptions.

  6. A differential optical absorption spectroscopy method for retrieval from ground-based Fourier transform spectrometers measurements of the direct solar beam

    NASA Astrophysics Data System (ADS)

    Huo, Yanfeng; Duan, Minzheng; Tian, Wenshou; Min, Qilong

    2015-08-01

    A differential optical absorption spectroscopy (DOAS)-like algorithm is developed to retrieve the column-averaged dryair mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam. Different to the spectral fitting method, which minimizes the difference between the observed and simulated spectra, the ratios of multiple channel-pairs—one weak and one strong absorption channel—are used to retrieve from measurements of the shortwave infrared (SWIR) band. Based on sensitivity tests, a super channel-pair is carefully selected to reduce the effects of solar lines, water vapor, air temperature, pressure, instrument noise, and frequency shift on retrieval errors. The new algorithm reduces computational cost and the retrievals are less sensitive to temperature and H2O uncertainty than the spectral fitting method. Multi-day Total Carbon Column Observing Network (TCCON) measurements under clear-sky conditions at two sites (Tsukuba and Bremen) are used to derive xxxx for the algorithm evaluation and validation. The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.

  7. Significant Advances in the AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena; Molnar, Gyula

    2012-01-01

    AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. The Goddard DISC has analyzed AIRS/AMSU observations, covering the period September 2002 until the present, using the AIRS Science Team Version-S retrieval algorithm. These products have been used by many researchers to make significant advances in both climate and weather applications. The AIRS Science Team Version-6 Retrieval, which will become operation in mid-20l2, contains many significant theoretical and practical improvements compared to Version-5 which should further enhance the utility of AIRS products for both climate and weather applications. In particular, major changes have been made with regard to the algOrithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the retrieval procedure; 3) compute Outgoing Longwave Radiation; and 4) determine Quality Control. This paper will describe these advances found in the AIRS Version-6 retrieval algorithm and demonstrate the improvement of AIRS Version-6 products compared to those obtained using Version-5,

  8. DREAMING OF ATMOSPHERES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldmann, I. P., E-mail: ingo@star.ucl.ac.uk

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as themore » “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.« less

  9. Minimizing the semantic gap in biomedical content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Guan, Haiying; Antani, Sameer; Long, L. Rodney; Thoma, George R.

    2010-03-01

    A major challenge in biomedical Content-Based Image Retrieval (CBIR) is to achieve meaningful mappings that minimize the semantic gap between the high-level biomedical semantic concepts and the low-level visual features in images. This paper presents a comprehensive learning-based scheme toward meeting this challenge and improving retrieval quality. The article presents two algorithms: a learning-based feature selection and fusion algorithm and the Ranking Support Vector Machine (Ranking SVM) algorithm. The feature selection algorithm aims to select 'good' features and fuse them using different similarity measurements to provide a better representation of the high-level concepts with the low-level image features. Ranking SVM is applied to learn the retrieval rank function and associate the selected low-level features with query concepts, given the ground-truth ranking of the training samples. The proposed scheme addresses four major issues in CBIR to improve the retrieval accuracy: image feature extraction, selection and fusion, similarity measurements, the association of the low-level features with high-level concepts, and the generation of the rank function to support high-level semantic image retrieval. It models the relationship between semantic concepts and image features, and enables retrieval at the semantic level. We apply it to the problem of vertebra shape retrieval from a digitized spine x-ray image set collected by the second National Health and Nutrition Examination Survey (NHANES II). The experimental results show an improvement of up to 41.92% in the mean average precision (MAP) over conventional image similarity computation methods.

  10. An integrated content and metadata based retrieval system for art.

    PubMed

    Lewis, Paul H; Martinez, Kirk; Abas, Fazly Salleh; Fauzi, Mohammad Faizal Ahmad; Chan, Stephen C Y; Addis, Matthew J; Boniface, Mike J; Grimwood, Paul; Stevenson, Alison; Lahanier, Christian; Stevenson, James

    2004-03-01

    A new approach to image retrieval is presented in the domain of museum and gallery image collections. Specialist algorithms, developed to address specific retrieval tasks, are combined with more conventional content and metadata retrieval approaches, and implemented within a distributed architecture to provide cross-collection searching and navigation in a seamless way. External systems can access the different collections using interoperability protocols and open standards, which were extended to accommodate content based as well as text based retrieval paradigms. After a brief overview of the complete system, we describe the novel design and evaluation of some of the specialist image analysis algorithms including a method for image retrieval based on sub-image queries, retrievals based on very low quality images and retrieval using canvas crack patterns. We show how effective retrieval results can be achieved by real end-users consisting of major museums and galleries, accessing the distributed but integrated digital collections.

  11. Smooth muscle cells of penis in the rat: noninvasive quantification with shear wave elastography.

    PubMed

    Zhang, Jia-Jie; Qiao, Xiao-Hui; Gao, Feng; Bai, Ming; Li, Fan; Du, Lian-Fang; Xing, Jin-Fang

    2015-01-01

    Smooth muscle cells (SMCs) of cavernosum play an important role in erection. It is of great significance to quantitatively analyze the level of SMCs in penis. In this study, we investigated the feasibility of shear wave elastography (SWE) on evaluating the level of SMCs in penis quantitatively. Twenty healthy male rats were selected. The SWE imaging of penis was carried out and then immunohistochemistry analysis of penis was performed to analyze the expression of alpha smooth muscle actin in penis. The measurement index of SWE examination was tissue stiffness (TS). The measurement index of immunohistochemistry analysis was positive area percentage of alpha smooth muscle actin (AP). Sixty sets of data of TS and AP were obtained. The results showed that TS was significantly correlated with AP and the correlation coefficient was -0.618 (p < 0.001). The result of TS had been plotted against the AP measurements. The relation between the two results has been fitted with quadric curve; the goodness-of-fit index was 0.364 (p < 0.001). The level of SMCs in penis was successfully quantified in vivo with SWE. SWE can be used clinically for evaluating the level of SMCs in penis quantitatively.

  12. Applicability of shear wave elastography of the major salivary glands: values in healthy patients and effects of gender, smoking and pre-compression.

    PubMed

    Mantsopoulos, Konstantinos; Klintworth, Nils; Iro, Heinrich; Bozzato, Alessandro

    2015-09-01

    Our aim in this study was to determine normal shear wave elastography (SWE) values for the parenchyma of the major salivary glands and to evaluate the influences of gender, smoking, side and type of gland and varying amounts of ultrasound probe pressure on SWE values. Twenty-five consecutive healthy patients were examined with ultrasound. SWE velocities were measured with acoustic radiation force imaging in the hilum and central region of both glands with "normal" and very low pressure. Mean SWE velocities were 1.854 m/s for the parotid gland and 1.932 m/s for the submandibular gland. No statistically significant differences were detected between males and females, smokers and non-smokers, parotid and submandibular gland and left and right sides. Greater pre-compression with the ultrasound probe resulted in a statistically significant increase in the SWE values of both salivary glands (p < 0.000). The degree of pre-compression by the ultrasound transducer should be standardized, so that the reliability and reproducibility of this innovative method can be improved. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Optically secured information retrieval using two authenticated phase-only masks.

    PubMed

    Wang, Xiaogang; Chen, Wen; Mei, Shengtao; Chen, Xudong

    2015-10-23

    We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices.

  14. Optically secured information retrieval using two authenticated phase-only masks

    PubMed Central

    Wang, Xiaogang; Chen, Wen; Mei, Shengtao; Chen, Xudong

    2015-01-01

    We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices. PMID:26494213

  15. Optically secured information retrieval using two authenticated phase-only masks

    NASA Astrophysics Data System (ADS)

    Wang, Xiaogang; Chen, Wen; Mei, Shengtao; Chen, Xudong

    2015-10-01

    We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices.

  16. Retrieval of Atmospheric Water Vapor Profiles from the Special Sensor Microwave TEMPERATURE-2

    NASA Astrophysics Data System (ADS)

    Al-Khalaf, Abdulrahman Khal

    1995-01-01

    Radiometric measurements from the Special Sensor Microwave/Temperature-2 (SSM/T-2) instrument are used to retrieve atmospheric water vapor profiles over ocean, land, coast, and ice/snow backgrounds. These measurements are used to retrieve vertical distribution of integrated water vapor (IWV) and total integrated water vapor (TIWV) using a physical algorithm. The algorithm infers the presence of cloud at a given height from super-saturation of the retrieved humidity at that height then the algorithm estimate the cloud liquid water content. Retrievals of IWV over five different layers are validated against available ground truth such as global radiosondes and ECMWF analyses. Over ocean, the retrieved total integrated water vapor (TIWV) and IWV close to the surface compare quite well, with those from radiosonde observations and the European Center for Medium Range Weather Forecasts (ECMWF) analyses. However, comparisons to radiosonde results are better than (ECMWF) analyses. TIWV root mean square (RMS) difference was 5.95 mm and TWV RMS difference for the lowest layer (SFC-850 mb) was 2.8 mm for radiosonde comparisons. Water vapor retrieval over land is less accurate than over ocean due to the low contrast between the surface and the atmosphere near the surface; therefore, land retrievals are more reliable at layers above 700 mb. However, TIWV and IWV at all layers compare appropriately with ground truth. Over coastal areas the agreement between retrieved water vapor profiles and ground truth is quite good for both TIWV and IWV for the five layers. The natural variability and large variations in the surface emissivity over ice and snow fields leads toward poor results. Clouds degrade retrievals over land and coast, improve the retrievals a little over ocean, and improve dramatically over snow/ice. Examples of retrieved relative humidity profiles were shown to illustrate the algorithm performance for the actual profile retrieval. The overall features of the retrieved profiles compared well with those from radiosonde data and ECMWF analyses. However, due to the limited number of channels, the retrieved profiles generally do not reproduce the fine details when a rapid change in relative humidity versus height was observed.

  17. Assessment of the Broadleaf Crops Leaf Area Index Product from the Terra MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Hu, Jiannan; Huang, Dong; Yang, Wenze; Zhang, Ping; Shabanov, Nikolay V.; Knyazikhin, Yuri; Nemani, Ramakrishna R.; Myneni, Ranga B.

    2005-01-01

    The first significant processing of Terra MODIS data, called Collection 3, covered the period from November 2000 to December 2002. The Collection 3 leaf area index (LAI) and fraction vegetation absorbed photosynthetically active radiation (FPAR) products for broadleaf crops exhibited three anomalies (a) high LAI values during the peak growing season, (b) differences in LAI seasonality between the radiative transfer-based main algorithm and the vegetation index based back-up algorithm, and (c) too few retrievals from the main algorithm during the summer period when the crops are at full flush. The cause of these anomalies is a mismatch between reflectances modeled by the algorithm and MODIS measurements. Therefore, the Look-Up-Tables accompanying the algorithm were revised and implemented in Collection 4 processing. The main algorithm with the revised Look-Up-Tables generated retrievals for over 80% of the pixels with valid data. Retrievals from the back-up algorithm, although few, should be used with caution as they are generated from surface reflectances with high uncertainties.

  18. Retrieving handwriting by combining word spotting and manifold ranking

    NASA Astrophysics Data System (ADS)

    Peña Saldarriaga, Sebastián; Morin, Emmanuel; Viard-Gaudin, Christian

    2012-01-01

    Online handwritten data, produced with Tablet PCs or digital pens, consists in a sequence of points (x, y). As the amount of data available in this form increases, algorithms for retrieval of online data are needed. Word spotting is a common approach used for the retrieval of handwriting. However, from an information retrieval (IR) perspective, word spotting is a primitive keyword based matching and retrieval strategy. We propose a framework for handwriting retrieval where an arbitrary word spotting method is used, and then a manifold ranking algorithm is applied on the initial retrieval scores. Experimental results on a database of more than 2,000 handwritten newswires show that our method can improve the performances of a state-of-the-art word spotting system by more than 10%.

  19. The Error Structure of the SMAP Single and Dual Channel Soil Moisture Retrievals

    NASA Astrophysics Data System (ADS)

    Dong, Jianzhi; Crow, Wade T.; Bindlish, Rajat

    2018-01-01

    Knowledge of the temporal error structure for remotely sensed surface soil moisture retrievals can improve our ability to exploit them for hydrologic and climate studies. This study employs a triple collocation analysis to investigate both the total variance and temporal autocorrelation of errors in Soil Moisture Active and Passive (SMAP) products generated from two separate soil moisture retrieval algorithms, the vertically polarized brightness temperature-based single-channel algorithm (SCA-V, the current baseline SMAP algorithm) and the dual-channel algorithm (DCA). A key assumption made in SCA-V is that real-time vegetation opacity can be accurately captured using only a climatology for vegetation opacity. Results demonstrate that while SCA-V generally outperforms DCA, SCA-V can produce larger total errors when this assumption is significantly violated by interannual variability in vegetation health and biomass. Furthermore, larger autocorrelated errors in SCA-V retrievals are found in areas with relatively large vegetation opacity deviations from climatological expectations. This implies that a significant portion of the autocorrelated error in SCA-V is attributable to the violation of its vegetation opacity climatology assumption and suggests that utilizing a real (as opposed to climatological) vegetation opacity time series in the SCA-V algorithm would reduce the magnitude of autocorrelated soil moisture retrieval errors.

  20. Assessment of the improvements in accuracy of aerosol characterization resulted from additions of polarimetric measurements to intensity-only observations using GRASP algorithm (Invited)

    NASA Astrophysics Data System (ADS)

    Dubovik, O.; Litvinov, P.; Lapyonok, T.; Herman, M.; Fedorenko, A.; Lopatin, A.; Goloub, P.; Ducos, F.; Aspetsberger, M.; Planer, W.; Federspiel, C.

    2013-12-01

    During last few years we were developing GRASP (Generalized Retrieval of Aerosol and Surface Properties) algorithm designed for the enhanced characterization of aerosol properties from spectral, multi-angular polarimetric remote sensing observations. The concept of GRASP essentially relies on the accumulated positive research heritage from previous remote sensing aerosol retrieval developments, in particular those from the AERONET and POLDER retrieval activities. The details of the algorithm are described by Dubovik et al. (Atmos. Meas. Tech., 4, 975-1018, 2011). The GRASP retrieves properties of both aerosol and land surface reflectance in cloud-free environments. It is based on highly advanced statistically optimized fitting and deduces nearly 50 unknowns for each observed site. The algorithm derives a similar set of aerosol parameters as AERONET including detailed particle size distribution, the spectrally dependent the complex index of refraction and the fraction of non-spherical particles. The algorithm uses detailed aerosol and surface models and fully accounts for all multiple interactions of scattered solar light with aerosol, gases and the underlying surface. All calculations are done on-line without using traditional look-up tables. In addition, the algorithm uses the new multi-pixel retrieval concept - a simultaneous fitting of a large group of pixels with additional constraints limiting the time variability of surface properties and spatial variability of aerosol properties. This principle is expected to result in higher consistency and accuracy of aerosol products compare to conventional approaches especially over bright surfaces where information content of satellite observations in respect to aerosol properties is limited. The GRASP is a highly versatile algorithm that allows input from both satellite and ground-based measurements. It also has essential flexibility in measurement processing. For example, if observation data set includes spectral measurements of both total intensity and polarization, the algorithm can be easily set to use either total intensity or polarization, as well as both of them in the same retrieval. Using this feature of the algorithm design we have studied the relative importance of total intensity and polarization measurements for retrieving different parameters of aerosol. In this presentation, we present the quantitative assessment of the improvements in aerosol retrievals associated with additions of polarimetric measurements to the intensity-only observations. The study has been performed using satellite measurements by POLDER/PARASOL polarimeter and ground-based measurements by new generation AERONET sun/sky-radiometers implementing measurements of polarization at each spectral channel.

  1. Snow Water Equivalent Pressure Sensor Performance in a Deep Snow Cover

    NASA Astrophysics Data System (ADS)

    Johnson, J. B.; Gelvin, A. B.; Schaefer, G. L.

    2006-12-01

    Accurate measurements of snow water equivalent are important for a variety of water resource management operations. In the western US, real-time SWE measurements are made using snow pillows that can experience errors from snow-bridging, poor installation configuration, and enhanced solar radiation absorption. Snow pillow installations that place the pillow abnormally above or below the surrounding terrain can affect snow catchment. Snow pillows made from dark materials can preferentially absorb solar radiation penetrating the snow causing accelerated melt. To reduce these problems, the NRCS and CRREL developed an electronic SWE sensor to replace the snow pillow. During the winter of 2005-2006 the NRCS/CRREL electronic sensor was deployed at Hogg Pass, Oregon, with a total SWE accumulation of about 1000 mm. The NRCS/CRREL sensor consists of a center panel surrounded by eight outer panels whose purpose is to buffer snow bridging loads. By separately monitoring load cell outputs from the sensor, snow-bridging events are directly measured. A snow-bridging event associated with a 180 mm SWE accumulation in a 24-hour period exhibited a SWE over-measurement of 60% at the sensor edge while the center panel showed less than a 10% effect. Individual load cell outputs were used to determine the most representative SWE value, which was within 5% of the adjacent snow pillow value. During the spring melt the NRCS/CRREL sensor melt recession lagged that of the snow pillow by about a week. Physical examination of the Hogg Pass site indicated that the CRREL sensor results were consistent with snow-on-the-ground observations. The snow pillow experienced accelerated melt because it was installed on a mound above the surrounding terrain and absorbed solar radiation through the snow. SWE pressure sensor accuracy is significantly improved by using an active center panel surrounded by buffer panels, monitoring several individual load cell to detect and correct snow-bridging errors, and reducing the radiation and topographic profile of the sensor.

  2. Added value of shear-wave elastography for evaluation of breast masses detected with screening US imaging.

    PubMed

    Lee, Su Hyun; Chang, Jung Min; Kim, Won Hwa; Bae, Min Sun; Seo, Mirinae; Koo, Hye Ryoung; Chu, A Jung; Gweon, Hye Mi; Cho, Nariya; Moon, Woo Kyung

    2014-10-01

    To evaluate the additional value of shear-wave elastography (SWE) to B-mode ultrasonography (US) and to determine an appropriate guideline for the combined assessment of screening US-detected breast masses. This study was conducted with institutional review board approval, and written informed consent was obtained. From March 2010 to February 2012, B-mode US and SWE were performed in 159 US-detected breast masses before biopsy. For each lesion, Breast Imaging Reporting and Data System (BI-RADS) category on B-mode US images and the maximum stiffness color and elasticity values on SWE images were assessed. A guideline for adding SWE data to B-mode US was developed with the retrospective cohort to improve diagnostic performance in sensitivity and specificity and was validated in a distinct prospective cohort of 207 women prior to biopsy. Twenty-one of 159 masses in the development cohort and 12 of 207 breast masses in the validation cohort were malignant. In the development cohort, when BI-RADS category 4a masses showing a dark blue color or a maximum elasticity value of 30 kPa or less on SWE images were downgraded to category 3, specificity increased from 9.4% (13 of 138) to 59.4% (82 of 138) and 57.2% (79 of 138) (P < .001), respectively, without loss in sensitivity (100% [21 of 21]). In the validation cohort, specificity increased from 17.4% (34 of 195) to 62.1% (121 of 195) and 53.3% (104 of 195) (P < .001) respectively, without loss in sensitivity (91.7% [11 of 12]). The addition of SWE to B-mode US improved diagnostic performance with increased specificity for screening US-detected breast masses. BI-RADS category 4a masses detected at US screening that showed a dark blue color or a maximum elasticity value of 30 kPa or less on SWE images can be safely followed up instead of performing biopsy. © RSNA, 2014.

  3. Seaweed extracts and galacto-oligosaccharides improve intestinal health in pigs following Salmonella Typhimurium challenge.

    PubMed

    Bouwhuis, M A; McDonnell, M J; Sweeney, T; Mukhopadhya, A; O'Shea, C J; O'Doherty, J V

    2017-09-01

    Pork and pork products are recognised as vehicles of Salmonella Typhimurium infection in humans. Seaweed-derived polysaccharides (SWE) and galacto-oligosaccharides (GOS) have shown to exhibit antimicrobial, prebiotic and immunomodulatory activity. The objective of this study was to assess the effects of dietary GOS and SWE supplementation on reducing S. Typhimurium numbers and intestinal inflammation in vivo. In total, 30 pigs (n=10/treatment, BW 30.9 kg) were randomly assigned to three dietary treatments: (1) basal diet; (2) basal diet+2.5 g GOS/kg diet; (3) basal diet+SWE (containing 180 mg laminarin/kg diet+340 mg fucoidan/kg diet). Following an 11-day dietary adaptation period, pigs were orally challenged with 108 colony-forming units/ml S. Typhimurium (day 0). Pigs remained on their diets for a further 17 days and were then sacrificed for sample collection. The SWE supplementation did not affect S. Typhimurium numbers on days 2 and 4 post-challenge but reduced S. Typhimurium numbers in faecal samples collected day 7 post-challenge (-0.80 log gene copy numbers (GCN)/g faeces) and in caecal and colonic digesta (-0.62 and -0.98 log GCN/g digesta, respectively; P<0.05) compared with the control treatment. Lactobacillus numbers were increased in caecal and colonic digesta after GOS supplementation (+0.70 and +0.35 log GCN/g digesta, respectively; P<0.05). In colonic tissue, both GOS and SWE supplementation resulted in reduced messenger RNA expression levels of interleukin (IL)-6, IL-22, tumour necrosis factor-α and regenerating islet-derived protein 3-γ (P<0.05). It can be concluded that dietary supplementation of SWE reduced faecal and intestinal S. Typhimurium numbers compared with the basal diet, whereas dietary GOS supplementation increased Lactobacillus numbers in caecal and colonic digesta but did not affect S. Typhimurium numbers. Supplementation of GOS and SWE reduced the gene expression of pro-inflammatory cytokines in colonic tissue of pigs after the experimental S. Typhimurium challenge.

  4. Review of TRMM/GPM Rainfall Algorithm Validation

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2004-01-01

    A review is presented concerning current progress on evaluation and validation of standard Tropical Rainfall Measuring Mission (TRMM) precipitation retrieval algorithms and the prospects for implementing an improved validation research program for the next generation Global Precipitation Measurement (GPM) Mission. All standard TRMM algorithms are physical in design, and are thus based on fundamental principles of microwave radiative transfer and its interaction with semi-detailed cloud microphysical constituents. They are evaluated for consistency and degree of equivalence with one another, as well as intercompared to radar-retrieved rainfall at TRMM's four main ground validation sites. Similarities and differences are interpreted in the context of the radiative and microphysical assumptions underpinning the algorithms. Results indicate that the current accuracies of the TRMM Version 6 algorithms are approximately 15% at zonal-averaged / monthly scales with precisions of approximately 25% for full resolution / instantaneous rain rate estimates (i.e., level 2 retrievals). Strengths and weaknesses of the TRMM validation approach are summarized. Because the dew of convergence of level 2 TRMM algorithms is being used as a guide for setting validation requirements for the GPM mission, it is important that the GPM algorithm validation program be improved to ensure concomitant improvement in the standard GPM retrieval algorithms. An overview of the GPM Mission's validation plan is provided including a description of a new type of physical validation model using an analytic 3-dimensional radiative transfer model.

  5. Use of Multiangle Satellite Observations to Retrieve Aerosol Properties and Ocean Color

    NASA Technical Reports Server (NTRS)

    Martonchik, John V.; Diner, David; Khan, Ralph

    2005-01-01

    A new technique is described for retrieving aerosol over ocean water and the associated ocean color using multiangle satellite observations. Unlike current satellite aerosol retrieval algorithms which only utilize observations at red wavelengths and longer, with the assumption that these wavelengths have a negligible ocean (water-leaving radiance), this new algorithm uses all available spectral bands and simultaneously retrieves both aerosol properties and the spectral ocean color. We show some results of case studies using MISR data, performed over different water conditions (coastal water, blooms, and open water).

  6. Automatic estimation of elasticity parameters in breast tissue

    NASA Astrophysics Data System (ADS)

    Skerl, Katrin; Cochran, Sandy; Evans, Andrew

    2014-03-01

    Shear wave elastography (SWE), a novel ultrasound imaging technique, can provide unique information about cancerous tissue. To estimate elasticity parameters, a region of interest (ROI) is manually positioned over the stiffest part of the shear wave image (SWI). The aim of this work is to estimate the elasticity parameters i.e. mean elasticity, maximal elasticity and standard deviation, fully automatically. Ultrasonic SWI of a breast elastography phantom and breast tissue in vivo were acquired using the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France). First, the SWI within the ultrasonic B-mode image was detected using MATLAB then the elasticity values were extracted. The ROI was automatically positioned over the stiffest part of the SWI and the elasticity parameters were calculated. Finally all values were saved in a spreadsheet which also contains the patient's study ID. This spreadsheet is easily available for physicians and clinical staff for further evaluation and so increase efficiency. Therewith the efficiency is increased. This algorithm simplifies the handling, especially for the performance and evaluation of clinical trials. The SWE processing method allows physicians easy access to the elasticity parameters of the examinations from their own and other institutions. This reduces clinical time and effort and simplifies evaluation of data in clinical trials. Furthermore, reproducibility will be improved.

  7. Improved OSIRIS NO2 retrieval algorithm: description and validation

    NASA Astrophysics Data System (ADS)

    Sioris, Christopher E.; Rieger, Landon A.; Lloyd, Nicholas D.; Bourassa, Adam E.; Roth, Chris Z.; Degenstein, Douglas A.; Camy-Peyret, Claude; Pfeilsticker, Klaus; Berthet, Gwenaël; Catoire, Valéry; Goutail, Florence; Pommereau, Jean-Pierre; McLinden, Chris A.

    2017-03-01

    A new retrieval algorithm for OSIRIS (Optical Spectrograph and Infrared Imager System) nitrogen dioxide (NO2) profiles is described and validated. The algorithm relies on spectral fitting to obtain slant column densities of NO2, followed by inversion using an algebraic reconstruction technique and the SaskTran spherical radiative transfer model (RTM) to obtain vertical profiles of local number density. The validation covers different latitudes (tropical to polar), years (2002-2012), all seasons (winter, spring, summer, and autumn), different concentrations of nitrogen dioxide (from denoxified polar vortex to polar summer), a range of solar zenith angles (68.6-90.5°), and altitudes between 10.5 and 39 km, thereby covering the full retrieval range of a typical OSIRIS NO2 profile. The use of a larger spectral fitting window than used in previous retrievals reduces retrieval uncertainties and the scatter in the retrieved profiles due to noisy radiances. Improvements are also demonstrated through the validation in terms of bias reduction at 15-17 km relative to the OSIRIS operational v3.0 algorithm. The diurnal variation of NO2 along the line of sight is included in a fully spherical multiple scattering RTM for the first time. Using this forward model with built-in photochemistry, the scatter of the differences relative to the correlative balloon NO2 profile data is reduced.

  8. Combining approaches to on-line handwriting information retrieval

    NASA Astrophysics Data System (ADS)

    Peña Saldarriaga, Sebastián; Viard-Gaudin, Christian; Morin, Emmanuel

    2010-01-01

    In this work, we propose to combine two quite different approaches for retrieving handwritten documents. Our hypothesis is that different retrieval algorithms should retrieve different sets of documents for the same query. Therefore, significant improvements in retrieval performances can be expected. The first approach is based on information retrieval techniques carried out on the noisy texts obtained through handwriting recognition, while the second approach is recognition-free using a word spotting algorithm. Results shows that for texts having a word error rate (WER) lower than 23%, the performances obtained with the combined system are close to the performances obtained on clean digital texts. In addition, for poorly recognized texts (WER > 52%), an improvement of nearly 17% can be observed with respect to the best available baseline method.

  9. Temperature Crosstalk Sensitivity of the Kummerow Rainfall Algorithm

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Petrenko, Boris

    1999-01-01

    Even though the signal source for passive microwave retrievals is thermal emission, retrievals of non-temperature geophysical parameters typically do not explicitly take into account the effects of temperature change on the retrievals. For global change research, changes in geophysical parameters (e.g. water vapor, rainfall, etc.) are referenced to the accompanying changes in temperature. If the retrieval of a certain parameter has a cross-talk response from temperature change alone, the retrievals might not be very useful for climate research. We investigated the sensitivity of the Kummerow rainfall retrieval algorithm to changes in air temperature. It was found that there was little net change in total rainfall with air temperature change. However, there were non-negligible changes within individual rain rate categories.

  10. Flash-Type Discrimination

    NASA Technical Reports Server (NTRS)

    Koshak, William J.

    2010-01-01

    This viewgraph presentation describes the significant progress made in the flash-type discrimination algorithm development. The contents include: 1) Highlights of Progress for GLM-R3 Flash-Type discrimination Algorithm Development; 2) Maximum Group Area (MGA) Data; 3) Retrieval Errors from Simulations; and 4) Preliminary Global-scale Retrieval.

  11. SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters

    NASA Technical Reports Server (NTRS)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Bailey, Sean W.; Shea, Donald M.; Feldman, Gene C.

    2014-01-01

    In clear shallow waters, light that is transmitted downward through the water column can reflect off the sea floor and thereby influence the water-leaving radiance signal. This effect can confound contemporary ocean color algorithms designed for deep waters where the seafloor has little or no effect on the water-leaving radiance. Thus, inappropriate use of deep water ocean color algorithms in optically shallow regions can lead to inaccurate retrievals of inherent optical properties (IOPs) and therefore have a detrimental impact on IOP-based estimates of marine parameters, including chlorophyll-a and the diffuse attenuation coefficient. In order to improve IOP retrievals in optically shallow regions, a semi-analytical inversion algorithm, the Shallow Water Inversion Model (SWIM), has been developed. Unlike established ocean color algorithms, SWIM considers both the water column depth and the benthic albedo. A radiative transfer study was conducted that demonstrated how SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Properties algorithm (GIOP) and Quasi-Analytical Algorithm (QAA), performed in optically deep and shallow scenarios. The results showed that SWIM performed well, whilst both GIOP and QAA showed distinct positive bias in IOP retrievals in optically shallow waters. The SWIM algorithm was also applied to a test region: the Great Barrier Reef, Australia. Using a single test scene and time series data collected by NASA's MODIS-Aqua sensor (2002-2013), a comparison of IOPs retrieved by SWIM, GIOP and QAA was conducted.

  12. Analyzing the impact of sensor characteristics on retrieval methods of solar-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Ding, Wenjuan; Zhao, Feng; Yang, Lizi

    2017-02-01

    In this study, we evaluated the influence of retrieval algorithms and sensor characteristics, such as spectral resolution (SR) and signal to noise ratio (SNR), on the retrieval accuracy of fluorescence signal (Fs). Here Fs was retrieved by four commonly used retrieval methods, namely the original Fraunhofer Line Discriminator method (FLD), the 3 bands FLD (3FLD), the improved FLD (iFLD) and the spectral fitting method (SFM). Fs was retrieved in the oxygen A band centered at around 761nm (O2-A). We analyzed the impact of sensor characteristics on four retrieval methods based on simulated data which were generated by the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes), and obtained consistent conclusions when compared with experimental data. Results presented in this study indicate that both retrieval algorithms and sensor characteristics affect the retrieval accuracy of Fs. When applied to the actual measurement, we should choose the instrument with higher performance and adopt appropriate retrieval method according to measuring instruments and conditions.

  13. Feasibility of transient elastography versus real-time two-dimensional shear wave elastography in difficult-to-scan patients.

    PubMed

    Staugaard, Benjamin; Christensen, Peer Brehm; Mössner, Belinda; Hansen, Janne Fuglsang; Madsen, Bjørn Stæhr; Søholm, Jacob; Krag, Aleksander; Thiele, Maja

    2016-11-01

    Transient elastography (TE) is hampered in some patients by failures and unreliable results. We hypothesized that real time two-dimensional shear wave elastography (2D-SWE), the FibroScan XL probe, and repeated TE exams, could be used to obtain reliable liver stiffness measurements in patients with an invalid TE examination. We reviewed 1975 patients with 5764 TE exams performed between 2007 and 2014, to identify failures and unreliable exams. Fifty-four patients with an invalid TE at their latest appointment entered a comparative feasibility study of TE vs. 2D-SWE. The initial TE exam was successful in 93% (1835/1975) of patients. Success rate increased from 89% to 96% when the XL probe became available (OR: 1.07, 95% CI 1.06-1.09). Likewise, re-examining those with a failed or unreliable TE led to a reliable TE in 96% of patients. Combining availability of the XL probe with TE re-examination resulted in a 99.5% success rate on a per-patient level. When comparing the feasibility of TE vs. 2D-SWE, 96% (52/54) of patients obtained a reliable TE, while 2D-SWE was reliable in 63% (34/54, p < 0.001). The odds of a successful 2D-SWE exam decreased with higher skin-capsule distance (OR = 0.77, 95% CI 0.67-0.98). Transient elastography can be accomplished in nearly all patients by use of the FibroScan XL probe and repeated examinations. In difficult-to-scan patients, the feasibility of TE is superior to 2D-SWE.

  14. Performance of shear wave elastography for differentiation of benign and malignant solid breast masses.

    PubMed

    Li, Guiling; Li, De-Wei; Fang, Yu-Xiao; Song, Yi-Jiang; Deng, Zhu-Jun; Gao, Jian; Xie, Yan; Yin, Tian-Sheng; Ying, Li; Tang, Kai-Fu

    2013-01-01

    To perform a meta-analysis assessing the ability of shear wave elastography (SWE) to identify malignant breast masses. PubMed, the Cochrane Library, and the ISI Web of Knowledge were searched for studies evaluating the accuracy of SWE for identifying malignant breast masses. The diagnostic accuracy of SWE was evaluated according to sensitivity, specificity, and hierarchical summary receiver operating characteristic (HSROC) curves. An analysis was also performed according to the SWE mode used: supersonic shear imaging (SSI) and the acoustic radiation force impulse (ARFI) technique. The clinical utility of SWE for identifying malignant breast masses was evaluated using analysis of Fagan plot. A total of 9 studies, including 1888 women and 2000 breast masses, were analyzed. Summary sensitivities and specificities were 0.91 (95% confidence interval [CI], 0.88-0.94) and 0.82 (95% CI, 0.75-0.87) by SSI and 0.89 (95% CI, 0.81-0.94) and 0.91 (95% CI, 0.84-0.95) by ARFI, respectively. The HSROCs for SSI and ARFI were 0.92 (95% CI, 0.90-0.94) and 0.96 (95% CI, 0.93-0.97), respectively. SSI and ARFI were both very informative, with probabilities of 83% and 91%, respectively, for correctly differentiating between benign and malignant breast masses following a "positive" measurement (over the threshold value) and probabilities of disease as low as 10% and 11%, respectively, following a "negative" measurement (below the threshold value) when the pre-test probability was 50%. SWE could be used as a good identification tool for the classification of breast masses.

  15. Shear-wave elastographic features of breast cancers: comparison with mechanical elasticity and histopathologic characteristics.

    PubMed

    Lee, Su Hyun; Moon, Woo Kyung; Cho, Nariya; Chang, Jung Min; Moon, Hyeong-Gon; Han, Wonshik; Noh, Dong-Young; Lee, Jung Chan; Kim, Hee Chan; Lee, Kyoung-Bun; Park, In-Ae

    2014-03-01

    The objective of this study was to compare the quantitative and qualitative shear-wave elastographic (SWE) features of breast cancers with mechanical elasticity and histopathologic characteristics. This prospective study was conducted with institutional review board approval, and written informed consent was obtained. Shear-wave elastography was performed for 30 invasive breast cancers in 30 women before surgery. The mechanical elasticity of a fresh breast tissue section, correlated with the ultrasound image, was measured using an indentation system. Quantitative (maximum, mean, minimum, and standard deviation of elasticity in kilopascals) and qualitative (color heterogeneity and presence of signal void areas in the mass) SWE features were compared with mechanical elasticity and histopathologic characteristics using the Pearson correlation coefficient and the Wilcoxon signed rank test. Maximum SWE values showed a moderate correlation with maximum mechanical elasticity (r = 0.530, P = 0.003). There were no significant differences between SWE values and mechanical elasticity in histologic grade I or II cancers (P = 0.268). However, SWE values were significantly higher than mechanical elasticity in histologic grade III cancers (P < 0.001), which have low amounts of fibrosis, high tumor cellularity, and intratumoral necrosis. In addition, color heterogeneity was correlated with intratumoral heterogeneity of mechanical elasticity (r = 0.469, P = 0.009). Signal void areas in the masses were present in 43% of breast cancers (13 of 30) and were correlated with dense collagen depositions (n = 11) or intratumoral necrosis (n = 2). Quantitative and qualitative SWE features reflect both the mechanical elasticity and histopathologic characteristics of breast cancers.

  16. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  17. Shear-Wave Elastography for the Estimation of Liver Fibrosis in Chronic Liver Disease: Determining Accuracy and Ideal Site for Measurement

    PubMed Central

    Dhyani, Manish; Vij, Abhinav; Bhan, Atul K.; Halpern, Elkan F.; Méndez-Navarro, Jorge; Corey, Kathleen E.; Chung, Raymond T.

    2015-01-01

    Purpose To evaluate the accuracy of shear-wave elastography (SWE) for staging liver fibrosis in patients with diffuse liver disease (including patients with hepatitis C virus [HCV]) and to determine the relative accuracy of SWE measurements obtained from different hepatic acquisition sites for staging liver fibrosis. Materials and Methods The institutional review board approved this single-institution prospective study, which was performed between January 2010 and March 2013 in 136 consecutive patients who underwent SWE before their scheduled liver biopsy (age range, 18–76 years; mean age, 49 years; 70 men, 66 women). Informed consent was obtained from all patients. SWE measurements were obtained at four sites in the liver. Biopsy specimens were reviewed in a blinded manner by a pathologist using METAVIR criteria. SWE measurements and biopsy results were compared by using the Spearman correlation and receiver operating characteristic (ROC) curve analysis. Results SWE values obtained at the upper right lobe showed the highest correlation with estimation of fibrosis (r = 0.41, P < .001). Inflammation and steatosis did not show any correlation with SWE values except for values from the left lobe, which showed correlation with steatosis (r = 0.24, P = .004). The area under the ROC curve (AUC) in the differentiation of stage F2 fibrosis or greater, stage F3 fibrosis or greater, and stage F4 fibrosis was 0.77 (95% confidence interval [CI]: 0.68, 0.86), 0.82 (95% CI: 0.75, 0.91), and 0.82 (95% CI: 0.70, 0.95), respectively, for all subjects who underwent liver biopsy. The corresponding AUCs for the subset of patients with HCV were 0.80 (95% CI: 0.67, 0.92), 0.82 (95% CI: 0.70, 0.95), and 0.89 (95% CI: 0.73, 1.00). The adjusted AUCs for differentiating stage F2 or greater fibrosis in patients with chronic liver disease and those with HCV were 0.84 and 0.87, respectively. Conclusion SWE estimates of liver stiffness obtained from the right upper lobe showed the best correlation with liver fibrosis severity and can potentially be used as a noninvasive test to differentiate intermediate degrees of liver fibrosis in patients with liver disease. © RSNA, 2014 Online supplemental material is available for this article. PMID:25393946

  18. Marine Boundary Layer Cloud Property Retrievals from High-Resolution ASTER Observations: Case Studies and Comparison with Terra MODIS

    NASA Technical Reports Server (NTRS)

    Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry

    2016-01-01

    A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTERspecific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in Zhao and Di Girolamo (2006). To validate and evaluate the cloud optical thickness (tau) and cloud effective radius (r(sub eff)) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000m resolution as MODIS. Subsequently, tau(sub aA) and r(sub eff, aA) retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R greater than 0.970. However, for partially cloudy pixels there are significant differences between r(sub eff, aA) and the MODIS results which can exceed 10 micrometers. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.

  19. Marine boundary layer cloud property retrievals from high-resolution ASTER observations: case studies and comparison with Terra MODIS

    NASA Astrophysics Data System (ADS)

    Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry

    2016-12-01

    A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTER-specific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in [Zhao and Di Girolamo(2006)]. To validate and evaluate the cloud optical thickness (τ) and cloud effective radius (reff) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000 m resolution as MODIS. Subsequently, τaA and reff, aA retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R > 0.970. However, for partially cloudy pixels there are significant differences between reff, aA and the MODIS results which can exceed 10 µm. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.

  20. Recent Theoretical Advances in Analysis of AIRS/AMSU Sounding Data

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2007-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. This paper describes the AIRS Science Team Version 5.0 retrieval algorithm. Starting in early 2007, the Goddard DAAC will use this algorithm to analyze near real time AIRS/AMSU observations. These products are then made available to the scientific community for research purposes. The products include twice daily measurements of the Earth's three dimensional global temperature, water vapor, and ozone distribution as well as cloud cover. In addition, accurate twice daily measurements of the earth's land and ocean temperatures are derived and reported. Scientists use this important set of observations for two major applications. They provide important information for climate studies of global and regional variability and trends of different aspects of the earth's atmosphere. They also provide information for researchers to improve the skill of weather forecasting. A very important new product of the AIRS Version 5 algorithm is accurate case-by-case error estimates of the retrieved products. This heightens their utility for use in both weather and climate applications. These error estimates are also used directly for quality control of the retrieved products. Version 5 also allows for accurate quality controlled AIRS only retrievals, called "Version 5 AO retrievals" which can be used as a backup methodology if AMSU fails. Examples of the accuracy of error estimates and quality controlled retrieval products of the AIRS/AMSU Version 5 and Version 5 AO algorithms are given, and shown to be significantly better than the previously used Version 4 algorithm. Assimilation of Version 5 retrievals are also shown to significantly improve forecast skill, especially when the case-by-case error estimates are utilized in the data assimilation process.

  1. The performance of Yonsei CArbon Retrieval (YCAR) algorithm with improved aerosol information using GOSAT measurements over East Asia

    NASA Astrophysics Data System (ADS)

    Jung, Y.; Kim, J.; Kim, W.; Boesch, H.; Yoshida, Y.; Cho, C.; Lee, H.; Goo, T. Y.

    2016-12-01

    The Greenhouse Gases Observing SATellite (GOSAT) is the first satellite dedicated to measure atmospheric CO2 concentrations from space that can able to improve our knowledge about carbon cycle. Several studies have performed to develop the CO2 retrieval algorithms using GOSAT measurements, but limitations in spatial coverage and uncertainties due to aerosols and thin cirrus clouds are still remained as a problem for monitoring CO2 concentration globally. In this study, we develop the Yonsei CArbon Retrieval (YCAR) algorithm based on optimal estimation method to retrieve the column-averaged dry-air mole fraction of carbon dioxide (XCO2) with optimized a priori CO2 profiles and aerosol models over East Asia. In previous studies, the aerosol optical properties (AOP) and the aerosol top height used to cause significant errors in retrieved XCO2 up to 2.5 ppm. Since this bias comes from a rough assumption of aerosol information in the forward model used in CO2 retrieval process, the YCAR algorithm improves the process to take into account AOPs as well as aerosol vertical distribution; total AOD and the fine mode fraction (FMF) are obtained from the ground-based measurements closely located, and other parameters are obtained from a priori information. Comparing to ground-based XCO2 measurements, the YCAR XCO2 product has a bias of 0.59±0.48 ppm and 2.16±0.87 ppm at Saga and Tsukuba sites, respectively, showing lower biases and higher correlations rather than the GOSAT standard products. These results reveal that considering better aerosol information can improve the accuracy of CO2 retrieval algorithm and provide more useful XCO2 information with reduced uncertainties.

  2. Using Induction to Refine Information Retrieval Strategies

    NASA Technical Reports Server (NTRS)

    Baudin, Catherine; Pell, Barney; Kedar, Smadar

    1994-01-01

    Conceptual information retrieval systems use structured document indices, domain knowledge and a set of heuristic retrieval strategies to match user queries with a set of indices describing the document's content. Such retrieval strategies increase the set of relevant documents retrieved (increase recall), but at the expense of returning additional irrelevant documents (decrease precision). Usually in conceptual information retrieval systems this tradeoff is managed by hand and with difficulty. This paper discusses ways of managing this tradeoff by the application of standard induction algorithms to refine the retrieval strategies in an engineering design domain. We gathered examples of query/retrieval pairs during the system's operation using feedback from a user on the retrieved information. We then fed these examples to the induction algorithm and generated decision trees that refine the existing set of retrieval strategies. We found that (1) induction improved the precision on a set of queries generated by another user, without a significant loss in recall, and (2) in an interactive mode, the decision trees pointed out flaws in the retrieval and indexing knowledge and suggested ways to refine the retrieval strategies.

  3. Status of the NPP and J1 NOAA Unique Combined Atmospheric Processing System (NUCAPS): recent algorithm enhancements geared toward validation and near real time users applications.

    NASA Astrophysics Data System (ADS)

    Gambacorta, A.; Nalli, N. R.; Tan, C.; Iturbide-Sanchez, F.; Wilson, M.; Zhang, K.; Xiong, X.; Barnet, C. D.; Sun, B.; Zhou, L.; Wheeler, A.; Reale, A.; Goldberg, M.

    2017-12-01

    The NOAA Unique Combined Atmospheric Processing System (NUCAPS) is the NOAA operational algorithm to retrieve thermodynamic and composition variables from hyper spectral thermal sounders such as CrIS, IASI and AIRS. The combined use of microwave sounders, such as ATMS, AMSU and MHS, enables full atmospheric sounding of the atmospheric column under all-sky conditions. NUCAPS retrieval products are accessible in near real time (about 1.5 hour delay) through the NOAA Comprehensive Large Array-data Stewardship System (CLASS). Since February 2015, NUCAPS retrievals have been also accessible via Direct Broadcast, with unprecedented low latency of less than 0.5 hours. NUCAPS builds on a long-term, multi-agency investment on algorithm research and development. The uniqueness of this algorithm consists in a number of features that are key in providing highly accurate and stable atmospheric retrievals, suitable for real time weather and air quality applications. Firstly, maximizing the use of the information content present in hyper spectral thermal measurements forms the foundation of the NUCAPS retrieval algorithm. Secondly, NUCAPS is a modular, name-list driven design. It can process multiple hyper spectral infrared sounders (on Aqua, NPP, MetOp and JPSS series) by mean of the same exact retrieval software executable and underlying spectroscopy. Finally, a cloud-clearing algorithm and a synergetic use of microwave radiance measurements enable full vertical sounding of the atmosphere, under all-sky regimes. As we transition toward improved hyper spectral missions, assessing retrieval skill and consistency across multiple platforms becomes a priority for real time users applications. Focus of this presentation is a general introduction on the recent improvements in the delivery of the NUCAPS full spectral resolution upgrade and an overview of the lessons learned from the 2017 Hazardous Weather Test bed Spring Experiment. Test cases will be shown on the use of NPP and MetOp NUCAPS under pre-convective, capping inversion and dry layer intrusion events.

  4. Error analysis of the greenhouse-gases monitor instrument short wave infrared XCO2 retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Wang, Xianhua; Ye, Hanhan; Jiang, Yun; Duan, Fenghua

    2018-01-01

    We developed an algorithm (named GMI_XCO2) to retrieve the global column-averaged dry air mole fraction of atmospheric carbon dioxide (XCO2) for greenhouse-gases monitor instrument (GMI) and directional polarized camera (DPC) on the GF-5 satellite. This algorithm is designed to work in cloudless atmospheric conditions with aerosol optical thickness (AOT)<0.3. To quantify the uncertainty level of the retrieved XCO2 when the aerosols and cirrus clouds occurred in retrieving XCO2 with the GMI short wave infrared (SWIR) data, we analyzed the errors rate caused by the six types of aerosols and cirrus clouds. The results indicated that in AOT range of 0.05 to 0.3 (550 nm), the uncertainties of aerosols could lead to errors of -0.27% to 0.59%, -0.32% to 1.43%, -0.10% to 0.49%, -0.12% to 1.17%, -0.35% to 0.49%, and -0.02% to -0.24% for rural, dust, clean continental, maritime, urban, and soot aerosols, respectively. The retrieval results presented a large error due to cirrus clouds. In the cirrus optical thickness range of 0.05 to 0.8 (500 nm), the most underestimation is up to 26.25% when the surface albedo is 0.05. The most overestimation is 8.1% when the surface albedo is 0.65. The retrieval results of GMI simulation data demonstrated that the accuracy of our algorithm is within 4 ppm (˜1%) using the simultaneous measurement of aerosols and clouds from DPC. Moreover, the speed of our algorithm is faster than full-physics (FP) methods. We verified our algorithm with Greenhouse-gases Observing Satellite (GOSAT) data in Beijing area during 2016. The retrieval errors of most observations are within 4 ppm except for summer. Compared with the results of GOSAT, the correlation coefficient is 0.55 for the whole year data, increasing to 0.62 after excluding the summer data.

  5. Retrieval of volcanic ash height from satellite-based infrared measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Li, Jun; Zhao, Yingying; Gong, He; Li, Wenjie

    2017-05-01

    A new algorithm for retrieving volcanic ash cloud height from satellite-based measurements is presented. This algorithm, which was developed in preparation for China's next-generation meteorological satellite (FY-4), is based on volcanic ash microphysical property simulation and statistical optimal estimation theory. The MSG satellite's main payload, a 12-channel Spinning Enhanced Visible and Infrared Imager, was used as proxy data to test this new algorithm. A series of eruptions of Iceland's Eyjafjallajökull volcano during April to May 2010 and the Puyehue-Cordón Caulle volcanic complex eruption in the Chilean Andes on 16 June 2011 were selected as two typical cases for evaluating the algorithm under various meteorological backgrounds. Independent volcanic ash simulation training samples and satellite-based Cloud-Aerosol Lidar with Orthogonal Polarization data were used as validation data. It is demonstrated that the statistically based volcanic ash height algorithm is able to rapidly retrieve volcanic ash heights, globally. The retrieved ash heights show comparable accuracy with both independent training data and the lidar measurements, which is consistent with previous studies. However, under complicated background, with multilayers in vertical scale, underlying stratus clouds tend to have detrimental effects on the final retrieval accuracy. This is an unresolved problem, like many other previously published methods using passive satellite sensors. Compared with previous studies, the FY-4 ash height algorithm is independent of simultaneous atmospheric profiles, providing a flexible way to estimate volcanic ash height using passive satellite infrared measurements.

  6. Aquarius Salinity Retrieval Algorithm: Final Pre-Launch Version

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.; Le Vine, David M.

    2011-01-01

    This document provides the theoretical basis for the Aquarius salinity retrieval algorithm. The inputs to the algorithm are the Aquarius antenna temperature (T(sub A)) measurements along with a number of NCEP operational products and pre-computed tables of space radiation coming from the galaxy and sun. The output is sea-surface salinity and many intermediate variables required for the salinity calculation. This revision of the Algorithm Theoretical Basis Document (ATBD) is intended to be the final pre-launch version.

  7. The SAPHIRE server: a new algorithm and implementation.

    PubMed Central

    Hersh, W.; Leone, T. J.

    1995-01-01

    SAPHIRE is an experimental information retrieval system implemented to test new approaches to automated indexing and retrieval of medical documents. Due to limitations in its original concept-matching algorithm, a modified algorithm has been implemented which allows greater flexibility in partial matching and different word order within concepts. With the concomitant growth in client-server applications and the Internet in general, the new algorithm has been implemented as a server that can be accessed via other applications on the Internet. PMID:8563413

  8. Tomographic retrievals of ozone with the OMPS Limb Profiler: algorithm description and preliminary results

    NASA Astrophysics Data System (ADS)

    Zawada, Daniel J.; Rieger, Landon A.; Bourassa, Adam E.; Degenstein, Douglas A.

    2018-04-01

    Measurements of limb-scattered sunlight from the Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP) can be used to obtain vertical profiles of ozone in the stratosphere. In this paper we describe a two-dimensional, or tomographic, retrieval algorithm for OMPS-LP where variations are retrieved simultaneously in altitude and the along-orbital-track dimension. The algorithm has been applied to measurements from the center slit for the full OMPS-LP mission to create the publicly available University of Saskatchewan (USask) OMPS-LP 2D v1.0.2 dataset. Tropical ozone anomalies are compared with measurements from the Microwave Limb Sounder (MLS), where differences are less than 5 % of the mean ozone value for the majority of the stratosphere. Examples of near-coincident measurements with MLS are also shown, and agreement at the 5 % level is observed for the majority of the stratosphere. Both simulated retrievals and coincident comparisons with MLS are shown at the edge of the polar vortex, comparing the results to a traditional one-dimensional retrieval. The one-dimensional retrieval is shown to consistently overestimate the amount of ozone in areas of large horizontal gradients relative to both MLS and the two-dimensional retrieval.

  9. Multiple Query Evaluation Based on an Enhanced Genetic Algorithm.

    ERIC Educational Resources Information Center

    Tamine, Lynda; Chrisment, Claude; Boughanem, Mohand

    2003-01-01

    Explains the use of genetic algorithms to combine results from multiple query evaluations to improve relevance in information retrieval. Discusses niching techniques, relevance feedback techniques, and evolution heuristics, and compares retrieval results obtained by both genetic multiple query evaluation and classical single query evaluation…

  10. MERIS Retrieval of Water Quality Components in the Turbid Albemarle-Pamlico Sound Estuary, USA

    EPA Science Inventory

    Two remote-sensing optical algorithms for the retrieval of the water quality components (WQCs) in the Albemarle-Pamlico Estuarine System (APES) have been developed and validated for chlorophyll a (Chl) concentration. Both algorithms are semiempirical because they incorporate some...

  11. Image encryption using fingerprint as key based on phase retrieval algorithm and public key cryptography

    NASA Astrophysics Data System (ADS)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2015-09-01

    In this paper, a novel image encryption system with fingerprint used as a secret key is proposed based on the phase retrieval algorithm and RSA public key algorithm. In the system, the encryption keys include the fingerprint and the public key of RSA algorithm, while the decryption keys are the fingerprint and the private key of RSA algorithm. If the users share the fingerprint, then the system will meet the basic agreement of asymmetric cryptography. The system is also applicable for the information authentication. The fingerprint as secret key is used in both the encryption and decryption processes so that the receiver can identify the authenticity of the ciphertext by using the fingerprint in decryption process. Finally, the simulation results show the validity of the encryption scheme and the high robustness against attacks based on the phase retrieval technique.

  12. Predicting snowpack stratigraphy in forested environments

    NASA Astrophysics Data System (ADS)

    Andreadis, K. M.; Lettenmaier, D. P.

    2009-04-01

    The interaction of forest canopies with snow accumulation and ablation processes is critical to the hydrology of many mid- and high-latitude areas. The layered character of snowpacks increases the complexity of representing these processes and deconvolving the return signal from remote sensors. However, it offers the opportunity to infer the metamorphic signature of the snowpack and to extract additional information by combining multiple frequencies (visible and passive/active microwave). Implementation of this approach requires knowledge of the stratigraphy of snowpack microphysical properties (temperature, density, and grain size), which as a practical matter can only be produced by predictive models. A mass and energy balance model for snow accumulation and ablation processes in forested environments was developed utilizing extensive measurements of snow interception and release in a maritime mountainous site in Oregon. A multiple layer component was added to the model that also takes into account snowpack stratigraphy resulting from snow densification, vapor transport and grain growth. The model, was evaluated using two years of weighing lysimeter data and was able to reproduce the SWE evolution throughout both winters beneath the canopy as well as the nearby clearing. The model was also evaluated using measurements from a BOReal Ecosystem-Atmosphere Study (BOREAS) field site in Canada to test the robustness of the canopy snow interception algorithm in a much different climate. Simulated SWE was relatively close to the observations for the forested sites, with discrepancies evident in some cases. Although the model formulation appeared robust for both types of climates, sensitivity to parameters such as snow roughness length, maximum interception capacity and number of layers suggested the magnitude of improvements of SWE simulations that might be achieved by calibration. Finally, the model's ability to replicate large-scale snowpack layer features and their effect on passive microwave emissivity was evaluated using observations from the Cold Land Processes Experiment (CLPX).

  13. GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connor, Brian J.; Sherlock, Vanessa; Toon, Geoff

    An algorithm for retrieval of vertical profiles from ground-based spectra in the near IR is described and tested. Known as GFIT2, the algorithm is primarily intended for CO 2, and is used exclusively for CO 2 in this paper. Retrieval of CO 2 vertical profiles from ground-based spectra is theoretically possible, would be very beneficial for carbon cycle studies and the validation of satellite measurements, and has been the focus of much research in recent years. GFIT2 is tested by application both to synthetic spectra and to measurements at two Total Carbon Column Observing Network (TCCON) sites. We demonstrate thatmore » there are approximately 3° of freedom for the CO 2 profile, and the algorithm performs as expected on synthetic spectra. We show that the accuracy of retrievals of CO 2 from measurements in the 1.61 μ (6220 cm -1) spectral band is limited by small uncertainties in calculation of the atmospheric spectrum. We investigate several techniques to minimize the effect of these uncertainties in calculation of the spectrum. These techniques are somewhat effective but to date have not been demonstrated to produce CO 2 profile retrievals with sufficient precision for applications to carbon dynamics. As a result, we finish by discussing ongoing research which may allow CO 2 profile retrievals with sufficient accuracy to significantly improve the scientific value of the measurements from that achieved with column retrievals.« less

  14. Description and Sensitivity Analysis of the SOLSE/LORE-2 and SAGE III Limb Scattering Ozone Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    Loughman, R.; Flittner, D.; Herman, B.; Bhartia, P.; Hilsenrath, E.; McPeters, R.; Rault, D.

    2002-01-01

    The SOLSE (Shuttle Ozone Limb Sounding Experiment) and LORE (Limb Ozone Retrieval Experiment) instruments are scheduled for reflight on Space Shuttle flight STS-107 in July 2002. In addition, the SAGE III (Stratospheric Aerosol and Gas Experiment) instrument will begin to make limb scattering measurements during Spring 2002. The optimal estimation technique is used to analyze visible and ultraviolet limb scattered radiances and produce a retrieved ozone profile. The algorithm used to analyze data from the initial flight of the SOLSE/LORE instruments (on Space Shuttle flight STS-87 in November 1997) forms the basis of the current algorithms, with expansion to take advantage of the increased multispectral information provided by SOLSE/LORE-2 and SAGE III. We also present detailed sensitivity analysis for these ozone retrieval algorithms. The primary source of ozone retrieval error is tangent height misregistration (i.e., instrument pointing error), which is relevant throughout the altitude range of interest, and can produce retrieval errors on the order of 10-20 percent due to a tangent height registration error of 0.5 km at the tangent point. Other significant sources of error are sensitivity to stratospheric aerosol and sensitivity to error in the a priori ozone estimate (given assumed instrument signal-to-noise = 200). These can produce errors up to 10 percent for the ozone retrieval at altitudes less than 20 km, but produce little error above that level.

  15. GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra

    DOE PAGES

    Connor, Brian J.; Sherlock, Vanessa; Toon, Geoff; ...

    2016-08-02

    An algorithm for retrieval of vertical profiles from ground-based spectra in the near IR is described and tested. Known as GFIT2, the algorithm is primarily intended for CO 2, and is used exclusively for CO 2 in this paper. Retrieval of CO 2 vertical profiles from ground-based spectra is theoretically possible, would be very beneficial for carbon cycle studies and the validation of satellite measurements, and has been the focus of much research in recent years. GFIT2 is tested by application both to synthetic spectra and to measurements at two Total Carbon Column Observing Network (TCCON) sites. We demonstrate thatmore » there are approximately 3° of freedom for the CO 2 profile, and the algorithm performs as expected on synthetic spectra. We show that the accuracy of retrievals of CO 2 from measurements in the 1.61 μ (6220 cm -1) spectral band is limited by small uncertainties in calculation of the atmospheric spectrum. We investigate several techniques to minimize the effect of these uncertainties in calculation of the spectrum. These techniques are somewhat effective but to date have not been demonstrated to produce CO 2 profile retrievals with sufficient precision for applications to carbon dynamics. As a result, we finish by discussing ongoing research which may allow CO 2 profile retrievals with sufficient accuracy to significantly improve the scientific value of the measurements from that achieved with column retrievals.« less

  16. Assessment of Mars Atmospheric Temperature Retrievals from the Thermal Emission Spectrometer Radiances

    NASA Technical Reports Server (NTRS)

    Hoffman, Matthew J.; Eluszkiewicz, Janusz; Weisenstein, Deborah; Uymin, Gennady; Moncet, Jean-Luc

    2012-01-01

    Motivated by the needs of Mars data assimilation. particularly quantification of measurement errors and generation of averaging kernels. we have evaluated atmospheric temperature retrievals from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) radiances. Multiple sets of retrievals have been considered in this study; (1) retrievals available from the Planetary Data System (PDS), (2) retrievals based on variants of the retrieval algorithm used to generate the PDS retrievals, and (3) retrievals produced using the Mars 1-Dimensional Retrieval (M1R) algorithm based on the Optimal Spectral Sampling (OSS ) forward model. The retrieved temperature profiles are compared to the MGS Radio Science (RS) temperature profiles. For the samples tested, the M1R temperature profiles can be made to agree within 2 K with the RS temperature profiles, but only after tuning the prior and error statistics. Use of a global prior that does not take into account the seasonal dependence leads errors of up 6 K. In polar samples. errors relative to the RS temperature profiles are even larger. In these samples, the PDS temperature profiles also exhibit a poor fit with RS temperatures. This fit is worse than reported in previous studies, indicating that the lack of fit is due to a bias correction to TES radiances implemented after 2004. To explain the differences between the PDS and Ml R temperatures, the algorithms are compared directly, with the OSS forward model inserted into the PDS algorithm. Factors such as the filtering parameter, the use of linear versus nonlinear constrained inversion, and the choice of the forward model, are found to contribute heavily to the differences in the temperature profiles retrieved in the polar regions, resulting in uncertainties of up to 6 K. Even outside the poles, changes in the a priori statistics result in different profile shapes which all fit the radiances within the specified error. The importance of the a priori statistics prevents reliable global retrievals based a single a priori and strongly implies that a robust science analysis must instead rely on retrievals employing localized a priori information, for example from an ensemble based data assimilation system such as the Local Ensemble Transform Kalman Filter (LETKF).

  17. Development and application of a probability distribution retrieval scheme to the remote sensing of clouds and precipitation

    NASA Astrophysics Data System (ADS)

    McKague, Darren Shawn

    2001-12-01

    The statistical properties of clouds and precipitation on a global scale are important to our understanding of climate. Inversion methods exist to retrieve the needed cloud and precipitation properties from satellite data pixel-by-pixel that can then be summarized over large data sets to obtain the desired statistics. These methods can be quite computationally expensive, and typically don't provide errors on the statistics. A new method is developed to directly retrieve probability distributions of parameters from the distribution of measured radiances. The method also provides estimates of the errors on the retrieved distributions. The method can retrieve joint distributions of parameters that allows for the study of the connection between parameters. A forward radiative transfer model creates a mapping from retrieval parameter space to radiance space. A Monte Carlo procedure uses the mapping to transform probability density from the observed radiance histogram to a two- dimensional retrieval property probability distribution function (PDF). An estimate of the uncertainty in the retrieved PDF is calculated from random realizations of the radiance to retrieval parameter PDF transformation given the uncertainty of the observed radiances, the radiance PDF, the forward radiative transfer, the finite number of prior state vectors, and the non-unique mapping to retrieval parameter space. The retrieval method is also applied to the remote sensing of precipitation from SSM/I microwave data. A method of stochastically generating hydrometeor fields based on the fields from a numerical cloud model is used to create the precipitation parameter radiance space transformation. The impact of vertical and horizontal variability within the hydrometeor fields has a significant impact on algorithm performance. Beamfilling factors are computed from the simulated hydrometeor fields. The beamfilling factors vary quite a bit depending upon the horizontal structure of the rain. The algorithm is applied to SSM/I images from the eastern tropical Pacific and is compared to PDFs of rain rate computed using pixel-by-pixel retrievals from Wilheit and from Liu and Curry. Differences exist between the three methods, but good general agreement is seen between the PDF retrieval algorithm and the algorithm of Liu and Curry. (Abstract shortened by UMI.)

  18. Non-invasive evaluation of stable renal allograft function using point shear-wave elastography.

    PubMed

    Kim, Bom Jun; Kim, Chan Kyo; Park, Jung Jae

    2018-01-01

    To investigate the feasibility of point shear-wave elastography (SWE) in evaluating patients with stable renal allograft function who underwent protocol biopsies. 95 patients with stable renal allograft function that underwent ultrasound-guided biopsies at predefined time points (10 days or 1 year after transplantation) were enrolled. Ultrasound and point SWE examinations were performed immediately before protocol biopsies. Patients were categorized into two groups: subclinical rejection (SCR) and non-SCR. Tissue elasticity (kPa) on SWE was measured in the cortex of all renal allografts. SCR was pathologically confirmed in 34 patients. Tissue elasticity of the SCR group (31.0 kPa) was significantly greater than that of the non-SCR group (24.5 kPa) (=0.016), while resistive index value did not show a significant difference between the two groups (p = 0.112). Tissue elasticity in renal allografts demonstrated significantly moderate negative correlation with estimated glomerular filtration rate (correlation coefficient = -0.604, p < 0.001). Tissue elasticity was not independent factor for SCR prediction on multivariate analysis. As a non-invasive tool, point SWE appears feasible in distinguishing between patients with SCR and without SCR in stable functioning renal allografts. Moreover, it may demonstrate the functional state of renal allografts. Advances in knowledge: On point SWE, SCR has greater tissue elasticity than non-SCR.

  19. Spatial and temporal snowpack variation in the crown of the continent ecosystem

    USGS Publications Warehouse

    Selkowitz, D.J.; Fagre, D.B.; Reardon, B.A.

    2002-01-01

    Snowpack related ecosystem changes such as glacier recession and alpine treeline advance have been documented in the Crown of the Continent Ecosystem (CCE) over the course of the previous 150 years. Using data from the Natural Resource Conservation Service's SNOTEL sites and snow course surveys, we examined the spatial and temporal variation in snowpack in the region. SNOTEL data suggest CCE snowpacks are larger and more persistent than in most regions of the Western U.S., and that water year precipitation, rather than mean temperature, is the primary control on April 1 snow water equivalent (SWE). Snow course data indicate a statistically significant downward trend in mean April 1 SWE for the period 1950-2001 but no statistically significant trend in mean May 1 SWE for the longer period 1922-2001. Further analysis reveals that variations in both April 1 and May 1 mean SWE are closely tied to the Pacific Decadal Oscillation, an ENSO-like interdecadal pattern of Pacific Ocean climate variability. Despite no significant trend in mean May 1 SWE between 1922-2001, glaciers in Glacier National Park receded steadily during this period, implying changing climatic conditions crossed a threshold for glacier mass balance maintenace sometime between the Little Ice Age glacial maxima and 1922.

  20. The value of shear wave elastography in the quantification of corpus cavernosum penis rigidity and its alteration with age.

    PubMed

    Inci, Ercan; Turkay, Rustu; Nalbant, Mustafa Orhan; Yenice, Mustafa Gurkan; Tugcu, Volkan

    2017-04-01

    The goal of this study was to measure corpus cavernosum (CC) penis rigidity with shear wave elastography (SWE) in healthy volunteers and to evaluate the change of rigidity with age. SWE was performed in 60 healthy volunteers (age range 20-71, mean 47±12,83 years). Volunteers were divided into 2 groups by age (Group 1 age <50, group 2 age ≥50). We assessed SWE in 3 parts of penis (proximal, middle and glans penis) on both sides of CC. All values of SWE (in kilo Pascal) were noted along with volunteers' ages. The measurements were done both with transverse (T) and longitudinal (L) sections. We compared all SW values of penis parts and their alterations with age. The shear wave elastography values of CC penis increased with increasing age (p<0,01). There was no significant difference between both sides of CC penis (p<0,05). We calculated no significant difference between T and L sections of all parts of penis (p<0,05). SWE can provide noninvasive quantitative data of CC penis rigidity and its alteration with age. These data may create a new approach in the evaluation process and treatment options for penile pathologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Validation of Shear Wave Elastography Cutoff Values on the Supersonic Aixplorer for Practical Clinical Use in Liver Fibrosis Staging.

    PubMed

    Dhyani, Manish; Grajo, Joseph R; Bhan, Atul K; Corey, Kathleen; Chung, Raymond; Samir, Anthony E

    2017-06-01

    The purpose of this study was to determine the validity of previously established ultrasound shear wave elastography (SWE) cut-off values (≥F2 fibrosis) on an independent cohort of patients with chronic liver disease. In this cross-sectional study, approved by the institutional review board and compliant with the Health Insurance Portability and Accountability Act, 338 patients undergoing liver biopsy underwent SWE using an Aixplorer ultrasound machine (SuperSonic Imagine, Aix-en-Provence, France). Median SWE values were calculated from sets of 10 elastograms. A single blinded pathologist evaluated METAVIR fibrosis staging as the gold standard. The study analyzed 277 patients with a mean age of 48 y. On pathologic examination, 212 patients (76.5%) had F0-F1 fibrosis, whereas 65 (23.5%) had ≥F2 fibrosis. Spearman's correlation of fibrosis with SWE was 0.456 (p < 0.001). A cut-off value of 7.29 kPa yielded sensitivity of 95.4% and specificity of 50.5% for the diagnosis of METAVIR stage ≥F2 liver fibrosis in patients with liver disease using the SuperSonic Imagine Aixplorer SWE system. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. SWE-based Observation Data Delivery from the Instrument to the User - Sensor Web Technology in the NeXOS Project

    NASA Astrophysics Data System (ADS)

    Jirka, Simon; del Rio, Joaquin; Toma, Daniel; Martinez, Enoc; Delory, Eric; Pearlman, Jay; Rieke, Matthes; Stasch, Christoph

    2017-04-01

    The rapidly evolving technology for building Web-based (spatial) information infrastructures and Sensor Webs, there are new opportunities to improve the process how ocean data is collected and managed. A central element in this development is the suite of Sensor Web Enablement (SWE) standards specified by the Open Geospatial Consortium (OGC). This framework of standards comprises on the one hand data models as well as formats for measurement data (ISO/OGC Observations and Measurement, O&M) and metadata describing measurement processes and sensors (OGC Sensor Model Language, SensorML). On the other hand the SWE standards comprise (Web service) interface specifications for pull-based access to observation data (OGC Sensor Observation Service, SOS) and for controlling or configuring sensors (OGC Sensor Planning Service, SPS). Also within the European INSPIRE framework the SWE standards play an important role as the SOS is the recommended download service interface for O&M-encoded observation data sets. In the context of the EU-funded Oceans of Tomorrow initiative the NeXOS (Next generation, Cost-effective, Compact, Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management) project is developing a new generation of in-situ sensors that make use of the SWE standards to facilitate the data publication process and the integration into Web based information infrastructures. This includes the development of a dedicated firmware for instruments and sensor platforms (SEISI, Smart Electronic Interface for Sensors and Instruments) maintained by the Universitat Politècnica de Catalunya (UPC). Among other features, SEISI makes use of OGC SWE standards such OGC-PUCK, to enable a plug-and-play mechanism for sensors based on SensorML encoded metadata. Thus, if a new instrument is attached to a SEISI-based platform, it automatically configures the connection to these instruments, automatically generated data files compliant with the ISO/OGC Observations and Measurements standard and initiates the data transmission into the NeXOS Sensor Web infrastructure. Besides these platform-related developments, NeXOS has realised the full path of data transmission from the sensor to the end user application. The conceptual architecture design is implemented by a series of open source SWE software packages provided by 52°North. This comprises especially different SWE server components (i.e. OGC Sensor Observation Service), tools for data visualisation (e.g. the 52°North Helgoland SOS viewer), and an editor for providing SensorML-based metadata (52°North smle). As a result, NeXOS has demonstrated how the SWE standards help to improve marine observation data collection. Within this presentation, we will present the experiences and findings of the NeXOS project and will provide recommendation for future work directions.

  3. Ice surface temperature retrieval from AVHRR, ATSR, and passive microwave satellite data: Algorithm development and application

    NASA Technical Reports Server (NTRS)

    Key, Jeff; Maslanik, James; Steffen, Konrad

    1994-01-01

    During the first half of our second project year we have accomplished the following: (1) acquired a new AVHRR data set for the Beaufort Sea area spanning an entire year; (2) acquired additional ATSR data for the Arctic and Antarctic now totaling over seven months; (3) refined our AVHRR Arctic and Antarctic ice surface temperature (IST) retrieval algorithm, including work specific to Greenland; (4) developed ATSR retrieval algorithms for the Arctic and Antarctic, including work specific to Greenland; (5) investigated the effects of clouds and the atmosphere on passive microwave 'surface' temperature retrieval algorithms; (6) generated surface temperatures for the Beaufort Sea data set, both from AVHRR and SSM/I; and (7) continued work on compositing GAC data for coverage of the entire Arctic and Antarctic. During the second half of the year we will continue along these same lines, and will undertake a detailed validation study of the AVHRR and ATSR retrievals using LEADEX and the Beaufort Sea year-long data. Cloud masking methods used for the AVHRR will be modified for use with the ATSR. Methods of blending in situ and satellite-derived surface temperature data sets will be investigated.

  4. Retrieve Optically Thick Ice Cloud Microphysical Properties by Using Airborne Dual-Wavelength Radar Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.

    2005-01-01

    An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.

  5. Improved Methodology for Surface and Atmospheric Soundings, Error Estimates, and Quality Control Procedures: the AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2014-01-01

    The AIRS Science Team Version-6 AIRS/AMSU retrieval algorithm is now operational at the Goddard DISC. AIRS Version-6 level-2 products are generated near real-time at the Goddard DISC and all level-2 and level-3 products are available starting from September 2002. This paper describes some of the significant improvements in retrieval methodology contained in the Version-6 retrieval algorithm compared to that previously used in Version-5. In particular, the AIRS Science Team made major improvements with regard to the algorithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the cloud clearing and retrieval procedures; and 3) derive error estimates and use them for Quality Control. Significant improvements have also been made in the generation of cloud parameters. In addition to the basic AIRS/AMSU mode, Version-6 also operates in an AIRS Only (AO) mode which produces results almost as good as those of the full AIRS/AMSU mode. This paper also demonstrates the improvements of some AIRS Version-6 and Version-6 AO products compared to those obtained using Version-5.

  6. Theory of the amplitude-phase retrieval in any linear-transform system and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Guozhen; Gu, Ben-Yuan; Dong, Bi-Zhen

    1992-12-01

    This paper is a summary of the theory of the amplitude-phase retrieval problem in any linear transform system and its applications based on our previous works in the past decade. We describe the general statement on the amplitude-phase retrieval problem in an imaging system and derive a set of equations governing the amplitude-phase distribution in terms of the rigorous mathematical derivation. We then show that, by using these equations and an iterative algorithm, a variety of amplitude-phase problems can be successfully handled. We carry out the systematic investigations and comprehensive numerical calculations to demonstrate the utilization of this new algorithm in various transform systems. For instance, we have achieved the phase retrieval from two intensity measurements in an imaging system with diffraction loss (non-unitary transform), both theoretically and experimentally, and the recovery of model real image from its Hartley-transform modulus only in one and two dimensional cases. We discuss the achievement of the phase retrieval problem from a single intensity only based on the sampling theorem and our algorithm. We also apply this algorithm to provide an optimal design of the phase-adjusted plate for a phase-adjustment focusing laser accelerator and a design approach of single phase-only element for implementing optical interconnect. In order to closely simulate the really measured data, we examine the reconstruction of image from its spectral modulus corrupted by a random noise in detail. The results show that the convergent solution can always be obtained and the quality of the recovered image is satisfactory. We also indicated the relationship and distinction between our algorithm and the original Gerchberg- Saxton algorithm. From these studies, we conclude that our algorithm shows great capability to deal with the comprehensive phase-retrieval problems in the imaging system and the inverse problem in solid state physics. It may open a new way to solve important inverse source problems extensively appearing in physics.

  7. Phase-Retrieval Uncertainty Estimation and Algorithm Comparison for the JWST-ISIM Test Campaign

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.; Smith, J. Scott

    2016-01-01

    Phase retrieval, the process of determining the exitpupil wavefront of an optical instrument from image-plane intensity measurements, is the baseline methodology for characterizing the wavefront for the suite of science instruments (SIs) in the Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST). JWST is a large, infrared space telescope with a 6.5-meter diameter primary mirror. JWST is currently NASA's flagship mission and will be the premier space observatory of the next decade. ISIM contains four optical benches with nine unique instruments, including redundancies. ISIM was characterized at the Goddard Space Flight Center (GSFC) in Greenbelt, MD in a series of cryogenic vacuum tests using a telescope simulator. During these tests, phase-retrieval algorithms were used to characterize the instruments. The objective of this paper is to describe the Monte-Carlo simulations that were used to establish uncertainties (i.e., error bars) for the wavefronts of the various instruments in ISIM. Multiple retrieval algorithms were used in the analysis of ISIM phase-retrieval focus-sweep data, including an iterativetransform algorithm and a nonlinear optimization algorithm. These algorithms emphasize the recovery of numerous optical parameters, including low-order wavefront composition described by Zernike polynomial terms and high-order wavefront described by a point-by-point map, location of instrument best focus, focal ratio, exit-pupil amplitude, the morphology of any extended object, and optical jitter. The secondary objective of this paper is to report on the relative accuracies of these algorithms for the ISIM instrument tests, and a comparison of their computational complexity and their performance on central and graphical processing unit clusters. From a phase-retrieval perspective, the ISIM test campaign includes a variety of source illumination bandwidths, various image-plane sampling criteria above and below the Nyquist- Shannon critical sampling value, various extended object sizes, and several other impactful effects.

  8. A cloud and radiation model-based algorithm for rainfall retrieval from SSM/I multispectral microwave measurements

    NASA Technical Reports Server (NTRS)

    Xiang, Xuwu; Smith, Eric A.; Tripoli, Gregory J.

    1992-01-01

    A hybrid statistical-physical retrieval scheme is explored which combines a statistical approach with an approach based on the development of cloud-radiation models designed to simulate precipitating atmospheres. The algorithm employs the detailed microphysical information from a cloud model as input to a radiative transfer model which generates a cloud-radiation model database. Statistical procedures are then invoked to objectively generate an initial guess composite profile data set from the database. The retrieval algorithm has been tested for a tropical typhoon case using Special Sensor Microwave/Imager (SSM/I) data and has shown satisfactory results.

  9. High fidelity remote sensing of snow properties from MODIS and the Airborne Snow Observatory: Snowflakes to Terabytes

    NASA Astrophysics Data System (ADS)

    Painter, T.; Mattmann, C. A.; Brodzik, M.; Bryant, A. C.; Goodale, C. E.; Hart, A. F.; Ramirez, P.; Rittger, K. E.; Seidel, F. C.; Zimdars, P. A.

    2012-12-01

    The response of the cryosphere to climate forcings largely determines Earth's climate sensitivity. However, our understanding of the strength of the simulated snow albedo feedback varies by a factor of three in the GCMs used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, mainly caused by uncertainties in snow extent and the albedo of snow-covered areas from imprecise remote sensing retrievals. Additionally, the Western US and other regions of the globe depend predominantly on snowmelt for their water supply to agriculture, industry and cities, hydroelectric power, and recreation, against rising demand from increasing population. In the mountains of the Upper Colorado River Basin, dust radiative forcing in snow shortens snow cover duration by 3-7 weeks. Extended to the entire upper basin, the 5-fold increase in dust load since the late-1800s results in a 3-week earlier peak runoff and a 5% annual loss of total runoff. The remotely sensed dynamics of snow cover duration and melt however have not been factored into hydrological modeling, operational forecasting, and policymaking. To address these deficiencies in our understanding of snow properties, we have developed and validated a suite of MODIS snow products that provide accurate fractional snow covered area and radiative forcing of dust and carbonaceous aerosols in snow. The MODIS Snow Covered Area and Grain size (MODSCAG) and MODIS Dust Radiative Forcing in Snow (MODDRFS) algorithms, developed and transferred from imaging spectroscopy techniques, leverage the complete MODIS surface reflectance spectrum. The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. We have created the Airborne Snow Observatory (ASO), an imaging spectrometer and scanning LiDAR system, to quantify SWE and snow albedo, generate unprecedented knowledge of snow properties, and provide complete, robust inputs to water management models and systems of the future. In the push to better understand the physical and ecological processes of snowmelt and how they influence regional to global hydrologic and climatic cycles, these technologies and retrievals provide markedly improved detail. We have implemented a science computing facility anchored upon the open source Apache OODT data processing framework. Apache OODT provides adaptable, rapid, and effective workflow technologies that we leverage to execute 10s of thousands of MOD-DRFS and MODSCAG jobs in the Western US, Alaska, and High Asia, critical regions where snowmelt and runoff must be more accurately and precisely identified. Apache OODT also provides us data dissemination capabilities built upon the popular, open source WebDAV protocol that allow our system to disseminate over 20 TB of MOD-DRFS and MODSCAG to the decision making community. Our latest endeavor involves building out Apache OODT to support Geospatial exploration of our data, including providing a Leaflet.js based Map, Geoserver backed protocols, and seamless integration with our Apache OODT system. This framework provides the foundation for the ASO data system.

  10. Retrieval of Dry Snow Parameters from Radiometric Data Using a Dense Medium Model and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Tedesco, Marco; Kim, Edward J.

    2005-01-01

    In this paper, GA-based techniques are used to invert the equations of an electromagnetic model based on Dense Medium Radiative Transfer Theory (DMRT) under the Quasi Crystalline Approximation with Coherent Potential to retrieve snow depth, mean grain size and fractional volume from microwave brightness temperatures. The technique is initially tested on both noisy and not-noisy simulated data. During this phase, different configurations of genetic algorithm parameters are considered to quantify how their change can affect the algorithm performance. A configuration of GA parameters is then selected and the algorithm is applied to experimental data acquired during the NASA Cold Land Process Experiment. Snow parameters retrieved with the GA-DMRT technique are then compared with snow parameters measured on field.

  11. Analysis of Leaf Area Index and Fraction of PAR Absorbed by Vegetation Products from the Terra MODIS Sensor: 2000-2005

    NASA Technical Reports Server (NTRS)

    Yang, Wenze; Huang, Dong; Tan, Bin; Stroeve, Julienne C.; Shabanov, Nikolay V.; Knyazikhin, Yuri; Nemani, Ramakrishna R.; Myneni, Ranga B.

    2006-01-01

    The analysis of two years of Collection 3 and five years of Collection 4 Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) data sets is presented in this article with the goal of understanding product quality with respect to version (Collection 3 versus 4), algorithm (main versus backup), snow (snow-free versus snow on the ground), and cloud (cloud-free versus cloudy) conditions. Retrievals from the main radiative transfer algorithm increased from 55% in Collection 3 to 67% in Collection 4 due to algorithm refinements and improved inputs. Anomalously high LAI/FPAR values observed in Collection 3 product in some vegetation types were corrected in Collection 4. The problem of reflectance saturation and too few main algorithm retrievals in broadleaf forests persisted in Collection 4. The spurious seasonality in needleleaf LAI/FPAR fields was traced to fewer reliable input data and retrievals during the boreal winter period. About 97% of the snow covered pixels were processed by the backup Normalized Difference Vegetation Index-based algorithm. Similarly, a majority of retrievals under cloudy conditions were obtained from the backup algorithm. For these reasons, the users are advised to consult the quality flags accompanying the LAI and FPAR product.

  12. Characterization and error analysis of an operational retrieval algorithm for estimating column ozone and aerosol properties from ground-based ultra-violet irradiance measurements

    NASA Astrophysics Data System (ADS)

    Taylor, Thomas E.; L'Ecuyer, Tristan; Slusser, James; Stephens, Graeme; Krotkov, Nick; Davis, John; Goering, Christian

    2005-08-01

    Extensive sensitivity and error characteristics of a recently developed optimal estimation retrieval algorithm which simultaneously determines aerosol optical depth (AOD), aerosol single scatter albedo (SSA) and total ozone column (TOC) from ultra-violet irradiances are described. The algorithm inverts measured diffuse and direct irradiances at 7 channels in the UV spectral range obtained from the United States Department of Agriculture's (USDA) UV-B Monitoring and Research Program's (UVMRP) network of 33 ground-based UV-MFRSR instruments to produce aerosol optical properties and TOC at all seven wavelengths. Sensitivity studies of the Tropospheric Ultra-violet/Visible (TUV) radiative transfer model performed for various operating modes (Delta-Eddington versus n-stream Discrete Ordinate) over domains of AOD, SSA, TOC, asymmetry parameter and surface albedo show that the solutions are well constrained. Realistic input error budgets and diagnostic and error outputs from the retrieval are analyzed to demonstrate the atmospheric conditions under which the retrieval provides useful and significant results. After optimizing the algorithm for the USDA site in Panther Junction, Texas the retrieval algorithm was run on a cloud screened set of irradiance measurements for the month of May 2003. Comparisons to independently derived AOD's are favorable with root mean square (RMS) differences of about 3% to 7% at 300nm and less than 1% at 368nm, on May 12 and 22, 2003. This retrieval method will be used to build an aerosol climatology and provide ground-truthing of satellite measurements by running it operationally on the USDA UV network database.

  13. A radiative transfer model for sea surface temperature retrieval for the along-track scanning radiometer

    NASA Astrophysics Data System (ADS)

    ZáVody, A. M.; Mutlow, C. T.; Llewellyn-Jones, D. T.

    1995-01-01

    The measurements made by the along-track scanning radiometer are now converted routinely into sea surface temperature (SST). The details of the atmospheric model which had been used for deriving the SST algorithms are given, together with tables of the coefficients in the algorithms for the different SST products. The accuracy of the retrieval under normal conditions and the effect of errors in the model on the retrieved SST are briefly discussed.

  14. Remote Sensing of Cloud Top Height from SEVIRI: Analysis of Eleven Current Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    Hamann, U.; Walther, A.; Baum, B.; Bennartz, R.; Bugliaro, L.; Derrien, M.; Francis, P. N.; Heidinger, A.; Joro, S.; Kniffka, A.; hide

    2014-01-01

    The role of clouds remains the largest uncertainty in climate projections. They influence solar and thermal radiative transfer and the earth's water cycle. Therefore, there is an urgent need for accurate cloud observations to validate climate models and to monitor climate change. Passive satellite imagers measuring radiation at visible to thermal infrared (IR) wavelengths provide a wealth of information on cloud properties. Among others, the cloud top height (CTH) - a crucial parameter to estimate the thermal cloud radiative forcing - can be retrieved. In this paper we investigate the skill of ten current retrieval algorithms to estimate the CTH using observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second Generation (MSG). In the first part we compare ten SEVIRI cloud top pressure (CTP) data sets with each other. The SEVIRI algorithms catch the latitudinal variation of the CTP in a similar way. The agreement is better in the extratropics than in the tropics. In the tropics multi-layer clouds and thin cirrus layers complicate the CTP retrieval, whereas a good agreement among the algorithms is found for trade wind cumulus, marine stratocumulus and the optically thick cores of the deep convective system. In the second part of the paper the SEVIRI retrievals are compared to CTH observations from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR) instruments. It is important to note that the different measurement techniques cause differences in the retrieved CTH data. SEVIRI measures a radiatively effective CTH, while the CTH of the active instruments is derived from the return time of the emitted radar or lidar signal. Therefore, some systematic differences are expected. On average the CTHs detected by the SEVIRI algorithms are 1.0 to 2.5 kilometers lower than CALIOP observations, and the correlation coefficients between the SEVIRI and the CALIOP data sets range between 0.77 and 0.90. The average CTHs derived by the SEVIRI algorithms are closer to the CPR measurements than to CALIOP measurements. The biases between SEVIRI and CPR retrievals range from -0.8 kilometers to 0.6 kilometers. The correlation coefficients of CPR and SEVIRI observations vary between 0.82 and 0.89. To discuss the origin of the CTH deviation, we investigate three cloud categories: optically thin and thick single layer as well as multi-layer clouds. For optically thick clouds the correlation coefficients between the SEVIRI and the reference data sets are usually above 0.95. For optically thin single layer clouds the correlation coefficients are still above 0.92. For this cloud category the SEVIRI algorithms yield CTHs that are lower than CALIOP and similar to CPR observations. Most challenging are the multi-layer clouds, where the correlation coefficients are for most algorithms between 0.6 and 0.8. Finally, we evaluate the performance of the SEVIRI retrievals for boundary layer clouds. While the CTH retrieval for this cloud type is relatively accurate, there are still considerable differences between the algorithms. These are related to the uncertainties and limited vertical resolution of the assumed temperature profiles in combination with the presence of temperature inversions, which lead to ambiguities in the CTH retrieval. Alternative approaches for the CTH retrieval of low clouds are discussed.

  15. Accuracy of Snow Water Equivalent Estimated From GPS Vertical Displacements: A Synthetic Loading Case Study for Western U.S. Mountains

    NASA Astrophysics Data System (ADS)

    Enzminger, Thomas L.; Small, Eric E.; Borsa, Adrian A.

    2018-01-01

    GPS monitoring of solid Earth deformation due to surface loading is an independent approach for estimating seasonal changes in terrestrial water storage (TWS). In western United States (WUSA) mountain ranges, snow water equivalent (SWE) is the dominant component of TWS and an essential water resource. While several studies have estimated SWE from GPS-measured vertical displacements, the error associated with this method remains poorly constrained. We examine the accuracy of SWE estimated from synthetic displacements at 1,395 continuous GPS station locations in the WUSA. Displacement at each station is calculated from the predicted elastic response to variations in SWE from SNODAS and soil moisture from the NLDAS-2 Noah model. We invert synthetic displacements for TWS, showing that both seasonal accumulation and melt as well as year-to-year fluctuations in peak SWE can be estimated from data recorded by the existing GPS network. Because we impose a smoothness constraint in the inversion, recovered TWS exhibits mass leakage from mountain ranges to surrounding areas. This leakage bias is removed via linear rescaling in which the magnitude of the gain factor depends on station distribution and TWS anomaly patterns. The synthetic GPS-derived estimates reproduce approximately half of the spatial variability (unbiased root mean square error ˜50%) of TWS loading within mountain ranges, a considerable improvement over GRACE. The inclusion of additional simulated GPS stations improves representation of spatial variations. GPS data can be used to estimate mountain-range-scale SWE, but effects of soil moisture and other TWS components must first be subtracted from the GPS-derived load estimates.

  16. Full-length amyloid precursor protein regulates lipoprotein metabolism and amyloid-β clearance in human astrocytes.

    PubMed

    Fong, Lauren K; Yang, Max M; Dos Santos Chaves, Rodrigo; Reyna, Sol M; Langness, Vanessa F; Woodruff, Grace; Roberts, Elizabeth A; Young, Jessica E; Goldstein, Lawrence S B

    2018-06-01

    Mounting evidence suggests that alterations in cholesterol homeostasis are involved in Alzheimer's disease (AD) pathogenesis. Amyloid precursor protein (APP) or multiple fragments generated by proteolytic processing of APP have previously been implicated in the regulation of cholesterol metabolism. However, the physiological function of APP in regulating lipoprotein homeostasis in astrocytes, which are responsible for de novo cholesterol biosynthesis and regulation in the brain, remains unclear. To address this, here we used CRISPR/Cas9 genome editing to generate isogenic APP-knockout (KO) human induced pluripotent stem cells (hiPSCs) and differentiated them into human astrocytes. We found that APP-KO astrocytes have reduced cholesterol and elevated levels of sterol regulatory element-binding protein (SREBP) target gene transcripts and proteins, which were both downstream consequences of reduced lipoprotein endocytosis. To elucidate which APP fragments regulate cholesterol homeostasis and examine whether familial AD mutations in APP affect lipoprotein metabolism, we analyzed an isogenic allelic series harboring the APP Swedish and APP V717F variants. Only astrocytes homozygous for the APP Swedish (APP Swe/Swe ) mutation, which had reduced full-length APP (FL APP) due to increased β-secretase cleavage, recapitulated the APP-KO phenotypes. Astrocytic internalization of amyloid-β (Aβ), another ligand for low-density lipoprotein (LDL) receptors, was also impaired in APP-KO and APP Swe/Swe astrocytes. Finally, impairing cleavage of FL APP through β-secretase inhibition in APP Swe/Swe astrocytes reversed the LDL and Aβ endocytosis defects. In conclusion, FL APP is involved in the endocytosis of LDL receptor ligands and required for proper cholesterol homeostasis and Aβ clearance in human astrocytes. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Performance of Shear Wave Elastography for Differentiation of Benign and Malignant Solid Breast Masses

    PubMed Central

    Song, Yi-Jiang; Deng, Zhu-Jun; Gao, Jian; Xie, Yan; Yin, Tian-Sheng; Ying, Li; Tang, Kai-Fu

    2013-01-01

    Objectives To perform a meta-analysis assessing the ability of shear wave elastography (SWE) to identify malignant breast masses. Methods PubMed, the Cochrane Library, and the ISI Web of Knowledge were searched for studies evaluating the accuracy of SWE for identifying malignant breast masses. The diagnostic accuracy of SWE was evaluated according to sensitivity, specificity, and hierarchical summary receiver operating characteristic (HSROC) curves. An analysis was also performed according to the SWE mode used: supersonic shear imaging (SSI) and the acoustic radiation force impulse (ARFI) technique. The clinical utility of SWE for identifying malignant breast masses was evaluated using analysis of Fagan plot. Results A total of 9 studies, including 1888 women and 2000 breast masses, were analyzed. Summary sensitivities and specificities were 0.91 (95% confidence interval [CI], 0.88–0.94) and 0.82 (95% CI, 0.75–0.87) by SSI and 0.89 (95% CI, 0.81–0.94) and 0.91 (95% CI, 0.84–0.95) by ARFI, respectively. The HSROCs for SSI and ARFI were 0.92 (95% CI, 0.90–0.94) and 0.96 (95% CI, 0.93–0.97), respectively. SSI and ARFI were both very informative, with probabilities of 83% and 91%, respectively, for correctly differentiating between benign and malignant breast masses following a “positive” measurement (over the threshold value) and probabilities of disease as low as 10% and 11%, respectively, following a “negative” measurement (below the threshold value) when the pre-test probability was 50%. Conclusions SWE could be used as a good identification tool for the classification of breast masses. PMID:24204613

  18. Assessment of biopsy‐proven liver fibrosis by two‐dimensional shear wave elastography: An individual patient data‐based meta‐analysis

    PubMed Central

    de Lédinghen, Victor; Cassinotto, Christophe; Chu, Winnie C.‐W.; Leung, Vivian Y.‐F.; Ferraioli, Giovanna; Filice, Carlo; Castera, Laurent; Vilgrain, Valérie; Ronot, Maxime; Dumortier, Jérôme; Guibal, Aymeric; Pol, Stanislas; Trebicka, Jonel; Jansen, Christian; Strassburg, Christian; Zheng, Rongqin; Zheng, Jian; Francque, Sven; Vanwolleghem, Thomas; Vonghia, Luisa; Manesis, Emanuel K.; Zoumpoulis, Pavlos; Sporea, Ioan; Thiele, Maja; Krag, Aleksander; Cohen‐Bacrie, Claude; Criton, Aline; Gay, Joel; Deffieux, Thomas; Friedrich‐Rust, Mireen

    2017-01-01

    Two‐dimensional shear wave elastography (2D‐SWE) has proven to be efficient for the evaluation of liver fibrosis in small to moderate‐sized clinical trials. We aimed at running a larger‐scale meta‐analysis of individual data. Centers which have worked with Aixplorer ultrasound equipment were contacted to share their data. Retrospective statistical analysis used direct and paired receiver operating characteristic and area under the receiver operating characteristic curve (AUROC) analyses, accounting for random effects. Data on both 2D‐SWE and liver biopsy were available for 1,134 patients from 13 sites, as well as on successful transient elastography in 665 patients. Most patients had chronic hepatitis C (n = 379), hepatitis B (n = 400), or nonalcoholic fatty liver disease (n = 156). AUROCs of 2D‐SWE in patients with hepatitis C, hepatitis B, and nonalcoholic fatty liver disease were 86.3%, 90.6%, and 85.5% for diagnosing significant fibrosis and 92.9%, 95.5%, and 91.7% for diagnosing cirrhosis, respectively. The AUROC of 2D‐SWE was 0.022‐0.084 (95% confidence interval) larger than the AUROC of transient elastography for diagnosing significant fibrosis (P = 0.001) and 0.003‐0.034 for diagnosing cirrhosis (P = 0.022) in all patients. This difference was strongest in hepatitis B patients. Conclusion: 2D‐SWE has good to excellent performance for the noninvasive staging of liver fibrosis in patients with hepatitis B; further prospective studies are needed for head‐to‐head comparison between 2D‐SWE and other imaging modalities to establish disease‐specific appropriate cutoff points for assessment of fibrosis stage. (Hepatology 2018;67:260‐272). PMID:28370257

  19. Using machine learning to predict snow water equivalent in the Sierra Nevada USA and Afghanistan

    NASA Astrophysics Data System (ADS)

    Bair, N.; Rittger, K.; Dozier, J.

    2017-12-01

    In many mountain regions, snowmelt provides most of the runoff. Ranges such as the Sierra Nevada USA benefit from hundreds of manual and automated snow measurement stations as well as basin-wide snow water equavalent (SWE) estimates from new platforms like the Airborne Snow Observatory. Thus, we have been able to use the Sierra Nevada as a testbed to validate an approach called SWE reconstruction, where the snowpack is built-up in reverse using downscaled energy balance forcings. Our past work has shown that SWE reconstruction produces some of the most accurate basin-wide SWE estimates, comparable in accuracy to a snow pillow/course interpolation, but requires no in situ measurements, which is its main advantage. The disadvantages are that reconstruction cannot be used for a forecast and is only valid during the ablation period. To address these shortcomings, we have used machine learning trained on reconstructed SWE in the Sierra Nevada and Afghanistan, where there are no accessible snowpack measurements. Predictors are physiographic and remotely-sensed variables, including brightness temperatures from a new enhanced resolution passive microwave dataset. Two machine learning techniques—bagged regression trees and feed-forward neural networks—were used. Results show little bias on average and < 100 mm RMSE. For both areas, daily SWE climatology and fractional snow-covered area were the most important predictors. As expected, the passive microwave brigthness temperatures showed some predictive power in Afghanistan, with its almost nonexistent tree cover, but no predictive power in the Sierra Nevada, with its extensive canopy-covered snowpack. In the Sierra, we also explored how our machine learning approach performed outside of the training period, i.e. the ablation period.

  20. Clinical application of qualitative assessment for breast masses in shear-wave elastography.

    PubMed

    Gweon, Hye Mi; Youk, Ji Hyun; Son, Eun Ju; Kim, Jeong-Ah

    2013-11-01

    To evaluate the interobserver agreement and the diagnostic performance of various qualitative features in shear-wave elastography (SWE) for breast masses. A total of 153 breast lesions in 152 women who underwent B-mode ultrasound and SWE before biopsy were included. Qualitative analysis in SWE was performed using two different classifications: E values (Ecol; 6-point color score, Ehomo; homogeneity score and Esha; shape score) and a four-color pattern classification. Two radiologists reviewed five data sets: B-mode ultrasound, SWE, and combination of both for E values and four-color pattern. The BI-RADS categories were assessed B-mode and combined sets. Interobserver agreement was assessed using weighted κ statistics. Areas under the receiver operating characteristic curve (AUC), sensitivity, and specificity were analyzed. Interobserver agreement was substantial for Ecol (κ=0.79), Ehomo (κ=0.77) and four-color pattern (κ=0.64), and moderate for Esha (κ=0.56). Better-performing qualitative features were Ecol and four-color pattern (AUCs, 0.932 and 0.925) compared with Ehomo and Esha (AUCs, 0.857 and 0.864; P<0.05). The diagnostic performance of B-mode ultrasound (AUC, 0.950) was not significantly different from combined sets with E value and with four color pattern (AUCs, 0.962 and 0.954). When all qualitative values were negative, leading to downgrade the BI-RADS category, the specificity increased significantly from 16.5% to 56.1% (E value) and 57.0% (four-color pattern) (P<0.001) without improvement in sensitivity. The qualitative SWE features were highly reproducible and showed good diagnostic performance in suspicious breast masses. Adding qualitative SWE to B-mode ultrasound increased specificity in decision making for biopsy recommendation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. The Time Series Technique for Aerosol Retrievals over Land from MODIS: Algorithm MAIAC

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Wang, Yujie

    2008-01-01

    Atmospheric aerosols interact with sun light by scattering and absorbing radiation. By changing irradiance of the Earth surface, modifying cloud fractional cover and microphysical properties and a number of other mechanisms, they affect the energy balance, hydrological cycle, and planetary climate [IPCC, 2007]. In many world regions there is a growing impact of aerosols on air quality and human health. The Earth Observing System [NASA, 1999] initiated high quality global Earth observations and operational aerosol retrievals over land. With the wide swath (2300 km) of MODIS instrument, the MODIS Dark Target algorithm [Kaufman et al., 1997; Remer et al., 2005; Levy et al., 2007] currently complemented with the Deep Blue method [Hsu et al., 2004] provides daily global view of planetary atmospheric aerosol. The MISR algorithm [Martonchik et al., 1998; Diner et al., 2005] makes high quality aerosol retrievals in 300 km swaths covering the globe in 8 days. With MODIS aerosol program being very successful, there are still several unresolved issues in the retrieval algorithms. The current processing is pixel-based and relies on a single-orbit data. Such an approach produces a single measurement for every pixel characterized by two main unknowns, aerosol optical thickness (AOT) and surface reflectance (SR). This lack of information constitutes a fundamental problem of the remote sensing which cannot be resolved without a priori information. For example, MODIS Dark Target algorithm makes spectral assumptions about surface reflectance, whereas the Deep Blue method uses ancillary global database of surface reflectance composed from minimal monthly measurements with Rayleigh correction. Both algorithms use Lambertian surface model. The surface-related assumptions in the aerosol retrievals may affect subsequent atmospheric correction in unintended way. For example, the Dark Target algorithm uses an empirical relationship to predict SR in the Blue (B3) and Red (B1) bands from the 2.1 m channel (B7) for the purpose of aerosol retrieval. Obviously, the subsequent atmospheric correction will produce the same SR in the red and blue bands as predicted, i.e. an empirical function of 2.1. In other words, the spectral, spatial and temporal variability of surface reflectance in the Blue and Red bands appears borrowed from band B7. This may have certain implications for the vegetation and global carbon analysis because the chlorophyll-sensing bands B1, B3 are effectively substituted in terms of variability by band B7, which is sensitive to the plant liquid water. This chapter describes a new recently developed generic aerosol-surface retrieval algorithm for MODIS. The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm simultaneously retrieves AOT and surface bi-directional reflection factor (BRF) using the time series of MODIS measurements.

  2. Variability common to first leaf dates and snowpack in the western conterminous United States

    USGS Publications Warehouse

    McCabe, Gregory J.; Betancourt, Julio L.; Pederson, Gregory T.; Schwartz, Mark D.

    2013-01-01

    Singular value decomposition is used to identify the common variability in first leaf dates (FLDs) and 1 April snow water equivalent (SWE) for the western United States during the period 1900–2012. Results indicate two modes of joint variability that explain 57% of the variability in FLD and 69% of the variability in SWE. The first mode of joint variability is related to widespread late winter–spring warming or cooling across the entire west. The second mode can be described as a north–south dipole in temperature for FLD, as well as in cool season temperature and precipitation for SWE, that is closely correlated to the El Niño–Southern Oscillation. Additionally, both modes of variability indicate a relation with the Pacific–North American atmospheric pattern. These results indicate that there is a substantial amount of common variance in FLD and SWE that is related to large-scale modes of climate variability.

  3. Towards a conceptual framework of OSH risk management in smart working environments based on smart PPE, ambient intelligence and the Internet of Things technologies.

    PubMed

    Podgórski, Daniel; Majchrzycka, Katarzyna; Dąbrowska, Anna; Gralewicz, Grzegorz; Okrasa, Małgorzata

    2017-03-01

    Recent developments in domains of ambient intelligence (AmI), Internet of Things, cyber-physical systems (CPS), ubiquitous/pervasive computing, etc., have led to numerous attempts to apply ICT solutions in the occupational safety and health (OSH) area. A literature review reveals a wide range of examples of smart materials, smart personal protective equipment and other AmI applications that have been developed to improve workers' safety and health. Because the use of these solutions modifies work methods, increases complexity of production processes and introduces high dynamism into thus created smart working environments (SWE), a new conceptual framework for dynamic OSH management in SWE is called for. A proposed framework is based on a new paradigm of OSH risk management consisting of real-time risk assessment and the capacity to monitor the risk level of each worker individually. A rationale for context-based reasoning in SWE and a respective model of the SWE-dedicated CPS are also proposed.

  4. Evaluation of the OMI Cloud Pressures Derived from Rotational Raman Scattering by Comparisons with other Satellite Data and Radiative Transfer Simulations

    NASA Technical Reports Server (NTRS)

    Vasilkov, Alexander; Joiner, Joanna; Spurr, Robert; Bhartia, Pawan K.; Levelt, Pieternel; Stephens, Graeme

    2009-01-01

    In this paper we examine differences between cloud pressures retrieved from the Ozone Monitoring Instrument (OMI) using the ultraviolet rotational Raman scattering (RRS) algorithm and those from the thermal infrared (IR) Aqua/MODIS. Several cloud data sets are currently being used in OMI trace gas retrieval algorithms including climatologies based on IR measurements and simultaneous cloud parameters derived from OMI. From a validation perspective, it is important to understand the OMI retrieved cloud parameters and how they differ with those derived from the IR. To this end, we perform radiative transfer calculations to simulate the effects of different geophysical conditions on the OMI RRS cloud pressure retrievals. We also quantify errors related to the use of the Mixed Lambert-Equivalent Reflectivity (MLER) concept as currently implemented of the OMI algorithms. Using properties from the Cloudsat radar and MODIS, we show that radiative transfer calculations support the following: (1) The MLER model is adequate for single-layer optically thick, geometrically thin clouds, but can produce significant errors in estimated cloud pressure for optically thin clouds. (2) In a two-layer cloud, the RRS algorithm may retrieve a cloud pressure that is either between the two cloud decks or even beneath the top of the lower cloud deck because of scattering between the cloud layers; the retrieved pressure depends upon the viewing geometry and the optical depth of the upper cloud deck. (3) Absorbing aerosol in and above a cloud can produce significant errors in the retrieved cloud pressure. (4) The retrieved RRS effective pressure for a deep convective cloud will be significantly higher than the physical cloud top pressure derived with thermal IR.

  5. A Simple and Universal Aerosol Retrieval Algorithm for Landsat Series Images Over Complex Surfaces

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Huang, Bo; Sun, Lin; Zhang, Zhaoyang; Wang, Lunche; Bilal, Muhammad

    2017-12-01

    Operational aerosol optical depth (AOD) products are available at coarse spatial resolutions from several to tens of kilometers. These resolutions limit the application of these products for monitoring atmospheric pollutants at the city level. Therefore, a simple, universal, and high-resolution (30 m) Landsat aerosol retrieval algorithm over complex urban surfaces is developed. The surface reflectance is estimated from a combination of top of atmosphere reflectance at short-wave infrared (2.22 μm) and Landsat 4-7 surface reflectance climate data records over densely vegetated areas and bright areas. The aerosol type is determined using the historical aerosol optical properties derived from the local urban Aerosol Robotic Network (AERONET) site (Beijing). AERONET ground-based sun photometer AOD measurements from five sites located in urban and rural areas are obtained to validate the AOD retrievals. Terra MODerate resolution Imaging Spectrometer Collection (C) 6 AOD products (MOD04) including the dark target (DT), the deep blue (DB), and the combined DT and DB (DT&DB) retrievals at 10 km spatial resolution are obtained for comparison purposes. Validation results show that the Landsat AOD retrievals at a 30 m resolution are well correlated with the AERONET AOD measurements (R2 = 0.932) and that approximately 77.46% of the retrievals fall within the expected error with a low mean absolute error of 0.090 and a root-mean-square error of 0.126. Comparison results show that Landsat AOD retrievals are overall better and less biased than MOD04 AOD products, indicating that the new algorithm is robust and performs well in AOD retrieval over complex surfaces. The new algorithm can provide continuous and detailed spatial distributions of AOD during both low and high aerosol loadings.

  6. Comparison of a single-view and a double-view aerosol optical depth retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Henderson, Bradley G.; Chylek, Petr

    2003-11-01

    We compare the results of a single-view and a double-view aerosol optical depth (AOD) retrieval algorithm applied to image pairs acquired over NASA Stennis Space Center, Mississippi. The image data were acquired by the Department of Energy's (DOE) Multispectral Thermal Imager (MTI), a pushbroom satellite imager with 15 bands from the visible to the thermal infrared. MTI has the ability to acquire imagery in pairs in which the first image is a near-nadir view and the second image is off-nadir with a zenith angle of approximately 60°. A total of 15 image pairs were used in the analysis. For a given image pair, AOD retrieval is performed twice---once using a single-view algorithm applied to the near-nadir image, then again using a double-view algorithm. Errors for both retrievals are computed by comparing the results to AERONET AOD measurements obtained at the same time and place. The single-view algorithm showed an RMS error about the mean of 0.076 in AOD units, whereas the double-view algorithm showed a modest improvement with an RMS error of 0.06. The single-view errors show a positive bias which is presumed to be a result of the empirical relationship used to determine ground reflectance in the visible. A plot of AOD error of the double-view algorithm versus time shows a noticeable trend which is interpreted to be a calibration drift. When this trend is removed, the RMS error of the double-view algorithm drops to 0.030. The single-view algorithm qualitatively appears to perform better during the spring and summer whereas the double-view algorithm seems to be less sensitive to season.

  7. SEOM's Sentinel-3/OLCI' project CAWA: advanced GRASP aerosol retrieval

    NASA Astrophysics Data System (ADS)

    Dubovik, Oleg; litvinov, Pavel; Huang, Xin; Aspetsberger, Michael; Fuertes, David; Brockmann, Carsten; Fischer, Jürgen; Bojkov, Bojan

    2016-04-01

    The CAWA "Advanced Clouds, Aerosols and WAter vapour products for Sentinel-3/OLCI" ESA-SEOM project aims on the development of advanced atmospheric retrieval algorithms for the Sentinel-3/OLCI mission, and is prepared using Envisat/MERIS and Aqua/MODIS datasets. This presentation discusses mainly CAWA aerosol product developments and results. CAWA aerosol retrieval uses recently developed GRASP algorithm (Generalized Retrieval of Aerosol and Surface Properties) algorithm described by Dubovik et al. (2014). GRASP derives extended set of atmospheric parameters using multi-pixel concept - a simultaneous fitting of a large group of pixels under additional a priori constraints limiting the time variability of surface properties and spatial variability of aerosol properties. Over land GRASP simultaneously retrieves properties of both aerosol and underlying surface even over bright surfaces. GRAPS doesn't use traditional look-up-tables and performs retrieval as search in continuous space of solution. All radiative transfer calculations are performed as part of the retrieval. The results of comprehensive sensitivity tests, as well as results obtained from real Envisat/MERIS data will be presented. The tests analyze various aspects of aerosol and surface reflectance retrieval accuracy. In addition, the possibilities of retrieval improvement by means of implementing synergetic inversion of a combination of OLCI data with observations by SLSTR are explored. Both the results of numerical tests, as well as the results of processing several years of Envisat/MERIS data illustrate demonstrate reliable retrieval of AOD (Aerosol Optical Depth) and surface BRDF. Observed retrieval issues and advancements will be discussed. For example, for some situations we illustrate possibilities of retrieving aerosol absorption - property that hardly accessible from satellite observations with no multi-angular and polarimetric capabilities.

  8. Regarding retrievals of methane in the atmosphere from IASI/Metop spectra and their comparison with ground-based FTIR measurements data

    NASA Astrophysics Data System (ADS)

    Khamatnurova, M. Yu.; Gribanov, K. G.; Zakharov, V. I.; Rokotyan, N. V.; Imasu, R.

    2017-11-01

    The algorithm for atmospheric methane distribution retrieval in atmosphere from IASI spectra has been developed. The feasibility of Levenberg-Marquardt method for atmospheric methane total column amount retrieval from the spectra measured by IASI/METOP modified for the case of lack of a priori covariance matrices for methane vertical profiles is studied in this paper. Method and algorithm were implemented into software package together with iterative estimation of a posteriori covariance matrices and averaging kernels for each individual retrieval. This allows retrieval quality selection using the properties of both types of matrices. Methane (XCH4) retrieval by Levenberg-Marquardt method from IASI/METOP spectra is presented in this work. NCEP/NCAR reanalysis data provided by ESRL (NOAA, Boulder, USA) were taken as initial guess. Surface temperature, air temperature and humidity vertical profiles are retrieved before methane vertical profile retrieval. The data retrieved from ground-based measurements at the Ural Atmospheric Station and data of L2/IASI standard product were used for the verification of the method and results of methane retrieval from IASI/METOP spectra.

  9. Phase retrieval via incremental truncated amplitude flow algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Quanbing; Wang, Zhifa; Wang, Linjie; Cheng, Shichao

    2017-10-01

    This paper considers the phase retrieval problem of recovering the unknown signal from the given quadratic measurements. A phase retrieval algorithm based on Incremental Truncated Amplitude Flow (ITAF) which combines the ITWF algorithm and the TAF algorithm is proposed. The proposed ITAF algorithm enhances the initialization by performing both of the truncation methods used in ITWF and TAF respectively, and improves the performance in the gradient stage by applying the incremental method proposed in ITWF to the loop stage of TAF. Moreover, the original sampling vector and measurements are preprocessed before initialization according to the variance of the sensing matrix. Simulation experiments verified the feasibility and validity of the proposed ITAF algorithm. The experimental results show that it can obtain higher success rate and faster convergence speed compared with other algorithms. Especially, for the noiseless random Gaussian signals, ITAF can recover any real-valued signal accurately from the magnitude measurements whose number is about 2.5 times of the signal length, which is close to the theoretic limit (about 2 times of the signal length). And it usually converges to the optimal solution within 20 iterations which is much less than the state-of-the-art algorithms.

  10. Uncertainty in the Future of Seasonal Snowpack over North America.

    NASA Astrophysics Data System (ADS)

    McCrary, R. R.; Mearns, L.

    2017-12-01

    The uncertainty in future changes in seasonal snowpack (snow water equivalent, SWE) and snow cover extent (SCE) for North America are explored using the North American Regional Climate Change Assessment Program (NARCCAP) suite of regional climate models (RCMs) and their driving CMIP3 global circulation models (GCMs). The higher resolution of the NARCCAP RCMs is found to add significant value to the details of future projections of SWE in topographically complex regions such as the Pacific Northwest and the Rocky Mountains. The NARCCAP models also add detailed information regarding changes in the southernmost extent of snow cover. 11 of the 12 NARCCAP ensemble members contributed SWE output which we use to explore the uncertainty in future snowpack at higher resolution. In this study, we quantify the uncertainty in future projections by looking at the spread of the interquartile range of the different models. By mid-Century the RCMs consistently predict that winter SWE amounts will decrease over most of North America. The only exception to this is in Northern Canada, where increased moisture supply leads to increases in SWE in all but one of the RCMs. While the models generally agree on the sign of the change in SWE, there is considerable spread in the magnitude (absolute and percent) of the change. The RCMs also agree that the number of days with measureable snow on the ground is projected to decrease, with snow accumulation occurring later in the Fall/Winter and melting starting earlier in the Spring/Summer. As with SWE amount, spread across the models is large for changes in the timing of the snow season and can vary by over a month between models. While most of the NARCCAP models project a total loss of measurable snow along the southernmost edge of their historical range, there is considerable uncertainty about where this will occur within the ensemble due to the bias in snow cover extent in the historical simulations. We explore methods to increase our confidence about the regions that will lose any seasonal snow.

  11. Impacts of Aerosols on Seasonal Precipitation and Snowpack in California Based on Convection-Permitting WRF-Chem Simulations

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Wu, L.; Jiang, J. H.; Su, H.; Yu, N.; Zhao, C.; Qian, Y.; Zhao, B.; Liou, K. N.; Choi, Y. S.

    2017-12-01

    A version of the WRF-Chem model with fully coupled aerosol-meteorology-snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside of California are studied. We differentiate three pathways of aerosol effects including aerosol-radiation interaction (ARI), aerosol-snow interaction (ASI), and aerosol-cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34-42°N, 117-124°W, not including ocean points) are reduced when aerosols are included, therefore reducing the high model biases of these variables when aerosol effects are not considered. Aerosols affect California water resources through the warming of mountain tops and anomalously low precipitation, however, different aerosol sources play different roles in changing surface temperature, precipitation and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountain tops through ASI, in which the reduced snow albedo associated with dirty snow leads to more surface absorption of solar radiation and reduced SWE. Transported and local anthropogenic aerosols play a dominant role in increasing cloud water amount but reducing precipitation through ACI, leading to reduced SWE and runoff over the Sierra Nevada, as well as the warming of mountain tops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October to June are about -0.19 K and 0.22 K for the whole domain and over mountain tops, respectively. Overall, the averaged reduction during October to June is about 7% for precipitation, 3% for SWE, and 7% for surface runoff for the whole domain, while the corresponding numbers are 12%, 10%, and 10% for mountain tops. The reduction in SWE is more significant in a dry year, with 9% for the whole domain and 16% for mountain tops.

  12. Impact of spatial variation in snow water equivalent and snow ablation on spring snowcover depletion over an alpine ridge

    NASA Astrophysics Data System (ADS)

    Schirmer, Michael; Harder, Phillip; Pomeroy, John

    2016-04-01

    The spatial and temporal dynamics of mountain snowmelt are controlled by the spatial distribution of snow accumulation and redistribution and the pattern of melt energy applied to this snowcover. In order to better quantify the spatial variations of accumulation and ablation, Structure-from-Motion techniques were applied to sequential aerial photographs of an alpine ridge in the Canadian Rocky Mountains taken from an Unmanned Aerial Vehicle (UAV). Seven spatial maps of snow depth and changes to depth during late melt (May-July) were generated at very high resolutions covering an area of 800 x 600 m. The accuracy was assessed with over 100 GPS measurements and RMSE were found to be less than 10 cm. Low resolution manual measurements of density permitted calculation of snow water equivalent (SWE) and change in SWE (ablation rate). The results indicate a highly variable initial SWE distribution, which was five times more variable than the spatial variation in ablation rate. Spatial variation in ablation rate was still substantial, with a factor of two difference between north and south aspects and small scale variations due to local dust deposition. However, the impact of spatial variations in ablation rate on the snowcover depletion curve could not be discerned. The reason for this is that only a weak spatial correlation developed between SWE and ablation rate. These findings suggest that despite substantial variations in ablation rate, snowcover depletion curve calculations should emphasize the spatial variation of initial SWE rather than the variation in ablation rate. While there is scientific evidence from other field studies that support this, there are also studies that suggest that spatial variations in ablation rate can influence snowcover depletion curves in complex terrain, particularly in early melt. The development of UAV photogrammetry has provided an opportunity for further detailed measurement of ablation rates, SWE and snowcover depletion over complex terrain and UAV field studies are recommended to clarify the relative importance of SWE and melt variability on snowcover depletion in various environmental conditions.

  13. Liver fibrosis staging with a new 2D-shear wave elastography using comb-push technique: Applicability, reproducibility, and diagnostic performance

    PubMed Central

    Lee, Sang Min; Kang, Hyo-Jin; Yang, Hyung Kung; Yoon, Jeong Hee; Chang, Won; An, Su Joa; Lee, Kyoung Bun; Baek, Seung Yon

    2017-01-01

    Objective To evaluate the applicability, reproducibility, and diagnostic performance of a new 2D-shear wave elastography (SWE) using the comb-push technique (2D CP-SWE) for detection of hepatic fibrosis, using histopathology as the reference standard. Materials and methods This prospective study was approved by the institutional review board, and informed consent was obtained from all patients. The liver stiffness (LS) measurements were obtained from 140 patients, using the new 2D-SWE, which uses comb-push excitation to produce shear waves and a time-aligned sequential tracking method to detect shear wave signals. The applicability rate of 2D CP-SWE was estimated, and factors associated with its applicability were identified. Intraobserver reproducibility was evaluated in the 105 patients with histopathologic diagnosis, and interobserver reproducibility was assessed in 20 patients. Diagnostic performance of the 2D CP-SWE for hepatic fibrosis was evaluated by receiver operating characteristic (ROC) curve analysis. Results The applicability rate of 2D CP-SWE was 90.8% (109 of 120). There was a significant difference in age, presence or absence of ascites, and the distance from the transducer to the Glisson capsule between the patients with applicable LS measurements and patients with unreliable measurement or technical failure. The intraclass correlation of interobserver agreement was 0.87, and the value for the intraobserver agreement was 0.95. The area under the ROC curve of LS values for stage F2 fibrosis or greater, stage F3 or greater, and stage F4 fibrosis was 0.874 (95% confidence interval [CI]: 0.794–0.930), 0.905 (95% CI: 0.832–0.954), and 0.894 (95% CI: 0.819–0.946), respectively. Conclusion 2D CP-SWE can be employed as a reliable method for assessing hepatic fibrosis with a reasonably good diagnostic performance, and its applicability might be influenced by age, ascites, and the distance between the transducer and Glisson capsule. PMID:28510583

  14. Complex amplitude reconstruction by iterative amplitude-phase retrieval algorithm with reference

    NASA Astrophysics Data System (ADS)

    Shen, Cheng; Guo, Cheng; Tan, Jiubin; Liu, Shutian; Liu, Zhengjun

    2018-06-01

    Multi-image iterative phase retrieval methods have been successfully applied in plenty of research fields due to their simple but efficient implementation. However, there is a mismatch between the measurement of the first long imaging distance and the sequential interval. In this paper, an amplitude-phase retrieval algorithm with reference is put forward without additional measurements or priori knowledge. It gets rid of measuring the first imaging distance. With a designed update formula, it significantly raises the convergence speed and the reconstruction fidelity, especially in phase retrieval. Its superiority over the original amplitude-phase retrieval (APR) method is validated by numerical analysis and experiments. Furthermore, it provides a conceptual design of a compact holographic image sensor, which can achieve numerical refocusing easily.

  15. Evaluation of Aerosol Pollution Determination From MODIS Satellite Retrievals for Semi-Arid Reno, NV, USA with In-Situ Measurements

    NASA Astrophysics Data System (ADS)

    Loria-Salazar, S. Marcela

    The aim of the present work is to carry out a detailed analysis of ground and columnar aerosol properties obtained by in-situ Photoacoustic and Integrated Nephelometer (PIN), Cimel CE-318 sunphotometer and MODIS instrument onboard Aqua and Terra satellites, for semi-arid Reno, Nevada, USA in the local summer months of 2012. Satellite determination of local aerosol pollution is desirable because of the potential for broad spatial and temporal coverage. However, retrieval of quantitative measures of air pollution such as Aerosol Optical Depth (AOD) from satellite measurements is challenging because of the underlying surface albedo being heterogeneous in space and time. Therefore, comparisons of satellite retrievals with measurements from ground-based sun photometers are crucial for validation, testing, and further development of instruments and retrieval algorithms. Ground-based sunphotometry and in-situ ground observations show that seasonal weather changes and fire plumes have great influence on the atmosphere aerosol optics. The Apparent Optical Height (AOH) follows the shape of the development of the Convective Boundary Layer (CBL) when fire conditions were not present. However, significant fine particle optical depth was inferred beyond the CBL thereby complicating the use of remote sensing measurements for near-ground aerosol pollution measurements. A meteorological analysis was performed to help diagnose the nature of the aerosols above Reno. The calculation of a Zephyr index and back trajectory analysis demonstrated that a local circulation often induces aerosol transport from Northern CA over the Sierra Nevada Mountains that doubles the Aerosol Optical Depth (AOD) at 500 nm. Sunphotometer measurements were used as a `ground truth' for satellite retrievals to evaluate the current state of the science retrievals in this challenging location. Satellite retrieved for AOD showed the presence of wild fires in Northern CA during August. AOD retrieved using the "dark-target algorithm" may be unrealistically high over the Great Basin. Low correlation was found between AERONET AOD and dark-target algorithm AOD retrievals from Aqua and Terra during June and July. During fire conditions the dark-target algorithm AOD values correlated better with AERONET measurements in August. Use of the Deep-blue algorithm for MODIS data to retrieve AOD did not provide enough points to compare with AERONET in June and July. In August, AOD from deep-blue and AERONET retrievals exhibited low correlation. AEE from MODIS products and AERONET exhibited low correlation during every month. Apparently satellite AOD retrievals need much improvement for areas like semi-arid Reno.

  16. Phase retrieval based wavefront sensing experimental implementation and wavefront sensing accuracy calibration

    NASA Astrophysics Data System (ADS)

    Mao, Heng; Wang, Xiao; Zhao, Dazun

    2009-05-01

    As a wavefront sensing (WFS) tool, Baseline algorithm, which is classified as the iterative-transform algorithm of phase retrieval, estimates the phase distribution at pupil from some known PSFs at defocus planes. By using multiple phase diversities and appropriate phase unwrapping methods, this algorithm can accomplish reliable unique solution and high dynamic phase measurement. In the paper, a Baseline algorithm based wavefront sensing experiment with modification of phase unwrapping has been implemented, and corresponding Graphical User Interfaces (GUI) software has also been given. The adaptability and repeatability of Baseline algorithm have been validated in experiments. Moreover, referring to the ZYGO interferometric results, the WFS accuracy of this algorithm has been exactly calibrated.

  17. A New 1DVAR Retrieval for AMSR2 and GMI: Validation and Sensitivites

    NASA Astrophysics Data System (ADS)

    Duncan, D.; Kummerow, C. D.

    2015-12-01

    A new non-raining retrieval has been developed for microwave imagers and applied to the GMI and AMSR2 sensors. With the Community Radiative Transfer Model (CRTM) as the forward model for the physical retrieval, a 1-dimensional variational method finds the atmospheric state which minimizes the difference between observed and simulated brightness temperatures. A key innovation of the algorithm development is a method to calculate the sensor error covariance matrix that is specific to the forward model employed and includes off-diagonal elements, allowing the algorithm to handle various forward models and sensors with little cross-talk. The water vapor profile is resolved by way of empirical orthogonal functions (EOFs) and then summed to get total precipitable water (TPW). Validation of retrieved 10m wind speed, TPW, and sea surface temperature (SST) is performed via comparison with buoys and radiosondes as well as global models and other remotely sensed products. In addition to the validation, sensitivity experiments investigate the impact of ancillary data on the under-constrained retrieval, a concern for climate data records that strive to be independent of model biases. The introduction of model analysis data is found to aid the algorithm most at high frequency channels and affect TPW retrievals, whereas wind and cloud water retrievals show little effect from ingesting further ancillary data.

  18. A Bayesian approach to microwave precipitation profile retrieval

    NASA Technical Reports Server (NTRS)

    Evans, K. Franklin; Turk, Joseph; Wong, Takmeng; Stephens, Graeme L.

    1995-01-01

    A multichannel passive microwave precipitation retrieval algorithm is developed. Bayes theorem is used to combine statistical information from numerical cloud models with forward radiative transfer modeling. A multivariate lognormal prior probability distribution contains the covariance information about hydrometeor distribution that resolves the nonuniqueness inherent in the inversion process. Hydrometeor profiles are retrieved by maximizing the posterior probability density for each vector of observations. The hydrometeor profile retrieval method is tested with data from the Advanced Microwave Precipitation Radiometer (10, 19, 37, and 85 GHz) of convection over ocean and land in Florida. The CP-2 multiparameter radar data are used to verify the retrieved profiles. The results show that the method can retrieve approximate hydrometeor profiles, with larger errors over land than water. There is considerably greater accuracy in the retrieval of integrated hydrometeor contents than of profiles. Many of the retrieval errors are traced to problems with the cloud model microphysical information, and future improvements to the algorithm are suggested.

  19. Evaluation of Skin Temperatures Retrieved from GOES-8

    NASA Technical Reports Server (NTRS)

    Suggs, Ronnie, J.; Jedlovec, G. J.; Lapenta, W. M.; Haines, S. L.

    2000-01-01

    Skin temperatures derived from geostationary satellites have the potential of providing the temporal and spatial resolution needed for model assimilation. To adequately assess the potential improvements in numerical model forecasts that can be made by assimilating satellite data, an estimate of the accuracy of the skin temperature product is necessary. A particular skin temperature algorithm, the Physical Split Window Technique, that uses the longwave infrared channels of the GOES Imager has shown promise in recent model assimilation studies to provide land surface temperatures with reasonable accuracy. A comparison of retrieved GOES-8 skin temperatures from this algorithm with in situ measurements is presented. Various retrieval algorithm issues are addressed including surface emissivity

  20. Detecting Thin Cirrus in Multiangle Imaging Spectroradiometer Aerosol Retrievals

    NASA Technical Reports Server (NTRS)

    Pierce, Jeffrey R.; Kahn, Ralph A.; Davis, Matt R.; Comstock, Jennifer M.

    2010-01-01

    Thin cirrus clouds (optical depth (OD) < 03) are often undetected by standard cloud masking in satellite aerosol retrieval algorithms. However, the Mu]tiangle Imaging Spectroradiometer (MISR) aerosol retrieval has the potential to discriminate between the scattering phase functions of cirrus and aerosols, thus separating these components. Theoretical tests show that MISR is sensitive to cirrus OD within Max{0.05 1 20%l, similar to MISR's sensitivity to aerosol OD, and MISR can distinguish between small and large crystals, even at low latitudes, where the range of scattering angles observed by MISR is smallest. Including just two cirrus components in the aerosol retrieval algorithm would capture typical MISR sensitivity to the natural range of cinus properties; in situations where cirrus is present but the retrieval comparison space lacks these components, the retrieval tends to underestimate OD. Generally, MISR can also distinguish between cirrus and common aerosol types when the proper cirrus and aerosol optical models are included in the retrieval comparison space and total column OD is >-0.2. However, in some cases, especially at low latitudes, cirrus can be mistaken for some combinations of dust and large nonabsorbing spherical aerosols, raising a caution about retrievals in dusty marine regions when cirrus is present. Comparisons of MISR with lidar and Aerosol Robotic Network show good agreement in a majority of the cases, but situations where cirrus clouds have optical depths >0.15 and are horizontally inhomogeneous on spatial scales shorter than 50 km pose difficulties for cirrus retrieval using the MISR standard aerosol algorithm..

  1. Remote sensing of cirrus cloud vertical size profile using MODIS data

    NASA Astrophysics Data System (ADS)

    Wang, Xingjuan; Liou, K. N.; Ou, Steve S. C.; Mace, G. G.; Deng, M.

    2009-05-01

    This paper describes an algorithm for inferring cirrus cloud top and cloud base effective particle sizes and cloud optical thickness from the Moderate Resolution Imaging Spectroradiometer (MODIS) 0.645, 1.64 and 2.13, and 3.75 μm band reflectances/radiances. This approach uses a successive minimization method based on a look-up library of precomputed reflectances/radiances from an adding-doubling radiative transfer program, subject to corrections for Rayleigh scattering at the 0.645 μm band, above-cloud water vapor absorption, and 3.75 μm thermal emission. The algorithmic accuracy and limitation of the retrieval method were investigated by synthetic retrievals subject to the instrument noise and the perturbation of input parameters. The retrieval algorithm was applied to three MODIS cirrus scenes over the Atmospheric Radiation Measurement Program's southern Great Plain site, north central China, and northeast Asia. The reliability of retrieved cloud optical thicknesses and mean effective particle sizes was evaluated by comparison with MODIS cloud products and qualitatively good correlations were obtained for all three cases, indicating that the performance of the vertical sizing algorithm is comparable with the MODIS retrieval program. Retrieved cloud top and cloud base ice crystal effective sizes were also compared with those derived from the collocated ground-based millimeter wavelength cloud radar for the first case and from the Cloud Profiling Radar onboard CloudSat for the other two cases. Differences between retrieved and radar-derived cloud properties are discussed in light of assumptions made in the collocation process and limitations in radar remote sensing characteristics.

  2. Performance analysis of algorithms for retrieval of magnetic resonance images for interactive teleradiology

    NASA Astrophysics Data System (ADS)

    Atkins, M. Stella; Hwang, Robert; Tang, Simon

    2001-05-01

    We have implemented a prototype system consisting of a Java- based image viewer and a web server extension component for transmitting Magnetic Resonance Images (MRI) to an image viewer, to test the performance of different image retrieval techniques. We used full-resolution images, and images compressed/decompressed using the Set Partitioning in Hierarchical Trees (SPIHT) image compression algorithm. We examined the SPIHT decompression algorithm using both non- progressive and progressive transmission, focusing on the running times of the algorithm, client memory usage and garbage collection. We also compared the Java implementation with a native C++ implementation of the non- progressive SPIHT decompression variant. Our performance measurements showed that for uncompressed image retrieval using a 10Mbps Ethernet, a film of 16 MR images can be retrieved and displayed almost within interactive times. The native C++ code implementation of the client-side decoder is twice as fast as the Java decoder. If the network bandwidth is low, the high communication time for retrieving uncompressed images may be reduced by use of SPIHT-compressed images, although the image quality is then degraded. To provide diagnostic quality images, we also investigated the retrieval of up to 3 images on a MR film at full-resolution, using progressive SPIHT decompression. The Java-based implementation of progressive decompression performed badly, mainly due to the memory requirements for maintaining the image states, and the high cost of execution of the Java garbage collector. Hence, in systems where the bandwidth is high, such as found in a hospital intranet, SPIHT image compression does not provide advantages for image retrieval performance.

  3. A snow cover climatology for the Pyrenees from MODIS snow products

    NASA Astrophysics Data System (ADS)

    Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.-F.; Szczypta, C.; Marti, R.; Sanchez, R.

    2015-05-01

    The seasonal snow in the Pyrenees is critical for hydropower production, crop irrigation and tourism in France, Spain and Andorra. Complementary to in situ observations, satellite remote sensing is useful to monitor the effect of climate on the snow dynamics. The MODIS daily snow products (Terra/MOD10A1 and Aqua/MYD10A1) are widely used to generate snow cover climatologies, yet it is preferable to assess their accuracies prior to their use. Here, we use both in situ snow observations and remote sensing data to evaluate the MODIS snow products in the Pyrenees. First, we compare the MODIS products to in situ snow depth (SD) and snow water equivalent (SWE) measurements. We estimate the values of the SWE and SD best detection thresholds to 40 mm water equivalent (w.e.) and 150 mm, respectively, for both MOD10A1 and MYD10A1. κ coefficients are within 0.74 and 0.92 depending on the product and the variable for these thresholds. However, we also find a seasonal trend in the optimal SWE and SD thresholds, reflecting the hysteresis in the relationship between the depth of the snowpack (or SWE) and its extent within a MODIS pixel. Then, a set of Landsat images is used to validate MOD10A1 and MYD10A1 for 157 dates between 2002 and 2010. The resulting accuracies are 97% (κ = 0.85) for MOD10A1 and 96% (κ = 0.81) for MYD10A1, which indicates a good agreement between both data sets. The effect of vegetation on the results is analyzed by filtering the forested areas using a land cover map. As expected, the accuracies decrease over the forests but the agreement remains acceptable (MOD10A1: 96%, κ = 0.77; MYD10A1: 95%, κ = 0.67). We conclude that MODIS snow products have a sufficient accuracy for hydroclimate studies at the scale of the Pyrenees range. Using a gap-filling algorithm we generate a consistent snow cover climatology, which allows us to compute the mean monthly snow cover duration per elevation band and aspect classes. There is snow on the ground at least 50% of the time above 1600 m between December and April. We finally analyze the snow patterns for the atypical winter 2011-2012. Snow cover duration anomalies reveal a deficient snowpack on the Spanish side of the Pyrenees, which seems to have caused a drop in the national hydropower production.

  4. Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Longtao; Gu, Yu; Jiang, Jonathan H.

    Here, a version of the WRF-Chem model with fully coupled aerosol–meteorology–snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol–radiation interaction (ARI), aerosol–snow interaction (ASI), and aerosol–cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34–42° N, 117–124° W, not including ocean points) are reduced when aerosols are included, therefore reducing largemore » biases in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about –0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about 7 % for precipitation, 3 % for SWE, and 7 % for surface runoff for the whole domain, while the corresponding numbers are 12, 10, and 10 % for the mountaintops. The reduction in SWE is more significant in a dry year, with 9 % for the whole domain and 16 % for the mountaintops. The maximum reduction of ~20 % in precipitation occurs in May and is associated with the maximum aerosol loading, leading to the largest decrease in SWE and surface runoff over that period. It is also found that dust aerosols can cause early snowmelt on the mountaintops and reduced surface runoff after April.« less

  5. Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Longtao; Gu, Yu; Jiang, Jonathan H.

    A version of the WRF-Chem model with fully coupled aerosol–meteorology–snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol–radiation interaction (ARI), aerosol–snow interaction (ASI), and aerosol–cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34–42° N, 117–124° W, not including ocean points) are reduced when aerosols are included, therefore reducing large biasesmore » in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about -0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about 7% for precipitation, 3% for SWE, and 7% for surface runoff for the whole domain, while the corresponding numbers are 12, 10, and 10% for the mountaintops. The reduction in SWE is more significant in a dry year, with 9% for the whole domain and 16% for the mountaintops. The maximum reduction of -20% in precipitation occurs in May and is associated with the maximum aerosol loading, leading to the largest decrease in SWE and surface runoff over that period. It is also found that dust aerosols can cause early snowmelt on the mountaintops and reduced surface runoff after April.« less

  6. Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations

    NASA Astrophysics Data System (ADS)

    Wu, Longtao; Gu, Yu; Jiang, Jonathan H.; Su, Hui; Yu, Nanpeng; Zhao, Chun; Qian, Yun; Zhao, Bin; Liou, Kuo-Nan; Choi, Yong-Sang

    2018-04-01

    A version of the WRF-Chem model with fully coupled aerosol-meteorology-snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol-radiation interaction (ARI), aerosol-snow interaction (ASI), and aerosol-cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34-42° N, 117-124° W, not including ocean points) are reduced when aerosols are included, therefore reducing large biases in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about -0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about 7 % for precipitation, 3 % for SWE, and 7 % for surface runoff for the whole domain, while the corresponding numbers are 12, 10, and 10 % for the mountaintops. The reduction in SWE is more significant in a dry year, with 9 % for the whole domain and 16 % for the mountaintops. The maximum reduction of ˜ 20 % in precipitation occurs in May and is associated with the maximum aerosol loading, leading to the largest decrease in SWE and surface runoff over that period. It is also found that dust aerosols can cause early snowmelt on the mountaintops and reduced surface runoff after April.

  7. Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations

    DOE PAGES

    Wu, Longtao; Gu, Yu; Jiang, Jonathan H.; ...

    2018-04-23

    Here, a version of the WRF-Chem model with fully coupled aerosol–meteorology–snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol–radiation interaction (ARI), aerosol–snow interaction (ASI), and aerosol–cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34–42° N, 117–124° W, not including ocean points) are reduced when aerosols are included, therefore reducing largemore » biases in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about –0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about 7 % for precipitation, 3 % for SWE, and 7 % for surface runoff for the whole domain, while the corresponding numbers are 12, 10, and 10 % for the mountaintops. The reduction in SWE is more significant in a dry year, with 9 % for the whole domain and 16 % for the mountaintops. The maximum reduction of ~20 % in precipitation occurs in May and is associated with the maximum aerosol loading, leading to the largest decrease in SWE and surface runoff over that period. It is also found that dust aerosols can cause early snowmelt on the mountaintops and reduced surface runoff after April.« less

  8. Estimating vertical profiles of water-cloud droplet effective radius from SWIR satellite measurements via a statistical model derived from CloudSat observations

    NASA Astrophysics Data System (ADS)

    Nagao, T. M.; Murakami, H.; Nakajima, T. Y.

    2017-12-01

    This study proposes an algorithm to estimate vertical profiles of cloud droplet effective radius (CDER-VP) for water clouds from shortwave infrared (SWIR) measurements of Himawari-8/AHI via a statistical model of CDER-VP derived from CloudSat observation. Several similar algorithms in previous studies utilize a spectral radiance matching on the assumption of simultaneous observations of CloudSat and Aqua/MODIS. However, our algorithm does not assume simultaneous observations with CloudSat. First, in advance, a database (DB) of CDER-VP is prepared by the following procedure: TOA radiances at 0.65, 2.3 and 10.4-μm bands of the AHI are simulated using CDER-VP and cloud optical depth vertical profile (COD-VP) contained in the CloudSat 2B-CWC-RVOD and 2B-TAU products. Cloud optical thickness (COT), Column-CDER and cloud top height (CTH) are retrieved from the simulated radiances using a traditional retrieval algorithm with vertically homogeneous cloud model (1-SWIR VHC method). The CDER-VP is added to the DB by using the COT and Column-CDER retrievals as a key of the DB. Then by using principal component (PC) analysis, up to three PC vectors of the CDER-VPs in the DB are extracted. Next, the algorithm retrieves CDER-VP from actual AHI measurements by the following procedure: First, COT, Column-CDER and CTH are retrieved from TOA radiances at 0.65, 2.3 and 10.4-μm bands of the AHI using by 1-SWIR VHC method. Then, the PC vectors of CDER-VP is fetched from the DB using the COT and Column-CDER retrievals as the key of the DB. Finally, using coefficients of the PC vectors of CDER-VP as variables for retrieval, CDER-VP, COT and CTH are retrieved from TOA radiances at 0.65, 1.6, 2.3, 3.9 and 10.4-μm bands of the AHI based on optimal estimation method with iterative radiative transfer calculation. The simulation result showed the CDER-VP retrieval errors were almost smaller than 3 - 4 μm. The CDER retrieval errors at the cloud base were almost larger than the others (e.g. CDER at cloud top), especially when COT and CDER was large. The tendency can be explained by less sensitivities of SWIRs to CDER at cloud base. Additionally, as a case study, this study will attempt to apply the algorithm to the AHI's high-frequency observations, and to interpret the time series of the CDER-VP retrievals in terms of temporal evolution of water clouds.

  9. Accuracy Assessment of Aqua-MODIS Aerosol Optical Depth Over Coastal Regions: Importance of Quality Flag and Sea Surface Wind Speed

    NASA Technical Reports Server (NTRS)

    Anderson, J. C.; Wang, J.; Zeng, J.; Petrenko, M.; Leptoukh, G. G.; Ichoku, C.

    2012-01-01

    Coastal regions around the globe are a major source for anthropogenic aerosols in the atmosphere, but the underlying surface characteristics are not favorable for the Moderate Resolution Imaging Spectroradiometer (MODIS) algorithms designed for retrieval of aerosols over dark land or open-ocean surfaces. Using data collected from 62 coastal stations worldwide from the Aerosol Robotic Network (AERONET) from approximately 2002-2010, accuracy assessments are made for coastal aerosol optical depth (AOD) retrieved from MODIS aboard Aqua satellite. It is found that coastal AODs (at 550 nm) characterized respectively by the MODIS Dark Land (hereafter Land) surface algorithm, the Open-Ocean (hereafter Ocean) algorithm, and AERONET all exhibit a log-normal distribution. After filtering by quality flags, the MODIS AODs respectively retrieved from the Land and Ocean algorithms are highly correlated with AERONET (with R(sup 2) is approximately equal to 0.8), but only the Land algorithm AODs fall within the expected error envelope greater than 66% of the time. Furthermore, the MODIS AODs from the Land algorithm, Ocean algorithm, and combined Land and Ocean product show statistically significant discrepancies from their respective counterparts from AERONET in terms of mean, probability density function, and cumulative density function, which suggest a need for future improvement in retrieval algorithms. Without filtering with quality flag, the MODIS Land and Ocean AOD dataset can be degraded by 30-50% in terms of mean bias. Overall, the MODIS Ocean algorithm overestimates the AERONET coastal AOD by 0.021 for AOD less than 0.25 and underestimates it by 0.029 for AOD greater than 0.25. This dichotomy is shown to be related to the ocean surface wind speed and cloud contamination effects on the satellite aerosol retrieval. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) reveals that wind speeds over the global coastal region 25 (with a mean and median value of 2.94 meters per second and 2.66 meters per second, respectively) are often slower than 6 meters per second assumed in the MODIS Ocean algorithm. As a result of high correlation (R(sup 2) greater than 0.98) between the bias in binned MODIS AOD and the corresponding binned wind speed over the coastal sea surface, an empirical scheme for correcting the bias of AOD retrieved from the MODIS Ocean algorithm is formulated and is shown to be effective over the majority of the coastal AERONET stations, and hence can be used in future analysis of AOD trend and MODIS AOD data assimilation.

  10. Phase retrieval by coherent modulation imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fucai; Chen, Bo; Morrison, Graeme R.

    Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging (CDI) is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single diffraction pattern has been an algorithmic and experimental challenge. Here we report a method of phase retrieval that uses a known modulation of the sample exit-wave. This coherent modulation imaging (CMI) method removes inherent ambiguities of CDI and uses a reliable, rapidly converging iterative algorithm involving three planes. It works formore » extended samples, does not require tight support for convergence, and relaxes dynamic range requirements on the detector. CMI provides a robust method for imaging in materials and biological science, while its single-shot capability will benefit the investigation of dynamical processes with pulsed sources, such as X-ray free electron laser.« less

  11. Phase retrieval by coherent modulation imaging

    DOE PAGES

    Zhang, Fucai; Chen, Bo; Morrison, Graeme R.; ...

    2016-11-18

    Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging (CDI) is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single diffraction pattern has been an algorithmic and experimental challenge. Here we report a method of phase retrieval that uses a known modulation of the sample exit-wave. This coherent modulation imaging (CMI) method removes inherent ambiguities of CDI and uses a reliable, rapidly converging iterative algorithm involving three planes. It works formore » extended samples, does not require tight support for convergence, and relaxes dynamic range requirements on the detector. CMI provides a robust method for imaging in materials and biological science, while its single-shot capability will benefit the investigation of dynamical processes with pulsed sources, such as X-ray free electron laser.« less

  12. Columnar aerosol properties over oceans by combining surface and aircraft measurements: sensitivity analysis.

    PubMed

    Zhang, T; Gordon, H R

    1997-04-20

    We report a sensitivity analysis for the algorithm presented by Gordon and Zhang [Appl. Opt. 34, 5552 (1995)] for inverting the radiance exiting the top and bottom of the atmosphere to yield the aerosol-scattering phase function [P(?)] and single-scattering albedo (omega(0)). The study of the algorithm's sensitivity to radiometric calibration errors, mean-zero instrument noise, sea-surface roughness, the curvature of the Earth's atmosphere, the polarization of the light field, and incorrect assumptions regarding the vertical structure of the atmosphere, indicates that the retrieved omega(0) has excellent stability even for very large values (~2) of the aerosol optical thickness; however, the error in the retrieved P(?) strongly depends on the measurement error and on the assumptions made in the retrieval algorithm. The retrieved phase functions in the blue are usually poor compared with those in the near infrared.

  13. Phase retrieval by coherent modulation imaging.

    PubMed

    Zhang, Fucai; Chen, Bo; Morrison, Graeme R; Vila-Comamala, Joan; Guizar-Sicairos, Manuel; Robinson, Ian K

    2016-11-18

    Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single-diffraction pattern has been an algorithmic and experimental challenge. Here we report a method of phase retrieval that uses a known modulation of the sample exit wave. This coherent modulation imaging method removes inherent ambiguities of coherent diffraction imaging and uses a reliable, rapidly converging iterative algorithm involving three planes. It works for extended samples, does not require tight support for convergence and relaxes dynamic range requirements on the detector. Coherent modulation imaging provides a robust method for imaging in materials and biological science, while its single-shot capability will benefit the investigation of dynamical processes with pulsed sources, such as X-ray free-electron lasers.

  14. DOLPHIn—Dictionary Learning for Phase Retrieval

    NASA Astrophysics Data System (ADS)

    Tillmann, Andreas M.; Eldar, Yonina C.; Mairal, Julien

    2016-12-01

    We propose a new algorithm to learn a dictionary for reconstructing and sparsely encoding signals from measurements without phase. Specifically, we consider the task of estimating a two-dimensional image from squared-magnitude measurements of a complex-valued linear transformation of the original image. Several recent phase retrieval algorithms exploit underlying sparsity of the unknown signal in order to improve recovery performance. In this work, we consider such a sparse signal prior in the context of phase retrieval, when the sparsifying dictionary is not known in advance. Our algorithm jointly reconstructs the unknown signal - possibly corrupted by noise - and learns a dictionary such that each patch of the estimated image can be sparsely represented. Numerical experiments demonstrate that our approach can obtain significantly better reconstructions for phase retrieval problems with noise than methods that cannot exploit such "hidden" sparsity. Moreover, on the theoretical side, we provide a convergence result for our method.

  15. Point shear wave elastography of the pancreas in patients with cystic fibrosis: a comparison with healthy controls.

    PubMed

    Pfahler, Matthias Hermann Christian; Kratzer, Wolfgang; Leichsenring, Michael; Graeter, Tilmann; Schmidt, Stefan Andreas; Wendlik, Inka; Lormes, Elisabeth; Schmidberger, Julian; Fabricius, Dorit

    2018-02-19

    Manifestations of cystic fibrosis in the pancreas are gaining in clinical importance as patients live longer. Conventional ultrasonography and point shear wave elastography (pSWE) imaging are non-invasive and readily available diagnostic methods that are easy to perform. The aim of this study was to perform conventional ultrasonography and obtain pSWE values in the pancreases of patients with cystic fibrosis and to compare the findings with those of healthy controls. 27 patients with cystic fibrosis (13 women/14 men; mean age 27.7 ± 13.7 years; range 9-58 years) and 60 healthy control subjects (30 women/30 men; mean age 30.3 ± 10.0 years; range 22-55 years) underwent examinations of the pancreas with conventional ultrasound and pSWE imaging. Patients with cystic fibrosis have an echogenic pancreatic parenchyma. We found cystic lesions of the pancreas in six patients. pSWE imaging of the pancreatic parenchyma gave significantly lower shear wave velocities in patients with cystic fibrosis than in the control group (1.01 m/s vs 1.30 m/s; p < 0.001). Using pSWE imaging in vivo, we have shown that the pancreas is considerably softer in patients with cystic fibrosis than in a healthy control population.

  16. 2D-Shear Wave Elastography in the Evaluation of Parathyroid Lesions in Patients with Hyperparathyroidism

    PubMed Central

    Golu, Ioana; Sporea, Ioan; Moleriu, Lavinia; Tudor, Anca; Cornianu, Marioara; Balas, Melania; Amzar, Daniela

    2017-01-01

    Background and Aims 2D-shear wave elastography (2D-SWE) is a relatively new elastographic technique. The aim of the present study is to determine the values of the elasticity indexes (EI) measured by 2D-SWE in parathyroid benign lesions (adenomas or hyperplasia) and to establish if this investigation is helpful for the preoperative identification of the parathyroid adenoma. Material and Methods The study groups were represented by 22 patients with primary or tertiary hyperparathyroidism, diagnosed by specific tests, and 43 healthy controls, in whom the thyroid parenchyma was evaluated, in order to compare the EI of the thyroid tissue with those of the parathyroid lesions. Results The mean EI measured by 2D-SWE in the parathyroid lesions was 10.2 ± 4.9 kPa, significantly lower than that of the normal thyroid parenchyma (19.5 ± 7.6 kPa; p = 0.007), indicating soft tissue. For a cutoff value of 12.5 kPa, the EI assessed by 2D-SWE had a sensitivity of 93% and a specificity of 86% (AUC = 0.949; p < 0.001) for predicting parathyroid lesions. Conclusion A value lower than 12.5 kPa for the mean EI measured by 2D-SWE can be used to confirm that the lesion/nodule is a parathyroid adenoma. PMID:28845158

  17. Born semantic: linking data from sensors to users and balancing hardware limitations with data standards

    NASA Astrophysics Data System (ADS)

    Buck, Justin; Leadbetter, Adam

    2015-04-01

    New users for the growing volume of ocean data for purposes such as 'big data' data products and operational data assimilation/ingestion require data to be readily ingestible. This can be achieved via the application of World Wide Web Consortium (W3C) Linked Data and Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) standards to data management. As part of several Horizons 2020 European projects (SenseOCEAN, ODIP, AtlantOS) the British Oceanographic Data Centre (BODC) are working on combining existing data centre architecture and SWE software such as Sensor Observation Services with a Linked Data front end. The standards to enable data delivery are proven and well documented1,2 There are practical difficulties when SWE standards are applied to real time data because of internal hardware bandwidth restrictions and a requirement to constrain data transmission costs. A pragmatic approach is proposed where sensor metadata and data output in OGC standards are implemented "shore-side" with sensors and instruments transmitting unique resolvable web linkages to persistent OGC SensorML records published at the BODC. References: 1. World Wide Web Consortium. (2013). Linked Data. Available: http://www.w3.org/standards/semanticweb/data. Last accessed 8th October 2014. 2. Open Geospatial Consortium. (2014). Sensor Web Enablement (SWE). Available: http://www.opengeospatial.org/ogc/markets-technologies/swe. Last accessed 8th October 2014.

  18. Attribution of declining Western U.S. Snowpack to human effects

    USGS Publications Warehouse

    Pierce, D.W.; Barnett, T.P.; Hidalgo, H.G.; Das, T.; Bonfils, Celine; Santer, B.D.; Bala, G.; Dettinger, M.D.; Cayan, D.R.; Mirin, A.; Wood, A.W.; Nozawa, T.

    2008-01-01

    Observations show snowpack has declined across much of the western United States over the period 1950-99. This reduction has important social and economic implications, as water retained in the snowpack from winter storms forms an important part of the hydrological cycle and water supply in the region. A formal model-based detection and attribution (D-A) study of these reductions is performed. The detection variable is the ratio of 1 April snow water equivalent (SWE) to water-year-to-date precipitation (P), chosen to reduce the effect of P variability on the results. Estimates of natural internal climate variability are obtained from 1600 years of two control simulations performed with fully coupled ocean-atmosphere climate models. Estimates of the SWE/P response to anthropogenic greenhouse gases, ozone, and some aerosols are taken from multiple-member ensembles of perturbation experiments run with two models. The D-A shows the observations and anthropogenically forced models have greater SWE/P reductions than can be explained by natural internal climate variability alone. Model-estimated effects of changes in solar and volcanic forcing likewise do not explain the SWE/P reductions. The mean model estimate is that about half of the SWE/P reductions observed in the west from 1950 to 1999 are the result of climate changes forced by anthropogenic greenhouse gases, ozone, and aerosols. ?? 2008 American Meteorological Society.

  19. MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Data Sets (Revision 2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaustad, KL; Turner, DD; McFarlane, SA

    2011-07-25

    This report provides a short description of the Atmospheric Radiation Measurement (ARM) Climate Research Facility microwave radiometer (MWR) Retrieval (MWRRET) value-added product (VAP) algorithm. This algorithm utilizes a complementary physical retrieval method and applies brightness temperature offsets to reduce spurious liquid water path (LWP) bias in clear skies resulting in significantly improved precipitable water vapor (PWV) and LWP retrievals. We present a general overview of the technique, input parameters, output products, and describe data quality checks. A more complete discussion of the theory and results is given in Turner et al. (2007b).

  20. An introduction to the theory of ptychographic phase retrieval methods

    NASA Astrophysics Data System (ADS)

    Konijnenberg, Sander

    2017-12-01

    An overview of several ptychographic phase retrieval methods and the theory behind them is presented. By looking into the theory behind more basic single-intensity pattern phase retrieval methods, a theoretical framework is provided for analyzing ptychographic algorithms. Extensions of ptychographic algorithms that deal with issues such as partial coherence, thick samples, or uncertainties of the probe or probe positions are also discussed. This introduction is intended for scientists and students without prior experience in the field of phase retrieval or ptychography to quickly get introduced to the theory, so that they can put the more specialized literature in context more easily.

  1. Retrieval of aerosol optical properties using MERIS observations: Algorithm and some first results.

    PubMed

    Mei, Linlu; Rozanov, Vladimir; Vountas, Marco; Burrows, John P; Levy, Robert C; Lotz, Wolfhardt

    2017-08-01

    The MEdium Resolution Imaging Spectrometer (MERIS) instrument on board ESA Envisat made measurements from 2002 to 2012. Although MERIS was limited in spectral coverage, accurate Aerosol Optical Thickness (AOT) from MERIS data are retrieved by using appropriate additional information. We introduce a new AOT retrieval algorithm for MERIS over land surfaces, referred to as eXtensible Bremen AErosol Retrieval (XBAER). XBAER is similar to the "dark-target" (DT) retrieval algorithm used for Moderate-resolution Imaging Spectroradiometer (MODIS), in that it uses a lookup table (LUT) to match to satellite-observed reflectance and derive the AOT. Instead of a global parameterization of surface spectral reflectance, XBAER uses a set of spectral coefficients to prescribe surface properties. In this manner, XBAER is not limited to dark surfaces (vegetation) and retrieves AOT over bright surface (desert, semiarid, and urban areas). Preliminary validation of the MERIS-derived AOT and the ground-based Aerosol Robotic Network (AERONET) measurements yield good agreement, the resulting regression equation is y = (0.92 × ± 0.07) + (0.05 ± 0.01) and Pearson correlation coefficient of R = 0.78. Global monthly means of AOT have been compared from XBAER, MODIS and other satellite-derived datasets.

  2. a New Algorithm for the Aod Inversion from Noaa/avhrr Data

    NASA Astrophysics Data System (ADS)

    Sun, L.; Li, R.; Yu, H.

    2018-04-01

    The advanced very high resolution radiometer (AVHRR) data from the National Oceanic and Atmospheric Administration satellite is one of the earliest data applied in aerosol research. The dense dark vegetation (DDV) algorithm is a popular method for the present land aerosol retrieval. One of the most crucial steps in the DDV algorithm with AVHRR data is estimating the land surface reflectance (LSR). However, LSR cannot be easily estimated because of the lack of a 2.13 μm band. In this article, the moderate resolution imaging spectroradiometer (MODIS) vegetation index product (MYD13) is introduced to support the estimation of AVHRR LSR. The relationship between MODIS NDVI and the AVHRR LSR of the visible band is analysed to retrieve aerosol optical depth (AOD) from AVHRR data. Retrieval experiments are carried out in mid-eastern America. The AOD data from AErosol RObotic NETwork (AERONET) measurements are used to evaluate the aerosol retrieval from AVHRR data, the results indicate that about 74 % of the retrieved AOD are within the expected error range of ±(0.05 + 0.2), and a cross comparison of the AOD retrieval results with the MODIS aerosol product (MYD04) shows that the AOD datasets have a similar spatial distribution.

  3. The role of cloud contamination, aerosol layer height and aerosol model in the assessment of the OMI near-UV retrievals over the ocean

    NASA Astrophysics Data System (ADS)

    Gassó, Santiago; Torres, Omar

    2016-07-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD < 0.3, 30 % for AOD > 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm ˜ < 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (< 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by varying the different assumed parameters in the retrieval (imaginary index of refraction, size distribution, aerosol height, particle shape). It was found that the spherical shape assumption for dust in the current retrieval is the main cause of the underestimate. In addition, it is demonstrated in an example how an incorrect assumption of the aerosol height can lead to an underestimate. Nevertheless, this is not as significant as the effect of particle shape. These findings will be incorporated in a future version of the retrieval algorithm.

  4. An incremental DPMM-based method for trajectory clustering, modeling, and retrieval.

    PubMed

    Hu, Weiming; Li, Xi; Tian, Guodong; Maybank, Stephen; Zhang, Zhongfei

    2013-05-01

    Trajectory analysis is the basis for many applications, such as indexing of motion events in videos, activity recognition, and surveillance. In this paper, the Dirichlet process mixture model (DPMM) is applied to trajectory clustering, modeling, and retrieval. We propose an incremental version of a DPMM-based clustering algorithm and apply it to cluster trajectories. An appropriate number of trajectory clusters is determined automatically. When trajectories belonging to new clusters arrive, the new clusters can be identified online and added to the model without any retraining using the previous data. A time-sensitive Dirichlet process mixture model (tDPMM) is applied to each trajectory cluster for learning the trajectory pattern which represents the time-series characteristics of the trajectories in the cluster. Then, a parameterized index is constructed for each cluster. A novel likelihood estimation algorithm for the tDPMM is proposed, and a trajectory-based video retrieval model is developed. The tDPMM-based probabilistic matching method and the DPMM-based model growing method are combined to make the retrieval model scalable and adaptable. Experimental comparisons with state-of-the-art algorithms demonstrate the effectiveness of our algorithm.

  5. Application of the LSQR algorithm in non-parametric estimation of aerosol size distribution

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Lew, Zhongyuan; Ruan, Liming; Tan, Heping; Luo, Kun

    2016-05-01

    Based on the Least Squares QR decomposition (LSQR) algorithm, the aerosol size distribution (ASD) is retrieved in non-parametric approach. The direct problem is solved by the Anomalous Diffraction Approximation (ADA) and the Lambert-Beer Law. An optimal wavelength selection method is developed to improve the retrieval accuracy of the ASD. The proposed optimal wavelength set is selected by the method which can make the measurement signals sensitive to wavelength and decrease the degree of the ill-condition of coefficient matrix of linear systems effectively to enhance the anti-interference ability of retrieval results. Two common kinds of monomodal and bimodal ASDs, log-normal (L-N) and Gamma distributions, are estimated, respectively. Numerical tests show that the LSQR algorithm can be successfully applied to retrieve the ASD with high stability in the presence of random noise and low susceptibility to the shape of distributions. Finally, the experimental measurement ASD over Harbin in China is recovered reasonably. All the results confirm that the LSQR algorithm combined with the optimal wavelength selection method is an effective and reliable technique in non-parametric estimation of ASD.

  6. Fast Simulators for Satellite Cloud Optical Centroid Pressure Retrievals, 1. Evaluation of OMI Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Vasilkov, A. P.; Gupta, Pawan; Bhartia, P. K.; Veefkind, Pepijn; Sneep, Maarten; deHaan, Johan; Polonsky, Igor; Spurr, Robert

    2011-01-01

    We have developed a relatively simple scheme for simulating retrieved cloud optical centroid pressures (OCP) from satellite solar backscatter observations. We have compared simulator results with those from more detailed retrieval simulators that more fully account for the complex radiative transfer in a cloudy atmosphere. We used this fast simulator to conduct a comprehensive evaluation of cloud OCPs from the two OMI algorithms using collocated data from CloudSat and Aqua MODIS, a unique situation afforded by the A-train formation of satellites. We find that both OMI algorithms perform reasonably well and that the two algorithms agree better with each other than either does with the collocated CloudSat data. This indicates that patchy snow/ice, cloud 3D, and aerosol effects not simulated with the CloudSat data are affecting both algorithms similarly. We note that the collocation with CloudSat occurs mainly on the East side of OMI's swath. Therefore, we are not able to address cross-track biases in OMI cloud OCP retrievals. Our fast simulator may also be used to simulate cloud OCP from output generated by general circulation models (GCM) with appropriate account of cloud overlap. We have implemented such a scheme and plan to compare OMI data with GCM output in the near future.

  7. Retrieval of total water vapour in the Arctic using microwave humidity sounders

    NASA Astrophysics Data System (ADS)

    Cristian Scarlat, Raul; Melsheimer, Christian; Heygster, Georg

    2018-04-01

    Quantitative retrievals of atmospheric water vapour in the Arctic present numerous challenges because of the particular climate characteristics of this area. Here, we attempt to build upon the work of Melsheimer and Heygster (2008) to retrieve total atmospheric water vapour (TWV) in the Arctic from satellite microwave radiometers. While the above-mentioned algorithm deals primarily with the ice-covered central Arctic, with this work we aim to extend the coverage to partially ice-covered and ice-free areas. By using modelled values for the microwave emissivity of the ice-free sea surface, we develop two sub-algorithms using different sets of channels that deal solely with open-ocean areas. The new algorithm extends the spatial coverage of the retrieval throughout the year but especially in the warmer months when higher TWV values are frequent. The high TWV measurements over both sea-ice and open-water surfaces are, however, connected to larger uncertainties as the retrieval values are close to the instrument saturation limits.This approach allows us to apply the algorithm to regions where previously no data were available and ensures a more consistent physical analysis of the satellite measurements by taking into account the contribution of the surface emissivity to the measured signal.

  8. Retrieving the properties of ice-phase precipitation with multi-frequency radar measurements

    NASA Astrophysics Data System (ADS)

    Mace, G. G.; Gergely, M.; Mascio, J.

    2017-12-01

    The objective of most retrieval algorithms applied to remote sensing measurements is the microphysical properties that a model might predict such as condensed water content, particle number, or effective size. However, because ice crystals grow and aggregate into complex non spherical shapes, the microphysical properties of interest are very much dependent on the physical characteristics of the precipitation such as how mass and crystal area are distributed as a function of particle size. Such physical properties also have a strong influence on how microwave electromagnetic energy scatters from ice crystals causing significant ambiguity in retrieval algorithms. In fact, passive and active microwave remote sensing measurements are typically nearly as sensitive to the ice crystal physical properties as they are to the microphysical characteristics that are typically the aim of the retrieval algorithm. There has, however, been active development of multi frequency algorithms recently that attempt to ameliorate and even exploit this sensitivity. In this paper, we will review these approaches and present practical applications of retrieving ice crystal properties such as mass- and area dimensional relationships from single and dual frequency radar measurements of precipitating ice using data collected aboard ship in the Southern Ocean and from remote sensors in the Rocky Mountains of the Western U.S.

  9. Facing the phase problem in Coherent Diffractive Imaging via Memetic Algorithms.

    PubMed

    Colombo, Alessandro; Galli, Davide Emilio; De Caro, Liberato; Scattarella, Francesco; Carlino, Elvio

    2017-02-09

    Coherent Diffractive Imaging is a lensless technique that allows imaging of matter at a spatial resolution not limited by lens aberrations. This technique exploits the measured diffraction pattern of a coherent beam scattered by periodic and non-periodic objects to retrieve spatial information. The diffracted intensity, for weak-scattering objects, is proportional to the modulus of the Fourier Transform of the object scattering function. Any phase information, needed to retrieve its scattering function, has to be retrieved by means of suitable algorithms. Here we present a new approach, based on a memetic algorithm, i.e. a hybrid genetic algorithm, to face the phase problem, which exploits the synergy of deterministic and stochastic optimization methods. The new approach has been tested on simulated data and applied to the phasing of transmission electron microscopy coherent electron diffraction data of a SrTiO 3 sample. We have been able to quantitatively retrieve the projected atomic potential, and also image the oxygen columns, which are not directly visible in the relevant high-resolution transmission electron microscopy images. Our approach proves to be a new powerful tool for the study of matter at atomic resolution and opens new perspectives in those applications in which effective phase retrieval is necessary.

  10. Development of MODIS data-based algorithm for retrieving sea surface temperature in coastal waters.

    PubMed

    Wang, Jiao; Deng, Zhiqiang

    2017-06-01

    A new algorithm was developed for retrieving sea surface temperature (SST) in coastal waters using satellite remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua platform. The new SST algorithm was trained using the Artificial Neural Network (ANN) method and tested using 8 years of remote sensing data from MODIS Aqua sensor and in situ sensing data from the US coastal waters in Louisiana, Texas, Florida, California, and New Jersey. The ANN algorithm could be utilized to map SST in both deep offshore and particularly shallow nearshore waters at the high spatial resolution of 1 km, greatly expanding the coverage of remote sensing-based SST data from offshore waters to nearshore waters. Applications of the ANN algorithm require only the remotely sensed reflectance values from the two MODIS Aqua thermal bands 31 and 32 as input data. Application results indicated that the ANN algorithm was able to explaining 82-90% variations in observed SST in US coastal waters. While the algorithm is generally applicable to the retrieval of SST, it works best for nearshore waters where important coastal resources are located and existing algorithms are either not applicable or do not work well, making the new ANN-based SST algorithm unique and particularly useful to coastal resource management.

  11. Optimal estimation retrieval of aerosol microphysical properties from SAGE~II satellite observations in the volcanically unperturbed lower stratosphere

    NASA Astrophysics Data System (ADS)

    Wurl, D.; Grainger, R. G.; McDonald, A. J.; Deshler, T.

    2010-05-01

    Stratospheric aerosol particles under non-volcanic conditions are typically smaller than 0.1 μm. Due to fundamental limitations of the scattering theory in the Rayleigh limit, these tiny particles are hard to measure by satellite instruments. As a consequence, current estimates of global aerosol properties retrieved from spectral aerosol extinction measurements tend to be strongly biased. Aerosol surface area densities, for instance, are observed to be about 40% smaller than those derived from correlative in situ measurements (Deshler et al., 2003). An accurate knowledge of the global distribution of aerosol properties is, however, essential to better understand and quantify the role they play in atmospheric chemistry, dynamics, radiation and climate. To address this need a new retrieval algorithm was developed, which employs a nonlinear Optimal Estimation (OE) method to iteratively solve for the monomodal size distribution parameters which are statistically most consistent with both the satellite-measured multi-wavelength aerosol extinction data and a priori information. By thus combining spectral extinction measurements (at visible to near infrared wavelengths) with prior knowledge of aerosol properties at background level, even the smallest particles are taken into account which are practically invisible to optical remote sensing instruments. The performance of the OE retrieval algorithm was assessed based on synthetic spectral extinction data generated from both monomodal and small-mode-dominant bimodal sulphuric acid aerosol size distributions. For monomodal background aerosol, the new algorithm was shown to fairly accurately retrieve the particle sizes and associated integrated properties (surface area and volume densities), even in the presence of large extinction uncertainty. The associated retrieved uncertainties are a good estimate of the true errors. In the case of bimodal background aerosol, where the retrieved (monomodal) size distributions naturally differ from the correct bimodal values, the associated surface area (A) and volume densities (V) are, nevertheless, fairly accurately retrieved, except at values larger than 1.0 μm2 cm-3 (A) and 0.05 μm3 cm-3 (V), where they tend to underestimate the true bimodal values. Due to the limited information content in the SAGE II spectral extinction measurements this kind of forward model error cannot be avoided here. Nevertheless, the retrieved uncertainties are a good estimate of the true errors in the retrieved integrated properties, except where the surface area density exceeds the 1.0 μm2 cm-3 threshold. When applied to near-global SAGE II satellite extinction measured in 1999 the retrieved OE surface area and volume densities are observed to be larger by, respectively, 20-50% and 10-40% compared to those estimates obtained by the SAGE~II operational retrieval algorithm. An examination of the OE algorithm biases with in situ data indicates that the new OE aerosol property estimates tend to be more realistic than previous estimates obtained from remotely sensed data through other retrieval techniques. Based on the results of this study we therefore suggest that the new Optimal Estimation retrieval algorithm is able to contribute to an advancement in aerosol research by considerably improving current estimates of aerosol properties in the lower stratosphere under low aerosol loading conditions.

  12. Numerical phase retrieval from beam intensity measurements in three planes

    NASA Astrophysics Data System (ADS)

    Bruel, Laurent

    2003-05-01

    A system and method have been developed at CEA to retrieve phase information from multiple intensity measurements along a laser beam. The device has been patented. Commonly used devices for beam measurement provide phase and intensity information separately or with a rather poor resolution whereas the MIROMA method provides both at the same time, allowing direct use of the results in numerical models. Usual phase retrieval algorithms use two intensity measurements, typically the image plane and the focal plane (Gerschberg-Saxton algorithm) related by a Fourier transform, or the image plane and a lightly defocus plane (D.L. Misell). The principal drawback of such iterative algorithms is their inability to provide unambiguous convergence in all situations. The algorithms can stagnate on bad solutions and the error between measured and calculated intensities remains unacceptable. If three planes rather than two are used, the data redundancy created confers to the method good convergence capability and noise immunity. It provides an excellent agreement between intensity determined from the retrieved phase data set in the image plane and intensity measurements in any diffraction plane. The method employed for MIROMA is inspired from GS algorithm, replacing Fourier transforms by a beam-propagating kernel with gradient search accelerating techniques and special care for phase branch cuts. A fast one dimensional algorithm provides an initial guess for the iterative algorithm. Applications of the algorithm on synthetic data find out the best reconstruction planes that have to be chosen. Robustness and sensibility are evaluated. Results on collimated and distorted laser beams are presented.

  13. Total ozone column derived from GOME and SCIAMACHY using KNMI retrieval algorithms: Validation against Brewer measurements at the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Antón, M.; Kroon, M.; López, M.; Vilaplana, J. M.; Bañón, M.; van der A, R.; Veefkind, J. P.; Stammes, P.; Alados-Arboledas, L.

    2011-11-01

    This article focuses on the validation of the total ozone column (TOC) data set acquired by the Global Ozone Monitoring Experiment (GOME) and the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite remote sensing instruments using the Total Ozone Retrieval Scheme for the GOME Instrument Based on the Ozone Monitoring Instrument (TOGOMI) and Total Ozone Retrieval Scheme for the SCIAMACHY Instrument Based on the Ozone Monitoring Instrument (TOSOMI) retrieval algorithms developed by the Royal Netherlands Meteorological Institute. In this analysis, spatially colocated, daily averaged ground-based observations performed by five well-calibrated Brewer spectrophotometers at the Iberian Peninsula are used. The period of study runs from January 2004 to December 2009. The agreement between satellite and ground-based TOC data is excellent (R2 higher than 0.94). Nevertheless, the TOC data derived from both satellite instruments underestimate the ground-based data. On average, this underestimation is 1.1% for GOME and 1.3% for SCIAMACHY. The SCIAMACHY-Brewer TOC differences show a significant solar zenith angle (SZA) dependence which causes a systematic seasonal dependence. By contrast, GOME-Brewer TOC differences show no significant SZA dependence and hence no seasonality although processed with exactly the same algorithm. The satellite-Brewer TOC differences for the two satellite instruments show a clear and similar dependence on the viewing zenith angle under cloudy conditions. In addition, both the GOME-Brewer and SCIAMACHY-Brewer TOC differences reveal a very similar behavior with respect to the satellite cloud properties, being cloud fraction and cloud top pressure, which originate from the same cloud algorithm (Fast Retrieval Scheme for Clouds from the Oxygen A-Band (FRESCO+)) in both the TOSOMI and TOGOMI retrieval algorithms.

  14. New approach to the retrieval of AOD and its uncertainty from MISR observations over dark water

    NASA Astrophysics Data System (ADS)

    Witek, Marcin L.; Garay, Michael J.; Diner, David J.; Bull, Michael A.; Seidel, Felix C.

    2018-01-01

    A new method for retrieving aerosol optical depth (AOD) and its uncertainty from Multi-angle Imaging SpectroRadiometer (MISR) observations over dark water is outlined. MISR's aerosol retrieval algorithm calculates cost functions between observed and pre-simulated radiances for a range of AODs (from 0.0 to 3.0) and a prescribed set of aerosol mixtures. The previous version 22 (V22) operational algorithm considered only the AOD that minimized the cost function for each aerosol mixture and then used a combination of these values to compute the final, best estimate AOD and associated uncertainty. The new approach considers the entire range of cost functions associated with each aerosol mixture. The uncertainty of the reported AOD depends on a combination of (a) the absolute values of the cost functions for each aerosol mixture, (b) the widths of the cost function distributions as a function of AOD, and (c) the spread of the cost function distributions among the ensemble of mixtures. A key benefit of the new approach is that, unlike the V22 algorithm, it does not rely on empirical thresholds imposed on the cost function to determine the success or failure of a particular mixture. Furthermore, a new aerosol retrieval confidence index (ARCI) is established that can be used to screen high-AOD retrieval blunders caused by cloud contamination or other factors. Requiring ARCI ≥ 0.15 as a condition for retrieval success is supported through statistical analysis and outperforms the thresholds used in the V22 algorithm. The described changes to the MISR dark water algorithm will become operational in the new MISR aerosol product (V23), planned for release in 2017.

  15. New Approach to the Retrieval of AOD and its Uncertainty from MISR Observations Over Dark Water

    NASA Astrophysics Data System (ADS)

    Witek, M. L.; Garay, M. J.; Diner, D. J.; Bull, M. A.; Seidel, F.

    2017-12-01

    A new method for retrieving aerosol optical depth (AOD) and its uncertainty from Multi-angle Imaging SpectroRadiometer (MISR) observations over dark water is outlined. MISR's aerosol retrieval algorithm calculates cost functions between observed and pre-simulated radiances for a range of AODs (from 0.0 to 3.0) and a prescribed set of aerosol mixtures. The previous Version 22 (V22) operational algorithm considered only the AOD that minimized the cost function for each aerosol mixture, then used a combination of these values to compute the final, "best estimate" AOD and associated uncertainty. The new approach considers the entire range of cost functions associated with each aerosol mixture. The uncertainty of the reported AOD depends on a combination of a) the absolute values of the cost functions for each aerosol mixture, b) the widths of the cost function distributions as a function of AOD, and c) the spread of the cost function distributions among the ensemble of mixtures. A key benefit of the new approach is that, unlike the V22 algorithm, it does not rely on arbitrary thresholds imposed on the cost function to determine the success or failure of a particular mixture. Furthermore, a new Aerosol Retrieval Confidence Index (ARCI) is established that can be used to screen high-AOD retrieval blunders caused by cloud contamination or other factors. Requiring ARCI≥0.15 as a condition for retrieval success is supported through statistical analysis and outperforms the thresholds used in the V22 algorithm. The described changes to the MISR dark water algorithm will become operational in the new MISR aerosol product (V23), planned for release in 2017.

  16. Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements

    NASA Astrophysics Data System (ADS)

    Veselovskii, I.; Dubovik, O.; Kolgotin, A.; Lapyonok, T.; di Girolamo, P.; Summa, D.; Whiteman, D. N.; Mishchenko, M.; Tanré, D.

    2010-11-01

    Multiwavelength (MW) Raman lidars have demonstrated their potential to profile particle parameters; however, until now, the physical models used in retrieval algorithms for processing MW lidar data have been predominantly based on the Mie theory. This approach is applicable to the modeling of light scattering by spherically symmetric particles only and does not adequately reproduce the scattering by generally nonspherical desert dust particles. Here we present an algorithm based on a model of randomly oriented spheroids for the inversion of multiwavelength lidar data. The aerosols are modeled as a mixture of two aerosol components: one composed only of spherical and the second composed of nonspherical particles. The nonspherical component is an ensemble of randomly oriented spheroids with size-independent shape distribution. This approach has been integrated into an algorithm retrieving aerosol properties from the observations with a Raman lidar based on a tripled Nd:YAG laser. Such a lidar provides three backscattering coefficients, two extinction coefficients, and the particle depolarization ratio at a single or multiple wavelengths. Simulations were performed for a bimodal particle size distribution typical of desert dust particles. The uncertainty of the retrieved particle surface, volume concentration, and effective radius for 10% measurement errors is estimated to be below 30%. We show that if the effect of particle nonsphericity is not accounted for, the errors in the retrieved aerosol parameters increase notably. The algorithm was tested with experimental data from a Saharan dust outbreak episode, measured with the BASIL multiwavelength Raman lidar in August 2007. The vertical profiles of particle parameters as well as the particle size distributions at different heights were retrieved. It was shown that the algorithm developed provided substantially reasonable results consistent with the available independent information about the observed aerosol event.

  17. Broadband Phase Retrieval for Image-Based Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A focus-diverse phase-retrieval algorithm has been shown to perform adequately for the purpose of image-based wavefront sensing when (1) broadband light (typically spanning the visible spectrum) is used in forming the images by use of an optical system under test and (2) the assumption of monochromaticity is applied to the broadband image data. Heretofore, it had been assumed that in order to obtain adequate performance, it is necessary to use narrowband or monochromatic light. Some background information, including definitions of terms and a brief description of pertinent aspects of image-based phase retrieval, is prerequisite to a meaningful summary of the present development. Phase retrieval is a general term used in optics to denote estimation of optical imperfections or aberrations of an optical system under test. The term image-based wavefront sensing refers to a general class of algorithms that recover optical phase information, and phase-retrieval algorithms constitute a subset of this class. In phase retrieval, one utilizes the measured response of the optical system under test to produce a phase estimate. The optical response of the system is defined as the image of a point-source object, which could be a star or a laboratory point source. The phase-retrieval problem is characterized as image-based in the sense that a charge-coupled-device camera, preferably of scientific imaging quality, is used to collect image data where the optical system would normally form an image. In a variant of phase retrieval, denoted phase-diverse phase retrieval [which can include focus-diverse phase retrieval (in which various defocus planes are used)], an additional known aberration (or an equivalent diversity function) is superimposed as an aid in estimating unknown aberrations by use of an image-based wavefront-sensing algorithm. Image-based phase-retrieval differs from such other wavefront-sensing methods, such as interferometry, shearing interferometry, curvature wavefront sensing, and Shack-Hartmann sensing, all of which entail disadvantages in comparison with image-based methods. The main disadvantages of these non-image based methods are complexity of test equipment and the need for a wavefront reference.

  18. New Features of the Collection 4 MODIS LAI and FPAR Product

    NASA Astrophysics Data System (ADS)

    Bin, T.; Yang, W.; Dong, H.; Shabanov, N.; Knyazikhin, Y.; Myneni, R.

    2003-12-01

    An algorithm based on physics of radiative transfer in vegetation canopies for the retrieval of vegetation green leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FPAR) from MODIS surface reflectance data was developed, prototyped and is in operational production at NASA computing facilities since June 2000. This poster highlights recent changes in the operational MODIS LAI and FPAR algorithm introduced for collection 4 data reprocessing. The changes to the algorithm are targeted to improve agreement of retrieved LAI and FPAR with corresponding field measurements, improve consistency of Quality Control (QC) definitions and miscellaneous bug fixes as summarized below. * Improvement of LUTs for the main and back-up algorithms for biomes 1 and 3. Benefits: a) increase in quality of retrievals; b) non-physical peaks in the global LAI distribution have been removed; c) improved agreement with field measurements * Improved QA scheme. Benefits: a) consistency between MODLAND and SCF quality flags has been achieved; b)ambiguity in QA has been resolved * New 8-day compositing scheme. Benefits: a) compositing over best quality retrievals, instead of all retrievals; b) lowers LAI values, decreases saturation and number of pixels generated by the back-up * At-launch static IGBP land cover, input to the LAI/FPAR algorithm, was replaced with the MODIS land cover map. Benefits: a) crosswalking of 17 classes IGBP scheme to 6-biome LC has been eliminated; b) uncertainties in the MODIS LAI/FPAR product due to uncertainties in land cover map have been reduced

  19. Retrieval Lesson Learned from NAST-I Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Liu, Xu; Larar, Allen M.; Mango, Stephen A.

    2007-01-01

    The retrieval lesson learned is important to many current and future hyperspectral remote sensors. Validated retrieval algorithms demonstrate the advancement of hyperspectral remote sensing capabilities to be achieved with current and future satellite instruments.

  20. Metabolic and Cardiovascular Response to Shallow Water Exercise in Young and Older Women.

    ERIC Educational Resources Information Center

    Campbell, Jennifer A.; D'Acquisto, Leo J.; D'Acquisto, Debra M.; Cline, Michael G.

    2003-01-01

    Compared the metabolic and cardiovascular responses of young and older women while performing shallow water exercise (SWE). Overall, SWE elicited metabolic and cardiovascular responses that met American College of Sports Medicine's guidelines for establishing health benefits. Older females self-selected a greater relative exercise intensity during…

  1. Verification, improvement and application of aerosol optical depths in China Part 1: Inter-comparison of NPP-VIIRS and Aqua-MODIS

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Sun, Lin; Huang, Bo; Bilal, Muhammad; Zhang, Zhaoyang; Wang, Lunche

    2018-02-01

    The objective of this study is to evaluate typical aerosol optical depth (AOD) products in China, which experienced seriously increasing atmospheric particulate pollution. For this, the Aqua-MODerate resolution Imaging Spectroradiometer (MODIS) AOD products (MYD04) at 10 km spatial resolution and Visible Infrared Imaging Radiometer Suite (VIIRS) Environmental Data Record (EDR) AOD product at 6 km resolution for different Quality Flags (QF) are obtained for validation against AErosol RObotic NETwork (AERONET) AOD measurements during 2013-2016. Results show that VIIRS EDR similarly Dark Target (DT) and MODIS DT algorithms perform worse with only 45.36% and 45.59% of the retrievals (QF = 3) falling within the Expected Error (EE, ±(0.05 + 15%)) compared to the Deep Blue (DB) algorithm (69.25%, QF ≥ 2). The DT retrievals perform poorly over the Beijing-Tianjin-Hebei (BTH) and Yangtze-River-Delta (YRD) regions, which significantly overestimate the AOD observations, but the performance is better over the Pearl-River-Delta (PRD) region than DB retrievals, which seriously under-estimate the AOD loadings. It is not surprising that the DT algorithm performs better over vegetated areas, while the DB algorithm performs better over bright areas mainly depends on the accuracy of surface reflectance estimation over different land use types. In general, the sensitivity of aerosol to apparent reflectance reduces by about 34% with an increasing surface reflectance by 0.01. Moreover, VIIRS EDR and MODIS DT algorithms perform overall better in the winter as 64.53% and 72.22% of the retrievals are within the EE but with less retrievals. However, the DB algorithm performs worst (57.17%) in summer mainly affected by the vegetation growth but there are overall high accuracies with more than 62% of the collections falling within the EE in other three seasons. Results suggest that the quality assurance process can help improve the overall data quality for MYD04 DB retrievals, but it is not always true for VIIRS EDR and MYD04 DT AOD retrievals.

  2. Cross Validation of Rain Drop Size Distribution between GPM and Ground Based Polarmetric radar

    NASA Astrophysics Data System (ADS)

    Chandra, C. V.; Biswas, S.; Le, M.; Chen, H.

    2017-12-01

    Dual-frequency precipitation radar (DPR) on board the Global Precipitation Measurement (GPM) core satellite has reflectivity measurements at two independent frequencies, Ku- and Ka- band. Dual-frequency retrieval algorithms have been developed traditionally through forward, backward, and recursive approaches. However, these algorithms suffer from "dual-value" problem when they retrieve medium volume diameter from dual-frequency ratio (DFR) in rain region. To this end, a hybrid method has been proposed to perform raindrop size distribution (DSD) retrieval for GPM using a linear constraint of DSD along rain profile to avoid "dual-value" problem (Le and Chandrasekar, 2015). In the current GPM level 2 algorithm (Iguchi et al. 2017- Algorithm Theoretical Basis Document) the Solver module retrieves a vertical profile of drop size distributionn from dual-frequency observations and path integrated attenuations. The algorithm details can be found in Seto et al. (2013) . On the other hand, ground based polarimetric radars have been used for a long time to estimate drop size distributions (e.g., Gorgucci et al. 2002 ). In addition, coincident GPM and ground based observations have been cross validated using careful overpass analysis. In this paper, we perform cross validation on raindrop size distribution retrieval from three sources, namely the hybrid method, the standard products from the solver module and DSD retrievals from ground polarimetric radars. The results are presented from two NEXRAD radars located in Dallas -Fort Worth, Texas (i.e., KFWS radar) and Melbourne, Florida (i.e., KMLB radar). The results demonstrate the ability of DPR observations to produce DSD estimates, which can be used subsequently to generate global DSD maps. References: Seto, S., T. Iguchi, T. Oki, 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement mission's single/dual-frequency radar measurements. IEEE Transactions on Geoscience and Remote Sensing, 51(12), 5239-5251. Gorgucci, E., Chandrasekar, V., Bringi, V. N., and Scarchilli, G.: Estimation of Raindrop Size Distribution Parameters from Polarimetric Radar Measurements, J. Atmos. Sci., 59, 2373-2384, doi:10.1175/1520-0469(2002)0592.0.CO;2, 2002.

  3. Validation and Comparison of AATRS AOD L2 Products over China

    NASA Astrophysics Data System (ADS)

    Che, Yahui; Xue, Yong; Guang, Jie; Guo, Jianping; Li, Ying

    2016-04-01

    The Advanced Along-Track Scanning Radiometer (AATSR) aboard on ENVISAT has been used to observe the Earth for more than 10 years since than 2002. One of main applications of AATSR instrument is to observe atmospheric aerosol, especially in retrieval of aerosol optical depth (AOD), taking advantage of its dual-view that helps to separate the contribution of aerosol from top of atmosphere reflectance (A. A. Kokhanovsky and de Leeuw, 2009). The project of Aerosol_CCI, as part of European Space Agency's Climate Change Initiative (CCI), has released new AATSR aerosol AOD products by the of 2015, including the SU v4.21 product from Swansea algorithm, ADV v2.3 product from the ATSR-2/AATSR dual view aerosol retrieval algorithm (ADV) and ORAC v03.04 product from the Oxford-RAL Retrieval of Aerosol and Cloud algorithm. The previous versions of these three AOD level 2 (L2) products in 2008 have been validated over mainland China (Che and Xue, 2015). In this paper, we validated these AATSR AOD products with latest versions in mainland China in 2007, 2008 and 2010 by the means of comparison with the AErosol RObotic NETwork (AERONET) and the China Aerosol Remote Sensing Network (CARSNET). The combination of AERONET and CARSNET helps to make up for the disadvantages of small number and uneven distribution of AEROENT cites. The validation results show different performance of these AOD products over China. The performances of SU and ADV products seem to be the same with close correlation coefficient (CC) about 08~0.9 and root mean square (RMS) within 0.15 in all three years, and sensitive to high AOD values (AOD >1): more AODs and more underestimated. However, these two products do exist difference, which is that the SU algorithm retrieves more high AODs, leading to more space-time validation matches with ground-based data. The ORAC algorithm is different from the others, it can be not only used to retrieve low AODs but also high AODs over different landcover types. Even though ORAC algorithm has ability in retrieving AODs in different values, it shows largest uncertainty in retrieving different AODs.

  4. The TOMS V9 Algorithm for OMPS Nadir Mapper Total Ozone: An Enhanced Design That Ensures Data Continuity

    NASA Astrophysics Data System (ADS)

    Haffner, D. P.; McPeters, R. D.; Bhartia, P. K.; Labow, G. J.

    2015-12-01

    The TOMS V9 total ozone algorithm will be applied to the OMPS Nadir Mapper instrument to supersede the exisiting V8.6 data product in operational processing and re-processing for public release. Becuase the quality of the V8.6 data is already quite high, enchancements in V9 are mainly with information provided by the retrieval and simplifcations to the algorithm. The design of the V9 algorithm has been influenced by improvements both in our knowledge of atmospheric effects, such as those of clouds made possible by studies with OMI, and also limitations in the V8 algorithms applied to both OMI and OMPS. But the namesake instruments of the TOMS algorithm are substantially more limited in their spectral and noise characterisitics, and a requirement of our algorithm is to also apply the algorithm to these discrete band spectrometers which date back to 1978. To achieve continuity for all these instruments, the TOMS V9 algorithm continues to use radiances in discrete bands, but now uses Rodgers optimal estimation to retrieve a coarse profile and provide uncertainties for each retrieval. The algorithm remains capable of achieving high accuracy results with a small number of discrete wavelengths, and in extreme cases, such as unusual profile shapes and high solar zenith angles, the quality of the retrievals is improved. Despite the intended design to use limited wavlenegths, the algorithm can also utilitze additional wavelengths from hyperspectral sensors like OMPS to augment the retreival's error detection and information content; for example SO2 detection and correction of Ring effect on atmospheric radiances. We discuss these and other aspects of the V9 algorithm as it will be applied to OMPS, and will mention potential improvements which aim to take advantage of a synergy with OMPS Limb Profiler and Nadir Mapper to further improve the quality of total ozone from the OMPS instrument.

  5. A new randomized Kaczmarz based kernel canonical correlation analysis algorithm with applications to information retrieval.

    PubMed

    Cai, Jia; Tang, Yi

    2018-02-01

    Canonical correlation analysis (CCA) is a powerful statistical tool for detecting the linear relationship between two sets of multivariate variables. Kernel generalization of it, namely, kernel CCA is proposed to describe nonlinear relationship between two variables. Although kernel CCA can achieve dimensionality reduction results for high-dimensional data feature selection problem, it also yields the so called over-fitting phenomenon. In this paper, we consider a new kernel CCA algorithm via randomized Kaczmarz method. The main contributions of the paper are: (1) A new kernel CCA algorithm is developed, (2) theoretical convergence of the proposed algorithm is addressed by means of scaled condition number, (3) a lower bound which addresses the minimum number of iterations is presented. We test on both synthetic dataset and several real-world datasets in cross-language document retrieval and content-based image retrieval to demonstrate the effectiveness of the proposed algorithm. Numerical results imply the performance and efficiency of the new algorithm, which is competitive with several state-of-the-art kernel CCA methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Development of GK-2A cloud optical and microphysical properties retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Yum, S. S.; Um, J.

    2017-12-01

    Cloud and aerosol radiative forcing is known to be one of the the largest uncertainties in climate change prediction. To reduce this uncertainty, remote sensing observation of cloud radiative and microphysical properties have been used since 1970s and the corresponding remote sensing techniques and instruments have been developed. As a part of such effort, Geo-KOMPSAT-2A (Geostationary Korea Multi-Purpose Satellite-2A, GK-2A) will be launched in 2018. On the GK-2A, the Advanced Meteorological Imager (AMI) is primary instrument which have 3 visible, 3 near-infrared, and 10 infrared channels. To retrieve optical and microphysical properties of clouds using AMI measurements, the preliminary version of new cloud retrieval algorithm for GK-2A was developed and several validation tests were conducted. This algorithm retrieves cloud optical thickness (COT), cloud effective radius (CER), liquid water path (LWP), and ice water path (IWP), so we named this algorithm as Daytime Cloud Optical thickness, Effective radius and liquid and ice Water path (DCOEW). The DCOEW uses cloud reflectance at visible and near-infrared channels as input data. An optimal estimation (OE) approach that requires appropriate a-priori values and measurement error information is used to retrieve COT and CER. LWP and IWP are calculated using empirical relationships between COT/CER and cloud water path that were determined previously. To validate retrieved cloud properties, we compared DCOEW output data with other operational satellite data. For COT and CER validation, we used two different data sets. To compare algorithms that use cloud reflectance at visible and near-IR channels as input data, MODIS MYD06 cloud product was selected. For the validation with cloud products that are based on microwave measurements, COT(2B-TAU)/CER(2C-ICE) data retrieved from CloudSat cloud profiling radar (W-band, 94 GHz) was used. For cloud water path validation, AMSR-2 Level-3 Cloud liquid water data was used. Detailed results will be shown at the conference.

  7. The impact of aerosol vertical distribution on aerosol optical depth retrieval using CALIPSO and MODIS data: Case study over dust and smoke regions

    NASA Astrophysics Data System (ADS)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2017-08-01

    Global quantitative aerosol information has been derived from MODerate Resolution Imaging SpectroRadiometer (MODIS) observations for decades since early 2000 and widely used for air quality and climate change research. However, the operational MODIS Aerosol Optical Depth (AOD) products Collection 6 (C6) can still be biased, because of uncertainty in assumed aerosol optical properties and aerosol vertical distribution. This study investigates the impact of aerosol vertical distribution on the AOD retrieval. We developed a new algorithm by considering dynamic vertical profiles, which is an adaptation of MODIS C6 Dark Target (C6_DT) algorithm over land. The new algorithm makes use of the aerosol vertical profile extracted from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements to generate an accurate top of the atmosphere (TOA) reflectance for the AOD retrieval, where the profile is assumed to be a single layer and represented as a Gaussian function with the mean height as single variable. To test the impact, a comparison was made between MODIS DT and Aerosol Robotic Network (AERONET) AOD, over dust and smoke regions. The results show that the aerosol vertical distribution has a strong impact on the AOD retrieval. The assumed aerosol layers close to the ground can negatively bias the retrievals in C6_DT. Regarding the evaluated smoke and dust layers, the new algorithm can improve the retrieval by reducing the negative biases by 3-5%.

  8. The ESA Cloud CCI project: Generation of Multi Sensor consistent Cloud Properties with an Optimal Estimation Based Retrieval Algorithm

    NASA Astrophysics Data System (ADS)

    Jerg, M.; Stengel, M.; Hollmann, R.; Poulsen, C.

    2012-04-01

    The ultimate objective of the ESA Climate Change Initiative (CCI) Cloud project is to provide long-term coherent cloud property data sets exploiting and improving on the synergetic capabilities of past, existing, and upcoming European and American satellite missions. The synergetic approach allows not only for improved accuracy and extended temporal and spatial sampling of retrieved cloud properties better than those provided by single instruments alone but potentially also for improved (inter-)calibration and enhanced homogeneity and stability of the derived time series. Such advances are required by the scientific community to facilitate further progress in satellite-based climate monitoring, which leads to a better understanding of climate. Some of the primary objectives of ESA Cloud CCI Cloud are (1) the development of inter-calibrated radiance data sets, so called Fundamental Climate Data Records - for ESA and non ESA instruments through an international collaboration, (2) the development of an optimal estimation based retrieval framework for cloud related essential climate variables like cloud cover, cloud top height and temperature, liquid and ice water path, and (3) the development of two multi-annual global data sets for the mentioned cloud properties including uncertainty estimates. These two data sets are characterized by different combinations of satellite systems: the AVHRR heritage product comprising (A)ATSR, AVHRR and MODIS and the novel (A)ATSR - MERIS product which is based on a synergetic retrieval using both instruments. Both datasets cover the years 2007-2009 in the first project phase. ESA Cloud CCI will also carry out a comprehensive validation of the cloud property products and provide a common data base as in the framework of the Global Energy and Water Cycle Experiment (GEWEX). The presentation will give an overview of the ESA Cloud CCI project and its goals and approaches and then continue with results from the Round Robin algorithm comparison exercise carried out at the beginning of the project which included three algorithms. The purpose of the exercise was to assess and compare existing cloud retrieval algorithms in order to chose one of them as backbone of the retrieval system and also identify areas of potential improvement and general strengths and weaknesses of the algorithm. Furthermore the presentation will elaborate on the optimal estimation algorithm subsequently chosen to derive the heritage product and which is presently further developed and will be employed for the AVHRR heritage product. The algorithm's capabilities to coherently and simultaneously process all radiative input and yield retrieval parameters together with associated uncertainty estimates will be presented together with first results for the heritage product. In the course of the project the algorithm is being developed into a freely and publicly available community retrieval system for interested scientists.

  9. SMOS first results over land

    NASA Astrophysics Data System (ADS)

    Kerr, Yann; Waldteufel, Philippe; Cabot, François; Richaume, Philippe; Jacquette, Elsa; Bitar, Ahmad Al; Mamhoodi, Ali; Delwart, Steven; Wigneron, Jean-Pierre

    2010-05-01

    The Soil Moisture and Ocean Salinity (SMOS) mission is ESA's (European Space Agency ) second Earth Explorer Opportunity mission, launched in November 2009. It is a joint programme between ESA CNES (Centre National d'Etudes Spatiales) and CDTI (Centro para el Desarrollo Tecnologico Industrial). SMOS carries a single payload, an L-band 2D interferometric radiometer in the 1400-1427 MHz protected band. This wavelength penetrates well through the atmosphere and hence the instrument probes the Earth surface emissivity. Surface emissivity can then be related to the moisture content in the first few centimeters of soil, and, after some surface roughness and temperature corrections, to the sea surface salinity over ocean. In order to prepare the data use and dissemination, the ground segment will produce level 1 and 2 data. Level 1 consists mainly of angular brightness temperatures while level 2 consists of geophysical products. In this context, a group of institutes prepared the soil moisture and ocean salinity Algorithm Theoretical Basis documents (ATBD) to be used to produce the operational algorithm. The principle of the soil moisture retrieval algorithm is based on an iterative approach which aims at minimizing a cost function given by the sum of the squared weighted differences between measured and modelled brightness temperature (TB) data, for a variety of incidence angles. This is achieved by finding the best suited set of the parameters which drive the direct TB model, e.g. soil moisture (SM) and vegetation characteristics. Despite the simplicity of this principle, the main reason for the complexity of the algorithm is that SMOS "pixels" can correspond to rather large, inhomogeneous surface areas whose contribution to the radiometric signal is difficult to model. Moreover, the exact description of pixels, given by a weighting function which expresses the directional pattern of the SMOS interferometric radiometer, depends on the incidence angle. The goal is to retrieve soil moisture over fairly large and thus inhomogeneous areas. The retrieval is carried out at nodes of a fixed Earth surface grid. To achieve this purpose, after checking input data quality and ingesting auxiliary data, the retrieval process per se can be initiated. This cannot be done blindly as the direct model will be dependent upon surface characteristics. It is thus necessary to first assess what is the dominant land use of a node. For this, an average weighing function (MEAN_WEF) which takes into account the "antenna"pattern is run over the high resolution land use map to assess the dominant cover type. This is used to drive the decision tree which, step by step, selects the type of model to be used as per surface conditions. All this being said and done the retrieval procedure starts if all the conditions are satisfied, ideally to retrieve 3 parameters over the dominant class (the so-called rich retrieval). If the algorithm does not converge satisfactorily, a new trial is made with less floating parameters ("poorer retrieval") until either results are satisfactory or the algorithm is considered to fail. The retrieval algorithm also delivers whenever possible a dielectric constant parameter (using the-so called cardioid approach). Finally, once the retrieval converged, it is possible to compute the brightness temperature at a given fixed angle (42.5°) using the selected forward models applied to the set of parameters obtained at the end of the retrieval process. So the output product of the level 2 soil moisture algorithm should be node position, soil moisture, dielectric constants, computed brightness temperature at 42.5°, flags and quality indices. During the presentation we will describe in more details the algorithm and accompanying work in particular decision tree principle and characteristics, the auxiliary data used and the special and "exotic"cases. We will also be more explicit on the algorithm validation and verification through the data collected during the commissioning phase. The main hurdle being working in spite of spurious signals (RFI) on some areas of the globe.

  10. HALOE Algorithm Improvements for Upper Tropospheric Sounding

    NASA Technical Reports Server (NTRS)

    McHugh, Martin J.; Gordley, Larry L.; Russell, James M., III; Hervig, Mark E.

    1999-01-01

    This report details the ongoing efforts by GATS, Inc., in conjunction with Hampton University and University of Wyoming, in NASA's Mission to Planet Earth UARS Science Investigator Program entitled "HALOE Algorithm Improvements for Upper Tropospheric Soundings." The goal of this effort is to develop and implement major inversion and processing improvements that will extend HALOE measurements further into the troposphere. In particular, O3, H2O, and CH4 retrievals may be extended into the middle troposphere, and NO, HCl and possibly HF into the upper troposphere. Key areas of research being carried out to accomplish this include: pointing/tracking analysis; cloud identification and modeling; simultaneous multichannel retrieval capability; forward model improvements; high vertical-resolution gas filter channel retrievals; a refined temperature retrieval; robust error analyses; long-term trend reliability studies; and data validation. The current (first-year) effort concentrates on the pointer/tracker correction algorithms, cloud filtering and validation, and multi-channel retrieval development. However, these areas are all highly coupled, so progress in one area benefits from and sometimes depends on work in others.

  11. HALOE Algorithm Improvements for Upper Tropospheric Sounding

    NASA Technical Reports Server (NTRS)

    Thompson, Robert Earl; McHugh, Martin J.; Gordley, Larry L.; Hervig, Mark E.; Russell, James M., III; Douglass, Anne (Technical Monitor)

    2001-01-01

    This report details the ongoing efforts by GATS, Inc., in conjunction with Hampton University and University of Wyoming, in NASA's Mission to Planet Earth Upper Atmospheric Research Satellite (UARS) Science Investigator Program entitled 'HALOE Algorithm Improvements for Upper Tropospheric Sounding.' The goal of this effort is to develop and implement major inversion and processing improvements that will extend Halogen Occultation Experiment (HALOE) measurements further into the troposphere. In particular, O3, H2O, and CH4 retrievals may be extended into the middle troposphere, and NO, HCl and possibly HF into the upper troposphere. Key areas of research being carried out to accomplish this include: pointing/tracking analysis; cloud identification and modeling; simultaneous multichannel retrieval capability; forward model improvements; high vertical-resolution gas filter channel retrievals; a refined temperature retrieval; robust error analyses; long-term trend reliability studies; and data validation. The current (first year) effort concentrates on the pointer/tracker correction algorithms, cloud filtering and validation, and multichannel retrieval development. However, these areas are all highly coupled, so progress in one area benefits from and sometimes depends on work in others.

  12. Phase Retrieval from Modulus Using Homeomorphic Signal Processing and the Complex Cepstrum: An Algorithm for Lightning Protection Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, G A

    2004-06-08

    In general, the Phase Retrieval from Modulus problem is very difficult. In this report, we solve the difficult, but somewhat more tractable case in which we constrain the solution to a minimum phase reconstruction. We exploit the real-and imaginary part sufficiency properties of the Fourier and Hilbert Transforms of causal sequences to develop an algorithm for reconstructing spectral phase given only spectral modulus. The algorithm uses homeomorphic signal processing methods with the complex cepstrum. The formal problem of interest is: Given measurements of only the modulus {vert_bar}H(k){vert_bar} (no phase) of the Discrete Fourier Transform (DFT) of a real, finite-length, stable,more » causal time domain signal h(n), compute a minimum phase reconstruction {cflx h}(n) of the signal. Then compute the phase of {cflx h}(n) using a DFT, and exploit the result as an estimate of the phase of h(n). The development of the algorithm is quite involved, but the final algorithm and its implementation are very simple. This work was motivated by a Phase Retrieval from Modulus Problem that arose in LLNL Defense Sciences Engineering Division (DSED) projects in lightning protection for buildings. The measurements are limited to modulus-only spectra from a spectrum analyzer. However, it is desired to perform system identification on the building to compute impulse responses and transfer functions that describe the amount of lightning energy that will be transferred from the outside of the building to the inside. This calculation requires knowledge of the entire signals (both modulus and phase). The algorithm and software described in this report are proposed as an approach to phase retrieval that can be used for programmatic needs. This report presents a brief tutorial description of the mathematical problem and the derivation of the phase retrieval algorithm. The efficacy of the theory is demonstrated using simulated signals that meet the assumptions of the algorithm. We see that for the noiseless case, the reconstructions are extremely accurate. When moderate to heavy simulated white Gaussian noise was added, the algorithm performance remained reasonably robust, especially in the low frequency part of the spectrum, which is the part of most interest for lightning protection. Limitations of the algorithm include the following: (1) It does not account for noise in the given spectral modulus. Fortunately, the lightning protection signals of interest generally have a reasonably high signal-to-noise ratio (SNR). (2) The DFT length N must be even and larger than the length of the nonzero part of the measured signals. These constraints are simple to meet in practice. (3) Regardless of the properties of the actual signal h(n), the phase retrieval results are constrained to have the minimum phase property. In most problems of practical interest, these assumptions are very reasonable and probably valid. They are reasonable assumptions for Lightning Protection applications. Proposed future work includes (a) Evaluating the efficacy of the algorithm with real Lightning Protection signals from programmatic applications, (b) Performing a more rigorous analysis of noise effects, (c) Using the algorithm along with advanced system identification algorithms to estimate impulse responses and transfer functions, (d) Developing algorithms to deal with measured partial (truncated) spectral moduli, and (e) R & D of phase retrieval algorithms that specifically deal with general (not necessarily minimum phase) signals, and noisy spectral moduli.« less

  13. New temperature and pressure retrieval algorithm for high-resolution infrared solar occultation spectroscopy: analysis and validation against ACE-FTS and COSMIC

    NASA Astrophysics Data System (ADS)

    Olsen, Kevin S.; Toon, Geoffrey C.; Boone, Chris D.; Strong, Kimberly

    2016-03-01

    Motivated by the initial selection of a high-resolution solar occultation Fourier transform spectrometer (FTS) to fly to Mars on the ExoMars Trace Gas Orbiter, we have been developing algorithms for retrieving volume mixing ratio vertical profiles of trace gases, the primary component of which is a new algorithm and software for retrieving vertical profiles of temperature and pressure from the spectra. In contrast to Earth-observing instruments, which can rely on accurate meteorological models, a priori information, and spacecraft position, Mars retrievals require a method with minimal reliance on such data. The temperature and pressure retrieval algorithms developed for this work were evaluated using Earth-observing spectra from the Atmospheric Chemistry Experiment (ACE) FTS, a solar occultation instrument in orbit since 2003, and the basis for the instrument selected for a Mars mission. ACE-FTS makes multiple measurements during an occultation, separated in altitude by 1.5-5 km, and we analyse 10 CO2 vibration-rotation bands at each altitude, each with a different usable altitude range. We describe the algorithms and present results of their application and their comparison to the ACE-FTS data products. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) provides vertical profiles of temperature up to 40 km with high vertical resolution. Using six satellites and GPS radio occultation, COSMIC's data product has excellent temporal and spatial coverage, allowing us to find coincident measurements with ACE with very tight criteria: less than 1.5 h and 150 km. We present an intercomparison of temperature profiles retrieved from ACE-FTS using our algorithm, that of the ACE Science Team (v3.5), and from COSMIC. When our retrievals are compared to ACE-FTS v3.5, we find mean differences between -5 and +2 K and that our retrieved profiles have no seasonal or zonal biases but do have a warm bias in the stratosphere and a cold bias in the mesosphere. When compared to COSMIC, we do not observe a warm/cool bias and mean differences are between -4 and +1 K. COSMIC comparisons are restricted to below 40 km, where our retrievals have the best agreement with ACE-FTS v3.5. When comparing ACE-FTS v3.5 to COSMIC we observe a cold bias in COSMIC of 0.5 K, and mean differences are between -0.9 and +0.6 K.

  14. A passive microwave technique for estimating rainfall and vertical structure information from space. Part 1: Algorithm description

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Giglio, Louis

    1994-01-01

    This paper describes a multichannel physical approach for retrieving rainfall and vertical structure information from satellite-based passive microwave observations. The algorithm makes use of statistical inversion techniques based upon theoretically calculated relations between rainfall rates and brightness temperatures. Potential errors introduced into the theoretical calculations by the unknown vertical distribution of hydrometeors are overcome by explicity accounting for diverse hydrometeor profiles. This is accomplished by allowing for a number of different vertical distributions in the theoretical brightness temperature calculations and requiring consistency between the observed and calculated brightness temperatures. This paper will focus primarily on the theoretical aspects of the retrieval algorithm, which includes a procedure used to account for inhomogeneities of the rainfall within the satellite field of view as well as a detailed description of the algorithm as it is applied over both ocean and land surfaces. The residual error between observed and calculated brightness temperatures is found to be an important quantity in assessing the uniqueness of the solution. It is further found that the residual error is a meaningful quantity that can be used to derive expected accuracies from this retrieval technique. Examples comparing the retrieved results as well as the detailed analysis of the algorithm performance under various circumstances are the subject of a companion paper.

  15. Cloud, Aerosol, and Volcanic Ash Retrievals Using ASTR and SLSTR with ORAC

    NASA Astrophysics Data System (ADS)

    McGarragh, Gregory; Poulsen, Caroline; Povey, Adam; Thomas, Gareth; Christensen, Matt; Sus, Oliver; Schlundt, Cornelia; Stapelberg, Stefan; Stengel, Martin; Grainger, Don

    2015-12-01

    The Optimal Retrieval of Aerosol and Cloud (ORAC) is a generalized optimal estimation system that retrieves cloud, aerosol and volcanic ash parameters using satellite imager measurements in the visible to infrared. Use of the same algorithm for different sensors and parameters leads to consistency that facilitates inter-comparison and interaction studies. ORAC currently supports ATSR, AVHRR, MODIS and SEVIRI. In this proceeding we discuss the ORAC retrieval algorithm applied to ATSR data including the retrieval methodology, the forward model, uncertainty characterization and discrimination/classification techniques. Application of ORAC to SLSTR data is discussed including the additional features that SLSTR provides relative to the ATSR heritage. The ORAC level 2 and level 3 results are discussed and an application of level 3 results to the study of cloud/aerosol interactions is presented.

  16. CDRD and PNPR passive microwave precipitation retrieval algorithms: verification study over Africa and Southern Atlantic

    NASA Astrophysics Data System (ADS)

    Panegrossi, Giulia; Casella, Daniele; Cinzia Marra, Anna; Petracca, Marco; Sanò, Paolo; Dietrich, Stefano

    2015-04-01

    The ongoing NASA/JAXA Global Precipitation Measurement mission (GPM) requires the full exploitation of the complete constellation of passive microwave (PMW) radiometers orbiting around the globe for global precipitation monitoring. In this context the coherence of the estimates of precipitation using different passive microwave radiometers is a crucial need. We have developed two different passive microwave precipitation retrieval algorithms: one is the Cloud Dynamics Radiation Database algorithm (CDRD), a physically ¬based Bayesian algorithm for conically scanning radiometers (i.e., DMSP SSMIS); the other one is the Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for cross¬-track scanning radiometers (i.e., NOAA and MetOp¬A/B AMSU-¬A/MHS, and NPP Suomi ATMS). The algorithms, originally created for application over Europe and the Mediterranean basin, and used operationally within the EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF, http://hsaf.meteoam.it), have been recently modified and extended to Africa and Southern Atlantic for application to the MSG full disk area. The two algorithms are based on the same physical foundation, i.e., the same cloud-radiation model simulations as a priori information in the Bayesian solver and as training dataset in the neural network approach, and they also use similar procedures for identification of frozen background surface, detection of snowfall, and determination of a pixel based quality index of the surface precipitation retrievals. In addition, similar procedures for the screening of not ¬precipitating pixels are used. A novel algorithm for the detection of precipitation in tropical/sub-tropical areas has been developed. The precipitation detection algorithm shows a small rate of false alarms (also over arid/desert regions), a superior detection capability in comparison with other widely used screening algorithms, and it is applicable to all available PMW radiometers in the GPM constellation of satellites (including NPP Suomi ATMS, and GMI). Three years of SSMIS and AMSU/MHS data have been considered to carry out a verification study over Africa of the retrievals from the CDRD and PNPR algorithms. The precipitation products from the TRMM ¬Precipitation radar (PR) (TRMM product 2A25 and 2A23) have been used as ground truth. The results of this study aimed at assessing the accuracy of the precipitation retrievals in different climatic regions and precipitation regimes will be presented. Particular emphasis will be given to the analysis of the level of coherence of the precipitation estimates and patterns between the two algorithms exploiting different radiometers. Recent developments aimed at the full exploitation of the GPM constellation of satellites for optimal precipitation/drought monitoring will be also presented.

  17. Comparison Spatial Pattern of Land Surface Temperature with Mono Window Algorithm and Split Window Algorithm: A Case Study in South Tangerang, Indonesia

    NASA Astrophysics Data System (ADS)

    Bunai, Tasya; Rokhmatuloh; Wibowo, Adi

    2018-05-01

    In this paper, two methods to retrieve the Land Surface Temperature (LST) from thermal infrared data supplied by band 10 and 11 of the Thermal Infrared Sensor (TIRS) onboard the Landsat 8 is compared. The first is mono window algorithm developed by Qin et al. and the second is split window algorithm by Rozenstein et al. The purpose of this study is to perform the spatial distribution of land surface temperature, as well as to determine more accurate algorithm for retrieving land surface temperature by calculated root mean square error (RMSE). Finally, we present comparison the spatial distribution of land surface temperature by both of algorithm, and more accurate algorithm is split window algorithm refers to the root mean square error (RMSE) is 7.69° C.

  18. Wind velocity profile reconstruction from intensity fluctuations of a plane wave propagating in a turbulent atmosphere.

    PubMed

    Banakh, V A; Marakasov, D A

    2007-08-01

    Reconstruction of a wind profile based on the statistics of plane-wave intensity fluctuations in a turbulent atmosphere is considered. The algorithm for wind profile retrieval from the spatiotemporal spectrum of plane-wave weak intensity fluctuations is described, and the results of end-to-end computer experiments on wind profiling based on the developed algorithm are presented. It is shown that the reconstructing algorithm allows retrieval of a wind profile from turbulent plane-wave intensity fluctuations with acceptable accuracy.

  19. Propagation based phase retrieval of simulated intensity measurements using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Kemp, Z. D. C.

    2018-04-01

    Determining the phase of a wave from intensity measurements has many applications in fields such as electron microscopy, visible light optics, and medical imaging. Propagation based phase retrieval, where the phase is obtained from defocused images, has shown significant promise. There are, however, limitations in the accuracy of the retrieved phase arising from such methods. Sources of error include shot noise, image misalignment, and diffraction artifacts. We explore the use of artificial neural networks (ANNs) to improve the accuracy of propagation based phase retrieval algorithms applied to simulated intensity measurements. We employ a phase retrieval algorithm based on the transport-of-intensity equation to obtain the phase from simulated micrographs of procedurally generated specimens. We then train an ANN with pairs of retrieved and exact phases, and use the trained ANN to process a test set of retrieved phase maps. The total error in the phase is significantly reduced using this method. We also discuss a variety of potential extensions to this work.

  20. A High-Resolution Aerosol Retrieval Method for Urban Areas Using MISR Data

    NASA Astrophysics Data System (ADS)

    Moon, T.; Wang, Y.; Liu, Y.; Yu, B.

    2012-12-01

    Satellite-retrieved Aerosol Optical Depth (AOD) can provide a cost-effective way to monitor particulate air pollution without using expensive ground measurement sensors. One of the current state-of-the-art AOD retrieval method is NASA's Multi-angle Imaging SpectroRadiometer (MISR) operational algorithm, which has the spatial resolution of 17.6 km x 17.6 km. While the MISR baseline scheme already leads to exciting research opportunities to study particle compositions at regional scale, its spatial resolution is too coarse for analyzing urban areas where the AOD level has stronger spatial variations. We develop a novel high-resolution AOD retrieval algorithm that still uses MISR's radiance observations but has the resolution of 4.4km x 4.4km. We achieve the high resolution AOD retrieval by implementing a hierarchical Bayesian model and Monte-Carlo Markov Chain (MCMC) inference method. Our algorithm not only improves the spatial resolution, but also extends the coverage of AOD retrieval and provides with additional composition information of aerosol components that contribute to the AOD. We validate our method using the recent NASA's DISCOVER-AQ mission data, which contains the ground measured AOD values for Washington DC and Baltimore area. The validation result shows that, compared to the operational MISR retrievals, our scheme has 41.1% more AOD retrieval coverage for the DISCOVER-AQ data points and 24.2% improvement in mean-squared error (MSE) with respect to the AERONET ground measurements.

  1. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky

    2009-01-01

    This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.

  2. Investigating the Use of a Simplified Aerosol Parameterization in Space-Based XCO2 Retrievals from OCO-2

    NASA Astrophysics Data System (ADS)

    Nelson, R. R.; O'Dell, C.

    2017-12-01

    The primary goal of OCO-2 is to use hyperspectral measurements of reflected near-infrared sunlight to retrieve the column-averaged dry-air mole fraction of carbon dioxide (XCO2) with high accuracy. This is only possible for measurements of scenes nearly free of optically thick clouds and aerosols. As some cloud or aerosol contamination will always be present, the OCO-2 retrieval algorithm includes clouds and aerosols as retrieved properties in its state vector. Information content analyses demonstrate that there are only 2-6 pieces of information about aerosols in the OCO-2 radiances. However, the upcoming OCO-2 algorithm (B8) attempts to retrieve 9 aerosol parameters; this over-fitting can hinder convergence and produce multiple solutions. In this work, we develop a simplified cloud and aerosol parameterization that intelligently reduces the number of retrieved parameters to 5 by only retrieving information about two aerosol layers: a lower tropospheric layer and an upper tropospheric / stratospheric layer. We retrieve the optical depth of each layer and the height of the lower tropospheric layer. Each of these layers contains a mixture of fine and coarse mode aerosol. In comparisons between OCO-2 XCO2 estimates and validation sources including TCCON, this scheme performs about as well as the more complicated OCO-2 retrieval algorithm, but has the potential benefits of more interpretable aerosol results, faster convergence, less nonlinearity, and greater throughput. We also investigate the dependence of our results on the optical properties of the fine and coarse mode aerosol types, such as their effective radii and the environmental relative humidity.

  3. Results from CrIS-ATMS Obtained Using the AIRS Science Team Retrieval Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena

    2013-01-01

    AIRS was launched on EOS Aqua in May 2002, together with AMSU-A and HSB (which subsequently failed early in the mission), to form a next generation polar orbiting infrared and microwave atmospheric sounding system. AIRS/AMSU had two primary objectives. The first objective was to provide real-time data products available for use by the operational Numerical Weather Prediction Centers in a data assimilation mode to improve the skill of their subsequent forecasts. The second objective was to provide accurate unbiased sounding products with good spatial coverage that are used to generate stable multi-year climate data sets to study the earth's interannual variability, climate processes, and possibly long-term trends. AIRS/AMSU data for all time periods are now being processed using the state of the art AIRS Science Team Version-6 retrieval methodology. The Suomi-NPP mission was launched in October 2011 as part of a sequence of Low Earth Orbiting satellite missions under the "Joint Polar Satellite System" (JPSS). NPP carries CrIS and ATMS, which are advanced infra-red and microwave atmospheric sounders that were designed as follow-ons to the AIRS and AMSU instruments. The main objective of this work is to assess whether CrIS/ATMS will be an adequate replacement for AIRS/AMSU from the perspective of the generation of accurate and consistent long term climate data records, or if improved instruments should be developed for future flight. It is critical for CrIS/ATMS to be processed using an algorithm similar to, or at least comparable to, AIRS Version-6 before such an assessment can be made. We have been conducting research to optimize products derived from CrIS/ATMS observations using a scientific approach analogous to the AIRS Version-6 retrieval algorithm. Our latest research uses Version-5.70 of the CrIS/ATMS retrieval algorithm, which is otherwise analogous to AIRS Version-6, but does not yet contain the benefit of use of a Neural-Net first guess start-up system which significantly improved results of AIRS Version-6. Version-5.70 CrIS/ATMS temperature profile and surface skin temperature retrievals are of very good quality, and are better than AIRS Version-5 retrievals, but are still significantly poorer than those of AIRS Version-6. CrIS/ATMS retrievals should improve when a Neural-Net start-up system is ready for use. We also examined CrIS/ATMS retrievals generated by NOAA using their NUCAPS retrieval algorithm, which is based on earlier versions of the AIRS Science Team retrieval algorithms. We show that the NUCAPS algorithm as currently configured is not well suited for climate monitoring purposes.

  4. Digitalk: Community, Convention, and Self-Expression

    ERIC Educational Resources Information Center

    Turner, Kristen Hawley

    2011-01-01

    Teens write all the time: They post messages to social networks; they chat via instant message (IM); they communicate by text. In all of these digital spaces, they write. However, the language that they use in these venues often does not follow the rules of standard written English (SWE). They experiment with language, manipulating SWE in ways…

  5. Protective Nursing Advocacy: Translation and Psychometric Evaluation of an Instrument and a Descriptive Study of Swedish Registered Nurse Anesthetists' Beliefs and Actions.

    PubMed

    Sundqvist, Ann-Sofie; Anderzén-Carlsson, Agneta; Nilsson, Ulrica; Holmefur, Marie

    2018-02-01

    To translate and adapt the Protective Nursing Advocacy Scale (PNAS) into a Swedish version (PNAS-Swe), evaluate its psychometric properties, and describe registered nurse anesthetists' (RNAs) advocacy beliefs and actions from a protective perspective. A cross-sectional design was used. First, the PNAS was translated into Swedish. Next, the content and construct validity of the PNAS four subscales was evaluated. Finally, the PNAS-Swe was used to describe Swedish RNA beliefs and actions regarding protective nursing advocacy. The final PNAS-Swe has 29 items in four subscales. The RNAs reported that they feel that they should provide protective nursing advocacy for their patients. There were no differences in gender, or associations with age, or work experience regarding their advocacy beliefs or actions. The PNAS-Swe is valid for use in a Swedish context. Protective nursing advocacy is important to the RNAs, which is in congruence with earlier qualitative studies. Copyright © 2016 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  6. SwePep, a database designed for endogenous peptides and mass spectrometry.

    PubMed

    Fälth, Maria; Sköld, Karl; Norrman, Mathias; Svensson, Marcus; Fenyö, David; Andren, Per E

    2006-06-01

    A new database, SwePep, specifically designed for endogenous peptides, has been constructed to significantly speed up the identification process from complex tissue samples utilizing mass spectrometry. In the identification process the experimental peptide masses are compared with the peptide masses stored in the database both with and without possible post-translational modifications. This intermediate identification step is fast and singles out peptides that are potential endogenous peptides and can later be confirmed with tandem mass spectrometry data. Successful applications of this methodology are presented. The SwePep database is a relational database developed using MySql and Java. The database contains 4180 annotated endogenous peptides from different tissues originating from 394 different species as well as 50 novel peptides from brain tissue identified in our laboratory. Information about the peptides, including mass, isoelectric point, sequence, and precursor protein, is also stored in the database. This new approach holds great potential for removing the bottleneck that occurs during the identification process in the field of peptidomics. The SwePep database is available to the public.

  7. Hydroquinone, a benzene metabolite, induces Hog1-dependent stress response signaling and causes aneuploidy in Saccharomyces cerevisiae.

    PubMed

    Shiga, Takeki; Suzuki, Hiroyuki; Yamamoto, Ayumi; Yamamoto, Hiroaki; Yamamoto, Kazuo

    2010-01-01

    Previously, we have shown that phenyl hydroquinone, a hepatic metabolite of the Ames test-negative carcinogen o-phenylphenol, efficiently induced aneuploidy in Saccharomyces cerevisiae by arresting the cell cycle at the G2/M transition as a result of the activation of the Hog1 (p38 MAPK homolog)-Swe1 (Wee1 homolog) pathway. In this experiment, we examined the aneuploidy forming effects of hydroquinone, a benzene metabolite, since both phenyl hydroquinone and hydroquinone are Ames-test negative carcinogens and share similar molecular structures. As was seen in phenyl hydroquinone, hydroquinone induced aneuploidy in yeast by delaying the cell cycle at the G2/M transition. Deficiencies in SWE1 and HOG1 abolished the hydroquinone-induced delay at the G2/M transition and aneuploidy formation. Furthermore, Hog1 was phosphorylated by hydroquinone, which may stabilize Swe1. These data indicate that the hydroquinone-induced G2/M transition checkpoint, which is activated by the Hog1-Swe1 pathway, plays a role in the formation of aneuploidy.

  8. Classification of Aerosol Retrievals from Spaceborne Polarimetry Using a Multiparameter Algorithm

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Kacenelenbogen, Meloe; Livingston, John M.; Hasekamp, Otto P.; Burton, Sharon P.; Schuster, Gregory L.; Johnson, Matthew S.; Knobelspiesse, Kirk D.; Redemann, Jens; Ramachandran, S.; hide

    2013-01-01

    In this presentation, we demonstrate application of a new aerosol classification algorithm to retrievals from the POLDER-3 polarimter on the PARASOL spacecraft. Motivation and method: Since the development of global aerosol measurements by satellites and AERONET, classification of observed aerosols into several types (e.g., urban-industrial, biomass burning, mineral dust, maritime, and various subtypes or mixtures of these) has proven useful to: understanding aerosol sources, transformations, effects, and feedback mechanisms; improving accuracy of satellite retrievals and quantifying assessments of aerosol radiative impacts on climate.

  9. Three-dimensional propagation in near-field tomographic X-ray phase retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhlandt, Aike, E-mail: aruhlan@gwdg.de; Salditt, Tim

    An extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions is presented, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resultingmore » in superior reconstruction quality.« less

  10. Performance of the Falling Snow Retrieval Algorithms for the Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Munchak, Stephen J.; Ringerud, Sarah

    2016-01-01

    Retrievals of falling snow from space represent an important data set for understanding the Earth's atmospheric, hydrological, and energy cycles, especially during climate change. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new and retrievals are still undergoing development with challenges remaining). This work reports on the development and testing of retrieval algorithms for the Global Precipitation Measurement (GPM) mission Core Satellite, launched February 2014.

  11. CrIS/ATMS Retrievals Using the Latest AIRS/AMSU Retrieval Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.; Blaisdell, John; Iredell, Lena

    2015-01-01

    This research is being done under the NPP Science Team Proposal: Analysis of CrISATMS Using an AIRS Version 6-like Retrieval Algorithm Objective: Generate a long term CrISATMS level-3 data set that is consistent with that of AIRSAMSU Approach: Adapt the currently operational AIRS Science Team Version-6 Retrieval Algorithm, or an improved version of it, for use with CrISATMS data. Metric: Generate monthly mean level-3 CrISATMS climate data sets and evaluate the results by comparison of monthly mean AIRSAMSU and CrISATMS products, and more significantly, their inter-annual differences and, eventually, anomaly time series. The goal is consistency between the AIRSAMSU and CrISATMS climate data sets.

  12. Simultaneous Retrieval of Temperature, Water Vapor and Ozone Atmospheric Profiles from IASI: Compression, De-noising, First Guess Retrieval and Inversion Algorithms

    NASA Technical Reports Server (NTRS)

    Aires, F.; Rossow, W. B.; Scott, N. A.; Chedin, A.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A fast temperature water vapor and ozone atmospheric profile retrieval algorithm is developed for the high spectral resolution Infrared Atmospheric Sounding Interferometer (IASI) space-borne instrument. Compression and de-noising of IASI observations are performed using Principal Component Analysis. This preprocessing methodology also allows, for a fast pattern recognition in a climatological data set to obtain a first guess. Then, a neural network using first guess information is developed to retrieve simultaneously temperature, water vapor and ozone atmospheric profiles. The performance of the resulting fast and accurate inverse model is evaluated with a large diversified data set of radiosondes atmospheres including rare events.

  13. Improving medical record retrieval for validation studies in Medicare data.

    PubMed

    Wright, Nicole C; Delzell, Elizabeth S; Smith, Wilson K; Xue, Fei; Auroa, Tarun; Curtis, Jeffrey R

    2017-04-01

    The purpose of the study is to describe medical record retrieval for a study validating claims-based algorithms used to identify seven adverse events of special interest (AESI) in a Medicare population. We analyzed 2010-2011 Medicare claims of women with postmenopausal osteoporosis and men ≥65 years of age in the Medicare 5% national sample. The final cohorts included beneficiaries covered continuously for 12+ months by Medicare parts A, B, and D and not enrolled in Medicare Advantage before starting follow-up. We identified beneficiaries using each AESI algorithm and randomly selected 400 women and 100 men with each AESI for medical record retrieval. The Centers for Medicare and Medicaid Services provided beneficiary contact information, and we requested medical records directly from providers, without patient contact. We selected 3331 beneficiaries (women: 2272; men: 559) for whom we requested 3625 medical records. Overall, we received 1738 [47.9% (95%CI 46.3%, 49.6%)] of the requested medical records. We observed small differences in the characteristics of the total population with AESIs compared with those randomly selected for retrieval; however, no differences were seen between those selected and those retrieved. We retrieved 54.7% of records requested from hospitals compared with 26.3% of records requested from physician offices (p < 0.001). Retrieval did not differ by sex or vital status of the beneficiaries. Our national medical record validation study of claims-based algorithms produced a modest retrieval rate. The medical record procedures outlined in this paper could have led to the improved retrieval from our previous medical record retrieval study. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Enhancing stress growth traits as well as phytochemical and antioxidant contents of Spiraea and Pittosporum under seaweed extract treatments.

    PubMed

    Elansary, Hosam O; Skalicka-Woźniak, Krystyna; King, Ian W

    2016-08-01

    Seaweed extracts (SWE) might play an important role in enhancing growth and phytochemical composition of medicinal shrubs. In this study, we investigate the morphological, physiological and biochemical effects of irrigation levels (100% and 50% of the evapotranspiration rate) coupled with a weekly treatment of SWE of Ascophyllum nodosum at 5 and 7 mL L(-1) as a soil drench or foliar spray on Spiraea nipponica "Snowmound" and Pittosporum eugenioides "Variegatum" grown in containers under controlled greenhouse conditions. In addition, the phenolic and flavonoid content, antioxidant capacity and lipid peroxidation in both plant species was largely enhanced while the proline accumulation was reduced. After 8 weeks of treatments, drought condition reduced plant vegetative growth and gas exchange, as well as leaf water potential, but increased the phenolic and flavonoid contents in leaves, their antioxidant capacities and proline content. The application of SWE enhanced the performance of both species during mild drought conditions by means of increasing leaf number and area, dry weights, plant height, gas exchange and leaf water potential. The maximum vegetative growth, physiological performance and phytochemical composition of both species was achieved using the drench SWE treatments (5 and 7 mL L(-1)) in moderate drought conditions, which improved the plant water status, stomatal conductance, and photosynthetic rate. SWE enhanced plant growth and the phytochemical composition and antioxidant capacity of plant leaves of both species during moderate drought conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Evaluation of snowmelt simulation in the Weather Research and Forecasting model

    NASA Astrophysics Data System (ADS)

    Jin, Jiming; Wen, Lijuan

    2012-05-01

    The objective of this study is to better understand and improve snowmelt simulations in the advanced Weather Research and Forecasting (WRF) model by coupling it with the Community Land Model (CLM) Version 3.5. Both WRF and CLM are developed by the National Center for Atmospheric Research. The automated Snow Telemetry (SNOTEL) station data over the Columbia River Basin in the northwestern United States are used to evaluate snowmelt simulations generated with the coupled WRF-CLM model. These SNOTEL data include snow water equivalent (SWE), precipitation, and temperature. The simulations cover the period of March through June 2002 and focus mostly on the snowmelt season. Initial results show that when compared to observations, WRF-CLM significantly improves the simulations of SWE, which is underestimated when the release version of WRF is coupled with the Noah and Rapid Update Cycle (RUC) land surface schemes, in which snow physics is oversimplified. Further analysis shows that more realistic snow surface energy allocation in CLM is an important process that results in improved snowmelt simulations when compared to that in Noah and RUC. Additional simulations with WRF-CLM at different horizontal spatial resolutions indicate that accurate description of topography is also vital to SWE simulations. WRF-CLM at 10 km resolution produces the most realistic SWE simulations when compared to those produced with coarser spatial resolutions in which SWE is remarkably underestimated. The coupled WRF-CLM provides an important tool for research and forecasts in weather, climate, and water resources at regional scales.

  16. Analysis of Extreme Snow Water Equivalent Data in Central New Hampshire

    NASA Astrophysics Data System (ADS)

    Vuyovich, C.; Skahill, B. E.; Kanney, J. F.; Carr, M.

    2017-12-01

    Heavy snowfall and snowmelt-related events have been linked to widespread flooding and damages in many regions of the U.S. Design of critical infrastructure in these regions requires spatial estimates of extreme snow water equivalent (SWE). In this study, we develop station specific and spatially explicit estimates of extreme SWE using data from fifteen snow sampling stations maintained by the New Hampshire Department of Environmental Services. The stations are located in the Mascoma, Pemigewasset, Winnipesaukee, Ossipee, Salmon Falls, Lamprey, Sugar, and Isinglass basins in New Hampshire. The average record length for the fifteen stations is approximately fifty-nine years. The spatial analysis of extreme SWE involves application of two Bayesian Hierarchical Modeling methods, one that assumes conditional independence, and another which uses the Smith max-stable process model to account for spatial dependence. We also apply additional max-stable process models, albeit not in a Bayesian framework, that better model the observed dependence among the extreme SWE data. The spatial process modeling leverages readily available and relevant spatially explicit covariate data. The noted additional max-stable process models also used the nonstationary winter North Atlantic Oscillation index, which has been observed to influence snowy weather along the east coast of the United States. We find that, for this data set, SWE return level estimates are consistently higher when derived using methods which account for the observed spatial dependence among the extreme data. This is particularly significant for design scenarios of relevance for critical infrastructure evaluation.

  17. Snow Water Equivalent estimation based on satellite observation

    NASA Astrophysics Data System (ADS)

    Macchiavello, G.; Pesce, F.; Boni, G.; Gabellani, S.

    2009-09-01

    The availability of remotely sensed images and them analysis is a powerful tool for monitoring the extension and typology of snow cover over territory where the in situ measurements are often difficult. Information on snow are fundamental for monitoring and forecasting the available water above all in regions at mid latitudes as Mediterranean where snowmelt may cause floods. The hydrological model requirements and the daily acquisitions of MODIS (Moderate Resolution Imaging Spectroradiometer), drove, in previous research activities, to the development of a method to automatically map the snow cover from multi-spectral images. But, the major hydrological parameter related to the snow pack is the Snow Water Equivalent (SWE). This represents a direct measure of stored water in the basin. Because of it, the work was focused to the daily estimation of SWE from MODIS images. But, the complexity of this aim, based only on optical data, doesn’t find any information in literature. Since, from the spectral range of MODIS data it is not possible to extract a direct relation between spectral information and the SWE. Then a new method, respectful of the physic of the snow, was defined and developed. Reminding that the snow water equivalent is the product of the three factors as snow density, snow depth and the snow covered areas, the proposed approach works separately on each of these physical behaviors. Referring to the physical characteristic of snow, the snow density is function of the snow age, then it was studied a new method to evaluate this. Where, a module for snow age simulation from albedo information was developed. It activates an age counter updated by new snow information set to estimate snow age from zero accumulation status to the end of melting season. The height of the snow pack, can be retrieved by adopting relation between vegetation and snow depth distributions. This computes snow height distribution by the relation between snow cover fraction and the forest canopy density. Finally, the SWE has to be calculated for the snow covered areas, detected by means of a previously developed decision tree classifier able to classify snow cover by self selecting rules in a statistically optimum way. The advantages introduced from this work are many. Firstly, applying a suitable method with data features, it is possible to automatically obtain snow cover description with high frequency. Moreover, the advantages of the modularity in the proposed approach allows to improve the three factors estimation in an independent way. Limitations lie into clouds problem that affects results by obscuring the observed territory, that is bounded by fusing temporal and spatial information. Then the spatial resolution of data, satisfactory with the scale of hydrological models, mismatch with the available in situ point information, causing difficulties for a method validation or calibration. However this working flow results computationally cost-effectiveness, robust to the radiometric noise of the original data, provides spatially extended and frequent information.

  18. Retrieval with Infrared Atmospheric Sounding Interferometer and Validation during JAIVEx

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    A state-of-the-art IR-only retrieval algorithm has been developed with an all-season-global EOF Physical Regression and followed by 1-D Var. Physical Iterative Retrieval for IASI, AIRS, and NAST-I. The benefits of this retrieval are to produce atmospheric structure with a single FOV horizontal resolution (approx. 15 km for IASI and AIRS), accurate profiles above the cloud (at least) or down to the surface, surface parameters, and/or cloud microphysical parameters. Initial case study and validation indicates that surface, cloud, and atmospheric structure (include TBL) are well captured by IASI and AIRS measurements. Coincident dropsondes during the IASI and AIRS overpasses are used to validate atmospheric conditions, and accurate retrievals are obtained with an expected vertical resolution. JAIVEx has provided the data needed to validate the retrieval algorithm and its products which allows us to assess the instrument ability and/or performance. Retrievals with global coverage are under investigation for detailed retrieval assessment. It is greatly desired that these products be used for testing the impact on Atmospheric Data Assimilation and/or Numerical Weather Prediction.

  19. Atmospheric, Cloud, and Surface Parameters Retrieved from Satellite Ultra-spectral Infrared Sounder Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Yang, Ping; Schluessel, Peter; Strow, Larrabee

    2007-01-01

    An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multivariable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. This retrieval algorithm is applied to the MetOp satellite Infrared Atmospheric Sounding Interferometer (IASI) launched on October 19, 2006. IASI possesses an ultra-spectral resolution of 0.25 cm(exp -1) and a spectral coverage from 645 to 2760 cm(exp -1). Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI measurements are obtained and presented.

  20. Cloud cover detection combining high dynamic range sky images and ceilometer measurements

    NASA Astrophysics Data System (ADS)

    Román, R.; Cazorla, A.; Toledano, C.; Olmo, F. J.; Cachorro, V. E.; de Frutos, A.; Alados-Arboledas, L.

    2017-11-01

    This paper presents a new algorithm for cloud detection based on high dynamic range images from a sky camera and ceilometer measurements. The algorithm is also able to detect the obstruction of the sun. This algorithm, called CPC (Camera Plus Ceilometer), is based on the assumption that under cloud-free conditions the sky field must show symmetry. The symmetry criteria are applied depending on ceilometer measurements of the cloud base height. CPC algorithm is applied in two Spanish locations (Granada and Valladolid). The performance of CPC retrieving the sun conditions (obstructed or unobstructed) is analyzed in detail using as reference pyranometer measurements at Granada. CPC retrievals are in agreement with those derived from the reference pyranometer in 85% of the cases (it seems that this agreement does not depend on aerosol size or optical depth). The agreement percentage goes down to only 48% when another algorithm, based on Red-Blue Ratio (RBR), is applied to the sky camera images. The retrieved cloud cover at Granada and Valladolid is compared with that registered by trained meteorological observers. CPC cloud cover is in agreement with the reference showing a slight overestimation and a mean absolute error around 1 okta. A major advantage of the CPC algorithm with respect to the RBR method is that the determined cloud cover is independent of aerosol properties. The RBR algorithm overestimates cloud cover for coarse aerosols and high loads. Cloud cover obtained only from ceilometer shows similar results than CPC algorithm; but the horizontal distribution cannot be obtained. In addition, it has been observed that under quick and strong changes on cloud cover ceilometers retrieve a cloud cover fitting worse with the real cloud cover.

  1. Spatiotemporal variability of snow cover and snow water equivalent in the last three decades over Eurasia

    NASA Astrophysics Data System (ADS)

    Zhang, Yinsheng; Ma, Ning

    2018-04-01

    Changes in the extent and amount of snow cover in Eurasia are of great interest because of their vital impacts on the global climate system and regional water resource management. This study investigated the spatial and temporal variability of the snow cover extent (SCE) and snow water equivalent (SWE) of the continental Eurasia using the Northern Hemisphere Equal-Area Scalable Earth Grid (EASE-Grid) Weekly SCE data for 1972-2006 and the Global Monthly EASE-Grid SWE data for 1979-2004. The results indicated that, in general, the spatial extent of snow cover significantly decreased during spring and summer, but varied little during autumn and winter over Eurasia in the study period. The date at which snow cover began to disappear in spring has significantly advanced, whereas the timing of snow cover onset in autumn did not vary significantly during 1972-2006. The snow cover persistence period declined significantly in the western Tibetan Plateau as well as partial area of Central Asia and northwestern Russia, but varied little in other parts of Eurasia. "Snow-free breaks" (SFBs) with intermittent snow cover in the cold season were principally observed in the Tibetan Plateau and Central Asia, causing a low sensitivity of snow cover persistence period to the timings of snow cover onset and disappearance over the areas with shallow snow. The averaged SFBs were 1-14 weeks during the study period and the maximum intermittence could even reach 25 weeks in certain years. At a seasonal scale, SWE usually peaked in February or March, but fell gradually since April across Eurasia. Both annual mean and annual maximum SWE decreased significantly during 1979-2004 in most parts of Eurasia except for eastern Siberia as well as northwestern and northeastern China. The possible cross-platform inconsistencies between two passive microwave radiometers may cause uncertainties in the detected trends of SWE here, suggesting an urgent need of producing a long-term, more homogeneous SWE product in future.

  2. ESA SSA Space Weather Services Supporting Space Surveillance and Tracking

    NASA Astrophysics Data System (ADS)

    Luntama, Juha-Pekka; Glover, Alexi; Hilgers, Alain; Fletcher, Emmet

    2012-07-01

    ESA Space Situational Awareness (SSA) Preparatory Programme was started in 2009. The objective of the programme is to support the European independent utilisation of and access to space research or services. This will be performed through providing timely and quality data, information, services and knowledge regarding the environment, the threats and the sustainable exploitation of the outer space surrounding the planet Earth. SSA serves the implementation of the strategic missions of the European Space Policy based on the peaceful uses of the outer space by all states, by supporting the autonomous capacity to securely and safely operate the critical European space infrastructures. The Space Weather (SWE) Segment of the SSA will provide user services related to the monitoring of the Sun, the solar wind, the radiation belts, the magnetosphere and the ionosphere. These services will include near real time information and forecasts about the characteristics of the space environment and predictions of space weather impacts on sensitive spaceborne and ground based infrastructure. The SSA SWE system will also include establishment of a permanent database for analysis, model development and scientific research. These services are will support a wide variety of user domains including spacecraft designers, spacecraft operators, human space flights, users and operators of transionospheric radio links, and space weather research community. The precursor SWE services to be established starting in 2010. This presentation provides an overview of the ESA SSA SWE services focused on supporting the Space Surveillance and Tracking users. This services include estimates of the atmospheric drag and archive and forecasts of the geomagnetic and solar indices. In addition, the SSA SWE system will provide nowcasts of the ionospheric group delay to support mitigation of the ionospheric impact on radar signals. The paper will discuss the user requirements for the services, the data requirements and the foreseen development needs for the ESA SSA SWE system before the full service capability is available.

  3. Simulating the Snow Water Equivalent and its changing pattern over Nepal

    NASA Astrophysics Data System (ADS)

    Niroula, S.; Joseph, J.; Ghosh, S.

    2016-12-01

    Snow fall in the Himalayan region is one of the primary sources of fresh water, which accounts around 10% of total precipitation of Nepal. Snow water is an intricate variable in terms of its global and regional estimates whose complexity is favored by spatial variability linked with rugged topography. The study is primarily focused on simulation of Snow Water Equivalent (SWE) by the use of a macroscale hydrologic model, Variable Infiltration Capacity (VIC). As whole Nepal including its Himalayas lies under the catchment of Ganga River in India, contributing at least 40% of annual discharge of Ganges, this model was run in the entire watershed that covers part of Tibet and Bangladesh as well. Meteorological inputs for 29 years (1979-2007) are drawn from ERA-INTERIM and APHRODITE dataset for horizontal resolution of 0.25 degrees. The analysis was performed to study temporal variability of SWE in the Himalayan region of Nepal. The model was calibrated by observed stream flows of the tributaries of the Gandaki River in Nepal which ultimately feeds river Ganga. Further, the simulated SWE is used to estimate stream flow in this river basin. Since Nepal has a greater snow cover accumulation in monsoon season than in winter at high altitudes, seasonality fluctuations in SWE affecting the stream flows are known. The model provided fair estimates of SWE and stream flow as per statistical analysis. Stream flows are known to be sensitive to the changes in snow water that can bring a negative impact on power generation in a country which has huge hydroelectric potential. In addition, our results on simulated SWE in second largest snow-fed catchment of the country will be helpful for reservoir management, flood forecasting and other water resource management issues. Keywords: Hydrology, Snow Water Equivalent, Variable Infiltration Capacity, Gandaki River Basin, Stream Flow

  4. Improving Snow Modeling by Assimilating Observational Data Collected by Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Crumley, R. L.; Hill, D. F.; Arendt, A. A.; Wikstrom Jones, K.; Wolken, G. J.; Setiawan, L.

    2017-12-01

    Modeling seasonal snow pack in alpine environments includes a multiplicity of challenges caused by a lack of spatially extensive and temporally continuous observational datasets. This is partially due to the difficulty of collecting measurements in harsh, remote environments where extreme gradients in topography exist, accompanied by large model domains and inclement weather. Engaging snow enthusiasts, snow professionals, and community members to participate in the process of data collection may address some of these challenges. In this study, we use SnowModel to estimate seasonal snow water equivalence (SWE) in the Thompson Pass region of Alaska while incorporating snow depth measurements collected by citizen scientists. We develop a modeling approach to assimilate hundreds of snow depth measurements from participants in the Community Snow Observations (CSO) project (www.communitysnowobs.org). The CSO project includes a mobile application where participants record and submit geo-located snow depth measurements while working and recreating in the study area. These snow depth measurements are randomly located within the model grid at irregular time intervals over the span of four months in the 2017 water year. This snow depth observation dataset is converted into a SWE dataset by employing an empirically-based, bulk density and SWE estimation method. We then assimilate this data using SnowAssim, a sub-model within SnowModel, to constrain the SWE output by the observed data. Multiple model runs are designed to represent an array of output scenarios during the assimilation process. An effort to present model output uncertainties is included, as well as quantification of the pre- and post-assimilation divergence in modeled SWE. Early results reveal pre-assimilation SWE estimations are consistently greater than the post-assimilation estimations, and the magnitude of divergence increases throughout the snow pack evolution period. This research has implications beyond the Alaskan context because it increases our ability to constrain snow modeling outputs by making use of snow measurements collected by non-expert, citizen scientists.

  5. Machine Learning on Images: Combining Passive Microwave and Optical Data to Estimate Snow Water Equivalent

    NASA Astrophysics Data System (ADS)

    Dozier, J.; Tolle, K.; Bair, N.

    2014-12-01

    We have a problem that may be a specific example of a generic one. The task is to estimate spatiotemporally distributed estimates of snow water equivalent (SWE) in snow-dominated mountain environments, including those that lack on-the-ground measurements. Several independent methods exist, but all are problematic. The remotely sensed date of disappearance of snow from each pixel can be combined with a calculation of melt to reconstruct the accumulated SWE for each day back to the last significant snowfall. Comparison with streamflow measurements in mountain ranges where such data are available shows this method to be accurate, but the big disadvantage is that SWE can only be calculated retroactively after snow disappears, and even then only for areas with little accumulation during the melt season. Passive microwave sensors offer real-time global SWE estimates but suffer from several issues, notably signal loss in wet snow or in forests, saturation in deep snow, subpixel variability in the mountains owing to the large (~25 km) pixel size, and SWE overestimation in the presence of large grains such as depth and surface hoar. Throughout the winter and spring, snow-covered area can be measured at sub-km spatial resolution with optical sensors, with accuracy and timeliness improved by interpolating and smoothing across multiple days. So the question is, how can we establish the relationship between Reconstruction—available only after the snow goes away—and passive microwave and optical data to accurately estimate SWE during the snow season, when the information can help forecast spring runoff? Linear regression provides one answer, but can modern machine learning techniques (used to persuade people to click on web advertisements) adapt to improve forecasts of floods and droughts in areas where more than one billion people depend on snowmelt for their water resources?

  6. Wide-area mapping of snow water equivalent by Sentinel-1&2 data

    NASA Astrophysics Data System (ADS)

    Conde, Vasco; Nico, Giovanni; Catalao, Joao; Kontu, Anna; Gritsevich, Maria

    2017-04-01

    The mapping of snow physical properties over large mountain areas of remote areas is an important topic in both climatological studies and hydrological models where the effects of snow melting are modeled and used to forecast extreme flood events. Usually, these models are run using in-situ measurements of snow which are expensive and statistically not representative of the spatial distribution of snow properties due to slope orientation of terrain, local terrain morphology and height as well as vegetation cover. In this work we investigate the use of data acquired by Sentinel-1 and 2 missions using a C-band SAR and multispectral sensor, respectively. The Sentinel-1 SAR data are processed to estimate the Snow Water Equivalent (SWE) using both the radar amplitude and the output of the SAR interferometry processing. Both approaches need in-situ data to process SAR data and calibrate SWE estimates. The use of SAR amplitude to estimate the SWE is well established and the basic idea is that the radar signal backscattered by snow is related to the SWE so, after modeling the relationship between these two quantities at the site of in-situ measurements this relationship can be used to map the SWE at all site where the SAR amplitude information is available. The physical principle used by SAR interferometry is that of phase delay due to propagation in a non-dispersive medium. This implies that the snow is supposed to be dry in order to allow the propagation of the SAR signal. Sentinel-2 images have been used to get land-use maps and identify areas covered by vegetation. Finland has been chosen as a study region with in-situ measurements acquired thanks to the availability of rich database of in-situ measurements of SWE. Sentinel data used in this work have been acquired starting from November 2015. Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz.

  7. Assessment of biopsy-proven liver fibrosis by two-dimensional shear wave elastography: An individual patient data-based meta-analysis.

    PubMed

    Herrmann, Eva; de Lédinghen, Victor; Cassinotto, Christophe; Chu, Winnie C-W; Leung, Vivian Y-F; Ferraioli, Giovanna; Filice, Carlo; Castera, Laurent; Vilgrain, Valérie; Ronot, Maxime; Dumortier, Jérôme; Guibal, Aymeric; Pol, Stanislas; Trebicka, Jonel; Jansen, Christian; Strassburg, Christian; Zheng, Rongqin; Zheng, Jian; Francque, Sven; Vanwolleghem, Thomas; Vonghia, Luisa; Manesis, Emanuel K; Zoumpoulis, Pavlos; Sporea, Ioan; Thiele, Maja; Krag, Aleksander; Cohen-Bacrie, Claude; Criton, Aline; Gay, Joel; Deffieux, Thomas; Friedrich-Rust, Mireen

    2018-01-01

    Two-dimensional shear wave elastography (2D-SWE) has proven to be efficient for the evaluation of liver fibrosis in small to moderate-sized clinical trials. We aimed at running a larger-scale meta-analysis of individual data. Centers which have worked with Aixplorer ultrasound equipment were contacted to share their data. Retrospective statistical analysis used direct and paired receiver operating characteristic and area under the receiver operating characteristic curve (AUROC) analyses, accounting for random effects. Data on both 2D-SWE and liver biopsy were available for 1,134 patients from 13 sites, as well as on successful transient elastography in 665 patients. Most patients had chronic hepatitis C (n = 379), hepatitis B (n = 400), or nonalcoholic fatty liver disease (n = 156). AUROCs of 2D-SWE in patients with hepatitis C, hepatitis B, and nonalcoholic fatty liver disease were 86.3%, 90.6%, and 85.5% for diagnosing significant fibrosis and 92.9%, 95.5%, and 91.7% for diagnosing cirrhosis, respectively. The AUROC of 2D-SWE was 0.022-0.084 (95% confidence interval) larger than the AUROC of transient elastography for diagnosing significant fibrosis (P = 0.001) and 0.003-0.034 for diagnosing cirrhosis (P = 0.022) in all patients. This difference was strongest in hepatitis B patients. 2D-SWE has good to excellent performance for the noninvasive staging of liver fibrosis in patients with hepatitis B; further prospective studies are needed for head-to-head comparison between 2D-SWE and other imaging modalities to establish disease-specific appropriate cutoff points for assessment of fibrosis stage. (Hepatology 2018;67:260-272). © 2017 The Authors. Hepatology published by Wiley Periodicals, Inc., on behalf of the American Association for the Study of Liver Diseases.

  8. Seasonal and interannual variations in the influence of cloud cover variability on snowpack and streamflow in the western U.S.

    NASA Astrophysics Data System (ADS)

    Sumargo, E.; Cayan, D. R.

    2016-12-01

    Solar radiation (S) is a key driver of snowmelt and water fluxes, but its effect varies depending on time of year and also upon the hydrological character (e.g., dry or wet) of a given year. In this study, we use remote sensed S to quantify cloudiness variability and its effects on snowmelt and streamflow across mountain basins in the western U.S. We utilize 20 years (1996-2015) of NASA/NOAA GOES-derived cloud albedo (αcloud) at 4-km daily samples to estimate S over relatively fine spatial and temporal resolution during Feb-Jul when snowmelt is most active. Daily snow water equivalent (SWE) records from >200 CDEC and SNOTEL locations, along with daily stream discharge (Q) from USGS HCDN records are used to compute day-to-day changes (dSWE and dQ). Multivariate linear regression models of dSWE and dQ are constructed for each month, wherein αcloud from several days prior up to the concurrent day are the predictors. In Feb-May, the results show predominantly negative correlations between αcloud and dSWE, confirming the cloud-shading effect in preserving snowpack and reducing runoff. The influence of cloudiness variability on snowpack, denoted by the coefficient of determination (R2) between the measured and modeled dSWE, amounts 4%-73% over Feb-Jul, averaging 20% in the northwest and 26% in the southwest. The dQ case exhibits similar patterns, but lower explained variance. In Jun-Jul, most locations in both dSWE and dQ cases display positive correlation but with diminished R2, presumably reflecting the drying effect of summertime. In comparing dry and wet years, the R2 is somewhat higher in dry years, suggesting that the importance of cloud cover and the associated solar insolation variability is higher in cases with greater influence from other hydrological factors, including heavy precipitation events and fluctuations associated with a higher snowpack.

  9. Assessment of liver fibrosis with 2-D shear wave elastography in comparison to transient elastography and acoustic radiation force impulse imaging in patients with chronic liver disease.

    PubMed

    Gerber, Ludmila; Kasper, Daniela; Fitting, Daniel; Knop, Viola; Vermehren, Annika; Sprinzl, Kathrin; Hansmann, Martin L; Herrmann, Eva; Bojunga, Joerg; Albert, Joerg; Sarrazin, Christoph; Zeuzem, Stefan; Friedrich-Rust, Mireen

    2015-09-01

    Two-dimensional shear wave elastography (2-D SWE) is an ultrasound-based elastography method integrated into a conventional ultrasound machine. It can evaluate larger regions of interest and, therefore, might be better at determining the overall fibrosis distribution. The aim of this prospective study was to compare 2-D SWE with the two best evaluated liver elastography methods, transient elastography and acoustic radiation force impulse (point SWE using acoustic radiation force impulse) imaging, in the same population group. The study included 132 patients with chronic hepatopathies, in which liver stiffness was evaluated using transient elastography, acoustic radiation force impulse imaging and 2-D SWE. The reference methods were liver biopsy for the assessment of liver fibrosis (n = 101) and magnetic resonance imaging/computed tomography for the diagnosis of liver cirrhosis (n = 31). No significant difference in diagnostic accuracy, assessed as the area under the receiver operating characteristic curve (AUROC), was found between the three elastography methods (2-D SWE, transient elastography, acoustic radiation force impulse imaging) for the diagnosis of significant and advanced fibrosis and liver cirrhosis in the "per protocol" (AUROCs for fibrosis stages ≥2: 0.90, 0.95 and 0.91; for fibrosis stage [F] ≥3: 0.93, 0.95 and 0.94; for F = 4: 0.92, 0.96 and 0.92) and "intention to diagnose" cohort (AUROCs for F ≥2: 0.87, 0.92 and 0.91; for F ≥3: 0.91, 0.93 and 0.94; for F = 4: 0.88, 0.90 and 0.89). Therefore, 2-D SWE, ARFI imaging and transient elastography seem to be comparably good methods for non-invasive assessment of liver fibrosis. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Development of microwave rainfall retrieval algorithm for climate applications

    NASA Astrophysics Data System (ADS)

    KIM, J. H.; Shin, D. B.

    2014-12-01

    With the accumulated satellite datasets for decades, it is possible that satellite-based data could contribute to sustained climate applications. Level-3 products from microwave sensors for climate applications can be obtained from several algorithms. For examples, the Microwave Emission brightness Temperature Histogram (METH) algorithm produces level-3 rainfalls directly, whereas the Goddard profiling (GPROF) algorithm first generates instantaneous rainfalls and then temporal and spatial averaging process leads to level-3 products. The rainfall algorithm developed in this study follows a similar approach to averaging instantaneous rainfalls. However, the algorithm is designed to produce instantaneous rainfalls at an optimal resolution showing reduced non-linearity in brightness temperature (TB)-rain rate(R) relations. It is found that the resolution tends to effectively utilize emission channels whose footprints are relatively larger than those of scattering channels. This algorithm is mainly composed of a-priori databases (DBs) and a Bayesian inversion module. The DB contains massive pairs of simulated microwave TBs and rain rates, obtained by WRF (version 3.4) and RTTOV (version 11.1) simulations. To improve the accuracy and efficiency of retrieval process, data mining technique is additionally considered. The entire DB is classified into eight types based on Köppen climate classification criteria using reanalysis data. Among these sub-DBs, only one sub-DB which presents the most similar physical characteristics is selected by considering the thermodynamics of input data. When the Bayesian inversion is applied to the selected DB, instantaneous rain rate with 6 hours interval is retrieved. The retrieved monthly mean rainfalls are statistically compared with CMAP and GPCP, respectively.

  11. Snowmelt sensitivity to warmer temperatures: a field-validated model analysis, southern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Musselman, K. N.; Molotch, N. P.; Margulis, S. A.

    2014-12-01

    We present model simulations of climate change impacts on snowmelt processes over a 1600 km2 area in the southern Sierra Nevada, including western Sequoia National Park. The domain spans a 3600 m elevation gradient and ecosystems ranging from semi-arid grasslands to giant sequoia groves to alpine tundra. Three reference years were evaluated: a moderately dry snow season (23% below average SWE), an average snow season (7% above average SWE), and a moderately wet snow season (54% above average SWE). The Alpine3D model was run for the reference years and results were evaluated against data from a multi-scale measurement campaign that included repeated manual snow courses and basin-scale snow surveys, dozens of automated snow depth sensors, and automated SWE stations. Compared to automated measurements, the model represented the date of snow disappearance within two days. Compared to manual measurements, model SWE RMSE values for the average and wet snow seasons were highly correlated (R2=0.89 and R2=0.73) with the distance of SWE measurements from the nearest precipitation gauge used to force the model; no significant correlation was found with elevation. The results suggest that Alpine3D is highly accurate during the melt season and that precipitation uncertainty may critically limit snow model accuracy. The air temperature measured at 19 regional stations for the three reference years was modified by +1°C to +6°C to simulate the impact of warmer temperatures on snowmelt dynamics over the 3600 m elevation gradient. For all years, progressively warmer temperatures caused the seasonal SWE centroid to shift earlier and higher in elevation. At forested middle elevations, 70 - 80% of the present-day snowpack volume is lost in a +2°C scenario; 30 - 40% of that change is a result of precipitation phase shift and the remainder is due to enhanced melt. At all elevations, spring and fall snowpack was most sensitive to warmer temperatures; mid-winter sensitivity was least for elevations >3100 m. Interestingly, the dominant effect of warmer temperatures on snowmelt was a reduction in daily melt rates. The drier year was most sensitive to temperature changes with a greater decrease in the number of days with high melt rates. The results offer insight into the sensitivity of snowmelt processes to warmer temperatures in the Sierra Nevada.

  12. Long-term analyses of snow dynamics within the french Alps on the 1900-2100 period. Analyses of historical snow water equivalent observations, modelisations and projections of a hundred of snow courses.

    NASA Astrophysics Data System (ADS)

    Mathevet, T.; Joel, G.; Gottardi, F.; Nemoz, B.

    2017-12-01

    The aim of this communication is to present analyses of climate variability and change on snow water equivalent (SWE) observations, reconstructions (1900-2016) and scenarii (2020-2100) of a hundred of snow courses dissiminated within the french Alps. This issue became particularly important since a decade, in regions where snow variability had a large impact on water resources availability, poor snow conditions in ski resorts and artificial snow production. As a water resources manager in french mountainuous regions, EDF (french hydropower company) has developed and managed a hydrometeorological network since 1950. A recent data rescue research allowed to digitize long term SWE manual measurments of a hundred of snow courses within the french Alps. EDF have been operating an automatic SWE sensors network, complementary to the snow course network. Based on numerous SWE observations time-series and snow accumulation and melt model (Garavaglia et al., 2017), continuous daily historical SWE time-series have been reconstructed within the 1950-2016 period. These reconstructions have been extented to 1900 using 20 CR reanalyses (ANATEM method, Kuentz et al., 2015) and up to 2100 using GIEC Climate Change scenarii. Considering various mountainous areas within the french Alps, this communication focuses on : (1) long term (1900-2016) analyses of variability and trend of total precipitation, air temperature, snow water equivalent, snow line altitude, snow season length , (2) long term variability of hydrological regime of snow dominated watersheds and (3) future trends (2020 -2100) using GIEC Climate Change scenarii. Comparing historical period (1950-1984) to recent period (1984-2016), quantitative results within a region in the north Alps (Maurienne) shows an increase of air temperature by 1.2 °C, an increase of snow line height by 200m, a reduction of SWE by 200 mm/year and a reduction of snow season length by 15 days. These analyses will be extended from north to south of the Alps, on a region spanning 200 km. Caracterisation of the increase of snow line height and SWE reduction are particularly important at a local and watershed scale. This long term change of snow dynamics within moutainuous regions both impacts snow resorts and artificial snow production developments and multi-purposes dam reservoirs managments.

  13. Using Confidence Intervals and Recurrence Intervals to Determine Precipitation Delivery Mechanisms Responsible for Mass Wasting Events.

    NASA Astrophysics Data System (ADS)

    Ulizio, T. P.; Bilbrey, C.; Stoyanoff, N.; Dixon, J. L.

    2015-12-01

    Mass wasting events are geologic hazards that impact human life and property across a variety of landscapes. These movements can be triggered by tectonic activity, anomalous precipitation events, or both; acting to decrease the factor of safety ratio on a hillslope to the point of failure. There exists an active hazard landscape in the West Boulder River drainage of Park Co., MT in which the mechanisms of slope failure are unknown. It is known that region has not seen significant tectonic activity within the last decade, leaving anomalous precipitation events as the likely trigger for slope failures in the landscape. Precipitation can be delivered to a landscape via rainfall or snow; it was the aim of this study to determine the precipitation delivery mechanism most likely responsible for movements in the West Boulder drainage following the Jungle Wildfire of 2006. Data was compiled from four SNOTEL sites in the surrounding area, spanning 33 years, focusing on, but not limited to; maximum snow water equivalent (SWE) values in a water year, median SWE values on the date which maximum SWE was recorded in a water year, the total precipitation accumulated in a water year, etc. Means were computed and 99% confidence intervals were constructed around these means. Recurrence intervals and exceedance probabilities were computed for maximum SWE values and total precipitation accumulated in a water year to determine water years with anomalous precipitation. It was determined that the water year 2010-2011 received an anomalously high amount of SWE, and snow melt in the spring of this water year likely triggered recent mass waste movements. This data is further supported by Google Earth imagery, showing movements between 2009 and 2011. Return intervals for the maximum SWE value in 2010-11 for the Placer Basin SNOTEL site was 34 years, while return intervals for the Box Canyon and Monument Peak SNOTEL sites were 17.5 and 17 years respectively. Max SWE values lie outside the upper bound of the 99% confidence interval at all SNOTEL sites while precipitation accumulated in the form of rain is within the expected average, indicating an anomalously snow year and average amounts of rainfall during the same water year. This information can be used to better predict circumstances leading to slope failures in northern latitude alpine landscapes.

  14. Statistically Optimized Inversion Algorithm for Enhanced Retrieval of Aerosol Properties from Spectral Multi-Angle Polarimetric Satellite Observations

    NASA Technical Reports Server (NTRS)

    Dubovik, O; Herman, M.; Holdak, A.; Lapyonok, T.; Taure, D.; Deuze, J. L.; Ducos, F.; Sinyuk, A.

    2011-01-01

    The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board the PARASOL microsatellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation.

  15. Performance Evaluation of Machine Learning Methods for Leaf Area Index Retrieval from Time-Series MODIS Reflectance Data

    PubMed Central

    Wang, Tongtong; Xiao, Zhiqiang; Liu, Zhigang

    2017-01-01

    Leaf area index (LAI) is an important biophysical parameter and the retrieval of LAI from remote sensing data is the only feasible method for generating LAI products at regional and global scales. However, most LAI retrieval methods use satellite observations at a specific time to retrieve LAI. Because of the impacts of clouds and aerosols, the LAI products generated by these methods are spatially incomplete and temporally discontinuous, and thus they cannot meet the needs of practical applications. To generate high-quality LAI products, four machine learning algorithms, including back-propagation neutral network (BPNN), radial basis function networks (RBFNs), general regression neutral networks (GRNNs), and multi-output support vector regression (MSVR) are proposed to retrieve LAI from time-series Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data in this study and performance of these machine learning algorithms is evaluated. The results demonstrated that GRNNs, RBFNs, and MSVR exhibited low sensitivity to training sample size, whereas BPNN had high sensitivity. The four algorithms performed slightly better with red, near infrared (NIR), and short wave infrared (SWIR) bands than red and NIR bands, and the results were significantly better than those obtained using single band reflectance data (red or NIR). Regardless of band composition, GRNNs performed better than the other three methods. Among the four algorithms, BPNN required the least training time, whereas MSVR needed the most for any sample size. PMID:28045443

  16. Performance Evaluation of Machine Learning Methods for Leaf Area Index Retrieval from Time-Series MODIS Reflectance Data.

    PubMed

    Wang, Tongtong; Xiao, Zhiqiang; Liu, Zhigang

    2017-01-01

    Leaf area index (LAI) is an important biophysical parameter and the retrieval of LAI from remote sensing data is the only feasible method for generating LAI products at regional and global scales. However, most LAI retrieval methods use satellite observations at a specific time to retrieve LAI. Because of the impacts of clouds and aerosols, the LAI products generated by these methods are spatially incomplete and temporally discontinuous, and thus they cannot meet the needs of practical applications. To generate high-quality LAI products, four machine learning algorithms, including back-propagation neutral network (BPNN), radial basis function networks (RBFNs), general regression neutral networks (GRNNs), and multi-output support vector regression (MSVR) are proposed to retrieve LAI from time-series Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data in this study and performance of these machine learning algorithms is evaluated. The results demonstrated that GRNNs, RBFNs, and MSVR exhibited low sensitivity to training sample size, whereas BPNN had high sensitivity. The four algorithms performed slightly better with red, near infrared (NIR), and short wave infrared (SWIR) bands than red and NIR bands, and the results were significantly better than those obtained using single band reflectance data (red or NIR). Regardless of band composition, GRNNs performed better than the other three methods. Among the four algorithms, BPNN required the least training time, whereas MSVR needed the most for any sample size.

  17. Desert Dust Satellite Retrieval Intercomparison

    NASA Technical Reports Server (NTRS)

    Carboni, E.; Thomas, G. E.; Sayer, A. M.; Siddans, R.; Poulsen, C. A.; Grainger, R. G.; Ahn, C.; Antoine, D.; Bevan, S.; Braak, R.; hide

    2012-01-01

    This work provides a comparison of satellite retrievals of Saharan desert dust aerosol optical depth (AOD) during a strong dust event through March 2006. In this event, a large dust plume was transported over desert, vegetated, and ocean surfaces. The aim is to identify and understand the differences between current algorithms, and hence improve future retrieval algorithms. The satellite instruments considered are AATSR, AIRS, MERIS, MISR, MODIS, OMI, POLDER, and SEVIRI. An interesting aspect is that the different algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. These include multi-angle approaches (MISR, AATSR), polarisation measurements (POLDER), single-view approaches using solar wavelengths (OMI, MODIS), and the thermal infrared spectral region (SEVIRI, AIRS). Differences between instruments, together with the comparison of different retrieval algorithms applied to measurements from the same instrument, provide a unique insight into the performance and characteristics of the various techniques employed. As well as the intercomparison between different satellite products, the AODs have also been compared to co-located AERONET data. Despite the fact that the agreement between satellite and AERONET AODs is reasonably good for all of the datasets, there are significant differences between them when compared to each other, especially over land. These differences are partially due to differences in the algorithms, such as as20 sumptions about aerosol model and surface properties. However, in this comparison of spatially and temporally averaged data, at least as significant as these differences are sampling issues related to the actual footprint of each instrument on the heterogeneous aerosol field, cloud identification and the quality control flags of each dataset.

  18. Accuracy of Geophysical Parameters Derived from AIRS/AMSU as a Function of Fractional Cloud Cover

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Barnet, Chris; Blaisdell, John; Iredell, Lena; Keita, Fricky; Kouvaris, Lou; Molnar, Gyula; Chahine, Moustafa

    2005-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1K, and layer precipitable water with an rms error of 20%, in cases with up to 80% effective cloud cover. The basic theory used to analyze AIRS/AMSU/HSB data in the presence of clouds, called the at-launch algorithm, was described previously. Pre-launch simulation studies using this algorithm indicated that these results should be achievable. Some modifications have been made to the at-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small. HSB failed in February 2005, and consequently HSB channel radiances are not used in the results shown in this paper. The AIRS/AMSU retrieval algorithm described in this paper, called Version 4, become operational at the Goddard DAAC in April 2005 and is being used to analyze near-real time AIRS/AMSU data. Historical AIRS/AMSU data, going backwards from March 2005 through September 2002, is also being analyzed by the DAAC using the Version 4 algorithm.

  19. Marine Profiles for OGC Sensor Web Enablement Standards

    NASA Astrophysics Data System (ADS)

    Jirka, Simon

    2016-04-01

    The use of OGC Sensor Web Enablement (SWE) standards in oceanology is increasing. Several projects are developing SWE-based infrastructures to ease the sharing of marine sensor data. This work ranges from developments on sensor level to efforts addressing interoperability of data flows between observatories and organisations. The broad range of activities using SWE standards leads to a risk of diverging approaches how the SWE specifications are applied. Because the SWE standards are designed in a domain independent manner, they intentionally offer a high degree of flexibility enabling implementation across different domains and usage scenarios. At the same time this flexibility allows one to achieve similar goals in different ways. To avoid interoperability issues, an agreement is needed on how to apply SWE concepts and how to use vocabularies in a common way that will be shared by different projects, implementations, and users. To address this need, partners from several projects and initiatives (AODN, BRIDGES, envri+, EUROFLEETS/EUROFLEETS2, FixO3, FRAM, IOOS, Jerico/Jerico-Next, NeXOS, ODIP/ODIP II, RITMARE, SeaDataNet, SenseOcean, X-DOMES) have teamed up to develop marine profiles of OGC SWE standards that can serve as a common basis for developments in multiple projects and organisations. The following aspects will be especially considered: 1.) Provision of metadata: For discovering sensors/instruments as well as observation data, to facilitate the interpretation of observations, and to integrate instruments in sensor platforms, the provision of metadata is crucial. Thus, a marine profile of the OGC Sensor Model Language 2.0 (SensorML 2.0) will be developed allowing to provide metadata for different levels (e.g. observatory, instrument, and detector) and sensor types. The latter will enable metadata of a specific type to be automatically inherited by all devices/sensors of the same type. The application of further standards such as OGC PUCK will benefit from this encoding, too, by facilitating the communication with instruments. 2.) Encoding and modelling of observation data: For delivering observation data, the ISO/OGC Observations and Measurements 2.0 (O&M 2.0) standard serves as a good basis. Within an O&M profile, recommendations will be given on needed observation types that cover different aspects of marine sensing (trajectory, stationary, or profile measurements, etc.). Besides XML, further O&M encodings (e.g. JSON-based) will be considered. 3.) Data access: A profile of the OGC Sensor Observation Service 2.0 (SOS 2.0) standard will be specified to offer a common way on how this web service interface can be used for requesting marine observations and metadata. At the same time this will offer a common interface to cross-domain applications based upon tools such as the GEOSS DAB. Lightweight approaches such as REST will be considered as further bindings for the SOS interface. 4.) Backward compatibility: The profile will consider the existing observation systems so that migration paths towards the specified profiles can be offered. We will present the current state of the profile development. In particular, a comparative analysis of SWE usage in different projects, an outline of the requirements, and fundamental aspects of profiles of SWE standards will be shown.

  20. An assessment of two automated snow water equivalent instruments during the WMO Solid Precipitation Intercomparison Experiment

    NASA Astrophysics Data System (ADS)

    Smith, Craig D.; Kontu, Anna; Laffin, Richard; Pomeroy, John W.

    2017-01-01

    During the World Meteorological Organization (WMO) Solid Precipitation Intercomparison Experiment (SPICE), automated measurements of snow water equivalent (SWE) were made at the Sodankylä (Finland), Weissfluhjoch (Switzerland) and Caribou Creek (Canada) SPICE sites during the northern hemispheric winters of 2013/14 and 2014/15. Supplementary intercomparison measurements were made at Fortress Mountain (Kananaskis, Canada) during the 2013/14 winter. The objectives of this analysis are to compare automated SWE measurements with a reference, comment on their performance and, where possible, to make recommendations on how to best use the instruments and interpret their measurements. Sodankylä, Caribou Creek and Fortress Mountain hosted a Campbell Scientific CS725 passive gamma radiation SWE sensor. Sodankylä and Weissfluhjoch hosted a Sommer Messtechnik SSG1000 snow scale. The CS725 operating principle is based on measuring the attenuation of soil emitted gamma radiation by the snowpack and relating the attenuation to SWE. The SSG1000 measures the mass of the overlying snowpack directly by using a weighing platform and load cell. Manual SWE measurements were obtained at the intercomparison sites on a bi-weekly basis over the accumulation-ablation periods using bulk density samplers. These manual measurements are considered to be the reference for the intercomparison. Results from Sodankylä and Caribou Creek showed that the CS725 generally overestimates SWE as compared to manual measurements by roughly 30-35 % with correlations (r2) as high as 0.99 for Sodankylä and 0.90 for Caribou Creek. The RMSE varied from 30 to 43 mm water equivalent (mm w.e.) and from 18 to 25 mm w.e. at Sodankylä and Caribou Creek, which had respective SWE maximums of approximately 200 and 120 mm w.e. The correlation at Fortress Mountain was 0.94 (RMSE of 48 mm w.e. with a maximum SWE of approximately 650 mm w.e.) with no systematic overestimation. The SSG1000 snow scale, having a different measurement principle, agreed quite closely with the manual measurements at Sodankylä and Weissfluhjoch throughout the periods when data were available (r2 as high as 0.99 and RMSE from 8 to 24 mm w.e. at Sodankylä and from 56 to 59 mm w.e. at Weissfluhjoch, where maximum SWE was approximately 850 mm w.e.). When the SSG1000 was compared to the CS725 at Sodankylä, the agreement was linear until the start of ablation when the positive bias in the CS725 increases substantially relative to the SSG1000. Since both Caribou Creek and Sodankylä have sandy soil, water from the snowpack readily infiltrates into the soil during melt, even if the soil is frozen. However, the CS725 does not differentiate this water from the unmelted snow. This issue can be identified, at least during the late spring ablation period, with soil moisture and temperature observations like those measured at Caribou Creek. With a less permeable soil and surface runoff, the increase in the instrument bias during ablation is not as significant, as shown by the Fortress Mountain intercomparison.

  1. Impact of an inferior vena cava filter retrieval algorithm on filter retrieval rates in a cancer population.

    PubMed

    Litwin, Robert J; Huang, Steven Y; Sabir, Sharjeel H; Hoang, Quoc B; Ahrar, Kamran; Ahrar, Judy; Tam, Alda L; Mahvash, Armeen; Ensor, Joe E; Kroll, Michael; Gupta, Sanjay

    2017-09-01

    Our primary purpose was to assess the impact of an inferior vena cava filter retrieval algorithm in a cancer population. Because cancer patients are at persistently elevated risk for development of venous thromboembolism (VTE), our secondary purpose was to assess the incidence of recurrent VTE in patients who underwent filter retrieval. Patients with malignant disease who had retrievable filters placed at a tertiary care cancer hospital from August 2010 to July 2014 were retrospectively studied. A filter retrieval algorithm was established in August 2012. Patients and referring physicians were contacted in the postintervention period when review of the medical record indicated that filter retrieval was clinically appropriate. Patients were classified into preintervention (August 2010-July 2012) and postintervention (August 2012-July 2014) study cohorts. Retrieval rates and clinical pathologic records were reviewed. Filter retrieval was attempted in 34 (17.4%) of 195 patients in the preintervention cohort and 66 (32.8%) of 201 patients in the postintervention cohort (P < .01). The median time to filter retrieval in the preintervention and postintervention cohorts was 60 days (range, 20-428 days) and 107 days (range, 9-600 days), respectively (P = .16). In the preintervention cohort, 49 of 195 (25.1%) patients were lost to follow-up compared with 24 of 201 (11.9%) patients in the postintervention cohort (P < .01). Survival was calculated from the date of filter placement to death, when available. The overall survival for patients whose filters were retrieved was longer compared with the overall survival for patients whose filters were not retrieved (P < .0001). Of the 80 patients who underwent successful filter retrieval, two patients (2.5%) suffered from recurrent VTE (n = 1 nonfatal pulmonary embolism; n = 1 deep venous thrombosis). Both patients were treated with anticoagulation without filter replacement. Inferior vena cava filter retrieval rates can be significantly increased in patients with malignant disease with a low rate (2.5%) of recurrent VTE after filter retrieval. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  2. Intercomparison of snow depth retrievals over Arctic sea ice from radar data acquired by Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Kwok, Ron; Kurtz, Nathan T.; Brucker, Ludovic; Ivanoff, Alvaro; Newman, Thomas; Farrell, Sinead L.; King, Joshua; Howell, Stephen; Webster, Melinda A.; Paden, John; Leuschen, Carl; MacGregor, Joseph A.; Richter-Menge, Jacqueline; Harbeck, Jeremy; Tschudi, Mark

    2017-11-01

    Since 2009, the ultra-wideband snow radar on Operation IceBridge (OIB; a NASA airborne mission to survey the polar ice covers) has acquired data in annual campaigns conducted during the Arctic and Antarctic springs. Progressive improvements in radar hardware and data processing methodologies have led to improved data quality for subsequent retrieval of snow depth. Existing retrieval algorithms differ in the way the air-snow (a-s) and snow-ice (s-i) interfaces are detected and localized in the radar returns and in how the system limitations are addressed (e.g., noise, resolution). In 2014, the Snow Thickness On Sea Ice Working Group (STOSIWG) was formed and tasked with investigating how radar data quality affects snow depth retrievals and how retrievals from the various algorithms differ. The goal is to understand the limitations of the estimates and to produce a well-documented, long-term record that can be used for understanding broader changes in the Arctic climate system. Here, we assess five retrieval algorithms by comparisons with field measurements from two ground-based campaigns, including the BRomine, Ozone, and Mercury EXperiment (BROMEX) at Barrow, Alaska; a field program by Environment and Climate Change Canada at Eureka, Nunavut; and available climatology and snowfall from ERA-Interim reanalysis. The aim is to examine available algorithms and to use the assessment results to inform the development of future approaches. We present results from these assessments and highlight key considerations for the production of a long-term, calibrated geophysical record of springtime snow thickness over Arctic sea ice.

  3. Cross-validation of two liquid water path retrieval algorithms applied to ground-based microwave radiation measurements by RPG-HATPRO instrument

    NASA Astrophysics Data System (ADS)

    Kostsov, Vladimir; Ionov, Dmitry; Biryukov, Egor; Zaitsev, Nikita

    2017-04-01

    A built-in operational regression algorithm (REA) of liquid water path (LWP) retrieval supplied by the manufacturer of the RPG-HATPRO microwave radiometer has been compared to a so-called physical algorithm (PHA) based on the inversion of the radiative transfer equation. The comparison has been performed for different scenarios of microwave observations by the RPG-HATPRO instrument that has been operating at St.Petersburg University since June 2012. The data for the scenarios have been collected within the time period December 2012 - December 2014. The estimations of bias and random error for both REA and PHA have been obtained. Special attention has been paid to the analysis of the quality of the LWP retrievals during and after rain events that have been detected by the built-in rain sensor. The estimation has been done of the time period after a rain event when the retrieval quality has to be considered as insufficient.

  4. Calibration and Data Retrieval Algorithms for the NASA Langley/Ames Diode Laser Hygrometer for the NASA Trace-P Mission

    NASA Technical Reports Server (NTRS)

    Podolske, James R.; Sachse, Glen W.; Diskin, Glenn S.; Hipskino, R. Stephen (Technical Monitor)

    2002-01-01

    This paper describes the procedures and algorithms for the laboratory calibration and the field data retrieval of the NASA Langley / Ames Diode Laser Hygrometer as implemented during the NASA Trace-P mission during February to April 2000. The calibration is based on a NIST traceable dewpoint hygrometer using relatively high humidity and short pathlength. Two water lines of widely different strengths are used to increase the dynamic range of the instrument in the course of a flight. The laboratory results are incorporated into a numerical model of the second harmonic spectrum for each of the two spectral window regions using spectroscopic parameters from the HITRAN database and other sources, allowing water vapor retrieval at upper tropospheric and lower stratospheric temperatures and humidity levels. The data retrieval algorithm is simple, numerically stable, and accurate. A comparison with other water vapor instruments on board the NASA DC-8 and ER-2 aircraft is presented.

  5. The Role of Cloud Contamination, Aerosol Layer Height and Aerosol Model in the Assessment of the OMI Near-UV Retrievals Over the Ocean

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Torres, Omar

    2016-01-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD less than 0.3, 30% for AOD greater than 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm approximately less than 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (less than 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by varying the different assumed parameters in the retrieval (imaginary index of refraction, size distribution, aerosol height, particle shape). It was found that the spherical shape assumption for dust in the current retrieval is the main cause of the underestimate. In addition, it is demonstrated in an example how an incorrect assumption of the aerosol height can lead to an underestimate. Nevertheless, this is not as significant as the effect of particle shape. These findings will be incorporated in a future version of the retrieval algorithm.

  6. Retrieval Accuracy Assessment with Gap Detection for Case 2 Waters Chla Algorithms

    NASA Astrophysics Data System (ADS)

    Salem, S. I.; Higa, H.; Kim, H.; Oki, K.; Oki, T.

    2016-12-01

    Inland lakes and coastal regions types of Case 2 Waters should be continuously and accurately monitored as the former contain 90% of the global liquid freshwater storage, while the latter provide most of the dissolved organic carbon (DOC) which is an important link in the global carbon cycle. The optical properties of Case 2 Waters are dominated by three optically active components: phytoplankton, non-algal particles (NAP) and color dissolved organic matter (CDOM). During the last three decades, researchers have proposed several algorithms to retrieve Chla concentration from the remote sensing reflectance. In this study, seven algorithms are assessed with various band combinations from multi and hyper-spectral data with linear, polynomial and power regression approaches. To evaluate the performance of the 43 algorithm combination sets, 500,000 remote sensing reflectance spectra are simulated with a wide range of concentrations for Chla, NAP and CDOM. The concentrations of Chla and NAP vary from 1-200 (mg m-3) and 1-200 (gm m-3), respectively, and the absorption of CDOM at 440 nm has the range of 0.1-10 (m-1). It is found that the three-band algorithm (665, 709 and 754 nm) with the quadratic polynomial (3b_665_QP) indicates the best overall performance. 3b_665_QP has the least error with a root mean square error (RMSE) of 0.2 (mg m-3) and a mean absolute relative error (MARE) of 0.7 %. The less accurate retrieval of Chla was obtained by the synthetic chlorophyll index algorithm with RMSE and MARE of 35.8 mg m-3 and 160.4 %, respectively. In general, Chla algorithms which incorporates 665 nm band or band tuning technique performs better than those with 680 nm. In addition, the retrieval accuracy of Chla algorithms with quadratic polynomial and power regression approaches are consistently better than the linear ones. By analyzing Chla versus NAP concentrations, the 3b_665_QP outperforms the other algorithms for all Chla concentrations and NAP concentrations above 40 gm m-3which accounts for 81.3 % of the total combinations of NAP and Chla. In conclusion, these findings provide a reference for algorithm selection based on constituents' concentrations and open the door for developing a classification scheme to retrieve Chla with higher accuracy.

  7. Retrievals of ice cloud microphysical properties of deep convective systems using radar measurements: Convective Cloud Microphysical Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Jingjing; Dong, Xiquan; Xi, Baike

    This study presents new algorithms for retrieving ice cloud microphysical properties (ice water content (IWC) and median mass diameter (Dm)) for the stratiform and thick anvil regions of Deep Convective Systems (DCSs) using Next-Generation Radar (NEXRAD) reflectivity and recently developed empirical relationships from aircraft in situ measurements during the Midlatitude Continental Convective Clouds Experiment (MC3E). A classic DCS case on 20 May 2011 is used to compare the retrieved IWC profiles with other retrieval and cloud-resolving model simulations. The mean values of each retrieved and simulated IWC fall within one standard derivation of the other two. The statistical results frommore » six selected cases during MC3E show that the aircraft in situ derived IWC and Dm are 0.47 ± 0.29 g m-3 and 2.02 ± 1.3 mm, while the mean values of retrievals have a positive bias of 0.16 g m-3 (34%) and a negative bias of 0.39 mm (19%). To validate the newly developed retrieval algorithms from this study, IWC and Dm are performed with other DCS cases during Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX) field campaign using composite gridded NEXRAD reflectivity and compared with in situ IWC and Dm from aircraft. A total of 64 1-min collocated aircraft and radar samples are available for comparisons, and the averages of radar retrieved and aircraft in situ measured IWCs are 1.22 g m-3 and 1.26 g m-3 with a correlation of 0.5, and their averaged Dm values are 2.15 and 1.80 mm. These comparisons have shown that the retrieval algorithms 45 developed during MC3E can retrieve similar ice cloud microphysical properties of DCS to aircraft in situ measurements during BAMEX with median errors of ~40% and ~25% for IWC and Dm retrievals, respectively. This is indicating our retrieval algorithms are suitable for other midlatitude continental DCS ice clouds, especially at stratiform rain and thick anvil regions. In addition, based on the averaged IWC and Dm values during MC3E and BAMEX, the DCS IWC values over midlatitude are significantly different, while their Dm values are close to each other. On the other hand, these DCS IWC and Dm values are 1-2 orders of magnitude larger than those of single-layered cirrus clouds over midlatitudes.« less

  8. Improved Algorithms for Accurate Retrieval of UV - Visible Diffuse Attenuation Coefficients in Optically Complex, Inshore Waters

    NASA Technical Reports Server (NTRS)

    Cao, Fang; Fichot, Cedric G.; Hooker, Stanford B.; Miller, William L.

    2014-01-01

    Photochemical processes driven by high-energy ultraviolet radiation (UVR) in inshore, estuarine, and coastal waters play an important role in global bio geochemical cycles and biological systems. A key to modeling photochemical processes in these optically complex waters is an accurate description of the vertical distribution of UVR in the water column which can be obtained using the diffuse attenuation coefficients of down welling irradiance (Kd()). The Sea UV Sea UVc algorithms (Fichot et al., 2008) can accurately retrieve Kd ( 320, 340, 380,412, 443 and 490 nm) in oceanic and coastal waters using multispectral remote sensing reflectances (Rrs(), Sea WiFS bands). However, SeaUVSeaUVc algorithms are currently not optimized for use in optically complex, inshore waters, where they tend to severely underestimate Kd(). Here, a new training data set of optical properties collected in optically complex, inshore waters was used to re-parameterize the published SeaUVSeaUVc algorithms, resulting in improved Kd() retrievals for turbid, estuarine waters. Although the updated SeaUVSeaUVc algorithms perform best in optically complex waters, the published SeaUVSeaUVc models still perform well in most coastal and oceanic waters. Therefore, we propose a composite set of SeaUVSeaUVc algorithms, optimized for Kd() retrieval in almost all marine systems, ranging from oceanic to inshore waters. The composite algorithm set can retrieve Kd from ocean color with good accuracy across this wide range of water types (e.g., within 13 mean relative error for Kd(340)). A validation step using three independent, in situ data sets indicates that the composite SeaUVSeaUVc can generate accurate Kd values from 320 490 nm using satellite imagery on a global scale. Taking advantage of the inherent benefits of our statistical methods, we pooled the validation data with the training set, obtaining an optimized composite model for estimating Kd() in UV wavelengths for almost all marine waters. This optimized composite set of SeaUVSeaUVc algorithms will provide the optical community with improved ability to quantify the role of solar UV radiation in photochemical and photobiological processes in the ocean.

  9. An Interoperable Architecture for Air Pollution Early Warning System Based on Sensor Web

    NASA Astrophysics Data System (ADS)

    Samadzadegan, F.; Zahmatkesh, H.; Saber, M.; Ghazi khanlou, H. J.

    2013-09-01

    Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC), which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research proposed an architecture to represent how integrate air quality sensor data stream into geospatial data infrastructure to present an interoperable air quality monitoring system for supporting disaster management systems by real time information. Developed system tested on Tehran air pollution sensors for calculating Air Quality Index (AQI) for CO pollutant and subsequently notifying registered users in emergency cases by sending warning E-mails. Air quality monitoring portal used to retrieving and visualize sensor observation through interoperable framework. This system provides capabilities to retrieve SOS observation using WPS in a cascaded service chaining pattern for monitoring trend of timely sensor observation.

  10. An optimal-estimation-based aerosol retrieval algorithm using OMI near-UV observations

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Kim, J.; Ahn, C.; Torres, O.; Liu, X.; Bhartia, P. K.; Spurr, R. J. D.; Haffner, D.; Chance, K.; Holben, B. N.

    2016-01-01

    An optimal-estimation(OE)-based aerosol retrieval algorithm using the OMI (Ozone Monitoring Instrument) near-ultraviolet observation was developed in this study. The OE-based algorithm has the merit of providing useful estimates of errors simultaneously with the inversion products. Furthermore, instead of using the traditional look-up tables for inversion, it performs online radiative transfer calculations with the VLIDORT (linearized pseudo-spherical vector discrete ordinate radiative transfer code) to eliminate interpolation errors and improve stability. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in northeast Asia (DRAGON NE-Asia 2012) were used to validate the retrieved aerosol optical thickness (AOT) and single scattering albedo (SSA). The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET) products that is comparable to or better than the correlation with the operational product during the campaign. The OE-based estimated error represented the variance of actual biases of AOT at 388 nm between the retrieval and AERONET measurements better than the operational error estimates. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface reflectance at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine-mode fraction (FMF) were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for relevant studies. Detailed advantages of using the OE method were described and discussed in this paper.

  11. Retrievals of ice cloud microphysical properties of deep convective systems using radar measurements

    NASA Astrophysics Data System (ADS)

    Tian, Jingjing; Dong, Xiquan; Xi, Baike; Wang, Jingyu; Homeyer, Cameron R.; McFarquhar, Greg M.; Fan, Jiwen

    2016-09-01

    This study presents newly developed algorithms for retrieving ice cloud microphysical properties (ice water content (IWC) and median mass diameter (Dm)) for the stratiform rain and thick anvil regions of deep convective systems (DCSs) using Next Generation Radar (NEXRAD) reflectivity and empirical relationships from aircraft in situ measurements. A typical DCS case (20 May 2011) during the Midlatitude Continental Convective Clouds Experiment (MC3E) is selected as an example to demonstrate the 4-D retrievals. The vertical distributions of retrieved IWC are compared with previous studies and cloud-resolving model simulations. The statistics from six selected cases during MC3E show that the aircraft in situ derived IWC and Dm are 0.47 ± 0.29 g m-3 and 2.02 ± 1.3 mm, while the mean values of retrievals have a positive bias of 0.19 g m-3 (40%) and negative bias of 0.41 mm (20%), respectively. To evaluate the new retrieval algorithms, IWC and Dm are retrieved for other DCSs observed during the Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX) using NEXRAD reflectivity and compared with aircraft in situ measurements. During BAMEX, a total of 63, 1 min collocated aircraft and radar samples are available for comparisons, and the averages of radar retrieved and aircraft in situ measured IWC values are 1.52 g m-3 and 1.25 g m-3 with a correlation of 0.55, and their averaged Dm values are 2.08 and 1.77 mm. In general, the new retrieval algorithms are suitable for continental DCSs during BAMEX, especially within stratiform rain and thick anvil regions.

  12. An Optimal-Estimation-Based Aerosol Retrieval Algorithm Using OMI Near-UV Observations

    NASA Technical Reports Server (NTRS)

    Jeong, U; Kim, J.; Ahn, C.; Torres, O.; Liu, X.; Bhartia, P. K.; Spurr, R. J. D.; Haffner, D.; Chance, K.; Holben, B. N.

    2016-01-01

    An optimal-estimation(OE)-based aerosol retrieval algorithm using the OMI (Ozone Monitoring Instrument) near-ultraviolet observation was developed in this study. The OE-based algorithm has the merit of providing useful estimates of errors simultaneously with the inversion products. Furthermore, instead of using the traditional lookup tables for inversion, it performs online radiative transfer calculations with the VLIDORT (linearized pseudo-spherical vector discrete ordinate radiative transfer code) to eliminate interpolation errors and improve stability. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in northeast Asia (DRAGON NE-Asia 2012) were used to validate the retrieved aerosol optical thickness (AOT) and single scattering albedo (SSA). The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET) products that is comparable to or better than the correlation with the operational product during the campaign. The OEbased estimated error represented the variance of actual biases of AOT at 388 nm between the retrieval and AERONET measurements better than the operational error estimates. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface reflectance at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine-mode fraction (FMF) were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for relevant studies. Detailed advantages of using the OE method were described and discussed in this paper.

  13. Retrieval of Ice Cloud Properties Using an Optimal Estimation Algorithm and MODIS Infrared Observations: 2. Retrieval Evaluation

    NASA Technical Reports Server (NTRS)

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Wind, Galina; Yang, Ping

    2016-01-01

    An infrared-based optimal estimation (OE-IR) algorithm for retrieving ice cloud properties is evaluated. Specifically, the implementation of the algorithm with MODerate resolution Imaging Spectroradiometer (MODIS) observations is assessed in comparison with the operational retrieval products from MODIS on the Aqua satellite (MYD06), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and the Imaging Infrared Radiometer (IIR); the latter two instruments fly on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the Afternoon Constellation (A-Train) with Aqua. The results show that OE-IR cloud optical thickness (tau) and effective radius (r(sub eff)) retrievals perform best for ice clouds having 0.5 < tau< 7 and r(sub eff) < 50microns. For global ice clouds, the averaged retrieval uncertainties of tau and r(sub eff) are 19% and 33%, respectively. For optically thick ice clouds with tau larger than 10, however, the tau and r(sub eff) retrieval uncertainties can exceed 30% and 50%, respectively. For ice cloud top height (h), the averaged global uncertainty is 0.48km. Relatively large h uncertainty (e.g., > 1km) occurs for tau < 0.5. Analysis of 1month of the OE-IR retrievals shows large tau and r(sub eff) uncertainties in storm track regions and the southern oceans where convective clouds are frequently observed, as well as in high-latitude regions where temperature differences between the surface and cloud top are more ambiguous. Generally, comparisons between the OE-IR and the operational products show consistent tau and h retrievals. However, obvious differences between the OE-IR and the MODIS Collection 6 r(sub eff) are found.

  14. Sensitivity of Marine Warm Cloud Retrieval Statistics to Algorithm Choices: Examples from MODIS Collection 6

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Wind, Galina; Zhang, Zhibo; Ackerman, Steven A.; Maddux, Brent

    2012-01-01

    The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the l.6, 2.1, and 3.7 m spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "notclear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud'edges as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the ID cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.

  15. SCIAMACHY and FTS CO2 Retrievals Using the OCO Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Boesch, Hartmut; Buchwitz, M.; Sen, Bhaswar; Toon, Geoffrey C.; Washenfelder, Rebecca A.; Wennberg, Paul O.

    2005-01-01

    The Orbiting Carbon Observatory (OCO) mission will make the first global, space-based measurements of atmospheric C02 with the precision and coverage needed to characterize C02 sources and sinks on regional scales. OCO will make spectrally and spatially highly resolved measurements of reflected sunlight in the 02A -band and two near-infrared C02 bands. To test the OCO retrieval algorithm, SCIAMACHY and ground-based Fourier Transform Spectrometer (FTS) measurements at Park Falls, Wisconsin have been analyzed. Good agreement between SCIAMACHY and FTS C02 columns has been found with SCIAMACHY showing a much larger scatter than FTS measurements. Both SCIAMACHY and FTS overestimate the surface pressure by a few percent which significantly impacts retrieved C02 columns.

  16. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer

    Comstock, Jennifer

    2013-11-07

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  17. Comparison of SMOS and SMAP Soil Moisture Retrieval Approaches Using Tower-based Radiometer Data over a Vineyard Field

    NASA Technical Reports Server (NTRS)

    Miernecki, Maciej; Wigneron, Jean-Pierre; Lopez-Baeza, Ernesto; Kerr, Yann; DeJeu, Richard; DeLannoy, Gabielle J. M.; Jackson, Tom J.; O'Neill, Peggy E.; Shwank, Mike; Moran, Roberto Fernandez; hide

    2014-01-01

    The objective of this study was to compare several approaches to soil moisture (SM) retrieval using L-band microwave radiometry. The comparison was based on a brightness temperature (TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) mission, measures multiangular TB data at horizontal and vertical polarization for a range of incidence angles (30-60). Based on a three year data set (2010-2012), several SM retrieval approaches developed for spaceborne missions including AMSR-E (Advanced Microwave Scanning Radiometer for EOS), SMAP (Soil Moisture Active Passive) and SMOS were compared. The approaches include: the Single Channel Algorithm (SCA) for horizontal (SCA-H) and vertical (SCA-V) polarizations, the Dual Channel Algorithm (DCA), the Land Parameter Retrieval Model (LPRM) and two simplified approaches based on statistical regressions (referred to as 'Mattar' and 'Saleh'). Time series of vegetation indices required for three of the algorithms (SCA-H, SCA-V and Mattar) were obtained from MODIS observations. The SM retrievals were evaluated against reference SM values estimated from a multiangular 2-Parameter inversion approach. The results obtained with the current base line algorithms developed for SMAP (SCA-H and -V) are in very good agreement with the reference SM data set derived from the multi-angular observations (R2 around 0.90, RMSE varying between 0.035 and 0.056 m3m3 for several retrieval configurations). This result showed that, provided the relationship between vegetation optical depth and a remotely-sensed vegetation index can be calibrated, the SCA algorithms can provide results very close to those obtained from multi-angular observations in this study area. The approaches based on statistical regressions provided similar results and the best accuracy was obtained with the Saleh methods based on either bi-angular or bipolarization observations (R2 around 0.93, RMSE around 0.035 m3m3). The LPRM and DCA algorithms were found to be slightly less successful in retrieving the 'reference' SM time series (R2 around 0.75, RMSE around 0.055 m3m3). However, the two above approaches have the great advantage of not requiring any model calibrations previous to the SM retrievals.

  18. Retrieving cloud, dust and ozone abundances in the Martian atmosphere using SPICAM/UV nadir spectra

    NASA Astrophysics Data System (ADS)

    Willame, Y.; Vandaele, A. C.; Depiesse, C.; Lefèvre, F.; Letocart, V.; Gillotay, D.; Montmessin, F.

    2017-08-01

    We present the retrieval algorithm developed to analyse nadir spectra from SPICAM/UV aboard Mars-Express. The purpose is to retrieve simultaneously several parameters of the Martian atmosphere and surface: the dust optical depth, the ozone total column, the cloud opacity and the surface albedo. The retrieval code couples the use of an existing complete radiative transfer code, an inversion method and a cloud detection algorithm. We describe the working principle of our algorithm and the parametrisation used to model the required absorption, scattering and reflection processes of the solar UV radiation that occur in the Martian atmosphere and at its surface. The retrieval method has been applied on 4 Martian years of SPICAM/UV data to obtain climatologies of the different quantities under investigation. An overview of the climatology is given for each species showing their seasonal and spatial distributions. The results show a good qualitative agreement with previous observations. Quantitative comparisons of the retrieved dust optical depths indicate generally larger values than previous studies. Possible shortcomings in the dust modelling (altitude profile) have been identified and may be part of the reason for this difference. The ozone results are found to be influenced by the presence of clouds. Preliminary quantitative comparisons show that our retrieved ozone columns are consistent with other results when no ice clouds are present, and are larger for the cases with clouds at high latitude. Sensitivity tests have also been performed showing that the use of other a priori assumptions such as the altitude distribution or some scattering properties can have an important impact on the retrieval.

  19. Simultaneous retrieval of sea ice thickness and snow depth using concurrent active altimetry and passive L-band remote sensing data

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Xu, S.; Liu, J.

    2017-12-01

    The retrieval of sea ice thickness mainly relies on satellite altimetry, and the freeboard measurements are converted to sea ice thickness (hi) under certain assumptions over snow loading. The uncertain in snow depth (hs) is a major source of uncertainty in the retrieved sea ice thickness and total volume for both radar and laser altimetry. In this study, novel algorithms for the simultaneous retrieval of hi and hs are proposed for the data synergy of L-band (1.4 GHz) passive remote sensing and both types of active altimetry: (1) L-band (1.4GHz) brightness temperature (TB) from Soil Moisture Ocean Salinity (SMOS) satellite and sea ice freeboard (FBice) from radar altimetry, (2) L-band TB data and snow freeboard (FBsnow) from laser altimetry. Two physical models serve as the forward models for the retrieval: L-band radiation model, and the hydrostatic equilibrium model. Verification with SMOS and Operational IceBridge (OIB) data is carried out, showing overall good retrieval accuracy for both sea ice parameters. Specifically, we show that the covariability between hs and FBsnow is crucial for the synergy between TB and FBsnow. Comparison with existing algorithms shows lower uncertainty in both sea ice parameters, and that the uncertainty in the retrieved sea ice thickness as caused by that of snow depth is spatially uncorrelated, with the potential reduction of the volume uncertainty through spatial sampling. The proposed algorithms can be applied to the retrieval of sea ice parameters at basin-scale, using concurrent active and passive remote sensing data based on satellites.

  20. (abstract) Using an Inversion Algorithm to Retrieve Parameters and Monitor Changes over Forested Areas from SAR Data

    NASA Technical Reports Server (NTRS)

    Moghaddam, Mahta

    1995-01-01

    In this work, the application of an inversion algorithm based on a nonlinear opimization technique to retrieve forest parameters from multifrequency polarimetric SAR data is discussed. The approach discussed here allows for retrieving and monitoring changes in forest parameters in a quantative and systematic fashion using SAR data. The parameters to be inverted directly from the data are the electromagnetic scattering properties of the forest components such as their dielectric constants and size characteristics. Once these are known, attributes such as canopy moisture content can be obtained, which are useful in the ecosystem models.

  1. Extended capture range for focus-diverse phase retrieval in segmented aperture systems using geometrical optics.

    PubMed

    Jurling, Alden S; Fienup, James R

    2014-03-01

    Extending previous work by Thurman on wavefront sensing for segmented-aperture systems, we developed an algorithm for estimating segment tips and tilts from multiple point spread functions in different defocused planes. We also developed methods for overcoming two common modes for stagnation in nonlinear optimization-based phase retrieval algorithms for segmented systems. We showed that when used together, these methods largely solve the capture range problem in focus-diverse phase retrieval for segmented systems with large tips and tilts. Monte Carlo simulations produced a rate of success better than 98% for the combined approach.

  2. MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KL Gaustad; DD Turner

    2007-09-30

    This report provides a short description of the Atmospheric Radiation Measurement (ARM) microwave radiometer (MWR) RETrievel (MWRRET) Value-Added Product (VAP) algorithm. This algorithm utilizes complimentary physical and statistical retrieval methods and applies brightness temperature offsets to reduce spurious liquid water path (LWP) bias in clear skies resulting in significantly improved precipitable water vapor (PWV) and LWP retrievals. We present a general overview of the technique, input parameters, output products, and describe data quality checks. A more complete discussion of the theory and results is given in Turner et al. (2007b).

  3. Evaluating cloud retrieval algorithms with the ARM BBHRP framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mlawer,E.; Dunn,M.; Mlawer, E.

    2008-03-10

    Climate and weather prediction models require accurate calculations of vertical profiles of radiative heating. Although heating rate calculations cannot be directly validated due to the lack of corresponding observations, surface and top-of-atmosphere measurements can indirectly establish the quality of computed heating rates through validation of the calculated irradiances at the atmospheric boundaries. The ARM Broadband Heating Rate Profile (BBHRP) project, a collaboration of all the working groups in the program, was designed with these heating rate validations as a key objective. Given the large dependence of radiative heating rates on cloud properties, a critical component of BBHRP radiative closure analysesmore » has been the evaluation of cloud microphysical retrieval algorithms. This evaluation is an important step in establishing the necessary confidence in the continuous profiles of computed radiative heating rates produced by BBHRP at the ARM Climate Research Facility (ACRF) sites that are needed for modeling studies. This poster details the continued effort to evaluate cloud property retrieval algorithms within the BBHRP framework, a key focus of the project this year. A requirement for the computation of accurate heating rate profiles is a robust cloud microphysical product that captures the occurrence, height, and phase of clouds above each ACRF site. Various approaches to retrieve the microphysical properties of liquid, ice, and mixed-phase clouds have been processed in BBHRP for the ACRF Southern Great Plains (SGP) and the North Slope of Alaska (NSA) sites. These retrieval methods span a range of assumptions concerning the parameterization of cloud location, particle density, size, shape, and involve different measurement sources. We will present the radiative closure results from several different retrieval approaches for the SGP site, including those from Microbase, the current 'reference' retrieval approach in BBHRP. At the NSA, mixed-phase clouds and cloud with a low optical depth are prevalent; the radiative closure studies using Microbase demonstrated significant residuals. As an alternative to Microbase at NSA, the Shupe-Turner cloud property retrieval algorithm, aimed at improving the partitioning of cloud phase and incorporating more constrained, conditional microphysics retrievals, also has been evaluated using the BBHRP data set.« less

  4. Quantifying the Climate-Scale Accuracy of Satellite Cloud Retrievals

    NASA Astrophysics Data System (ADS)

    Roberts, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Liang, L.; Di Girolamo, L.

    2014-12-01

    Instrument calibration and cloud retrieval algorithms have been developed to minimize retrieval errors on small scales. However, measurement uncertainties and assumptions within retrieval algorithms at the pixel level may alias into decadal-scale trends of cloud properties. We first, therefore, quantify how instrument calibration changes could alias into cloud property trends. For a perfect observing system the climate trend accuracy is limited only by the natural variability of the climate variable. Alternatively, for an actual observing system, the climate trend accuracy is additionally limited by the measurement uncertainty. Drifts in calibration over time may therefore be disguised as a true climate trend. We impose absolute calibration changes to MODIS spectral reflectance used as input to the CERES Cloud Property Retrieval System (CPRS) and run the modified MODIS reflectance through the CPRS to determine the sensitivity of cloud properties to calibration changes. We then use these changes to determine the impact of instrument calibration changes on trend uncertainty in reflected solar cloud properties. Secondly, we quantify how much cloud retrieval algorithm assumptions alias into cloud optical retrieval trends by starting with the largest of these biases: the plane-parallel assumption in cloud optical thickness (τC) retrievals. First, we collect liquid water cloud fields obtained from Multi-angle Imaging Spectroradiometer (MISR) measurements to construct realistic probability distribution functions (PDFs) of 3D cloud anisotropy (a measure of the degree to which clouds depart from plane-parallel) for different ISCCP cloud types. Next, we will conduct a theoretical study with dynamically simulated cloud fields and a 3D radiative transfer model to determine the relationship between 3D cloud anisotropy and 3D τC bias for each cloud type. Combining these results provides distributions of 3D τC bias by cloud type. Finally, we will estimate the change in frequency of occurrence of cloud types between two decades and will have the information needed to calculate the total change in 3D optical thickness bias between two decades. If we uncover aliases in this study, the results will motivate the development and rigorous testing of climate specific cloud retrieval algorithms.

  5. Towards better understanding of high-mountain cryosphere changes using GPM data: A Joint Snowfall and Snow-cover Passive Microwave Retrieval Algorithm

    NASA Astrophysics Data System (ADS)

    Ebtehaj, A.; Foufoula-Georgiou, E.

    2016-12-01

    Scientific evidence suggests that the duration and frequency of snowfall and the extent of snow cover are rapidly declining under global warming. Both precipitation and snow cover scatter the upwelling surface microwave emission and decrease the observed high-frequency brightness temperatures. The mixture of these two scattering signals is amongst the largest sources of ambiguities and errors in passive microwave retrievals of both precipitation and snow-cover. The dual frequency radar and the high-frequency radiometer on board the GPM satellite provide a unique opportunity to improve passive retrievals of precipitation and snow-cover physical properties and fill the gaps in our understating of their variability in view of climate change. Recently, a new Bayesian rainfall retrieval algorithm (called ShARP) was developed using modern approximation methods and shown to yield improvements against other algorithms in retrieval of rainfall over radiometrically complex land surfaces. However, ShARP uses a large database of input rainfall and output brightness temperatures, which might be undersampled. Furthermore, it is not capable to discriminate between solid and liquid phase of precipitation and specifically discriminate the background snow-cover emission and its contamination effects on the retrievals. We address these problems by extending it to a new Bayesian land-atmosphere retrieval framework (ShARP-L) that allows joint retrievals of atmospheric constituents and land surface physical properties. Using modern sparse approximation techniques, the database is reduced to atomic microwave signatures in a family of compact class consistent dictionaries. These dictionaries can efficiently represent the entire database and allow us to discriminate between different land-atmosphere states. First the algorithm makes use of the dictionaries to detect the phase of the precipitation and type of the land-cover and then it estimates the physical properties of precipitation and snow cover using an extended version of the Dantzig Selector, which is robust to non-Gaussian and correlated geophysical noise. Promising results are presented in retrievals of snowfall and snow-cover over coastal orographic features of North America's Coast Range and South America's Andes.

  6. Microwave Observations of Precipitation and the Atmosphere

    NASA Technical Reports Server (NTRS)

    Staelin, David H.; Rosenkranz, Philip W.

    2004-01-01

    This research effort had three elements devoted to improving satellite-derived passive microwave retrievals of precipitation rate: morphological rain-rate retrievals, warm rain retrievals, and extension of a study of geostationary satellite options. The morphological precipitation-rate retrieval method uses for the first time the morphological character of the observed storm microwave spectra. The basic concept involves: 1) retrieval of point rainfall rates using current algorithms, 2) using spatial feature vectors of the observations over segmented multi-pixel storms to estimate the integrated rainfall rate for that storm (cu m/s), and 3) normalization of the point rain-rate retrievals to ensure consistency with the storm-wide retrieval. This work is ongoing, but two key steps have been completed: development of a segmentation algorithm for defining spatial regions corresponding to single storms for purposes of estimation, and reduction of some of the data from NAST-M that will be used to support this research going forward. The warm rain retrieval method involved extension of Aquai/AIRS/AMSU/HSB algorithmic work on cloud water retrievals. The central concept involves the fact that passive microwave cloud water retrievals over approx. 0.4 mm are very likely associated with precipitation. Since glaciated precipitation is generally detected quite successfully using scattering signatures evident in the surface-blind 54- and 183-GHz bands, this new method complements the first by permitting precipitation retrievals of non-glaciated events. The method is most successful over ocean, but has detected non-glaciated convective cells over land, perhaps in their early formative stages. This work will require additional exploration and validation prior to publication. Passive microwave instrument configurations for use in geostationary orbit were studied. They employ parabolic reflectors between 2 and 4 meters in diameter, and frequencies up to approx.430 GHz; this corresponds to nadir spot diameters as small as 10 km.

  7. X-Ray Phase Imaging for Breast Cancer Detection

    DTIC Science & Technology

    2012-09-01

    the Gerchberg-Saxton algorithm in the Fresnel diffraction regime, and is much more robust against image noise than the TIE-based method. For details...developed efficient coding with the software modules for the image registration, flat-filed correction , and phase retrievals. In addition, we...X, Liu H. 2010. Performance analysis of the attenuation-partition based iterative phase retrieval algorithm for in-line phase-contrast imaging

  8. Estimates of Single Sensor Error Statistics for the MODIS Matchup Database Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Kumar, C.; Podesta, G. P.; Minnett, P. J.; Kilpatrick, K. A.

    2017-12-01

    Sea surface temperature (SST) is a fundamental quantity for understanding weather and climate dynamics. Although sensors aboard satellites provide global and repeated SST coverage, a characterization of SST precision and bias is necessary for determining the suitability of SST retrievals in various applications. Guidance on how to derive meaningful error estimates is still being developed. Previous methods estimated retrieval uncertainty based on geophysical factors, e.g. season or "wet" and "dry" atmospheres, but the discrete nature of these bins led to spatial discontinuities in SST maps. Recently, a new approach clustered retrievals based on the terms (excluding offset) in the statistical algorithm used to estimate SST. This approach resulted in over 600 clusters - too many to understand the geophysical conditions that influence retrieval error. Using MODIS and buoy SST matchups (2002 - 2016), we use machine learning algorithms (recursive and conditional trees, random forests) to gain insight into geophysical conditions leading to the different signs and magnitudes of MODIS SST residuals (satellite SSTs minus buoy SSTs). MODIS retrievals were first split into three categories: < -0.4 C, -0.4 C ≤ residual ≤ 0.4 C, and > 0.4 C. These categories are heavily unbalanced, with residuals > 0.4 C being much less frequent. Performance of classification algorithms is affected by imbalance, thus we tested various rebalancing algorithms (oversampling, undersampling, combinations of the two). We consider multiple features for the decision tree algorithms: regressors from the MODIS SST algorithm, proxies for temperature deficit, and spatial homogeneity of brightness temperatures (BTs), e.g., the range of 11 μm BTs inside a 25 km2 area centered on the buoy location. These features and a rebalancing of classes led to an 81.9% accuracy when classifying SST retrievals into the < -0.4 C and -0.4 C ≤ residual ≤ 0.4 C categories. Spatial homogeneity in BTs consistently appears as a very important variable for classification, suggesting that unidentified cloud contamination still is one of the causes leading to negative SST residuals. Precision and accuracy of error estimates from our decision tree classifier are enhanced using this knowledge.

  9. Preparations for Global Precipitation Measurement(GPM)Ground Validation

    NASA Technical Reports Server (NTRS)

    Bidwell, S. W.; Bibyk, I. K.; Duming, J. F.; Everett, D. F.; Smith, E. A.; Wolff, D. B.

    2004-01-01

    The Global Precipitation Measurement (GPM) program is an international partnership led by the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). GPM will improve climate, weather, and hydro-meterorological forecasts through more frequent and more accurate measurement of precipitation across the globe. This paper describes the concept and the preparations for Ground Validation within the GPM program. Ground Validation (GV) plays a critical role in the program by investigating and quantitatively assessing the errors within the satellite retrievals. These quantitative estimates of retrieval errors will assist the scientific community by bounding the errors within their research products. The two fundamental requirements of the GPM Ground Validation program are: (1) error characterization of the precipitation retrievals and (2) continual improvement of the satellite retrieval algorithms. These two driving requirements determine the measurements, instrumentation, and location for ground observations. This paper describes GV plans for estimating the systematic and random components of retrieval error and for characterizing the spatial and temporal structure of the error. This paper describes the GPM program for algorithm improvement in which error models are developed and experimentally explored to uncover the physical causes of errors within the retrievals. GPM will ensure that information gained through Ground Validation is applied to future improvements in the spaceborne retrieval algorithms. This paper discusses the potential locations for validation measurement and research, the anticipated contributions of GPM's international partners, and the interaction of Ground Validation with other GPM program elements.

  10. Aerosol Optical Retrieval and Surface Reflectance from Airborne Remote Sensing Data over Land

    PubMed Central

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550nm (τ550) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ550 with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ550 and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ550 retrieved by Module A (r2 = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r2 ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness. PMID:22163558

  11. Error Analyses of the North Alabama Lightning Mapping Array (LMA)

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Solokiewicz, R. J.; Blakeslee, R. J.; Goodman, S. J.; Christian, H. J.; Hall, J. M.; Bailey, J. C.; Krider, E. P.; Bateman, M. G.; Boccippio, D. J.

    2003-01-01

    Two approaches are used to characterize how accurately the North Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and in time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA-MSFC and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50ns, but all other possible errors (e.g., multiple sources per retrieval attempt) are neglected. The detailed spatial distributions of retrieval errors are provided. Given that the two methods are completely independent of one another, it is shown that they provide remarkably similar results, except that the chi-squared theory produces larger altitude error estimates than the (more realistic) Monte Carlo simulation.

  12. Using Ground-Based Measurements and Retrievals to Validate Satellite Data

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan

    2002-01-01

    The proposed research is to use the DOE ARM ground-based measurements and retrievals as the ground-truth references for validating satellite cloud results and retrieving algorithms. This validation effort includes four different ways: (1) cloud properties on different satellites, therefore different sensors, TRMM VIRS and TERRA MODIS; (2) cloud properties at different climatic regions, such as DOE ARM SGP, NSA, and TWP sites; (3) different cloud types, low and high level cloud properties; and (4) day and night retrieving algorithms. Validation of satellite-retrieved cloud properties is very difficult and a long-term effort because of significant spatial and temporal differences between the surface and satellite observing platforms. The ground-based measurements and retrievals, only carefully analyzed and validated, can provide a baseline for estimating errors in the satellite products. Even though the validation effort is so difficult, a significant progress has been made during the proposed study period, and the major accomplishments are summarized in the follow.

  13. Accuracy of Geophysical Parameters Derived from AIRS/AMSU as a Function of Fractional Cloud Cover

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Barnet, Chris; Blaisdell, John; Iredell, Lena; Keita, Fricky; Kouvaris, Lou; Molnar, Gyula; Chahine, Moustafa

    2006-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of lK, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze Atmospheric InfraRed Sounder/Advanced Microwave Sounding Unit/Humidity Sounder Brazil (AIRS/AMSU/HSB) data in the presence of clouds, called the at-launch algorithm, was described previously. Pre-launch simulation studies using this algorithm indicated that these results should be achievable. Some modifications have been made to the at-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small and the RMS accuracy of lower tropospheric temperature retrieved with 80 percent cloud cover is about 0.5 K poorer than for clear cases. HSB failed in February 2003, and consequently HSB channel radiances are not used in the results shown in this paper. The AIRS/AMSU retrieval algorithm described in this paper, called Version 4, become operational at the Goddard DAAC (Distributed Active Archive Center) in April 2003 and is being used to analyze near-real time AIRS/AMSU data. Historical AIRS/AMSU data, going backwards from March 2005 through September 2002, is also being analyzed by the DAAC using the Version 4 algorithm.

  14. Retrieval and Validation of aerosol optical properties from AHI measurements: impact of surface reflectance assumption

    NASA Astrophysics Data System (ADS)

    Lim, H.; Choi, M.; Kim, J.; Go, S.; Chan, P.; Kasai, Y.

    2017-12-01

    This study attempts to retrieve the aerosol optical properties (AOPs) based on the spectral matching method, with using three visible and one near infrared channels (470, 510, 640, 860nm). This method requires the preparation of look-up table (LUT) approach based on the radiative transfer modeling. Cloud detection is one of the most important processes for guaranteed quality of AOPs. Since the AHI has several infrared channels, which are very advantageous for cloud detection, clouds can be removed by using brightness temperature difference (BTD) and spatial variability test. The Yonsei Aerosol Retrieval (YAER) algorithm is basically utilized on a dark surface, therefore a bright surface (e.g., desert, snow) should be removed first. Then we consider the characteristics of the reflectance of land and ocean surface using three visible channels. The known surface reflectivity problem in high latitude area can be solved in this algorithm by selecting appropriate channels through improving tests. On the other hand, we retrieved the AOPs by obtaining the visible surface reflectance using NIR to normalized difference vegetation index short wave infrared (NDVIswir) relationship. ESR tends to underestimate urban and cropland area, we improved the visible surface reflectance considering urban effect. In this version, ocean surface reflectance is using the new cox and munk method which considers ocean bidirectional reflectance distribution function (BRDF). Input of this method has wind speed, chlorophyll, salinity and so on. Based on validation results with the sun-photometer measurement in AErosol Robotic NETwork (AERONET), we confirm that the quality of Aerosol Optical Depth (AOD) from the YAER algorithm is comparable to the product from the Japan Aerospace Exploration Agency (JAXA) retrieval algorithm. Our future update includes a consideration of improvement land surface reflectance by hybrid approach, and non-spherical aerosols. This will improve the quality of YAER algorithm more, particularly retrieval for the dust particle over the bright surface in East Asia.

  15. Towards Improved Snow Water Equivalent Estimation via GRACE Assimilation

    NASA Technical Reports Server (NTRS)

    Forman, Bart; Reichle, Rofl; Rodell, Matt

    2011-01-01

    Passive microwave (e.g. AMSR-E) and visible spectrum (e.g. MODIS) measurements of snow states have been used in conjunction with land surface models to better characterize snow pack states, most notably snow water equivalent (SWE). However, both types of measurements have limitations. AMSR-E, for example, suffers a loss of information in deep/wet snow packs. Similarly, MODIS suffers a loss of temporal correlation information beyond the initial accumulation and final ablation phases of the snow season. Gravimetric measurements, on the other hand, do not suffer from these limitations. In this study, gravimetric measurements from the Gravity Recovery and Climate Experiment (GRACE) mission are used in a land surface model data assimilation (DA) framework to better characterize SWE in the Mackenzie River basin located in northern Canada. Comparisons are made against independent, ground-based SWE observations, state-of-the-art modeled SWE estimates, and independent, ground-based river discharge observations. Preliminary results suggest improved SWE estimates, including improved timing of the subsequent ablation and runoff of the snow pack. Additionally, use of the DA procedure can add vertical and horizontal resolution to the coarse-scale GRACE measurements as well as effectively downscale the measurements in time. Such findings offer the potential for better understanding of the hydrologic cycle in snow-dominated basins located in remote regions of the globe where ground-based observation collection if difficult, if not impossible. This information could ultimately lead to improved freshwater resource management in communities dependent on snow melt as well as a reduction in the uncertainty of river discharge into the Arctic Ocean.

  16. Evaluation of gridded snow water equivalent and satellite snow cover products for mountain basins in a hydrologic model

    USGS Publications Warehouse

    Dressler, K.A.; Leavesley, G.H.; Bales, R.C.; Fassnacht, S.R.

    2006-01-01

    The USGS precipitation-runoff modelling system (PRMS) hydrologic model was used to evaluate experimental, gridded, 1 km2 snow-covered area (SCA) and snow water equivalent (SWE) products for two headwater basins within the Rio Grande (i.e. upper Rio Grande River basin) and Salt River (i.e. Black River basin) drainages in the southwestern USA. The SCA product was the fraction of each 1 km2 pixel covered by snow and was derived from NOAA advanced very high-resolution radiometer imagery. The SWE product was developed by multiplying the SCA product by SWE estimates interpolated from National Resources Conservation Service snow telemetry point measurements for a 6 year period (1995-2000). Measured SCA and SWE estimates were consistently lower than values estimated from temperature and precipitation within PRMS. The greatest differences occurred in the relatively complex terrain of the Rio Grande basin, as opposed to the relatively homogeneous terrain of the Black River basin, where differences were small. Differences between modelled and measured snow were different for the accumulation period versus the ablation period and had an elevational trend. Assimilating the measured snowfields into a version of PRMS calibrated to achieve water balance without assimilation led to reduced performance in estimating streamflow for the Rio Grande and increased performance in estimating streamflow for the Black River basin. Correcting the measured SCA and SWE for canopy effects improved simulations by adding snow mostly in the mid-to-high elevations, where satellite estimates of SCA are lower than model estimates. Copyright ?? 2006 John Wiley & Sons, Ltd.

  17. Measuring shear-wave speed with point shear-wave elastography and MR elastography: a phantom study

    PubMed Central

    Kishimoto, Riwa; Suga, Mikio; Koyama, Atsuhisa; Omatsu, Tokuhiko; Tachibana, Yasuhiko; Ebner, Daniel K; Obata, Takayuki

    2017-01-01

    Objectives To compare shear-wave speed (SWS) measured by ultrasound-based point shear-wave elastography (pSWE) and MR elastography (MRE) on phantoms with a known shear modulus, and to assess method validity and variability. Methods 5 homogeneous phantoms of different stiffnesses were made. Shear modulus was measured by a rheometer, and this value was used as the standard. 10 SWS measurements were obtained at 4 different depths with 1.0–4.5 MHz convex (4C1) and 4.0–9.0 MHz linear (9L4) transducers using pSWE. MRE was carried out once per phantom, and SWSs at 5 different depths were obtained. These SWSs were then compared with those from a rheometer using linear regression analyses. Results SWSs obtained with both pSWE as well as MRE had a strong correlation with those obtained by a rheometer (R2>0.97). The relative difference in SWS between the procedures was from −25.2% to 25.6% for all phantoms, and from −8.1% to 6.9% when the softest and hardest phantoms were excluded. Depth dependency was noted in the 9L4 transducer of pSWE and MRE. Conclusions SWSs from pSWE and MRE showed a good correlation with a rheometer-determined SWS. Although based on phantom studies, SWSs obtained with these methods are not always equivalent, the measurement can be thought of as reliable and these SWSs were reasonably close to each other for the middle range of stiffness within the measurable range. PMID:28057657

  18. Does shear wave ultrasound independently predict axillary lymph node metastasis in women with invasive breast cancer?

    PubMed

    Evans, Andrew; Rauchhaus, Petra; Whelehan, Patsy; Thomson, Kim; Purdie, Colin A; Jordan, Lee B; Michie, Caroline O; Thompson, Alastair; Vinnicombe, Sarah

    2014-01-01

    Shear wave elastography (SWE) shows promise as an adjunct to greyscale ultrasound examination in assessing breast masses. In breast cancer, higher lesion stiffness on SWE has been shown to be associated with features of poor prognosis. The purpose of this study was to assess whether lesion stiffness at SWE is an independent predictor of lymph node involvement. Patients with invasive breast cancer treated by primary surgery, who had undergone SWE examination were eligible. Data were retrospectively analysed from 396 consecutive patients. The mean stiffness values were obtained using the Aixplorer® ultrasound machine from SuperSonic Imagine Ltd. Measurements were taken from a region of interest positioned over the stiffest part of the abnormality. The average of the mean stiffness value obtained from each of two orthogonal image planes was used for analysis. Associations between lymph node involvement and mean lesion stiffness, invasive cancer size, histologic grade, tumour type, ER expression, HER-2 status and vascular invasion were assessed using univariate and multivariate logistic regression. At univariate analysis, invasive size, histologic grade, HER-2 status, vascular invasion, tumour type and mean stiffness were significantly associated with nodal involvement. Nodal involvement rates ranged from 7 % for tumours with mean stiffness <50 kPa to 41 % for tumours with a mean stiffness of >150 kPa. At multivariate analysis, invasive size, tumour type, vascular invasion, and mean stiffness maintained independent significance. Mean stiffness at SWE is an independent predictor of lymph node metastasis and thus can confer prognostic information additional to that provided by conventional preoperative tumour assessment and staging.

  19. Shear-wave elastography quantitative assessment of the male breast: added value to distinguish benign and malignant palpable masses.

    PubMed

    Crombé, Amandine; Hurtevent-Labrot, Gabrielle; Asad-Syed, Maryam; Palussière, Jean; MacGrogan, Gaetan; Kind, Michèle; Ferron, Stéphane

    2018-02-01

    To evaluate the ability of shear-wave elastography (SWE) to distinguish between benign and malignant palpable masses of the adult male breast. Clinical examination, mammography, B-mode and Doppler ultrasound findings and SWE quantitative parameters were compared in 50 benign lesions (including 40 gynaecomastias) and 15 malignant lesions (invasive ductal carcinomas) from 65 patients who were consecutively addressed for specialized advice at our comprehensive cancer centre. Mean elasticity (El mean), maximum elasticity (El max), El mean of the surrounding fatty tissue and lesion to fat ratio (El ratio) were reported for each patient. Malignant masses displayed significantly higher El mean (p < 0.0001), El max (p < 0.0001) and El ratio (p < 0.0001) compared to benign masses without overlap of values between the two groups. By adding SWE to clinical examination, mammography and ultrasound, all the lesions would have been retrospectively correctly diagnosed as benign or malignant. One false positive could have been downstaged, 14/65 undetermined masses could have been correctly reclassified as 4 malignant and 10 benign lesions, for which biopsies could have consequently been avoided. Evaluation of male breast palpable masses by SWE demonstrates that malignant masses are significantly stiffer lesions and may improve diagnostic management when clinical examination, mammography and conventional ultrasound are doubtful. Advances in knowledge: Quantitative SWE is feasible in male breast and could be of great interest to help classify doubtful lesions after classical clinical and radiological evaluations, probably because of different anatomy and different tumours epidemiology compared with female breast.

  20. A Well-Calibrated Ocean Algorithm for Special Sensor Microwave/Imager

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.

    1997-01-01

    I describe an algorithm for retrieving geophysical parameters over the ocean from special sensor microwave/imager (SSM/I) observations. This algorithm is based on a model for the brightness temperature T(sub B) of the ocean and intervening atmosphere. The retrieved parameters are the near-surface wind speed W, the columnar water vapor V, the columnar cloud liquid water L, and the line-of-sight wind W(sub LS). I restrict my analysis to ocean scenes free of rain, and when the algorithm detects rain, the retrievals are discarded. The model and algorithm are precisely calibrated using a very large in situ database containing 37,650 SSM/I overpasses of buoys and 35,108 overpasses of radiosonde sites. A detailed error analysis indicates that the T(sub B) model rms accuracy is between 0.5 and 1 K and that the rms retrieval accuracies for wind, vapor, and cloud are 0.9 m/s, 1.2 mm, and 0.025 mm, respectively. The error in specifying the cloud temperature will introduce an additional 10% error in the cloud water retrieval. The spatial resolution for these accuracies is 50 km. The systematic errors in the retrievals are smaller than the rms errors, being about 0.3 m/s, 0.6 mm, and 0.005 mm for W, V, and L, respectively. The one exception is the systematic error in wind speed of -1.0 m/s that occurs for observations within +/-20 deg of upwind. The inclusion of the line-of-sight wind W(sub LS) in the retrieval significantly reduces the error in wind speed due to wind direction variations. The wind error for upwind observations is reduced from -3.0 to -1.0 m/s. Finally, I find a small signal in the 19-GHz, horizontal polarization (h(sub pol) T(sub B) residual DeltaT(sub BH) that is related to the effective air pressure of the water vapor profile. This information may be of some use in specifying the vertical distribution of water vapor.

  1. Use of In-Situ and Remotely Sensed Snow Observations for the National Water Model in Both an Analysis and Calibration Framework.

    NASA Astrophysics Data System (ADS)

    Karsten, L. R.; Gochis, D.; Dugger, A. L.; McCreight, J. L.; Barlage, M. J.; Fall, G. M.; Olheiser, C.

    2017-12-01

    Since version 1.0 of the National Water Model (NWM) has gone operational in Summer 2016, several upgrades to the model have occurred to improve hydrologic prediction for the continental United States. Version 1.1 of the NWM (Spring 2017) includes upgrades to parameter datasets impacting land surface hydrologic processes. These parameter datasets were upgraded using an automated calibration workflow that utilizes the Dynamic Data Search (DDS) algorithm to adjust parameter values using observed streamflow. As such, these upgrades to parameter values took advantage of various observations collected for snow analysis. In particular, in-situ SNOTEL observations in the Western US, volunteer in-situ observations across the entire US, gamma-derived snow water equivalent (SWE) observations courtesy of the NWS NOAA Corps program, gridded snow depth and SWE products from the Jet Propulsion Laboratory (JPL) Airborne Snow Observatory (ASO), gridded remotely sensed satellite-based snow products (MODIS,AMSR2,VIIRS,ATMS), and gridded SWE from the NWS Snow Data Assimilation System (SNODAS). This study explores the use of these observations to quantify NWM error and improvements from version 1.0 to version 1.1, along with subsequent work since then. In addition, this study explores the use of snow observations for use within the automated calibration workflow. Gridded parameter fields impacting the accumulation and ablation of snow states in the NWM were adjusted and calibrated using gridded remotely sensed snow states, SNODAS products, and in-situ snow observations. This calibration adjustment took place over various ecological regions in snow-dominated parts of the US for a retrospective period of time to capture a variety of climatological conditions. Specifically, the latest calibrated parameters impacting streamflow were held constant and only parameters impacting snow physics were tuned using snow observations and analysis. The adjusted parameter datasets were then used to force the model over an independent period for analysis against both snow and streamflow observations to see if improvements took place. The goal of this work is to further improve snow physics in the NWM, along with identifying areas where further work will take place in the future, such as data assimilation or further forcing improvements.

  2. Towards improving the NASA standard soil moisture retrieval algorithm and product

    NASA Astrophysics Data System (ADS)

    Mladenova, I. E.; Jackson, T. J.; Njoku, E. G.; Bindlish, R.; Cosh, M. H.; Chan, S.

    2013-12-01

    Soil moisture mapping using passive-based microwave remote sensing techniques has proven to be one of the most effective ways of acquiring reliable global soil moisture information on a routine basis. An important step in this direction was made by the launch of the Advanced Microwave Scanning Radiometer on the NASA's Earth Observing System Aqua satellite (AMSR-E). Along with the standard NASA algorithm and operational AMSR-E product, the easy access and availability of the AMSR-E data promoted the development and distribution of alternative retrieval algorithms and products. Several evaluation studies have demonstrated issues with the standard NASA AMSR-E product such as dampened temporal response and limited range of the final retrievals and noted that the available global passive-based algorithms, even though based on the same electromagnetic principles, produce different results in terms of accuracy and temporal dynamics. Our goal is to identify the theoretical causes that determine the reduced sensitivity of the NASA AMSR-E product and outline ways to improve the operational NASA algorithm, if possible. Properly identifying the underlying reasons that cause the above mentioned features of the NASA AMSR-E product and differences between the alternative algorithms requires a careful examination of the theoretical basis of each approach. Specifically, the simplifying assumptions and parametrization approaches adopted by each algorithm to reduce the dimensionality of unknowns and characterize the observing system. Statistically-based error analyses, which are useful and necessary, provide information on the relative accuracy of each product but give very little information on the theoretical causes, knowledge that is essential for algorithm improvement. Thus, we are currently examining the possibility of improving the standard NASA AMSR-E global soil moisture product by conducting a thorough theoretically-based review of and inter-comparisons between several well established global retrieval techniques. A detailed discussion focused on the theoretical basis of each approach and algorithms sensitivity to assumptions and parametrization approaches will be presented. USDA is an equal opportunity provider and employer.

  3. Effects of daily, high spatial resolution a priori profiles of satellite-derived NOx emissions

    NASA Astrophysics Data System (ADS)

    Laughner, J.; Zare, A.; Cohen, R. C.

    2016-12-01

    The current generation of space-borne NO2 column observations provides a powerful method of constraining NOx emissions due to the spatial resolution and global coverage afforded by the Ozone Monitoring Instrument (OMI). The greater resolution available in next generation instruments such as TROPOMI and the capabilities of geosynchronous platforms TEMPO, Sentinel-4, and GEMS will provide even greater capabilities in this regard, but we must apply lessons learned from the current generation of retrieval algorithms to make the best use of these instruments. Here, we focus on the effect of the resolution of the a priori NO2 profiles used in the retrieval algorithms. We show that for an OMI retrieval, using daily high-resolution a priori profiles results in changes in the retrieved VCDs up to 40% when compared to a retrieval using monthly average profiles at the same resolution. Further, comparing a retrieval with daily high spatial resolution a priori profiles to a more standard one, we show that emissions derived increase by 100% when using the optimized retrieval.

  4. An Anomaly Correlation Skill Score for the Evaluation of the Performance of Hyperspectral Infrared Sounders

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Manning, Evan; Barnet, Chris; Maddy, Eric; Blackwell, William

    2009-01-01

    With the availability of very accurate forecasts, the metric of accuracy alone for the evaluation of the performance of a retrieval system can produce misleading results. A useful characterization of the quality of a retrieval system and its potential to contribute to an improved weather forecast is its skill, which we define as the ability to make retrievals of geophysical parameters which are closer to the truth than the six hour forecast, when the truth differs significantly from the forecast. We illustrate retrieval skill using one day of AMSU and AIRS data with three different retrieval algorithms, which result in retrievals for more than 90% of the potential retrievals under clear and cloudy conditions. Two of the three algorithms have better than 1 K rms "RAOB quality" accuracy on the troposphere, but only one has skill between 900 and 100 mb. AIRS was launched on the EOS Aqua spacecraft in May 2002 into a 705 km polar sun-synchronous orbit with accurately maintained 1:30 PM ascending node. Essentially uninterrupted data are freely available since September 2002.

  5. MAX-DOAS retrieval of aerosol extinction properties in Madrid, Spain

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Cuevas, Carlos A.; Frieß, Udo; Saiz-Lopez, Alfonso

    2017-04-01

    We present Multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements performed in the urban environment of Madrid, Spain, from March to September 2015. The O4 absorption in the ultraviolet (UV) spectral region was used to retrieve the aerosol extinction profile using an inversion algorithm. The results show a good agreement between the hourly retrieved aerosol optical depth (AOD) and the correlative Aerosol Robotic Network (AERONET) product. Higher AODs are found in the summer season due to the more frequent occurrence of Saharan dust intrusions. The surface aerosol extinction coefficient as retrieved by the MAX-DOAS measurements was also compared to in situ PM2:5 concentrations. The level of agreement between both measurements indicates that the MAX-DOAS retrieval has the ability to characterize the extinction of aerosol particles near the surface. The retrieval algorithm was also used to study a case of severe dust intrusion on 12 May 2015. The capability of the MAX-DOAS retrieval to recognize the dust event including an elevated particle layer is investigated along with air mass back-trajectory analysis.

  6. Phytoplankton pigment concentrations in the Middle Atlantic Bight - Comparison of ship determinations and CZCS estimates. [Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Brown, J. W.; Clark, D. K.; Brown, O. B.; Evans, R. H.; Broenkow, W. W.

    1983-01-01

    The processing algorithms used for relating the apparent color of the ocean observed with the Coastal-Zone Color Scanner on Nimbus-7 to the concentration of phytoplankton pigments (principally the pigment responsible for photosynthesis, chlorophyll-a) are developed and discussed in detail. These algorithms are applied to the shelf and slope waters of the Middle Atlantic Bight and also to Sargasso Sea waters. In all, four images are examined, and the resulting pigment concentrations are compared to continuous measurements made along ship tracks. The results suggest that over the 0.08-1.5 mg/cu m range, the error in the retrieved pigment concentration is of the order of 30-40% for a variety of atmospheric turbidities. In three direct comparisons between ship-measured and satellite-retrieved values of the water-leaving radiance, the atmospheric correction algorithm retrieved the water-leaving radiance with an average error of about 10%. This atmospheric correction algorithm does not require any surface measurements for its application.

  7. Retrieval of chlorophyll from remote-sensing reflectance in the china seas.

    PubMed

    He, M X; Liu, Z S; Du, K P; Li, L P; Chen, R; Carder, K L; Lee, Z P

    2000-05-20

    The East China Sea is a typical case 2 water environment, where concentrations of phytoplankton pigments, suspended matter, and chromophoric dissolved organic matter (CDOM) are all higher than those in the open oceans, because of the discharge from the Yangtze River and the Yellow River. By using a hyperspectral semianalytical model, we simulated a set of remote-sensing reflectance for a variety of chlorophyll, suspended matter, and CDOM concentrations. From this simulated data set, a new algorithm for the retrieval of chlorophyll concentration from remote-sensing reflectance is proposed. For this method, we took into account the 682-nm spectral channel in addition to the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) channels. When this algorithm was applied to a field data set, the chlorophyll concentrations retrieved through the new algorithm were consistent with field measurements to within a small error of 18%, in contrast with that of 147% between the SeaWiFS ocean chlorophyll 2 algorithm and the in situ observation.

  8. Algorithm theoretical baseline for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project

    NASA Astrophysics Data System (ADS)

    De Smedt, Isabelle; Theys, Nicolas; Yu, Huan; Danckaert, Thomas; Lerot, Christophe; Compernolle, Steven; Van Roozendael, Michel; Richter, Andreas; Hilboll, Andreas; Peters, Enno; Pedergnana, Mattia; Loyola, Diego; Beirle, Steffen; Wagner, Thomas; Eskes, Henk; van Geffen, Jos; Folkert Boersma, Klaas; Veefkind, Pepijn

    2018-04-01

    On board the Copernicus Sentinel-5 Precursor (S5P) platform, the TROPOspheric Monitoring Instrument (TROPOMI) is a double-channel, nadir-viewing grating spectrometer measuring solar back-scattered earthshine radiances in the ultraviolet, visible, near-infrared, and shortwave infrared with global daily coverage. In the ultraviolet range, its spectral resolution and radiometric performance are equivalent to those of its predecessor OMI, but its horizontal resolution at true nadir is improved by an order of magnitude. This paper introduces the formaldehyde (HCHO) tropospheric vertical column retrieval algorithm implemented in the S5P operational processor and comprehensively describes its various retrieval steps. Furthermore, algorithmic improvements developed in the framework of the EU FP7-project QA4ECV are described for future updates of the processor. Detailed error estimates are discussed in the light of Copernicus user requirements and needs for validation are highlighted. Finally, verification results based on the application of the algorithm to OMI measurements are presented, demonstrating the performances expected for TROPOMI.

  9. SSM/I Rain Retrievals Within a Unified All-Weather Ocean Algorithm

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.; Spencer, Roy W.

    1996-01-01

    A new method for the physical retrieval of rain rates from satellite microwave radiometers is presented and compared to two other rainfall climatologies derived from satellites. The method is part of a unified ocean parameter retrieval algorithm that is based on the fundamental principles of radiative transfer. The algorithm simultaneously finds near-surface wind speed W, columnar water vapor V, columnar cloud liquid water L, rain rate R, and effective radiating temperature T(sub U) for the upwelling radiation. The performance of the algorithm in the absence of rain is discussed in Wentz, and this paper focuses on the rain component of the algorithm. A particular strength of the unified algorithm is its ability to 'orthogonalize' the retrievals so that there is minimum cross-talk between the retrieved parameters. For example, comparisons of the retrieved water vapor with radiosonde observations show that there is very little correlation between the water vapor retrieval error and rain rate. For rain rates from 1 to 15 mm/h, the rms difference between the retrieved water vapor and the radiosonde value is 5 mm. A novel feature of the rain retrieval method is a beamfilling correction that is based upon the ratio of the retrieved liquid water absorption coefficients at 37 GHz and 19.35 GHz. This ratio decreases by about 40% when heavy and light rain co-exist within the SSM/I footprint as compared to the case of uniform rain. This correction has the effect of increasing the rain rate when the spectral ratio of the absorption coefficients is small. Even with this beamfilling correction, tropical rainfall is still unrealistically low when the freezing level in the tropics (approx. 5 km) is used to specify the rain layer thickness. We restore realism by reducing the assumed averaged tropical rain layer thickness to 3 km, thereby accounting for the existence of warm rain processes in which the rain layer does not extend to the freezing level. Global rain rates are produced for the 1991 through 1994 period from observations taken by microwave radiometers (SSM/I) that are aboard two polar-orbiting satellites. We find that approximately 6% of the SSM/I observations detect measurable rain rates (R greater than 0.2 mm/h). Zonal averages of the rain rates show the peak at the intertropical convergence zone (ITCZ) is quite narrow in meridional extent and varies from about 7 mm/day in the winter to a maximum 11 mm/day in the summer. Very low precipitation rates (less than 0.3 mm/day) are observed in those areas of subsidence influenced by the large semipermanent anticyclones. In general, these features are similar to those reported in previously published rain climatologies. However, significant differences do exists between our rain rates and those produced by Spencer. These differences seem to be related to non-precipitating cloud water.

  10. Multi-sensor measurements of mixed-phase clouds above Greenland

    NASA Astrophysics Data System (ADS)

    Stillwell, Robert A.; Shupe, Matthew D.; Thayer, Jeffrey P.; Neely, Ryan R.; Turner, David D.

    2018-04-01

    Liquid-only and mixed-phase clouds in the Arctic strongly affect the regional surface energy and ice mass budgets, yet much remains unknown about the nature of these clouds due to the lack of intensive measurements. Lidar measurements of these clouds are challenged by very large signal dynamic range, which makes even seemingly simple tasks, such as thermodynamic phase classification, difficult. This work focuses on a set of measurements made by the Clouds Aerosol Polarization and Backscatter Lidar at Summit, Greenland and its retrieval algorithms, which use both analog and photon counting as well as orthogonal and non-orthogonal polarization retrievals to extend dynamic range and improve overall measurement quality and quantity. Presented here is an algorithm for cloud parameter retrievals that leverages enhanced dynamic range retrievals to classify mixed-phase clouds. This best guess retrieval is compared to co-located instruments for validation.

  11. Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications.

    PubMed

    Taljanovic, Mihra S; Gimber, Lana H; Becker, Giles W; Latt, L Daniel; Klauser, Andrea S; Melville, David M; Gao, Liang; Witte, Russell S

    2017-01-01

    In the past 2 decades, sonoelastography has been progressively used as a tool to help evaluate soft-tissue elasticity and add to information obtained with conventional gray-scale and Doppler ultrasonographic techniques. Recently introduced on clinical scanners, shear-wave elastography (SWE) is considered to be more objective, quantitative, and reproducible than compression sonoelastography with increasing applications to the musculoskeletal system. SWE uses an acoustic radiation force pulse sequence to generate shear waves, which propagate perpendicular to the ultrasound beam, causing transient displacements. The distribution of shear-wave velocities at each pixel is directly related to the shear modulus, an absolute measure of the tissue's elastic properties. Shear-wave images are automatically coregistered with standard B-mode images to provide quantitative color elastograms with anatomic specificity. Shear waves propagate faster through stiffer contracted tissue, as well as along the long axis of tendon and muscle. SWE has a promising role in determining the severity of disease and treatment follow-up of various musculoskeletal tissues including tendons, muscles, nerves, and ligaments. This article describes the basic ultrasound physics of SWE and its applications in the evaluation of various traumatic and pathologic conditions of the musculoskeletal system. © RSNA, 2017.

  12. Deep learning based classification of breast tumors with shear-wave elastography.

    PubMed

    Zhang, Qi; Xiao, Yang; Dai, Wei; Suo, Jingfeng; Wang, Congzhi; Shi, Jun; Zheng, Hairong

    2016-12-01

    This study aims to build a deep learning (DL) architecture for automated extraction of learned-from-data image features from the shear-wave elastography (SWE), and to evaluate the DL architecture in differentiation between benign and malignant breast tumors. We construct a two-layer DL architecture for SWE feature extraction, comprised of the point-wise gated Boltzmann machine (PGBM) and the restricted Boltzmann machine (RBM). The PGBM contains task-relevant and task-irrelevant hidden units, and the task-relevant units are connected to the RBM. Experimental evaluation was performed with five-fold cross validation on a set of 227 SWE images, 135 of benign tumors and 92 of malignant tumors, from 121 patients. The features learned with our DL architecture were compared with the statistical features quantifying image intensity and texture. Results showed that the DL features achieved better classification performance with an accuracy of 93.4%, a sensitivity of 88.6%, a specificity of 97.1%, and an area under the receiver operating characteristic curve of 0.947. The DL-based method integrates feature learning with feature selection on SWE. It may be potentially used in clinical computer-aided diagnosis of breast cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Summertime Minimum Streamflow Elasticity to Antecendent Winter Precipitation, Peak Snow Water Equivalent and Summertime Evaporative Demand in the Western US Maritime Mountains

    NASA Astrophysics Data System (ADS)

    Schaperow, J.; Cooper, M. G.; Cooley, S. W.; Alam, S.; Smith, L. C.; Lettenmaier, D. P.

    2017-12-01

    As climate regimes shift, streamflows and our ability to predict them will change, as well. Elasticity of summer minimum streamflow is estimated for 138 unimpaired headwater river basins across the maritime western US mountains to better understand how climatologic variables and geologic characteristics interact to determine the response of summer low flows to winter precipitation (PPT), spring snow water equivalent (SWE), and summertime potential evapotranspiration (PET). Elasticities are calculated using log log linear regression, and linear reservoir storage coefficients are used to represent basin geology. Storage coefficients are estimated using baseflow recession analysis. On average, SWE, PET, and PPT explain about 1/3 of the summertime low flow variance. Snow-dominated basins with long timescales of baseflow recession are least sensitive to changes in SWE, PPT, and PET, while rainfall-dominated, faster draining basins are most sensitive. There are also implications for the predictability of summer low flows. The R2 between streamflow and SWE drops from 0.62 to 0.47 from snow-dominated to rain-dominated basins, while there is no corresponding increase in R2 between streamflow and PPT.

  14. A 1D-2D coupled SPH-SWE model applied to open channel flow simulations in complicated geometries

    NASA Astrophysics Data System (ADS)

    Chang, Kao-Hua; Sheu, Tony Wen-Hann; Chang, Tsang-Jung

    2018-05-01

    In this study, a one- and two-dimensional (1D-2D) coupled model is developed to solve the shallow water equations (SWEs). The solutions are obtained using a Lagrangian meshless method called smoothed particle hydrodynamics (SPH) to simulate shallow water flows in converging, diverging and curved channels. A buffer zone is introduced to exchange information between the 1D and 2D SPH-SWE models. Interpolated water discharge values and water surface levels at the internal boundaries are prescribed as the inflow/outflow boundary conditions in the two SPH-SWE models. In addition, instead of using the SPH summation operator, we directly solve the continuity equation by introducing a diffusive term to suppress oscillations in the predicted water depth. The performance of the two approaches in calculating the water depth is comprehensively compared through a case study of a straight channel. Additionally, three benchmark cases involving converging, diverging and curved channels are adopted to demonstrate the ability of the proposed 1D and 2D coupled SPH-SWE model through comparisons with measured data and predicted mesh-based numerical results. The proposed model provides satisfactory accuracy and guaranteed convergence.

  15. Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications

    PubMed Central

    Gimber, Lana H.; Becker, Giles W.; Latt, L. Daniel; Klauser, Andrea S.; Melville, David M.; Gao, Liang; Witte, Russell S.

    2017-01-01

    In the past 2 decades, sonoelastography has been progressively used as a tool to help evaluate soft-tissue elasticity and add to information obtained with conventional gray-scale and Doppler ultrasonographic techniques. Recently introduced on clinical scanners, shear-wave elastography (SWE) is considered to be more objective, quantitative, and reproducible than compression sonoelastography with increasing applications to the musculoskeletal system. SWE uses an acoustic radiation force pulse sequence to generate shear waves, which propagate perpendicular to the ultrasound beam, causing transient displacements. The distribution of shear-wave velocities at each pixel is directly related to the shear modulus, an absolute measure of the tissue’s elastic properties. Shear-wave images are automatically coregistered with standard B-mode images to provide quantitative color elastograms with anatomic specificity. Shear waves propagate faster through stiffer contracted tissue, as well as along the long axis of tendon and muscle. SWE has a promising role in determining the severity of disease and treatment follow-up of various musculoskeletal tissues including tendons, muscles, nerves, and ligaments. This article describes the basic ultrasound physics of SWE and its applications in the evaluation of various traumatic and pathologic conditions of the musculoskeletal system. ©RSNA, 2017 PMID:28493799

  16. Comparing Performance of Combinations of Shear Wave Elastography and B-Mode Ultrasound in Diagnosing Breast Masses: Is It Influenced by Mass Size?

    PubMed

    Cong, Rui; Li, Jing; Wang, Xuejiao

    2017-10-01

    We determined the diagnostic performance of combinations of shear wave elastography (SWE) and B-mode ultrasound (US) in differentiating malignant from benign breast masses, and we investigated whether performance is affected by mass size. In this prospective study of 315 consecutive patients with 326 breast masses, US and SWE were performed before biopsy. Masses were categorized into two subgroups on the basis of mass size (≤15 mm and >15 mm), and the optimal thresholds for the SWE parameters were determined for each subgroup using receiver operating characteristic curves. The combination proposed here achieved an area under the receiver operating characteristic curve of 0.943, 95.00% sensitivity and 81.18% specificity, which approximated the diagnostic performance of US alone. The performance of the combinations using the subgroups' thresholds did not differ significantly from those based on the entire study group's thresholds, but the optimal thresholds were higher in the subgroup of larger masses. Further research is needed to determine whether mass size affects the performance of combinations of SWE and US. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Satellite Retrieval of Atmospheric Water Budget over Gulf of Mexico- Caribbean Basin: Seasonal Variability

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Santos, Pablo; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of hourly-sampled monthly datasets derived from the GOES-8 5 Imager and the DMSP 7-channel passive microwave radiometer (SSM/I) have been acquired for the Gulf of Mexico-Caribbean Sea basin. Whereas the methodology is being tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the SSM/I passive microwave signals in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, we have sought to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is partly validated by first cross-checking all the algorithm components through multiple-algorithm retrieval intercomparisons. More fundamental validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithm to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin. Total columnar atmospheric water budget results will be presented for an extended annual cycle consisting of the months of October-97, January-98, April-98, July-98, October-98, and January-1999. These results are used to emphasize the changing relationship in E-P, as well as in the varying roles of storage and advection in balancing E-P both on daily and monthly time scales and on localized and basin space scales. Results from the algorithm-to-algorithm intercomparisons will also be presented in the context of sensitivity testing to help understand the intrinsic uncertainties in the water budget terms.

  18. Improved Surface and Tropospheric Temperatures Determined Using Only Shortwave Channels: The AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2011-01-01

    The Goddard DISC has generated products derived from AIRS/AMSU-A observations, starting from September 2002 when the AIRS instrument became stable, using the AIRS Science Team Version-5 retrieval algorithm. The AIRS Science Team Version-6 retrieval algorithm will be finalized in September 2011. This paper describes some of the significant improvements contained in the Version-6 retrieval algorithm, compared to that used in Version-5, with an emphasis on the improvement of atmospheric temperature profiles, ocean and land surface skin temperatures, and ocean and land surface spectral emissivities. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(sup -1) (15.38 micrometers) - 2665 cm(sup -1) (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometers (longwave) CO2 band, and the 4.3 micrometers (shortwave) CO2 absorption band. There are also two atmospheric window regions, the 12 micrometer - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses observations in longwave channels to determine coefficients which generate cloud cleared radiances R(sup ^)(sub i) for all channels, and uses R(sup ^)(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used in the AIRS Version-6 Retrieval Algorithm. Results are presented for both daytime and nighttime conditions showing improved Version-6 surface and atmospheric soundings under partial cloud cover.

  19. Characterization of Properties of Earth Atmosphere from Multi-Angular Polarimetric Observations of Polder/Parasol Using GRASP Algorithm

    NASA Astrophysics Data System (ADS)

    Dubovik, O.; Litvinov, P.; Lapyonok, T.; Ducos, F.; Fuertes, D.; Huang, X.; Torres, B.; Aspetsberger, M.; Federspiel, C.

    2014-12-01

    The POLDER imager on board of the PARASOL micro-satellite is the only satellite polarimeter provided ~ 9 years extensive record of detailed polarmertic observations of Earth atmosphere from space. POLDER / PARASOL registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. Such observations have very high sensitivity to the variability of the properties of atmosphere and underlying surface and can not be adequately interpreted using look-up-table retrieval algorithms developed for analyzing mono-viewing intensity only observations traditionally used in atmospheric remote sensing. Therefore, a new enhanced retrieval algorithm GRASP (Generalized Retrieval of Aerosol and Surface Properties) has been developed and applied for processing of PARASOL data. GRASP relies on highly optimized statistical fitting of observations and derives large number of unknowns for each observed pixel. The algorithm uses elaborated model of the atmosphere and fully accounts for all multiple interactions of scattered solar light with aerosol, gases and the underlying surface. All calculations are implemented during inversion and no look-up tables are used. The algorithm is very flexible in utilization of various types of a priori constraints on the retrieved characteristics and in parameterization of surface - atmosphere system. It is also optimized for high performance calculations. The results of the PARASOL data processing will be presented with the emphasis on the discussion of transferability and adaptability of the developed retrieval concept for processing polarimetric observations of other planets. For example, flexibility and possible alternative in modeling properties of aerosol polydisperse mixtures, particle composition and shape, reflectance of surface, etc. will be discussed.

  20. Comparison of NASA Team2 and AES-York Ice Concentration Algorithms Against Operational Ice Charts From the Canadian Ice Service

    NASA Technical Reports Server (NTRS)

    Shokr, Mohammed; Markus, Thorsten

    2006-01-01

    Ice concentration retrieved from spaceborne passive-microwave observations is a prime input to operational sea-ice-monitoring programs, numerical weather prediction models, and global climate models. Atmospheric Environment Service (AES)- York and the Enhanced National Aeronautics and Space Administration Team (NT2) are two algorithms that calculate ice concentration from Special Sensor Microwave/Imager observations. This paper furnishes a comparison between ice concentrations (total, thin, and thick types) output from NT2 and AES-York algorithms against the corresponding estimates from the operational analysis of Radarsat images in the Canadian Ice Service (CIS). A new data fusion technique, which incorporates the actual sensor's footprint, was developed to facilitate this study. Results have shown that the NT2 and AES-York algorithms underestimate total ice concentration by 18.35% and 9.66% concentration counts on average, with 16.8% and 15.35% standard deviation, respectively. However, the retrieved concentrations of thin and thick ice are in much more discrepancy with the operational CIS estimates when either one of these two types dominates the viewing area. This is more likely to occur when the total ice concentration approaches 100%. If thin and thick ice types coexist in comparable concentrations, the algorithms' estimates agree with CIS'S estimates. In terms of ice concentration retrieval, thin ice is more problematic than thick ice. The concept of using a single tie point to represent a thin ice surface is not realistic and provides the largest error source for retrieval accuracy. While AES-York provides total ice concentration in slightly more agreement with CIS'S estimates, NT2 provides better agreement in retrieving thin and thick ice concentrations.

Top