Sample records for sweeps system development

  1. Fast sweeping methods for hyperbolic systems of conservation laws at steady state II

    NASA Astrophysics Data System (ADS)

    Engquist, Björn; Froese, Brittany D.; Tsai, Yen-Hsi Richard

    2015-04-01

    The idea of using fast sweeping methods for solving stationary systems of conservation laws has previously been proposed for efficiently computing solutions with sharp shocks. We further develop these methods to allow for a more challenging class of problems including problems with sonic points, shocks originating in the interior of the domain, rarefaction waves, and two-dimensional systems. We show that fast sweeping methods can produce higher-order accuracy. Computational results validate the claims of accuracy, sharp shock curves, and optimal computational efficiency.

  2. High-sweeping-speed optically synchronized dual-channel terahertz-signal generator for driving a superconducting tunneling mixer and its application to active gas sensing.

    PubMed

    Oh, Kyoung-Hwan; Shimizu, Naofumi; Kohjiro, Satoshi; Kikuchi, Ken'ichi; Wakatsuki, Atsushi; Kukutsu, Naoya; Kado, Yuichi

    2009-10-12

    We propose a high-sweeping-speed optically synchronized dual-channel terahertz (THz) signal generator for an active gas-sensing system with a superconductor-insulator-superconductor (SIS) mixer. The generator can sweep a frequency range from 200 to 500 GHz at a speed of 375 GHz/s and a frequency resolution of 500 MHz. With the developed gas-sensing system, a gas-absorption-line measurement was successfully carried out with N(2)O gas in that frequency range.

  3. Variable Sweep Transition Flight Experiment (VSTFE): Unified Stability System (USS). Description and Users' Manual

    NASA Technical Reports Server (NTRS)

    Rozendaal, Rodger A.; Behbehani, Roxanna

    1990-01-01

    NASA initiated the Variable Sweep Transition Flight Experiment (VSTFE) to establish a boundary layer transition database for laminar flow wing design. For this experiment, full-span upper surface gloves were fitted to a variable sweep F-14 aircraft. The development of an improved laminar boundary layer stability analysis system called the Unified Stability System (USS) is documented and results of its use on the VSTFE flight data are shown. The USS consists of eight computer codes. The theoretical background of the system is described, as is the input, output, and usage hints. The USS is capable of analyzing boundary layer stability over a wide range of disturbance frequencies and orientations, making it possible to use different philosophies in calculating the growth of disturbances on sweptwings.

  4. Comparison of measured and simulated friction velocity and threshold friction velocity using SWEEP

    USDA-ARS?s Scientific Manuscript database

    The Wind Erosion Prediction System (WEPS) was developed by the USDA Agricultural Research Service as a tool to predict wind erosion and assess the influence of control practices on windblown soil loss. Occasional failure of the WEPS erosion submodel (SWEEP) to simulate erosion in the Columbia Platea...

  5. A Structural Weight Estimation Program (SWEEP) for Aircraft. Volume 4 - Material Properties, Structure Temperature, Flutter and Fatigue

    DTIC Science & Technology

    1974-06-01

    NAME AND ADDRESS Deputy for Development Planning Air Force Systems Command Wright-Patterson Air Force Base, Ohio READ INSTRUCTIONS BEFORE...6600 computer. Two stand-alone pro- grams operating within 100,000 octal units were also developed to provide optional data sources for SWEEP...JAMES H. HALL, Colonel, USAF Deputy for Development Planning ll jgaajaaMteaäiiaaBiiMiffliiäffliiteMä hi*^*Mi*^^*^&äitküli^ riMMiniiiMfWitii

  6. Research related to variable sweep aircraft development

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.; Toll, T. A.

    1981-01-01

    Development in high speed, variable sweep aircraft research is reviewed. The 1946 Langley wind tunnel studies related to variable oblique and variable sweep wings and results from the X-5 and the XF1OF variable sweep aircraft are discussed. A joint program with the British, evaluation of the British "Swallow", development of the outboard pivot wing/aft tail configuration concept by Langley, and the applied research program that followed and which provided the technology for the current, variable sweep military aircraft is outlined. The relative state of variable sweep as a design option is also covered.

  7. Application of the WEPS and SWEEP models to non-agricultural disturbed lands.

    PubMed

    Tatarko, J; van Donk, S J; Ascough, J C; Walker, D G

    2016-12-01

    Wind erosion not only affects agricultural productivity but also soil, air, and water quality. Dust and specifically particulate matter ≤10 μm (PM-10) has adverse effects on respiratory health and also reduces visibility along roadways, resulting in auto accidents. The Wind Erosion Prediction System (WEPS) was developed by the USDA-Agricultural Research Service to simulate wind erosion and provide for conservation planning on cultivated agricultural lands. A companion product, known as the Single-Event Wind Erosion Evaluation Program (SWEEP), has also been developed which consists of the stand-alone WEPS erosion submodel combined with a graphical interface to simulate soil loss from single (i.e., daily) wind storm events. In addition to agricultural lands, wind driven dust emissions also occur from other anthropogenic sources such as construction sites, mined and reclaimed areas, landfills, and other disturbed lands. Although developed for agricultural fields, WEPS and SWEEP are useful tools for simulating erosion by wind for non-agricultural lands where typical agricultural practices are not employed. On disturbed lands, WEPS can be applied for simulating long-term (i.e., multi-year) erosion control strategies. SWEEP on the other hand was developed specifically for disturbed lands and can simulate potential soil loss for site- and date-specific planned surface conditions and control practices. This paper presents novel applications of WEPS and SWEEP for developing erosion control strategies on non-agricultural disturbed lands. Erosion control planning with WEPS and SWEEP using water and other dust suppressants, wind barriers, straw mulch, re-vegetation, and other management practices is demonstrated herein through the use of comparative simulation scenarios. The scenarios confirm the efficacy of the WEPS and SWEEP models as valuable tools for supporting the design of erosion control plans for disturbed lands that are not only cost-effective but also incorporate a science-based approach to risk assessment.

  8. Advances in Digital Calibration Techniques Enabling Real-Time Beamforming SweepSAR Architectures

    NASA Technical Reports Server (NTRS)

    Hoffman, James P.; Perkovic, Dragana; Ghaemi, Hirad; Horst, Stephen; Shaffer, Scott; Veilleux, Louise

    2013-01-01

    Real-time digital beamforming, combined with lightweight, large aperture reflectors, enable SweepSAR architectures, which promise significant increases in instrument capability for solid earth and biomass remote sensing. These new instrument concepts require new methods for calibrating the multiple channels, which are combined on-board, in real-time. The benefit of this effort is that it enables a new class of lightweight radar architecture, Digital Beamforming with SweepSAR, providing significantly larger swath coverage than conventional SAR architectures for reduced mass and cost. This paper will review the on-going development of the digital calibration architecture for digital beamforming radar instrument, such as the proposed Earth Radar Mission's DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) instrument. This proposed instrument's baseline design employs SweepSAR digital beamforming and requires digital calibration. We will review the overall concepts and status of the system architecture, algorithm development, and the digital calibration testbed currently being developed. We will present results from a preliminary hardware demonstration. We will also discuss the challenges and opportunities specific to this novel architecture.

  9. Investigation of the Effect of Blade Sweep on Rotor Vibratory Loads

    NASA Technical Reports Server (NTRS)

    Tarzanin, F. J., Jr.; Vlaminck, R. R.

    1983-01-01

    The effect of helicopter rotor blade planform sweep on rotor vibratory hub, blade, and control system loads has been analytically investigated. The importance of sweep angle, sweep initiation radius, flap bending stiffness and torsion bending stiffness is discussed. The mechanism by which sweep influences the vibratory hub loads is investigated.

  10. Enhancement of the conductivity detection signal in capillary electrophoresis systems using neutral cyclodextrins as sweeping agents.

    PubMed

    Boublík, Milan; Riesová, Martina; Dubský, Pavel; Gaš, Bohuslav

    2018-06-01

    Conductivity detection is a universal detection technique often encountered in electrophoretic separation systems, especially in modern chip-electrophoresis based devices. On the other hand, it is sparsely combined with another contemporary trend of enhancing limits of detection by means of various preconcentration strategies. This can be attributed to the fact that a preconcentration experimental setup usually brings about disturbances in a conductivity baseline. Sweeping with a neutral sweeping agent seems a good candidate for overcoming this problem. A neutral sweeping agent does not hinder the conductivity detection while a charged analyte may preconcentrate on its boundary due to a decrease in its effective mobility. This study investigates such sweeping systems theoretically, by means of computer simulations, and experimentally. A formula is provided for the reliable estimation of the preconcentration factor. Additionally, it is demonstrated that the conductivity signal can significantly benefit from slowing down the analyte and thus the overall signal enhancement can easily overweight amplification caused solely by the sweeping process. The overall enhancement factor can be deduced a priori from the linearized theory of electrophoresis implemented in the PeakMaster freeware. Sweeping by neutral cyclodextrin is demonstrated on an amplification of a conductivity signal of flurbiprofen in a real drug sample. Finally, a possible formation of unexpected system peaks in systems with a neutral sweeping agent is revealed by the computer simulation and confirmed experimentally. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Determination of Oebalus pugnax (Hemiptera: Pentatomidae) spatial pattern in rice and development of visual sampling methods and population sampling plans.

    PubMed

    Espino, L; Way, M O; Wilson, L T

    2008-02-01

    Commercial rice, Oryza sativa L., fields in southeastern Texas were sampled during 2003 and 2004, and visual samples were compared with sweep net samples. Fields were sampled at different stages of panicle development, times of day, and by different operators. Significant differences were found between perimeter and within field sweep net samples, indicating that samples taken 9 m from the field margin overestimate within field Oebalus pugnax (F.) (Hemiptera: Pentatomidae) populations. Time of day did not significantly affect the number of O. pugnax caught with the sweep net; however, there was a trend to capture more insects during morning than afternoon. For all sampling methods evaluated during this study, O. pugnax was found to have an aggregated spatial pattern at most densities. When comparing sweep net with visual sampling methods, one sweep of the "long stick" and two sweeps of the "sweep stick" correlated well with the sweep net (r2 = 0.639 and r2 = 0.815, respectively). This relationship was not affected by time of day of sampling, stage of panicle development, type of planting or operator. Relative cost-reliability, which incorporates probability of adoption, indicates the visual methods are more cost-reliable than the sweep net for sampling O.

  12. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    DOEpatents

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  13. Rheological Studies of PMMA–PVC Based Polymer Blend Electrolytes with LiTFSI as Doping Salt

    PubMed Central

    Liew, Chiam–Wen; Durairaj, R.; Ramesh, S.

    2014-01-01

    In this research, two systems are studied. In the first system, the ratio of poly (methyl methacrylate) (PMMA) and poly (vinyl chloride) (PVC) is varied, whereas in the second system, the composition of PMMA–PVC polymer blends is varied with dopant salt, lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) with a fixed ratio of 70 wt% of PMMA to 30 wt% of PVC. Oscillation tests such as amplitude sweep and frequency sweep are discussed in order to study the viscoelastic properties of samples. Elastic properties are much higher than viscous properties within the range in the amplitude sweep and oscillatory shear sweep studies. The crossover of and is absent. Linear viscoelastic (LVE) range was further determined in order to perform the frequency sweep. However, the absence of viscous behavior in the frequency sweep indicates the solid-like characteristic within the frequency regime. The viscosity of all samples is found to decrease as shear rate increases. PMID:25051241

  14. A second order discontinuous Galerkin fast sweeping method for Eikonal equations

    NASA Astrophysics Data System (ADS)

    Li, Fengyan; Shu, Chi-Wang; Zhang, Yong-Tao; Zhao, Hongkai

    2008-09-01

    In this paper, we construct a second order fast sweeping method with a discontinuous Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is built on a DG method developed recently [Y. Cheng, C.-W. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations, Journal of Computational Physics 223 (2007) 398-415] for the time-dependent Hamilton-Jacobi equations. The causality property of Eikonal equations is incorporated into the design of this solver. The resulting local nonlinear system in the Gauss-Seidel iterations is a simple quadratic system and can be solved explicitly. The compactness of the DG method and the fast sweeping strategy lead to fast convergence of the new scheme for Eikonal equations. Extensive numerical examples verify efficiency, convergence and second order accuracy of the proposed method.

  15. Field-programmable gate array-controlled sweep velocity-locked laser pulse generator

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-05-01

    A field-programmable gate array (FPGA)-controlled sweep velocity-locked laser pulse generator (SV-LLPG) design based on an all-digital phase-locked loop (ADPLL) is proposed. A distributed feedback laser with modulated injection current was used as a swept-frequency laser source. An open-loop predistortion modulation waveform was calibrated using a feedback iteration method to initially improve frequency sweep linearity. An ADPLL control system was then implemented using an FPGA to lock the output of a Mach-Zehnder interferometer that was directly proportional to laser sweep velocity to an on-board system clock. Using this system, linearly chirped laser pulses with a sweep bandwidth of 111.16 GHz were demonstrated. Further testing evaluating the sensing utility of the system was conducted. In this test, the SV-LLPG served as the swept laser source of an optical frequency-domain reflectometry system used to interrogate a subterahertz range fiber structure (sub-THz-FS) array. A static strain test was then conducted and linear sensor results were observed.

  16. SweeD: likelihood-based detection of selective sweeps in thousands of genomes.

    PubMed

    Pavlidis, Pavlos; Živkovic, Daniel; Stamatakis, Alexandros; Alachiotis, Nikolaos

    2013-09-01

    The advent of modern DNA sequencing technology is the driving force in obtaining complete intra-specific genomes that can be used to detect loci that have been subject to positive selection in the recent past. Based on selective sweep theory, beneficial loci can be detected by examining the single nucleotide polymorphism patterns in intraspecific genome alignments. In the last decade, a plethora of algorithms for identifying selective sweeps have been developed. However, the majority of these algorithms have not been designed for analyzing whole-genome data. We present SweeD (Sweep Detector), an open-source tool for the rapid detection of selective sweeps in whole genomes. It analyzes site frequency spectra and represents a substantial extension of the widely used SweepFinder program. The sequential version of SweeD is up to 22 times faster than SweepFinder and, more importantly, is able to analyze thousands of sequences. We also provide a parallel implementation of SweeD for multi-core processors. Furthermore, we implemented a checkpointing mechanism that allows to deploy SweeD on cluster systems with queue execution time restrictions, as well as to resume long-running analyses after processor failures. In addition, the user can specify various demographic models via the command-line to calculate their theoretically expected site frequency spectra. Therefore, (in contrast to SweepFinder) the neutral site frequencies can optionally be directly calculated from a given demographic model. We show that an increase of sample size results in more precise detection of positive selection. Thus, the ability to analyze substantially larger sample sizes by using SweeD leads to more accurate sweep detection. We validate SweeD via simulations and by scanning the first chromosome from the 1000 human Genomes project for selective sweeps. We compare SweeD results with results from a linkage-disequilibrium-based approach and identify common outliers.

  17. A Field-Sweep/Field-Lock System for Superconducting Magnets-Application to High-Field EPR

    PubMed Central

    Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G.

    2007-01-01

    We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H-NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of ± 0.4 T and a resolution of up to 10-5 T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR. PMID:17027306

  18. A field-sweep/field-lock system for superconducting magnets--Application to high-field EPR.

    PubMed

    Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G

    2006-12-01

    We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of +/-0.4 T and a resolution of up to 10(-5) T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR.

  19. Efficient sweep buffering in swept source optical coherence tomography using a fast optical switch

    PubMed Central

    Dhalla, Al-Hafeez; Shia, Kevin; Izatt, Joseph A.

    2012-01-01

    We describe a novel buffering technique for increasing the A-scan rate of swept source optical coherence tomography (SSOCT) systems employing low duty cycle swept source lasers. This technique differs from previously reported buffering techniques in that it employs a fast optical switch, capable of switching in 60 ns, instead of a fused fiber coupler at the end of the buffering stage, and is therefore appreciably more power efficient. The use of the switch also eliminates patient exposure to light that is not used for imaging that occurs at the end of the laser sweep, thereby increasing the system sensitivity. We also describe how careful management of polarization can remove undesirable artifacts due to polarization mode dispersion. In addition, we demonstrate how numerical compensation techniques can be used to modify the signal from a Mach-Zehnder interferometer (MZI) clock obtained from the original sweep to recalibrate the buffered sweep, thereby reducing the complexity of systems employing lasers with integrated MZI clocks. Combining these methods, we constructed an SSOCT system employing an Axsun technologies laser with a sweep rate of 100kHz and 6dB imaging range of 5.5mm. The sweep rate was doubled with sweep buffering to 200 kHz, and the imaging depth was extended to 9 mm using coherence revival. We demonstrated the feasibility of this system by acquiring images of the anterior segments and retinas of healthy human volunteers. PMID:23243559

  20. Efficient sweep buffering in swept source optical coherence tomography using a fast optical switch.

    PubMed

    Dhalla, Al-Hafeez; Shia, Kevin; Izatt, Joseph A

    2012-12-01

    We describe a novel buffering technique for increasing the A-scan rate of swept source optical coherence tomography (SSOCT) systems employing low duty cycle swept source lasers. This technique differs from previously reported buffering techniques in that it employs a fast optical switch, capable of switching in 60 ns, instead of a fused fiber coupler at the end of the buffering stage, and is therefore appreciably more power efficient. The use of the switch also eliminates patient exposure to light that is not used for imaging that occurs at the end of the laser sweep, thereby increasing the system sensitivity. We also describe how careful management of polarization can remove undesirable artifacts due to polarization mode dispersion. In addition, we demonstrate how numerical compensation techniques can be used to modify the signal from a Mach-Zehnder interferometer (MZI) clock obtained from the original sweep to recalibrate the buffered sweep, thereby reducing the complexity of systems employing lasers with integrated MZI clocks. Combining these methods, we constructed an SSOCT system employing an Axsun technologies laser with a sweep rate of 100kHz and 6dB imaging range of 5.5mm. The sweep rate was doubled with sweep buffering to 200 kHz, and the imaging depth was extended to 9 mm using coherence revival. We demonstrated the feasibility of this system by acquiring images of the anterior segments and retinas of healthy human volunteers.

  1. Scale Up Considerations for Sediment Microbial Fuel Cells

    DTIC Science & Technology

    2013-01-01

    density calculations were made once WPs stabilized for each system. Linear sweep voltametry was then used on these systems to generate polarization and...power density curves. The systems were allowed to equilibrate under open circuit conditions (about 12 h) before a potential sweep was performed with a...reference. The potential sweep was set to begin at the anode potential under open circuit conditions (20.4 V vs. Ag/AgCl) and was raised to the

  2. Swept Impinging Oblique Shock/Boundary-Layer Interactions

    NASA Astrophysics Data System (ADS)

    Little, Jesse; Threadgill, James; Stab, Ilona

    2016-11-01

    Oblique shock waves impinging on boundary layers are common flow features associated with high-speed flows around complex body geometries and through internal channel flows. The increasingly three-dimensional surface geometries of modern vehicles has led to a prevalence of complex shock/boundary-layer interactions. Sweep has been observed to vary the interaction structure, unsteadinesses, and similarity scalings. Sharp-fins and highly-swept ramps have been noted to induce a quasi-conical development of the interaction, in contrast to a quasi-cylindrical scaling observed in low-sweep interactions. However, swept impinging oblique shock cases have largely been overlooked, with evidence of only cylindrical similarities observed in hypersonic conditions. Flow deflection beyond the maximum turning angle has been proposed as the mechanism for conical interaction development but such behavior has not been established for the present configuration. This study examines the effect of sweep on the interaction induced by a 12.5° generator in Mach 2.3 flow using oil-flow, Schlieren and PIV. Results document the development of similarity scalings at various angles of sweep, and highlight the difficulty in replicating a quasi-infinite span conditions in a moderately sized wind tun Supported by the Air Force Office of Scientific Research (FA9550-15-1-0430) and Raytheon Missile Systems.

  3. Developing a School Finance System for K-12 Reform in Qatar

    ERIC Educational Resources Information Center

    Guarino, Cassandra M.; Galama, Titus; Constant, Louay; Gonzalez, Gabriella; Tanner, Jeffery C.; Goldman, Charles A.

    2009-01-01

    Reform-minded leaders of Qatar, who have embarked on a sweeping reform of their nation's education system, asked RAND to evaluate the education finance system that has been adopted and to offer suggestions for improvements. The authors analyze the system's evolution and resource allocation patterns between 2004 and 2006 and develop analytic tools…

  4. Using Computational Fluid Dynamics and Experiments to Design Sweeping Jets for High Reynolds Number Cruise Configurations

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Milholen, William E., II; Fell, Jared S.; Webb, Sandy R.; Cagle, C. Mark

    2016-01-01

    The application of a sweeping jet actuator to a circulation control system was initiated by a risk reduction series of experiments to optimize the authority of a single sweeping jet actuator. The sweeping jet design was integrated into the existing Fundamental Aerodynamic Subsonic Transonic- Modular Active Control (FAST-MAC) model by replacing the steady blowing system with an array of thirty-nine sweeping jet cartridges. A constant slot height to wing chord ratio was similar to the steady blowing configuration resulting in each actuator having a unique in size for the sweeping jet configuration. While this paper will describe the scaling and optimization of the actuators for future high Reynolds number applications, the major focus of this effort was to target the transonic flight regime by increasing the amplitude authority of the actuator. This was accomplished by modifying the diffuser of the sweeping jet actuator, and this paper highlights twelve different diffuser designs. The experimental portion of this work was completed in the NASA Langley National Transonic Facility.

  5. Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps.

    PubMed

    Garud, Nandita R; Messer, Philipp W; Buzbas, Erkan O; Petrov, Dmitri A

    2015-02-01

    Adaptation from standing genetic variation or recurrent de novo mutation in large populations should commonly generate soft rather than hard selective sweeps. In contrast to a hard selective sweep, in which a single adaptive haplotype rises to high population frequency, in a soft selective sweep multiple adaptive haplotypes sweep through the population simultaneously, producing distinct patterns of genetic variation in the vicinity of the adaptive site. Current statistical methods were expressly designed to detect hard sweeps and most lack power to detect soft sweeps. This is particularly unfortunate for the study of adaptation in species such as Drosophila melanogaster, where all three confirmed cases of recent adaptation resulted in soft selective sweeps and where there is evidence that the effective population size relevant for recent and strong adaptation is large enough to generate soft sweeps even when adaptation requires mutation at a specific single site at a locus. Here, we develop a statistical test based on a measure of haplotype homozygosity (H12) that is capable of detecting both hard and soft sweeps with similar power. We use H12 to identify multiple genomic regions that have undergone recent and strong adaptation in a large population sample of fully sequenced Drosophila melanogaster strains from the Drosophila Genetic Reference Panel (DGRP). Visual inspection of the top 50 candidates reveals that in all cases multiple haplotypes are present at high frequencies, consistent with signatures of soft sweeps. We further develop a second haplotype homozygosity statistic (H2/H1) that, in combination with H12, is capable of differentiating hard from soft sweeps. Surprisingly, we find that the H12 and H2/H1 values for all top 50 peaks are much more easily generated by soft rather than hard sweeps. We discuss the implications of these results for the study of adaptation in Drosophila and in species with large census population sizes.

  6. Summary of NACA/NASA Variable-Sweep Research and Development Leading to the F-111 (TFX)

    NASA Technical Reports Server (NTRS)

    1966-01-01

    On November 24, 1962, the United States ushered in a new era of aircraft development when the Department of Defense placed an initial development contract for the world's first supersonic variable-sweep aircraft - the F-111 or so-called TFX (tactical fighter-experimental). The multimission performance potential of this concept is made possible by virtue of the variable-sweep wing - a research development of the NASA and its predecessor, the NACA. With the wing swept forward into the maximum span position, the aircraft configuration is ideal for efficient subsonic flight. This provides long-range combat and ferry mission capability, short-field landing and take-off characteristics, and compatibility with naval aircraft carrier operation. With the wing swept back to about 650 of sweep, the aircraft has optimum supersonic performance to accomplish high-altitude supersonic bombing or interceptor missions. With the wing folded still further back, the aircraft provides low drag and low gust loads during supersonic flight "on the deck" (altitudes under 1000 feet). The concept of wing variable sweep, of course, is not new. Initial studies were conducted at Langley as early as 1945, and two subsonic variable-sweep prototypes (Bell X-5 and Grumman XF-IOF) were flown as early as 1951/52. These were subsonic aircraft, however, and the great advantage of variable sweep in improving supersonic flight efficiency could not be realized. Further the structures of these early aircraft were complicated by the necessity for translating the ing fore and aft to achieve satisfactory longitUdinal stability as the wing sweep was varied. Late in 1958 a research breakthrough at Langley provided the technology for designing a variable-sweep wing having satisfactory stability through a wide sweep angle range without the necessity for fore and aft translation of the wing. In this same period there evolved within the military services an urgent requirement for a versatile fighter-bomber that could fly efficiently at subsonic and supersonic speeds at high altitude and "on the deck". The application of variable sweep to this mission requirement then became obvious.

  7. Procedures for waste management from street sweeping and stormwater systems.

    DOT National Transportation Integrated Search

    2016-05-01

    Street sweeping and storm water system cleaning activities are conducted regularly by ODOT to comply with NPDES permit requirements and to ensure roadway safety. Once collected, these materials are classified as solid waste and require cost-effective...

  8. The sports science of curling: a practical review.

    PubMed

    Bradley, John L

    2009-01-01

    Curling is a sport played on ice in which two teams each deliver 8 granite stones towards a target, or 'house'. It is the only sport in which the trajectory of the projectile can be influenced after it has been released by the athlete. This is achieved by sweeping the ice in front of the stone to change the stone-ice friction and thereby enable to stone to travel further, curl more or stay straight. Hard sweeping is physically demanding. Different techniques of sweeping can also have different effects on the stone. This paper will review the current research behind sweeping a curling stone, outline the physiological demands of sweeping, the associated performance effects and suggest potential strategies of sweeping that can be used by both coaches and curling teams. Key pointsSweeping a curling stone can be highly physically demanding.Effective sweeping requires a combination of downward force and brush head speed, determined by the stone velocity.Sweeping on the left or right of a stone can help the stone to remain straight or curl more depending on the rotation of the stone.This can lead to the development of sweeping and playing tactics and contribute to team selection.

  9. The Sports Science of Curling: A Practical Review

    PubMed Central

    Bradley, John L.

    2009-01-01

    Curling is a sport played on ice in which two teams each deliver 8 granite stones towards a target, or ‘house’. It is the only sport in which the trajectory of the projectile can be influenced after it has been released by the athlete. This is achieved by sweeping the ice in front of the stone to change the stone-ice friction and thereby enable to stone to travel further, curl more or stay straight. Hard sweeping is physically demanding. Different techniques of sweeping can also have different effects on the stone. This paper will review the current research behind sweeping a curling stone, outline the physiological demands of sweeping, the associated performance effects and suggest potential strategies of sweeping that can be used by both coaches and curling teams. Key points Sweeping a curling stone can be highly physically demanding. Effective sweeping requires a combination of downward force and brush head speed, determined by the stone velocity. Sweeping on the left or right of a stone can help the stone to remain straight or curl more depending on the rotation of the stone. This can lead to the development of sweeping and playing tactics and contribute to team selection. PMID:24149588

  10. Oxide vapor distribution from a high-frequency sweep e-beam system

    NASA Astrophysics Data System (ADS)

    Chow, R.; Tassano, P. L.; Tsujimoto, N.

    1995-03-01

    Oxide vapor distributions have been determined as a function of operating parameters of a high frequency sweep e-beam source combined with a programmable sweep controller. We will show which parameters are significant, the parameters that yield the broadest oxide deposition distribution, and the procedure used to arrive at these conclusions. A design-of-experimental strategy was used with five operating parameters: evaporation rate, sweep speed, sweep pattern (pre-programmed), phase speed (azimuthal rotation of the pattern), profile (dwell time as a function of radial position). A design was chosen that would show which of the parameters and parameter pairs have a statistically significant effect on the vapor distribution. Witness flats were placed symmetrically across a 25 inches diameter platen. The stationary platen was centered 24 inches above the e-gun crucible. An oxide material was evaporated under 27 different conditions. Thickness measurements were made with a stylus profilometer. The information will enable users of the high frequency e-gun systems to optimally locate the source in a vacuum system and understand which parameters have a major effect on the vapor distribution.

  11. Cleaning mechanism of particle contaminants on large aperture optical components by using air knife sweeping technology

    NASA Astrophysics Data System (ADS)

    Niu, Longfei; Liu, Hao; Miao, Xinxiang; Lv, Haibing; Yuan, Xiaodong; Zhou, Hai; Yao, Caizhen; Zhou, Guorui; Li, Qin

    2017-05-01

    The cleaning mechanism of optical surface particle contaminants in the light pneumatic tube was simulated based on the static equations and JKR model. Cleaning verification experiment based on air knife sweeping system and on-line monitoring system in high power laser facility was set up in order to verify the simulated results. Results showed that the removal ratio is significantly influenced by sweeping velocity and angle. The removal ratio can reach to 94.3% by using higher input pressure of the air knife, demonstrating that the air knife sweeping technology is useful for maintaining the surface cleanliness of optical elements, and thus guaranteeing the long-term stable running of the high power laser facility.

  12. Theory for broadband Noise of Rotor and Stator Cascades with Inhomogeneous Inflow Turbulence Including Effects of Lean and Sweep

    NASA Technical Reports Server (NTRS)

    Hanson, Donald B.

    2001-01-01

    The problem of broadband noise generated by turbulence impinging on a downstream blade row is examined from a theoretical viewpoint. Equations are derived for sound power spectra in terms of 3 dimensional wavenumber spectra of the turbulence. Particular attention is given to issues of turbulence inhomogeneity associated with the near field of the rotor and variations through boundary layers. Lean and sweep of the rotor or stator cascade are also handled rigorously with a full derivation of the relevant geometry and definitions of lean and sweep angles. Use of the general theory is illustrated by 2 simple theoretical spectra for homogeneous turbulence. Limited comparisons are made with data from model fans designed by Pratt & Whitney, Allison, and Boeing. Parametric studies for stator noise are presented showing trends with Mach number, vane count, turbulence scale and intensity, lean, and sweep. Two conventions are presented to define lean and sweep. In the "cascade system" lean is a rotation out of its plane and sweep is a rotation of the airfoil in its plane. In the "duct system" lean is the leading edge angle viewing the fan from the front (along the fan axis) and sweep is the angle viewing the fan from the side (,perpendicular to the axis). It is shown that the governing parameter is sweep in the plane of the airfoil (which reduces the chordwise component of Mach number). Lean (out of the plane of the airfoil) has little effect. Rotor noise predictions are compared with duct turbulence/rotor interaction noise data from Boeing and variations, including blade tip sweep and turbulence axial and transverse scales are explored.

  13. SWEEP: Sciencing with Watersheds, Environmental Education and Partnerships. Instructor's Guide to Implementation and Summer Institute Participant Notebook.

    ERIC Educational Resources Information Center

    Bainer, Deb; Barron, Pat; Cantrell, Diane

    Sciencing with Watersheds, Environmental Education, and Partnerships (SWEEP) is a professional development program designed to help elementary teachers improve the way they teach science using partnerships among teachers and resource professionals. SWEEP follows a thematic approach using watersheds as the core concept of an integrated elementary…

  14. A novel pump-driven veno-venous gas exchange system during extracorporeal CO2-removal.

    PubMed

    Hermann, Alexander; Riss, Katharina; Schellongowski, Peter; Bojic, Andja; Wohlfarth, Philipp; Robak, Oliver; Sperr, Wolfgang R; Staudinger, Thomas

    2015-10-01

    Pump-driven veno-venous extracorporeal CO2-removal (ECCO2-R) increasingly takes root in hypercapnic lung failure to minimize ventilation invasiveness or to avoid intubation. A recently developed device (iLA activve(®), Novalung, Germany) allows effective decarboxylation via a 22 French double lumen cannula. To assess determinants of gas exchange, we prospectively evaluated the performance of ECCO2-R in ten patients receiving iLA activve(®) due to hypercapnic respiratory failure. Sweep gas flow was increased in steps from 1 to 14 L/min at constant blood flow (phase 1). Similarly, blood flow was gradually increased at constant sweep gas flow (phase 2). At each step gas transfer via the membrane as well as arterial blood gas samples were analyzed. During phase 1, we observed a significant increase in CO2 transfer together with a decrease in PaCO2 levels from a median of 66 mmHg (range 46-85) to 49 (31-65) mmHg from 1 to 14 L/min sweep gas flow (p < 0.0001), while arterial oxygenation deteriorated with high sweep gas flow rates. During phase 2, oxygen transfer significantly increased leading to an increase in PaO2 from 67 (49-87) at 0.5 L/min to 117 (66-305) mmHg at 2.0 L/min (p < 0.0001). Higher blood flows also significantly enhanced decarboxylation (p < 0.0001). Increasing sweep gas flow results in effective CO2-removal, which can be further reinforced by raising blood flow. The clinically relevant oxygenation effect in this setting could broaden the range of indications of the system and help to set up an individually tailored configuration.

  15. Phase-locked loop with controlled phase slippage

    DOEpatents

    Mestha, Lingappa K.

    1994-01-01

    A system for synchronizing a first subsystem controlled by a changing frequency sweeping from a first frequency to a second frequency, with a second subsystem operating at a steady state second frequency. Trip plan parameters are calculated in advance to determine the phase relationship between the frequencies of the first subsystem and second subsystem in order to obtain synchronism at the end of the frequency sweep of the first subsystem. During the time in which the frequency of the first subsystem is sweeping from the first frequency to the second frequency, the phase locked system compares the actual phase difference with the trip plan phase difference and incrementally changes the sweep frequency in a manner so that phase lock is achieved when the first subsystem reaches a frequency substantially identical to that of the second subsystem.

  16. Multiscale modeling and experimental interpretation of perovskite oxide materials in thermochemical energy storage and conversion for application in concentrating solar power

    NASA Astrophysics Data System (ADS)

    Albrecht, Kevin J.

    Decarbonization of the electric grid is fundamentally limited by the intermittency of renewable resources such as wind and solar. Therefore, energy storage will play a significant role in the future of grid-scale energy generation to overcome the intermittency issues. For this reason, concentrating solar power (CSP) plants have been a renewable energy generation technology of interest due to their ability to participate in cost effective and efficient thermal energy storage. However, the ability to dynamically dispatch a CSP plant to meet energy demands is currently limited by the large quantities of sensible thermal energy storage material needed in a molten salt plant. Perovskite oxides have been suggested as a thermochemical energy storage material to enhance the energy storage capabilities of particle-based CSP plants, which combine sensible and chemical modes of energy storage. In this dissertation, computational models are used to establish the thermochemical energy storage potential of select perovskite compositions, identify system configurations that promote high values of energy storage and solar-to-electric efficiency, assess the kinetic and transport limitation of the chemical mode of energy storage, and create receiver and reoxidation reactor models capable of aiding in component design. A methodology for determining perovskite thermochemical energy storage potential is developed based on point defect models to represent perovskite non-stoichiometry as a function of temperature and gas phase oxygen partial pressure. The thermodynamic parameters necessary for the model are extracted from non-stoichiometry measurements by fitting the model using an optimization routine. The procedure is demonstrated for Ca0.9Sr0.1MnO 3-d which displayed combined energy storage values of 705.7 kJ/kg -1 by cycling between 773 K and 0.21 bar oxygen to 1173 K and 10 -4 bar oxygen. Thermodynamic system-level models capable of exploiting perovskite redox chemistry for energy storage in CSP plants are presented. Comparisons of sweep gas and vacuum pumping reduction as well as hot storage conditions indicate that solar-to-electric efficiencies are higher for sweep gas reduction system at equivalent values of energy storage if the energy parasitics of commercially available devices are considered. However, if vacuum pump efficiency between 15% and 30% can be achieved, the reduction methods will be approximately equal. Reducing condition oxygen partial pressures below 10-3 bar for sweep gas reduction and 10-2 bar for vacuum pumping reduction result in large electrical parasitics, which significantly reduce solar-to-electric efficiency. A model based interpretation of experimental measurements made for perovskite redox cycling using sweep gas in a packed bed is presented. The model indicates that long reduction times for equilibrating perovskites with low oxygen partial pressure sweep gas, compared to reoxidation, are primarily due to the oxygen carrying capacity of high purity sweep gas and not surface kinetic limitations. Therefore, achieving rapid reduction in the limited receiver residence time will be controlled by the quantity of sweep gas introduced. Effective kinetic parameters considering surface reaction and radial particle diffusion are fit to the experimental data. Variable order rate expressions without significant particle radial diffusion limitations are shown to be capable of representing the reduction and oxidation data. Modeling of a particle reduction receiver using continuous flow of perovskite solid and sweep gas in counter-flow configuration has identified issues with managing the oxygen evolved by the solid as well as sweep gas flow rates. Introducing sweep gas quantities necessary for equilibrating the solid with oxygen partial pressures below 10-2 are shown to result in gas phase velocities above the entrainment velocity of 500 um particles. Receiver designs with considerations for gas management are investigated and the results indicate that degrees of reduction corresponding to only oxygen partial pressures of 10-2 bar are attained. Numerical investigation into perovskite thermochemical energy storage indicates that achieving high levels of reduction through sweep gas or vacuum pumping to lower gas phase oxygen partial pressure below 10-2 bar display issues with parasitic energy consumption and gas phase management. Therefore, focus on material development should place a premium on thermal reduction and reduction by shifting oxygen partial pressure between ambient and 10-2 bar. Such a material would enable the development of a system with high solar-to-electric efficiencies and degrees of reduction which are attainable in realistic component geometries.

  17. Mixing blade system for high-resistance media

    DOEpatents

    Kronberg, James W.

    1991-01-01

    A blade system for stirring and agitating a medium, comprising a shaft bearing a plurality of paddles, each having a different geometry and each having approximately the same rotational moment. The geometrically different paddles sweep through different volumes of the medium to minimize shear zone development and maximize the strength of the system with respect to medium-induced stress.

  18. Autonomous Planning and Replanning for Mine-Sweeping Unmanned Underwater Vehicles

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.

    2010-01-01

    This software generates high-quality plans for carrying out mine-sweeping activities under resource constraints. The autonomous planning and replanning system for unmanned underwater vehicles (UUVs) takes as input a set of prioritized mine-sweep regions, and a specification of available UUV resources including available battery energy, data storage, and time available for accomplishing the mission. Mine-sweep areas vary in location, size of area to be swept, and importance of the region. The planner also works with a model of the UUV, as well as a model of the power consumption of the vehicle when idle and when moving.

  19. Determination of the magnetocaloric entropy change by field sweep using a heat flux setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteiro, J. C. B., E-mail: jolmiui@gmail.com; Reis, R. D. dos; Mansanares, A. M.

    2014-08-18

    We report on a simple setup using a heat flux sensor adapted to a Quantum Design Physical Property Measurement System to determine the magnetocaloric entropy change (ΔS). The major differences for the existing setups are the simplicity of this assembly and the ease to obtain the isothermal entropy change either by a field sweep or a temperature sweep process. We discuss the use of these two processes applied to Gd and Gd{sub 5}Ge{sub 2}Si{sub 2} samples. The results are compared to the temperature sweep measurements and they show the advantages of this setup and of the field sweep procedure. Wemore » found a significant reduction of ΔS and on the refrigerating cooling power (RCP) at low field changes in a field sweep process when the sample is not driven to the same initial state for each temperature. We show that the field sweep process without any measuring protocol is the only correct way to experimentally determine ΔS and RCP for a practical regenerative refrigerator.« less

  20. Phase-locked loop with controlled phase slippage

    DOEpatents

    Mestha, L.K.

    1994-03-29

    A system for synchronizing a first subsystem controlled by a changing frequency sweeping from a first frequency to a second frequency, with a second subsystem operating at a steady state second frequency is described. Trip plan parameters are calculated in advance to determine the phase relationship between the frequencies of the first subsystem and second subsystem in order to obtain synchronism at the end of the frequency sweep of the first subsystem. During the time in which the frequency of the first subsystem is sweeping from the first frequency to the second frequency, the phase locked system compares the actual phase difference with the trip plan phase difference and incrementally changes the sweep frequency in a manner so that phase lock is achieved when the first subsystem reaches a frequency substantially identical to that of the second subsystem. 10 figures.

  1. Sweep excitation with order tracking: A new tactic for beam crack analysis

    NASA Astrophysics Data System (ADS)

    Wei, Dongdong; Wang, KeSheng; Zhang, Mian; Zuo, Ming J.

    2018-04-01

    Crack detection in beams and beam-like structures is an important issue in industry and has attracted numerous investigations. A local crack leads to global system dynamics changes and produce non-linear vibration responses. Many researchers have studied these non-linearities for beam crack diagnosis. However, most reported methods are based on impact excitation and constant frequency excitation. Few studies have focused on crack detection through external sweep excitation which unleashes abundant dynamic characteristics of the system. Together with a signal resampling technique inspired by Computed Order Tracking, this paper utilize vibration responses under sweep excitations to diagnose crack status of beams. A data driven method for crack depth evaluation is proposed and window based harmonics extracting approaches are studied. The effectiveness of sweep excitation and the proposed method is experimentally validated.

  2. Energy sweep compensation of induction accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampayan, S.E.; Caporaso, G.J.; Chen, Y-J

    1990-09-12

    The ETA-II linear induction accelerator (LIA) is designed to drive a microwave free electron laser (FEL). Beam energy sweep must be limited to {plus minus}1% for 50 ns to limit beam corkscrew motion and ensure high power FEL output over the full duration of the beam flattop. To achieve this energy sweep requirement, we have implemented a pulse distribution system and are planning implementation of a tapered pulse forming line (PFL) in the pulse generators driving acceleration gaps. The pulse distribution system assures proper phasing of the high voltage pulse to the electron beam. Additionally, cell-to-cell coupling of beam inducedmore » transients is reduced. The tapered PFL compensates for accelerator cell and loading nonlinearities. Circuit simulations show good agreement with preliminary data and predict the required energy sweep requirement can be met.« less

  3. Method and system for producing sputtered thin films with sub-angstrom thickness uniformity or custom thickness gradients

    DOEpatents

    Folta, James A.; Montcalm, Claude; Walton, Christopher

    2003-01-01

    A method and system for producing a thin film with highly uniform (or highly accurate custom graded) thickness on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source with controlled (and generally, time-varying) velocity. In preferred embodiments, the method includes the steps of measuring the source flux distribution (using a test piece that is held stationary while exposed to the source), calculating a set of predicted film thickness profiles, each film thickness profile assuming the measured flux distribution and a different one of a set of sweep velocity modulation recipes, and determining from the predicted film thickness profiles a sweep velocity modulation recipe which is adequate to achieve a predetermined thickness profile. Aspects of the invention include a practical method of accurately measuring source flux distribution, and a computer-implemented method employing a graphical user interface to facilitate convenient selection of an optimal or nearly optimal sweep velocity modulation recipe to achieve a desired thickness profile on a substrate. Preferably, the computer implements an algorithm in which many sweep velocity function parameters (for example, the speed at which each substrate spins about its center as it sweeps across the source) can be varied or set to zero.

  4. Mixing blade system for high-resistance media

    DOEpatents

    Kronberg, J.W.

    1991-07-09

    A blade system is described for stirring and agitating a medium, comprising a shaft bearing a plurality of paddles, each having a different geometry and each having approximately the same rotational moment. The geometrically different paddles sweep through different volumes of the medium to minimize shear zone development and maximize the strength of the system with respect to medium-induced stress. 6 figures.

  5. Application of a hybrid computer to sweep frequency data processing

    NASA Technical Reports Server (NTRS)

    Milner, E. J.; Bruton, W. M.

    1973-01-01

    A hybrid computer program is presented which can process as many as 10 channels of sweep frequency data simultaneously. The program needs only the sine sweep signal used to drive the system, and its correponding quadrature component, to process the data. It can handle a maximum frequency range of 0.5 to 500 hertz. Magnitude and phase are calculated at logarithmically spaced points covering the frequency range of interest. When the sweep is completed, these results are stored in digital form. Thus, a tabular listing and/or a plot of any processed data channel or the transfer function relating any two of them is immediately available.

  6. Field camera measurements of gradient and shim impulse responses using frequency sweeps.

    PubMed

    Vannesjo, S Johanna; Dietrich, Benjamin E; Pavan, Matteo; Brunner, David O; Wilm, Bertram J; Barmet, Christoph; Pruessmann, Klaas P

    2014-08-01

    Applications of dynamic shimming require high field fidelity, and characterizing the shim field dynamics is therefore necessary. Modeling the system as linear and time-invariant, the purpose of this work was to measure the impulse response function with optimal sensitivity. Frequency-swept pulses as inputs are analyzed theoretically, showing that the sweep speed is a key factor for the measurement sensitivity. By adjusting the sweep speed it is possible to achieve any prescribed noise profile in the measured system response. Impulse response functions were obtained for the third-order shim system of a 7 Tesla whole-body MR scanner. Measurements of the shim fields were done with a dynamic field camera, yielding also cross-term responses. The measured shim impulse response functions revealed system characteristics such as response bandwidth, eddy currents and specific resonances, possibly of mechanical origin. Field predictions based on the shim characterization were shown to agree well with directly measured fields, also in the cross-terms. Frequency sweeps provide a flexible tool for shim or gradient system characterization. This may prove useful for applications involving dynamic shimming by yielding accurate estimates of the shim fields and a basis for setting shim pre-emphasis. Copyright © 2013 Wiley Periodicals, Inc.

  7. Critical system issues and modeling requirements: The problem of beam energy sweep in an electron linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, W.C.; Barrett, D.M.; Sampayan, S.E.

    1990-08-06

    In this paper we discuss system issues and modeling requirements within the context of energy sweep in an electron linear induction accelerator. When needed, particular parameter values are taken from the ETA-II linear induction accelerator at Lawrence Livermore National Laboratory. For this paper, the most important parameter is energy sweep during a pulse. It is important to have low energy sweep to satisfy the FEL resonance condition and to limit the beam corkscrew motion. It is desired to achieve {Delta}E/E = {plus minus}1% for a 50-ns flattop whereas the present level of performance is {Delta}E/E = {plus minus}1% in 10more » ns. To improve this situation we will identify a number of areas in which modeling could help increase understanding and improve our ability to design linear induction accelerators.« less

  8. Simulation of Sweep-Jet Flow Control, Single Jet and Full Vertical Tail

    NASA Technical Reports Server (NTRS)

    Childs, Robert E.; Stremel, Paul M.; Garcia, Joseph A.; Heineck, James T.; Kushner, Laura K.; Storms, Bruce L.

    2016-01-01

    This work is a simulation technology demonstrator, of sweep jet flow control used to suppress boundary layer separation and increase the maximum achievable load coefficients. A sweep jet is a discrete Coanda jet that oscillates in the plane parallel to an aerodynamic surface. It injects mass and momentum in the approximate streamwise direction. It also generates turbulent eddies at the oscillation frequency, which are typically large relative to the scales of boundary layer turbulence, and which augment mixing across the boundary layer to attack flow separation. Simulations of a fluidic oscillator, the sweep jet emerging from a nozzle downstream of the oscillator, and an array of sweep jets which suppresses boundary layer separation are performed. Simulation results are compared to data from a dedicated validation experiment of a single oscillator and its sweep jet, and from a wind tunnel test of a full-scale Boeing 757 vertical tail augmented with an array of sweep jets. A critical step in the work is the development of realistic time-dependent sweep jet inflow boundary conditions, derived from the results of the single-oscillator simulations, which create the sweep jets in the full-tail simulations. Simulations were performed using the computational fluid dynamics (CFD) solver Overow, with high-order spatial discretization and a range of turbulence modeling. Good results were obtained for all flows simulated, when suitable turbulence modeling was used.

  9. The first satellite laser echoes recorded on the streak camera

    NASA Technical Reports Server (NTRS)

    Hamal, Karel; Prochazka, Ivan; Kirchner, Georg; Koidl, F.

    1993-01-01

    The application of the streak camera with the circular sweep for the satellite laser ranging is described. The Modular Streak Camera system employing the circular sweep option was integrated into the conventional Satellite Laser System. The experimental satellite tracking and ranging has been performed. The first satellite laser echo streak camera records are presented.

  10. Critical quench dynamics in confined systems.

    PubMed

    Collura, Mario; Karevski, Dragi

    2010-05-21

    We analyze the coherent quantum evolution of a many-particle system after slowly sweeping a power-law confining potential. The amplitude of the confining potential is varied in time along a power-law ramp such that the many-particle system finally reaches or crosses a critical point. Under this protocol we derive general scaling laws for the density of excitations created during the nonadiabatic sweep of the confining potential. It is found that the mean excitation density follows an algebraic law as a function of the sweeping rate with an exponent that depends on the space-time properties of the potential. We confirm our scaling laws by first order adiabatic calculation and exact results on the Ising quantum chain with a varying transverse field.

  11. A new Strategy to Improve Drug Delivery to the Maxillary Sinuses: The Frequency Sweep Acoustic Airflow.

    PubMed

    El Merhie, Amira; Navarro, Laurent; Delavenne, Xavier; Leclerc, Lara; Pourchez, Jérémie

    2016-05-01

    Enhancement of intranasal sinus deposition involves nebulization of a drug superimposed by an acoustic airflow. We investigated the impact of fixed frequency versus frequency sweep acoustic airflow on the improvement of aerosolized drug penetration into maxillary sinuses. Fixed frequency and frequency sweep acoustic airflow were generated using a nebulizing system of variable frequency. The effect of sweep cycle and intensity variation was studied on the intranasal sinus deposition. We used a nasal replica created from CT scans using 3D printing. Sodium fluoride and gentamicin were chosen as markers. Studies performed using fixed frequency acoustic airflow showed that each of maxillary sinuses of the nasal replica required specific frequency for the optimal aerosol deposition. Intranasal sinus drug deposition experiments under the effect of the frequency sweep acoustic airflow showed an optimal aerosol deposition into both maxillary sinus of the nasal replica. Studies on the effect of the duration of the sweep cycle showed that the shorter the cycle the better the deposition. We demonstrate the benefit of frequency sweep acoustic airflow on drug deposition into maxillary sinuses. However further in vivo studies have to be conducted since delivery rates cannot be obviously determined from a nasal replica.

  12. Techniques used in the F-14 variable-sweep transition flight experiment

    NASA Technical Reports Server (NTRS)

    Anderson, Bianca Trujillo; Meyer, Robert R., Jr.; Chiles, Harry R.

    1988-01-01

    This paper discusses and evaluates the test measurement techniques used to determine the laminar-to-turbulent boundary layer transition location in the F-14 variable-sweep transition flight experiment (VSTFE). The main objective of the VSTFE was to determine the effects of wing sweep on the laminar-to-turbulent transition location at conditions representative of transport aircraft. Four methods were used to determine the transition location: (1) a hot-film anemometer system; (2) two boundary-layer rakes; (3) surface pitot tubes; and (4) liquid crystals for flow visualization. Of the four methods, the hot-film anemometer system was the most reliable indicator of transition.

  13. Building the Workforce of the Future

    ERIC Educational Resources Information Center

    González-Rivera, Christian

    2016-01-01

    "Building the Workforce of the Future" is an in-depth, independent report on the first eighteen months of Career Pathways, New York City's sweeping new strategy for workforce development. In November 2014, Mayor de Blasio launched a sweeping new approach to workforce development in New York City. Unlike the previous model, which…

  14. Sorbent-based Oxygen Production for Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethi, Vijay

    Project DE-FE0024075 deals with the development of a moderate-temperature sorbent-based oxygen production technology. Sorbent-based oxygen production process utilizes oxygen-storage properties of Perovskites to (1) adsorb oxygen from air in a solid sorbent, and (2) release the adsorbed oxygen into a sweep gas such as CO 2 and/or steam for gasification systems or recycled flue gas for oxy-combustion systems. Pure oxygen can be produced by the use of vacuum instead of a sweep gas to affect the pressure swing. By developing more efficient and stable, higher sorption capacity, newer class of materials operating at moderate temperatures this process represents a majormore » advancement in air separation technology. Newly developed perovskite ceramic sorbent materials with order-disorder transition have a higher O 2 adsorption capacity, potentially 200 °C lower operating temperatures, and up to two orders of magnitude faster desorption rates than those used in earlier development efforts. The performance advancements afforded by the new materials lead to substantial savings in capital investment and operational costs. Cost of producing oxygen using sorbents could be as much as 26% lower than VPSA and about 13% lower than a large cryogenic air separation unit. Cost advantage against large cryogenic separation is limited because sorbent-based separation numbers up sorbent modules for achieving the larger capacity.« less

  15. Summary of NASA Support of the F-111 Development Program. Part 1; December 1962 - December 1965

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The F-111 is a biservice, multimission, tactical aircraft being developed for the Air Force and Navy by General Dynamics and Grumman. The general arrangement of the F-111 is shown in figure 1. This aircraft, through the use of the "variable sweep wing" concept, offers the possibility of combining a wide range of mission capabilities into a single aircraft. The F-111 is a direct outgrowth of the Langley Research Center's variable sweep research which began in 1947. The early research culminated in the X-5 variable sweep research airplane which demonstrated the advantage and feasibility of in-flight sweep variation The X-5 utilized the translating wing concept to offset the longitudinal stability variation with sweep changes. Later Langley research beginning in 1958 resulted in the "outboard pivot" concept which eliminated the need for wing translation and led .to the TFX (F-111) concept. A chronology of the NACA/NASA variable sweep research effort and direct suport of the TFX up to the awarding of the contract to General Dynamics/Grumman on November 24, 1962, is presented in refer'ence 1. Since the awarding of the contract, the Langley, Ames, Lewis, and Flight Research Centers have been actively supporting the F-111 development program. Because of the strong NASA interest in this aircraft and the large magnitude of NASA support involved, it was felt desirable to document this support. The purpose of this paper therefore is to present a brief summary of the NASA support, in chronological order, through December 1965, beginning with the awarding of the contract in November 1962.

  16. In vitro assessment of fiber sweeping angle during Q-switched 532-nm laser tissue ablation

    NASA Astrophysics Data System (ADS)

    Rajabhandharaks, Danop; Kang, Hyun Wook; Ko, Woo Jin; Stinson, Douglas; Choi, Benjamin

    2011-03-01

    Photoselective vaporization of the prostate (PVP) has been widely used to treat benign prostatic hyperplasia (BPH). It is well regarded as a safe and minimally invasive procedure and an alternative to the gold standard transurethral resection of the prostate (TURP). Despite of its greatness, as well aware of, the operative procedure time during the PVP is still prolonged. Such attempts have been tried out in order to shorten the operative time and increase its efficacy. However, scientific study to investigate techniques used during the PVP is still lacking. The objective of this study is to investigate how sweeping angle might affect the PVP performance. Porcine kidneys acquired from a local grocery store were used (N=140). A Q-switched 532-nm GreenLight XPSTM (American Medical Systems, Inc., MN, USA), together with 750- μm core MoXyTM fiber, was set to have power levels of 120 W and 180 W. Treatment speed and sweeping speed were fixed at 2 mm/s and 0.5 sweep/s, respectively. Sweeping angles were varied from 0 (no sweeping motion) to 120 degree. Ablation rate, depth, and coagulation zone were measured and quantified. Tissue ablation rate was peaked at 15 and 30 degree for both 120- and 180-W power levels and dramatically decreased beyond 60 degree. At 180 W, ablation rate increased 20% at 30 degree compared to 0 degree. This study demonstrated that ablation rate could be maximized and was contingent upon sweeping angle.

  17. Department of Defense Program Solicitation 94.2, Small Business Innovation Research (SBIR) Program; FY 1994.

    DTIC Science & Technology

    1994-01-01

    Disconnect Device for Large HP Permanent Magnet Motors N94-200 Image and Data Management System N94-201 Advanced Lightweight Influence Sweep N94-202 Surf... Permanent Magnet Motors CATEGORY: Exploratory Development SERVICE CRITICAL TECHNOLOGY AREA: Surface/Undersurface Vehicles OBJECTIVE: Design and

  18. Ka-Band Digital Beamforming and SweepSAR Demonstration for Ice and Solid Earth Topography

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory; Ghaemi, Hirad; Heavy, Brandon; Perkovic, Dragana; Quddus, Momin; Zawadzki, Mark; Moller, Delwyn

    2010-01-01

    GLISTIN is an instrument concept for a single-pass interferometric SAR operating at 35.6 GHz. To achieve large swath widths using practical levels of transmitter power, a digitally-beamformed planar waveguide array is used. This paper describes results from a ground-based demonstration of a 16-receiver prototype. Furthermore, SweepSAR is emerging as promising technique for achieving very wide swaths for surface change detection. NASA and DLR are studying this approach for the DESDynI and Tandem-L missions. SweepSAR employs a reflector with a digitally-beamformed array feed. We will describe development of an airborne demonstration of SweepSAR using the GLISTIN receiver array and a reflector.

  19. Hybrid massively parallel fast sweeping method for static Hamilton-Jacobi equations

    NASA Astrophysics Data System (ADS)

    Detrixhe, Miles; Gibou, Frédéric

    2016-10-01

    The fast sweeping method is a popular algorithm for solving a variety of static Hamilton-Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling, and show state-of-the-art speedup values for the fast sweeping method.

  20. Network models of frequency modulated sweep detection.

    PubMed

    Skorheim, Steven; Razak, Khaleel; Bazhenov, Maxim

    2014-01-01

    Frequency modulated (FM) sweeps are common in species-specific vocalizations, including human speech. Auditory neurons selective for the direction and rate of frequency change in FM sweeps are present across species, but the synaptic mechanisms underlying such selectivity are only beginning to be understood. Even less is known about mechanisms of experience-dependent changes in FM sweep selectivity. We present three network models of synaptic mechanisms of FM sweep direction and rate selectivity that explains experimental data: (1) The 'facilitation' model contains frequency selective cells operating as coincidence detectors, summing up multiple excitatory inputs with different time delays. (2) The 'duration tuned' model depends on interactions between delayed excitation and early inhibition. The strength of delayed excitation determines the preferred duration. Inhibitory rebound can reinforce the delayed excitation. (3) The 'inhibitory sideband' model uses frequency selective inputs to a network of excitatory and inhibitory cells. The strength and asymmetry of these connections results in neurons responsive to sweeps in a single direction of sufficient sweep rate. Variations of these properties, can explain the diversity of rate-dependent direction selectivity seen across species. We show that the inhibitory sideband model can be trained using spike timing dependent plasticity (STDP) to develop direction selectivity from a non-selective network. These models provide a means to compare the proposed synaptic and spectrotemporal mechanisms of FM sweep processing and can be utilized to explore cellular mechanisms underlying experience- or training-dependent changes in spectrotemporal processing across animal models. Given the analogy between FM sweeps and visual motion, these models can serve a broader function in studying stimulus movement across sensory epithelia.

  1. A MHz speed wavelength sweeping for ultra-high speed FBG interrogation

    NASA Astrophysics Data System (ADS)

    Kim, Gyeong Hun; Lee, Hwi Don; Eom, Tae Joong; Jeong, Myung Yung; Kim, Chang-Seok

    2015-09-01

    We demonstrated a MHz speed wavelength-swept fiber laser based on the active mode locking (AML) technique and applied to interrogation system of an array of fiber Bragg grating (FBG) sensors. MHz speed wavelength sweeping of wavelength-swept fiber laser can be obtained by programmable frequency modulation of the semiconductor optical amplifier (SOA) without any wavelength tunable filter. Both static and dynamic strain measurement of FBG sensors were successfully characterized with high linearity of an R-square value of 0.9999 at sweeping speed of 50 kHz.

  2. Self-Consistent Frequency Sweeping of TAE mode

    NASA Astrophysics Data System (ADS)

    Wang, Ge

    2012-03-01

    We have extended our intuitive Toroidal Alfven Wave (TAE) model [1] for describing spontaneous frequency sweeping by a destabilizing component of energetic particles. Now a fully developed self-consistent description for frequency sweeping of an isolated TAE mode has been developed. As in [1], we use the Rosenbluth, Berk,Van Dam tip theory [2], valid for low beta, large aspect ratio, circular tokamaks, to describe the evolution of the TAE wave equation. The wave is coupled to the particle dynamics that uses the Berk, Breizman, Ye map model [3] to construct the particle/wave Lagrangian associated with a phase space dependent mode structure. Then together with the appropriate Vlasov equation for describing the particle dynamics, a set of equations determining the dynamics of the system has been formulated. Adiabatic solutions have been obtained and work is underway in simulating the exact nonlinear dynamics. A status report of our results will be given at the meeting. [4pt] [1] G. Wang and H. L. Berk, Communication in Nonlinear Science and Numerical Simulation 17, 2179 (2012) [0pt] [2] M. N. Rosenbluth,; H. L. Berk, J. Van Dam and D. M. Lingberg, Phys. Rev. Lett. 68, 596 (1992). [0pt] [3] Berk, H.L.; Breizman, B.N.; Ye, H. In: Physics of Fluids B 51993, 1506 (1993)

  3. Lock-in amplifier error prediction and correction in frequency sweep measurements.

    PubMed

    Sonnaillon, Maximiliano Osvaldo; Bonetto, Fabian Jose

    2007-01-01

    This article proposes an analytical algorithm for predicting errors in lock-in amplifiers (LIAs) working with time-varying reference frequency. Furthermore, a simple method for correcting such errors is presented. The reference frequency can be swept in order to measure the frequency response of a system within a given spectrum. The continuous variation of the reference frequency produces a measurement error that depends on three factors: the sweep speed, the LIA low-pass filters, and the frequency response of the measured system. The proposed error prediction algorithm is based on the final value theorem of the Laplace transform. The correction method uses a double-sweep measurement. A mathematical analysis is presented and validated with computational simulations and experimental measurements.

  4. A long-time, high spatiotemporal resolution optical recording system for membrane potential activity via real-time writing to the hard disk.

    PubMed

    Hirota, Akihiko; Ito, Shin-ichi

    2006-06-01

    Using real-time hard disk recording, we have developed an optical system for the long-duration detection of changes in membrane potential from 1,020 sites with a high temporal resolution. The signal-to-noise ratio was sufficient for analyzing the spreading pattern of excitatory waves in frog atria in a single sweep.

  5. Matched Behavioral and Neural Adaptations for Low Sound Level Echolocation in a Gleaning Bat, Antrozous pallidus.

    PubMed

    Measor, Kevin R; Leavell, Brian C; Brewton, Dustin H; Rumschlag, Jeffrey; Barber, Jesse R; Razak, Khaleel A

    2017-01-01

    In active sensing, animals make motor adjustments to match sensory inputs to specialized neural circuitry. Here, we describe an active sensing system for sound level processing. The pallid bat uses downward frequency-modulated (FM) sweeps as echolocation calls for general orientation and obstacle avoidance. The bat's auditory cortex contains a region selective for these FM sweeps (FM sweep-selective region, FMSR). We show that the vast majority of FMSR neurons are sensitive and strongly selective for relatively low levels (30-60 dB SPL). Behavioral testing shows that when a flying bat approaches a target, it reduces output call levels to keep echo levels between ∼30 and 55 dB SPL. Thus, the pallid bat behaviorally matches echo levels to an optimized neural representation of sound levels. FMSR neurons are more selective for sound levels of FM sweeps than tones, suggesting that across-frequency integration enhances level tuning. Level-dependent timing of high-frequency sideband inhibition in the receptive field shapes increased level selectivity for FM sweeps. Together with previous studies, these data indicate that the same receptive field properties shape multiple filters (sweep direction, rate, and level) for FM sweeps, a sound common in multiple vocalizations, including human speech. The matched behavioral and neural adaptations for low-intensity echolocation in the pallid bat will facilitate foraging with reduced probability of acoustic detection by prey.

  6. Matched Behavioral and Neural Adaptations for Low Sound Level Echolocation in a Gleaning Bat, Antrozous pallidus

    PubMed Central

    Measor, Kevin R.; Leavell, Brian C.; Brewton, Dustin H.; Rumschlag, Jeffrey; Barber, Jesse R.

    2017-01-01

    Abstract In active sensing, animals make motor adjustments to match sensory inputs to specialized neural circuitry. Here, we describe an active sensing system for sound level processing. The pallid bat uses downward frequency-modulated (FM) sweeps as echolocation calls for general orientation and obstacle avoidance. The bat’s auditory cortex contains a region selective for these FM sweeps (FM sweep-selective region, FMSR). We show that the vast majority of FMSR neurons are sensitive and strongly selective for relatively low levels (30-60 dB SPL). Behavioral testing shows that when a flying bat approaches a target, it reduces output call levels to keep echo levels between ∼30 and 55 dB SPL. Thus, the pallid bat behaviorally matches echo levels to an optimized neural representation of sound levels. FMSR neurons are more selective for sound levels of FM sweeps than tones, suggesting that across-frequency integration enhances level tuning. Level-dependent timing of high-frequency sideband inhibition in the receptive field shapes increased level selectivity for FM sweeps. Together with previous studies, these data indicate that the same receptive field properties shape multiple filters (sweep direction, rate, and level) for FM sweeps, a sound common in multiple vocalizations, including human speech. The matched behavioral and neural adaptations for low-intensity echolocation in the pallid bat will facilitate foraging with reduced probability of acoustic detection by prey. PMID:28275715

  7. Hybrid massively parallel fast sweeping method for static Hamilton–Jacobi equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detrixhe, Miles, E-mail: mdetrixhe@engineering.ucsb.edu; University of California Santa Barbara, Santa Barbara, CA, 93106; Gibou, Frédéric, E-mail: fgibou@engineering.ucsb.edu

    The fast sweeping method is a popular algorithm for solving a variety of static Hamilton–Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling,more » and show state-of-the-art speedup values for the fast sweeping method.« less

  8. Study of Effects of Sweep on the Flutter of Cantilever Wings

    NASA Technical Reports Server (NTRS)

    Barmby, J G; Cunningham, H J; Garrick, I E

    1951-01-01

    An experimental and analytical investigation of the flutter of sweptback cantilever wings is reported. The experiments employed groups of wings swept back by rotating and by shearing. The angle of sweep range from 0 degree to 60 degrees and Mach numbers extended to approximately 0.85. A theoretical analysis of the air forces on an oscillating swept wing of high length-chord ratio is developed, and the approximations inherent in the assumptions are discussed. Comparison with experiment indicates that the analysis developed in the present report is satisfactory for giving the main effects of sweep, at least for nearly uniform cantilever wings of high and moderate length-chord ratios.

  9. NASA L-SAR instrument for the NISAR (NASA-ISRO) Synthetic Aperture Radar mission

    NASA Astrophysics Data System (ADS)

    Hoffman, James P.; Shaffer, Scott; Perkovic-Martin, Dragana

    2016-05-01

    The National Aeronautics and Space Administration (NASA) in the United States and the Indian Space Research Organization (ISRO) have partnered to develop an Earth-orbiting science and applications mission that exploits synthetic aperture radar to map Earth's surface every 12 days or less. To meet demanding coverage, sampling, and accuracy requirements, the system was designed to achieve over 240 km swath at fine resolution, and using full polarimetry where needed. To address the broad range of disciplines and scientific study areas of the mission, a dual-frequency system was conceived, at L-band (24 cm wavelength) and S-band (10 cm wavelength). To achieve these observational characteristics, a reflector-feed system is considered, whereby the feed aperture elements are individually sampled to allow a scan-on-receive ("SweepSAR") capability at both L-band and S-band. The instrument leverages the expanding capabilities of on-board digital processing to enable real-time calibration and digital beamforming. This paper describes the mission characteristics, current status of the L-band Synthetic Aperture Radar (L-SAR) portion of the instrument, and the technology development efforts in the United States that are reducing risk on the key radar technologies needed to ensure proper SweepSAR operations.

  10. Evaluation of the RWEQ and SWEEP in simulating soil and PM10 loss from a portable wind tunnel

    USDA-ARS?s Scientific Manuscript database

    Wind erosion threatens sustainable agriculture and environmental quality in the Columbia Plateau region of the US Pacific Northwest. Wind erosion models such as Wind Erosion Prediction System (WEPS) and the Revised Wind Erosion Equation (RWEQ) have been developed as tools for identifying practices t...

  11. Validation of SWEEP for contrasting agricultural land use types in the Tarim Basin

    USDA-ARS?s Scientific Manuscript database

    In order to aid in identifying land management practices with the potential to control soil erosion, models such as the Wind Erosion Prediction System (WEPS) have been developed to assess soil erosion. The objective of this study was to test the performance of the WEPS erosion submodel (the Single-e...

  12. EpiSweep: Computationally Driven Reengineering of Therapeutic Proteins to Reduce Immunogenicity While Maintaining Function.

    PubMed

    Choi, Yoonjoo; Verma, Deeptak; Griswold, Karl E; Bailey-Kellogg, Chris

    2017-01-01

    Therapeutic proteins are yielding ever more advanced and efficacious new drugs, but the biological origins of these highly effective therapeutics render them subject to immune surveillance within the patient's body. When recognized by the immune system as a foreign agent, protein drugs elicit a coordinated response that can manifest a range of clinical complications including rapid drug clearance, loss of functionality and efficacy, delayed infusion-like allergic reactions, more serious anaphylactic shock, and even induced auto-immunity. It is thus often necessary to deimmunize an exogenous protein in order to enable its clinical application; critically, the deimmunization process must also maintain the desired therapeutic activity.To meet the growing need for effective, efficient, and broadly applicable protein deimmunization technologies, we have developed the EpiSweep suite of protein design algorithms. EpiSweep seamlessly integrates computational prediction of immunogenic T cell epitopes with sequence- or structure-based assessment of the impacts of mutations on protein stability and function, in order to select combinations of mutations that make Pareto optimal trade-offs between the competing goals of low immunogenicity and high-level function. The methods are applicable both to the design of individual functionally deimmunized variants as well as the design of combinatorial libraries enriched in functionally deimmunized variants. After validating EpiSweep in a series of retrospective case studies providing comparisons to conventional approaches to T cell epitope deletion, we have experimentally demonstrated it to be highly effective in prospective application to deimmunization of a number of different therapeutic candidates. We conclude that our broadly applicable computational protein design algorithms guide the engineer towards the most promising deimmunized therapeutic candidates, and thereby have the potential to accelerate development of new protein drugs by shortening time frames and improving hit rates.

  13. EpiSweep: Computationally-driven Reengineering of Therapeutic Proteins to Reduce immunogenicity while Maintaining Function

    PubMed Central

    Choi, Yoonjoo; Verma, Deeptak; Griswold, Karl E.; Bailey-Kellogg, Chris

    2016-01-01

    Therapeutic proteins are yielding ever more advanced and efficacious new drugs, but the biological origins of these highly effective therapeutics renders them subject to immune surveillance within the patient’s body. When recognized by the immune system as a foreign agent, protein drugs elicit a coordinated response that can manifest a range of clinical complications including rapid drug clearance, loss of functionality and efficacy, delayed infusion-like allergic reactions, more serious anaphylactic shock, and even induced auto-immunity. It is thus often necessary to deimmunize an exogenous protein in order to enable its clinical application; critically, the deimmunization process must also maintain the desired therapeutic activity. To meet the growing need for effective, efficient, and broadly applicable protein deimmunization technologies, we have developed the EpiSweep suite of protein design algorithms. EpiSweep seamlessly integrates computational prediction of immunogenic T cell epitopes with sequence- or structure- based assessment of the impacts of mutations on protein stability and function, in order to select combinations of mutations that make Pareto optimal trade-offs between the competing goals of low immunogenicity and high-level function. The methods are applicable both to the design of individual functionally deimmunized variants as well as the design of combinatorial libraries enriched in functionally deimmunized variants. After validating EpiSweep in a series of retrospective case studies providing comparisons to conventional approaches to T cell epitope deletion, we have experimentally demonstrated it to be highly effective in prospective application to deimmunization of a number of different therapeutic candidates. We conclude that our broadly applicable computational protein design algorithms guide the engineer towards the most promising deimmunized therapeutic candidates, and thereby have the potential to accelerate development of new protein drugs by shortening time frames and improving hit rates. PMID:27914063

  14. 12 CFR 218.740 - Defined terms relating to the sweep accounts exception from the definition of “broker.”

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Defined terms relating to the sweep accounts exception from the definition of âbroker.â 218.740 Section 218.740 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM EXCEPTIONS FOR BANKS FROM THE DEFINITION OF BROKER IN THE SECURITIES EXCHANGE ACT OF 1934 ...

  15. Performance of the SWEEP model affected by estimates of threshold friction velocity

    USDA-ARS?s Scientific Manuscript database

    The Wind Erosion Prediction System (WEPS) is a process-based model and needs to be verified under a broad range of climatic, soil, and management conditions. Occasional failure of the WEPS erosion submodel (Single-event Wind Erosion Evaluation Program or SWEEP) to simulate erosion in the Columbia Pl...

  16. In vitro assessment of fiber sweeping speed during Q-switched 532-nm laser tissue ablation

    NASA Astrophysics Data System (ADS)

    Rajabhandharaks, Danop; Kang, Hyun Wook; Ko, Woo Jin; Stinson, Douglas; Choi, Benjamin

    2011-03-01

    Photoselective vaporization of the prostate (PVP) is considered a minimally invasive procedure to treat benign prostatic hyperplasia (BPH). During the PVP, the prostate gland is irradiated by the 532-nm laser and the fiber is swept and dragged along the urethra. In this study the speed of sweeping fiber during the PVP is being investigated. In vitro porcine kidney model was used (N=100) throughout the experiment. A Q-switched 532-nm laser, equipped with sidefiring 750-Um fiber, was employed and set to power levels of 120 and 180 W. The speed of fiber sweeping was the only variable in this study and varied at 0 (i.e. no sweeping), 0.5, 1.0, 1.5, and 2.0 sweep/s. Ablation rate, depth, and coagulation thickness were quantified. Based on the current settings, ablation rate decreased as sweeping speed increased and was maximized between 0 to 1.0 sweep/s for 120-W power level and between 0 to 0.5 sweep/s for 180-W power level. Ablation rate at 180 W was higher than that at 120 W, regardless of sweeping speed. Ablation depth at both 120 and 180 W was maximized at 0 sweep/s and decreased 35% at 0.5 sweep/s. The overall coagulation thickness was less than 1.5 mm and comparable from 0 to 1.5 sweep/s (0.8~0.9 mm) and increased at 2.0 sweep/s (~1.1 mm). This study demonstrated that tissue ablation performance was contingent upon sweeping speed and maximized at slow sweeping speed due to longer laser-tissue interaction time and larger area coverage by the 532-nm light.

  17. Stochastic resonance energy harvesting for a rotating shaft subject to random and periodic vibrations: influence of potential function asymmetry and frequency sweep

    NASA Astrophysics Data System (ADS)

    Kim, Hongjip; Che Tai, Wei; Zhou, Shengxi; Zuo, Lei

    2017-11-01

    Stochastic resonance is referred to as a physical phenomenon that is manifest in nonlinear systems whereby a weak periodic signal can be significantly amplified with the aid of inherent noise or vice versa. In this paper, stochastic resonance is considered to harvest energy from two typical vibrations in rotating shafts: random whirl vibration and periodic stick-slip vibration. Stick-slip vibrations impose a constant offset in centrifugal force and distort the potential function of the harvester, leading to potential function asymmetry. A numerical analysis based on a finite element method was conducted to investigate stochastic resonance with potential function asymmetry. Simulation results revealed that a harvester with symmetric potential function generates seven times higher power than that with asymmetric potential function. Furthermore, a frequency-sweep analysis also showed that stochastic resonance has hysteretic behavior, resulting in frequency difference between up-sweep and down-sweep excitations. An electromagnetic energy harvesting system was constructed to experimentally verify the numerical analysis. In contrast to traditional stochastic resonance harvesters, the proposed harvester uses magnetic force to compensate the offset in the centrifugal force. System identification was performed to obtain the parameters needed in the numerical analysis. With the identified parameters, the numerical simulations showed good agreement with the experiment results with around 10% error, which verified the effect of potential function asymmetry and frequency sweep excitation condition on stochastic resonance. Finally, attributed to compensating the centrifugal force offset, the proposed harvester generated nearly three times more open-circuit output voltage than its traditional counterpart.

  18. A novel methodology for determining low-cost fine particulate matter street sweeping routes.

    PubMed

    Blazquez, Carola A; Beghelli, Alejandra; Meneses, Veronica P

    2012-02-01

    This paper addresses the problem of low-cost PM10 (particulate matter with aerodynamic diameter < 10 microm) street sweeping route. In order to do so, only a subset of the streets of the urban area to be swept is selected for sweeping, based on their PM10 emission factor values. Subsequently, a low-cost route that visits each street in the set is computed. Unlike related problems of waste collection where streets must be visited once (Chinese or Rural Postman Problem, respectively), in this case, the sweeping vehicle route must visit each selected street exactly as many times as its number of street sides, since the vehicle can sweep only one street side at a time. Additionally, the route must comply with traffic flow and turn constraints. A novel transformation of the original arc routing problem into a node routing problem is proposed in this paper. This is accomplished by building a graph that represents the area to sweep in such a way that the problem can be solved by applying any known solution to the Traveling Salesman Problem (TSP). As a way of illustration, the proposed method was applied to the northeast area of the Municipality of Santiago (Chile). Results show that the proposed methodology achieved up to 37% savings in kilometers traveled by the sweeping vehicle when compared to the solution obtained by solving the TSP problem with Geographic Information Systems (GIS)--aware tools.

  19. Use of a priori statistics to minimize acquisition time for RFI immune spread spectrum systems

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.; Woo, K. T.

    1978-01-01

    The optimum acquisition sweep strategy was determined for a PN code despreader when the a priori probability density function was not uniform. A psuedo noise spread spectrum system was considered which could be utilized in the DSN to combat radio frequency interference. In a sample case, when the a priori probability density function was Gaussian, the acquisition time was reduced by about 41% compared to a uniform sweep approach.

  20. Reverse spontaneous laser line sweeping in ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Navratil, P.; Peterka, P.; Honzatko, P.; Kubecek, V.

    2017-03-01

    Self-induced laser line sweeping of various regimes of sweep direction is reported for an experimental ytterbium fiber laser. The regimes involve sweeping from shorter to longer wavelengths (1076~\\text{nm}\\to 1083 nm)—so-called normal self-sweeping; from longer to shorter wavelengths (1079~\\text{nm}\\to 1073 nm)—so-called reverse self-sweeping; and a mixed regime in which a precarious balance of the normal and reverse sweeping exists and the sweep direction can change between consecutive sweeps. The regimes of sweeping were selected by changing the pump wavelength only. A detailed explanation of this sweep direction dynamics is presented based on a semi-empirical model. This model also provides a way to predict the sweep direction of fiber lasers based on other rare-earth-doped laser media.

  1. Sweep Width Estimation for Ground Search and Rescue

    DTIC Science & Technology

    2004-12-30

    Develop data compatible with search planning and POD estimation methods that are de- signed to use sweep width data. An experimental...important for Park Rangers and man- trackers . Search experience was expected to be a significant correction factor. However, the re- sults indicate...41 4.1.1 Signing In

  2. A protocol for rheological characterization of hydrogels for tissue engineering strategies.

    PubMed

    Zuidema, Jonathan M; Rivet, Christopher J; Gilbert, Ryan J; Morrison, Faith A

    2014-07-01

    Hydrogels are studied extensively for many tissue engineering applications, and their mechanical properties influence both cellular and tissue compatibility. However, it is difficult to compare the mechanical properties of hydrogels between studies due to a lack of continuity between rheological protocols. This study outlines a straightforward protocol to accurately determine hydrogel equilibrium modulus and gelation time using a series of rheological tests. These protocols are applied to several hydrogel systems used within tissue engineering applications: agarose, collagen, fibrin, Matrigel™, and methylcellulose. The protocol is outlined in four steps: (1) Time sweep to determine the gelation time of the hydrogel. (2) Strain sweep to determine the linear-viscoelastic region of the hydrogel with respect to strain. (3) Frequency sweep to determine the linear equilibrium modulus plateau of the hydrogel. (4) Time sweep with values obtained from strain and frequency sweeps to accurately report the equilibrium moduli and gelation time. Finally, the rheological characterization protocol was evaluated using a composite Matrigel™-methylcellulose hydrogel blend whose mechanical properties were previously unknown. The protocol described herein provides a standardized approach for proper analysis of hydrogel rheological properties. © 2013 Wiley Periodicals, Inc.

  3. Detection of undistorted continuous wave (CW) electron paramagnetic resonance (EPR) spectra with non-adiabatic rapid sweep (NARS) of the magnetic field

    PubMed Central

    Kittell, Aaron W.; Camenisch, Theodore G.; Ratke, Joseph J.; Sidabras, Jason W.; Hyde, James S.

    2011-01-01

    A continuous wave (CW) electron paramagnetic resonance (EPR) spectrum is typically displayed as the first harmonic response to the application of 100 kHz magnetic field modulation, which is used to enhance sensitivity by reducing the level of 1/f noise. However, magnetic field modulation of any amplitude causes spectral broadening and sacrifices EPR spectral intensity by at least a factor of two. In the work presented here, a CW rapid-scan spectroscopic technique that avoids these compromises and also provides a means of avoiding 1/f noise is developed. This technique, termed non-adiabatic rapid sweep (NARS) EPR, consists of repetitively sweeping the polarizing magnetic field in a linear manner over a spectral fragment with a small coil at a repetition rate that is sufficiently high that receiver noise, microwave phase noise, and environmental microphonics, each of which has 1/f characteristics, are overcome. Nevertheless, the rate of sweep is sufficiently slow that adiabatic responses are avoided and the spin system is always close to thermal equilibrium. The repetitively acquired spectra from the spectral fragment are averaged. Under these conditions, undistorted pure absorption spectra are obtained without broadening or loss of signal intensity. A digital filter such as a moving average is applied to remove high frequency noise, which is approximately equivalent in bandwidth to use of an integrating time constant in conventional field modulation with lock-in detection. Nitroxide spectra at L- and X-band are presented. PMID:21741868

  4. Background sounds contribute to spectrotemporal plasticity in primary auditory cortex.

    PubMed

    Moucha, Raluca; Pandya, Pritesh K; Engineer, Navzer D; Rathbun, Daniel L; Kilgard, Michael P

    2005-05-01

    The mammalian auditory system evolved to extract meaningful information from complex acoustic environments. Spectrotemporal selectivity of auditory neurons provides a potential mechanism to represent natural sounds. Experience-dependent plasticity mechanisms can remodel the spectrotemporal selectivity of neurons in primary auditory cortex (A1). Electrical stimulation of the cholinergic nucleus basalis (NB) enables plasticity in A1 that parallels natural learning and is specific to acoustic features associated with NB activity. In this study, we used NB stimulation to explore how cortical networks reorganize after experience with frequency-modulated (FM) sweeps, and how background stimuli contribute to spectrotemporal plasticity in rat auditory cortex. Pairing an 8-4 kHz FM sweep with NB stimulation 300 times per day for 20 days decreased tone thresholds, frequency selectivity, and response latency of A1 neurons in the region of the tonotopic map activated by the sound. In an attempt to modify neuronal response properties across all of A1 the same NB activation was paired in a second group of rats with five downward FM sweeps, each spanning a different octave. No changes in FM selectivity or receptive field (RF) structure were observed when the neural activation was distributed across the cortical surface. However, the addition of unpaired background sweeps of different rates or direction was sufficient to alter RF characteristics across the tonotopic map in a third group of rats. These results extend earlier observations that cortical neurons can develop stimulus specific plasticity and indicate that background conditions can strongly influence cortical plasticity.

  5. Combinations of corn glutel meal, clove oil, and sweep cultivation are ineffective for weed control in organic peanut production

    USDA-ARS?s Scientific Manuscript database

    Weed control in organic peanut is difficult and lack of residual weed control complicates weed management efforts. Weed management systems using corn gluten meal in combination with clove oil and sweep cultivation were evaluated in a series of irrigated field trials. Corn gluten meal applied in a ...

  6. Identity Crisis: Multiple Measures and the Identification of Schools under ESSA. Policy Memo 16-3

    ERIC Educational Resources Information Center

    Hough, Heather; Penner, Emily; Witte, Joe

    2016-01-01

    The Every Student Succeeds Act (ESSA) makes sweeping changes to the way school performance is measured. Using the innovative measurement system developed by the CORE Districts in California, the authors explore how schools can be identified for support and improvement using a multiple measures framework. They show that 1) Different academic…

  7. The Keys to the White House: Prediction for 2008

    ERIC Educational Resources Information Center

    Lichtman, Allan

    2008-01-01

    The winds of political change are blowing through America in 2008 and will sweep the party in power from the White House next November. That is the verdict of the Keys to the White House, a prediction system that the author developed in collaboration with Vladimir Keilis-Borok, founder of the International Institute of Earthquake Prediction Theory…

  8. Transient dynamics of a nonlinear magneto-optical rotation

    NASA Astrophysics Data System (ADS)

    Grewal, Raghwinder Singh; Pustelny, S.; Rybak, A.; Florkowski, M.

    2018-04-01

    We analyze nonlinear magneto-optical rotation (NMOR) in rubidium vapor subjected to a continuously scanned magnetic field. By varying the magnetic-field sweep rate, a transition from traditionally observed dispersivelike NMOR signals (low sweep rate) to oscillating signals (higher sweep rates) is demonstrated. The transient oscillatory behavior is studied versus light and magnetic-field parameters, revealing a strong dependence of the signals on magnetic sweep rate and light intensity. The experimental results are supported with density-matrix calculations, which enable quantitative analysis of the effect. Fitting of the signals simulated versus different parameters with a theoretically motivated curve reveals the presence of oscillatory and static components in the signals. The components depend differently on the system parameters, which suggests their distinct nature. The investigations provide insight into the dynamics of ground-state coherence generation and enable application of NMOR in detection of transient spin couplings.

  9. Naval applications of SC magnet systems

    NASA Astrophysics Data System (ADS)

    Gubser, D. U.

    The US Navy continues to develop advanced systems that utilize superconducting (SC) magnets. Recent impetus toward the “all” electric ship is accelerating the desire to produce “engineering” prototypes that can be field tested to ascertain the overall impact of these new technologies toward meeting Navy mission requirements. SC magnets for motors, energy storage, mine sweeping, and RF amplifiers are all being built and tested. This article provides a brief description of these projects.

  10. Matrix-product-operator approach to the nonequilibrium steady state of driven-dissipative quantum arrays

    NASA Astrophysics Data System (ADS)

    Mascarenhas, Eduardo; Flayac, Hugo; Savona, Vincenzo

    2015-08-01

    We develop a numerical procedure to efficiently model the nonequilibrium steady state of one-dimensional arrays of open quantum systems based on a matrix-product operator ansatz for the density matrix. The procedure searches for the null eigenvalue of the Liouvillian superoperator by sweeping along the system while carrying out a partial diagonalization of the single-site stationary problem. It bears full analogy to the density-matrix renormalization-group approach to the ground state of isolated systems, and its numerical complexity scales as a power law with the bond dimension. The method brings considerable advantage when compared to the integration of the time-dependent problem via Trotter decomposition, as it can address arbitrarily long-ranged couplings. Additionally, it ensures numerical stability in the case of weakly dissipative systems thanks to a slow tuning of the dissipation rates along the sweeps. We have tested the method on a driven-dissipative spin chain, under various assumptions for the Hamiltonian, drive, and dissipation parameters, and compared the results to those obtained both by Trotter dynamics and Monte Carlo wave function methods. Accurate and numerically stable convergence was always achieved when applying the method to systems with a gapped Liouvillian and a nondegenerate steady state.

  11. Adiabatic description of long range frequency sweeping

    NASA Astrophysics Data System (ADS)

    Breizman, Boris; Nyqvist, Robert; Lilley, Matthew

    2012-10-01

    A theoretical framework is developed to describe long range frequency sweeping events in the 1D electrostatic bump-on-tail model with fast particle sources and collisions. The model includes three collision operators (Krook, drag (dynamical friction) and velocity space diffusion), and allows for a general shape of the fast particle distribution function. The behavior of phase space holes and clumps is analyzed, and the effect of particle trapping due to separatrix expansion is discussed. With a fast particle distribution function whose slope decays above the resonant phase velocity, hooked frequency sweeping is found for holes in the presence of drag collisions alone.

  12. MPACT Subgroup Self-Shielding Efficiency Improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimpson, Shane; Liu, Yuxuan; Collins, Benjamin S.

    Recent developments to improve the efficiency of the MOC solvers in MPACT have yielded effective kernels that loop over several energy groups at once, rather that looping over one group at a time. These kernels have produced roughly a 2x speedup on the MOC sweeping time during eigenvalue calculation. However, the self-shielding subgroup calculation had not been reevaluated to take advantage of these new kernels, which typically requires substantial solve time. The improvements covered in this report start by integrating the multigroup kernel concepts into the subgroup calculation, which are then used as the basis for further extensions. The nextmore » improvement that is covered is what is currently being termed as “Lumped Parameter MOC”. Because the subgroup calculation is a purely fixed source problem and multiple sweeps are performed only to update the boundary angular fluxes, the sweep procedure can be condensed to allow for the instantaneous propagation of the flux across a spatial domain, without the need to sweep along all segments in a ray. Once the boundary angular fluxes are considered to be converged, an additional sweep that will tally the scalar flux is completed. The last improvement that is investigated is the possible reduction of the number of azimuthal angles per octant in the shielding sweep. Typically 16 azimuthal angles per octant are used for self-shielding and eigenvalue calculations, but it is possible that the self-shielding sweeps are less sensitive to the number of angles than the full eigenvalue calculation.« less

  13. Parametric Experimental Study of the Formation of Glaze Ice Shapes on Swept Wings

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Reshotko, Eli

    1999-01-01

    An experiment was conducted to study the effect of velocity and sweep angle on the critical distance in ice accretion formation on swept wings at glaze ice conditions. The critical distance is defined as the distance from the attachment line to the beginning of the zone where roughness elements develop into glaze ice feathers. Icing runs were performed on a NACA 00 1 2 swept wing tip at velocities of 75, 100, 150, and 200 miles per hour. At each velocity and tunnel condition, the sweep angle was changed from 0 deg to 45 deg at 5 deg increments. Casting data, ice shape tracings, and close-up photographic data were obtained. The results showed that at given velocity and tunnel conditions, as the sweep angle is increased from 0 deg to 25 deg the critical distance slowly decreases. As the sweep angle is increased past 25 deg, the critical distance starts decreasing more rapidly. For 75 and 100 mph it reaches a value of 0 millimeters at 35 deg. For 150 and 200 mph it reaches a value of 0 millimeters at 40 deg. On the ice accretion, as the sweep angle is increased from 0 deg to 25 deg, the extent of the attachment line zone slowly decreases. In the glaze ice feathers zone, the angle that the preferred direction of growth of the feathers makes with respect to the attachment line direction increases. But overall, the ice accretions remain similar to the 0 deg sweep angle case. As the sweep angle is increased above 25 deg, the extent of the attachment line zone decreases rapidly and complete scallops form at 35 deg sweep angle for 75 and 100 mph, and at 40 deg for 150 and 200 mph.

  14. Sweep-twist adaptive rotor blade : final project report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashwill, Thomas D.

    2010-02-01

    Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercialmore » development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.« less

  15. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    DOEpatents

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  16. Effects of Sweep Angle on the Boundary-Layer Stability Characteristics of an Untapered Wing at Low Speeds

    NASA Technical Reports Server (NTRS)

    Boltz, Frederick W.; Kenyon, George C.; Allen, Clyde Q.

    1960-01-01

    An investigation was conducted in the Ames 12-Foot Low-Turbulence Pressure Tunnel to determine the effects of sweep on the boundary-layer stability characteristics of an untapered variable-sweep wing having an NACA 64(2)A015 section normal to the leading edge. Pressure distribution and transition were measured on the wing at low speeds at sweep angles of 0, 10, 20, 30, 40, and 50 deg. and at angles of attack from -3 to 3 deg. The investigation also included flow-visualization studies on the surface at sweep angles from 0 to 50 deg. and total pressure surveys in the boundary layer at a sweep angle of 30 deg. for angles of attack from -12 to 0 deg. It was found that sweep caused premature transition on the wing under certain conditions. This effect resulted from the formation of vortices in the boundary layer when a critical combination of sweep angle, pressure gradient, and stream Reynolds number was attained. A useful parameter in indicating the combined effect of these flow variables on vortex formation and on beginning transition is the crossflow Reynolds number. The critical values of crossflow Reynolds number for vortex formation found in this investigation range from about 135 to 190 and are in good agreement with those reported in previous investigations. The values of crossflow Reynolds number for beginning transitions were found to be between 190 and 260. For each condition (i.e., development of vortices and initiation of transition at a given location) the lower values in the specified ranges were obtained with a light coating of flow-visualization material on the surface. A method is presented for the rapid computation of crossflow Reynolds number on any swept surface for which the pressure distribution is known. From calculations based on this method, it was found that the maximum values of crossflow Reynolds number are attained under conditions of a strong pressure gradient and at a sweep angle of about 50 deg. Due to the primary dependence on pressure gradient, effects of sweep in causing premature transition are generally first encountered on the lower surfaces of wings operating at positive angles of attack.

  17. Comparison of current Shuttle and pre-Challenger flight suit reach capability during launch accelerations

    NASA Technical Reports Server (NTRS)

    Bagian, James P.; Schafer, Lauren E.

    1992-01-01

    The Challenger accident prompted the creation of a crew escape system which replaced the former Launch Entry Helmet (LEH) ensemble with the current Launch Entry Suit (LES). However, questions were raised regarding the impact of this change on crew reach capability. This study addressed the question of reach capability and its effects on realistic ground-based training for Space Shuttle missions. Eleven subjects performed reach sweeps in both the LEH and LES suits during 1 and 3 Gx acceleration trials in the Brooks AFB centrifuge. These reach sweeps were recorded on videotape and subsequently analyzed using a 3D motion analysis system. The ANOVA procedure of the Statistical Analysis System program was used to evaluate differences in forward and overhead reach. The results showed that the LES provided less reach capability than its predecessor, the LEH. This study also demonstrated that, since there was no substantial difference between 1 and 3 Gx reach sweeps in the LES, realistic Shuttle launch training may be accomplished in ground based simulators.

  18. Determination of imidazole derivatives by micellar electrokinetic chromatography combined with solid-phase microextraction using activated carbon-polymer monolith as adsorbent.

    PubMed

    Shih, Yung-Han; Lirio, Stephen; Li, Chih-Keng; Liu, Wan-Ling; Huang, Hsi-Ya

    2016-01-08

    In this study, an effective method for the separation of imidazole derivatives 2-methylimidazole (2-MEI), 4- methylimidazole (4-MEI) and 2-acetyl-4-tetrahydroxybutylimidazole (THI) in caramel colors using cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography (CSEI-sweeping-MEKC) was developed. The limits of detection (LOD) and quantitation (LOQ) for the CSEI-sweeping-MEKC method were in the range of 4.3-80μgL(-1) and 14-270μgL(-1), respectively. Meanwhile, a rapid fabrication activated carbon-polymer (AC-polymer) monolithic column as adsorbent for solid-phase microextraction (SPME) of imidazole colors was developed. Under the optimized SPME condition, the extraction recoveries for intra-day, inter-day and column-to-column were in the range of 84.5-95.1% (<6.3% RSDs), 85.6-96.1% (<4.9% RSDs), and 81.3-96.1% (<7.1% RSDs), respectively. The LODs and LOQs of AC-polymer monolithic column combined with CSEI-sweeping-MEKC method were in the range of 33.4-60.4μgL(-1) and 111.7-201.2μgL(-1), respectively. The use of AC-polymer as SPME adsorbent demonstrated the reduction of matrix effect in food samples such as soft drink and alcoholic beverage thereby benefiting successful determination of trace-level caramel colors residues using CSEI-sweeping-MEKC method. The developed AC-polymer monolithic column can be reused for more than 30 times without any significant loss in the extraction recovery for imidazole derivatives. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Density matrix renormalization group for a highly degenerate quantum system: Sliding environment block approach

    NASA Astrophysics Data System (ADS)

    Schmitteckert, Peter

    2018-04-01

    We present an infinite lattice density matrix renormalization group sweeping procedure which can be used as a replacement for the standard infinite lattice blocking schemes. Although the scheme is generally applicable to any system, its main advantages are the correct representation of commensurability issues and the treatment of degenerate systems. As an example we apply the method to a spin chain featuring a highly degenerate ground-state space where the new sweeping scheme provides an increase in performance as well as accuracy by many orders of magnitude compared to a recently published work.

  20. Volumetric Security Alarm Based on a Spherical Ultrasonic Transducer Array

    NASA Astrophysics Data System (ADS)

    Sayin, Umut; Scaini, Davide; Arteaga, Daniel

    Most of the existent alarm systems depend on physical or visual contact. The detection area is often limited depending on the type of the transducer, creating blind spots. Our proposition is a truly volumetric alarm system that can detect any movement in the intrusion area, based on monitoring the change over time of the impulse response of the room, which acts as an acoustic footprint. The device depends on an omnidirectional ultrasonic transducer array emitting sweep signals to calculate the impulse response in short intervals. Any change in the room conditions is monitored through a correlation function. The sensitivity of the alarm to different objects and different environments depends on the sweep duration, sweep bandwidth, and sweep interval. Successful detection of intrusions also depends on the size of the monitoring area and requires an adjustment of emitted ultrasound power. Strong air flow affects the performance of the alarm. A method for separating moving objects from strong air flow is devised using an adaptive thresholding on the correlation function involving a series of impulse response measurements. The alarm system can be also used for fire detection since air flow sourced from heating objects differ from random nature of the present air flow. Several measurements are made to test the integrity of the alarm in rooms sizing from 834-2080m3 with irregular geometries and various objects. The proposed system can efficiently detect intrusion whilst adequate emitting power is provided.

  1. [Design of magneto-acoustic-electrical detection system and verification of its linear sweep theory].

    PubMed

    Dai, Ming; Chen, Siping; Li, Fangfang; Chen, Mian; Lin, Haoming; Chen, Xin

    2018-02-01

    Clinical studies had demonstrated that early diagnosis of lesion could significantly reduce the risk of cancer. Magneto-acoustic-electrical tomography (MAET) is expected to become a new detection method due to its advantages of high resolution and high contrast. Based on thinking of modular design, a low-cost, digital magneto-acoustic conductivity detection system was designed and implemented in this study. The theory of MAET using chirp continuous wave excitation was introduced. The results of homogeneous phantom experiment with 0.5% NaCl clearly showed that the conductivity curve of homogeneous phantom was highly consistent with the actual physical size, which indicated that the chirp excitation theory in our proposed system was correct and feasible. Besides, the resolution obtained by 1 000 μs sweep time was better than that obtained by 500 μs and 1 500 μs, which means that sweep time is an important factor affecting the detection resolution of the conductivity. The same result was obtained in the experiments carried out on homogeneous phantoms with different concentrations of NaCl, which demonstrated the repeatability of our proposed MAET system.

  2. Farfield Ion Current Density Measurements before and after the NASA HiVHAc EDU2 Vibration Test

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Shastry, Rohit

    2012-01-01

    There is an increasing need to characterize the plasma plume of the NASA HiVHAc thruster in order to better understand the plasma physics and to obtain data for spacecraft interaction studies. To address this need, the HiVHAc research team is in the process of developing a number of plume diagnostic systems. This paper presents the initial results of the farfield current density probe diagnostic system. Farfield current density measurements were carried out before and after a vibration test of the HiVHAc engineering development unit 2 that simulate typical launch conditions. The main purposes of the current density measurements were to evaluate the thruster plume divergence and to investigate any changes in the plasma plume that may occur as a result of the vibration test. Radial sweeps, as opposed to the traditional polar sweeps, were performed during these tests. The charged-weighted divergence angles were found to vary from 16 to 28 degrees. Charge density profiles measured pre- and post-vibration-test were found to be in excellent agreement. This result, alongside thrust measurements reported in a companion paper, confirm that the operation of the HiVHAc engineering development unit 2 were not altered by full-level/random vibration testing.

  3. Regression modeling and prediction of road sweeping brush load characteristics from finite element analysis and experimental results.

    PubMed

    Wang, Chong; Sun, Qun; Wahab, Magd Abdel; Zhang, Xingyu; Xu, Limin

    2015-09-01

    Rotary cup brushes mounted on each side of a road sweeper undertake heavy debris removal tasks but the characteristics have not been well known until recently. A Finite Element (FE) model that can analyze brush deformation and predict brush characteristics have been developed to investigate the sweeping efficiency and to assist the controller design. However, the FE model requires large amount of CPU time to simulate each brush design and operating scenario, which may affect its applications in a real-time system. This study develops a mathematical regression model to summarize the FE modeled results. The complex brush load characteristic curves were statistically analyzed to quantify the effects of cross-section, length, mounting angle, displacement and rotational speed etc. The data were then fitted by a multiple variable regression model using the maximum likelihood method. The fitted results showed good agreement with the FE analysis results and experimental results, suggesting that the mathematical regression model may be directly used in a real-time system to predict characteristics of different brushes under varying operating conditions. The methodology may also be used in the design and optimization of rotary brush tools. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. FPGA-based multi-channel fluorescence lifetime analysis of Fourier multiplexed frequency-sweeping lifetime imaging

    PubMed Central

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-01-01

    We report a fast non-iterative lifetime data analysis method for the Fourier multiplexed frequency-sweeping confocal FLIM (Fm-FLIM) system [ Opt. Express22, 10221 ( 2014)24921725]. The new method, named R-method, allows fast multi-channel lifetime image analysis in the system’s FPGA data processing board. Experimental tests proved that the performance of the R-method is equivalent to that of single-exponential iterative fitting, and its sensitivity is well suited for time-lapse FLIM-FRET imaging of live cells, for example cyclic adenosine monophosphate (cAMP) level imaging with GFP-Epac-mCherry sensors. With the R-method and its FPGA implementation, multi-channel lifetime images can now be generated in real time on the multi-channel frequency-sweeping FLIM system, and live readout of FRET sensors can be performed during time-lapse imaging. PMID:25321778

  5. Exact transition probabilities for a linear sweep through a Kramers-Kronig resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Chen; Sinitsyn, Nikolai A.

    2015-11-19

    We consider a localized electronic spin controlled by a circularly polarized optical beam and an external magnetic field. When the frequency of the beam is tuned near an optical resonance with a continuum of higher energy states, effective magnetic fields are induced on the two-level system via the inverse Faraday effect. We explore the process in which the frequency of the beam is made linearly time-dependent so that it sweeps through the optical resonance, starting and ending at the values far away from it. In addition to changes of spin states, Kramers-Kronig relations guarantee that a localized electron can alsomore » escape into a continuum of states. We argue that probabilities of transitions between different possible electronic states after such a sweep of the optical frequency can be found exactly, regardless the shape of the resonance. In conclusion, we also discuss extension of our results to multistate systems.« less

  6. Ultrafast wavelength multiplexed broad bandwidth digital diffuse optical spectroscopy for in vivo extraction of tissue optical properties

    NASA Astrophysics Data System (ADS)

    Torjesen, Alyssa; Istfan, Raeef; Roblyer, Darren

    2017-03-01

    Frequency-domain diffuse optical spectroscopy (FD-DOS) utilizes intensity-modulated light to characterize optical scattering and absorption in thick tissue. Previous FD-DOS systems have been limited by large device footprints, complex electronics, high costs, and limited acquisition speeds, all of which complicate access to patients in the clinical setting. We have developed a new digital DOS (dDOS) system, which is relatively compact and inexpensive, allowing for simplified clinical use, while providing unprecedented measurement speeds. The dDOS system utilizes hardware-integrated custom board-level direct digital synthesizers and an analog-to-digital converter to generate frequency sweeps and directly measure signals utilizing undersampling at six wavelengths modulated at discrete frequencies from 50 to 400 MHz. Wavelength multiplexing is utilized to achieve broadband frequency sweep measurements acquired at over 97 Hz. When compared to a gold-standard DOS system, the accuracy of optical properties recovered with the dDOS system was within 5.3% and 5.5% for absorption and reduced scattering coefficient extractions, respectively. When tested in vivo, the dDOS system was able to detect physiological changes throughout the cardiac cycle. The new FD-dDOS system is fast, inexpensive, and compact without compromising measurement quality.

  7. On the single sweep processing of auditory brainstem responses: click vs. chirp stimulations and active vs. passive electrodes.

    PubMed

    Corona-Strauss, Farah I; Delb, Wolfgang; Bloching, Marc; Strauss, Daniel J

    2008-01-01

    We have recently shown that click evoked auditory brainstem responses (ABRs) single sweeps can efficiently be processed by a hybrid novelty detection system. This approach allowed for the objective detection of hearing thresholds in a fraction of time of conventional schemes, making it appropriate for the efficient implementation of newborn hearing screening procedures. It is the objective of this study to evaluate whether this approach might further be improved by different stimulation paradigms and electrode settings. In particular, we evaluate chirp stimulations which compensate the basilar-membrane dispersion and active electrodes which are less sensitive to movements. This is the first study which is directed to a single sweep processing of chirp evoked ABRs. By concentrating on transparent features and a minimum number of adjustable parameters, we present an objective comparison of click vs.chirp stimulations and active vs. passive electrodes in the ultrafast ABR detection. We show that chirp evoked brainstem responses and active electrodes might improve the single sweeps analysis of ABRs.Consequently, we conclude that a single sweep processing of ABRs for the objective determination of hearing thresholds can further be improved by the use of optimized chirp stimulations and active electrodes.

  8. A low-cost FMCW radar for footprint detection from a mobile platform

    NASA Astrophysics Data System (ADS)

    Boutte, David; Taylor, Paul; Hunt, Allan

    2015-05-01

    Footprint and human trail detection in rugged all-weather environments is an important and challenging problem for perimeter security, passive surveillance and reconnaissance. To address this challenge a low-cost, wideband, frequency-modulated continuous wave (FMCW) radar operating at 33.4GHz - 35.5GHz is being developed through a Department of Homeland Security Science and Technology Directorate Phase I SBIR and has been experimentally demonstrated to be capable of detecting footprints and footprint trails on unimproved roads in an experimental setting. It uses a low-cost digital signal processor (DSP) that makes important operating parameters reconfigurable and allows for frequency sweep linearization, a key technique developed to increase footprint signal-to-noise ratio (SNR). This paper discusses the design, DSP implementation and experimental results of a low-cost FMCW radar for mobile footprint detection. A technique for wideband sweep linearization is detailed along with system performance metrics and experimental results showing receive-SNR from footprint trails in sand and on unimproved dirt roads. Results from a second stepped frequency CW (SFCW) Ka-band system are also shown, verifying the ability of both systems to detect footprints and footprint trails in an experimental setting. The results show that there is sufficient receive-SNR to detect even shallow footprints (~1cm) using a radar based detection system in Ka-band. Field experimental results focus on system proof of concept from a static position with mobile results also presented highlighting necessary improvements to both systems.

  9. Background sounds contribute to spectrotemporal plasticity in primary auditory cortex

    PubMed Central

    Moucha, Raluca; Pandya, Pritesh K.; Engineer, Navzer D.; Rathbun, Daniel L.

    2010-01-01

    The mammalian auditory system evolved to extract meaningful information from complex acoustic environments. Spectrotemporal selectivity of auditory neurons provides a potential mechanism to represent natural sounds. Experience-dependent plasticity mechanisms can remodel the spectrotemporal selectivity of neurons in primary auditory cortex (A1). Electrical stimulation of the cholinergic nucleus basalis (NB) enables plasticity in A1 that parallels natural learning and is specific to acoustic features associated with NB activity. In this study, we used NB stimulation to explore how cortical networks reorganize after experience with frequency-modulated (FM) sweeps, and how background stimuli contribute to spectrotemporal plasticity in rat auditory cortex. Pairing an 8–4 kHz FM sweep with NB stimulation 300 times per day for 20 days decreased tone thresholds, frequency selectivity, and response latency of A1 neurons in the region of the tonotopic map activated by the sound. In an attempt to modify neuronal response properties across all of A1 the same NB activation was paired in a second group of rats with five downward FM sweeps, each spanning a different octave. No changes in FM selectivity or receptive field (RF) structure were observed when the neural activation was distributed across the cortical surface. However, the addition of unpaired background sweeps of different rates or direction was sufficient to alter RF characteristics across the tonotopic map in a third group of rats. These results extend earlier observations that cortical neurons can develop stimulus specific plasticity and indicate that background conditions can strongly influence cortical plasticity PMID:15616812

  10. Adiabatic description of long range frequency sweeping

    NASA Astrophysics Data System (ADS)

    Nyqvist, R. M.; Lilley, M. K.; Breizman, B. N.

    2012-09-01

    A theoretical framework is developed to describe long range frequency sweeping events in the 1D electrostatic bump-on-tail model with fast particle sources and collisions. The model includes three collision operators (Krook, drag (dynamical friction) and velocity space diffusion), and allows for a general shape of the fast particle distribution function. The behaviour of phase space holes and clumps is analysed in the absence of diffusion, and the effect of particle trapping due to separatrix expansion is discussed. With a fast particle distribution function whose slope decays above the resonant phase velocity, hooked frequency sweeping is found for holes in the presence of drag collisions alone.

  11. Removal of Differential Capacitive Interferences in Fast-Scan Cyclic Voltammetry.

    PubMed

    Johnson, Justin A; Hobbs, Caddy N; Wightman, R Mark

    2017-06-06

    Due to its high spatiotemporal resolution, fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes enables the localized in vivo monitoring of subsecond fluctuations in electroactive neurotransmitter concentrations. In practice, resolution of the analytical signal relies on digital background subtraction for removal of the large current due to charging of the electrical double layer as well as surface faradaic reactions. However, fluctuations in this background current often occur with changes in the electrode state or ionic environment, leading to nonspecific contributions to the FSCV data that confound data analysis. Here, we both explore the origin of such shifts seen with local changes in cations and develop a model to account for their shape. Further, we describe a convolution-based method for removal of the differential capacitive contributions to the FSCV current. The method relies on the use of a small-amplitude pulse made prior to the FSCV sweep that probes the impedance of the system. To predict the nonfaradaic current response to the voltammetric sweep, the step current response is differentiated to provide an estimate of the system's impulse response function and is used to convolute the applied waveform. The generated prediction is then subtracted from the observed current to the voltammetric sweep, removing artifacts associated with electrode impedance changes. The technique is demonstrated to remove select contributions from capacitive characteristics changes of the electrode both in vitro (i.e., in flow-injection analysis) and in vivo (i.e., during a spreading depression event in an anesthetized rat).

  12. Advanced systems requirements for ocean observations via microwave radiometers

    NASA Technical Reports Server (NTRS)

    Blume, H.-J. C.; Swift, C. T.; Kendall, B. M.

    1978-01-01

    A future microwave spectroradiometer operating in several frequency bands will have the capability to step or sweep frequencies on an adaptable or programmable basis. The on-board adaptable frequency shifting can make the systems immune from radio interference. Programmable frequency sweeping with on-board data inversion by high speed computers would provide for instantaneous synoptic measurements or sea surface temperature and salinity, water surface and volume pollution, ice thickness, ocean surface winds, snow depth, and soil moisture. Large structure satellites will allow an order of magnitude improvement in the present radiometric measurement spacial resolution.

  13. Active Flow Control Using Sweeping Jet Actuators on a Semi-Span Wing Model

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Koklu, Mehti

    2016-01-01

    Wind tunnel experiments were performed using active flow control on an unswept semispan wing model with a 30% chord trailing edge flap to aid in the selection of actuators for a planned high Reynolds number experiment. Two sweeping jet actuator sizes were investigated to determine the influence of actuator size on the active flow control system efficiency. Sweeping jet actuators with orifice sizes of 1 mm x 2 mm and 2 mm x 4 mm were selected because of the differences in actuator jet sweep angle. The parameters that were varied include actuator momentum, freestream velocity, and trailing edge flap deflection angle. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the two actuators. In addition to the wind tunnel experiments, benchtop studies of the actuators were performed to characterize the jets produced by each actuator. Benchtop investigations of the smaller actuator reveal that the jet exiting the actuator has a reduced sweep angle compared to published data for larger versions of this type of actuator. The larger actuator produces an oscillating jet that attaches to the external di?user walls at low supply pressures and produces the expected sweep angles. The AFC results using the smaller actuators show that while the actuators can control flow separation, the selected spacing of 3.3 cm may be too large due to the reduced sweep angle. In comparison, the spacing for the larger actuators, 6.6 cm, appears to be optimal for the Mach numbers investigated. Particle Image Velocimetry results are presented and show how the wall jets produced by the actuators cause the flow to attach to the flap surface.

  14. In-flight investigation of a rotating cylinder-based structural excitation system for flutter testing

    NASA Technical Reports Server (NTRS)

    Vernon, Lura

    1993-01-01

    A research excitation system was test flown at the NASA Dryden Flight Research Facility on the two-seat F-16XL aircraft. The excitation system is a wingtip-mounted vane with a rotating slotted cylinder at the trailing edge. As the cylinder rotates during flight, the flow is alternately deflected upward and downward through the slot, resulting in a periodic lift force at twice the cylinder's rotational frequency. Flight testing was conducted to determine the excitation system's effectiveness in the subsonic, transonic, and supersonic flight regimes. Primary research objectives were to determine the system's ability to develop adequate force levels to excite the aircraft's structure and to determine the frequency range over which the system could excite structural modes of the aircraft. In addition, studies were conducted to determine optimal excitation parameters, such as sweep duration, sweep type, and energy levels. The results from the exciter were compared with results from atmospheric turbulence excitation at the same flight conditions. The comparison indicated that the vane with a rotating slotted cylinder provides superior results. The results from the forced excitation were of higher quality and had less variation than the results from atmospheric turbulence. The forced excitation data also invariably yielded higher structural damping values than those from the atmospheric turbulence data.

  15. Yield of pallet cants and lumber from hardwood poletimber thinnings

    Treesearch

    E. Paul Craft; David M. Emanuel

    1981-01-01

    Woods-run bolts in 4- and 6-foot length from poletimber stand thininings were classified into five quality classes, and the absolute sweep was measured for each bolt. Cants 4 by 4 and 4 by 6 inches were sawn from these bolts. The cants were classified by an interim classification system for the production of pallet parts. In contrast to straight bolts, sweep from 0.6...

  16. Evaluation of a bespoke training to increase uptake by midwifery teams of NICE Guidance for membrane sweeping to reduce induction of labour: a stepped wedge cluster randomised design.

    PubMed

    Kenyon, Sara; Dann, Sophie; Hope, Lucy; Clarke, Paula; Hogan, Amanda; Jenkinson, David; Hemming, Karla

    2017-07-27

    National guidance recommends pregnant women are offered membrane sweeping at term to reduce induction of labour. Local audit suggested this was not being undertaken routinely across two maternity units in the West Midlands, UK between March and November 2012. Bespoke training session for midwifery teams (nine community and one antenatal clinic) was developed to address identified barriers to encourage offer of membrane sweeping, together with an information leaflet for women and appointment of a champion within each team. The timing of training session on membrane sweeping to ten midwifery teams was randomly allocated using a stepped wedge cluster randomised design. All women who gave birth in the Trusts after 39 + 3/40 weeks gestation within the study time period were eligible. Relevant anonymised data were extracted from maternity notes for three months before and after training. Data were analysed using a generalised linear mixed model, allowing for clustering and adjusting for temporal effects. Primary outcomes were number of women offered and accepting membrane sweeping and average number of sweeps per woman. Sub-group comparisons were undertaken for adherence to Trust guidance and potential influence of pre-specified maternal characteristics. Data included whether sweeping was offered but declined and no record of membrane sweeping. Training was given to all teams as planned. Analyses included data from 2787 of the 2864 (97%) eligible low-risk women over 39 + 4 weeks pregnant. Characteristics of the women were similar before and after training. No evidence of difference in proportion of women being offered and accepting membrane sweeping (44.4% before training versus 46.8% after training (adjusted relative risk [aRR] = 0.90, 95% confidence interval [CI] = 0.71-1.13), nor in average number of sweeps per woman (0.603 versus 0.627, aRR = 0.83, 95% CI = 0.67-1.01). No differences in any secondary outcomes nor influence of maternal characteristics were demonstrated. The midwives evaluated training positively. This stepped wedge cluster trial enabled randomised evaluation within a natural roll-out and demonstrates the importance of robust evaluation in circumstances in which it is rarely undertaken. While the midwives evaluated the training positively, it did not appear to change practice. ISRCTN14300475 . Registered on 23 August 2016.

  17. Operational considerations for laminar flow aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, Dal V.; Wagner, Richard D.

    1986-01-01

    Considerable progress has been made in the development of laminar flow technology for commercial transports during the NASA Aircraft Energy Efficiency (ACEE) laminar flow program. Practical, operational laminar flow control (LFC) systems have been designed, fabricated, and are undergoing flight testing. New materials, fabrication methods, analysis techniques, and design concepts were developed and show much promise. The laminar flow control systems now being flight tested on the NASA Jetstar aircraft are complemented by natural laminar flow flight tests to be accomplished with the F-14 variable-sweep transition flight experiment. An overview of some operational aspects of this exciting program is given.

  18. Acidic sweep gas with carbonic anhydrase coated hollow fiber membranes synergistically accelerates CO2 removal from blood.

    PubMed

    Arazawa, D T; Kimmel, J D; Finn, M C; Federspiel, W J

    2015-10-01

    The use of extracorporeal carbon dioxide removal (ECCO2R) is well established as a therapy for patients suffering from acute respiratory failure. Development of next generation low blood flow (<500 mL/min) ECCO2R devices necessitates more efficient gas exchange devices. Since over 90% of blood CO2 is transported as bicarbonate (HCO3(-)), we previously reported development of a carbonic anhydrase (CA) immobilized bioactive hollow fiber membrane (HFM) which significantly accelerates CO2 removal from blood in model gas exchange devices by converting bicarbonate to CO2 directly at the HFM surface. This present study tested the hypothesis that dilute sulfur dioxide (SO2) in oxygen sweep gas could further increase CO2 removal by creating an acidic microenvironment within the diffusional boundary layer adjacent to the HFM surface, facilitating dehydration of bicarbonate to CO2. CA was covalently immobilized onto poly (methyl pentene) (PMP) HFMs through glutaraldehyde activated chitosan spacers, potted in model gas exchange devices (0.0151 m(2)) and tested for CO2 removal rate with oxygen (O2) sweep gas and a 2.2% SO2 in oxygen sweep gas mixture. Using pure O2 sweep gas, CA-PMP increased CO2 removal by 31% (258 mL/min/m(2)) compared to PMP (197 mL/min/m(2)) (P<0.05). Using 2.2% SO2 acidic sweep gas increased PMP CO2 removal by 17% (230 mL/min/m(2)) compared to pure oxygen sweep gas control (P<0.05); device outlet blood pH was 7.38 units. When employing both CA-PMP and 2.2% SO2 sweep gas, CO2 removal increased by 109% (411 mL/min/m(2)) (P<0.05); device outlet blood pH was 7.35 units. Dilute acidic sweep gas increases CO2 removal, and when used in combination with bioactive CA-HFMs has a synergistic effect to more than double CO2 removal while maintaining physiologic pH. Through these technologies the next generation of intravascular and paracorporeal respiratory assist devices can remove more CO2 with smaller blood contacting surface areas. A clinical need exists for more efficient respiratory assist devices which utilize low blood flow rates (<500 mL/min) to regulate blood CO2 in patients suffering from acute lung failure. Literature has demonstrated approaches to chemically increase hollow fiber membrane (HFM) CO2 removal efficiency by shifting equilibrium from bicarbonate to gaseous CO2, through either a bioactive carbonic anhydrase enzyme coating or bulk blood acidification with lactic acid. In this study we demonstrate a novel approach to local blood acidification using an acidified sweep gas in combination with a bioactive coating to more than double CO2 removal efficiency of HFM devices. To our knowledge, this is the first report assessing an acidic sweep gas to increase CO2 removal from blood using HFM devices. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Influence of sweeping detonation-wave loading on damage evolution during spallation loading of tantalum in both a planar and curved geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, George Thompson III; Hull, Lawrence Mark; Livescu, Veronica

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning the shock hardening, damage evolution, and the spallation response of materials subjected to square-topped shock-wave loading profiles. However, fewer quantitative studies have been conducted on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (unsupported shocks) loading on the shock hardening, damage evolution, or spallation response of materials. Systematic studies quantifying the effect of sweeping-detonation wave loading are yet sparser. In this study, the damage evolution and spallation response of Ta is shown to be critically dependent on the peak shock stress,more » the geometry of the sample (flat or curved plate geometry), and the shock obliquity during sweeping-detonation-wave shock loading. Sweepingwave loading in the flat-plate geometry is observed to: a) yield a lower spall strength than previously documented for 1-D supported-shock-wave loading, b) exhibit increased shock hardening as a function of increasing obliquity, and c) lead to an increased incidence of deformation twin formation with increasing shock obliquity. Sweeping-wave loading of a 10 cm radius curved Ta plate is observed to: a) lead to an increase in the shear stress as a function of increasing obliquity, b) display a more developed level of damage evolution, extensive voids and coalescence, and lower spall strength with obliquity in the curved plate than seen in the flat-plate sweeping-detonation wave loading for an equivalent HE loading, and c) no increased propensity for deformation twin formation with increasing obliquity as seen in the flat-plate geometry. The overall observations comparing and contrasting the flat versus curved sweeping-wave spall experiments with 1D loaded spallation behavior suggests a coupled influence of obliquity and geometry on dynamic shock-induced damage evolution and spall strength. Coupled experimental and modeling research to quantify the combined effects of sweeping-wave loading with increasingly complex sample geometries on the shockwave response of materials is clearly crucial to providing the basis for developing and thereafter validation of predictive modeling capability.« less

  20. Space shuttle electromagnetic environment experiment. Phase A: Definition study

    NASA Technical Reports Server (NTRS)

    Haber, F.; Showers, R. M.; Kocher, C.; Forrest, L. A., Jr.

    1976-01-01

    Methods for carrying out measurements of earth electromagnetic environment using the space shuttle as a measurement system platform are herein reported. The goal is to provide means for mapping intentional and nonintentional emitters on earth in the frequency range 0.4 to 40 GHz. A survey was made of known emitters using available data from national and international regulatory agencies, and from industry sources. The spatial distribution of sources, power levels, frequencies, degree of frequency re-use, etc., found in the survey, are here presented. A concept is developed for scanning the earth using a directive antenna whose beam is made to rotate at a fixed angle relative to the nadir; the illuminated area swept by the beam is of the form of cycloidal annulus over a sphere. During the beam's sojourn over a point, the receiver sweeps in frequency over ranges in the order of octave width using sweeping filter bandwidths sufficient to give stable readings.

  1. Experiments and error analysis of laser ranging based on frequency-sweep polarization modulation

    NASA Astrophysics Data System (ADS)

    Gao, Shuyuan; Ji, Rongyi; Li, Yao; Cheng, Zhi; Zhou, Weihu

    2016-11-01

    Frequency-sweep polarization modulation ranging uses a polarization-modulated laser beam to determine the distance to the target, the modulation frequency is swept and frequency values are measured when transmitted and received signals are in phase, thus the distance can be calculated through these values. This method gets much higher theoretical measuring accuracy than phase difference method because of the prevention of phase measurement. However, actual accuracy of the system is limited since additional phase retardation occurs in the measuring optical path when optical elements are imperfectly processed and installed. In this paper, working principle of frequency sweep polarization modulation ranging method is analyzed, transmission model of polarization state in light path is built based on the theory of Jones Matrix, additional phase retardation of λ/4 wave plate and PBS, their impact on measuring performance is analyzed. Theoretical results show that wave plate's azimuth error dominates the limitation of ranging accuracy. According to the system design index, element tolerance and error correcting method of system is proposed, ranging system is built and ranging experiment is performed. Experiential results show that with proposed tolerance, the system can satisfy the accuracy requirement. The present work has a guide value for further research about system design and error distribution.

  2. W-Band Frequency-Swept EPR

    PubMed Central

    Hyde, James S.; Strangeway, Robert A.; Camenisch, Theodore G.; Ratke, Joseph J.; Froncisz, Wojciech

    2010-01-01

    This paper describes a novel experiment on nitroxide radical spin labels using a multiarm EPR W-band bridge with a loop-gap resonator (LGR). We demonstrate EPR spectroscopy of spin labels by linear sweep of the microwave frequency across the spectrum. The high bandwidth of the LGR, about 1 GHz between 3 dB points of the microwave resonance, makes this new experiment possible. A frequency-tunable yttrium iron garnet (YIG) oscillator provides sweep rates as high as 1.8 × 105 GHz/s, which corresponds to 6.3 kT/s in magnetic field-sweep units over a 44 MHz range. Two experimental domains were identified. In the first, linear frequency sweep rates were relatively slow, and pure absorption and pure dispersion spectra were obtained. This appears to be a practical mode of operation at the present level of technological development. The main advantage is the elimination of sinusoidal magnetic field modulation. In the second mode, the frequency is swept rapidly across a portion of the spectrum, and then the frequency sweep is stopped for a readout period; FID signals from a swept line oscillate at a frequency that is the difference between the spectral position of the line in frequency units and the readout position. If there is more than one line, oscillations are superimposed. The sweep rates using the YIG oscillator were too slow, and the portion of the spectrum too narrow to achieve the full EPR equivalent of Fourier transform (FT) NMR. The paper discusses technical advances required to reach this goal. The hypothesis that trapezoidal frequency sweep is an enabling technology for FT EPR is supported by this study. PMID:20462775

  3. Kinetic Monte Carlo simulations of thermally activated magnetization reversal in dual-layer Exchange Coupled Composite recording media

    NASA Astrophysics Data System (ADS)

    Plumer, M. L.; Almudallal, A. M.; Mercer, J. I.; Whitehead, J. P.; Fal, T. J.

    The kinetic Monte Carlo (KMC) method developed for thermally activated magnetic reversal processes in single-layer recording media has been extended to study dual-layer Exchange Coupled Composition (ECC) media used in current and next generations of disc drives. The attempt frequency is derived from the Langer formalism with the saddle point determined using a variant of Bellman Ford algorithm. Complication (such as stagnation) arising from coupled grains having metastable states are addressed. MH-hysteresis loops are calculated over a wide range of anisotropy ratios, sweep rates and inter-layer coupling parameter. Results are compared with standard micromagnetics at fast sweep rates and experimental results at slow sweep rates.

  4. Soft Shoulders Ahead: Spurious Signatures of Soft and Partial Selective Sweeps Result from Linked Hard Sweeps

    PubMed Central

    Schrider, Daniel R.; Mendes, Fábio K.; Hahn, Matthew W.; Kern, Andrew D.

    2015-01-01

    Characterizing the nature of the adaptive process at the genetic level is a central goal for population genetics. In particular, we know little about the sources of adaptive substitution or about the number of adaptive variants currently segregating in nature. Historically, population geneticists have focused attention on the hard-sweep model of adaptation in which a de novo beneficial mutation arises and rapidly fixes in a population. Recently more attention has been given to soft-sweep models, in which alleles that were previously neutral, or nearly so, drift until such a time as the environment shifts and their selection coefficient changes to become beneficial. It remains an active and difficult problem, however, to tease apart the telltale signatures of hard vs. soft sweeps in genomic polymorphism data. Through extensive simulations of hard- and soft-sweep models, here we show that indeed the two might not be separable through the use of simple summary statistics. In particular, it seems that recombination in regions linked to, but distant from, sites of hard sweeps can create patterns of polymorphism that closely mirror what is expected to be found near soft sweeps. We find that a very similar situation arises when using haplotype-based statistics that are aimed at detecting partial or ongoing selective sweeps, such that it is difficult to distinguish the shoulder of a hard sweep from the center of a partial sweep. While knowing the location of the selected site mitigates this problem slightly, we show that stochasticity in signatures of natural selection will frequently cause the signal to reach its zenith far from this site and that this effect is more severe for soft sweeps; thus inferences of the target as well as the mode of positive selection may be inaccurate. In addition, both the time since a sweep ends and biologically realistic levels of allelic gene conversion lead to errors in the classification and identification of selective sweeps. This general problem of “soft shoulders” underscores the difficulty in differentiating soft and partial sweeps from hard-sweep scenarios in molecular population genomics data. The soft-shoulder effect also implies that the more common hard sweeps have been in recent evolutionary history, the more prevalent spurious signatures of soft or partial sweeps may appear in some genome-wide scans. PMID:25716978

  5. Soft shoulders ahead: spurious signatures of soft and partial selective sweeps result from linked hard sweeps.

    PubMed

    Schrider, Daniel R; Mendes, Fábio K; Hahn, Matthew W; Kern, Andrew D

    2015-05-01

    Characterizing the nature of the adaptive process at the genetic level is a central goal for population genetics. In particular, we know little about the sources of adaptive substitution or about the number of adaptive variants currently segregating in nature. Historically, population geneticists have focused attention on the hard-sweep model of adaptation in which a de novo beneficial mutation arises and rapidly fixes in a population. Recently more attention has been given to soft-sweep models, in which alleles that were previously neutral, or nearly so, drift until such a time as the environment shifts and their selection coefficient changes to become beneficial. It remains an active and difficult problem, however, to tease apart the telltale signatures of hard vs. soft sweeps in genomic polymorphism data. Through extensive simulations of hard- and soft-sweep models, here we show that indeed the two might not be separable through the use of simple summary statistics. In particular, it seems that recombination in regions linked to, but distant from, sites of hard sweeps can create patterns of polymorphism that closely mirror what is expected to be found near soft sweeps. We find that a very similar situation arises when using haplotype-based statistics that are aimed at detecting partial or ongoing selective sweeps, such that it is difficult to distinguish the shoulder of a hard sweep from the center of a partial sweep. While knowing the location of the selected site mitigates this problem slightly, we show that stochasticity in signatures of natural selection will frequently cause the signal to reach its zenith far from this site and that this effect is more severe for soft sweeps; thus inferences of the target as well as the mode of positive selection may be inaccurate. In addition, both the time since a sweep ends and biologically realistic levels of allelic gene conversion lead to errors in the classification and identification of selective sweeps. This general problem of "soft shoulders" underscores the difficulty in differentiating soft and partial sweeps from hard-sweep scenarios in molecular population genomics data. The soft-shoulder effect also implies that the more common hard sweeps have been in recent evolutionary history, the more prevalent spurious signatures of soft or partial sweeps may appear in some genome-wide scans. Copyright © 2015 by the Genetics Society of America.

  6. Particle Size Measurements From the First Fundamentals of Ice Crystal Icing Physics Test in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    King, Michael C.; Bachalo, William; Kurek, Andrzej

    2017-01-01

    This paper presents particle measurements by the Artium Technologies, Inc. Phase Doppler Interferometer and High Speed Imaging instruments from the first Fundamental Ice Crystal Icing Physics test conducted in the NASA Propulsion Systems Laboratory. The work focuses on humidity sweeps at a larger and a smaller median volumetric diameter. The particle size distribution, number density, and water content measured by the Phase Doppler Interferometer and High Speed Imaging instruments from the sweeps are presented and compared. The current capability for these two instruments to measure and discriminate ICI conditions is examined.

  7. Particle Size Measurements from the first Fundamentals of Ice Crystal Icing Physics Test in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    King, Michael C.; Bachalo, William; Kurek, Andrzej

    2017-01-01

    This presentation shows particle measurements by the Artium Technologies, Inc. Phase Doppler Interferometer and High Speed Imaging instruments from the first Fundamental Ice Crystal Icing Physics test conducted in the NASA Propulsion Systems Laboratory. The work focuses on humidity sweeps at a larger and a smaller median volumetric diameter. The particle size distribution, number density, and water content measured by the Phase Doppler Interferometer and High Speed Imaging instruments from the sweeps are presented and compared. The current capability for these two instruments to measure and discriminate ICI conditions is examined.

  8. Space-time correlations of fluctuating velocities in turbulent shear flows

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; He, Guo-Wei

    2009-04-01

    Space-time correlations or Eulerian two-point two-time correlations of fluctuating velocities are analytically and numerically investigated in turbulent shear flows. An elliptic model for the space-time correlations in the inertial range is developed from the similarity assumptions on the isocorrelation contours: they share a uniform preference direction and a constant aspect ratio. The similarity assumptions are justified using the Kolmogorov similarity hypotheses and verified using the direct numerical simulation (DNS) of turbulent channel flows. The model relates the space-time correlations to the space correlations via the convection and sweeping characteristic velocities. The analytical expressions for the convection and sweeping velocities are derived from the Navier-Stokes equations for homogeneous turbulent shear flows, where the convection velocity is represented by the mean velocity and the sweeping velocity is the sum of the random sweeping velocity and the shear-induced velocity. This suggests that unlike Taylor’s model where the convection velocity is dominating and Kraichnan and Tennekes’ model where the random sweeping velocity is dominating, the decorrelation time scales of the space-time correlations in turbulent shear flows are determined by the convection velocity, the random sweeping velocity, and the shear-induced velocity. This model predicts a universal form of the space-time correlations with the two characteristic velocities. The DNS of turbulent channel flows supports the prediction: the correlation functions exhibit a fair good collapse, when plotted against the normalized space and time separations defined by the elliptic model.

  9. Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.

    PubMed

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-03-01

    This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.

  10. The effect of canard leading edge sweep and dihedral angle on the longitudinal and lateral aerodynamic characteristic of a close-coupled canard-wing configuration

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.

    1974-01-01

    A generalized wind-tunnel model, with canard and wing planforms typical of highly maneuverable aircraft, was tested in the Langley high-speed 7- by 10-foot tunnel at a Mach number of 0.30. The test was conducted in order to determine the effects of canard sweep and canard dihedral on canard-wing interference at high angles of attack. In general, the effect of canard sweep on lift is small up to an angle of attack of 16 deg. However, for angles of attack greater than 16 deg, an increase in the canard sweep results in an increase in lift developed by the canard when the canard is above or in the wing chord plane. This increased lift results in a lift increase for the total configuration for the canard above the wing chord plane. For the canard in the wing chord plane, the increased canard lift is partially lost by increased interference on the wing.

  11. Fast sweeping method for the factored eikonal equation

    NASA Astrophysics Data System (ADS)

    Fomel, Sergey; Luo, Songting; Zhao, Hongkai

    2009-09-01

    We develop a fast sweeping method for the factored eikonal equation. By decomposing the solution of a general eikonal equation as the product of two factors: the first factor is the solution to a simple eikonal equation (such as distance) or a previously computed solution to an approximate eikonal equation. The second factor is a necessary modification/correction. Appropriate discretization and a fast sweeping strategy are designed for the equation of the correction part. The key idea is to enforce the causality of the original eikonal equation during the Gauss-Seidel iterations. Using extensive numerical examples we demonstrate that (1) the convergence behavior of the fast sweeping method for the factored eikonal equation is the same as for the original eikonal equation, i.e., the number of iterations for the Gauss-Seidel iterations is independent of the mesh size, (2) the numerical solution from the factored eikonal equation is more accurate than the numerical solution directly computed from the original eikonal equation, especially for point sources.

  12. Beam control in the ETA-II linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yu-Jiuan

    1992-08-21

    Corkscrew beam motion is caused by chromatic aberration and misalignment of a focusing system. We have taken some measures to control the corkscrew motion on the ETA-11 induction accelerator. To minimize chromatic aberration, we have developed an energy compensation scheme which reduces energy sweep and differential phase advance within a beam pulse. To minimize the misalignment errors, we have developed a time-independent steering algorithm which minimizes the observed corkscrew amplitude averaged over the beam pulse. The steering algorithm can be used even if the monitor spacing is much greater than the system`s cyclotron wavelength and the corkscrew motion caused bymore » a given misaligned magnet is fully developed, i.e., the relative phase advance is greater than 27{pi}.« less

  13. Extended-bandwidth frequency sweeps of a distributed feedback laser using combined injection current and temperature modulation

    NASA Astrophysics Data System (ADS)

    Hefferman, Gerald; Chen, Zhen; Wei, Tao

    2017-07-01

    This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.

  14. Extended-bandwidth frequency sweeps of a distributed feedback laser using combined injection current and temperature modulation.

    PubMed

    Hefferman, Gerald; Chen, Zhen; Wei, Tao

    2017-07-01

    This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.

  15. Detection of selective sweeps in structured populations: a comparison of recent methods.

    PubMed

    Vatsiou, Alexandra I; Bazin, Eric; Gaggiotti, Oscar E

    2016-01-01

    Identifying genomic regions targeted by positive selection has been a long-standing interest of evolutionary biologists. This objective was difficult to achieve until the recent emergence of next-generation sequencing, which is fostering the development of large-scale catalogues of genetic variation for increasing number of species. Several statistical methods have been recently developed to analyse these rich data sets, but there is still a poor understanding of the conditions under which these methods produce reliable results. This study aims at filling this gap by assessing the performance of genome-scan methods that consider explicitly the physical linkage among SNPs surrounding a selected variant. Our study compares the performance of seven recent methods for the detection of selective sweeps (iHS, nSL, EHHST, xp-EHH, XP-EHHST, XPCLR and hapFLK). We use an individual-based simulation approach to investigate the power and accuracy of these methods under a wide range of population models under both hard and soft sweeps. Our results indicate that XPCLR and hapFLK perform best and can detect soft sweeps under simple population structure scenarios if migration rate is low. All methods perform poorly with moderate-to-high migration rates, or with weak selection and very poorly under a hierarchical population structure. Finally, no single method is able to detect both starting and nearly completed selective sweeps. However, combining several methods (XPCLR or hapFLK with iHS or nSL) can greatly increase the power to pinpoint the selected region. © 2015 John Wiley & Sons Ltd.

  16. Polyhedral sweeping processes with unbounded nonconvex-valued perturbation

    NASA Astrophysics Data System (ADS)

    Tolstonogov, A. A.

    2017-12-01

    A polyhedral sweeping process with a multivalued perturbation whose values are nonconvex unbounded sets is studied in a separable Hilbert space. Polyhedral sweeping processes do not satisfy the traditional assumptions used to prove existence theorems for convex sweeping processes. We consider the polyhedral sweeping process as an evolution inclusion with subdifferential operators depending on time. The widely used assumption of Lipschitz continuity for the multivalued perturbation term is replaced by a weaker notion of (ρ - H) Lipschitzness. The existence of solutions is proved for this sweeping process.

  17. Developing a passive load reduction blade for the DTU 10 MW reference turbine

    NASA Astrophysics Data System (ADS)

    de Vaal, J. B.; Nygaard, T. A.; Stenbro, R.

    2016-09-01

    This paper presents the development of a passive load reduction blade for the DTU 10 MW reference wind turbine, using the aero-hydro-servo-elastic analysis tool 3DFloat. Passive load reduction is achieved by introducing sweep to the path of the blade elastic axis, so that out-of-plane bending deflections result in load alleviating torsional deformations of the blade. Swept blades are designed to yield similar annual energy production as a rotor with a reference straight blade. This is achieved by modifying the aerodynamic twist distribution for swept blades based on non-linear blade deflection under steady state loads. The passive load reduction capability of a blade design is evaluated by running a selection of fatigue- and extreme load cases with the analysis tool 3DFloat and determining equivalent fatigue loads, fatigue damage and extreme loads at the blade root and tower base. The influence of sweep on the flutter speed of a blade design is also investigated. A large number of blade designs are evaluated by varying the parameters defining the sweep path of a blade's elastic axis. Results show that a moderate amount of sweep can effectively reduce equivalent fatigue damage and extreme loads, without significantly reducing the flutter speed, or compromising annual energy production.

  18. Sampling bees in tropical forests and agroecosystems: A review

    USGS Publications Warehouse

    Prado, Sara G.; Ngo, Hien T.; Florez, Jaime A.; Collazo, Jaime A.

    2017-01-01

    Bees are the predominant pollinating taxa, providing a critical ecosystem service upon which many angiosperms rely for successful reproduction. Available data suggests that bee populations worldwide are declining, but scarce data in tropical regions precludes assessing their status and distribution, impact on ecological services, and response to management actions. Herein, we reviewed >150 papers that used six common sampling methods (pan traps, baits, Malaise traps, sweep nets, timed observations and aspirators) to better understand their strengths and weaknesses, and help guide method selection to meet research objectives and development of multi-species monitoring approaches. Several studies evaluated the effectiveness of sweep nets, pan traps, and malaise traps, but only one evaluated timed observations, and none evaluated aspirators. Only five studies compared two or more of the remaining four sampling methods to each other. There was little consensus regarding which method would be most reliable for sampling multiple species. However, we recommend that if the objective of the study is to estimate abundance or species richness, malaise traps, pan traps and sweep nets are the most effective sampling protocols in open tropical systems; conversely, malaise traps, nets and baits may be the most effective in forests. Declining bee populations emphasize the critical need in method standardization and reporting precision. Moreover, we recommend reporting a catchability coefficient, a measure of the interaction between the resource (bee) abundance and catching effort. Melittologists could also consider existing methods, such as occupancy models, to quantify changes in distribution and abundance after modeling heterogeneity in trapping probability, and consider the possibility of developing monitoring frameworks that draw from multiple sources of data.

  19. Phase-sensitive optical coherence tomography-based vibrometry using a highly phase-stable akinetic swept laser source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Applegate, Brian E.; Park, Jesung; Carbajal, Esteban

    Phase-sensitive Optical Coherence Tomography (PhOCT) is an emerging tool for in vivo investigation of the vibratory function of the intact middle and inner ear. PhOCT is able to resolve micron scale tissue morphology in three dimensions as well as measure picometer scale motion at each spatial position. Most PhOCT systems to date have relied upon the phase stability offered by spectrometer detection. On the other hand swept laser source based PhOCT offers a number of advantages including balanced detection, long imaging depths, and high imaging speeds. Unfortunately the inherent phase instability of traditional swept laser sources has necessitated complex usermore » developed hardware/software solutions to restore phase sensitivity. Here we present recent results using a prototype swept laser that overcomes these issues. The akinetic swept laser is electronically tuned and precisely controls sweeps without any mechanical movement, which results in high phase stability. We have developed an optical fiber based PhOCT system around the akinetic laser source that had a 1550 nm center wavelength and a sweep rate of 140 kHz. The stability of the system was measured to be 4.4 pm with a calibrated reflector, thus demonstrating near shot noise limited performance. Using this PhOCT system, we have acquired structural and vibratory measurements of the middle ear in a mouse model, post mortem. The quality of the results suggest that the akinetic laser source is a superior laser source for PhOCT with many advantages that greatly reduces the required complexity of the imaging system.« less

  20. Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range.

    PubMed

    Wun, Jhih-Min; Wei, Chia-Chien; Chen, Jyehong; Goh, Chee Seong; Set, S Y; Shi, Jin-Wei

    2013-05-06

    A high-performance photonic sweeping-frequency (chirped) radio-frequency (RF) generator has been demonstrated. By use of a novel wavelength sweeping distributed-feedback (DFB) laser, which is operated based on the linewidth enhancement effect, a fixed wavelength narrow-linewidth DFB laser, and a wideband (dc to 50 GHz) photodiode module for the hetero-dyne beating RF signal generation, a very clear chirped RF waveform can be captured by a fast real-time scope. A very-high frequency sweeping rate (10.3 GHz/μs) with an ultra-wide RF frequency sweeping range (~40 GHz) have been demonstrated. The high-repeatability (~97%) in sweeping frequency has been verified by analyzing tens of repetitive chirped waveforms.

  1. The significance of sweep in Appalachian hardwood sawlogs

    Treesearch

    Thomas W., Jr. Church

    1973-01-01

    Sweep is one of the major stem-form defects in hardwood sawtimber. Some sweep is removed during bucking. But we found sweep of 2 inches or more on 17 percent of the 4,510 logs measured at Appalachian sawmills. Volume deductions for sweep scaled at least 10 percent in 1 of every 7 sample logs and at least 15 percent in 1 of every 9 sample logs. Reduction in the severity...

  2. An Optoelectronic Equivalent Narrowband Filter for High Resolution Optical Spectrum Analysis

    PubMed Central

    Feng, Kunpeng; Cui, Jiwen; Dang, Hong; Wu, Weidong; Sun, Xun; Jiang, Xuelin; Tan, Jiubin

    2017-01-01

    To achieve a narrow bandwidth optical filter with a wide swept range for new generation optical spectrum analysis (OSA) of high performance optical sensors, an optoelectronic equivalent narrowband filter (OENF) was investigated and a swept optical filter with bandwidth of several MHz and sweep range of several tens of nanometers was built using electric filters and a sweep laser as local oscillator (LO). The principle of OENF is introduced and analysis of the OENF system is presented. Two electric filters are optimized to be RBW filters for high and medium spectral resolution applications. Both simulations and experiments are conducted to verify the OENF principle and the results show that the power uncertainty is less than 1.2% and the spectral resolution can reach 6 MHz. Then, a real-time wavelength calibration system consisting of a HCN gas cell and Fabry–Pérot etalon is proposed to guarantee a wavelength accuracy of ±0.4 pm in the C-band and to reduce the influence of phase noise and nonlinear velocity of the LO sweep. Finally, OSA experiments on actual spectra of various optical sensors are conducted using the OENF system. These experimental results indicate that OENF system has an excellent capacity for the analysis of fine spectrum structures. PMID:28208624

  3. An Optoelectronic Equivalent Narrowband Filter for High Resolution Optical Spectrum Analysis.

    PubMed

    Feng, Kunpeng; Cui, Jiwen; Dang, Hong; Wu, Weidong; Sun, Xun; Jiang, Xuelin; Tan, Jiubin

    2017-02-10

    To achieve a narrow bandwidth optical filter with a wide swept range for new generation optical spectrum analysis (OSA) of high performance optical sensors, an optoelectronic equivalent narrowband filter (OENF) was investigated and a swept optical filter with bandwidth of several MHz and sweep range of several tens of nanometers was built using electric filters and a sweep laser as local oscillator (LO). The principle of OENF is introduced and analysis of the OENF system is presented. Two electric filters are optimized to be RBW filters for high and medium spectral resolution applications. Both simulations and experiments are conducted to verify the OENF principle and the results show that the power uncertainty is less than 1.2% and the spectral resolution can reach 6 MHz. Then, a real-time wavelength calibration system consisting of a HCN gas cell and Fabry-Pérot etalon is proposed to guarantee a wavelength accuracy of ±0.4 pm in the C-band and to reduce the influence of phase noise and nonlinear velocity of the LO sweep. Finally, OSA experiments on actual spectra of various optical sensors are conducted using the OENF system. These experimental results indicate that OENF system has an excellent capacity for the analysis of fine spectrum structures.

  4. Secular Resonance Sweeping of the Main Asteroid Belt During Planet Migration

    NASA Astrophysics Data System (ADS)

    Minton, David A.; Malhotra, Renu

    2011-05-01

    We calculate the eccentricity excitation of asteroids produced by the sweeping ν6 secular resonance during the epoch of planetesimal-driven giant planet migration in the early history of the solar system. We derive analytical expressions for the magnitude of the eccentricity change and its dependence on the sweep rate and on planetary parameters; the ν6 sweeping leads to either an increase or a decrease of eccentricity depending on an asteroid's initial orbit. Based on the slowest rate of ν6 sweeping that allows a remnant asteroid belt to survive, we derive a lower limit on Saturn's migration speed of ~0.15 AU Myr-1 during the era that the ν6 resonance swept through the inner asteroid belt (semimajor axis range 2.1-2.8 AU). This rate limit is for Saturn's current eccentricity and scales with the square of its eccentricity; the limit on Saturn's migration rate could be lower if its eccentricity were lower during its migration. Applied to an ensemble of fictitious asteroids, our calculations show that a prior single-peaked distribution of asteroid eccentricities would be transformed into a double-peaked distribution due to the sweeping of the ν6 resonance. Examination of the orbital data of main belt asteroids reveals that the proper eccentricities of the known bright (H <= 10.8) asteroids may be consistent with a double-peaked distribution. If so, our theoretical analysis then yields two possible solutions for the migration rate of Saturn and for the dynamical states of the pre-migration asteroid belt: a dynamically cold state (single-peaked eccentricity distribution with mean of ~0.05) linked with Saturn's migration speed ~4 AU Myr-1 or a dynamically hot state (single-peaked eccentricity distribution with mean of ~0.3) linked with Saturn's migration speed ~0.8 AU Myr-1.

  5. Effects of sound intensity on temporal properties of inhibition in the pallid bat auditory cortex.

    PubMed

    Razak, Khaleel A

    2013-01-01

    Auditory neurons in bats that use frequency modulated (FM) sweeps for echolocation are selective for the behaviorally-relevant rates and direction of frequency change. Such selectivity arises through spectrotemporal interactions between excitatory and inhibitory components of the receptive field. In the pallid bat auditory system, the relationship between FM sweep direction/rate selectivity and spectral and temporal properties of sideband inhibition have been characterized. Of note is the temporal asymmetry in sideband inhibition, with low-frequency inhibition (LFI) exhibiting faster arrival times compared to high-frequency inhibition (HFI). Using the two-tone inhibition over time (TTI) stimulus paradigm, this study investigated the interactions between two sound parameters in shaping sideband inhibition: intensity and time. Specifically, the impact of changing relative intensities of the excitatory and inhibitory tones on arrival time of inhibition was studied. Using this stimulation paradigm, single unit data from the auditory cortex of pentobarbital-anesthetized cortex show that the threshold for LFI is on average ~8 dB lower than HFI. For equal intensity tones near threshold, LFI is stronger than HFI. When the inhibitory tone intensity is increased further from threshold, the strength asymmetry decreased. The temporal asymmetry in LFI vs. HFI arrival time is strongest when the excitatory and inhibitory tones are of equal intensities or if excitatory tone is louder. As inhibitory tone intensity is increased, temporal asymmetry decreased suggesting that the relative magnitude of excitatory and inhibitory inputs shape arrival time of inhibition and FM sweep rate and direction selectivity. Given that most FM bats use downward sweeps as echolocation calls, a similar asymmetry in threshold and strength of LFI vs. HFI may be a general adaptation to enhance direction selectivity while maintaining sweep-rate selective responses to downward sweeps.

  6. Anodic Oxidation of Etodolac and its Linear Sweep, Square Wave and Differential Pulse Voltammetric Determination in Pharmaceuticals

    PubMed Central

    Yilmaz, B.; Kaban, S.; Akcay, B. K.

    2015-01-01

    In this study, simple, fast and reliable cyclic voltammetry, linear sweep voltammetry, square wave voltammetry and differential pulse voltammetry methods were developed and validated for determination of etodolac in pharmaceutical preparations. The proposed methods were based on electrochemical oxidation of etodolac at platinum electrode in acetonitrile solution containing 0.1 M lithium perchlorate. The well-defined oxidation peak was observed at 1.03 V. The calibration curves were linear for etodolac at the concentration range of 2.5-50 μg/ml for linear sweep, square wave and differential pulse voltammetry methods, respectively. Intra- and inter-day precision values for etodolac were less than 4.69, and accuracy (relative error) was better than 2.00%. The mean recovery of etodolac was 100.6% for pharmaceutical preparations. No interference was found from three tablet excipients at the selected assay conditions. Developed methods in this study are accurate, precise and can be easily applied to Etol, Tadolak and Etodin tablets as pharmaceutical preparation. PMID:26664057

  7. Viscous-flow analysis of a subsonic transport aircraft high-lift system and correlation with flight data

    NASA Technical Reports Server (NTRS)

    Potter, R. C.; Vandam, C. P.

    1995-01-01

    High-lift system aerodynamics has been gaining attention in recent years. In an effort to improve aircraft performance, comprehensive studies of multi-element airfoil systems are being undertaken in wind-tunnel and flight experiments. Recent developments in Computational Fluid Dynamics (CFD) offer a relatively inexpensive alternative for studying complex viscous flows by numerically solving the Navier-Stokes (N-S) equations. Current limitations in computer resources restrict practical high-lift N-S computations to two dimensions, but CFD predictions can yield tremendous insight into flow structure, interactions between airfoil elements, and effects of changes in airfoil geometry or free-stream conditions. These codes are very accurate when compared to strictly 2D data provided by wind-tunnel testing, as will be shown here. Yet, additional challenges must be faced in the analysis of a production aircraft wing section, such as that of the NASA Langley Transport Systems Research Vehicle (TSRV). A primary issue is the sweep theory used to correlate 2D predictions with 3D flight results, accounting for sweep, taper, and finite wing effects. Other computational issues addressed here include the effects of surface roughness of the geometry, cove shape modeling, grid topology, and transition specification. The sensitivity of the flow to changing free-stream conditions is investigated. In addition, the effects of Gurney flaps on the aerodynamic characteristics of the airfoil system are predicted.

  8. Point spread function and depth-invariant focal sweep point spread function for plenoptic camera 2.0.

    PubMed

    Jin, Xin; Liu, Li; Chen, Yanqin; Dai, Qionghai

    2017-05-01

    This paper derives a mathematical point spread function (PSF) and a depth-invariant focal sweep point spread function (FSPSF) for plenoptic camera 2.0. Derivation of PSF is based on the Fresnel diffraction equation and image formation analysis of a self-built imaging system which is divided into two sub-systems to reflect the relay imaging properties of plenoptic camera 2.0. The variations in PSF, which are caused by changes of object's depth and sensor position variation, are analyzed. A mathematical model of FSPSF is further derived, which is verified to be depth-invariant. Experiments on the real imaging systems demonstrate the consistency between the proposed PSF and the actual imaging results.

  9. Bend sweep angle and Reynolds number effects on hemodynamics of s-shaped arteries.

    PubMed

    Niazmand, H; Rajabi Jaghargh, E

    2010-09-01

    The purpose of this study is to investigate the effects of the Reynolds number and the bend sweep angle on the blood flow patterns of S-shaped bends. The numerical simulations of steady flows in S-shaped bends with sweep angles of 45 degrees , 90 degrees , and 135 degrees are performed at Reynolds numbers of 125, 500, and 960. Hemodynamic characteristics such as secondary flows, vorticity, and axial velocity profiles are analyzed in detail. Flow patterns in S-shaped bends are strongly dependent on both Reynolds number and bend sweep angle, which can be categorized into three groups based on the first bend secondary flow effects on the transverse flow of the second bend. For low Reynolds numbers and any sweep angles, secondary flows in the second bend eliminate the first bend effects in the early sections of the second bend and therefore the axial velocity profile is consistent with the bend curvature, while for high Reynolds numbers depending on the bend sweep angles the secondary vortex pattern of the first bend may persist partially or totally throughout the second bend leading to a four-vortex secondary structure. Moreover, an interesting flow feature observed at the Reynolds number of 960 is that the secondary flow asymmetrical behavior occurred around the second bend exit and along the outflow straight section. This symmetry-breaking phenomenon which has not been reported in the previous studies is shown to be more pronounced in the 90 degrees S-shaped bend as compared to other models considered here. The probability of flow separation as one of the important flow features contributing to the onset and development of arterial wall diseases is also studied. It is observed that the second bend outer wall of gentle bends with sweep angles from 20 degrees to 30 degrees at high enough Reynolds numbers are prone to flow separation.

  10. LWC and Temperature Effects on Ice Accretion Formation on Swept Wings at Glaze Ice Conditions

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Reshotko, Eli

    2000-01-01

    An experiment was conducted to study the effect of liquid water content and temperature on the critical distance in ice accretion formation on swept wings at glaze ice conditions. The critical distance is defined as the distance from the attachment line to tile beginning of the zone where roughness elements develop into glaze ice feathers. A baseline case of 150 mph, 25 F, 0.75 g/cu m. Cloud Liquid Water Content (LWC) and 20 micrometers in Water Droplet Median Volume Diameter (MVD) was chosen. Icing runs were performed on a NACA 0012 swept wing tip at 150 mph and MVD of 20 micrometers for liquid water contents of 0.5 g/cu m, 0.75 g/cu m, and 1.0 g/cu m, and for total temperatures of 20 F, 25 F and 30 F. At each tunnel condition, the sweep angle was changed from 0 deg to 45 deg in 5 deg increments. Casting data, ice shape tracings, and close-up photographic data were obtained. The results showed that decreasing the LWC to 0.5 g/cu m decreases the value of the critical distance at a given sweep angle compared to the baseline case, and starts the formation of complete scallops at 30 sweep angle. Increasing the LWC to 1.0 g/cu m increases the value of the critical distance compared to the baseline case, the critical distance remains always above 0 millimeters and complete scallops are not formed. Decreasing the total temperature to 20 F decreases the critical distance with respect to the baseline case and formation of complete scallops begins at 25 deg sweep angle. When the total temperature is increased to 30 F, bumps covered with roughness elements appear on the ice accretion at 25 deg and 30 deg sweep angles, large ice structures appear at 35 deg and 40 deg sweep angles, and complete scallops are formed at 45 deg sweep angle.

  11. Biopolymer system for permeability modification in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepp, A.K.; Bryant, R.S.; Llave, F.M.

    1995-12-31

    New technologies are needed to reduce the current high rate of well abandonment. Improved sweep efficiency, reservoir conformance, and permeability modification can have a significant impact on oil recovery processes. Microorganisms can be used to selectively plug high-permeability zones to improve sweep efficiency and impart conformance control. Studies of a promising microbial system for polymer production were conducted to evaluate reservoir conditions in which this system would be effective. Factors which can affect microbial growth and polymer production include salinity, pH, temperature, divalent ions, presence of residual oil, and rock matrix. Flask tests and coreflooding experiments were conducted to optimizemore » and evaluate the effectiveness of this system. Nuclear magnetic resonance imaging (NMRI) was used to visualize microbial polymer production in porous media. Changes in fluid distribution within the pore system of the core were detected.« less

  12. 1 μs broadband frequency sweeping reflectometry for plasma density and fluctuation profile measurements

    NASA Astrophysics Data System (ADS)

    Clairet, F.; Bottereau, C.; Medvedeva, A.; Molina, D.; Conway, G. D.; Silva, A.; Stroth, U.; ASDEX Upgrade Team; Tore Supra Team; Eurofusion Mst1 Team

    2017-11-01

    Frequency swept reflectometry has reached the symbolic value of 1 μs sweeping time; this performance has been made possible, thanks to an improved control of the ramp voltage driving the frequency source. In parallel, the memory depth of the acquisition system has been upgraded and can provide up to 200 000 signals during a plasma discharge. Additional improvements regarding the trigger delay determination of the acquisition and the voltage ramp linearity required by this ultra-fast technique have been set. While this diagnostic is traditionally dedicated to the plasma electron density profile measurement, such a fast sweeping rate can provide the study of fast plasma events and turbulence with unprecedented time and radial resolution from the edge to the core. Experimental results obtained on ASDEX Upgrade plasmas are presented to demonstrate the performances of the diagnostic.

  13. eScience for molecular-scale simulations and the eMinerals project.

    PubMed

    Salje, E K H; Artacho, E; Austen, K F; Bruin, R P; Calleja, M; Chappell, H F; Chiang, G-T; Dove, M T; Frame, I; Goodwin, A L; Kleese van Dam, K; Marmier, A; Parker, S C; Pruneda, J M; Todorov, I T; Trachenko, K; Tyer, R P; Walker, A M; White, T O H

    2009-03-13

    We review the work carried out within the eMinerals project to develop eScience solutions that facilitate a new generation of molecular-scale simulation work. Technological developments include integration of compute and data systems, developing of collaborative frameworks and new researcher-friendly tools for grid job submission, XML data representation, information delivery, metadata harvesting and metadata management. A number of diverse science applications will illustrate how these tools are being used for large parameter-sweep studies, an emerging type of study for which the integration of computing, data and collaboration is essential.

  14. Solving the Capacitive Effect in the High-Frequency sweep for Langmuir Probe in SYMPLE

    NASA Astrophysics Data System (ADS)

    Pramila; Patel, J. J.; Rajpal, R.; Hansalia, C. J.; Anitha, V. P.; Sathyanarayana, K.

    2017-04-01

    Langmuir Probe based measurements need to be routinely carried out to measure various plasma parameters such as the electron density (ne), the electron temperature (Te), the floating potential (Vf), and the plasma potential (Vp). For this, the diagnostic electronics along with the biasing power supplies is installed in standard industrial racks with a 2KV isolation transformer. The Signal Conditioning Electronics (SCE) system is populated inside the 4U-chassis based system with the front-end electronics, designed using high common mode differential amplifiers which can measure small differential signal in presence of high common mode dc- bias or ac ramp voltage used for biasing the probes. DC-biasing of the probe is most common method for getting its I-V characteristic but method of biasing the probe with a sweep at high frequency encounters the problem of corruption of signal due to capacitive effect specially when the sweep period and the discharge time is very fast and die down in the order of μs or lesser. This paper presents and summarises the method of removing such effects encountered while measuring the probe current.

  15. Mechanisms underlying intensity-dependent changes in cortical selectivity for frequency-modulated sweeps.

    PubMed

    Razak, K A

    2012-04-01

    Frequency-modulated (FM) sweeps are common components of species-specific vocalizations. The intensity of FM sweeps can cover a wide range in the natural environment, but whether intensity affects neural selectivity for FM sweeps is unclear. Bats, such as the pallid bat, which use FM sweeps for echolocation, are suited to address this issue, because the intensity of echoes will vary with target distance. In this study, FM sweep rate selectivity of pallid bat auditory cortex neurons was measured using downward sweeps at different intensities. Neurons became more selective for FM sweep rates present in the bat's echolocation calls as intensity increased. Increased selectivity resulted from stronger inhibition of responses to slower sweep rates. The timing and bandwidth of inhibition generated by frequencies on the high side of the excitatory tuning curve [sideband high-frequency inhibition (HFI)] shape rate selectivity in cortical neurons in the pallid bat. To determine whether intensity-dependent changes in FM rate selectivity were due to altered inhibition, the timing and bandwidth of HFI were quantified at multiple intensities using the two-tone inhibition paradigm. HFI arrived faster relative to excitation as sound intensity increased. The bandwidth of HFI also increased with intensity. The changes in HFI predicted intensity-dependent changes in FM rate selectivity. These data suggest that neural selectivity for a sweep parameter is not static but shifts with intensity due to changes in properties of sideband inhibition.

  16. On-line focusing of flavin derivatives using Dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection.

    PubMed

    Britz-McKibbin, Philip; Otsuka, Koji; Terabe, Shigeru

    2002-08-01

    Simple yet effective methods to enhance concentration sensitivity is needed for capillary electrophoresis (CE) to become a practical method to analyze trace levels of analytes in real samples. In this report, the development of a novel on-line preconcentration technique combining dynamic pH junction and sweeping modes of focusing is applied to the sensitive and selective analysis of three flavin derivatives: riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Picomolar (pM) detectability of flavins by CE with laser-induced fluorescence (LIF) detection is demonstrated through effective focusing of large sample volumes (up to 22% capillary length) using a dual pH junction-sweeping focusing mode. This results in greater than a 1,200-fold improvement in sensitivity relative to conventional injection methods, giving a limit of detection (S/N = 3) of approximately 4.0 pM for FAD and FMN. Flavin focusing is examined in terms of analyte mobility dependence on buffer pH, borate complexation and SDS interaction. Dynamic pH junction-sweeping extends on-line focusing to both neutral (hydrophobic) and weakly acidic (hydrophilic) species and is considered useful in cases when either conventional sweeping or dynamic pH junction techniques used alone are less effective for certain classes of analytes. Enhanced focusing performance by this hyphenated method was demonstrated by greater than a 4-fold reduction in flavin bandwidth, as compared to either sweeping or dynamic pH junction, reflected by analyte detector bandwidths <0.20 cm. Novel on-line focusing strategies are required to improve sensitivity in CE, which may be applied toward more effective biochemical analysis methods for diverse types of analytes.

  17. The perception of FM sweeps by Chinese and English listeners.

    PubMed

    Luo, Huan; Boemio, Anthony; Gordon, Michael; Poeppel, David

    2007-02-01

    Frequency-modulated (FM) signals are an integral acoustic component of ecologically natural sounds and are analyzed effectively in the auditory systems of humans and animals. Linearly frequency-modulated tone sweeps were used here to evaluate two questions. First, how rapid a sweep can listeners accurately perceive? Second, is there an effect of native language insofar as the language (phonology) is differentially associated with processing of FM signals? Speakers of English and Mandarin Chinese were tested to evaluate whether being a speaker of a tone language altered the perceptual identification of non-speech tone sweeps. In two psychophysical studies, we demonstrate that Chinese subjects perform better than English subjects in FM direction identification, but not in an FM discrimination task, in which English and Chinese speakers show similar detection thresholds of approximately 20 ms duration. We suggest that the better FM direction identification in Chinese subjects is related to their experience with FM direction analysis in the tone-language environment, even though supra-segmental tonal variation occurs over a longer time scale. Furthermore, the observed common discrimination temporal threshold across two language groups supports the conjecture that processing auditory signals at durations of approximately 20 ms constitutes a fundamental auditory perceptual threshold.

  18. Beam control in the ETA-II linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yu-Jiuan.

    1992-08-21

    Corkscrew beam motion is caused by chromatic aberration and misalignment of a focusing system. We have taken some measures to control the corkscrew motion on the ETA-11 induction accelerator. To minimize chromatic aberration, we have developed an energy compensation scheme which reduces energy sweep and differential phase advance within a beam pulse. To minimize the misalignment errors, we have developed a time-independent steering algorithm which minimizes the observed corkscrew amplitude averaged over the beam pulse. The steering algorithm can be used even if the monitor spacing is much greater than the system's cyclotron wavelength and the corkscrew motion caused bymore » a given misaligned magnet is fully developed, i.e., the relative phase advance is greater than 27[pi].« less

  19. Probing Temperature Inside Planar SOFC Short Stack, Modules, and Stack Series

    NASA Astrophysics Data System (ADS)

    Yu, Rong; Guan, Wanbing; Zhou, Xiao-Dong

    2017-02-01

    Probing temperature inside a solid oxide fuel cell (SOFC) stack lies at the heart of the development of high-performance and stable SOFC systems. In this article, we report our recent work on the direct measurements of the temperature in three types of SOFC systems: a 5-cell short stack, a 30-cell stack module, and a stack series consisting of two 30-cell stack modules. The dependence of temperature on the gas flow rate and current density was studied under a current sweep or steady-state operation. During the current sweep, the temperature inside the 5-cell stack decreased with increasing current, while it increased significantly at the bottom and top of the 30-cell stack. During a steady-state operation, the temperature of the 5-cell stack was stable while it was increased in the 30-cell stack. In the stack series, the maximum temperature gradient reached 190°C when the gas was not preheated. If the gas was preheated and the temperature gradient was reduced to 23°C in the stack series with the presence of a preheating gas and segmented temperature control, this resulted in a low degradation rate.

  20. A Support Vector Machine Approach for Truncated Fingerprint Image Detection from Sweeping Fingerprint Sensors

    PubMed Central

    Chen, Chi-Jim; Pai, Tun-Wen; Cheng, Mox

    2015-01-01

    A sweeping fingerprint sensor converts fingerprints on a row by row basis through image reconstruction techniques. However, a built fingerprint image might appear to be truncated and distorted when the finger was swept across a fingerprint sensor at a non-linear speed. If the truncated fingerprint images were enrolled as reference targets and collected by any automated fingerprint identification system (AFIS), successful prediction rates for fingerprint matching applications would be decreased significantly. In this paper, a novel and effective methodology with low time computational complexity was developed for detecting truncated fingerprints in a real time manner. Several filtering rules were implemented to validate existences of truncated fingerprints. In addition, a machine learning method of supported vector machine (SVM), based on the principle of structural risk minimization, was applied to reject pseudo truncated fingerprints containing similar characteristics of truncated ones. The experimental result has shown that an accuracy rate of 90.7% was achieved by successfully identifying truncated fingerprint images from testing images before AFIS enrollment procedures. The proposed effective and efficient methodology can be extensively applied to all existing fingerprint matching systems as a preliminary quality control prior to construction of fingerprint templates. PMID:25835186

  1. Effects of Wing Sweep on In-flight Boundary-layer Transition for a Laminar Flow Wing at Mach Numbers from 0.60 to 0.79

    NASA Technical Reports Server (NTRS)

    Anderson, Bianca Trujillo; Meyer, Robert R., Jr.

    1990-01-01

    The variable sweep transition flight experiment (VSTFE) was conducted on an F-14A variable sweep wing fighter to examine the effect of wing sweep on natural boundary layer transition. Nearly full span upper surface gloves, extending to 60 percent chord, were attached to the F-14 aircraft's wings. The results are presented of the glove 2 flight tests. Glove 2 had an airfoil shape designed for natural laminar flow at a wing sweep of 20 deg. Sample pressure distributions and transition locations are presented with the complete results tabulated in a database. Data were obtained at wing sweeps of 15, 20, 25, 30, and 35 deg, at Mach numbers ranging from 0.60 to 0.79, and at altitudes ranging from 10,000 to 35,000 ft. Results show that a substantial amount of laminar flow was maintained at all the wing sweeps evaluated. The maximum transition Reynolds number obtained was 18.6 x 10(exp 6) at 15 deg of wing sweep, Mach 0.75, and at an altitude of 10,000 ft.

  2. Mitigation of divertor heat loads by strike point sweeping in high power JET discharges

    NASA Astrophysics Data System (ADS)

    Silburn, S. A.; Matthews, G. F.; Challis, C. D.; Frigione, D.; Graves, J. P.; Mantsinen, M. J.; Belonohy, E.; Hobirk, J.; Iglesias, D.; Keeling, D. L.; King, D.; Kirov, K.; Lennholm, M.; Lomas, P. J.; Moradi, S.; Sips, A. C. C.; Tsalas, M.; Contributors, JET

    2017-12-01

    Deliberate periodic movement (sweeping) of the high heat flux divertor strike lines in tokamak plasmas can be used to manage the heat fluxes experienced by exhaust handling plasma facing components, by spreading the heat loads over a larger surface area. Sweeping has recently been adopted as a routine part of the main high performance plasma configurations used on JET, and has enabled pulses with 30 MW plasma heating power and 10 MW radiation to run for 5 s without overheating the divertor tiles. We present analysis of the effectiveness of sweeping for divertor temperature control on JET, using infrared camera data and comparison with a simple 2D heat diffusion model. Around 50% reduction in tile temperature rise is obtained with 5.4 cm sweeping compared to the un-swept case, and the temperature reduction is found to scale slower than linearly with sweeping amplitude in both experiments and modelling. Compatibility of sweeping with high fusion performance is demonstrated, and effects of sweeping on the edge-localised mode behaviour of the plasma are reported and discussed. The prospects of using sweeping in future JET experiments with up to 40 MW heating power are investigated using a model validated against existing experimental data.

  3. Adiabatic sweep pulses for earth's field NMR with a surface coil

    NASA Astrophysics Data System (ADS)

    Conradi, Mark S.; Altobelli, Stephen A.; Sowko, Nicholas J.; Conradi, Susan H.; Fukushima, Eiichi

    2018-03-01

    Adiabatic NMR sweep pulses are described for inversion and excitation in very low magnetic fields B0 and with broad distribution of excitation field amplitude B1. Two aspects distinguish the low field case: (1) when B1 is comparable to or greater than B0, the rotating field approximation fails and (2) inversion sweeps cannot extend to values well below the Larmor frequency because they would approach or pass through zero frequency. Three approaches to inversion are described. The first is a conventional tangent frequency sweep down to the Larmor frequency, a 180° phase shift, and a sweep back up to the starting frequency. The other two are combined frequency and amplitude sweeps covering a narrower frequency range; one is a symmetric sweep from above to below the Larmor frequency and the other uses a smooth decrease of B1 immediately before and after the 180° phase shift. These two AM/FM sweeps show excellent inversion efficiencies over a wide range of B1, a factor of 30 or more. We also demonstrate an excitation sweep that works well in the presence of the same wide range of B1. We show that the primary effect of the counter-rotating field (i.e., at low B0) is that the magnetization suffers large, periodic deviations from where it would be at large B0. Thus, successful sweep pulses must avoid any sharp features in the amplitude, phase, or frequency.

  4. High Power Storage System Based on Thin Film Solid Ionics.

    DTIC Science & Technology

    1988-02-01

    linear sweep voltametry (LSV) technique (Dahn and Hearing, 1981). We observe that in non-annealed film the peak at 1.2 V Is very strong compared to that...1.8V. The redox stability range has been determined by cyclic voltametry for different preparation conditions of the films. Lithium solid state hybrid...Fig. 6 Linear sweep voltagrams at 7gV/s rate of InSe films prepared at Ts=RT (a) non-annealed, (b) annealed at 475 K during 64 hours. 11 1 -’ 1 J, -I

  5. Model Validation of an RSRM Transporter Through Full-scale Operational and Modal Testing

    NASA Technical Reports Server (NTRS)

    Brillhart, Ralph; Davis, Joshua; Allred, Bradley

    2009-01-01

    The Reusable Solid Rocket Motor (RSRM) segments, which are part of the current Space Shuttle system and will provide the first stage of the Ares launch vehicle, must be transported from their manufacturing facility in Promontory, Utah, to a railhead in Corinne, Utah. This approximately 25-mile trip on secondary paved roads is accomplished using a special transporter system which lifts and conveys each individual segment. ATK Launch Systems (ATK) has recently obtained a new set of these transporters from Scheuerle, a company in Germany. The transporter is a 96-wheel, dual tractor vehicle that supports the payload via a hydraulic suspension. Since this system is a different design than was previously used, computer modeling with validation via test is required to ensure that the environment to which the segment is exposed is not too severe for this space-critical hardware. Accurate prediction of the loads imparted to the rocket motor is essential in order to prevent damage to the segment. To develop and validate a finite element model capable of such accurate predictions, ATA Engineering, Inc., teamed with ATK to perform a modal survey of the transport system, including a forward RSRM segment. A set of electrodynamic shakers was placed around the transporter at locations capable of exciting the transporter vehicle dynamics. Forces from the shakers with varying phase combinations were applied using sinusoidal sweep excitation. The relative phase of the shaker forcing functions was adjusted to match the shape characteristics of each of several target modes, thereby customizing each sweep run for exciting a particular mode. The resulting frequency response functions (FRF) from this series of sine sweeps allowed identification of all target modes and other higher-order modes, allowing good comparison to the finite element model. Furthermore, the survey-derived modal frequencies were correlated with peak frequencies observed during road-going operating tests. This correlation enabled verification of the most significant modes contributing to real-world loading of the motor segment under transport. After traditional model updating, dynamic simulation of the transportation environment was compared to the measured operating data to provided further validation of the analysis model. KEYWORDS Validation, correlation, modal test, rocket motor, transporter

  6. TAC Variable Sweep Model

    NASA Image and Video Library

    1960-05-14

    Project: Wing Sweep Range Series TAC Variable Sweep Model configure 8 A. Taken at 8 foot tunnels building 641. L60-3412 through 3416 Model of proposed military supersonic attack airplane shows wing sweep range. TAC Models taken at the 8 Foot Tunnel. Photograph published in Sixty Years of Aeronautical Research 1917-1977 By David A. Anderton. A NASA publication. Page 53.

  7. A linearly frequency-swept high-speed-rate multi-wavelength laser for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wang, Qiyu; Wang, Zhaoying; Yuan, Quan; Ma, Rui; Du, Tao; Yang, Tianxin

    2017-02-01

    We proposed and demonstrated a linearly frequency-swept multi-wavelength laser source for optical coherence tomography (OCT) eliminating the need of wavenumber space resampling in the postprocessing progress. The source consists of a multi-wavelength fiber laser source (MFS) and an optical sweeping loop. In this novel laser source, an equally spaced multi-wavelength laser is swept simultaneously by a certain step each time in the frequency domain in the optical sweeping loop. The sweeping step is determined by radio frequency (RF) signal which can be precisely controlled. Thus the sweeping behavior strictly maintains a linear relationship between time and frequency. We experimentally achieved linear time-frequency sweeping at a sweeping rate of 400 kHz with our laser source.

  8. Sweep visually evoked potentials and visual findings in children with West syndrome.

    PubMed

    de Freitas Dotto, Patrícia; Cavascan, Nívea Nunes; Berezovsky, Adriana; Sacai, Paula Yuri; Rocha, Daniel Martins; Pereira, Josenilson Martins; Salomão, Solange Rios

    2014-03-01

    West syndrome (WS) is a type of early childhood epilepsy characterized by progressive neurological development deterioration that includes vision. To demonstrate the clinical importance of grating visual acuity thresholds (GVA) measurement by sweep visually evoked potentials technique (sweep-VEP) as a reliable tool for evaluation of the visual cortex status in WS children. This is a retrospective study of the best-corrected binocular GVA and ophthalmological features of WS children referred for the Laboratory of Clinical Electrophysiology of Vision of UNIFESP from 1998 to 2012 (Committee on Ethics in Research of UNIFESP n° 0349/08). The GVA deficit was calculated by subtracting binocular GVA score (logMAR units) of each patient from the median values of age norms from our own lab and classified as mild (0.1-0.39 logMAR), moderate (0.40-0.80 logMAR) or severe (>0.81 logMAR). Associated ophthalmological features were also described. Data from 30 WS children (age from 6 to 108 months, median = 14.5 months, mean ± SD = 22.0 ± 22.1 months; 19 male) were analyzed. The majority presented severe GVA deficit (0.15-1.44 logMAR; mean ± SD = 0.82 ± 0.32 logMAR; median = 0.82 logMAR), poor visual behavior, high prevalence of strabismus and great variability in ocular positioning. The GVA deficit did not vary according to gender (P = .8022), WS type (P = .908), birth age (P = .2881), perinatal oxygenation (P = .7692), visual behavior (P = .8789), ocular motility (P = .1821), nystagmus (P = .2868), risk of drug-induced retinopathy (P = .4632) and participation in early visual stimulation therapy (P = .9010). The sweep-VEP technique is a reliable tool to classify visual system impairment in WS children, in agreement with the poor visual behavior exhibited by them. Copyright © 2013 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  9. All-semiconductor high-speed akinetic swept-source for OCT

    NASA Astrophysics Data System (ADS)

    Minneman, Michael P.; Ensher, Jason; Crawford, Michael; Derickson, Dennis

    2011-12-01

    A novel swept-wavelength laser for optical coherence tomography (OCT) using a monolithic semiconductor device with no moving parts is presented. The laser is a Vernier-Tuned Distributed Bragg Reflector (VT-DBR) structure exhibiting a single longitudinal mode. All-electronic wavelength tuning is achieved at a 200 kHz sweep repetition rate, 20 mW output power, over 100 nm sweep width and coherence length longer than 40 mm. OCT point-spread functions with 45- 55 dB dynamic range are demonstrated; lasers at 1550 nm, and now 1310 nm, have been developed. Because the laser's long-term tuning stability allows for electronic sample trigger generation at equal k-space intervals (electronic k-clock), the laser does not need an external optical k-clock for measurement interferometer sampling. The non-resonant, allelectronic tuning allows for continuously adjustable sweep repetition rates from mHz to 100s of kHz. Repetition rate duty cycles are continuously adjustable from single-trigger sweeps to over 99% duty cycle. The source includes a monolithically integrated power leveling feature allowing flat or Gaussian power vs. wavelength profiles. Laser fabrication is based on reliable semiconductor wafer-scale processes, leading to low and rapidly decreasing cost of manufacture.

  10. Signatures of positive selection: from selective sweeps at individual loci to subtle allele frequency changes in polygenic adaptation.

    PubMed

    Stephan, Wolfgang

    2016-01-01

    In the past 15 years, numerous methods have been developed to detect selective sweeps underlying adaptations. These methods are based on relatively simple population genetic models, including one or two loci at which positive directional selection occurs, and one or two marker loci at which the impact of selection on linked neutral variation is quantified. Information about the phenotype under selection is not included in these models (except for fitness). In contrast, in the quantitative genetic models of adaptation, selection acts on one or more phenotypic traits, such that a genotype-phenotype map is required to bridge the gap to population genetics theory. Here I describe the range of population genetic models from selective sweeps in a panmictic population of constant size to evolutionary traffic when simultaneous sweeps at multiple loci interfere, and I also consider the case of polygenic selection characterized by subtle allele frequency shifts at many loci. Furthermore, I present an overview of the statistical tests that have been proposed based on these population genetics models to detect evidence for positive selection in the genome. © 2015 John Wiley & Sons Ltd.

  11. TIME CALIBRATED OSCILLOSCOPE SWEEP

    DOEpatents

    Owren, H.M.; Johnson, B.M.; Smith, V.L.

    1958-04-22

    The time calibrator of an electric signal displayed on an oscilloscope is described. In contrast to the conventional technique of using time-calibrated divisions on the face of the oscilloscope, this invention provides means for directly superimposing equal time spaced markers upon a signal displayed upon an oscilloscope. More explicitly, the present invention includes generally a generator for developing a linear saw-tooth voltage and a circuit for combining a high-frequency sinusoidal voltage of a suitable amplitude and frequency with the saw-tooth voltage to produce a resultant sweep deflection voltage having a wave shape which is substantially linear with respect to time between equal time spaced incremental plateau regions occurring once each cycle of the sinusoidal voltage. The foregoing sweep voltage when applied to the horizontal deflection plates in combination with a signal to be observed applied to the vertical deflection plates of a cathode ray oscilloscope produces an image on the viewing screen which is essentially a display of the signal to be observed with respect to time. Intensified spots, or certain other conspicuous indications corresponding to the equal time spaced plateau regions of said sweep voltage, appear superimposed upon said displayed signal, which indications are therefore suitable for direct time calibration purposes.

  12. Simulation and theory of spontaneous TAE frequency sweeping

    NASA Astrophysics Data System (ADS)

    Wang, Ge; Berk, H. L.

    2012-09-01

    A simulation model, based on the linear tip model of Rosenbluth, Berk and Van Dam (RBV), is developed to study frequency sweeping of toroidal Alfvén eigenmodes (TAEs). The time response of the background wave in the RBV model is given by a Volterra integral equation. This model captures the properties of TAE waves both in the gap and in the continuum. The simulation shows that phase space structures form spontaneously at frequencies close to the linearly predicted frequency, due to resonant particle-wave interactions and background dissipation. The frequency sweeping signals are found to chirp towards the upper and lower continua. However, the chirping signals penetrate only the lower continuum, whereupon the frequency chirps and mode amplitude increases in synchronism to produce an explosive solution. An adiabatic theory describing the evolution of a chirping signal is developed which replicates the chirping dynamics of the simulation in the lower continuum. This theory predicts that a decaying chirping signal will terminate at the upper continuum though in the numerical simulation the hole disintegrates before the upper continuum is reached.

  13. Behavioral System Feedback Measurement Failure: Sweeping Quality under the Rug

    ERIC Educational Resources Information Center

    Mihalic, Maria T.; Ludwig, Timothy D.

    2009-01-01

    Behavioral Systems rely on valid measurement systems to manage processes and feedback and to deliver contingencies. An examination of measurement system components designed to track customer service quality of furniture delivery drivers revealed the measurement system failed to capture information it was designed to measure. A reason for this…

  14. Short-sweep capillary electrophoresis with a selective zinc fluorescence imaging reagent FluoZin-3 for determination of free and metalothionein-2a-bound Zn2+ ions.

    PubMed

    Nejdl, Lukas; Moravanska, Andrea; Smerkova, Kristyna; Mravec, Filip; Krizkova, Sona; Pomorski, Adam; Krężel, Artur; Macka, Mirek; Adam, Vojtech; Vaculovicova, Marketa

    2018-08-09

    A capillary electrophoretic (CE) method using a short-sweep approach and laser-induced fluorescence (LIF) detection (ShortSweepCE-LIF) was developed for determination of Zn 2+ and Cd 2+ as complexes with highly selective and sensitive fluorescent probe FluoZin-3. The ShortSweepCE-LIF method, established in this work, can be used for examining competitive Zn 2+ and Cd 2+ binding properties of metalloproteins or peptides. The parameters including background electrolyte composition, injection pressure and time as well as separation voltage were investigated. Under the optimized conditions, 80 mM HEPES, pH 7.4, with 1.5 μM FluoZin-3 was used as an electrolyte, hydrodynamic injection was performed at 50 mbar for 5 s, and separation voltage of 25 kV. Limits of detection for Zn 2+ and Cd 2+ were 4 and 125 nM, respectively. The developed method was demonstrated in a study of interactions between metalothionein-2a isoform and metal ions Zn 2+ , Co 2+ and Cd 2+ . It was found that FluoZin-3 was able to extract a single Zn 2+ ion, while added Co 2+ (in surplus) extracted only 2.4 Zn 2+ ions, and Cd 2+ extracted all 7 Zn 2+ ions present in the metalothionein molecule. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Directional Selectivity for FM Sweeps in the Suprageniculate Nucleus of the Mustached Bat Medial Geniculate Body

    PubMed Central

    O’NEILL, WILLIAM E.; BRIMIJOIN, W. OWEN

    2014-01-01

    Mustached bats emit echolocation and communication calls containing both constant frequency (CF) and frequency-modulated (FM) components. Previously we found that 86% of neurons in the ventral division of the external nucleus of the inferior colliculus (ICXv) were directionally selective for linear FM sweeps and that selectivity was dependent on sweep rate. The ICXv projects to the suprageniculate nucleus (Sg) of the medial geniculate body. In this study, we isolated 37 single units in the Sg and measured their responses to best excitatory frequency (BEF) tones and linear 12-kHz upward and downward FM sweeps centered on the BEF. Sweeps were presented at durations of 30, 12, and 4 ms, yielding modulation rates of 400, 1,000, and 3,000 kHz/s. Spike count versus level functions were obtained at each modulation rate and compared with BEF controls. Sg units responded well to both tones and FM sweeps. BEFs clustered at 58 kHz, corresponding to the dominant CF component of the sonar signal. Spike count functions for both tones and sweeps were predominantly non-monotonic. FM directional selectivity was significant in 53–78% of the units, depending on modulation rate and level. Units were classified as up-selective (52%), down-selective (24%), or bi-directional (non-selective, 16%); a few units (8%) showed preferences that were either rate- or level-dependent. Most units showed consistent directional preferences at all SPLs and modulation rates tested, but typically showed stronger selectivity at lower sweep rates. Directional preferences were attributable to suppression of activity by sweeps in the non-preferred direction (~80% of units) and/or facilitation by sweeps in the preferred direction (~20–30%). Latencies for BEF tones ranged from 4.9 to 25.7 ms. Latencies for FM sweeps typically varied linearly with sweep duration. Most FM latency-duration functions had slopes ranging from 0.4 to 0.6, suggesting that the responses were triggered by the BEF. Latencies for BEF tones and FM sweeps were significantly correlated in most Sg units, i.e., the response to FM was temporally related to the occurrence of the BEF in the FM sweep. FM latency declined relative to BEF latency as modulation rate increased, suggesting that at higher rates response is triggered by frequencies in the sweep preceding the BEF. We conclude that Sg and ICXv units have similar, though not identical, response properties. Sg units are predominantly upsweep selective and could respond to either or both the CF and FM components in biosonar signals in a number of echolocation scenarios, as well as to a variety of communication sounds. PMID:12091543

  16. Parameter identification of a rotor supported in a pressurized bearing lubricated with water

    NASA Technical Reports Server (NTRS)

    Grant, John W.; Muszynska, Agnes; Bently, Donald E.

    1994-01-01

    A rig for testing an externally pressurized (hydrostatic), water-lubricated bearing was developed. Applying a nonsynchronous sweep frequency, rotating perturbation force with a constant amplitude as an input, rotor vibration response data was acquired in Bode and Dynamic Stiffness formats. Using this data, the parameters of the rotor/bearing system were identified. The rotor/bearing model was represented by the generalized (modal) parameters of the first lateral mode, with the rotational character of the fluid force taken into account.

  17. The W7-X ECRH Plant: Recent Achievements

    NASA Astrophysics Data System (ADS)

    Erckmann, V.; Brand, P.; Braune, H.; Dammertz, G.; Gantenbein, G.; Kasparek, W.; Laqua, H. P.; Michel, G.; Schmid, M.; Thumm, M.; Weissgerber, M.

    2007-09-01

    The 10 MW, 140 GHz, CW ECRH-plant for W7-X is in an advanced state of commissioning and the installation was used to investigate advanced applications for extended heating- and current drive scenarios. The operation of the TED gyrotrons was recently extended to a 2nd frequency of 103.6 GHz at reduced output power and first results are presented. An improved collector sweep system for the W7-X gyrotrons with enhanced power capability and smooth power distribution was developed, results are reported.

  18. Consultative Committee for Space Data Systems. Panel 1: Support

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Space data systems are discussed. Recommendations concerning Earth station equipment and a procedure to determine the transmitted frequency sweep range on the Earth-to-space link for category B missions, are among the topics discussed.

  19. Design and development of broadband piezoelectric vibration energy harvester based on compliant orthoplanar spring

    NASA Astrophysics Data System (ADS)

    Dhote, Sharvari

    With advancement in technology, power requirements are reduced drastically for sensor nodes. The piezoelectric vibration energy harvesters generate sufficient power to low-powered sensor nodes. The main requirement of energy harvester is to provide a broad bandwidth. A conventional linear harvester does not satisfy this requirement. Therefore, the research focus is shifted to exploiting nonlinearity to widen the bandwidth of the harvester. Although nonlinear techniques are promising for broadening a bandwidth, reverse sweep shows reduced response as compared to the forward sweep. To overcome this issue, this thesis presents the design and development of a broadband piezoelectric vibration energy harvester based on a nonlinear multi-frequency compliant orthoplanar spring. This thesis is divided into three parts. The first part presents the design and experimental study of a tri-leg compliant orthoplanar spring for a broadband energy harvesting. The harvester performance is enhanced through the use of lightweight masses, which bring nonlinear vibration modes closer. The performance of the harvester is analyzed through development of a mathematical model based on the Duffing oscillator. The experimental and numerical results are in good agreement. The parametric study shows that an optimum performance is achieved by further reducing a gap in between the vibration modes using different weight masses. In the second part of the research, multiple (bi, quad and pent) leg compliant orthoplanar springs are designed to understand their role in expanding the bandwidth and reducing gap between vibration modes. The designed harvesters are compared by calculating the figure of merits. The quad-leg design provides a better performance in terms of power density and bandwidth among all the designs. The reverse sweep response is comparable to the forward sweep in terms of bandwidth. In the final part, a magnetic force is applied to the tri-leg harvester, which enhanced the voltage output and bandwidth. In addition, vibration modes have been brought even closer by reducing the gap between the modes. Overall, the proposed harvester performance is significantly improved using multiple legs attached with piezoelectric plates and masses, bringing the modes closer in the forward and reverse sweeps, making it advantageous to harvest energy from wideband environmental vibrations.

  20. The frequency and level of sweep in mixed hardwood saw logs in the eastern United States

    Treesearch

    Peter Hamner; Marshall S. White; Philip A. Araman

    2007-01-01

    Hardwood sawmills traditionally saw logs in a manner that either orients sawlines parallel to the log central axis (straight sawing) or the log surface (allowing for taper). Sweep is characterized as uniform curvature along the entire length of a log. For logs with sweep, lumber yield losses from straight and taper sawing increase with increasing levels of sweep. Curve...

  1. Measurements of the eigenfunction of reversed shear Alfvén eigenmodes that sweep downward in frequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidbrink, W. W.; Austin, M. E.; Spong, D. A.

    2013-08-15

    Reversed shear Alfvén eigenmodes (RSAEs) usually sweep upward in frequency when the minimum value of the safety factor q{sub min} decreases in time. On rare occasions, RSAEs sweep downward prior to the upward sweep. Electron cyclotron emission measurements show that the radial eigenfunction during the downsweeping phase is similar to the eigenfunction of normal, upsweeping RSAEs.

  2. Demonstration of frequency-sweep testing technique using a Bell 214-ST helicopter

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Fletcher, Jay W.; Diekmann, Vernon L.; Williams, Robert A.; Cason, Randall W.

    1987-01-01

    A demonstration of frequency-sweep testing using a Bell-214ST single-rotor helicopter was completed in support of the Army's development of an updated MIL-H-8501A, and an LHX (ADS-33) handling-qualities specification. Hover and level-flight (V sub a = 0 knots and V sub a = 90 knots) tests were conducted in 3 flight hours by Army test pilots at the Army Aviation Engineering Flight Activity (AEFA) at Edwards AFB, Calif. Bandwidth and phase-delay parameters were determined from the flight-extracted frequency responses as required by the proposed specifications. Transfer function modeling and verification demonstrates the validity of the frequency-response concept for characterizing closed-loop flight dynamics of single-rotor helicopters -- even in hover. This report documents the frequency-sweep flight-testing technique and data-analysis procedures. Special emphasis is given to piloting and analysis considerations which are important for demonstrating frequency-domain specification compliance.

  3. Enhancing the mathematical properties of new haplotype homozygosity statistics for the detection of selective sweeps.

    PubMed

    Garud, Nandita R; Rosenberg, Noah A

    2015-06-01

    Soft selective sweeps represent an important form of adaptation in which multiple haplotypes bearing adaptive alleles rise to high frequency. Most statistical methods for detecting selective sweeps from genetic polymorphism data, however, have focused on identifying hard selective sweeps in which a favored allele appears on a single haplotypic background; these methods might be underpowered to detect soft sweeps. Among exceptions is the set of haplotype homozygosity statistics introduced for the detection of soft sweeps by Garud et al. (2015). These statistics, examining frequencies of multiple haplotypes in relation to each other, include H12, a statistic designed to identify both hard and soft selective sweeps, and H2/H1, a statistic that conditional on high H12 values seeks to distinguish between hard and soft sweeps. A challenge in the use of H2/H1 is that its range depends on the associated value of H12, so that equal H2/H1 values might provide different levels of support for a soft sweep model at different values of H12. Here, we enhance the H12 and H2/H1 haplotype homozygosity statistics for selective sweep detection by deriving the upper bound on H2/H1 as a function of H12, thereby generating a statistic that normalizes H2/H1 to lie between 0 and 1. Through a reanalysis of resequencing data from inbred lines of Drosophila, we show that the enhanced statistic both strengthens interpretations obtained with the unnormalized statistic and leads to empirical insights that are less readily apparent without the normalization. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Evaluation and Enhancement of Carbon Dioxide Flooding Through Sweep Improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Richard

    2009-09-30

    Carbon dioxide displacement is a common improved recovery method applied to light oil reservoirs (30-45{degrees}API). The economic and technical success of CO{sub 2} floods is often limited by poor sweep efficiency or large CO{sub 2} utilization rates. Projected incremental recoveries for CO{sub 2} floods range from 7% to 20% of the original oil in place; however, actual incremental recoveries range from 9% to 15% of the original oil in place, indicating the potential for significant additional recoveries with improved sweep efficiency. This research program was designed to study the effectiveness of carbon dioxide flooding in a mature reservoir to identifymore » and develop methods and strategies to improve oil recovery in carbon dioxide floods. Specifically, the project has focused on relating laboratory, theoretical and simulation studies to actual field performance in a CO{sub 2} flood in an attempt to understand and mitigate problems of areal and vertical sweep efficiency. In this work the focus has been on evaluating the status of existing swept regions of a mature CO{sub 2} flood and developing procedures to improve the design of proposed floods. The Little Creek Field, Mississippi has been studied through laboratory, theoretical, numerical and simulation studies in an attempt to relate performance predictions to historical reservoir performance to determine sweep efficiency, improve the understanding of the reservoir response to CO{sub 2} injection, and develop scaling methodologies to relate laboratory data and simulation results to predicted reservoir behavior. Existing laboratory information from Little Creek was analyzed and an extensive amount of field data was collected. This was merged with an understanding of previous work at Little Creek to generate a detailed simulation study of two portions of the field – the original pilot area and a currently active part of the field. This work was done to try to relate all of this information to an understanding of where the CO{sub 2} went or is going and how recovery might be improved. New data was also generated in this process. Production logs were run to understand where the CO{sub 2} was entering the reservoir related to core and log information and also to corroborate the simulation model. A methodology was developed and successfully tested for evaluating saturations in a cased-hole environment. Finally an experimental and theoretical program was initiated to relate laboratory work to field scale design and analysis of operations. This work found that an understanding of vertical and areal heterogeneity is crucial for understanding sweep processes as well as understanding appropriate mitigation techniques to improve the sweep. Production and injection logs can provide some understanding of that heterogeneity when core data is not available. The cased-hole saturation logs developed in the project will also be an important part of the evaluation of vertical heterogeneity. Evaluation of injection well/production well connectivities through statistical or numerical techniques were found to be as successful in evaluating CO{sub 2} floods as they are for waterfloods. These are likely to be the lowest cost techniques to evaluate areal sweep. Full field simulation and 4D seismic techniques are other possibilities but were beyond the scope of the project. Detailed simulation studies of pattern areas proved insightful both for doing a “post-mortem” analysis of the pilot area as well as a late-term, active portion of the Little Creek Field. This work also evaluated options for improving sweep in the current flood as well as evaluating options that could have been successful at recovering more oil. That simulation study was successful due to the integration of a large amount of data supplied by the operator as well as collected through the course of the project. While most projects would not have the abundance of data that Little Creek had, integration of the available data continues to be critical for both the design and evaluation stages of CO{sub 2} floods. For cases where data availability is limited, running injection/production logs and/or running cased-hole saturation tools to provide an indication of vertical heterogeneity will be important.« less

  5. SweepSAR: Beam-forming on Receive Using a Reflector-Phased Array Feed Combination for Spaceborne SAR

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Krieger, G.; Rosen, P.; Younis, M.; Johnson, W. T. K.; Huber, S.; Jordan, R.; Moreira, A.

    2012-01-01

    In this paper, an alternative approach is described that is suited for longer wavelength SARs in particular, employing a large, deployable reflector antenna and a much simpler phased array feed. To illuminate a wide swath, a substantial fraction of the phased array feed is excited on transmit to sub-illuminate the reflector. Shorter transmit pulses are required than for conventional SAR. On receive, a much smaller portion of the phased array feed is used to collect the return echo, so that a greater portion of the reflector antenna area is used. The locus of the portion of the phased array used on receive is adjusted using an analog beam steering network, to 'sweep' the receive beam(s) across the illuminated swath, tracking the return echo. This is similar in some respects to the whiskbroom approach to optical sensors, hence the name: SweepSAR.SweepSAR has advantages over conventional SAR in that it requires less transmit power, and if the receive beam is narrow enough, it is relatively immune to range ambiguities. Compared to direct radiating arrays with digital beam- forming, it is much simpler to implement, uses currently available technologies, is better suited for longer wavelength systems, and does not require extremely high data rates or onboard processing.

  6. Data and methods of a 1999-2000 street sweeping study on an urban freeway in Milwaukee County, Wisconsin

    USGS Publications Warehouse

    Waschbusch, Robert J.

    2003-01-01

    The Wisconsin Department of Transportation is required to control the quality of runoff from roadways under their control as part of the National Pollution Discharge Elimination System. One way to control roadway runoff is to use street sweeping to remove pollutants before they are entrained in runoff. This may be a good option because land is often unavailable or prohibitively expensive and structural best-management practices can also be expensive. This study collected stormwater runoff samples and dirt samples from the roadway surface from a section of Interstate Highway 894 near Milwaukee, Wisconsin during periods when a street sweeping program was and was not in effect. These data may be useful in evaluating street sweeping as a stormwater best management practice but this study did not perform this evaluation. Data collection methods, concentrations of sediment and other constituents in storm- water runoff, and street dirt masses are presented in this report. Replicate and comparison sample results indicate that when evaluating the effectiveness of best-management practices on highway runoff, suspended sediment results should be used rather than suspended solids, presumably because the particle sizes in highway runoff is large compared to those found in other types of stormwater runoff.

  7. Parameter Sweep and Optimization of Loosely Coupled Simulations Using the DAKOTA Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elwasif, Wael R; Bernholdt, David E; Pannala, Sreekanth

    2012-01-01

    The increasing availability of large scale computing capabilities has accelerated the development of high-fidelity coupled simulations. Such simulations typically involve the integration of models that implement various aspects of the complex phenomena under investigation. Coupled simulations are playing an integral role in fields such as climate modeling, earth systems modeling, rocket simulations, computational chemistry, fusion research, and many other computational fields. Model coupling provides scientists with systematic ways to virtually explore the physical, mathematical, and computational aspects of the problem. Such exploration is rarely done using a single execution of a simulation, but rather by aggregating the results from manymore » simulation runs that, together, serve to bring to light novel knowledge about the system under investigation. Furthermore, it is often the case (particularly in engineering disciplines) that the study of the underlying system takes the form of an optimization regime, where the control parameter space is explored to optimize an objective functions that captures system realizability, cost, performance, or a combination thereof. Novel and flexible frameworks that facilitate the integration of the disparate models into a holistic simulation are used to perform this research, while making efficient use of the available computational resources. In this paper, we describe the integration of the DAKOTA optimization and parameter sweep toolkit with the Integrated Plasma Simulator (IPS), a component-based framework for loosely coupled simulations. The integration allows DAKOTA to exploit the internal task and resource management of the IPS to dynamically instantiate simulation instances within a single IPS instance, allowing for greater control over the trade-off between efficiency of resource utilization and time to completion. We present a case study showing the use of the combined DAKOTA-IPS system to aid in the design of a lithium ion battery (LIB) cell, by studying a coupled system involving the electrochemistry and ion transport at the lower length scales and thermal energy transport at the device scales. The DAKOTA-IPS system provides a flexible tool for use in optimization and parameter sweep studies involving loosely coupled simulations that is suitable for use in situations where changes to the constituent components in the coupled simulation are impractical due to intellectual property or code heritage issues.« less

  8. Ohmsett test of NOFI Vee-Sweep and NOFI 600S oilboom. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodwin, M.J.

    1993-10-01

    A NOFI Vee-Sweep and a NOFI 600S Oilboom, both manufactured by NOFI TROMSO A/S of Norway, were tested at the Ohmsett test tank in Leonardo, NJ. The V-Shaped Sweep is an oil boom designed for use with a skimmer at the apex of the V-Shaped configuration. Oil is funneled back to the skimmer by the converging sides of the V and concentrated for more efficient skimming. The 60 meter length of the sweep is doubled over to form the V and held in this shape by cross netting at the bottom of the skirt. The bottom netting is claimed tomore » help stabilize the oil in the sweep. The sweep was towed with a 700mm skirt depth and mouth opening of 16 meters. The mouth opening was reduced from the designed 19.8 meters to fit in the tow tank without causing excess blockage. The limiting towing speeds of the sweep were determined with and without oil present, in calm water and in small waves. The sweep's ability to conform to waves was also determined. Towing forces were measured. Limited data on oil loss rates were obtained. Testing confirmed the manufacturer's claim that the sweep can be towed at 1.0 and 1.4 knots with oil in calm water, based on the first loss of oil. The critical tow speed was found to be 3.4 to 3.6 knots in calm water. Oil booms, Tow tank testing.« less

  9. Oxygen Transport Membrane Reactors for Oxy-Fuel Combustion and Carbon Capture Purposes

    NASA Astrophysics Data System (ADS)

    Falkenstein-Smith, Ryan L.

    This thesis investigates oxygen transport membrane reactors (OTMs) for the application of oxy-fuel combustion. This is done by evaluating the material properties and oxygen permeability of different OTM compositions subjected to a variety of operating conditions. The scope of this work consists of three components: (1) evaluate the oxygen permeation capabilities of perovskite-type materials for the application of oxy-fuel combustion; (2) determine the effects of dual-phase membrane compositions on the oxygen permeation performance and membrane characteristics; and (3) develop a new method for estimating the oxygen permeation performance of OTMs utilized for the application of oxy-fuel combustion. SrSc0.1Co0.9O3-delta (SSC) is selected as the primary perovskite-type material used in this research due to its reported high ionic and electronic conductive properties and chemical stability. SSC's oxygen ion diffusivity is investigated using a conductivity relaxation technique and thermogravimetric analysis. Material properties such as chemical structure, morphology, and ionic and electronic conductivity are examined by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and conductivity testing using a four-probe method, respectively. Oxygen permeation tests study the oxygen permeability OTMs under modified membrane temperatures, sweeping gas flow rates, sweeping gas compositions, membrane configurations, and membrane compositions. When utilizing a pure CO2 sweeping gas, the membrane composition was modified with the addition of Sm0.2Ce0.8O1.9-delta (SDC) at varying wt.% to improve the membranes mechanical stability. A newly developed method to evaluate the oxygen permeation performance of OTMs is also presented by fitting OTM's oxygen permeability to the methane fraction in the sweeping gas composition. The fitted data is used to estimate the overall performance and size of OTMs utilized for the application of oxy-fuel combustion. The findings from this research show that under a wide range of membrane temperatures and in a variety of atmospheres, a pure SSC OTM can achieve superior surface exchange and oxygen chemical diffusion coefficients compared to other commonly studied materials. SSC's high oxygen permeability (>1 ml.min -1.cm-2) demonstrates the material's candidacy for the application of oxy-fuel combustion. However, in the presence of rich CO 2 atmospheres, SSC shows mechanical and chemical instabilities due to the carbonate formation on the perovskite structure. The addition of SDC in the membrane composition produces a dual-phase OTM which is observed to improve the oxygen permeation flux when subjected to pure CO2 sweeping gases. When subjected to pure methane sweeping gases, dual-phase OTM compositions exhibits lower oxygen permeability compared to the single-phase SSC OTM. Despite the decline in the oxygen permeation flux, some dual-phase compositions still exhibit a high oxygen permeability, indicating their potential for the application of oxy-fuel combustion. Furthermore, a newly developed method for evaluating OTMs for the application of oxy-fuel combustion is presented in a portion of this work. This new method calculates key components such as the average oxygen permeation flux, approximate effective surface area, and the impact of additional recirculated exhaust into the incoming sweeping gas to provide a detailed understanding of OTM's application for oxy-fuel combustion. The development of this approach will aid in the evaluation of newly developed materials and create a new standard for implementing OTMs for the application of oxy-fuel combustion.

  10. Acoustic resonance frequency locked photoacoustic spectrometer

    DOEpatents

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-09-09

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell, the acoustic source having a source frequency; repeatedly and continuously sweeping the source frequency across the resonance frequency at a sweep rate; and employing an odd-harmonic of the source frequency sweep rate to maintain the source frequency sweep centered on the resonance frequency.

  11. Influence of vane sweep on rotor-stator interaction noise

    NASA Technical Reports Server (NTRS)

    Envia, Edmane; Kerschen, Edward J.

    1990-01-01

    The influence of vane sweep in rotor-stator interaction noise is investigated. In an analytical approach, the interaction of a convected gust representing the rotor viscous wake, with a cascade of cascade of finite span swept airfoils, representing the stator, is analyzed. The analysis is based on the solution of the exact linearized equations of motion. High frequency convected gusts for which noise generation is concentrated near the leading edge of airfoils is considered. In a preliminary study, the problem of an isolated finite span swept airfoil interacting with a convected gust is analyzed. Results indicate that sweep can substantially reduce the farfield noise levels for a single airfoil. Using the single airfoil model, an approximate solution to the problem of noise radiation from a cascade of finite span swept airfoils interacting with a convected gust is derived. A parametric study of noise generated by gust cascade interaction is carried out to assess the effectiveness of vane sweep in reducing rotor-stator interaction noise. The results show that sweep is beneficial in reducing noise levels. Rotor wake twist or circumferential lean substantially influences the effectiveness of vane sweep. The orientation of vane sweep must be chosen to enhance the natural phase lag caused by wake lean, in which case rather small sweep angles substantially reduce the noise levels.

  12. Experimental determination of optimum gutter brush parameters and road sweeping criteria for different types of waste.

    PubMed

    Abdel-Wahab, Magd M; Wang, Chong; Vanegas-Useche, Libardo V; Parker, Graham A

    2011-06-01

    The removal ability of gutter brushes for road sweeping for various debris types and different sweeping parameters is studied through experimental tests. The brushing test rig used comprises two commercial gutter brushes, a concrete test bed, and an asphalt test road with a gutter of 0.25 cm width and 10° slope. The brush-surface contact area is determined by sweeping sand on the concrete test bed. Sweeping problems are identified and discussed, and sweeping criteria for the different debris types are suggested. Also, optimum sweeping parameters are proposed for each debris type. In addition, debris removal mechanisms are discussed and analysed. The results indicate that for large heavy debris such as stones and gravel, it is not difficult to achieve large removal forces, because the steel bristles are relatively stiff. Conversely, high removal forces are not needed for particles of millimetre or micron sizes, but bristle curvature has to be appropriate to remove particles from road concavities. Finally, it is found that mud, especially dry mud on a rough surface, is the hardest debris to sweep, requiring a brush with a large tilt angle and a very large penetration to produce large removal forces. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Influence of vane sweep on rotor-stator interaction noise

    NASA Astrophysics Data System (ADS)

    Envia, Edmane; Kerschen, Edward J.

    1990-12-01

    The influence of vane sweep in rotor-stator interaction noise is investigated. In an analytical approach, the interaction of a convected gust representing the rotor viscous wake, with a cascade of cascade of finite span swept airfoils, representing the stator, is analyzed. The analysis is based on the solution of the exact linearized equations of motion. High frequency convected gusts for which noise generation is concentrated near the leading edge of airfoils is considered. In a preliminary study, the problem of an isolated finite span swept airfoil interacting with a convected gust is analyzed. Results indicate that sweep can substantially reduce the farfield noise levels for a single airfoil. Using the single airfoil model, an approximate solution to the problem of noise radiation from a cascade of finite span swept airfoils interacting with a convected gust is derived. A parametric study of noise generated by gust cascade interaction is carried out to assess the effectiveness of vane sweep in reducing rotor-stator interaction noise. The results show that sweep is beneficial in reducing noise levels. Rotor wake twist or circumferential lean substantially influences the effectiveness of vane sweep. The orientation of vane sweep must be chosen to enhance the natural phase lag caused by wake lean, in which case rather small sweep angles substantially reduce the noise levels.

  14. Investigation at Low Speeds of the Effect of Aspect Ratio and Sweep on Rolling Stability Derivatives of Untapered Wings

    NASA Technical Reports Server (NTRS)

    Goodman, Alex; Fisher, Lewis R

    1950-01-01

    A low-scale wind-tunnel investigation was conducted in rolling flow to determine the effects of aspect ratio and sweep (when varied independently) on the rolling stability derivatives for a series of untapered wings. The rolling-flow equipment of the Langley stability tunnel was used for the tests. The data of the investigation have been used to develop a method of accounting for the effects of the drag on the yawing moment due to rolling throughout the lift range.

  15. A Sweeping Jet Application on a High Reynolds Number Semispan Supercritical Wing Configuration

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Milholen, William E., II; Chan, David T.; Melton, Latunia; Goodliff, Scott L.; Cagle, C. Mark

    2017-01-01

    The FAST-MAC circulation control model was modified to test an array of unsteady sweeping-jet actuators at realistic flight Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center. Two types of sweeping jet actuators were fabricated using rapid prototype techniques, and directed over a 15% chord simple-hinged flap. The model was configured for low-speed high-lift testing with flap deflections of 30 deg and 60 deg, and a transonic cruise configuration having a 0 deg flap deflection. For the 30 deg flap high-lift configuration, the sweeping jets achieved comparable lift performance in the separation control regime, while reducing the mass flow by 54% as compared to steady blowing. The sweeping jets however were not effective for the 60 deg flap. For the transonic cruise configuration, the sweeping jets reduced the drag by 3.3% at an off-design condition. The drag reduction for the design lift coefficient for the sweeping jets offer is only half the drag reduction shown for the steady blowing case (6.5%), but accomplished this with a 74% reduction in mass flow.

  16. Removal of road deposited sediments by sweeping and its contribution to highway runoff quality in Korea.

    PubMed

    Kim, D G; Jeong, K; Ko, S O

    2014-01-01

    Highway runoff is known to be an important non-point source (NPS), increasing the load of pollutants in receiving water. For reducing NPS pollutants in runoff, removal of road deposited sediment (RDS) by sweeping is considered effective. However, the contribution of sweeping to the improvement of runoff quality has not been clearly and quantitatively demonstrated so far. In this study, a field test was carried out on a section of operating highway in Korea to investigate the effectiveness of sweeping on improving the quality of highway runoff. Results showed that the average reduction in the load of RDS by sweeping was 61.10% with a standard deviation of 1.74%. RDS removal efficiency decreased when the sweeping speed increased from 4-8 to 20 km h(-1), the load decreased from 12.5 to 1.25 g m(-2) and particle size decreased from sand to silt/clay size ranges. Runoff was induced by applying a 15 mm h(-1) artificial rainfall to both swept and non-swept sections. Analysis of runoff quality showed that the event mean concentrations of total suspended solid, biological oxygen demand, chemical oxygen demand, nutrients and most of the heavy metals were reduced by 31-87% after sweeping. In addition, field tests for RDS build-up indicated a sweeping frequency of once every four or five days to prevent re-suspension of RDS. The results of this study suggest that sweeping can be the best management practice for effectively reducing RDS on highways and improving the quality of highway runoff.

  17. Design and implementation of Bluetooth beacon in mobile payment system

    NASA Astrophysics Data System (ADS)

    Han, Tiantian; Ding, Lei

    2017-08-01

    The current line of payment means, mainly in the following ways, cash payment, credit card payment, WeChat Alipay sweep payment. There are many inconvenience in Cash payment, large amounts of cash inconvenience to carry, count the money to spend time and effort, true and false banknotes difficult to distinguish, ticket settlement easy to go wrong. Credit card payment is relatively time-consuming, and WeChat Alipay sweep payment need to sweep. Therefore, the design of a convenient, fast payment to meet the line to pay the demand is particularly important. Based on the characteristics of BLE Bluetooth wireless communication technology, this paper designs a kind of payment method based on Bluetooth beacon. Through the Bluetooth beacon broadcast consumption, consumers only need to open the relevant APP in the Android client, and you can get Bluetooth via mobile phone Bluetooth the amount of consumption of the standard broadcast, in accordance with the corresponding payment platform to complete the payment process, which pay less time to improve the efficiency of payment.

  18. A Bayesian approach to estimate evoked potentials.

    PubMed

    Sparacino, Giovanni; Milani, Stefano; Arslan, Edoardo; Cobelli, Claudio

    2002-06-01

    Several approaches, based on different assumptions and with various degree of theoretical sophistication and implementation complexity, have been developed for improving the measurement of evoked potentials (EP) performed by conventional averaging (CA). In many of these methods, one of the major challenges is the exploitation of a priori knowledge. In this paper, we present a new method where the 2nd-order statistical information on the background EEG and on the unknown EP, necessary for the optimal filtering of each sweep in a Bayesian estimation framework, is, respectively, estimated from pre-stimulus data and obtained through a multiple integration of a white noise process model. The latter model is flexible (i.e. it can be employed for a large class of EP) and simple enough to be easily identifiable from the post-stimulus data thanks to a smoothing criterion. The mean EP is determined as the weighted average of the filtered sweeps, where each weight is inversely proportional to the expected value of the norm of the correspondent filter error, a quantity determinable thanks to the employment of the Bayesian approach. The performance of the new approach is shown on both simulated and real auditory EP. A signal-to-noise ratio enhancement is obtained that can allow the (possibly automatic) identification of peak latencies and amplitudes with less sweeps than those required by CA. For cochlear EP, the method also allows the audiology investigator to gather new and clinically important information. The possibility of handling single-sweep analysis with further development of the method is also addressed.

  19. Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Dayton A.

    2005-09-29

    Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Report Global Energy Concepts, LLC (GEC) has performed a conceptual design study concerning aeroelastic tailoring of small wind turbine blades. The primary objectives were to evaluate ways that blade/rotor geometry could be used to enable cost-of-energy reductions by enhancing energy capture while constraining or mitigating blade costs, system loads, and related component costs. This work builds on insights developed in ongoing adaptive-blade programs but with a focus on application to small turbine systems with isotropic blade material properties and with combined blade sweep and pre-bending/pre-curving to achieve the desired twist coupling.more » Specific goals of this project are to: (A) Evaluate and quantify the extent to which rotor geometry can be used to realize load-mitigating small wind turbine rotors. Primary aspects of the load mitigation are: (1) Improved overspeed safety affected by blades twisting toward stall in response to speed increases. (2) Reduced fatigue loading affected by blade twisting toward feather in response to turbulent gusts. (B) Illustrate trade-offs and design sensitivities for this concept. (C) Provide the technical basis for small wind turbine manufacturers to evaluate this concept and commercialize if the technology appears favorable. The SolidWorks code was used to rapidly develop solid models of blade with varying shapes and material properties. Finite element analyses (FEA) were performed using the COSMOS code modeling with tip-loads and centripetal accelerations. This tool set was used to investigate the potential for aeroelastic tailoring with combined planform sweep and pre-curve. An extensive matrix of design variables was investigated, including aerodynamic design, magnitude and shape of planform sweep, magnitude and shape of blade pre-curve, material stiffness, and rotor diameter. The FEA simulations resulted in substantial insights into the structural response of these blades. The trends were used to identify geometries and rotor configurations that showed the greatest promise for achieving beneficial aeroelastic response. The ADAMS code was used to perform complete aeroelastic simulations of selected rotor configurations; however, the results of these simulations were not satisfactory. This report documents the challenges encountered with the ADAMS simulations and presents recommendations for further development of this concept for aeroelastically tailored small wind turbine blades.« less

  20. Incremental wind tunnel testing of high lift systems

    NASA Astrophysics Data System (ADS)

    Victor, Pricop Mihai; Mircea, Boscoianu; Daniel-Eugeniu, Crunteanu

    2016-06-01

    Efficiency of trailing edge high lift systems is essential for long range future transport aircrafts evolving in the direction of laminar wings, because they have to compensate for the low performance of the leading edge devices. Modern high lift systems are subject of high performance requirements and constrained to simple actuation, combined with a reduced number of aerodynamic elements. Passive or active flow control is thus required for the performance enhancement. An experimental investigation of reduced kinematics flap combined with passive flow control took place in a low speed wind tunnel. The most important features of the experimental setup are the relatively large size, corresponding to a Reynolds number of about 2 Million, the sweep angle of 30 degrees corresponding to long range airliners with high sweep angle wings and the large number of flap settings and mechanical vortex generators. The model description, flap settings, methodology and results are presented.

  1. FUEL ELEMENT

    DOEpatents

    Fortescue, P.; Zumwalt, L.R.

    1961-11-28

    A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

  2. Design of an Ultra-High Efficiency GaN High-Power Amplifier for SAR Remote Sensing

    NASA Technical Reports Server (NTRS)

    Thrivikraman, Tushar; Hoffman, James

    2013-01-01

    This work describes the development of a high-power amplifier for use with a remote sensing SAR system. The amplifier is intended to meet the requirements for the Sweep-SAR technique for use in the proposed DESDynI SAR instrument. In order to optimize the amplifier design, active load-pull technique is employed to provide harmonic tuning to provide efficiency improvements. In addition, some of the techniques to overcome the challenges of load-pulling high power devices are presented. The design amplifier was measured to have 49 dBm of output power with 75% PAE, which is suitable to meet the proposed system requirements.

  3. Influence of Finite Span and Sweep on Active Flow Control Efficacy

    NASA Technical Reports Server (NTRS)

    Greenblatt, David; Washburn, Anthony E.

    2008-01-01

    Active flow control efficacy was investigated by means of leading-edge and flap-shoulder zero mass-flux blowing slots on a semispan wing model that was tested in unswept (standard) and swept configurations. On the standard configuration, stall commenced inboard, but with sweep the wing stalled initially near the tip. On both configurations, leading-edge perturbations increased CL,max and post stall lift, both with and without deflected flaps. Without sweep, the effect of control was approximately uniform across the wing span but remained effective to high angles of attack near the tip; when sweep was introduced a significant effect was noted inboard, but this effect degraded along the span and produced virtually no meaningful lift enhancement near the tip, irrespective of the tip configuration. In the former case, control strengthened the wingtip vortex; in the latter case, a simple semi-empirical model, based on the trajectory or "streamline" of the evolving perturbation, served to explain the observations. In the absence of sweep, control on finite-span flaps did not differ significantly from their nominally twodimensional counterpart. Control from the flap produced expected lift enhancement and CL,max improvements in the absence of sweep, but these improvements degraded with the introduction of sweep.

  4. Advanced Oxygen Systems for Aircraft (Systemes d’Oxygene Avances)

    DTIC Science & Technology

    1996-04-01

    This purge gas sweeps out the nitrogen and at the same time fills the micro- pore structure of the molecular sieve with the product gas. When the...electrochemical (amperometry, voltametry , polarography, coulometry), (c) spectrometry (mass spectrometry, ultraviolet spectrometry), (d) solid-state

  5. Human-Robot Cooperation with Commands Embedded in Actions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazuki; Yamada, Seiji

    In this paper, we first propose a novel interaction model, CEA (Commands Embedded in Actions). It can explain the way how some existing systems reduce the work-load of their user. We next extend the CEA and build ECEA (Extended CEA) model. The ECEA enables robots to achieve more complicated tasks. On this extension, we employ ACS (Action Coding System) which can describe segmented human acts and clarifies the relationship between user's actions and robot's actions in a task. The ACS utilizes the CEA's strong point which enables a user to send a command to a robot by his/her natural action for the task. The instance of the ECEA led by using the ACS is a temporal extension which has the user keep a final state of a previous his/her action. We apply the temporal extension of the ECEA for a sweeping task. The high-level task, a cooperative task between the user and the robot can be realized. The robot with simple reactive behavior can sweep the region of under an object when the user picks up the object. In addition, we measure user's cognitive loads on the ECEA and a traditional method, DCM (Direct Commanding Method) in the sweeping task, and compare between them. The results show that the ECEA has a lower cognitive load than the DCM significantly.

  6. Verification of Bwo Model of Vlf Chorus Generation Using Magion 5 Data

    NASA Astrophysics Data System (ADS)

    Titova, E. E.; Kozelov, B. V.; Jiricek, F.; Smilauer, J.; Demekhov, A. G.; Trakhtengerts, V. Yu.

    We present a detailed study of chorus emissions in the magnetosphere detected on- board the Magion 5, when the satellite was at low magnetic latitudes. We determine the frequency sweep rate and the periods of electromagnetic VLF chorus emissions. These results are considered within the concept of the backward wave oscillator (BWO) regime of chorus generation. Comparison of the frequency sweep rate of chorus el- ements shows: (i) There is a correlation between the frequency sweep rates and the chorus amplitudes. The frequency sweep rate increases with chorus amplitude in ac- cord with expectations from the BWO model. (ii) The chorus growth rate, estimated from the frequency sweep rate, is in accord with that inferred from the BWO gener- ation mechanism. (iii) The BWO regime of chorus generation ensures the observed decrease in the frequency sweep rate of the chorus elements with increasing L shell. We also discuss the relationship between the observed periods of chorus elements with the predictions following from the BWO model of chorus generation.

  7. Transient visual responses reset the phase of low-frequency oscillations in the skeletomotor periphery.

    PubMed

    Wood, Daniel K; Gu, Chao; Corneil, Brian D; Gribble, Paul L; Goodale, Melvyn A

    2015-08-01

    We recorded muscle activity from an upper limb muscle while human subjects reached towards peripheral targets. We tested the hypothesis that the transient visual response sweeps not only through the central nervous system, but also through the peripheral nervous system. Like the transient visual response in the central nervous system, stimulus-locked muscle responses (< 100 ms) were sensitive to stimulus contrast, and were temporally and spatially dissociable from voluntary orienting activity. Also, the arrival of visual responses reduced the variability of muscle activity by resetting the phase of ongoing low-frequency oscillations. This latter finding critically extends the emerging evidence that the feedforward visual sweep reduces neural variability via phase resetting. We conclude that, when sensory information is relevant to a particular effector, detailed information about the sensorimotor transformation, even from the earliest stages, is found in the peripheral nervous system. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. EGR distribution and fluctuation probe based on CO2 measurements

    DOEpatents

    Parks, II, James E.; Partridge, Jr., William P.; Yoo, Ji Hyung

    2015-06-30

    A diagnostic system having a laser, an EGR probe, a detector and a processor. The laser may be a swept-.lamda. laser having a sweep range including a significant CO.sub.2 feature and substantially zero absorption regions. The sweep range may extend from about 2.708 .mu.m to about 2.7085 .mu.m. The processor may determine CO.sub.2 concentration as a function of the detector output signal. The processor may normalize the output signal as a function of the zero absorption regions. The system may include a plurality of EGR probes receiving light from a single laser. The system may include a separate detector for each probe. Alternatively, the system may combine the light returning from the different probes into a composite beam that is measured by a single detector. A unique modulation characteristic may be introduced into each light beam before combination so that the processor can discriminate between them in the composite beam.

  9. Noise produced by the interaction of a rotor wake with a swept stator blade

    NASA Astrophysics Data System (ADS)

    Envia, E.; Kerschen, E. J.

    1984-10-01

    An analysis is developed for the noise generated by the interaction of rotor viscous wakes and a single swept stator vane. The stator vane spans a channel with infinite parallel walls which contains a uniform subsonic mean flow. High frequency wakes, for which the noise generation is concentrated at the vane leading edge, are considered. The general wake pattern is expanded in spanwise modes and solutions for each mode are derived using the Wiener-Hopf technique applied to the equations in the nonorthogonal coordinates. Closed form expressions for the acoustic farfield are obtained. The results of the analysis are used in parametric calculations of rotor viscous wake-stator vane interactions in order to study the effectiveness of sweep as a noise reduction mechanism. For the cases studied, moderate stator sweep angles produce sizeable reductions in the level of the farfield noise. The presence of rotor wake circumferential lean actually increases the noise reduction produced by moderate stator sweep angles.

  10. The derived FOXP2 variant of modern humans was shared with Neandertals.

    PubMed

    Krause, Johannes; Lalueza-Fox, Carles; Orlando, Ludovic; Enard, Wolfgang; Green, Richard E; Burbano, Hernán A; Hublin, Jean-Jacques; Hänni, Catherine; Fortea, Javier; de la Rasilla, Marco; Bertranpetit, Jaume; Rosas, Antonio; Pääbo, Svante

    2007-11-06

    Although many animals communicate vocally, no extant creature rivals modern humans in language ability. Therefore, knowing when and under what evolutionary pressures our capacity for language evolved is of great interest. Here, we find that our closest extinct relatives, the Neandertals, share with modern humans two evolutionary changes in FOXP2, a gene that has been implicated in the development of speech and language. We furthermore find that in Neandertals, these changes lie on the common modern human haplotype, which previously was shown to have been subject to a selective sweep. These results suggest that these genetic changes and the selective sweep predate the common ancestor (which existed about 300,000-400,000 years ago) of modern human and Neandertal populations. This is in contrast to more recent age estimates of the selective sweep based on extant human diversity data. Thus, these results illustrate the usefulness of retrieving direct genetic information from ancient remains for understanding recent human evolution.

  11. Glitches in Los Angeles Payroll System Spark Furor

    ERIC Educational Resources Information Center

    Trotter, Andrew

    2007-01-01

    Thousands of Los Angeles teachers have not been paid properly for months because of errors in a corporate-style payroll system that was introduced in January as part of a sweeping, $95 million computer modernization. The Los Angeles Unified School District acknowledges that the payroll system's rollout was rushed and tainted by numerous…

  12. Optimization of the separation of lysergic acid diethylamide in urine by a sweeping technique using micellar electrokinetic chromatography.

    PubMed

    Fang, Ching; Liu, Ju-Tsung; Lin, Cheng-Huang

    2002-07-25

    The separation and on-line concentrations of lysergic acid diethylamide (LSD), iso-lysergic acid diethylamide (iso-LSD) and lysergic acid N,N-methylpropylamide (LAMPA) in human urine were investigated by capillary electrophoresis-fluorescence spectroscopy using sodium dodecyl sulfate (SDS) as an anionic surfactant. A number of parameters such as buffer pH, SDS concentration, Brij-30 concentration and the content of organic solvent used in separation, were optimized. The techniques of sweeping-micellar electrokinetic chromatography (sweeping-MEKC) and cation-selective exhaustive injection-sweep-micellar electrokinetic chromatography (CSEI-sweep-MEKC) were used for determining on-line concentrations. The advantages and disadvantages of this procedure with respect to sensitivity, precision and simplicity are discussed and compared. Copyright 2002 Elsevier Science BV.

  13. Characterization of wavelength-swept active mode locking fiber laser based on reflective semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Lee, Hwi Don; Lee, Ju Han; Yung Jeong, Myung; Kim, Chang-Seok

    2011-07-01

    The static and dynamic characteristics of a wavelength-swept active mode locking (AML) fiber laser are presented in both the time-region and wavelength-region. This paper shows experimentally that the linewidth of a laser spectrum and the bandwidth of the sweeping wavelength are dependent directly on the length and dispersion of the fiber cavity as well as the modulation frequency and sweeping rate under the mode-locking condition. To achieve a narrower linewidth, a longer length and higher dispersion of the fiber cavity as well as a higher order mode locking condition are required simultaneously. For a broader bandwidth, a lower order of the mode locking condition is required using a lower modulation frequency. The dynamic sweeping performance is also analyzed experimentally to determine its applicability to optical coherence tomography imaging. It is shown that the maximum sweeping rate can be improved by the increased free spectral range from the shorter length of the fiber cavity. A reflective semiconductor optical amplifier (RSOA) was used to enhance the modulation and dispersion efficiency. Overall a triangular electrical signal can be used instead of the sinusoidal signal to sweep the lasing wavelength at a high sweeping rate due to the lack of mechanical restrictions in the wavelength sweeping mechanism.

  14. Method and system using power modulation for maskless vapor deposition of spatially graded thin film and multilayer coatings with atomic-level precision and accuracy

    DOEpatents

    Montcalm, Claude [Livermore, CA; Folta, James Allen [Livermore, CA; Tan, Swie-In [San Jose, CA; Reiss, Ira [New City, NY

    2002-07-30

    A method and system for producing a film (preferably a thin film with highly uniform or highly accurate custom graded thickness) on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source operated with time-varying flux distribution. In preferred embodiments, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. A user selects a source flux modulation recipe for achieving a predetermined desired thickness profile of the deposited film. The method relies on precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.

  15. Sampling methods, dispersion patterns, and fixed precision sequential sampling plans for western flower thrips (Thysanoptera: Thripidae) and cotton fleahoppers (Hemiptera: Miridae) in cotton.

    PubMed

    Parajulee, M N; Shrestha, R B; Leser, J F

    2006-04-01

    A 2-yr field study was conducted to examine the effectiveness of two sampling methods (visual and plant washing techniques) for western flower thrips, Frankliniella occidentalis (Pergande), and five sampling methods (visual, beat bucket, drop cloth, sweep net, and vacuum) for cotton fleahopper, Pseudatomoscelis seriatus (Reuter), in Texas cotton, Gossypium hirsutum (L.), and to develop sequential sampling plans for each pest. The plant washing technique gave similar results to the visual method in detecting adult thrips, but the washing technique detected significantly higher number of thrips larvae compared with the visual sampling. Visual sampling detected the highest number of fleahoppers followed by beat bucket, drop cloth, vacuum, and sweep net sampling, with no significant difference in catch efficiency between vacuum and sweep net methods. However, based on fixed precision cost reliability, the sweep net sampling was the most cost-effective method followed by vacuum, beat bucket, drop cloth, and visual sampling. Taylor's Power Law analysis revealed that the field dispersion patterns of both thrips and fleahoppers were aggregated throughout the crop growing season. For thrips management decision based on visual sampling (0.25 precision), 15 plants were estimated to be the minimum sample size when the estimated population density was one thrips per plant, whereas the minimum sample size was nine plants when thrips density approached 10 thrips per plant. The minimum visual sample size for cotton fleahoppers was 16 plants when the density was one fleahopper per plant, but the sample size decreased rapidly with an increase in fleahopper density, requiring only four plants to be sampled when the density was 10 fleahoppers per plant. Sequential sampling plans were developed and validated with independent data for both thrips and cotton fleahoppers.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winterbone, D.E.; Richards, P.

    A microprocessor controlled test bed was built for steady state mapping of petrol engines using a sweep mapping technique. The addition of an electric motor to the fast acting dynamometer allowed rapid load changes to be applied at nominally constant speed. This made it possible to consider the dynamic behaviour of the power generation sub-system of the engine. The engine was initially subjected to ramp changes of torque but these did not give consistent results. PRBS signals were then used for the same variable and a mathematical transfer function model developed for the engine power system. The engine was consideredmore » both as a continuous and sample data system. Results will be presented which show fuel management has an appreciable effect on the engine dynamic response.« less

  17. Detection of selective sweeps in cattle using genome-wide SNP data

    PubMed Central

    2013-01-01

    Background The domestication and subsequent selection by humans to create breeds and biological types of cattle undoubtedly altered the patterning of variation within their genomes. Strong selection to fix advantageous large-effect mutations underlying domesticability, breed characteristics or productivity created selective sweeps in which variation was lost in the chromosomal region flanking the selected allele. Selective sweeps have now been identified in the genomes of many animal species including humans, dogs, horses, and chickens. Here, we attempt to identify and characterise regions of the bovine genome that have been subjected to selective sweeps. Results Two datasets were used for the discovery and validation of selective sweeps via the fixation of alleles at a series of contiguous SNP loci. BovineSNP50 data were used to identify 28 putative sweep regions among 14 diverse cattle breeds. Affymetrix BOS 1 prescreening assay data for five breeds were used to identify 85 regions and validate 5 regions identified using the BovineSNP50 data. Many genes are located within these regions and the lack of sequence data for the analysed breeds precludes the nomination of selected genes or variants and limits the prediction of the selected phenotypes. However, phenotypes that we predict to have historically been under strong selection include horned-polled, coat colour, stature, ear morphology, and behaviour. Conclusions The bias towards common SNPs in the design of the BovineSNP50 assay led to the identification of recent selective sweeps associated with breed formation and common to only a small number of breeds rather than ancient events associated with domestication which could potentially be common to all European taurines. The limited SNP density, or marker resolution, of the BovineSNP50 assay significantly impacted the rate of false discovery of selective sweeps, however, we found sweeps in common between breeds which were confirmed using an ultra-high-density assay scored in a small number of animals from a subset of the breeds. No sweep regions were shared between indicine and taurine breeds reflecting their divergent selection histories and the very different environmental habitats to which these sub-species have adapted. PMID:23758707

  18. Real Time Computer Control of Neutral Beam Energy and Current During a DIII-D Tokamak Shot

    NASA Astrophysics Data System (ADS)

    Pawley, C. J.; Pace, D. C.; Rauch, J. M.; Scoville, J. T.

    2017-10-01

    A new control system has been implemented on DIII-D neutral beams which has been used during the 2016 and 2017 experimental campaign to directly change the beam acceleration voltage (V) and beam current (I) by the Plasma Control System (PCS) during a shot. Small changes in the beam voltage of 1-2 kV can be made in 1 msec or larger changes of up to 20kV in 0.5 seconds. The beam current can be modified by as much as +/-20% at a fixed beam voltage. Since both can be independently and simultaneously changed it is possible to change beam power (IV) at fixed voltage, keep constant power while sweeping beam voltage, or to maintain minimum beam divergence during a beam voltage sweep by changing I simultaneously to keep a constant beam perveance. The limitations of the variability will be presented with required changes in equipment to extend either the speed or range of the controls. Some of the effects on fast ion plasma instabilities or other plasma mode changes made possible by this control will also be presented (see also D.C. Pace, this conference). Design and changes to the control system was performed under General Atomics Internal Research and Development support, while plasma experiments on DIII-D were supported in part by the US Department of Energy under Award No. DE-FC02-04ER54698.

  19. Dual-gate polysilicon nanoribbon biosensors enable high sensitivity detection of proteins.

    PubMed

    Zeimpekis, I; Sun, K; Hu, C; Ditshego, N M J; Thomas, O; de Planque, M R R; Chong, H M H; Morgan, H; Ashburn, P

    2016-04-22

    We demonstrate the advantages of dual-gate polysilicon nanoribbon biosensors with a comprehensive evaluation of different measurement schemes for pH and protein sensing. In particular, we compare the detection of voltage and current changes when top- and bottom-gate bias is applied. Measurements of pH show that a large voltage shift of 491 mV pH(-1) is obtained in the subthreshold region when the top-gate is kept at a fixed potential and the bottom-gate is varied (voltage sweep). This is an improvement of 16 times over the 30 mV pH(-1) measured using a top-gate sweep with the bottom-gate at a fixed potential. A similar large voltage shift of 175 mV is obtained when the protein avidin is sensed using a bottom-gate sweep. This is an improvement of 20 times compared with the 8.8 mV achieved from a top-gate sweep. Current measurements using bottom-gate sweeps do not deliver the same signal amplification as when using bottom-gate sweeps to measure voltage shifts. Thus, for detecting a small signal change on protein binding, it is advantageous to employ a double-gate transistor and to measure a voltage shift using a bottom-gate sweep. For top-gate sweeps, the use of a dual-gate transistor enables the current sensitivity to be enhanced by applying a negative bias to the bottom-gate to reduce the carrier concentration in the nanoribbon. For pH measurements, the current sensitivity increases from 65% to 149% and for avidin sensing it increases from 1.4% to 2.5%.

  20. Dual-gate polysilicon nanoribbon biosensors enable high sensitivity detection of proteins

    NASA Astrophysics Data System (ADS)

    Zeimpekis, I.; Sun, K.; Hu, C.; Ditshego, N. M. J.; Thomas, O.; de Planque, M. R. R.; Chong, H. M. H.; Morgan, H.; Ashburn, P.

    2016-04-01

    We demonstrate the advantages of dual-gate polysilicon nanoribbon biosensors with a comprehensive evaluation of different measurement schemes for pH and protein sensing. In particular, we compare the detection of voltage and current changes when top- and bottom-gate bias is applied. Measurements of pH show that a large voltage shift of 491 mV pH-1 is obtained in the subthreshold region when the top-gate is kept at a fixed potential and the bottom-gate is varied (voltage sweep). This is an improvement of 16 times over the 30 mV pH-1 measured using a top-gate sweep with the bottom-gate at a fixed potential. A similar large voltage shift of 175 mV is obtained when the protein avidin is sensed using a bottom-gate sweep. This is an improvement of 20 times compared with the 8.8 mV achieved from a top-gate sweep. Current measurements using bottom-gate sweeps do not deliver the same signal amplification as when using bottom-gate sweeps to measure voltage shifts. Thus, for detecting a small signal change on protein binding, it is advantageous to employ a double-gate transistor and to measure a voltage shift using a bottom-gate sweep. For top-gate sweeps, the use of a dual-gate transistor enables the current sensitivity to be enhanced by applying a negative bias to the bottom-gate to reduce the carrier concentration in the nanoribbon. For pH measurements, the current sensitivity increases from 65% to 149% and for avidin sensing it increases from 1.4% to 2.5%.

  1. Street dust: implications for stormwater and air quality, and environmental through street sweeping.

    PubMed

    Calvillo, Steven J; Williams, E Spencer; Brooks, Bryan W

    2015-01-01

    Street dust represents a source of dual potential risk to stormwater and air quality. It has been well documented that street dust washes into local watersheds and can degrade water quality. Research has also demonstrated that ambient particulate matter (PM10) , which is associated with adverse health outcomes, can arise from resuspension of accumulated street dust. Furthermore, many contaminants, including metals, are present at higher concentrations in the smallest available particles, which are more likely to be resuspended in air and stormwater runoff. Although street cleaning is listed as a best management practice for storm water quality by the EPA, data are limited on the critical parameters (technology, environment, usage), which determine the effectiveness of any street cleaning program, particularly in the peer-reviewed literature. The purpose of the present study was to develop a comprehensive understanding of the efficacy of various street cleaning technologies and practices to protect both water quality and public health. Few studies have compared the effectiveness of street sweeping technologies to remove street dust. Unfortunately, the dearth of comprehensive data on exposure, contaminant concentrations, and efficacy of various sweeping technologies and strategies precludes developing quantitative estimates for potential risk to humans and the environment. Based on the few studies available, regenerative air street sweepers appear to provide the most benefit with regard to collection of small particles and prevention of re-entrainment. It is also clear from the available data that local conditions, climate, and specific needs are critical determinants of the ideal street sweeping strategy (technology, frequency, speed, targeted areas, etc.). Given the critical need for protection of water and air quality in rapidly expanding urban regions (e.g., megacities), further research is necessary to develop best practices for street dust management. Herein, we provide a framework for future experimental studies to support risk-based assessments of street cleaning technologies.

  2. Calculating qP-wave traveltimes in 2-D TTI media by high-order fast sweeping methods with a numerical quartic equation solver

    NASA Astrophysics Data System (ADS)

    Han, Song; Zhang, Wei; Zhang, Jie

    2017-09-01

    A fast sweeping method (FSM) determines the first arrival traveltimes of seismic waves by sweeping the velocity model in different directions meanwhile applying a local solver. It is an efficient way to numerically solve Hamilton-Jacobi equations for traveltime calculations. In this study, we develop an improved FSM to calculate the first arrival traveltimes of quasi-P (qP) waves in 2-D tilted transversely isotropic (TTI) media. A local solver utilizes the coupled slowness surface of qP and quasi-SV (qSV) waves to form a quartic equation, and solve it numerically to obtain possible traveltimes of qP-wave. The proposed quartic solver utilizes Fermat's principle to limit the range of the possible solution, then uses the bisection procedure to efficiently determine the real roots. With causality enforced during sweepings, our FSM converges fast in a few iterations, and the exact number depending on the complexity of the velocity model. To improve the accuracy, we employ high-order finite difference schemes and derive the second-order formulae. There is no weak anisotropy assumption, and no approximation is made to the complex slowness surface of qP-wave. In comparison to the traveltimes calculated by a horizontal slowness shooting method, the validity and accuracy of our FSM is demonstrated.

  3. An Overview of Active Flow Control Enhanced Vertical Tail Technology Development

    NASA Technical Reports Server (NTRS)

    Lin, John C.; Andino, Marlyn Y.; Alexander, Michael G.; Whalen, Edward A.; Spoor, Marc A.; Tran, John T.; Wygnanski, Israel J.

    2016-01-01

    This paper summarizes a joint NASA/Boeing research effort to advance Active Flow Control (AFC) technology to enhance aerodynamic efficiency of a vertical tail. Sweeping jet AFC technology was successfully tested on subscale and full-scale models as well as in flight. The subscale test was performed at Caltech on a 14% scale model. More than 50% side force enhancement was achieved by the sweeping jet actuation when the momentum coefficient was 1.7%. AFC caused significant increases in suction pressure on the actuator side and associated side force enhancement. Subsequently, a full-scale Boeing 757 vertical tail model equipped with sweeping jets was tested at the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. There, flow separation control optimization was performed at near flight conditions. Greater than 20% increase in side force were achieved for the maximum rudder deflection of 30deg at the key sideslip angles (0deg and -7.5deg) with a 31-actuator AFC configuration. Based on these tests, the momentum coefficient is shown to be a necessary, but not sufficient parameter to use for design and scaling of sweeping jet AFC from subscale tests to full-scale applications. Leveraging the knowledge gained from the wind tunnel tests, the AFC-enhanced vertical tail technology was successfully flown on the Boeing 757 ecoDemonstrator in the spring of 2015.

  4. You're a What? Chimney Sweep

    ERIC Educational Resources Information Center

    Green, Kathleen

    2010-01-01

    In this article, the author talks about a chimney sweep--also called a "sweep"--which inspects chimneys as well as cleans them. Some inspections are for a specific purpose, such as home appraisal, but most precede cleaning. Chimney cleaning requires a certain level of dexterity, because the job includes a lot of climbing, squatting, kneeling, and…

  5. The Effect of Leading-Edge Sweep and Surface Inclination on the Hypersonic Flow Field Over a Blunt Flat Plate

    NASA Technical Reports Server (NTRS)

    Creager, Marcus O.

    1959-01-01

    An investigation of the effects of variation of leading-edge sweep and surface inclination on the flow over blunt flat plates was conducted at Mach numbers of 4 and 5.7 at free-stream Reynolds numbers per inch of 6,600 and 20,000, respectively. Surface pressures were measured on a flat plate blunted by a semicylindrical leading edge over a range of sweep angles from 0 deg to 60 deg and a range of surface inclinations from -10 deg to +10 deg. The surface pressures were predicted within an average error of +/- 8 percent by a combination of blast-wave and boundary-layer theory extended herein to include effects of sweep and surface inclination. This combination applied equally well to similar data of other investigations. The local Reynolds number per inch was found to be lower than the free-stream Reynolds number per inch. The reduction in local Reynolds number was mitigated by increasing the sweep of the leading edge. Boundary-layer thickness and shock-wave shape were changed little by the sweep of the leading edge.

  6. Determination of lysergic acid diethylamide (LSD) in mouse blood by capillary electrophoresis/ fluorescence spectroscopy with sweeping techniques in micellar electrokinetic chromatography.

    PubMed

    Fang, Ching; Liu, Ju-Tsung; Chou, Shiu-Huey; Lin, Cheng-Huang

    2003-03-01

    The separation and on-line concentration of lysergic acid diethylamide (LSD) in mouse blood was achieved by means of capillary electrophoresis/fluorescence spectroscopy using sodium dodecyl sulfate (SDS) as the surfactant. Techniques involving on-line sample concentration, including sweeping micellar electrokinetic chromatography (sweeping-MEKC) and cation-selective exhaustive injection-sweep-micellar electrokinetic chromatography (CSEI-sweep-MEKC) were applied; the optimum on-line concentration and separation conditions were determined. In the analysis of an actual sample, LSD was found in a blood sample from a test mouse (0.1 mg LSD fed to a 20 g mouse; approximately 1/10 to the value of LD(50)). As a result, 120 and 30 ng/mL of LSD was detected at 20 and 60 min, respectively, after ingestion of the doses.

  7. S{sub 2}SA preconditioning for the S{sub n} equations with strictly non negative spatial discretization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruss, D. E.; Morel, J. E.; Ragusa, J. C.

    2013-07-01

    Preconditioners based upon sweeps and diffusion-synthetic acceleration have been constructed and applied to the zeroth and first spatial moments of the 1-D S{sub n} transport equation using a strictly non negative nonlinear spatial closure. Linear and nonlinear preconditioners have been analyzed. The effectiveness of various combinations of these preconditioners are compared. In one dimension, nonlinear sweep preconditioning is shown to be superior to linear sweep preconditioning, and DSA preconditioning using nonlinear sweeps in conjunction with a linear diffusion equation is found to be essentially equivalent to nonlinear sweeps in conjunction with a nonlinear diffusion equation. The ability to use amore » linear diffusion equation has important implications for preconditioning the S{sub n} equations with a strictly non negative spatial discretization in multiple dimensions. (authors)« less

  8. Towards development of a mobile RF Doppler sensor for continuous heart rate variability and blood pressure monitoring.

    PubMed

    Insoo Kim; Bhagat, Yusuf A

    2016-08-01

    The standard in noninvasive blood pressure (BP) measurement is an inflatable cuff device based on the oscillometric method, which poses several practical challenges for continuous BP monitoring. Here, we present a novel ultra-wide band RF Doppler radar sensor for next-generation mobile interface for the purpose of characterizing fluid flow speeds, and for ultimately measuring cuffless blood flow in the human wrist. The system takes advantage of the 7.1~10.5 GHz ultra-wide band signals which can reduce transceiver complexity and power consumption overhead. Moreover, results obtained from hardware development, antenna design and human wrist modeling, and subsequent phantom development are reported. Our comprehensive lab bench system setup with a peristaltic pump was capable of characterizing various speed flow components during a linear velocity sweep of 5~62 cm/s. The sensor holds potential for providing estimates of heart rate and blood pressure.

  9. Feasibility study of a swept frequency electromagnetic probe (SWEEP) using inductive coupling for the determination of subsurface conductivity of the earth and water prospecting in arid regions

    NASA Technical Reports Server (NTRS)

    Latorraca, G. A.; Bannister, L. H.

    1974-01-01

    Techniques developed for electromagnetic probing of the lunar interior, and techniques developed for the generation of high power audio frequencies were combined to make practical a magnetic inductive coupling system for the rapid measurement of ground conductivity profiles which are helpful when prospecting for the presence and quality of subsurface water. A system which involves the measurement of the direction, intensity, and time phase of the magnetic field observed near the surface of the earth at a distance from a horizontal coil energized so as to create a field that penetrates the earth was designed and studied to deduce the conductivity and stratification of the subsurface. Theoretical studies and a rudimentary experiment in an arid region showed that the approach is conceptually valid and that this geophysical prospecting technique can be developed for the economical exploration of subterranean water resources.

  10. Using online program development to foster curricular change and innovation.

    PubMed

    Gwozdek, Anne E; Springfield, Emily C; Peet, Melissa R; Kerschbaum, Wendy E

    2011-03-01

    Distance education offers an opportunity to catalyze sweeping curricular change. Faculty members of the University of Michigan Dental Hygiene Program spent eighteen months researching best practices, planning outcomes and courses, and implementing an e-learning (online) dental hygiene degree completion program. The result is a collaborative and portfolio-integrated program that focuses on the development of reflective practitioners and leaders in the profession. A team-based, systems-oriented model for production, implementation, and evaluation has been critical to the program's success. The models and best practices on which this program was founded are described. Also provided is a framework of strategies for development, including the utilization of backward course design, which can be used in many areas of professional education.

  11. Genomic and Transcriptomic Associations Identify a New Insecticide Resistance Phenotype for the Selective Sweep at the Cyp6g1 Locus of Drosophila melanogaster.

    PubMed

    Battlay, Paul; Schmidt, Joshua M; Fournier-Level, Alexandre; Robin, Charles

    2016-08-09

    Scans of the Drosophila melanogaster genome have identified organophosphate resistance loci among those with the most pronounced signature of positive selection. In this study, the molecular basis of resistance to the organophosphate insecticide azinphos-methyl was investigated using the Drosophila Genetic Reference Panel, and genome-wide association. Recently released full transcriptome data were used to extend the utility of the Drosophila Genetic Reference Panel resource beyond traditional genome-wide association studies to allow systems genetics analyses of phenotypes. We found that both genomic and transcriptomic associations independently identified Cyp6g1, a gene involved in resistance to DDT and neonicotinoid insecticides, as the top candidate for azinphos-methyl resistance. This was verified by transgenically overexpressing Cyp6g1 using natural regulatory elements from a resistant allele, resulting in a 6.5-fold increase in resistance. We also identified four novel candidate genes associated with azinphos-methyl resistance, all of which are involved in either regulation of fat storage, or nervous system development. In Cyp6g1, we find a demonstrable resistance locus, a verification that transcriptome data can be used to identify variants associated with insecticide resistance, and an overlap between peaks of a genome-wide association study, and a genome-wide selective sweep analysis. Copyright © 2016 Battlay et al.

  12. Effect of planform and body on supersonic aerodynamics of multibody configurations

    NASA Technical Reports Server (NTRS)

    Mcmillin, S. Naomi; Bauer, Steven X. S.; Howell, Dorothy T.

    1992-01-01

    An experimental and theoretical investigation of the effect of the wing planform and bodies on the supersonic aerodynamics of a low-fineness-ratio, multibody configuration has been conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, and 2.16. Force and moment data, flow-visualization data, and surface-pressure data were obtained on eight low-fineness-ratio, twin-body configurations. These configurations varied in inboard wing planform shape, outboard wing planform shape, outboard wing planform size, and presence of the bodies. The force and moment data showed that increasing the ratio of outboard wing area to total wing area or increasing the leading-edge sweep of the inboard wing influenced the aerodynamic characteristics. The flow-visualization data showed a complex flow-field system of shocks, shock-induced separation, and body vortex systems occurring between the side bodies. This flow field was substantially affected by the inboard wing planform shape but minimally affected by the outboard wing planform shape. The flow-visualization and surface-pressure data showed that flow over the outboard wing developed as expected with changes in angle of attack and Mach number and was affected by the leading-edge sweep of the inboard wing and the presence of the bodies. Evaluation of the linear-theory prediction methods revealed their general inability to consistently predict the characteristics of these multibody configurations.

  13. Flow Separation Control Over a Ramp Using Sweeping Jet Actuators

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti; Owens, Lewis R.

    2014-01-01

    Flow separation control on an adverse-pressure-gradient ramp model was investigated using various flow-control methods in the NASA Langley 15-Inch Wind Tunnel. The primary flow-control method studied used a sweeping jet actuator system to compare with more classic flow-control techniques such as micro-vortex generators, steady blowing, and steady- and unsteady-vortex generating jets. Surface pressure measurements and a new oilflow visualization technique were used to characterize the effects of these flow-control actuators. The sweeping jet actuators were run in three different modes to produce steady-straight, steady-angled, and unsteady-oscillating jets. It was observed that all of these flow-control methods are effective in controlling the separated flows on the ramp model. The steady-straight jet energizes the boundary layer by momentum addition and was found to be the least effective method for a fixed momentum coefficient. The steady-angled jets achieved better performance than the steady-straight jets because they generate streamwise vortices that energize the boundary layer by mixing high-momentum fluid with near wall low-momentum fluid. The unsteady-oscillating jets achieved the best performance by increasing the pressure recovery and reducing the downstream flow separation. Surface flow visualizations indicated that two out-of-phase counter-rotating vortices are generated per sweeping jet actuator, while one vortex is generated per vortex-generating jets. The extra vortex resulted in increased coverage, more pressure recovery, and reduced flow separation.

  14. State Information Systems. No Child Left Behind Policy Brief.

    ERIC Educational Resources Information Center

    Snow-Renner, Ravay; Torrence, Marga

    The newly revised Elementary and Secondary Education Act (ESEA 2001) has sweeping implications for how states collect, analyze, and use data about school and system performance. Policymakers must take a hard look at the design and capacity of their states' data systems, and determine what changes will have to be made to meet the requirements of…

  15. F-14A aircraft high-speed flow simulations

    NASA Technical Reports Server (NTRS)

    Boppe, C. W.; Rosen, B. S.

    1985-01-01

    A model of the Grumman/Navy F-14A aircraft was developed for analyses using the NASA/Grumman Transonic Wing-Body Code. Computations were performed for isolated wing and wing fuselage glove arrangements to determine the extent of aerodynamic interference effects which propagate outward onto the main wing outer panel. Additional studies were conducted using the full potential analysis, FLO 22, to calibrate any inaccuracies that might accrue because of small disturbance code limitations. Comparisons indicate that the NASA/Grumman code provides excellent flow simulations for the range of wing sweep angles and flow conditions that will be of interest for the upcoming F-14 Variable Sweep Flight Transition Experiment.

  16. Wind turbine rotor blade with in-plane sweep and devices using same, and methods for making same

    DOEpatents

    Wetzel, Kyle Kristopher

    2008-03-18

    A wind turbine includes a rotor having a hub and at least one blade having a torsionally rigid root, an inboard section, and an outboard section. The inboard section has a forward sweep relative to an elastic axis of the blade and the outboard section has an aft sweep.

  17. A selective sweep of >8 Mb on chromosome 26 in the Boxer genome.

    PubMed

    Quilez, Javier; Short, Andrea D; Martínez, Verónica; Kennedy, Lorna J; Ollier, William; Sanchez, Armand; Altet, Laura; Francino, Olga

    2011-07-01

    Modern dog breeds display traits that are either breed-specific or shared by a few breeds as a result of genetic bottlenecks during the breed creation process and artificial selection for breed standards. Selective sweeps in the genome result from strong selection and can be detected as a reduction or elimination of polymorphism in a given region of the genome. Extended regions of homozygosity, indicative of selective sweeps, were identified in a genome-wide scan dataset of 25 Boxers from the United Kingdom genotyped at ~20,000 single-nucleotide polymorphisms (SNPs). These regions were further examined in a second dataset of Boxers collected from a different geographical location and genotyped using higher density SNP arrays (~170,000 SNPs). A selective sweep previously associated with canine brachycephaly was detected on chromosome 1. A novel selective sweep of over 8 Mb was observed on chromosome 26 in Boxer and for a shorter region in English and French bulldogs. It was absent in 171 samples from eight other dog breeds and 7 Iberian wolf samples. A region of extended increased heterozygosity on chromosome 9 overlapped with a previously reported copy number variant (CNV) which was polymorphic in multiple dog breeds. A selective sweep of more than 8 Mb on chromosome 26 was identified in the Boxer genome. This sweep is likely caused by strong artificial selection for a trait of interest and could have inadvertently led to undesired health implications for this breed. Furthermore, we provide supporting evidence for two previously described regions: a selective sweep on chromosome 1 associated with canine brachycephaly and a CNV on chromosome 9 polymorphic in multiple dog breeds.

  18. A Simple Numerical Procedure for the Simulation of "Lifelike" Linear-Sweep Voltammograms

    NASA Astrophysics Data System (ADS)

    Bozzini, Benedetto P.

    2000-01-01

    Practical linear-sweep voltammograms seldom resemble the theoretical ones shown in textbooks. This is because several phenomena (activation, mass transport, ohmic resistance) control the kinetics over different potential ranges scanned during the potential sweep. These effects are generally treated separately in the didactic literature, yet they have never been "assembled" in a way that allows the educational use of real experiments. This makes linear-sweep voltammetric experiments almost unusable in the teaching of physical chemistry. A simple approach to the classroom description of "lifelike" experimental results is proposed in this paper. Analytical expressions of linear sweep voltammograms are provided. The actual numerical evaluations can be carried out with a pocket calculator. Two typical examples are executed and comparison with experimental data is described. This approach to teaching electrode kinetics has proved an effective tool to provide students with an insight into the effects of electrochemical parameters and operating conditions.

  19. Effectiveness of purging on preventing gas emission buildup in wood pellet storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazdanpanah, Fahimeh; Sokhansanj, Shahab; Lim, Choon Jim

    Storage of wood pellets has resulted in deadly accidents in connection with off-gassing and self-heating. A forced ventilation system should be in place to sweep the off-gases and control the thermal conditions. In this study, multiple purging tests were conducted in a pilot scale silo to evaluate the effectiveness of a purging system and quantify the time and volume of the gas needed to sweep the off-gases. To identify the degree of mixing, residence time distribution of the tracer gas was also studied experimentally. Large deviations from plug flow suggested strong gas mixing for all superficial velocities. As the velocitymore » increased, the system dispersion number became smaller, which indicated less degree of mixing with increased volume of the purging gas. Finally, one-dimensional modelling and numerical simulation of the off-gas concentration profile gave the best agreement with the measured gas concentration at the bottom and middle of the silo.« less

  20. Effectiveness of purging on preventing gas emission buildup in wood pellet storage

    DOE PAGES

    Yazdanpanah, Fahimeh; Sokhansanj, Shahab; Lim, Choon Jim; ...

    2015-04-24

    Storage of wood pellets has resulted in deadly accidents in connection with off-gassing and self-heating. A forced ventilation system should be in place to sweep the off-gases and control the thermal conditions. In this study, multiple purging tests were conducted in a pilot scale silo to evaluate the effectiveness of a purging system and quantify the time and volume of the gas needed to sweep the off-gases. To identify the degree of mixing, residence time distribution of the tracer gas was also studied experimentally. Large deviations from plug flow suggested strong gas mixing for all superficial velocities. As the velocitymore » increased, the system dispersion number became smaller, which indicated less degree of mixing with increased volume of the purging gas. Finally, one-dimensional modelling and numerical simulation of the off-gas concentration profile gave the best agreement with the measured gas concentration at the bottom and middle of the silo.« less

  1. Constant pressure high throughput membrane permeation testing system

    DOEpatents

    Albenze, Erik J.; Hopkinson, David P.; Luebke, David R.

    2014-09-02

    The disclosure relates to a membrane testing system for individual evaluation of a plurality of planar membranes subjected to a feed gas on one side and a sweep gas on a second side. The membrane testing system provides a pressurized flow of a feed and sweep gas to each membrane testing cell in a plurality of membrane testing cells while a stream of retentate gas from each membrane testing cell is ported by a retentate multiport valve for sampling or venting, and a stream of permeate gas from each membrane testing cell is ported by a permeate multiport valve for sampling or venting. Back pressure regulators and mass flow controllers act to maintain substantially equivalent gas pressures and flow rates on each side of the planar membrane throughout a sampling cycle. A digital controller may be utilized to position the retentate and permeate multiport valves cyclically, allowing for gas sampling of different membrane cells over an extended period of time.

  2. Developing and using a balanced scorecard: a case study with SWOT analysis.

    PubMed

    Gumbus, Andra; Lussier, Robert N

    2003-01-01

    Have you tried to measure your laboratory's performance lately? Do you measure and assess financial results, customer satisfaction, internal process efficiency, and learning and growth? If any of these metrics are missing from your performance measurement system, you are not using the latest management tool that is sweeping the health-care industry--the balanced scorecard (BSC). This article begins with a discussion of the BSC and why you should use it in your laboratory, followed by SWOT analysis to assess the strengths, weaknesses, opportunities, and threats (SWOT) a BSC offers your laboratory. A laboratory case study is then presented to assist you in developing and using a BSC in your laboratory.

  3. Evaluation of mobile work zone alarm systems.

    DOT National Transportation Integrated Search

    2014-06-01

    Maintenance of highways often involves mobile work zones for various types of low speed moving operations such as : striping and sweeping. The speed differential between the moving operation and traffic, and the increasing problem of : distracted dri...

  4. Hatch cover

    NASA Technical Reports Server (NTRS)

    Allton, Charles S. (Inventor); Okane, James H. (Inventor)

    1989-01-01

    This invention relates to a hatch and more particularly to a hatch for a space vehicle where the hatch has a low volume sweep and can be easily manipulated from either side of the hatch. The hatch system includes an elliptical opening in a bulkhead and an elliptical hatch member. The hatch cover system includes an elliptical port opening in a housing and an elliptical cover member supported centrally by a rotational bearing for rotation about a rotational axis normal to the cover member and by pivot pins in a gimbal member for pivotal movement about axes perpendicular to the rotational axis. Arm members support the gimbal member pivotally by pivot members so that upon rotation and manipulation the cover member can be articulatedly moved from a closed position to the port opening to an out of the way position with a minimum of volume sweep by the cover member.

  5. Multigrid approaches to non-linear diffusion problems on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.

  6. Precise Time Synchronisation and Ranging in Nano-Satellite Swarms

    NASA Astrophysics Data System (ADS)

    Laabs, Martin; Plettemeier, Dirk

    2015-04-01

    Precise time synchronization and ranging is very important for a variety of scientific experiments with more than two nano-satellites: For synthetic aperture radar (SAR) applications, for example, the radar signal phase (which corresponds to a synchronized time) as well as the location must be known on each satellite forming synthetic antenna. Also multi-static radar systems, MIMO radar systems or radio tomography applications will take advantage from highly accurate synchronization and position determination. We propose a method for synchronizing the time as well as measuring the distance between nano-satellites very precisely by utilizing mm-wave radio links. This approach can also be used for time synchronization of more than two satellites and accordingly determinating the precise relative location of nano-satellites in space. The time synchronization signal is modulated onto a mm-wave carrier. In the simplest form it is a harmonic sinusoidal signal with a frequency in the MHz range. The distance is measured with a frequency sweep or short pulse modulated onto a different carrier frequency. The sweep or pulse transmission start is synchronized to the received time synchronization. The time synchronization transmitter receives the pulse/sweep signal and can calculate the (double) time of flight for both signals. This measurement can be easily converted to the distance. The use of a mm-wave carrier leads to small antennas and the free space loss linked to the high frequency reduces non line of sight echoes. It also allows a high sweep/pulse bandwidth enabling superior ranging accuracy. Additionally, there is also less electromagnetic interference probability since telemetry and scientific applications typically do not use mm-wavefrequencies. Since the system is working full-duplex the time synchronization can be performed continuously and coherently. Up to now the required semiconductor processes did not achieve enough gain/bandwidth to realize this concept at frequencies above 60GHz in a small, cost effective and low power integrated circuit. But with the state of the art (commercial available) SiGe and p-HEMPT GaAs semiconductor processes it becomes possible to implement this concept even at 300GHz in a small MMIC or hybrid circuit.

  7. Wind turbine rotor blade with in-plane sweep and devices using the same, and methods for making the same

    DOEpatents

    Wetzel, Kyle Kristopher

    2014-06-24

    A wind turbine includes a rotor having a hub and at least one blade having a torsionally rigid root, an inboard section, and an outboard section. The inboard section has a forward sweep relative to an elastic axis of the blade and the outboard section has an aft sweep.

  8. 76 FR 34788 - Self-Regulatory Organizations; NYSE Arca, Inc.; Notice of Filing and Immediate Effectiveness of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... routing fee applies as noted in the table. The Primary Sweep Order (PSO) is a market or limit order that... a PSO designation should be marketable. Non-marketable orders will function as regular limit orders... Primary Sweep Order (PSO) is a market or limit order that sweeps the NYSE Arca Book and routes any...

  9. Application of slender wing benefits to military aircraft

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.

    1983-01-01

    A review is provided of aerodynamic research conducted at the Langley Research Center with respect to the application of slender wing benefits in the design of high-speed military aircraft, taking into account the supersonic performance and leading-edge vortex flow associated with very highly sweptback wings. The beginning of the development of modern classical swept wing jet aircraft is related to the German Me 262 project during World War II. In the U.S., a theoretical study conducted by Jones (1945) pointed out the advantages of the sweptback wing concept. Developments with respect to variable sweep wings are discussed, taking into account early research in 1946, a joint program of the U.S. with the United Kingdom, the tactical aircraft concept, and the important part which the Langley variable-sweep research program played in the development of the F-111, F-14, and B-1. Attention is also given to hybrid wings, vortex flow theory development, and examples of flow design technology.

  10. Automated Identification and Shape Analysis of Chorus Elements in the Van Allen Radiation Belts

    NASA Astrophysics Data System (ADS)

    Sen Gupta, Ananya; Kletzing, Craig; Howk, Robin; Kurth, William; Matheny, Morgan

    2017-12-01

    An important goal of the Van Allen Probes mission is to understand wave-particle interaction by chorus emissions in terrestrial Van Allen radiation belts. To test models, statistical characterization of chorus properties, such as amplitude variation and sweep rates, is an important scientific goal. The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite provides measurements of wave electric and magnetic fields as well as DC magnetic fields for the Van Allen Probes mission. However, manual inspection across terabytes of EMFISIS data is not feasible and as such introduces human confirmation bias. We present signal processing techniques for automated identification, shape analysis, and sweep rate characterization of high-amplitude whistler-mode chorus elements in the Van Allen radiation belts. Specifically, we develop signal processing techniques based on the radon transform that disambiguate chorus elements with a dominant sweep rate against hiss-like chorus. We present representative results validating our techniques and also provide statistical characterization of detected chorus elements across a case study of a 6 s epoch.

  11. Nanoparticle-stabilized CO₂ foam for CO₂ EOR application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Lee, Robert; Yu, Jianjia

    The purpose of this project was to develop nanoparticle-stabilized CO₂ foam for CO₂ -EOR application, in which nanoparticles instead of surfactants are used for stabilizing CO₂ foam to improve the CO₂ sweep efficiency and increase oil recovery. The studies included: (1) investigation of CO₂ foam generation nanoparticles, such as silica nanoparticles, and the effects of particle concentration and surface properties, CO₂/brine ratio, brine salinity, pressure, and temperature on foam generation and foam stability; (2) coreflooding tests to understand the nanoparticle-stabilized CO₂ foam for waterflooded residual oil recovery, which include: oil-free coreflooding experiments with nanoparticle-stabilized CO₂ foam to understand the transportationmore » of nanoparticles through the core; measurements of foam stability and CO₂ sweep efficiency under reservoir conditions to investigate temperature and pressure effects on the foam performance and oil recovery as well as the sweep efficiency in different core samples with different rock properties; and (3) long-term coreflooding experiments with the nanoparticle- stabilized CO₂ foam for residual oil recovery. Finally, the technical and economical feasibility of this technology was evaluated.« less

  12. Visualization of hair follicles using high-speed optical coherence tomography based on a Fourier domain mode locking laser

    NASA Astrophysics Data System (ADS)

    Tsai, M.-T.; Chang, F.-Y.

    2012-04-01

    In this study, a swept-source optical coherence tomography (SS-OCT) system with a Fourier domain mode locking (FDML) laser is proposed for a dermatology study. The homemade FDML laser is one kind of frequency-sweeping light source, which can provide output power of >20 mW and an output spectrum of 65 nm in bandwidth centered at 1300 nm, enabling imaging with an axial resolution of 12 μm in the OCT system. To eliminate the forward scans from the laser output and insert the delayed backward scans, a Mach-Zehnder configuration is implemented. Compared with conventional frequency-sweeping light sources, the FDML laser can achieve much higher scan rates, as high as ˜240 kHz, which can provide a three-dimensional imaging rate of 4 volumes/s. Furthermore, the proposed high-speed SS-OCT system can provide three-dimensional (3D) images with reduced motion artifacts. Finally, a high-speed SS-OCT system is used to visualize hair follicles, demonstrating the potential of this technology as a tool for noninvasive diagnosis of alopecia.

  13. What Is the Proposed Role of Research Evidence in England's "Self-Improving" School System?

    ERIC Educational Resources Information Center

    Godfrey, David

    2017-01-01

    This article examines the English government's vision for how research is proposed to lead to improvements in the system in the context of a school-led, self-improving system and rapid and sweeping legislative reforms. The debate about the role of research in the teaching profession has been sharpened by a large consultation effort in the academic…

  14. State and Local Efforts to Investigate the Validity and Reliability of Scores from Teacher Evaluation Systems

    ERIC Educational Resources Information Center

    Herlihy, Corinne; Karger, Ezra; Pollard, Cynthia; Hill, Heather C.; Kraft, Matthew A.; Williams, Megan; Howard, Sarah

    2014-01-01

    Context: In the past two years, states have implemented sweeping reforms to their teacher evaluation systems in response to Race to the Top legislation and, more recently, NCLB waivers. With these new systems, policymakers hope to make teacher evaluation both more rigorous and more grounded in specific job performance domains such as teaching…

  15. Improving the sweeping efficiency of permanganate into low permeable zones to treat TCE: experimental results and model development.

    PubMed

    Chokejaroenrat, Chanat; Kananizadeh, Negin; Sakulthaew, Chainarong; Comfort, Steve; Li, Yusong

    2013-11-19

    The residual buildup and treatment of dissolved contaminants in low permeable zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate into LPZs to treat dissolved-phase TCE. This was accomplished by conducting transport experiments that quantified the ability of xanthan-MnO4(-) solutions to penetrate and cover (i.e., sweep) an LPZ that was surrounded by transmissive sands. By incorporating the non-Newtonian fluid xanthan with MnO4(-), penetration of MnO4(-) into the LPZ improved dramatically and sweeping efficiency reached 100% in fewer pore volumes. To quantify how xanthan improved TCE removal, we spiked the LPZ and surrounding sands with (14)C-lableled TCE and used a multistep flooding procedure that quantified the mass of (14)C-TCE oxidized and bypassed during treatment. Results showed that TCE mass removal was 1.4 times greater in experiments where xanthan was employed. Combining xanthan with MnO4(-) also reduced the mass of TCE in the LPZ that was potentially available for rebound. By coupling a multiple species reactive transport model with the Brinkman equation for non-Newtonian flow, the simulated amount of (14)C-TCE oxidized during transport matched experimental results. These observations support the use of xanthan as a means of enhancing MnO4(-) delivery into LPZs for the treatment of dissolved-phase TCE.

  16. Apparatus Reviews.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Reviews apparatus design and instructional uses for Fume Cupboard Monitor, Plant Tissue Culture Kit, various equipment for electronic systems course, Welwyn Microprocessor-Tutor, Sweep Function Generator SFG 606, and Harris manufacturers materials--Regulated Power Supply Units, Electronic Current and Voltage Meters, Gas Preparation Kit, and…

  17. Interpreting Popov criteria in Lure´ systems with complex scaling stability analysis

    NASA Astrophysics Data System (ADS)

    Zhou, J.

    2018-06-01

    The paper presents a novel frequency-domain interpretation of Popov criteria for absolute stability in Lure´ systems by means of what we call complex scaling stability analysis. The complex scaling technique is developed for exponential/asymptotic stability in LTI feedback systems, which dispenses open-loop poles distribution, contour/locus orientation and prior frequency sweeping. Exploiting the technique for alternatively revealing positive realness of transfer functions, re-interpreting Popov criteria is explicated. More specifically, the suggested frequency-domain stability conditions are conformable both in scalar and multivariable cases, and can be implemented either graphically with locus plotting or numerically without; in particular, the latter is suitable as a design tool with auxiliary parameter freedom. The interpretation also reveals further frequency-domain facts about Lure´ systems. Numerical examples are included to illustrate the main results.

  18. Modeling of long range frequency sweeping for energetic particle modes

    NASA Astrophysics Data System (ADS)

    Nyqvist, R. M.; Breizman, B. N.

    2013-04-01

    Long range frequency sweeping events are simulated numerically within a one-dimensional, electrostatic bump-on-tail model with fast particle sources and collisions. The numerical solution accounts for fast particle trapping and detrapping in an evolving wave field with a fixed wavelength, and it includes three distinct collisions operators: Drag (dynamical friction on the background electrons), Krook-type collisions, and velocity space diffusion. The effects of particle trapping and diffusion on the evolution of holes and clumps are investigated, and the occurrence of non-monotonic (hooked) frequency sweeping and asymptotically steady holes is discussed. The presented solution constitutes a step towards predictive modeling of frequency sweeping events in more realistic geometries.

  19. Development of a Novel Guided Wave Generation System Using a Giant Magnetostrictive Actuator for Nondestructive Evaluation

    PubMed Central

    Luo, Mingzhang; Li, Weijie; Wang, Junming; Chen, Xuemin; Song, Gangbing

    2018-01-01

    As a common approach to nondestructive testing and evaluation, guided wave-based methods have attracted much attention because of their wide detection range and high detection efficiency. It is highly desirable to develop a portable guided wave testing system with high actuating energy and variable frequency. In this paper, a novel giant magnetostrictive actuator with high actuation power is designed and implemented, based on the giant magnetostrictive (GMS) effect. The novel GMS actuator design involves a conical energy-focusing head that can focus the amplified mechanical energy generated by the GMS actuator. This design enables the generation of stress waves with high energy, and the focusing of the generated stress waves on the test object. The guided wave generation system enables two kinds of output modes: the coded pulse signal and the sweep signal. The functionality and the advantages of the developed system are validated through laboratory testing in the quality assessment of rock bolt-reinforced structures. In addition, the developed GMS actuator and the supporting system are successfully implemented and applied in field tests. The device can also be used in other nondestructive testing and evaluation applications that require high-power stress wave generation. PMID:29510540

  20. Development of a Novel Guided Wave Generation System Using a Giant Magnetostrictive Actuator for Nondestructive Evaluation.

    PubMed

    Luo, Mingzhang; Li, Weijie; Wang, Junming; Wang, Ning; Chen, Xuemin; Song, Gangbing

    2018-03-04

    As a common approach to nondestructive testing and evaluation, guided wave-based methods have attracted much attention because of their wide detection range and high detection efficiency. It is highly desirable to develop a portable guided wave testing system with high actuating energy and variable frequency. In this paper, a novel giant magnetostrictive actuator with high actuation power is designed and implemented, based on the giant magnetostrictive (GMS) effect. The novel GMS actuator design involves a conical energy-focusing head that can focus the amplified mechanical energy generated by the GMS actuator. This design enables the generation of stress waves with high energy, and the focusing of the generated stress waves on the test object. The guided wave generation system enables two kinds of output modes: the coded pulse signal and the sweep signal. The functionality and the advantages of the developed system are validated through laboratory testing in the quality assessment of rock bolt-reinforced structures. In addition, the developed GMS actuator and the supporting system are successfully implemented and applied in field tests. The device can also be used in other nondestructive testing and evaluation applications that require high-power stress wave generation.

  1. Potential effects of structural controls and street sweeping on stormwater loads to the lower Charles River, Massachusetts

    USGS Publications Warehouse

    Zarriello, Phillip J.; Breault, Robert F.; Weiskel, Peter K.

    2002-01-01

    The water quality of the lower Charles River is periodically impaired by combined sewer overflows (CSOs) and non-CSO stormwater runoff. This study examined the potential non-CSO load reductions of suspended solids, fecal coliform bacteria, total phosphorus, and total lead that could reasonably be achieved by implementation of stormwater best management practices, including both structural controls and systematic street sweeping. Structural controls were grouped by major physical or chemical process; these included infiltration-filtration (physical separation), biofiltration-bioretention (biological mechanisms), or detention-retention (physical settling). For each of these categories, upper and lower quartiles, median, and average removal efficiencies were compiled from three national databases of structural control performance. Removal efficiencies obtained indicated a wide range of performance. Removal was generally greatest for infiltration-filtration controls and suspended solids, and least for biofiltration-bioretention controls and fecal coliform bacteria. Street sweeping has received renewed interest as a water-quality control practice because of reported improvements in sweeper technology and the recognition that opportunities for implementing structural controls are limited in highly urbanized areas. The Stormwater Management Model that was developed by the U.S. Geological Survey for the lower Charles River Watershed was modified to simulate the effects of street sweeping in a single-family land-use basin. Constituent buildup and washoff variable values were calibrated to observed annual and storm-event loads. Once calibrated, the street sweeping model was applied to various permutations of four sweeper efficiencies and six sweeping frequencies that ranged from every day to once every 30 days. Reduction of constituent loads to the lower Charles River by the combined hypothetical practices of structural controls and street sweeping was estimated for a range of removal efficiencies because of their inherent variability and uncertainty. This range of efficiencies, with upper and lower estimates, provides reasonable bounds on the load that could be removed by the practices examined. The upper estimated load reduction from combined street sweeping and structural controls, as a percentage of the total non-CSO load entering the lower Charles River downstream of Watertown Dam, was 44 percent for suspended solids, 34 percent for total lead, 14 percent for total phosphorus, and 17 percent for fecal coliform bacteria. The lower estimated load reduction from combined street sweeping and structural controls from non-CSO sources downstream of Watertown Dam, was 14 percent for suspended solids, 11 percent for total lead, 4.9 percent for total phosphorus, and 7.5 percent for fecal coliform bacteria. Load reductions by these combined management practices can be a small as 1.4 percent for total phosphorus to about 4 percent for the other constituents if the total load above Watertown Dam is added to the load from below the dam. Although the reductions in stormwater loads to the lower Charles River from the control practices examined appear to be minor, these practices would likely provide water-quality benefits to portions of the river during those times that they are most impaired-during and immediately after storms. It should also be recognized that only direct measurements of changes in stormwater loads before and after implementation of control practices can provide definitive evidence of the beneficial effects of these practices on water-quality conditions in the lower Charles River.

  2. Fast backprojection-based reconstruction of spectral-spatial EPR images from projections with the constant sweep of a magnetic field.

    PubMed

    Komarov, Denis A; Hirata, Hiroshi

    2017-08-01

    In this paper, we introduce a procedure for the reconstruction of spectral-spatial EPR images using projections acquired with the constant sweep of a magnetic field. The application of a constant field-sweep and a predetermined data sampling rate simplifies the requirements for EPR imaging instrumentation and facilitates the backprojection-based reconstruction of spectral-spatial images. The proposed approach was applied to the reconstruction of a four-dimensional numerical phantom and to actual spectral-spatial EPR measurements. Image reconstruction using projections with a constant field-sweep was three times faster than the conventional approach with the application of a pseudo-angle and a scan range that depends on the applied field gradient. Spectral-spatial EPR imaging with a constant field-sweep for data acquisition only slightly reduces the signal-to-noise ratio or functional resolution of the resultant images and can be applied together with any common backprojection-based reconstruction algorithm. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Fine-Mapping and Selective Sweep Analysis of QTL for Cold Tolerance in Drosophila melanogaster

    PubMed Central

    Wilches, Ricardo; Voigt, Susanne; Duchen, Pablo; Laurent, Stefan; Stephan, Wolfgang

    2014-01-01

    There is a growing interest in investigating the relationship between genes with signatures of natural selection and genes identified in QTL mapping studies using combined population and quantitative genetics approaches. We dissected an X-linked interval of 6.2 Mb, which contains two QTL underlying variation in chill coma recovery time (CCRT) in Drosophila melanogaster from temperate (European) and tropical (African) regions. This resulted in two relatively small regions of 131 kb and 124 kb. The latter one co-localizes with a very strong selective sweep in the European population. We examined the genes within and near the sweep region individually using gene expression analysis and P-element insertion lines. Of the genes overlapping with the sweep, none appears to be related to CCRT. However, we have identified a new candidate gene of CCRT, brinker, which is located just outside the sweep region and is inducible by cold stress. We discuss these results in light of recent population genetics theories on quantitative traits. PMID:24970882

  4. Forward sweep, low noise rotor blade

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor)

    1994-01-01

    A forward-swept, low-noise rotor blade includes an inboard section, an aft-swept section, and a forward-swept outboard section. The rotor blade reduces the noise of rotorcraft, including both standard helicopters and advanced systems such as tiltrotors. The primary noise reduction feature is the forward sweep of the planform over a large portion of the outer blade radius. The rotor blade also includes an aft-swept section. The purpose of the aft-swept region is to provide a partial balance to pitching moments produced by the outboard forward-swept portion of the blade. The noise source showing maximum noise reduction is blade-vortex interaction (BVI) noise. Also reduced are thickness, noise, high speed impulsive noise, cabin vibration, and loading noise.

  5. Social Development: 1 Year Olds

    MedlinePlus

    ... Ribbon Commands Skip to main content Turn off Animations Turn on Animations Our Sponsors Log in | Register Menu Log in | ... re doing around the house. Whether you’re reading the paper, sweeping the floors, mowing the lawn, ...

  6. Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.

    2003-09-01

    Multiconjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wave-front control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10-2 Hz, i.e., 4-5 orders of magnitude lower than the typical 103 Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.

  7. Validation of SWEEP for creep, saltation, and suspension in a desert-oasis ecotone

    NASA Astrophysics Data System (ADS)

    Pi, H.; Sharratt, B.; Feng, G.; Lei, J.; Li, X.; Zheng, Z.

    2016-03-01

    Wind erosion in the desert-oasis ecotone can accelerate desertification, but little is known about the susceptibility of the ecotone to wind erosion in the Tarim Basin despite being a major source of windblown dust in China. The objective of this study was to test the performance of the Single-event Wind Erosion Evaluation Program (SWEEP) in simulating soil loss as creep, saltation, and suspension in a desert-oasis ecotone. Creep, saltation, and suspension were measured and simulated in a desert-oasis ecotone of the Tarim Basin during discrete periods of high winds in spring 2012 and 2013. The model appeared to adequately simulate total soil loss (ranged from 23 to 2272 g m-2 across sample periods) according to the high index of agreement (d = 0.76). The adequate agreement of the SWEEP in simulating total soil loss was due to the good performance of the model (d = 0.71) in simulating creep plus saltation. The SWEEP model, however, inadequately simulated suspension based upon a low d (⩽0.43). The slope estimates of the regression between simulated and measured suspension and difference of mean suggested that the SWEEP underestimated suspension. The adequate simulation of creep plus saltation thus provides reasonable estimates of total soil loss using SWEEP in a desert-oasis environment.

  8. Reduction of non-point source contaminants associated with road-deposited sediments by sweeping.

    PubMed

    Kim, Do-Gun; Kang, Hee-Man; Ko, Seok-Oh

    2017-09-19

    Road-deposited sediments (RDS) on an expressway, residual RDS collected after sweeping, and RDS removed by means of sweeping were analyzed to evaluate the degree to which sweeping removed various non-point source contaminants. The total RDS load was 393.1 ± 80.3 kg/km and the RDS, residual RDS, and swept RDS were all highly polluted with organics, nutrients, and metals. Among the metals studied, Cu, Zn, Pb, Ni, Ca, and Fe were significantly enriched, and most of the contaminants were associated with particles within the size range from 63 μm to 2 mm. Sweeping reduced RDS and its associated contaminants by 33.3-49.1% on average. We also measured the biological oxygen demand (BOD) of RDS in the present work, representing to our knowledge the first time that this has been done; we found that RDS contains a significant amount of biodegradable organics and that the reduction of BOD by sweeping was higher than that of other contaminants. Significant correlations were found between the contaminants measured, indicating that the organics and the metals originated from both exhaust and non-exhaust particles. Meanwhile, the concentrations of Cu and Ni were higher in 63 μm-2 mm particles than in smaller particles, suggesting that some metals in RDS likely exist intrinsically in particles, rather than only as adsorbates on particle surfaces. Overall, the results in this study showed that sweeping to collect RDS can be a good alternative for reduction of contaminants in runoff.

  9. Active Flow Separation Control on a NACA 0015 Wing Using Fluidic Actuators

    NASA Technical Reports Server (NTRS)

    Melton, Latunia P.

    2014-01-01

    Results are presented from a recent set of wind tunnel experiments using sweeping jet actuators to control ow separation on the 30% chord trailing edge ap of a 30 deg. swept wing model with an aspect ratio (AR) of 4.35. Two sweeping jet actuator locations were examined, one on the flap shoulder and one on the trailing edge flap. The parameters that were varied included actuator momentum, freestream velocity, and trailing edge flap deflection (Delta f ) angle. The primary focus of this set of experiments was to determine the mass flow and momentum requirements for controlling separation on the flap, especially at large flap deflection angles which would be characteristic of a high lift system. Surface pressure data, force and moment data, and stereoscopic particle image velocimetry (PIV) data were acquired to evaluate the performance benefits due to applying active flow control. Improvements in lift over the majority of the wing span were obtained using sweeping jet actuator control. High momentum coefficient, Cu, levels were needed when using the actuators on the ap because they were located downstream of separation. Actuators on the flap shoulder performed slightly better but actuator size, orientation, and spacing still need to be optimized.

  10. The characteristics of void distribution in spalled high purity copper cylinder under sweeping detonation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Jiang, Zhi; Chen, Jixinog; Guo, Zhaoliang; Tang, Tiegang; Hu, Haibo

    2018-03-01

    The effects of different peak compression stresses (2-5 GPa) on the spallation behaviour of high purity copper cylinder during sweeping detonation were examined by Electron Backscatter Diffraction Microscopy, Doppler Pins System and Optical Microscopy techniques. The velocity history of inner surface and the characteristics of void distributions in spalled copper cylinder were investigated. The results indicated that the spall strength of copper in these experiments was less than that revealed in previous reports concerning plate impact loading. The geometry of cylindrical copper and the obliquity of incident shock during sweeping detonation may be the main reasons. Different loading stresses seemed to be responsible for the characteristics of the resultant damage fields, and the maximum damage degree increased with increasing shock stress. Spall planes in different cross-sections of sample loaded with the same shock stress of 3.29 GPa were found, and the distance from the initiation end has little effect on the maximum damage degree (the maximum damage range from 12 to 14%), which means that the spallation behaviour was stable along the direction parallel to the detonation propagation direction under the same shock stress.

  11. Comparison of least squares and exponential sine sweep methods for Parallel Hammerstein Models estimation

    NASA Astrophysics Data System (ADS)

    Rebillat, Marc; Schoukens, Maarten

    2018-05-01

    Linearity is a common assumption for many real-life systems, but in many cases the nonlinear behavior of systems cannot be ignored and must be modeled and estimated. Among the various existing classes of nonlinear models, Parallel Hammerstein Models (PHM) are interesting as they are at the same time easy to interpret as well as to estimate. One way to estimate PHM relies on the fact that the estimation problem is linear in the parameters and thus that classical least squares (LS) estimation algorithms can be used. In that area, this article introduces a regularized LS estimation algorithm inspired on some of the recently developed regularized impulse response estimation techniques. Another mean to estimate PHM consists in using parametric or non-parametric exponential sine sweeps (ESS) based methods. These methods (LS and ESS) are founded on radically different mathematical backgrounds but are expected to tackle the same issue. A methodology is proposed here to compare them with respect to (i) their accuracy, (ii) their computational cost, and (iii) their robustness to noise. Tests are performed on simulated systems for several values of methods respective parameters and of signal to noise ratio. Results show that, for a given set of data points, the ESS method is less demanding in computational resources than the LS method but that it is also less accurate. Furthermore, the LS method needs parameters to be set in advance whereas the ESS method is not subject to conditioning issues and can be fully non-parametric. In summary, for a given set of data points, ESS method can provide a first, automatic, and quick overview of a nonlinear system than can guide more computationally demanding and precise methods, such as the regularized LS one proposed here.

  12. Global Citizenship Education, Technology, and Being

    ERIC Educational Resources Information Center

    Gardner-McTaggart, Alexander; Palmer, Nicholas

    2018-01-01

    Despite the widespread promotion of the global school, it remains unclear as to how citizenship education (global citizenship education, GCE) is developed. Educational bodies such as UNESCO, Oxfam, and the International Baccalaureate are in the full throws of developing models for GCE yet questions remain as to how such a sweeping notion might…

  13. High-Lift Systems on Commercial Subsonic Airliners

    NASA Technical Reports Server (NTRS)

    Rudolph, Peter K. C.

    1996-01-01

    The early breed of slow commercial airliners did not require high-lift systems because their wing loadings were low and their speed ratios between cruise and low speed (takeoff and landing) were about 2:1. However, even in those days the benefit of high-lift devices was recognized. Simple trailing-edge flaps were in use, not so much to reduce landing speeds, but to provide better glide-slope control without sideslipping the airplane and to improve pilot vision over the nose by reducing attitude during low-speed flight. As commercial-airplane cruise speeds increased with the development of more powerful engines, wing loadings increased and a real need for high-lift devices emerged to keep takeoff and landing speeds within reasonable limits. The high-lift devices of that era were generally trailing-edge flaps. When jet engines matured sufficiently in military service and were introduced commercially, airplane speed capability had to be increased to best take advantage of jet engine characteristics. This speed increase was accomplished by introducing the wing sweep and by further increasing wing loading. Whereas increased wing loading called for higher lift coefficients at low speeds, wing sweep actually decreased wing lift at low speeds. Takeoff and landing speeds increased on early jet airplanes, and, as a consequence, runways worldwide had to be lengthened. There are economical limits to the length of runways; there are safety limits to takeoff and landing speeds; and there are speed limits for tires. So, in order to hold takeoff and landing speeds within reasonable limits, more powerful high-lift devices were required. Wing trailing-edge devices evolved from plain flaps to Fowler flaps with single, double, and even triple slots. Wing leading edges evolved from fixed leading edges to a simple Krueger flap, and from fixed, slotted leading edges to two- and three-position slats and variable-camber (VC) Krueger flaps. The complexity of high-lift systems probably peaked on the Boeing 747, which has a VC Krueger flap and triple-slotted, inboard and outboard trailing-edge flaps. Since then, the tendency in high-lift system development has been to achieve high levels of lift with simpler devices in order to reduce fleet acquisition and maintenance costs. The intent of this paper is to: (1) review available high-lift devices, their functions, and design criteria; (2) appraise high-lift systems presently in service on commercial air liners; (3) present personal study results on high-lift systems; (4) develop a weight and cost model for high-lift systems; and (5) discuss the development tendencies of future high-lift systems.

  14. SOLAR SYSTEM EXPLORATION: NASA Blasted for Rising Costs, Cancellations.

    PubMed

    Lawler, A

    2000-12-01

    When NASA cancelled a project last month that would have sent a tiny rover crawling over an asteroid, the community of planetary scientists issued a public tongue lashing of the agency. Its letter warned of larger problems in the U.S. program caused by spiraling costs and recommended a sweeping reexamination of the outer solar system effort.

  15. Education Reform in New York City (2002-2013)

    ERIC Educational Resources Information Center

    Elwick, Alex

    2017-01-01

    In 2002 Michael Bloomberg took office as Mayor of New York City and, over the next 12 years of his administration, oversaw a series of sweeping reforms in order to "fix" the broken education system which he believed he had inherited. This paper details the key policy reforms in New York City's public school system during this period,…

  16. Effect of curve sawing on lumber recovery and warp of short cherry logs containing sweep

    Treesearch

    Brian H. Bond; Philip Araman

    2008-01-01

    It has been estimated that approximately one-third of hardwood sawlogs have a significant amount of sweep and that 7 to nearly 40 percent of the yield is lost from logs that have greater than 1 inch of sweep. While decreased yield is important, for hardwood logs the loss of lumber value is likely more significant. A method that produced lumber while accounting for log...

  17. Southwest Energy Efficiency Project (SWEEP) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, Howard; Meyers, Jim

    SWEEP worked with Energy Efficiency and Renewable Energy (EERE) programs to foster greater energy efficiency throughout the Southwest. SWEEP accomplished this through a combination of analysis and support; preparation and distribution of materials on best practice technologies, policies and programs; and technical assistance and information dissemination to states and municipalities in the southwest supporting BTO, AMO, OWIP for advancement of efficiency in products and practices. These efforts were accomplished during the period 2012 through 2017.

  18. Cadmium Electrode Investigation.

    DTIC Science & Technology

    1980-03-01

    pensation in the sweep voltammetry experiments. For the galvanostatic pulse experiments, the IR-bridge compensation network was employed. Plate...characteristics of the porous minielectrodes in 2M Cd(N03 )2 are strongly temperature dependent. Linear sweep voltamograms were done at 250C and 750C. Those done...at 250C were of the same shape as obtained by Maloy (Ref 1) provided that the sweep rate was no higher than 2mv/sec. Similarly obtained voltamograms

  19. A Generalized Fast Frequency Sweep Algorithm for Coupled Circuit-EM Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockway, J D; Champagne, N J; Sharpe, R M

    2004-01-14

    Frequency domain techniques are popular for analyzing electromagnetics (EM) and coupled circuit-EM problems. These techniques, such as the method of moments (MoM) and the finite element method (FEM), are used to determine the response of the EM portion of the problem at a single frequency. Since only one frequency is solved at a time, it may take a long time to calculate the parameters for wideband devices. In this paper, a fast frequency sweep based on the Asymptotic Wave Expansion (AWE) method is developed and applied to generalized mixed circuit-EM problems. The AWE method, which was originally developed for lumped-loadmore » circuit simulations, has recently been shown to be effective at quasi-static and low frequency full-wave simulations. Here it is applied to a full-wave MoM solver, capable of solving for metals, dielectrics, and coupled circuit-EM problems.« less

  20. Extraction of Volatiles from Regolith or Soil on Mars, the Moon, and Asteroids

    NASA Technical Reports Server (NTRS)

    Linne, Diane; Kleinhenz, Julie; Trunek, Andrew; Hoffman, Stephen; Collins, Jacob

    2017-01-01

    NASA's Advanced Exploration Systems ISRU Technology Project is evaluating concepts to extract water from all resource types Near-term objectives: Produce high-fidelity mass, power, and volume estimates for mining and processing systems Identify critical challenges for development focus Begin demonstration of component and subsystem technologies in relevant environment Several processor types: Closed processors either partially or completely sealed during processing Open air processors operates at Mars ambient conditions In-situ processors Extract product directly without excavation of raw resource Design features Elimination of sweep gas reduces dust particles in water condensate Pressure maintained by height of soil in hopper Model developed to evaluate key design parameters Geometry: conveyor diameter, screw diameter, shaft diameter, flight spacing and pitch Operational: screw speed vs. screw length (residence time) Thermal: Heat flux, heat transfer to soil Testing to demonstrate feasibility and performance Agglomeration, clogging Pressure rise forced flow to condenser.

  1. Performance of a Laser Ignited Multicylinder Lean Burn Natural Gas Engine

    DOE PAGES

    Almansour, Bader; Vasu, Subith; Gupta, Sreenath B.; ...

    2017-06-06

    Market demands for lower fueling costs and higher specific powers in stationary natural gas engines has engine designs trending towards higher in-cylinder pressures and leaner combustion operation. However, Ignition remains as the main limiting factor in achieving further performance improvements in these engines. Addressing this concern, while incorporating various recent advances in optics and laser technologies, laser igniters were designed and developed through numerous iterations. Final designs incorporated water-cooled, passively Q-switched, Nd:YAG micro-lasers that were optimized for stable operation under harsh engine conditions. Subsequently, the micro-lasers were installed in the individual cylinders of a lean-burn, 350 kW, inline 6-cylinder, open-chamber,more » spark ignited engine and tests were conducted. To the best of our knowledge, this is the world’s first demonstration of a laser ignited multi-cylinder natural gas engine. The engine was operated at high-load (298 kW) and rated speed (1800 rpm) conditions. Ignition timing sweeps and excess-air ratio (λ) sweeps were performed while keeping the NOx emissions below the USEPA regulated value (BSNOx < 1.34 g/kW-hr), and while maintaining ignition stability at industry acceptable values (COV_IMEP <5 %). Through such engine tests, the relative merits of (i) standard electrical ignition system, and (ii) laser ignition system were determined. In conclusion, a rigorous combustion data analysis was performed and the main reasons leading to improved performance in the case of laser ignition were identified.« less

  2. Performance of a Laser Ignited Multicylinder Lean Burn Natural Gas Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almansour, Bader; Vasu, Subith; Gupta, Sreenath B.

    Market demands for lower fueling costs and higher specific powers in stationary natural gas engines has engine designs trending towards higher in-cylinder pressures and leaner combustion operation. However, Ignition remains as the main limiting factor in achieving further performance improvements in these engines. Addressing this concern, while incorporating various recent advances in optics and laser technologies, laser igniters were designed and developed through numerous iterations. Final designs incorporated water-cooled, passively Q-switched, Nd:YAG micro-lasers that were optimized for stable operation under harsh engine conditions. Subsequently, the micro-lasers were installed in the individual cylinders of a lean-burn, 350 kW, inline 6-cylinder, open-chamber,more » spark ignited engine and tests were conducted. To the best of our knowledge, this is the world’s first demonstration of a laser ignited multi-cylinder natural gas engine. The engine was operated at high-load (298 kW) and rated speed (1800 rpm) conditions. Ignition timing sweeps and excess-air ratio (λ) sweeps were performed while keeping the NOx emissions below the USEPA regulated value (BSNOx < 1.34 g/kW-hr), and while maintaining ignition stability at industry acceptable values (COV_IMEP <5 %). Through such engine tests, the relative merits of (i) standard electrical ignition system, and (ii) laser ignition system were determined. In conclusion, a rigorous combustion data analysis was performed and the main reasons leading to improved performance in the case of laser ignition were identified.« less

  3. A novel optical imaging system for investigating sarcomere dynamics in single skeletal muscle fibers

    NASA Astrophysics Data System (ADS)

    Panchangam, Appaji; Witte, Russell S.; Claflin, Dennis R.; O'Donnell, Matthew; Faulkner, John A.

    2006-02-01

    The protein substructure of skeletal muscle fibers forms a diffraction grating with repeating units, termed 'sarcomeres'. A laser scanning system is described that maps the lengths of sarcomeres (SL) and the widths of the first-order diffraction lines (DLW) of permeabilized single fibers in real-time. The apparatus translates a laser beam (λ = 670 nm and w 0 = ~75 μm) along the length of a fiber segment through 20 contiguous regions per sweep at 500 sweeps/s. The fiber segments (~1 mm long) were obtained from vastus lateralis muscles of humans by needle biopsy. During both passive stretches and maximum fixed-end activations, the mappings of SL and DLW of the fibers were extracted from the diffraction spectra. Heterogeneity of SLs was evaluated by computing the standard deviation ( σ SL) of the 20 SLs measured during a single sweep. Compared with the σ SL before a passive stretch, the increase of 5+/-0.5% in σ SL after the passive stretch, indicated differences in passive length-tension relationships along the fiber. In contrast, no change, ~0.5+/-0.1%, was observed in DLW. Within 10s after the fiber was returned to its initial length, the shape of the SL profile returned close to pre-stretch conditions ( σ SL = 1+/- 0.2%). Following maximum Ca 2+ - activation of the fiber, the heterogeneity of the steady state SLs increased greatly (DLW up by ~300% and σ SL up by ~100%). The scanning system provided high resolution tracking of sarcomere behavior single muscle fibers. Potential applications are for studies of the mechanisms of muscle fiber injury and injury propagation.

  4. Exact solutions for oscillatory shear sweep behaviors of complex fluids from the Oldroyd 8-constant framework

    NASA Astrophysics Data System (ADS)

    Saengow, Chaimongkol; Giacomin, A. Jeffrey

    2018-03-01

    In this paper, we provide a new exact framework for analyzing the most commonly measured behaviors in large-amplitude oscillatory shear flow (LAOS), a popular flow for studying the nonlinear physics of complex fluids. Specifically, the strain rate sweep (also called the strain sweep) is used routinely to identify the onset of nonlinearity. By the strain rate sweep, we mean a sequence of LAOS experiments conducted at the same frequency, performed one after another, with increasing shear rate amplitude. In this paper, we give exact expressions for the nonlinear complex viscosity and the corresponding nonlinear complex normal stress coefficients, for the Oldroyd 8-constant framework for oscillatory shear sweeps. We choose the Oldroyd 8-constant framework for its rich diversity of popular special cases (we list 18 of these). We evaluate the Fourier integrals of our previous exact solution to get exact expressions for the real and imaginary parts of the complex viscosity, and for the complex normal stress coefficients, as functions of both test frequency and shear rate amplitude. We explore the role of infinite shear rate viscosity on strain rate sweep responses for the special case of the corotational Jeffreys fluid. We find that raising η∞ raises the real part of the complex viscosity and lowers the imaginary. In our worked examples, we thus first use the corotational Jeffreys fluid, and then, for greater accuracy, we use the Johnson-Segalman fluid, to describe the strain rate sweep response of molten atactic polystyrene. For our comparisons with data, we use the Spriggs relations to generalize the Oldroyd 8-constant framework to multimode. Our generalization yields unequivocally, a longest fluid relaxation time, used to assign Weissenberg and Deborah numbers to each oscillatory shear flow experiment. We then locate each experiment in the Pipkin space.

  5. Signatures of soft sweeps across the Dt1 locus underlying determinate growth habit in soya bean [Glycine max (L.) Merr.].

    PubMed

    Zhong, Limei; Yang, Qiaomei; Yan, Xin; Yu, Chao; Su, Liu; Zhang, Xifeng; Zhu, Youlin

    2017-09-01

    Determinate growth habit is an agronomically important trait associated with domestication in soya bean. Previous studies have demonstrated that the emergence of determinacy is correlated with artificial selection on four nonsynonymous mutations in the Dt1 gene. To better understand the signatures of the soft sweeps across the Dt1 locus and track the origins of the determinate alleles, we examined patterns of nucleotide variation in Dt1 and the surrounding genomic region of approximately 800 kb. Four local, asymmetrical hard sweeps on four determinate alleles, sized approximately 660, 120, 220 and 150 kb, were identified, which constitute the soft sweeps for the adaptation. These variable-sized sweeps substantially reflected the strength and timing of selection and indicated that the selection on the alleles had been completed rapidly within half a century. Statistics of EHH, iHS, H12 and H2/H1 based on haplotype data had the power to detect the soft sweeps, revealing distinct signatures of extensive long-range LD and haplotype homozygosity, and multiple frequent adaptive haplotypes. A haplotype network constructed for Dt1 and a phylogenetic tree based on its extended haplotype block implied independent sources of the adaptive alleles through de novo mutations or rare standing variation in quick succession during the selective phase, strongly supporting multiple origins of the determinacy. We propose that the adaptation of soya bean determinacy is guided by a model of soft sweeps and that this model might be indispensable during crop domestication or evolution. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  6. R2d2 Drives Selfish Sweeps in the House Mouse.

    PubMed

    Didion, John P; Morgan, Andrew P; Yadgary, Liran; Bell, Timothy A; McMullan, Rachel C; Ortiz de Solorzano, Lydia; Britton-Davidian, Janice; Bult, Carol J; Campbell, Karl J; Castiglia, Riccardo; Ching, Yung-Hao; Chunco, Amanda J; Crowley, James J; Chesler, Elissa J; Förster, Daniel W; French, John E; Gabriel, Sofia I; Gatti, Daniel M; Garland, Theodore; Giagia-Athanasopoulou, Eva B; Giménez, Mabel D; Grize, Sofia A; Gündüz, İslam; Holmes, Andrew; Hauffe, Heidi C; Herman, Jeremy S; Holt, James M; Hua, Kunjie; Jolley, Wesley J; Lindholm, Anna K; López-Fuster, María J; Mitsainas, George; da Luz Mathias, Maria; McMillan, Leonard; Ramalhinho, Maria da Graça Morgado; Rehermann, Barbara; Rosshart, Stephan P; Searle, Jeremy B; Shiao, Meng-Shin; Solano, Emanuela; Svenson, Karen L; Thomas-Laemont, Patricia; Threadgill, David W; Ventura, Jacint; Weinstock, George M; Pomp, Daniel; Churchill, Gary A; Pardo-Manuel de Villena, Fernando

    2016-06-01

    A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little evidence addresses whether "selfish" genes are capable of fixation-thereby leaving signatures identical to classical selective sweeps-despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes nonrandom segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2(HC)) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2(HC) rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2(HC) is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Single-sweep spectral analysis of contact heat evoked potentials: a novel approach to identify altered cortical processing after morphine treatment

    PubMed Central

    Hansen, Tine M; Graversen, Carina; Frøkjær, Jens B; Olesen, Anne E; Valeriani, Massimiliano; Drewes, Asbjørn M

    2015-01-01

    Aims The cortical response to nociceptive thermal stimuli recorded as contact heat evoked potentials (CHEPs) may be altered by morphine. However, previous studies have averaged CHEPs over multiple stimuli, which are confounded by jitter between sweeps. Thus, the aim was to assess single-sweep characteristics to identify alterations induced by morphine. Methods In a crossover study 15 single-sweep CHEPs were analyzed from 62 electroencephalography electrodes in 26 healthy volunteers before and after administration of morphine or placebo. Each sweep was decomposed by a continuous wavelet transform to obtain normalized spectral indices in the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–32 Hz) and gamma (32–80 Hz) bands. The average distribution over all sweeps and channels was calculated for the four recordings for each volunteer, and the two recordings before treatments were assessed for reproducibility. Baseline corrected spectral indices after morphine and placebo treatments were compared to identify alterations induced by morphine. Results Reproducibility between baseline CHEPs was demonstrated. As compared with placebo, morphine decreased the spectral indices in the delta and theta bands by 13% (P = 0.04) and 9% (P = 0.007), while the beta and gamma bands were increased by 10% (P = 0.006) and 24% (P = 0.04). Conclusion The decreases in the delta and theta band are suggested to represent a decrease in the pain specific morphology of the CHEPs, which indicates a diminished pain response after morphine administration. Hence, assessment of spectral indices in single-sweep CHEPs can be used to study cortical mechanisms induced by morphine treatment. PMID:25556985

  8. Solar Wind Earth Exchange Project (SWEEP)

    DTIC Science & Technology

    2016-10-28

    AFRL-AFOSR-UK-TR-2016-0035 Solar Wind Earth Exchange Project 140200 Steven Sembay UNIVERSITY OF LEICESTER Final Report 10/28/2016 DISTRIBUTION A...To) 01 Sep 2014 to 31 Aug 2016 4. TITLE AND SUBTITLE Solar Wind Earth Exchange Project (SWEEP) 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1...SUPPLEMENTARY NOTES 14. ABSTRACT The grant received from AFRL/AOFSR/EOARD funded the Solar Wind Earth Exchange Project (SWEEP) at Leicester University. The goal

  9. A Technical Review of Electrochemical Techniques Applied to Microbiologically Influenced Corrosion

    DTIC Science & Technology

    1991-01-01

    these cases. Additional problems can arise from the effects of the sweep rate which is used to determine R. according to equation (2). If the sweep ...small amplitude cyclic voltametry and ESCA.43 From the frequency dependence of the impedance data it was concluded that two relaxations were associated...the correct sweep rate and the elimination of the ohmic drop during the experiment are important considerations as discussed elsewhere. 5° The use of

  10. A Wind Tunnel Investigation of Joined Wing Scissor Morphing

    DTIC Science & Technology

    2006-06-01

    would use the low sweep for carrier landing and subsonic cruise, and use the high sweep for 12 supersonic flight [13]. According to Raymer [19...Wright-Patterson AFB, Ohio: Air Force Institute of Technology, 2005. 12. Katz, Joseph, Shaun Byrne, and Robert Hahl. "Stall Resistance Features of...Lifting-Body Airplane Configurations." Journal of Aircraft 2nd ser. 36 (1999): 471-474. 13. Kress, Robert W. "Variable Sweep Wing Design." AIAA 83

  11. Selective sweeps of mitochondrial DNA can drive the evolution of uniparental inheritance.

    PubMed

    Christie, Joshua R; Beekman, Madeleine

    2017-08-01

    Although the uniparental (or maternal) inheritance of mitochondrial DNA (mtDNA) is widespread, the reasons for its evolution remain unclear. Two main hypotheses have been proposed: selection against individuals containing different mtDNAs (heteroplasmy) and selection against "selfish" mtDNA mutations. Recently, uniparental inheritance was shown to promote adaptive evolution in mtDNA, potentially providing a third hypothesis for its evolution. Here, we explore this hypothesis theoretically and ask if the accumulation of beneficial mutations provides a sufficient fitness advantage for uniparental inheritance to invade a population in which mtDNA is inherited biparentally. In a deterministic model, uniparental inheritance increases in frequency but cannot replace biparental inheritance if only a single beneficial mtDNA mutation sweeps through the population. When we allow successive selective sweeps of mtDNA, however, uniparental inheritance can replace biparental inheritance. Using a stochastic model, we show that a combination of selection and drift facilitates the fixation of uniparental inheritance (compared to a neutral trait) when there is only a single selective mtDNA sweep. When we consider multiple mtDNA sweeps in a stochastic model, uniparental inheritance becomes even more likely to replace biparental inheritance. Our findings thus suggest that selective sweeps of beneficial mtDNA haplotypes can drive the evolution of uniparental inheritance. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  12. Effects of Wing Sweep on Boundary-layer Transition for a Smooth F-14A Wing at Mach Numbers from 0.700 to 0.825

    NASA Technical Reports Server (NTRS)

    Anderson, Bianca Trujillo; Meyer, Robert R., Jr.

    1990-01-01

    The results are discussed of the variable sweep transition flight experiment (VSTFE). The VSTFE was a natural laminar flow experiment flown on the swing wing F-14A aircraft. The main objective of the VSTFE was to determine the effects of wing sweep on boundary layer transition at conditions representative of transport aircraft. The experiment included the flight testing of two laminar flow wing gloves. Glove 1 was a cleanup of the existing F-14A wing. Glove 2, not discussed herein, was designed to provide favorable pressure distributions for natural laminar flow at Mach number (M) 0.700. The transition locations presented for glove 1 were determined primarily by using hot film sensors. Boundary layer rake data was provided as a supplement. Transition data were obtained for leading edge wing sweeps of 15, 20, 25, 30, and 35 degs, with Mach numbers ranging from 0.700 to 0.825, and altitudes ranging from 10,000 to 35,000 ft. Results show that a substantial amount of laminar flow was maintained at all the wing sweeps evaluated. The maximum transition Reynolds number of 13.7 x 10(exp 6) was obtained for the condition of 15 deg of sweep, M = 0.800, and an altitude of 20,000 ft.

  13. Investigation of Spiral and Sweeping Holes

    NASA Technical Reports Server (NTRS)

    Thurman, Douglas; Poinsatte, Philip; Ameri, Ali; Culley, Dennis; Raghu, Surya; Shyam, Vikram

    2015-01-01

    Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and Square holes. A patent-pending spiral hole design showed the highest potential of the non-diffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing rations of 1.0, 1.5, 2.0, and 2.5 at a density ration of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS.

  14. InSAR time series analysis of ALOS-2 ScanSAR data and its implications for NISAR

    NASA Astrophysics Data System (ADS)

    Liang, C.; Liu, Z.; Fielding, E. J.; Huang, M. H.; Burgmann, R.

    2017-12-01

    The JAXA's ALOS-2 mission was launched on May 24, 2014. It operates at L-band and can acquire data in multiple modes. ScanSAR is the main operational mode and has a 350 km swath, somewhat larger than the 250 km swath of the SweepSAR mode planned for the NASA-ISRO SAR (NISAR) mission. ALOS-2 has been acquiring a wealth of L-band InSAR data. These data are of particular value in areas of dense vegetation and high relief. The InSAR technical development for ALOS-2 also enables the preparation for the upcoming NISAR mission. We have been developing advanced InSAR processing techniques for ALOS-2 over the past two years. Here, we report the important issues for doing InSAR time series analysis using ALOS-2 ScanSAR data. First, we present ionospheric correction techniques for both regular ScanSAR InSAR and MAI (multiple aperture InSAR) ScanSAR InSAR. We demonstrate the large-scale ionospheric signals in the ScanSAR interferograms. They can be well mitigated by the correction techniques. Second, based on our technical development of burst-by-burst InSAR processing for ALOS-2 ScanSAR data, we find that the azimuth Frequency Modulation (FM) rate error is an important issue not only for MAI, but also for regular InSAR time series analysis. We identify phase errors caused by azimuth FM rate errors during the focusing process of ALOS-2 product. The consequence is mostly a range ramp in the InSAR time series result. This error exists in all of the time series results we have processed. We present the correction techniques for this error following a theoretical analysis. After corrections, we present high quality ALOS-2 ScanSAR InSAR time series results in a number of areas. The development for ALOS-2 can provide important implications for NISAR mission. For example, we find that in most cases the relative azimuth shift caused by ionosphere can be as large as 4 m in a large area imaged by ScanSAR. This azimuth shift is half of the 8 m azimuth resolution of the SweepSAR mode planned for NISAR, which implies that a good coregistration strategy for NISAR's SweepSAR mode is geometrical coregistration followed by MAI or spectral diversity analysis. Besides, our development also provides implications for the processing and system parameter requirements of NISAR, such as the accuracy requirement of azimuth FM rate and range timing.

  15. Developing and testing a multi-probe resonance electrical impedance spectroscopy system for detecting breast abnormalities

    NASA Astrophysics Data System (ADS)

    Gur, David; Zheng, Bin; Dhurjaty, Sreeram; Wolfe, Gene; Fradin, Mary; Weil, Richard; Sumkin, Jules; Zuley, Margarita

    2009-02-01

    In our previous study, we reported on the development and preliminary testing of a prototype resonance electrical impedance spectroscopy (REIS) system with a pair of probes. Although our pilot study on 150 young women ranging from 30 to 50 years old indicated the feasibility of using REIS output sweep signals to classify between the women who had negative examinations and those who would ultimately be recommended for biopsy, the detection sensitivity was relatively low. To improve performance when using REIS technology, we recently developed a new multi-probe based REIS system. The system consists of a sensor module box that can be easily lifted along a vertical support device to fit women of different height. Two user selectable breast placement "cups" with different curvatures are included in the system. Seven probes are mounted on each of the cups on opposing sides of the sensor box. By rotating the sensor box, the technologist can select the detection sensor cup that better fits the breast size of the woman being examined. One probe is mounted in the cup center for direct contact with the nipple and the other six probes are uniformly distributed along an outside circle to enable contact with six points on the outer and inner breast skin surfaces. The outer probes are located at a distance of 60mm away from the center (nipple) probe. The system automatically monitors the quality of the contact between the breast surface and each of the seven probes and data acquisition can only be initiated when adequate contact is confirmed. The measurement time for each breast is approximately 15 seconds during which time the system records 121 REIS signal sweep outputs generated from 200 KHz to 800 KHz at 5 KHz increments for all preselected probe pairs. Currently we are measuring 6 pairs between the center probe and each of six probes located on the outer circle as well as two pairs between probe pairs on the outer circle. This new REIS system has been installed in our clinical breast imaging facility. We are conducting a prospective study to assess performance when using this REIS system under an approved IRB protocol. Over 200 examinations have been conducted to date. Our experience showed that this new REIS system was easy to operate and the REIS examination was fast and considered "comfortable" by examinees since the women presses her breast into the cup herself without any need for forced breast compression, and all but a few highly sensitive women have any sensation of an electrical current during the measurement.

  16. CFD study of some factors affecting performance of HAWT with swept blades

    NASA Astrophysics Data System (ADS)

    Khalafallah, M. G.; Ahmed, A. M.; Emam, M. K.

    2017-05-01

    Most modern high-power wind turbines are horizontal axis type with straight twisted blades. Upgrading power and performance of these turbines is considered a challenge. A recent trend towards improving the horizontal axis wind turbine (HAWT) performance is to use swept blades or sweep twist adaptive blades. In the present work, the effect of blade curvature, sweep starting point and sweep direction on the wind turbine performance was investigated. The CFD simulation method was validated against available experimental data of a 0.9 m diameter HAWT. The wind turbine power and thrust coefficients at different tip speed ratios were calculated. Flow field, pressure distribution and local tangential and streamwise forces were also analysed. The results show that the downstream swept blade has the highest Cp value at design point as compared with the straight blade profile. However, the improvement in power coefficient is accompanied by a thrust increase. Results also show that the best performance is obtained when the starting blade sweeps at 25% of blade radius for different directions of sweep.

  17. Sweeping Jet Optimization Studies

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Koklu, Mehti; Andino, Marlyn; Lin, John C.; Edelman, Louis

    2016-01-01

    Progress on experimental efforts to optimize sweeping jet actuators for active flow control (AFC) applications with large adverse pressure gradients is reported. Three sweeping jet actuator configurations, with the same orifice size but di?erent internal geometries, were installed on the flap shoulder of an unswept, NACA 0015 semi-span wing to investigate how the output produced by a sweeping jet interacts with the separated flow and the mechanisms by which the flow separation is controlled. For this experiment, the flow separation was generated by deflecting the wing's 30% chord trailing edge flap to produce an adverse pressure gradient. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the three actuator configurations. The actuator with the largest jet deflection angle, at the pressure ratios investigated, was the most efficient at controlling flow separation on the flap of the model. Oil flow visualization studies revealed that the flow field controlled by the sweeping jets was more three-dimensional than expected. The results presented also show that the actuator spacing was appropriate for the pressure ratios examined.

  18. Tritium Management Loop Design Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rader, Jordan D.; Felde, David K.; McFarlane, Joanna

    This report summarizes physical, chemical, and engineering analyses that have been done to support the development of a test loop to study tritium migration in 2LiF-BeF2 salts. The loop will operate under turbulent flow and a schematic of the apparatus has been used to develop a model in Mathcad to suggest flow parameters that should be targeted in loop operation. The introduction of tritium into the loop has been discussed as well as various means to capture or divert the tritium from egress through a test assembly. Permeation was calculated starting with a Modelica model for a transport through amore » nickel window into a vacuum, and modifying it for a FLiBe system with an argon sweep gas on the downstream side of the permeation interface. Results suggest that tritium removal with a simple tubular permeation device will occur readily. Although this system is idealized, it suggests that rapid measurement capability in the loop may be necessary to study and understand tritium removal from the system.« less

  19. Ovulation

    MedlinePlus Videos and Cool Tools

    ... sequence of hormonal responses. Located deep within the brain, the pituitary gland releases the hormones FSH and LH, which travel through the blood stream to the ovaries. These hormones signal the development and release a single egg cell from one of the ovaries. The sweeping motion ...

  20. Field demonstration of polymer-amended in situ chemical oxidation (PA-ISCO)

    NASA Astrophysics Data System (ADS)

    Silva, Jeff A. K.; Crimi, Michelle; Palaia, Thomas; Ko, Saebom; Davenport, Sean

    2017-04-01

    The methods and results of the first field-scale demonstration of polymer-amended in situ chemical oxidation (PA-ISCO) are presented. The demonstration took place at MCB CAMLEJ (Marine Corps Base, Camp Lejeune) Operable Unit (OU) 15, Site 88, in Camp Lejeune, North Carolina between October and December 2010. PA-ISCO was developed as an alternative treatment approach that utilizes viscosity-modified fluids to improve the in situ delivery and distribution (i.e. sweep-efficiency) of chemical oxidants within texturally heterogeneous contaminated aquifers. The enhanced viscosity of the fluid mitigates the effects of preferential flows, improving sweep-efficiency and enhancing the subsurface contact between the injected oxidant and the target contamination within the treatment zone. The PA-ISCO fluid formulation used in this demonstration included sodium permanganate as oxidant, xanthan gum biopolymer as a shear-thinning viscosifier, and sodium hexametaphosphate (SHMP) as an anti-coagulant. It was the goal of this demonstration to validate the utility of PA-ISCO within a heterogeneous aquifer. An approximate 100% improvement in sweep-efficiency was achieved for the PA-ISCO fluid, as compared to a permanganate-only injection within an adjacent control plot.

  1. Lee-side flow over delta wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Miller, D. S.; Wood, R. M.

    1985-01-01

    An experimental investigation of the lee-side flow on sharp leading-edge delta wings at supersonic speeds has been conducted. Pressure data were obtained at Mach numbers from 1.5 to 2.8, and three types of flow-visualization data (oil-flow, tuft, and vapor-screen) were obtained at Mach numbers from 1.7 to 2.8 for wing leading-edge sweep angles from 52.5 deg to 75 deg. From the flow-visualization data, the lee-side flows were classified into seven distinct types and a chart was developed that defines the flow mechanism as a function of the conditions normal to the wing leading edge, specifically, angle of attack and Mach number. Pressure data obtained experimentally and by a semiempirical prediction method were employed to investigate the effects of angle of attack, leading-edge sweep, and Mach number on vortex strength and vortex position. In general, the predicted and measured values of vortex-induced normal force and vortex position obtained from experimental data have the same trends with angle of attack, Mach number, and leading-edge sweep; however, the vortex-induced normal force is underpredicted by 15 to 30 percent, and the vortex spanwise location is overpredicted by approximately 15 percent.

  2. Aeroelastic analysis for propellers - mathematical formulations and program user's manual

    NASA Technical Reports Server (NTRS)

    Bielawa, R. L.; Johnson, S. A.; Chi, R. M.; Gangwani, S. T.

    1983-01-01

    Mathematical development is presented for a specialized propeller dedicated version of the G400 rotor aeroelastic analysis. The G400PROP analysis simulates aeroelastic characteristics particular to propellers such as structural sweep, aerodynamic sweep and high subsonic unsteady airloads (both stalled and unstalled). Formulations are presented for these expanded propeller related methodologies. Results of limited application of the analysis to realistic blade configurations and operating conditions which include stable and unstable stall flutter test conditions are given. Sections included for enhanced program user efficiency and expanded utilization include descriptions of: (1) the structuring of the G400PROP FORTRAN coding; (2) the required input data; and (3) the output results. General information to facilitate operation and improve efficiency is also provided.

  3. Sex, Drugs and STDs: Preliminary Findings from the Belfast Youth Development Study

    ERIC Educational Resources Information Center

    McAloney, Kareena; McCrystal, Patrick; Percy, Andrew

    2010-01-01

    Young people's participation in sexual risk behaviours is commonly linked with participation in a range of other risky behaviours, and in particular with substance use behaviours. This cross-sectional analysis of the sixth sweep of the Belfast Youth Development Study aimed to examine associations between substance use and sexual activity and…

  4. 47 CFR 90.210 - Emission masks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its... profile is developed. If video filtering is used, its bandwidth must not be less than the instrument... with 1 MHz of the edge of the authorized subband. The video filter bandwidth shall not be less than the...

  5. 47 CFR 90.210 - Emission masks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... profile is developed. If video filtering is used, its bandwidth must not be less than the instrument... sufficient number of sweeps must be measured to insure that the emission profile is developed. If video... with 1 MHz of the edge of the authorized subband. The video filter bandwidth shall not be less than the...

  6. 47 CFR 90.210 - Emission masks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its... profile is developed. If video filtering is used, its bandwidth must not be less than the instrument... with 1 MHz of the edge of the authorized subband. The video filter bandwidth shall not be less than the...

  7. 47 CFR 90.210 - Emission masks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... profile is developed. If video filtering is used, its bandwidth must not be less than the instrument... sufficient number of sweeps must be measured to insure that the emission profile is developed. If video... with 1 MHz of the edge of the authorized subband. The video filter bandwidth shall not be less than the...

  8. 47 CFR 90.210 - Emission masks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... profile is developed. If video filtering is used, its bandwidth must not be less than the instrument... sufficient number of sweeps must be measured to insure that the emission profile is developed. If video... with 1 MHz of the edge of the authorized subband. The video filter bandwidth shall not be less than the...

  9. Travel Information, Transportation & Public Facilities, State of Alaska

    Science.gov Websites

    outside site Report Potholes Road Conditions (511) Road Maintenance Central Region Maintenance & ; Operations Northern Region Maintenance & Operations Southcoast Region Maintenance & Operations Road Weather Information System Street Sweeping - Anchorage & Eagle River Winter Road Maintenance Priority

  10. Teacher Education and Curriculum Change in Scotland

    ERIC Educational Resources Information Center

    Donaldson, Graham

    2014-01-01

    The dynamic forces shaping education in the 21st century have led countries across the world to pursue sweeping educational reforms. Despite significant investment and radical approaches including system and organisational restructuring, managerialism and marketisation, evidence of sustained impact in the classroom remains elusive. Using the…

  11. Complex dynamics of selection and cellular memory in adaptation to a changing environment

    NASA Astrophysics Data System (ADS)

    Kussell, Edo; Lin, Wei-Hsiang

    We study a synthetic evolutionary system in bacteria in which an antibiotic resistance gene is controlled by a stochastic on/off switching promoter. At the population level, this system displays all the basic ingredients for evolutionary selection, including diversity, fitness differences, and heritability. At the single cell level, physiological processes can modulate the ability of selection to act. We expose the stochastic switching strains to pulses of antibiotics of different durations in periodically changing environments using microfluidics. Small populations are tracked over a large number of periods at single cell resolution, allowing the visualization and quantification of selective sweeps and counter-sweeps at the population level, as well as detailed single cell analysis. A simple model is introduced to predict long-term population growth rates from single cell measurements, and reveals unexpected aspects of population dynamics, including cellular memory that acts on a fast timescale to modulate growth rates. This work is supported by NIH Grant No. R01-GM097356.

  12. Data acquisition techniques for exploiting the uniqueness of the time-of-flight mass spectrometer: Application to sampling pulsed gas systems

    NASA Technical Reports Server (NTRS)

    Lincoln, K. A.

    1980-01-01

    Mass spectra are produced in most mass spectrometers by sweeping some parameter within the instrument as the sampled gases flow into the ion source. It is evident that any fluctuation in the gas during the sweep (mass scan) of the instrument causes the output spectrum to be skewed in its mass peak intensities. The time of flight mass spectrometer (TOFMS) with its fast, repetitive mode of operation produces spectra without skewing or varying instrument parameters and because all ion species are ejected from the ion source simultaneously, the spectra are inherently not skewed despite rapidly changing gas pressure or composition in the source. Methods of exploiting this feature by utilizing fast digital data acquisition systems, such as transient recorders and signal averagers which are commercially available are described. Applications of this technique are presented including TOFMS sampling of vapors produced by both pulsed and continuous laser heating of materials.

  13. Wing optimization for space shuttle orbiter vehicles

    NASA Technical Reports Server (NTRS)

    Surber, T. E.; Bornemann, W. E.; Miller, W. D.

    1972-01-01

    The results were presented of a parametric study performed to determine the optimum wing geometry for a proposed space shuttle orbiter. The results of the study establish the minimum weight wing for a series of wing-fuselage combinations subject to constraints on aerodynamic heating, wing trailing edge sweep, and wing over-hang. The study consists of a generalized design evaluation which has the flexibility of arbitrarily varying those wing parameters which influence the vehicle system design and its performance. The study is structured to allow inputs of aerodynamic, weight, aerothermal, structural and material data in a general form so that the influence of these parameters on the design optimization process can be isolated and identified. This procedure displays the sensitivity of the system design of variations in wing geometry. The parameters of interest are varied in a prescribed fashion on a selected fuselage and the effect on the total vehicle weight is determined. The primary variables investigated are: wing loading, aspect ratio, leading edge sweep, thickness ratio, and taper ratio.

  14. Topography of sound level representation in the FM sweep selective region of the pallid bat auditory cortex.

    PubMed

    Measor, Kevin; Yarrow, Stuart; Razak, Khaleel A

    2018-05-26

    Sound level processing is a fundamental function of the auditory system. To determine how the cortex represents sound level, it is important to quantify how changes in level alter the spatiotemporal structure of cortical ensemble activity. This is particularly true for echolocating bats that have control over, and often rapidly adjust, call level to actively change echo level. To understand how cortical activity may change with sound level, here we mapped response rate and latency changes with sound level in the auditory cortex of the pallid bat. The pallid bat uses a 60-30 kHz downward frequency modulated (FM) sweep for echolocation. Neurons tuned to frequencies between 30 and 70 kHz in the auditory cortex are selective for the properties of FM sweeps used in echolocation forming the FM sweep selective region (FMSR). The FMSR is strongly selective for sound level between 30 and 50 dB SPL. Here we mapped the topography of level selectivity in the FMSR using downward FM sweeps and show that neurons with more monotonic rate level functions are located in caudomedial regions of the FMSR overlapping with high frequency (50-60 kHz) neurons. Non-monotonic neurons dominate the FMSR, and are distributed across the entire region, but there is no evidence for amplitopy. We also examined how first spike latency of FMSR neurons change with sound level. The majority of FMSR neurons exhibit paradoxical latency shift wherein the latency increases with sound level. Moreover, neurons with paradoxical latency shifts are more strongly level selective and are tuned to lower sound level than neurons in which latencies decrease with level. These data indicate a clustered arrangement of neurons according to monotonicity, with no strong evidence for finer scale topography, in the FMSR. The latency analysis suggests mechanisms for strong level selectivity that is based on relative timing of excitatory and inhibitory inputs. Taken together, these data suggest how the spatiotemporal spread of cortical activity may represent sound level. Copyright © 2018. Published by Elsevier B.V.

  15. Generation of sub-part-per-billion gaseous volatile organic compounds at ambient temperature by headspace diffusion of aqueous standards through decoupling between ideal and nonideal Henry's law behavior.

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2013-05-21

    In the analysis of volatile organic compounds in air, the preparation of their gaseous standards at low (sub-ppb) concentration levels with high reliability is quite difficult. In this study, a simple dynamic headspace-based approach was evaluated as a means of generating vapor-phase volatile organic compounds from a liquid standard in an impinger at ambient temperature (25 °C). For a given sampling time, volatile organic compound vapor formed in the headspace was swept by bypassing the sweep gas through the impinger and collected four times in quick succession in separate sorbent tubes. In each experiment, a fresh liquid sample was used for each of the four sampling times (5, 10, 20, and 30 min) at a steady flow rate of 50 mL min(-1). The air-water partitioning at the most dynamic (earliest) sweeping stage was established initially in accord with ideal Henry's law, which was then followed by considerably reduced partitioning in a steady-state equilibrium (non-ideal Henry's law). The concentrations of gaseous volatile organic compounds, collected after the steady-state equilibrium, reached fairly constant values: for instance, the mole fraction of toluene measured at a sweeping interval of 10 and 30 min averaged 1.10 and 0.99 nmol mol(-1), respectively (after the initial 10 min sampling). In the second stage of our experiment, the effect of increasing the concentrations of liquid spiking standard was also examined by collecting sweep gas samples from two consecutive 10 min runs. The volatile organic compounds, collected in the first and second 10 min sweep gas samples, exhibited ideal and nonideal Henry's law behavior, respectively. From this observation, we established numerical relationships to predict the mole fraction (or mixing ratio) of each volatile organic compound in steady-state equilibrium in relation to the concentration of standard spiked into the system. This experimental approach can thus be used to produce sub-ppb levels of gaseous volatile organic compounds in a constant and predictable manner.

  16. Marketing nets out. Spending--and expecting--more than ever, hospitals and systems take their message to the Web.

    PubMed

    Hudson, T

    1999-05-01

    Live on the Web, it's open-heart surgery--a showroom window on sweeping new marketing plans. Along with perennial promos like radio and TV ads, health systems have tapped the power of the Internet to hard-wire their organizations for growth. But marketing must be linked to operations as never before.

  17. How Californians View Education Standards, Testing and Accountability: Results from the Third PACE/USC Rossier Poll

    ERIC Educational Resources Information Center

    Plank, David N.; Brewer, Dominic J.; Polikoff, Morgan; Hall, Michelle

    2013-01-01

    California is in the midst of sweeping education changes. The state is rolling out the Common Core State Standards (CCSS) and a new system of assessments. Voters approved a temporary statewide tax increase that will provide additional funding to schools after years of spending cuts. The Legislature adopted a new system for funding schools (the…

  18. Automated multi-slice extracellular and patch-clamp experiments using the WinLTP data acquisition system with automated perfusion control

    PubMed Central

    Anderson, William W.; Fitzjohn, Stephen M.; Collingridge, Graham L.

    2012-01-01

    WinLTP is a data acquisition program for studying long-term potentiation (LTP) and other aspects of synaptic function. Earlier versions of WinLTP (J. Neurosci. Methods, 162:346–356, 2007) provided automated electrical stimulation and data acquisition capable of running nearly an entire synaptic plasticity experiment, with the primary exception that perfusion solutions had to be changed manually. This automated stimulation and acquisition was done by using ‘Sweep’, ‘Loop’ and ‘Delay’ events to build scripts using the ‘Protocol Builder’. However, this did not allow automatic changing of many solutions while running multiple slice experiments, or solution changing when this had to be performed rapidly and with accurate timing during patch-clamp experiments. We report here the addition of automated perfusion control to WinLTP. First, perfusion change between sweeps is enabled by adding the ‘Perfuse’ event to Protocol Builder scripting and is used in slice experiments. Second, fast perfusion changes during as well as between sweeps is enabled by using the Perfuse event in the protocol scripts to control changes between sweeps, and also by changing digital or analog output during a sweep and is used for single cell single-line perfusion patch-clamp experiments. The addition of stepper control of tube placement allows dual- or triple-line perfusion patch-clamp experiments for up to 48 solutions. The ability to automate perfusion changes and fully integrate them with the already automated stimulation and data acquisition goes a long way toward complete automation of multi-slice extracellularly recorded and single cell patch-clamp experiments. PMID:22524994

  19. Control of energy sweep and transverse beam motion in induction linacs

    NASA Astrophysics Data System (ADS)

    Turner, W. C.

    1991-05-01

    Recent interest in the electron induction accelerator has focussed on its application as a driver for high power radiation sources; free electron laser (FEL), relativistic klystron (RK) and cyclotron autoresonance maser (CARM). In the microwave regime where many successful experiments have been carried out, typical beam parameters are: beam energy 1 to 10 MeV, current 1 to 3 kA and pulse width 50 nsec. Radiation source applications impose conditions on electron beam quality, as characterized by three parameters; energy sweep, transverse beam motion and brightness. These conditions must be maintained for the full pulse duration to assure high efficiency conversion of beam power to radiation. The microwave FEL that has been analyzed in the greatest detail requires energy sweep less than (+ or -) 1 pct., transverse beam motion less than (+ or -) 1 mm and brightness approx. 1 x 10(exp 8)A/sq m sq rad. In the visible region the requirements on these parameters become roughly an order of magnitude more strigent. With the ETAII accelerator at LLNL the requirements were achieved for energy sweep, transverse beam motion and brightness. The recent data and the advances that have made the improved beam quality possible are discussed. The most important advances are: understanding of focussing magnetic field errors and improvements in alignment of the magnetic axis, a redesign of the high voltage pulse distribution system between the magnetic compression modulators and the accelerator cells, and exploitation of a beam tuning algorithm for minimizing transverse beam motion. The prospects are briefly described for increasing the pulse repetition frequency to the range of 5 kHz and a delayed feedback method of regulating beam energy over very long pulse bursts, thus making average power megawatt level microwave sources at 140 GHz and above a possibility.

  20. Can comodulation masking release occur when frequency changes could promote perceptual segregation of the on-frequency and flanking bands?

    PubMed

    Verhey, Jesko L; Epp, Bastian; Stasiak, Arkadiusz; Winter, Ian M

    2013-01-01

    A common characteristic of natural sounds is that the level fluctuations in different frequency regions are coherent. The ability of the auditory system to use this comodulation is shown when a sinusoidal signal is masked by a masker centred at the signal frequency (on-frequency masker, OFM) and one or more off-frequency components, commonly referred to as flanking bands (FBs). In general, the threshold of the signal masked by comodulated masker components is lower than when masked by masker components with uncorrelated envelopes or in the presence of the OFM only. This effect is commonly referred to as comodulation masking release (CMR). The present study investigates if CMR is also observed for a sinusoidal signal embedded in the OFM when the centre frequencies of the FBs are swept over time with a sweep rate of one octave per second. Both a common change of different frequencies and comodulation could serve as cues to indicate which of the stimulus components originate from one source. If the common fate of frequency components is the stronger binding cue, the sweeping FBs and the OFM with a fixed centre frequency should no longer form one auditory object and the CMR should be abolished. However, psychoacoustical results with normal-hearing listeners show that a CMR is also observed with sweeping components. The results are consistent with the hypothesis of wideband inhibition as the underlying physiological mechanism, as the CMR should only depend on the spectral position of the flanking bands relative to the inhibitory areas (as seen in physiological recordings using stationary flanking bands). Preliminary physiological results in the cochlear nucleus of the Guinea pig show that a correlate of CMR can also be found at this level of the auditory pathway with sweeping flanking bands.

  1. Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

    DOEpatents

    Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

    2012-08-21

    A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

  2. AESS: Accelerated Exact Stochastic Simulation

    NASA Astrophysics Data System (ADS)

    Jenkins, David D.; Peterson, Gregory D.

    2011-12-01

    The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution method: The Accelerated Exact Stochastic Simulation (AESS) tool provides implementations of a wide variety of popular variations on the Gillespie method. Users can select the specific algorithm considered most appropriate. Comparisons between the methods and with other available implementations indicate that AESS provides the fastest known implementation of Gillespie's method for a variety of test models. Users may wish to execute ensembles of simulations to sweep parameters or to obtain better statistical results, so AESS supports acceleration of ensembles of simulation using parallel processing with MPI, SSE vector units on x86 processors, and/or using NVIDIA GPUs with CUDA.

  3. Sweeping Changes in Immigration Law

    ERIC Educational Resources Information Center

    Danilov, Dan P.

    1978-01-01

    Among the changes in Immigration Laws are the rectification of the long-standing inequity between the Eastern and Western Hemispheres by instituting identical preference systems, the provision for the adjustment from a non-immigrant visa status to that of a permanent resident, and amendments to the Labor Certification requirements. (NQ)

  4. 6. Historic American Buildings Survey E. W. Russell, Photographer, June ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Historic American Buildings Survey E. W. Russell, Photographer, June 19, 1936 OLD WELL SWEEP (LEVER IN OPERATION) - Cotton Gin & Well Sweep, Cliatt Plantation, State Route 165, Cottonton, Russell County, AL

  5. Parallel deterministic transport sweeps of structured and unstructured meshes with overloaded mesh decompositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pautz, Shawn D.; Bailey, Teresa S.

    Here, the efficiency of discrete ordinates transport sweeps depends on the scheduling algorithm, the domain decomposition, the problem to be solved, and the computational platform. Sweep scheduling algorithms may be categorized by their approach to several issues. In this paper we examine the strategy of domain overloading for mesh partitioning as one of the components of such algorithms. In particular, we extend the domain overloading strategy, previously defined and analyzed for structured meshes, to the general case of unstructured meshes. We also present computational results for both the structured and unstructured domain overloading cases. We find that an appropriate amountmore » of domain overloading can greatly improve the efficiency of parallel sweeps for both structured and unstructured partitionings of the test problems examined on up to 10 5 processor cores.« less

  6. Pressure distribution on a 1- by 3-meter semispan wing at sweep angles from 0 deg to 40 deg in subsonic flow

    NASA Technical Reports Server (NTRS)

    Yip, L. P.; Shubert, G. L.

    1976-01-01

    A 1- by 3-meter semispan wing of taper ratio 1.0 with NACA 0012 airfoil section contours was tested in the Langley V/STOL tunnel to measure the pressure distribution at five sweep angles, 0 deg, 10 deg, 20 deg, 30 deg, and 40 deg, through an angle-of-attack range from -6 deg to 20 deg. The pressure data are presented as plots of pressure coefficients at each static-pressure tap location on the wing. Flow visualization wing-tuft photographs are also presented for a wing of 40 deg sweep. A comparison between theory and experiment using two inviscid theories and a viscous theory shows good agreement for pressure distributions, normal forces, and pitching moments for the wing at 0 deg sweep.

  7. Parallel deterministic transport sweeps of structured and unstructured meshes with overloaded mesh decompositions

    DOE PAGES

    Pautz, Shawn D.; Bailey, Teresa S.

    2016-11-29

    Here, the efficiency of discrete ordinates transport sweeps depends on the scheduling algorithm, the domain decomposition, the problem to be solved, and the computational platform. Sweep scheduling algorithms may be categorized by their approach to several issues. In this paper we examine the strategy of domain overloading for mesh partitioning as one of the components of such algorithms. In particular, we extend the domain overloading strategy, previously defined and analyzed for structured meshes, to the general case of unstructured meshes. We also present computational results for both the structured and unstructured domain overloading cases. We find that an appropriate amountmore » of domain overloading can greatly improve the efficiency of parallel sweeps for both structured and unstructured partitionings of the test problems examined on up to 10 5 processor cores.« less

  8. Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics.

    PubMed

    Gilles, Luc; Ellerbroek, Brent L; Vogel, Curtis R

    2003-09-10

    Multiconjugate adaptive optics (MCAO) systems with 10(4)-10(5) degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 10(4) actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10(-2) Hz, i.e., 4-5 orders of magnitude lower than the typical 10(3) Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.

  9. The influence of sweep on the aerodynamic loading of an oscillating NACA 0012 airfoil. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    St.hilaire, A. O.; Carta, F. O.; Fink, M. R.; Jepson, W. D.

    1979-01-01

    Aerodynamic experiments were performed on an oscillating NACA 0012 airfoil utilizing a tunnel-spanning wing in both unswept and 30 degree swept configurations. The airfoil was tested in steady state and in oscillatory pitch about the quarter chord. The unsteady aerodynamic loading was measured using pressure transducers along the chord. Numerical integrations of the unsteady pressure transducer responses were used to compute the normal force, chord force, and moment components of the induced loading. The effects of sweep on the induced aerodynamic load response was examined. For the range of parameters tested, it was found that sweeping the airfoil tends to delay the onset of dynamic stall. Sweeping was also found to reduce the magnitude of the unsteady load variation about the mean response. It was determined that at mean incidence angles greater than 9 degrees, sweep tends to reduce the stability margin of the NACA 0012 airfoil; however, for all cases tested, the airfoil was found to be stable in pure pitch. Turbulent eddies were found to convect downstream above the upper surface and generate forward-moving acoustic waves at the trailing edge which move upstream along the lower surface.

  10. F-14 VSTFE

    NASA Image and Video Library

    1986-04-11

    NASA 834, an F-14 Navy Tomcat, seen here in flight, was used at Dryden in 1986 and 1987 in a program known as the Variable-Sweep Transition Flight Experiment (VSTFE). This program explored laminar flow on variable sweep aircraft at high subsonic speeds. An F-14 aircraft was chosen as the carrier vehicle for the VSTFE program primarily because of its variable-sweep capability, Mach and Reynolds number capability, availability, and favorable wing pressure distribution. The variable sweep outer-panels of the F-14 aircraft were modified with natural laminar flow gloves to provide not only smooth surfaces but also airfoils that can produce a wide range of pressure distributions for which transition location can be determined at various flight conditions and sweep angles. Glove I, seen here installed on the upper surface of the left wing, was a "cleanup" or smoothing of the basic F-14 wing, while Glove II was designed to provide specific pressure distributions at Mach 0.7. Laminar flow research continued at Dryden with a research program on the NASA 848 F-16XL, a laminar flow experiment involving a wing-mounted panel with millions of tiny laser cut holes drawing off turbulent boundary layer air with a suction pump.

  11. F-14 VSTFE - gloves #1 and #2

    NASA Image and Video Library

    1987-04-22

    NASA 834, an F-14 Navy Tomcat, seen here in flight, was used at Dryden in 1986 and 1987 in a program known as the Variable-Sweep Transition Flight Experiment (VSTFE). This program explored laminar flow on variable sweep aircraft at high subsonic speeds. An F-14 aircraft was chosen as the carrier vehicle for the VSTFE program primarily because of its variable-sweep capability, Mach and Reynolds number capability, availability, and favorable wing pressure distribution. The variable sweep outer-panels of the F-14 aircraft were modified with natural laminar flow gloves to provide not only smooth surfaces but also airfoils that can produce a wide range of pressure distributions for which transition location can be determined at various flight conditions and sweep angles. Glove I, seen here installed on the upper surface of the left wing, was a "cleanup" or smoothing of the basic F-14 wing, while Glove II was designed to provide specific pressure distributions at Mach 0.7. Laminar flow research continued at Dryden with a research program on the NASA 848 F-16XL, a laminar flow experiment involving a wing-mounted panel with millions of tiny laser cut holes drawing off turbulent boundary layer air with a suction pump.

  12. A neural mechanism for detecting the distance of a selected target by modulating the FM sweep rate of biosonar in echolocation of bat.

    PubMed

    Kamata, Eigo; Inoue, Satoru; Zheng, MeiHong; Kashimori, Yoshiki; Kambara, Takeshi

    2004-01-01

    Most species of bats making echolocation use frequency modulated (FM) ultrasonic pulses to measure the distance to targets. These bats detect with a high accuracy the arrival time differences between emitted pulses and their echoes generated by targets. In order to clarify the neural mechanism for echolocation, we present neural model of inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex (AC) along which information of echo delay times is processed. The bats increase the downward frequency sweep rate of emitted FM pulse as they approach the target. The functional role of this modulation of sweep rate is not yet clear. In order to investigate the role, we calculated the response properties of our models of IC, MGB, and AC changing the target distance and the sweep rate. We found based on the simulations that the distance of a target in various ranges may be encoded the most clearly into the activity pattern of delay time map network in AC, when the sweep rate of FM pulse used is coincided with the observed value which the bats adopt for each range of target distance.

  13. Variation sweep rate cyclic voltammetry on the capacitance electrode activated carbon/PVDF with polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Rohmawati, L.; Setyarsih, W.; Nurjannah, T.

    2018-03-01

    Sweep rate of the process voltammetry cyclic characterization is very influential towards the electrode capacitance value, especially on activated carbon electrodes/PVDF. A simple method of this research by use a mixing for electrode activated carbon/10 wt. % PVDF and the separator is made of a polymer electrolyte (PVA/H3PO4) by a sol gel method. The prototype supercapacitor is made in the form of a sandwich with a separator placed between two electrodes. Electrodes and separators are arranged in layers at a pressure of 1500 psi, then heated at 50°C for 10 minutes. Next done cyclic voltammetry in a potential range of -1 V to 1 V with a sweep rate of 5 mV/s, 10 mV/s, 20 mV/s, 25 mV/s and 50 mV/s. This results of curves voltammogram is reversible, the most wide curve on the sweep rate of 5 mV/s and most narrow curve on a sweep rate of 50 mV/s. Supercapacitor capacitance values obtained by 86 F/g, 43 F/g, 21 F/g, 16 F/g, and 8 F/g.

  14. Numerical simulation of incidence and sweep effects on delta wing vortex breakdown

    NASA Technical Reports Server (NTRS)

    Ekaterinaris, J. A.; Schiff, Lewis B.

    1994-01-01

    The structure of the vortical flowfield over delta wings at high angles of attack was investigated. Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics, including leading-edge separation, secondary separation, and vortex breakdown. Flows over a 75- and a 63-deg sweep delta wing with sharp leading edges were investigated and compared with available experimental data. The effect of variation of circumferential grid resolution grid resolution in the vicinity of the wing leading edge on the accuracy of the solutions was addressed. Furthermore, the effect of turbulence modeling on the solutions was investigated. The effects of variation of angle of attack on the computed vortical flow structure for the 75-deg sweep delta wing were examined. At moderate angles of attack no vortex breakdown was observed. When a critical angle of attack was reached, bubble-type vortex breakdown was found. With further increase in angle of attack, a change from bubble-type breakdown to spiral-type vortex breakdown was predicted by the numerical solution. The effects of variation of sweep angle and freestream Mach number were addressed with the solutions on a 63-deg sweep delta wing.

  15. Data Acquisition System of Nobeyama MKID Camera

    NASA Astrophysics Data System (ADS)

    Nagai, M.; Hisamatsu, S.; Zhai, G.; Nitta, T.; Nakai, N.; Kuno, N.; Murayama, Y.; Hattori, S.; Mandal, P.; Sekimoto, Y.; Kiuchi, H.; Noguchi, T.; Matsuo, H.; Dominjon, A.; Sekiguchi, S.; Naruse, M.; Maekawa, J.; Minamidani, T.; Saito, M.

    2018-05-01

    We are developing a superconducting camera based on microwave kinetic inductance detectors (MKIDs) to observe 100-GHz continuum with the Nobeyama 45-m telescope. A data acquisition (DAQ) system for the camera has been designed to operate the MKIDs with the telescope. This system is required to connect the telescope control system (COSMOS) to the readout system of the MKIDs (MKID DAQ) which employs the frequency-sweeping probe scheme. The DAQ system is also required to record the reference signal of the beam switching for the demodulation by the analysis pipeline in order to suppress the sky fluctuation. The system has to be able to merge and save all data acquired both by the camera and by the telescope, including the cryostat temperature and pressure and the telescope pointing. A collection of software which implements these functions and works as a TCP/IP server on a workstation was developed. The server accepts commands and observation scripts from COSMOS and then issues commands to MKID DAQ to configure and start data acquisition. We made a commissioning of the MKID camera on the Nobeyama 45-m telescope and obtained successful scan signals of the atmosphere and of the Moon.

  16. 7. Historic American Buildings Survey E. W. Russell, Photographer, June ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Historic American Buildings Survey E. W. Russell, Photographer, June 19, 1936 OLD WELL SWEEP (LEVER IN UPRIGHT POSITION) - Cotton Gin & Well Sweep, Cliatt Plantation, State Route 165, Cottonton, Russell County, AL

  17. Taiwan: Major U.S. Arms Sales Since 1990

    DTIC Science & Technology

    2010-09-28

    howitzers; 54 AAV7A1 amphibious assault vehicles; AN/ALE-50 electronic countermeasure (ECM) systems for F-16s; and 12 MH-53 mine -sweeping helicopters...268 Commercial sale. Opall Barbara and David Silverberg, “Taiwanese May Soon Coproduce...missiles $37 01/29 (60) MIDS (follow-on technical support for Posheng C4ISR systems) $340 01/29 (2) Osprey-class mine hunting ships (refurbished and

  18. Taiwan: Major U.S. Arms Sales Since 1990

    DTIC Science & Technology

    2014-08-29

    amphibious assault vehicles; AN/ALE-50 electronic countermeasure (ECM) systems for F-16s; and 12 MH-53 mine -sweeping helicopters. President Bush...54 243 Commercial sale. Opall Barbara and David Silverberg, “Taiwanese May Soon Coproduce Patriot...systems) $340 01/29 (2) Osprey-class mine hunting ships (refurbished and upgraded) $105 2011 09/21 Retrofit of 145 F-16A/B fighters, with 176 AESA

  19. Beacon data acquisition and display system

    DOEpatents

    Skogmo, D.G.; Black, B.D.

    1991-12-17

    A system for transmitting aircraft beacon information received by a secondary surveillance radar through telephone lines to a remote display includes a digitizer connected to the radar for preparing a serial file of data records containing position and identification information of the beacons detected by each sweep of the radar. This information is transmitted through the telephone lines to a remote computer where it is displayed. 6 figures.

  20. Beacon data acquisition and display system

    DOEpatents

    Skogmo, David G.; Black, Billy D.

    1991-01-01

    A system for transmitting aircraft beacon information received by a secondary surveillance radar through telephone lines to a remote display includes a digitizer connected to the radar for preparing a serial file of data records containing position and identification information of the beacons detected by each sweep of the radar. This information is transmitted through the telephone lines to a remote computer where it is displayed.

  1. Sweeping as a multistep enrichment process in micellar electrokinetic chromatography: the retention factor gradient effect.

    PubMed

    El-Awady, Mohamed; Pyell, Ute

    2013-07-05

    The application of a new method developed for the assessment of sweeping efficiency in MEKC under homogeneous and inhomogeneous electric field conditions is extended to the general case, in which the distribution coefficient and the electric conductivity of the analyte in the sample zone and in the separation compartment are varied. As test analytes p-hydroxybenzoates (parabens), benzamide and some aromatic amines are studied under MEKC conditions with SDS as anionic surfactant. We show that in the general case - in contrast to the classical description - the obtainable enrichment factor is not only dependent on the retention factor of the analyte in the sample zone but also dependent on the retention factor in the background electrolyte (BGE). It is shown that in the general case sweeping is inherently a multistep focusing process. We describe an additional focusing/defocusing step (the retention factor gradient effect, RFGE) quantitatively by extending the classical equation employed for the description of the sweeping process with an additional focusing/defocusing factor. The validity of this equation is demonstrated experimentally (and theoretically) under variation of the organic solvent content (in the sample and/or the BGE), the type of organic solvent (in the sample and/or the BGE), the electric conductivity (in the sample), the pH (in the sample), and the concentration of surfactant (in the BGE). It is shown that very high enrichment factors can be obtained, if the pH in the sample zone makes possible to convert the analyte into a charged species that has a high distribution coefficient with respect to an oppositely charged micellar phase, while the pH in the BGE enables separation of the neutral species under moderate retention factor conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Weather or Not To Teach Junior High Meteorology.

    ERIC Educational Resources Information Center

    Knorr, Thomas P.

    1984-01-01

    Presents a technique for teaching meteorology allowing students to observe and analyze consecutive weather maps and relate local conditions; a model illustrating the three-dimensional nature of the atmosphere is employed. Instructional methods based on studies of daily weather maps to trace systems sweeping across the United States are discussed.…

  3. Child, Family and Community Characteristics Associated with School Readiness in Jordan

    ERIC Educational Resources Information Center

    Al-Hassan, Suha M.; Lansford, Jennifer E.

    2009-01-01

    The present study investigated demographic differences in school readiness within Jordan, a particularly interesting context because of widespread national reform currently sweeping the education system in Jordan. Teacher reports and researcher direct assessments of the school readiness of a national sample of 4681 Jordanian first grade children…

  4. Amplitude Frequency Response Measurement: A Simple Technique

    ERIC Educational Resources Information Center

    Satish, L.; Vora, S. C.

    2010-01-01

    A simple method is described to combine a modern function generator and a digital oscilloscope to configure a setup that can directly measure the amplitude frequency response of a system. This is achieved by synchronously triggering both instruments, with the function generator operated in the "Linear-Sweep" frequency mode, while the oscilloscope…

  5. The Construction and Behaviour of Ultramicroelectrodes: Investigations of Novel Electrochemical Systems.

    DTIC Science & Technology

    1984-11-28

    equivalent circuit is simplified. Fig is an illustration of the cyclic voltametry of the ferricyanide/ferrocyanide couple at a thin ring electrode of...8217 but irreversible voltammogram for this fast redox couple at relatively low sweep speeds (2 7 ) * , *o.... 13 DISCUSSION It can be seen that the

  6. Television Sweep Circuits and Picture Signal Path; Radio and Television Service--Advanced: 9787.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This course outline is designed to give students a working knowledge of radio and television theory and servicing techniques. Course content includes goals, specific block objectives, resistance-capacitance circuit characteristics, sawtooth generators sawtooth generator control and production of scanning waveforms, deflection systems, composite…

  7. Recipients of RTT Aid Struggling

    ERIC Educational Resources Information Center

    McNeil, Michele

    2012-01-01

    The 12 winners of the federal Race to the Top competition have experienced near-universal challenges in turning their sweeping, multifaceted proposals into reality, among them a limited state capacity to execute fast, dramatic change and deeply rooted teacher-evaluation systems that have proved hard to transform. Reports unveiled by the U.S.…

  8. Self-propelled sweeping removal of dropwise condensate

    DOE PAGES

    Qu, Xiaopeng; Boreyko, Jonathan; Liu, Fangjie; ...

    2015-06-02

    Dropwise condensation can be enhanced by superhydrophobic surfaces, on which the condensate drops spontaneously jump upon coalescence. However, the self-propelled jumping in prior reports is mostly perpendicular to the substrate. Here, we propose a substrate design with regularly spaced micropillars. Coalescence on the sidewalls of the micropillars leads to self-propelled jumping in a direction nearly orthogonal to the pillars and therefore parallel to the substrate. This in- plane motion in turn produces sweeping removal of multiple neighboring drops. The spontaneous sweeping mechanism may greatly enhance dropwise condensation in a self-sustained manner.

  9. Some Applications of Surface Raman and Infrared Spectroscopies to Mechanistic Electrochemistry Involved Adsorbed Species.

    DTIC Science & Technology

    1987-09-25

    xidation (see text). linear sweep voltametry .12 A few representative spectra, obtained during the electrooxidation bf methanol on platium (25 4 C130H + 0.1...liner sweep veltammery. W4ktAAA.T roZ A 1AISINAC, SCUWSI CiASS#CAIOI. I Sma Ass Me* LIS) lUwas1 YA D POW 1473. gsea &M 009 0 Meel n we we t 6hff SSOem...outlined, employing optical multichannel analyzer and Fourier transform instrumentation for SERS and IRRAS, respectively, in conjunction with linear sweep

  10. Gas separation process using membranes with permeate sweep to remove CO.sub.2 from gaseous fuel combustion exhaust

    DOEpatents

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2012-05-15

    A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.

  11. Visual Acuity and Contrast Sensitivity Development in Children: Sweep Visually Evoked Potential and Psychophysics.

    PubMed

    Almoqbel, Fahad M; Irving, Elizabeth L; Leat, Susan J

    2017-08-01

    The purpose of this study was to investigate the development of visual acuity (VA) and contrast sensitivity in children as measured with objective (sweep visually evoked potential) and subjective, psychophysical techniques, including signal detection theory (SDT), which attempts to control for differences in criterion or behavior between adults and children. Furthermore, this study examines the possibility of applying SDT methods with children. Visual acuity and contrast thresholds were measured in 12 children 6 to 7 years old, 10 children 8 to 9 years old, 10 children 10 to 12 years old, and 16 adults. For sweep visually evoked potential measurements, spatial frequency was swept from 1 to 40 cpd to measure VA, and contrast of sine-wave gratings (1 or 8 cpd) was swept from 0.33 to 30% to measure contrast thresholds. For psychophysical measurements, VA and contrast thresholds (1 or 8 cpd) were measured using a temporal two-alternative forced-choice staircase procedure and also with a yes-no SDT procedure. Optotype (logMAR [log of the minimum angle of resolution]) VA was also measured. The results of the various procedures were in agreement showing that there are age-related changes in threshold values and logMAR VA after the age of 6 years and that these visual functions do not become adult-like until the age of 8 to 9 years at the earliest. It was also found that children can participate in SDT procedures and do show differences in criterion compared with adults in psychophysical testing. These findings confirm a slightly later development of VA and contrast sensitivity (8 years or older) and indicate the importance of using SDT or forced-choice procedures in any developmental study to attempt to overcome the effect of criterion in children.

  12. Water vapor diffusion membranes, 2

    NASA Technical Reports Server (NTRS)

    Holland, F. F.; Klein, E.; Smith, J. K.; Eyer, C.

    1976-01-01

    Transport mechanisms were investigated for the three different types of water vapor diffusion membranes. Membranes representing porous wetting and porous nonwetting structures as well as dense diffusive membrane structures were investigated for water permeation rate as a function of: (1) temperature, (2) solids composition in solution, and (3) such hydrodynamic parameters as sweep gas flow rate, solution flow rate and cell geometry. These properties were measured using nitrogen sweep gas to collect the effluent. In addition, the chemical stability to chromic acid-stabilized urine was measured for several of each type of membrane. A technology based on the mechanism of vapor transport was developed, whereby the vapor diffusion rates and relative susceptibility of membranes to fouling and failure could be projected for long-term vapor recovery trials using natural chromic acid-stabilized urine.

  13. Pattern formation in individual-based systems with time-varying parameters

    NASA Astrophysics Data System (ADS)

    Ashcroft, Peter; Galla, Tobias

    2013-12-01

    We study the patterns generated in finite-time sweeps across symmetry-breaking bifurcations in individual-based models. Similar to the well-known Kibble-Zurek scenario of defect formation, large-scale patterns are generated when model parameters are varied slowly, whereas fast sweeps produce a large number of small domains. The symmetry breaking is triggered by intrinsic noise, originating from the discrete dynamics at the microlevel. Based on a linear-noise approximation, we calculate the characteristic length scale of these patterns. We demonstrate the applicability of this approach in a simple model of opinion dynamics, a model in evolutionary game theory with a time-dependent fitness structure, and a model of cell differentiation. Our theoretical estimates are confirmed in simulations. In further numerical work, we observe a similar phenomenon when the symmetry-breaking bifurcation is triggered by population growth.

  14. Performance of a three-dimensional Navier-Stokes code on CYBER 205 for high-speed juncture flows

    NASA Technical Reports Server (NTRS)

    Lakshmanan, B.; Tiwari, S. N.

    1987-01-01

    A vectorized 3D Navier-Stokes code has been implemented on CYBER 205 for solving the supersonic laminar flow over a swept fin/flat plate junction. The code extends MacCormack's predictor-corrector finite volume scheme to a generalized coordinate system in a locally one dimensional time split fashion. A systematic parametric study is conducted to examine the effect of fin sweep on the computed flow field. Calculated results for the pressure distribution on the flat plate and fin leading edge are compared with the experimental measurements of a right angle blunt fin/flat plate junction. The decrease in the extent of the separated flow region and peak pressure on the fin leading edge, and weakening of the two reversed supersonic zones with increase in fin sweep have been clearly observed in the numerical simulation.

  15. A comparison of three macroinvertebrate sampling devices for use in conducting rapid-assessment procedures of Delmarva Peninsula wetlands

    USGS Publications Warehouse

    Lowe, Terrence (Peter); Tebbs, Kerry; Sparling, Donald W.

    2016-01-01

    Three types of macroinvertebrate collecting devices, Gerking box traps, D-shaped sweep nets, and activity traps, have commonly been used to sample macroinvertebrates when conducting rapid biological assessments of North American wetlands. We compared collections of macroinvertebrates identified to the family level made with these devices in 6 constructed and 2 natural wetlands on the Delmarva Peninsula of Maryland. We also assessed their potential efficacy in comparisons among wetlands using several proportional and richness attributes. Differences in median diversity among samples from the 3 devices were significant; the sweep-net samples had the greatest diversity and the activity-trap samples had the least diversity. Differences in median abundance were not significant between the Gerking box-trap samples and sweep-net samples, but median abundance among activity-trap samples was significantly lower than among samples of the other 2 devices. Within samples, the proportions of median diversity composed of major class and order groupings were similar among the 3 devices. However the proportions of median abundance composed of the major class and order groupings within activity-trap samples were not similar to those of the other 2 devices. There was a slight but significant increase in the total number of families captured when we combined activity-trap samples with Gerking box-trap samples or with sweep-net samples, and the per-sample median numbers of families of the combined activity-trap and sweep-net samples was significantly higher than that of the combined activity-trap and Gerking box-trap samples. We detected significant differences among wetlands for 4 macroinvertebrate attributes with the Gerking box-trap data, 6 attributes with sweep-net data, and 5 attributes with the activity-trap data. A small, but significant increase in the number of attributes showing differences among wetlands occurred when we combined activity-trap samples with those of the Gerking boxtrap or sweep net.

  16. Area 2. Use Of Engineered Nanoparticle-Stabilized CO 2 Foams To Improve Volumetric Sweep Of CO 2 EOR Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiCarlo, David; Huh, Chun; Johnston, Keith P.

    2015-01-31

    The goal of this project was to develop a new CO 2 injection enhanced oil recovery (CO 2-EOR) process using engineered nanoparticles with optimized surface coatings that has better volumetric sweep efficiency and a wider application range than conventional CO 2-EOR processes. The main objectives of this project were to (1) identify the characteristics of the optimal nanoparticles that generate extremely stable CO 2 foams in situ in reservoir regions without oil; (2) develop a novel method of mobility control using “self-guiding” foams with smart nanoparticles; and (3) extend the applicability of the new method to reservoirs having a widemore » range of salinity, temperatures, and heterogeneity. Concurrent with our experimental effort to understand the foam generation and transport processes and foam-induced mobility reduction, we also developed mathematical models to explain the underlying processes and mechanisms that govern the fate of nanoparticle-stabilized CO 2 foams in porous media and applied these models to (1) simulate the results of foam generation and transport experiments conducted in beadpack and sandstone core systems, (2) analyze CO 2 injection data received from a field operator, and (3) aid with the design of a foam injection pilot test. Our simulator is applicable to near-injection well field-scale foam injection problems and accounts for the effects due to layered heterogeneity in permeability field, foam stabilizing agents effects, oil presence, and shear-thinning on the generation and transport of nanoparticle-stabilized C/W foams. This report presents the details of our experimental and numerical modeling work and outlines the highlights of our findings.« less

  17. Characterization of Residuals Collected from Street Sweeping Operations

    DOT National Transportation Integrated Search

    2018-02-01

    Street sweeping is a routine roadway maintenance activity conducted by the Virginia Department of Transportation (VDOT). It also provides an added benefit as a non-structural stormwater best management practice implemented by VDOT to meet total maxim...

  18. Application of Sweeping Jet Actuators on the NASA Hump Model and Comparison with CFDVAL2004 Experiments

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti

    2017-01-01

    Flow separation control over a wall-mounted hump model was studied experimentally to assess the performance of sweeping jet actuators. Results were compared to that of the 2004 CFD validation experiment (CFDVAL2004), which examined flow separation control with steady suction and unsteady zero-net-mass-flow actuators. Comparisons were carried out at low and high amplitude excitations. In addition to the active flow control methods, a passive flow control method (i.e., vortex generator) was used to complement the dataset. Steady/unsteady surface pressure measurements and surface oilflow visualization were used in the performance assessment of the actuators. The results indicated that the sweeping jet actuators are more effective than the steady suction and unsteady zero-net-mass-flow actuators. For the same momentum coefficient, the sweeping jet actuators produced more flow acceleration upstream of separation, more pressure recovery downstream, and consistently a smaller separation bubble.

  19. Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity

    PubMed Central

    Andersen, Erik C.; Gerke, Justin P.; Shapiro, Joshua A.; Crissman, Jonathan R.; Ghosh, Rajarshi; Bloom, Joshua S.; Félix, Marie-Anne; Kruglyak, Leonid

    2011-01-01

    The nematode Caenorhabditis elegans is central to research in molecular, cell, and developmental biology, but nearly all of this research has been conducted on a single strain. Comparatively little is known about the population genomic and evolutionary history of this species. We characterized C. elegans genetic variation by high-throughput selective sequencing of a worldwide collection of 200 wild strains, identifying 41,188 single nucleotide polymorphisms. Unexpectedly, C. elegans genome variation is dominated by a set of commonly shared haplotypes on four of the six chromosomes, each spanning many megabases. Population-genetic modeling shows that this pattern was generated by chromosome-scale selective sweeps that have reduced variation worldwide; at least one of these sweeps likely occurred in the past few hundred years. These sweeps, which we hypothesize to be a result of human activity, have dramatically reshaped the global C. elegans population in the recent past. PMID:22286215

  20. A new open tubular capillary microextraction and sweeping for the analysis of super low concentration of hydrophobic compounds.

    PubMed

    Xia, Zhining; Gan, Tingting; Chen, Hua; Lv, Rui; Wei, Weili; Yang, Fengqing

    2010-10-01

    A sample pre-concentration method based on the in-line coupling of in-tube solid-phase microextraction and electrophoretic sweeping was developed for the analysis of hydrophobic compounds. The sample pre-concentration and electrophoretic separation processes were simply and sequentially carried out with a (35%-phenyl)-methylpolysiloxane-coated capillary. The developed method was validated and applied to enrich and separate several pharmaceuticals including loratadine, indomethacin, ibuprofen and doxazosin. Several parameters of microextration were investigated such as temperature, pH and eluant. And the concentration of microemulsion that influences separation efficiency and microextraction efficiency were also studied. Central composite design was applied for the optimization of sampling flow rate and sampling time that interact in a very complex way with each other. The precision, sensitivity and recovery of the method were investigated. Under the optimal conditions, the maximum enrichment factors for loratadine, indomethacin, ibuprofen and doxazosin in aqueous solutions are 1355, 571, 523 and 318, respectively. In addition, the developed method was applied to determine loratadine in rabbit blood sample.

  1. SweepSAR Sensor Technology for Dense Spatial and Temporal Coverage of Earth Change

    NASA Astrophysics Data System (ADS)

    Rosen, P. A.

    2016-12-01

    Since the 2007 National Academy of Science "Decadal Survey" report, NASA has been studying concepts for a Synthetic Aperture Radar (SAR) mission to determine Earth change in three disciplines - ecosystems, solid earth, and cryospheric sciences. NASA has joined forces with the Indian Space Research Organisation (ISRO) to fulfill these objectives. The NASA-ISRO SAR (NISAR) mission is now in development for a launch in 2021. The mission's primary science objectives are codified in a set of science requirements to study Earth land and ice deformation, and ecosystems, globally with 12-day sampling over all land and ice-covered surfaces throughout the mission life. The US and Indian science teams share global science objectives; in addition, India has developed a set of local objectives in agricultural biomass estimation, Himalayan glacier characterization, and coastal ocean measurements in and around India. Both the US and India have identified agricultural and infrastructure monitoring, and disaster response as high priority applications for the mission. With this range of science and applications objectives, NISAR has demanding coverage, sampling, and accuracy requirements. The system requires a swath of over 240 km at 3-10 m SAR imaging resolution, using full polarimetry where needed. Given the broad range of phenomena and wide range of sensitivities needed, NISAR carries two radars, one operating at L-band (24 cm wavelength) and the other at S-band (10 cm wavelength). The system uses a new "scan-on-receive" ("SweepSAR") technology at both L-band and S-band, that enables full swath coverage without loss of resolution or polarimetric diversity. Both radars can operate simultaneously. The L-band system is being designed to operate up to 50 minutes per orbit, and the S-band system up to 10 minutes per orbit. The orbit will be controlled to within 300 m for repeat-pass interferometry measurements. This unprecedented coverage in space, time, polarimetry, and frequency, will add a new and rich data set to the international constellation of sensors studying Earth surface change. In this talk, we will describe the mission's expected contributions to geodetic imaging in support of time-series analysis of dynamic changes of Earth's surface.

  2. Development from Grades V through XI of Children's Ability to Make Correct Causal Inferences.

    ERIC Educational Resources Information Center

    Chen, Benjamin; Tuddenham, Read D.

    1979-01-01

    Unless sensitized to avoid them, Ss (regardless of grade) tended to draw overly sweeping inferences, perhaps because of a need for closure. Older Ss, however, were more successful at suspending judgment when no definite conclusion was justified. (Author/DLS)

  3. Field Test of Route Planning Software for Lunar Polar Missions

    NASA Astrophysics Data System (ADS)

    Horchler, A. D.; Cunningham, C.; Jones, H. L.; Arnett, D.; Fang, E.; Amoroso, E.; Otten, N.; Kitchell, F.; Holst, I.; Rock, G.; Whittaker, W.

    2017-10-01

    A novel field test paradigm has been developed to demonstrate and validate route planning software in the stark low-angled light and sweeping shadows a rover would experience at the poles of the Moon. Software, ConOps, and test results are presented.

  4. Noise generated by convected gusts interacting with swept airfoil cascades

    NASA Astrophysics Data System (ADS)

    Envia, E.; Kerschen, E. J.

    1986-07-01

    An analysis is developed for the noise generated by the interaction of a rotor viscous wake with a cascade of swept stator vanes. The stator vanes span a channel formed by infinite parallel walls and containing a subsonic mean flow. High frequency interactions, for which the noise generation is concentrated at the vane leading edge, are considered. The analysis utilizes a superposition of the solution to the isolated stator vane problem, presented in an earlier paper, to develop an approximate solution to the cascade problem. The rotor wake model includes the features of wake circumferential lean and a linear spanwise variation of the magnitude of the wake deficit velocity. Calculations are presented which show that, for rotor wakes with moderate circumferential lean, stator sweep produces substantial reductions in noise level. The vane sweep must be oriented to enhance the phase lags along the vane leading edge produced by wake lean. The noise levels are found to be fairly insensitive to spanwise variations in the wake deficit.

  5. Chirp mixing

    NASA Astrophysics Data System (ADS)

    Khaneja, Navin

    2018-07-01

    In this paper, we develop the theory of chirp mixing in NMR spectroscopy. The working principle is simple, given coupled homonuclear spins with offsets in range [ - B, B ] , we adiabatically sweep through the resonances. This achieves cross polarization between the z magnetization of the coupled spins. We repeat this basic operation many times with a supercycle to achieve appropriate mixing time. When we sweep through the resonances, midway between the resonances of the coupled spin I and S, the effective field seen by two spins is the same and hence they precess at same frequency around their effective fields. This means the coupling, which normally gets averaged out due to the chemical shift difference is no more averaged out for a short time and we get mixing. In this paper, we develop these basic ideas. By virtue of its design, the chirp mixing is much more broadband compared to state of the art methods. The proposed methodology is demonstrated on 13 C mixing in a sample of Alanine.

  6. Sweep and Compressibility Effects on Active Separation Control at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Seifert, Avi; Pack, LaTunia G.

    2000-01-01

    This paper explores the effects of compressibility, sweep and excitation location on active separation control at high Reynolds numbers. The model, which was tested in a cryogenic pressurized wind tunnel, simulates the upper surface of a 20% thick GlauertGoldschmied type airfoil at zero angle of attack. The flow is fully turbulent since the tunnel sidewall boundary layer flows over the model. Without control, the flow separates at the highly convex area and a large turbulent separation bubble is formed. Periodic excitation is applied to gradually eliminate the separation bubble. Two alternative blowing slot locations as well as the effect of compressibility, sweep and steady suction or blowing were studied. During the test the Reynolds numbers ranged from 2 to 40 million and Mach numbers ranged from 0.2 to 0.7. Sweep angles were 0 and 30 deg. It was found that excitation must be introduced slightly upstream of the separation region regardless of the sweep angle at low Mach number. Introduction of excitation upstream of the shock wave is more effective than at its foot. Compressibility reduces the ability of steady mass transfer and periodic excitation to control the separation bubble but excitation has an effect on the integral parameters, which is similar to that observed in low Mach numbers. The conventional swept flow scaling is valid for fully and even partially attached flow, but different scaling is required for the separated 3D flow. The effectiveness of the active control is not reduced by sweep. Detailed flow field dynamics are described in the accompanying paper.

  7. Sweep and Compressibility Effects on Active Separation Control at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Seifert, Avi; Pack, LaTunia G.

    2000-01-01

    This paper explores the effects of compressibility, sweep and excitation location on active separation control at high Reynolds numbers. The model, which was tested in a cryogenic pressurized wind tunnel, simulates the upper surface of a 20% thick Glauert Goldschmied type airfoil at zero angle of attack. The flow is fully turbulent since the tunnel sidewall boundary layer flows over the model. Without control, the flow separates at the highly convex area and a large turbulent separation bubble is formed. Periodic excitation is applied to gradually eliminate the separation bubble. Two alternative blowing slot locations as well as the effect of compressibility, sweep and steady suction or blowing were studied. During the test the Reynolds numbers ranged from 2 to 40 million and Mach numbers ranged from 0.2 to 0.7. Sweep angles were 0 and 30 deg. It was found that excitation must be introduced slightly upstream of the separation region regardless of the sweep angle at low Mach number. Introduction of excitation upstream of the shock wave is more effective than at its foot. Compressibility reduces the ability of steady mass transfer and periodic excitation to control the separation bubble but excitation has an effect on the integral parameters, which is similar to that observed in low Mach numbers. The conventional swept flow scaling is valid for fully and even partially attached flow, but different scaling is required for the separated 3D flow. The effectiveness of the active control is not reduced by sweep. Detailed flow field dynamics are described in the accompanying paper.

  8. Carbon Dioxide Control System for a Mars Space Suit Life Support System

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Jayaraman, Ambalavanan; Copeland, Robert; Parker, Amanda; Paul, Heather L.

    2011-01-01

    Carbon dioxide (CO2) control during Extravehicular Activities (EVAs) on Mars will be challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable metal oxide (MetOx) canisters weigh too much. Cycling bed systems and permeable membranes that are regenerable in space vacuum cannot vent on Mars due to the high partial pressure of CO2 in the atmosphere. Although sweep gas regeneration is under investigation, the feasibility, logistics penalties, and failure modes associated with this technique have not been fully determined. TDA Research, Inc. is developing a durable, high-capacity regenerable adsorbent that can remove CO2 from the space suit ventilation loop. The system design allows sorbent regeneration at or above 6 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the ventilation loop. Regeneration during EVA minimizes the amount of consumables to be brought from Earth and makes the mission more affordable, while providing great operational flexibility during EVA. The feasibility of the concept has been demonstrated in a series of bench-scale experiments and a preliminary system analysis. This paper presents the latest results from these sorbent and system development efforts.

  9. 12 CFR 344.6 - Notification by agreement; alternative forms and times of notification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....5. The bank may charge a reasonable fee for providing the information described in § 344.5. (d) Cash management sweep accounts. A bank effecting a securities transaction for a cash management sweep account...

  10. Regenerative Gas Dryer for In-Situ Propellant Production

    NASA Technical Reports Server (NTRS)

    Paz, Aaron

    2017-01-01

    Rocket propellant can be produced anywhere that water is found by splitting it into hydrogen and oxygen, potentially saving several tons of mass per mission and enabling the long term presence of humans in space beyond LEO. When water is split into hydrogen and oxygen, the gaseous products can be very humid (several thousand ppm). Propellant-grade gases need to be extremely dry before being converted into cryogenic liquids (less than 26 ppm water for grade B Oxygen). The primary objective of this project is to design, build and test a regenerative gas drying system that can take humid gas from a water electrolysis system and provide dry gas (less than 26ppm water) to the inlet of a liquefaction system for long durations. State of the art work in this area attempted to use vacuum as a means to regenerate desiccant, but it was observed that water would migrate to the dry zone without a sweep gas present to direct the desorbed vapor. Further work attempted to use CO2 as a sweep gas, but this resulted in a corrosive carbonic acid. In order for in-situ propellant production to work, we need a way to continuously dry humid gas that addresses these issues.

  11. Mobile Robot Designed with Autonomous Navigation System

    NASA Astrophysics Data System (ADS)

    An, Feng; Chen, Qiang; Zha, Yanfang; Tao, Wenyin

    2017-10-01

    With the rapid development of robot technology, robots appear more and more in all aspects of life and social production, people also ask more requirements for the robot, one is that robot capable of autonomous navigation, can recognize the road. Take the common household sweeping robot as an example, which could avoid obstacles, clean the ground and automatically find the charging place; Another example is AGV tracking car, which can following the route and reach the destination successfully. This paper introduces a new type of robot navigation scheme: SLAM, which can build the environment map in a totally strange environment, and at the same time, locate its own position, so as to achieve autonomous navigation function.

  12. The quality and availability of hardwood logging residue based on developed quality levels

    Treesearch

    Floyd G. Timson

    1980-01-01

    Hardwood logging residue was examined for salvageable quality material. Four quality levels (QL 1 to QL 4), based on four sets of specifications, were developed. The specifications used surface indicators, sweep, center decay, and piece size to determine quality. Twenty-six percent of the total logging residue (residue ≥ 4 inches in diameter outside bark at...

  13. The Needs and Perceptions of Academics regarding Their Professional Development in an Era of Educational Transformation

    ERIC Educational Resources Information Center

    Hassan, S.

    2011-01-01

    As the wave of educational transformation sweeps across the higher education landscape, few academics have been unaffected by its impact. It has been well documented that academics are ill-prepared to cope with the challenges of educational transformation, yet training and development that would provide the appropriate support to meet the demands…

  14. Taiwan: Major U.S. Arms Sales Since 1990

    DTIC Science & Technology

    2013-07-03

    amphibious assault vehicles; AN/ALE-50 electronic countermeasure (ECM) systems for F-16s; and 12 MH-53 mine -sweeping helicopters. President Bush...235 Commercial sale. Opall Barbara and David Silverberg, “Taiwanese May Soon Coproduce Patriot,” Defense News, February 22-28...systems) $340 01/29 (2) Osprey-class mine hunting ships (refurbished and upgraded) $105 2011 09/21 Retrofit of 145 F-16A/B fighters, with 176 AESA

  15. Dynamically Stable Legged Locomotion.

    DTIC Science & Technology

    1983-01-27

    sweeps the leg during stance, and the third places the foot during flight and controls body attitude during stance. Each of the three methods elucidates...secondary strategy has been to examine systems with springy legs, so that the role of resonant oscillatory leg behavior might be better understood. ’ The ...body attitude : I lopping _leit: ’ The control system rcgulate:; hopping height by manlil)Lulating hopping energy. The leg is springy, so hopping is a

  16. Mine Sweeping System for Magnetic and Non-Magnetic Mines.

    DTIC Science & Technology

    1994-12-29

    be detected. One example of the latter type of system is a conventional sonar device wherein a directional beam of acoustic energy periodically...Although satisfactory for many uses, sonar devices have several inherent limitations. Nearby objects can cause echoes and these may obscure the echo of...electromagnetic signal and sends it to the preamplifier 601. The preamplifier 601 increases the strength of the received electrical signal before sending it

  17. The Concept and Economics of RDF-3 (Refuse Derived Fuel) Utilization in a Navy Size Pulverized Coal Boiler.

    DTIC Science & Technology

    1983-05-01

    ELE ENTM. PRO ECT. TASK AREA 4 WORK LIN IT kuldElS WASTE ENERGY TECHNOLOGY CORPORATION Y0817-006-01-211 Bedford, MA 01730 I P CONTROLLING OFFICE NAME...Louis Miller-Hoft. 150 Augers 1 50 Missouri Live bottom, Tons TPH rectangular Ames Atlas. 500 Sweep bucket 4 14 Iowa Tons and drag con - TPH veyor Each...Monroe County a. Trailers 17 Hyd. Rams NewYork Tons Each b. Atlas 450 Sweep bucket 8 6 Tons and drag con - TPH veyor Each . Milwaukee Atlas 900 Sweep

  18. Brady's Geothermal Field DAS Vibroseis Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Feigl

    2016-03-25

    The submitted data correspond to the monitored vibrations caused by a vibroseis seismically exciting the ground in the vertical direction and captured by the DAS horizontal and vertical arrays during the PoroTomo Experiment. The data also include a file with the acceleration record at the Vibroseis. Vibroseis Sweep Details: Sweep on location T84 Stage 4 (Mode P 60 s long record ) Time: 2016-03-25 14:01:15 (UTC) Location: 39.80476089N, -119.0027625W Elevation: 1272.0M (on ground surface at the site) Sweep length: 20 seconds Frequencies: 5 Hz to 20 Hz

  19. Nonlinear femtosecond pump-probe spectroscopy using a power-encoded soliton delay line.

    PubMed

    Saint-Jalm, Sarah; Andresen, Esben Ravn; Bendahmane, Abdelkrim; Kudlinski, Alexandre; Rigneault, Hervé

    2016-01-01

    We show femtosecond time-resolved nonlinear pump-probe spectroscopy using a fiber soliton as the probe pulse. Furthermore, we exploit soliton dynamics to record an entire transient trace with a power-encoded delay sweep. The power-encoded delay line takes advantage of the dependency of the soliton trajectory in the (λ,z) space upon input power; the difference in accumulated group delay between trajectories converts a fast power sweep into a fast delay sweep. We demonstrate the concept by performing transient absorption spectroscopy in a test sample and validate it against a conventional pump-probe setup.

  20. Flight and swarming behaviour of Culicoides species (Diptera: Ceratopogonidae) on a livestock farm in Northern Spain.

    PubMed

    Gonza Lez, Mikel; Alarco N-Elbal, Pedro M; Venter, Gert J; Lo Pez, Sergio

    2017-06-30

    The efficacy of sweep nets and a CDC white light-suction trap for the sampling of Culicoides species (Diptera: Ceratopogonidae) were compared on a livestock farm in Northern Spain during the Summer of 2013. A total of 6,082 specimens representing 26 species were collected with sweep nets in 4 areas at di erent heights (ground level, 1.5 m, and 3 m), and 8,463 specimens representing 28 species with a single white light trap. Eight species - Culicoides brunnicans, Culicoides punctatus, Culicoides obsoletus/Culicoides scoticus, Culicoides lupicaris, Culcoides picturatus, Culicoides achrayi, and Culicoides simulator - were dominant and accounted for 97.4% and 97.2% of the total specimens collected with both methods, sweep nets, and light traps, respectively. The sex ratios with sweep netting and light trapping were strongly female biased (78.4% and 97.1%, respectively). Nulliparous and parous females were predominantly captured with both methods. A high percentage (17%) of gravid females was, however, captured on manure at ground level while sweeping. Searches for male swarms revealed the presence of several C. punctatus swarms consisting of 26 to 196 males and 3 swarms of C. obsoletus that ranged from 1 to 12 males in size. This study suggested that both methods are suitable and complementary tools for Culicoides sampling.

  1. Simulations of magnetic hysteresis loops at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plumer, M. L.; Whitehead, J. P.; Fal, T. J.

    2014-09-28

    The kinetic Monte-Carlo algorithm as well as standard micromagnetics are used to simulate MH loops of high anisotropy magnetic recording media at both short and long time scales over a wide range of temperatures relevant to heat-assisted magnetic recording. Microscopic parameters, common to both methods, were determined by fitting to experimental data on single-layer FePt-based media that uses the Magneto-Optic Kerr effect with a slow sweep rate of 700 Oe/s. Saturation moment, uniaxial anisotropy, and exchange constants are given an intrinsic temperature dependence based on published atomistic simulations of FePt grains with an effective Curie temperature of 680 K. Ourmore » results show good agreement between micromagnetics and kinetic Monte Carlo results over a wide range of sweep rates. Loops at the slow experimental sweep rates are found to become more square-shaped, with an increasing slope, as temperature increases from 300 K. These effects also occur at higher sweep rates, typical of recording speeds, but are much less pronounced. These results demonstrate the need for accurate determination of intrinsic thermal properties of future recording media as input to micromagnetic models as well as the sensitivity of the switching behavior of thin magnetic films to applied field sweep rates at higher temperatures.« less

  2. Wind-tunnel investigation of several high aspect-ratio supercritical wing configurations on a wide-body-type fuselage

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.

    1977-01-01

    An investigation was conducted in the Langley 8-foot transonic pressure tunnel on two aspect-ratio 11.95 supercritical wings that were tested in combination with a representative wide-body-type fuselage. The two supercritical wings have identical planforms for equal sweep angles and differ only in thickness. Each wing was tested at quarter-chord sweep angles of 27 deg and 30 deg. At the higher sweep angle, the aspect ratio is reduced to 11.36. At 27 deg of quarter-chord sweep, the thicker supercritical wing (SCW-1) has maximum streamwise thickness-to-chord ratios of 0.16 at the wing-fuselage juncture, 0.14 at the planform break station, and 0.12 at the tip. The thinner wing (SCW-2) has maximum streamwise thickness-to-chord ratios of 0.144, 0.12, and 0.10 at the same stations respectively. Tests were also conducted on the thinner supercritical wing at the 27 deg sweep angle with a 15.24 cm (6.0 in.) shorter span which results in an aspect ratio of 10.25. For comparison, data were obtained on a current wide-body transport wing (AR=7) that was tested on the same fuselage used with the supercritical wings.

  3. Turbulent Reynolds stress and quadrant event activity in wind flow over a coastal foredune

    NASA Astrophysics Data System (ADS)

    Chapman, Connie A.; Walker, Ian J.; Hesp, Patrick A.; Bauer, Bernard O.; Davidson-Arnott, Robin G. D.

    2012-05-01

    Recent research on quasi-instantaneous turbulent kinematic Reynolds stresses (RS, - u'w') and decomposed quadrant event activity (e.g., ejections and sweeps) over dunes in fluvial settings and in wind tunnels has shown that turbulent stresses at the toe of a dune often exceed time-averaged, streamwise shear stress (ρ u * 2) estimates. It is believed that semi-coherent turbulent structures are conveyed toward the bed along concave streamlines in this region and that impact of these structures cause fluctuations in local surface stresses that assist in grain entrainment. This has been hypothesized to explain how sand is supplied to the windward slope through a region of flow stagnation. Toward the crest, surface stress increases and becomes dominated by streamwise accelerations resulting from streamline compression and convexity that suppress vertical motions. High-frequency (32 Hz) measurements of turbulent wind flow from 3-D ultrasonic anemometers are analyzed for oblique onshore flow over a vegetated coastal foredune in Prince Edward Island, Canada. Reynolds stress and quadrant activity distributions varied with height (0.60 m and 1.66 m) and location over the dune. In general, quadrant 2 ejection (u' < 0, w' > 0) and quadrant 4 sweep activity (u' > 0, w' < 0) dominated momentum transfer and RS generation over quadrant 1 outward interaction (u' > 0, w' > 0) and quadrant 3 inward interaction (u' < 0, w' < 0) activity. On the lower stoss slope, significant ejection and sweep event activity was most frequent (85 to 92%, ejections plus sweeps), whereas, at the upper crest, significant ejection and sweep activity became less frequent while significant outward and inward interactions increased in frequency (25 to 36%). An 'exuberance effect' (i.e., changing shape of quadrant frequency distribution skewed toward ejection and sweep activity) is observed whereby streamline compression and convexity effects inhibit vertical fluctuations in flow and, thus, reduce the frequency of ejections and sweep activity toward the crest. In separated flow in the lee of the crest, quadrant distributions were more symmetrical as a result of more mixed, multi-directional flow. These trends in turbulent event distributions and Reynolds stress have implications for sediment transport dynamics across the dune and may help to explain sand transport potential and dune maintenance. For example, areas with a high frequency of ejection and sweep activity may have higher rates of sediment entrainment and transport, whereas areas with lower ejection and sweep activity and an increase in outward and inward interactions, which contribute negatively to Reynolds stress generation, may experience a greater potential for deposition. Further research on associations between quadrant event activity and coincident sand transport is required to confirm this hypothesis and the resultant significance of the flow exuberance effect in aeolian dune morphodynamics.

  4. Think Systemically, Act Systematically

    ERIC Educational Resources Information Center

    Parsley, Danette; Galvin, Mike

    2008-01-01

    In an effort to be comprehensive, schools often outline sweeping plans for improvement in multiple goal areas. Although well-intended, the efforts may be either too diffuse to have much impact, or so overwhelming that staff become immobilized. A school that chooses to proceed in too limited a manner, on the other hand, may run the risk of…

  5. From Competence in the Curriculum to Competence in Action

    ERIC Educational Resources Information Center

    Jonnaert, Philippe; Masciotra, Domenico; Barrette, Johanne; Morel, Denise; Mane, Yaya

    2007-01-01

    The article begins by drawing a distinction between the concepts of "curriculum" and "programme of study", and goes on to show that curriculum reform involves much more than simply rewriting programmes of study. The reforms that are presently sweeping across education systems throughout the world qualify, in many cases, as true paradigm…

  6. Implements and cultivation frequency to improve in-row weed control in organic peanut production

    USDA-ARS?s Scientific Manuscript database

    Weed control in organic peanut production is difficult and costly, which limits expansion of the production system. Sweep cultivation in the row middles is effective, but weeds remain in the crop row causing yield loss. Research trials were conducted in Tifton, GA to evaluate implements and freque...

  7. 40 CFR 63.11621 - What are the standards for new and existing prepared feeds manufacturing facilities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) of this section. (i) You must use either an industrial vacuum system or manual sweeping to reduce the... section. (i) Manufacturer specifications; (ii) Certification by a professional engineer or responsible... professional engineer or responsible official in accordance with paragraph (e)(1)(ii) of this section, this...

  8. Quality in Student Financial Aid Programs. A New Approach.

    ERIC Educational Resources Information Center

    Fecso, Ronald S., Ed.

    This report of the Panel on Quality Improvement in Student Financial Aid Programs examines the quality control of federal student financial aid programs covered by Title IV of the Higher Education Act of 1965 and offers recommendations calling for sweeping revisions of the present system. The report explores: (1) the quality control practices…

  9. Location and Routing of the Defense Courier Service Aerial Network

    DTIC Science & Technology

    1991-03-01

    12 Coefficient Determinatior .................... . .15 Heuristic Solution Techniques ................... 16 Space Filling Curves ...178 V List of Figures Figure Page I. Space Filling Curves ............................. 2. The Sweep Heuristic...frequency associated with the most served site within a given depot’s route system (18). Approach to the Problem The research involves several phases . In

  10. Indianapolis Plan Suggests Blueprint for Other Districts

    ERIC Educational Resources Information Center

    Samuels, Christina A.

    2012-01-01

    An Indianapolis-based nonprofit organization has crafted a sweeping plan for reworking the 33,000-student Indianapolis school system that would place the district under the control of the city's mayor, pare down the money spent in central administration, and give principals broad authority to hire and fire teachers. The reform plan created by the…

  11. The Children Left Behind

    ERIC Educational Resources Information Center

    Gillard, Sarah A.; Gillard, Sharlett

    2012-01-01

    This article explores some of the deficits in our educational system in regard to non-hearing students. It has become agonizingly clear that non-hearing students are being left out of the gallant sweep to enrich our children's educations. The big five areas of literacy, at best, present unique challenges for non-hearing students and, in some…

  12. Swept Light Sources

    NASA Astrophysics Data System (ADS)

    Johnson, Bart; Atia, Walid; Kuznetsov, Mark; Cook, Christopher; Goldberg, Brian; Wells, Bill; Larson, Noble; McKenzie, Eric; Melendez, Carlos; Mallon, Ed; Woo, Seungbum; Murdza, Randal; Whitney, Peter; Flanders, Dale

    A 1060 nm OEM laser "engine", manufactured by Axsun Technologies, is described. It consists of a swept laser and control electronics coupled with a balanced receiver, k-clock, and a 550 MS/s data acquisition board. The laser's passive mode-locking behavior induced by the rapid wavelength sweep is discussed. As they pass though the gain medium, each pulse is shifted to longer wavelength due to the rise in refractive index associated with gain depletion. New, longer wavelengths, are thus created by nonlinear means rather than by building up anew from spontaneous emission. This nonlinear mechanism enables low noise operation and fast sweep rates. The so-called "coherence revival" phenomenon associated with interference between neighboring mode-locked pulses, is discussed. Typical laser and system data is shown, including k-clock frequency, trigger waveform, pulsed and average output powers and RIN. Receiver and DAQ board noise performance is quantified. The laser RIN is estimated to be lower than -150 dB/Hz. A typical shot-noise-limited sensitivity of 103 dB is achieved for 1.9 mW sample power. The engine is designed for ophthalmic imaging and retinal images from prototype commercial systems are presented.

  13. Prediction of ice accretion on a swept NACA 0012 airfoil and comparisons to flight test results

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    1992-01-01

    In the winter of 1989-90, an icing research flight project was conducted to obtain swept wing ice accretion data. Utilizing the NASA Lewis Research Center's DHC-6 DeHavilland Twin Otter aircraft, research flights were made into known icing conditions in Northeastern Ohio. The icing cloud environment and aircraft flight data were measured and recorded by an onboard data acquisition system. Upon entry into the icing environment, a 24 inch span, 15 inch chord NACA 0012 airfoil was extended from the aircraft and set to the desired sweep angle. After the growth of a well defined ice shape, the airfoil was retracted into the aircraft cabin for ice shape documentation. The ice accretions were recorded by ice tracings and photographs. Ice accretions were mostly of the glaze type and exhibited scalloping. The ice was accreted at sweep angles of 0, 30, and 45 degrees. A 3-D ice accretion prediction code was used to predict ice profiles for five selected flight test runs, which include sweep angle of zero, 30, and 45 degrees. The code's roughness input parameter was adjusted for best agreement. A simple procedure was added to the code to account for 3-D ice scalloping effects. The predicted ice profiles are compared to their respective flight test counterparts. This is the first attempt to predict ice profiles on swept wings with significant scalloped ice formations.

  14. Midline signals regulate retinal neurogenesis in zebrafish.

    PubMed

    Masai, I; Stemple, D L; Okamoto, H; Wilson, S W

    2000-08-01

    In zebrafish, neuronal differentiation progresses across the retina in a pattern that is reminiscent of the neurogenic wave that sweeps across the developing eye in Drosophila. We show that expression of a zebrafish homolog of Drosophila atonal, ath5, sweeps across the eye predicting the wave of neuronal differentiation. By analyzing the regulation of ath5 expression, we have elucidated the mechanisms that regulate initiation and spread of neurogenesis in the retina. ath5 expression is lost in Nodal pathway mutant embryos lacking axial tissues that include the prechordal plate. A likely role for axial tissue is to induce optic stalk cells that subsequently regulate ath5 expression. Our results suggest that a series of inductive events, initiated from the prechordal plate and progressing from the optic stalks, regulates the spread of neuronal differentiation across the zebrafish retina.

  15. Spin-Label CW Microwave Power Saturation and Rapid Passage with Triangular Non-Adiabatic Rapid Sweep (NARS) and Adiabatic Rapid Passage (ARP) EPR Spectroscopy

    PubMed Central

    Kittell, Aaron W.; Hyde, James S.

    2015-01-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell, A.W., Camenisch, T.G., Ratke, J.J. Sidabras, J.W., Hyde, J.S., 2011 as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions, and enhance spectral resolution in copper (II) spectra. In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10−3 to 10−7 s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132

  16. R2d2 Drives Selfish Sweeps in the House Mouse

    PubMed Central

    Didion, John P.; Morgan, Andrew P.; Yadgary, Liran; Bell, Timothy A.; McMullan, Rachel C.; Ortiz de Solorzano, Lydia; Britton-Davidian, Janice; Bult, Carol J.; Campbell, Karl J.; Castiglia, Riccardo; Ching, Yung-Hao; Chunco, Amanda J.; Crowley, James J.; Chesler, Elissa J.; Förster, Daniel W.; French, John E.; Gabriel, Sofia I.; Gatti, Daniel M.; Garland, Theodore; Giagia-Athanasopoulou, Eva B.; Giménez, Mabel D.; Grize, Sofia A.; Gündüz, İslam; Holmes, Andrew; Hauffe, Heidi C.; Herman, Jeremy S.; Holt, James M.; Hua, Kunjie; Jolley, Wesley J.; Lindholm, Anna K.; López-Fuster, María J.; Mitsainas, George; da Luz Mathias, Maria; McMillan, Leonard; Ramalhinho, Maria da Graça Morgado; Rehermann, Barbara; Rosshart, Stephan P.; Searle, Jeremy B.; Shiao, Meng-Shin; Solano, Emanuela; Svenson, Karen L.; Thomas-Laemont, Patricia; Threadgill, David W.; Ventura, Jacint; Weinstock, George M.; Pomp, Daniel; Churchill, Gary A.; Pardo-Manuel de Villena, Fernando

    2016-01-01

    A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little evidence addresses whether “selfish” genes are capable of fixation—thereby leaving signatures identical to classical selective sweeps—despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes nonrandom segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2HC) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2HC rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2HC is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution. PMID:26882987

  17. Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps

    PubMed Central

    Jacobs, Guy S.; Sluckin, Timothy J.; Kivisild, Toomas

    2016-01-01

    During a selective sweep, characteristic patterns of linkage disequilibrium can arise in the genomic region surrounding a selected locus. These have been used to infer past selective sweeps. However, the recombination rate is known to vary substantially along the genome for many species. We here investigate the effectiveness of current (Kelly’s ZnS and ωmax) and novel statistics at inferring hard selective sweeps based on linkage disequilibrium distortions under different conditions, including a human-realistic demographic model and recombination rate variation. When the recombination rate is constant, Kelly’s ZnS offers high power, but is outperformed by a novel statistic that we test, which we call Zα. We also find this statistic to be effective at detecting sweeps from standing variation. When recombination rate fluctuations are included, there is a considerable reduction in power for all linkage disequilibrium-based statistics. However, this can largely be reversed by appropriately controlling for expected linkage disequilibrium using a genetic map. To further test these different methods, we perform selection scans on well-characterized HapMap data, finding that all three statistics—ωmax, Kelly’s ZnS, and Zα—are able to replicate signals at regions previously identified as selection candidates based on population differentiation or the site frequency spectrum. While ωmax replicates most candidates when recombination map data are not available, the ZnS and Zα statistics are more successful when recombination rate variation is controlled for. Given both this and their higher power in simulations of selective sweeps, these statistics are preferred when information on local recombination rate variation is available. PMID:27516617

  18. Toward Cooling Uniformity: Investigation of Spiral, Sweeping Holes, and Unconventional Cooling Paradigms

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Thurman, Douglas R.; Poinsatte, Philip E.; Ameri, Ali A.; Culley, Dennis E.

    2018-01-01

    Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. Ways to quantify the efficacy of novel cooling holes that are asymmetric, not uniformly spaced or that show variation from hole to hole are presented. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and square holes. A patent-pending spiral hole design showed the highest potential of the nondiffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing ratios of 1.0, 1.5, 2.0, and 2.5 at a density ratio of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS. A section on ideas for future work is included that addresses issues of quantifying cooling uniformity and provides some ideas for changing the way we think about cooling such as changing the direction of cooling or coupling acoustic devices to cooling holes to regulate frequency.

  19. Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps.

    PubMed

    Jacobs, Guy S; Sluckin, Tim J; Kivisild, Toomas

    2016-08-01

    During a selective sweep, characteristic patterns of linkage disequilibrium can arise in the genomic region surrounding a selected locus. These have been used to infer past selective sweeps. However, the recombination rate is known to vary substantially along the genome for many species. We here investigate the effectiveness of current (Kelly's [Formula: see text] and [Formula: see text]) and novel statistics at inferring hard selective sweeps based on linkage disequilibrium distortions under different conditions, including a human-realistic demographic model and recombination rate variation. When the recombination rate is constant, Kelly's [Formula: see text] offers high power, but is outperformed by a novel statistic that we test, which we call [Formula: see text] We also find this statistic to be effective at detecting sweeps from standing variation. When recombination rate fluctuations are included, there is a considerable reduction in power for all linkage disequilibrium-based statistics. However, this can largely be reversed by appropriately controlling for expected linkage disequilibrium using a genetic map. To further test these different methods, we perform selection scans on well-characterized HapMap data, finding that all three statistics-[Formula: see text] Kelly's [Formula: see text] and [Formula: see text]-are able to replicate signals at regions previously identified as selection candidates based on population differentiation or the site frequency spectrum. While [Formula: see text] replicates most candidates when recombination map data are not available, the [Formula: see text] and [Formula: see text] statistics are more successful when recombination rate variation is controlled for. Given both this and their higher power in simulations of selective sweeps, these statistics are preferred when information on local recombination rate variation is available. Copyright © 2016 by the Genetics Society of America.

  20. Inner workings of aerodynamic sweep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wadia, A.R.; Szucs, P.N.; Crall, D.W.

    1998-10-01

    The recent trend in using aerodynamic sweep to improve the performance of transonic blading has been one of the more significant technological evolutions for compression components in turbomachinery. This paper reports on the experimental and analytical assessment of the pay-off derived from both aft and forward sweep technology with respect to aerodynamic performance and stability. The single-stage experimental investigation includes two aft-swept rotors with varying degree and type of aerodynamic sweep and one swept forward rotor. On a back-to-back test basis, the results are compared with an unswept rotor with excellent performance and adequate stall margin. Although designed to satisfymore » identical design speed requirements as the unswept rotor, the experimental results reveal significant variations in efficiency and stall margin with the swept rotors. At design speed, all the swept rotors demonstrated a peak stage efficiency level that was equal to that of the unswept rotor. However, the forward-swept rotor achieved the highest rotor-alone peak efficiency. At the same time, the forward-swept rotor demonstrated a significant improvement in stall margin relative to the already satisfactory level achieved by the unswept rotor. Increasing the level of aft sweep adversely affected the stall margin. A three-dimensional viscous flow analysis was used to assist in the interpretation of the data. The reduced shock/boundary layer interaction, resulting from reduced axial flow diffusion and less accumulation of centrifuged blade surface boundary layer at the tip, was identified as the prime contributor to the enhanced performance with forward sweep. The impact of tip clearance on the performance and stability for one of the aft-swept rotors was also assessed.« less

  1. A novel approach to pharmaco-EEG for investigating analgesics: assessment of spectral indices in single-sweep evoked brain potentials.

    PubMed

    Gram, Mikkel; Graversen, Carina; Nielsen, Anders K; Arendt-Nielsen, Thomas; Mørch, Carsten D; Andresen, Trine; Drewes, Asbjørn M

    2013-12-01

    To compare results from analysis of averaged and single-sweep evoked brain potentials (EPs) by visual inspection and spectral analysis in order to identify an objective measure for the analgesic effect of buprenorphine and fentanyl. Twenty-two healthy males were included in a randomized study to assess the changes in EPs after 110 sweeps of painful electrical stimulation to the median nerve following treatment with buprenorphine, fentanyl or placebo patches. Bone pressure, cutaneous heat and electrical pain ratings were assessed. EPs and pain assessments were obtained before drug administration, 24, 48, 72 and 144 h after beginning of treatment. Features from EPs were extracted by three different approaches: (i) visual inspection of amplitude and latency of the main peaks in the average EPs, (ii) spectral distribution of the average EPs and (iii) spectral distribution of the EPs from single-sweeps. Visual inspection revealed no difference between active treatments and placebo (all P > 0.05). Spectral distribution of the averaged potentials showed a decrease in the beta (12-32 Hz) band for fentanyl (P = 0.036), which however did not correlate with pain ratings. Spectral distribution in the single-sweep EPs revealed significant increases in the theta, alpha and beta bands for buprenorphine (all P < 0.05) as well as theta band increase for fentanyl (P = 0.05). For buprenorphine, beta band activity correlated with bone pressure and cutaneous heat pain (both P = 0.04, r = 0.90). In conclusion single-sweep spectral band analysis increases the information on the response of the brain to opioids and may be used to identify the response to analgesics. © 2013 The Authors. British Journal of Clinical Pharmacology © 2013 The British Pharmacological Society.

  2. Detection of P300 waves in single trials by the wavelet transform (WT).

    PubMed

    Demiralp, T; Ademoglu, A; Schürmann, M; Başar-Eroglu, C; Başar, E

    1999-01-01

    The P300 response is conventionally obtained by averaging the responses to the task-relevant (target) stimuli of the oddball paradigm. However, it is well known that cognitive ERP components show a high variability due to changes of cognitive state during an experimental session. With simple tasks such changes may not be demonstrable by the conventional method of averaging the sweeps chosen according to task-relevance. Therefore, the present work employed a response-based classification procedure to choose the trials containing the P300 component from the whole set of sweeps of an auditory oddball paradigm. For this purpose, the most significant response property reflecting the P300 wave was identified by using the wavelet transform (WT). The application of a 5 octave quadratic B-spline-WT on single sweeps yielded discrete coefficients in each octave with an appropriate time resolution for each frequency range. The main feature indicating a P300 response was the positivity of the 4th delta (0.5-4 Hz) coefficient (310-430 ms) after stimulus onset. The average of selected single sweeps from the whole set of data according to this criterion yielded more enhanced P300 waves compared with the average of the target responses, and the average of the remaining sweeps showed a significantly smaller positivity in the P300 latency range compared with the average of the non-target responses. The combination of sweeps classified according to the task-based and response-based criteria differed significantly. This suggests an influence of changes in cognitive state on the presence of the P300 wave which cannot be assessed by task performance alone. Copyright 1999 Academic Press.

  3. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations

    DOE PAGES

    Bendall, Matthew L.; Stevens, Sarah L.R.; Chan, Leong-Keat; ...

    2016-01-08

    Multiple models describe the formation and evolution of distinct microbial phylogenetic groups. These evolutionary models make different predictions regarding how adaptive alleles spread through populations and how genetic diversity is maintained. Processes predicted by competing evolutionary models, for example, genome-wide selective sweeps vs gene-specific sweeps, could be captured in natural populations using time-series metagenomics if the approach were applied over a sufficiently long time frame. Direct observations of either process would help resolve how distinct microbial groups evolve. Using a 9-year metagenomic study of a freshwater lake (2005–2013), we explore changes in single-nucleotide polymorphism (SNP) frequencies and patterns of genemore » gain and loss in 30 bacterial populations. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied by >1000-fold among populations. SNP allele frequencies also changed dramatically over time within some populations. Interestingly, nearly all SNP variants were slowly purged over several years from one population of green sulfur bacteria, while at the same time multiple genes either swept through or were lost from this population. Furthermore, these patterns were consistent with a genome-wide selective sweep in progress, a process predicted by the ‘ecotype model’ of speciation but not previously observed in nature. In contrast, other populations contained large, SNP-free genomic regions that appear to have swept independently through the populations prior to the study without purging diversity elsewhere in the genome. Finally, evidence for both genome-wide and gene-specific sweeps suggests that different models of bacterial speciation may apply to different populations coexisting in the same environment.« less

  4. In vitro cell system for studying molecular mechanisms of action associated with low intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Babakhanian, Meghedi; Fan, Richard E.; Mulgaonkar, Amit P.; Singh, Rahul; Culjat, Martin O.; Danesh, Shahab M.; Toro, Ligia; Grundfest, Warren; Melega, William P.

    2012-03-01

    Low intensity focused ultrasound (LIFU) is now being considered as a noninvasive brain therapy for clinical applications. We maintain that LIFU can efficiently deliver energy from outside the skull to target specific brain regions, effecting localized neuromodulation. However, the underlying molecular mechanisms that drive this LIFU-induced neuromodulation are not well-defined due, in part, to our lack of understanding of how particular sets of LIFU delivery parameters affect the outcome. To efficiently conduct multiple sweeps of different parameters and determine their effects, we have developed an in-vitro system to study the effects of LIFU on different types of cells grown in culture. Presently, we are evaluating how LIFU affects the ionic flux that may underlie neuronal excitation and inhibition observed in-vivo. The results of our in-vitro studies will provide a rationale for selection of optimal LIFU parameter to be used in subsequent in-vivo applications. Thus, a prototype ultrasound cell assay system has been developed to conduct these studies, and is described in this work.

  5. Integrated Aerodynamic and Control System Design of Oblique Wing Aircraft. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Morris, Stephen James

    1990-01-01

    An efficient high speed aircraft design must achieve a high lift to drag ratio at transonic and supersonic speeds. In 1952 Dr. R. T. Jones proved that for any flight Mach number minimum drag at a fixed lift is achieved by an elliptic wing planform with an appropriate oblique sweep angle. Since then, wind tunnel tests and numerical flow models have confirmed that the compressibility drag of oblique wing aircraft is lower than similar symmetrical sweep designs. At oblique sweep angles above thirty degrees the highly asymmetric planform gives rise to aerodynamic and inertia couplings which affect stability and degrade the aircraft's handling qualities. In the case of the NASA-Rockwell Oblique Wing Research Aircraft, attempts to improve the handling qualities by implementing a stability augmentation system have produced unsatisfactory results because of an inherent lack of controllability in the proposed design. The present work focuses on improving the handling qualities of oblique wing aircraft by including aerodynamic configuration parameters as variables in the control system synthesis to provide additional degrees of freedom with which to further decouple the aircraft's response. Handling qualities are measured using a quadratic cost function identical to that considered in optimal control problems, but the controller architecture is not restricted to full state feedback. An optimization procedure is used to simultaneously solve for the aircraft configuration and control gains which maximize a handling qualities measure, while meeting imposed constraints on trim. In some designs wing flexibility is also modeled and reduced order controllers are implemented. Oblique wing aircraft synthesized by this integrated design method show significant improvement in handling qualities when compared to the originally proposed closed loop aircraft. The integrated design synthesis method is then extended to show how handling qualities may be traded for other types of mission performance (drag, weight, etc.). Examples are presented which show how performance can be maximized while maintaining a desired level of handling quality.

  6. Developing Teachers Who Are Reflective Practitioners: A Complex Process

    ERIC Educational Resources Information Center

    Ostorga, Alcione N.

    2006-01-01

    Teachers everywhere are being held accountable for their professional actions through the test-driven curricula sweeping the nation. The National Council for the Accreditation of Teacher Education (NCATE, 2002) makes it clear that promotion of reflective practice is an important component of teacher education programs. This multiple case study…

  7. Training for a Transformed Labor Market.

    ERIC Educational Resources Information Center

    Olson, Lawrence

    1983-01-01

    The author argues that the American labor market is in the midst of historic transition that will challenge human resource development professionals. Sweeping demographic changes will soon combine with a "Second Industrial Revolution" in technology and a quantum leap in the level and quality of foreign competition to raise sharply the importance…

  8. Aeronautics. America in Space: The First Decade.

    ERIC Educational Resources Information Center

    Anderton, David A.

    The major research and developments in aeronautics during the late 1950's and 1960's are reviewed descriptively with a minimum of technical content. Topics covered include aeronautical research, aeronautics in NASA, The National Advisory Committee for Aeronautics, the X-15 Research Airplane, variable-sweep wing design, the Supersonic Transport…

  9. NASTRAN documentation for flutter analysis of advanced turbopropellers

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Gallo, A. M.; Skalski, S. C.

    1982-01-01

    An existing capability developed to conduct modal flutter analysis of tuned bladed-shrouded discs was modified to facilitate investigation of the subsonic unstalled flutter characteristics of advanced turbopropellers. The modifications pertain to the inclusion of oscillatory modal aerodynamic loads of blades with large (backward and forward) varying sweep.

  10. Pollutant loading to stormwater runoff from highways : impact of a highway sweeping program.

    DOT National Transportation Integrated Search

    2010-01-01

    This report describes the methods used to collect stormwater runoff and evaluate a street sweeping program on U.S. : Highway 151 in Madison, Wisconsin. The study was a cooperative effort among the Wisconsin Department of : Transportation (WisDOT), U....

  11. Enhanced operator interface for hand-held landmine detector

    NASA Astrophysics Data System (ADS)

    Herman, Herman; McMahill, Jeffrey D.; Kantor, George

    2001-10-01

    As landmines get harder to detect, the complexity of landmine detectors has also been increasing. To increase the probability of detection and decrease the false alarm rate of low metallic landmines, many detectors employ multiple sensing modalities, which include radar and metal detector. Unfortunately, the operator interface for these new detectors stays pretty much the same as for the older detectors. Although the amount of information that the new detectors acquire has increased significantly, the interface has been limited to a simple audio interface. We are currently developing a hybrid audiovisual interface for enhancing the overall performance of the detector. The hybrid audiovisual interface combines the simplicity of the audio output with the rich spatial content of the video display. It is designed to optimally present the output of the detector and also to give the proper feedback to the operator. Instead of presenting all the data to the operator simultaneously, the interface allows the operator to access the information as needed. This capability is critical to avoid information overload, which can significantly reduce the performance of the operator. The audio is used as the primary notification signal, while the video is used for further feedback, discrimination, localization and sensor fusion. The idea is to let the operator gets the feedback that he needs and enable him to look at the data in the most efficient way. We are also looking at a hybrid man-machine detection system which utilizes precise sweeping by the machine and powerful human cognitive ability. In such a hybrid system, the operator is free to concentrate on discriminant task, such as manually fusing the output of the different sensing modalities, instead of worrying about the proper sweep technique. In developing this concept, we have been using the virtual mien lane to validate some of these concepts. We obtained some very encouraging results form our preliminary test. It clearly shows that with the proper feedback, the performance of the operator can be improved significantly in a very short time.

  12. Magnetic roller gas gate employing transonic sweep gas flow to isolate regions of differing gaseous composition or pressure

    DOEpatents

    Doehler, Joachim

    1994-12-20

    Disclosed herein is an improved gas gate for interconnecting regions of differing gaseous composition and/or pressure. The gas gate includes a narrow, elongated passageway through which substrate material is adapted to move between said regions and inlet means for introducing a flow of non-contaminating sweep gas into a central portion of said passageway. The gas gate is characterized in that the height of the passageway and the flow rate of the sweep gas therethrough provides for transonic flow of the sweep gas between the inlet means and at least one of the two interconnected regions, thereby effectively isolating one region, characterized by one composition and pressure, from another region, having a differing composition and/or pressure, by decreasing the mean-free-path length between collisions of diffusing species within the transonic flow region. The gas gate preferably includes a manifold at the juncture point where the gas inlet means and the passageway interconnect.

  13. Free and forced Barkhausen noises in magnetic thin film based cross-junctions

    NASA Astrophysics Data System (ADS)

    Elzwawy, Amir; Talantsev, Artem; Kim, CheolGi

    2018-07-01

    Barkhausen noise, driven by thermal fluctuations in stationary magnetic field, and Barkhausen jumps, driven by sweeping magnetic field, are demonstrated to be effects of different orders of magnitude. The critical magnetic field for domain walls depinning, followed by avalanched and irreversible magnetization jumps, is determined. Magnetoresistive response of NiFe/M/NiFe (M = Au, Ta, Ag) trilayers to stationary and sweeping magnetic field is studied by means of anisotropic magnetoresistance (AMR) and planar Hall effect (PHE) measurements. Thermal fluctuations result in local and reversible changes of magnetization of the layers in thin film magnetic junctions, while the sweeping magnetic field results in reversible and irreversible avalanched domain motion, dependently on the ratio between the values of sweeping magnetic field and domain wall depinning field. The correlation between AMR and PHE responses to Barkhausen jumps is studied. The value of this correlation is found to be dependent on the α angle between the directions of magnetic field and current path.

  14. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the uncertainties of the wavefront error maps.

  15. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES) test chamber. In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing, and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) F-number and pupil-distortion measurements made using a pseudo-nonredundant mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated and/or rotated across the exit pupil of the system. Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the uncertainties of the wavefront-error maps.

  16. Facile generation of cell microarrays using vacuum degassing and coverslip sweeping.

    PubMed

    Wang, Min S; Luo, Zhen; Cherukuri, Sundar; Nitin, Nitin

    2014-07-15

    A simple method to generate cell microarrays with high-percentage well occupancy and well-defined cell confinement is presented. This method uses a synergistic combination of vacuum degassing and coverslip sweeping. The vacuum degassing step dislodges air bubbles from the microwells, which in turn enables the cells to enter the microwells, while the physical sweeping step using a glass coverslip removes the excess cells outside the microwells. This low-cost preparation method provides a simple solution to generating cell microarrays that can be performed in basic research laboratories and point-of-care settings for routine cell-based screening assays. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Method for generating a mesh representation of a region characterized by a trunk and a branch thereon

    DOEpatents

    Shepherd, Jason [Albuquerque, NM; Mitchell, Scott A [Albuquerque, NM; Jankovich, Steven R [Anaheim, CA; Benzley, Steven E [Provo, UT

    2007-05-15

    The present invention provides a meshing method, called grafting, that lifts the prior art constraint on abutting surfaces, including surfaces that are linking, source/target, or other types of surfaces of the trunk volume. The grafting method locally modifies the structured mesh of the linking surfaces allowing the mesh to conform to additional surface features. Thus, the grafting method can provide a transition between multiple sweep directions extending sweeping algorithms to 23/4-D solids. The method is also suitable for use with non-sweepable volumes; the method provides a transition between meshes generated by methods other than sweeping as well.

  18. The K{sub a}-band 10-kW continuous wave gyrotron with wide-band fast frequency sweep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glyavin, M.; Luchinin, A.; Morozkin, M.

    2012-07-15

    The dual-frequency gyrotron with fast 2% frequency sweep at about 28 GHz is designed to power an electron cyclotron resonance ion source (ECRIS). Operation with an output power of up to 10 kW in CW mode and efficiency of 20% was demonstrated at both frequencies. Frequency manipulation has a characteristic time of about 1 ms and is based on magnetic field variation with an additional low-power coil. Fast frequency sweep will supposedly increase the ion current and the average ion charge of ECRIS. The possibility of 100% power modulation is demonstrated using the same control method.

  19. Spectroscopic and Electrochemical Studies of the Transition Metal Tetrasulfonated Phthalocyanines. Part 5. Voltammetric Studies of Adsorbed Tetrasulfonated Phthalocyanines (MTsPc) in Aqueous Solutions.

    DTIC Science & Technology

    1985-10-01

    atmosphere Immediately after addition of M-TsPc to the supporting electrolyte, the first potential sweep over the given range (e.g., -0.8 to 0.3 V vs. SCE...vs. a-Pd/H electrode) at a sweep rate of 100 mV/s, voltammetric peaks of the hydrogen adsorption/desorption and oxide forma- tion/reduction processes...high sweep rates, e.g., 20 V/s. An OPG electrode standing at open-circuit potential in a Fe(III)-TsPc at potentials between peaks 3 and 4 in Fig. 1

  20. Optimization of a Small-Scale Engine Using Plasma Enhanced Ignition

    DTIC Science & Technology

    2013-03-01

    PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...systems were tested in the small engine and their effects on engine performance determined through comparison with a regular spark discharge (thermal...pulse plasma discharge system purchased from Plasmatronics LLC. Air fuel ratio (λ units are used in this report) sweeps were performed at several

  1. Apparatus and Method for Elimination of Polarization-Induced Fading in Fiber-optic Sensor System

    NASA Technical Reports Server (NTRS)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    The invention is an apparatus and method of eliminating polarization-induced fading in interferometric fiber-optic sensor system having a wavelength-swept laser optical signal. The interferometric return signal from the sensor arms are combined and provided to a multi-optical path detector assembly and ultimately to a data acquisition and processing unit by way of a switch that is time synchronized with the laser scan sweep cycle.

  2. Using temperature sweeps to investigate rheology of bioplastics

    USDA-ARS?s Scientific Manuscript database

    As part of research toward production of protein-based bioplastics, small amplitude oscillatory shear analyses were performed in the temperature sweep mode to examine protein blends in the presence of wheat flour and glycerol. The elastic modulus (G') of these samples was much higher than the visco...

  3. Jeb Bush's Impact Felt on K-12 Policy

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2011-01-01

    Jeb Bush left the Florida governor's office in 2007 with a legacy of having brought sweeping changes to his state's education system, through hard-edged policies that gave parents and students more choices and demanded more of schools. Today, that legacy seems poised to grow--and well beyond Florida. In state capitals across the country, numerous…

  4. Educational Communication in a Revolutionary Age.

    ERIC Educational Resources Information Center

    Tyler, I. Keith, Comp.; Williams, Catharine M., Comp.

    As a tribute to Dr. Edgar Dale on his retirement from Ohio State University, the papers in this book refer to "the failures of education,""the impotence of the school,""the need for sweeping change," the existence of a "systems break," and "incipient civil war," all of which are products of an age of revolution which continues today. Educational…

  5. 47 CFR 73.687 - Transmission system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... modulating signal to the transmitter input terminals in place of the normal composite television video signal... taken by the use of a video sweep generator and without the use of pedestal synchronizing pulses. The d..., of zero microseconds up to a frequency of 3.0 MHz; and then linearly decreasing to 4.18 MHz so as to...

  6. 47 CFR 73.687 - Transmission system requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... modulating signal to the transmitter input terminals in place of the normal composite television video signal... taken by the use of a video sweep generator and without the use of pedestal synchronizing pulses. The d..., of zero microseconds up to a frequency of 3.0 MHz; and then linearly decreasing to 4.18 MHz so as to...

  7. 47 CFR 73.687 - Transmission system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... modulating signal to the transmitter input terminals in place of the normal composite television video signal... taken by the use of a video sweep generator and without the use of pedestal synchronizing pulses. The d..., of zero microseconds up to a frequency of 3.0 MHz; and then linearly decreasing to 4.18 MHz so as to...

  8. 47 CFR 73.687 - Transmission system requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... modulating signal to the transmitter input terminals in place of the normal composite television video signal... taken by the use of a video sweep generator and without the use of pedestal synchronizing pulses. The d..., of zero microseconds up to a frequency of 3.0 MHz; and then linearly decreasing to 4.18 MHz so as to...

  9. 47 CFR 73.687 - Transmission system requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... modulating signal to the transmitter input terminals in place of the normal composite television video signal... taken by the use of a video sweep generator and without the use of pedestal synchronizing pulses. The d..., of zero microseconds up to a frequency of 3.0 MHz; and then linearly decreasing to 4.18 MHz so as to...

  10. Minimization of the Effects of Secondary Reactions on Turbine Film Cooling in a Fuel Rich Environment

    DTIC Science & Technology

    2014-06-02

    the instrumentation block ..................................... 57 Table 4.1: Flame Length Results...91 Table 4.2: Five Row Flame Lengths , Blowing Ratio Sweep .......................................... 123 Table...4.3: Five Row Flame Lengths , Equivalence Ratio Sweep .................................... 124 Table 4.4: Five Row - Wall Absorption Parameter

  11. Student-Loan Investigation Sweeps Up More Colleges

    ERIC Educational Resources Information Center

    Basken, Paul; Field, Kelly

    2007-01-01

    An expanding investigation into conflicts of interest in the student-loan industry continued to sweep up more lenders and college financial-aid administrators last week. The nation's largest student-loan provider, Sallie Mae, accepted a $2-million settlement with New York State's attorney general, Andrew M. Cuomo, and three more college officials…

  12. An Investigation of the Nontechnical Skills Required to Maximize the Safety and Productivity of U.S. Navy Divers

    DTIC Science & Technology

    2005-04-01

    experience. The critical incident interview uses recollection of a specific incident as its starting point and employs a semistructured interview format...context assessment, expectancies, and judgments. The four sweeps in the critical incident interview include: Sweep 1 - Prompting the interviewee to

  13. Interactive flutter analysis and parametric study for conceptual wing design

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1995-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate the flutter instability boundary of a flexible cantilever wing, when well defined structural and aerodynamic data are not available, and then study the effect of change in Mach number, dynamic pressure, torsional frequency, sweep, mass ratio, aspect ratio, taper ratio, center of gravity, and pitch inertia, to guide the development of the concept. The software was developed on MathCad (trademark) platform for Macintosh, with integrated documentation, graphics, database and symbolic mathematics. The analysis method was based on nondimensional parametric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on torsional stiffness, sweep, mass ratio, aspect ratio, center of gravity location and pitch inertia radius of gyration. The plots were compiled in a Vaught Corporation report from a vast database of past experiments and wind tunnel tests. The computer program was utilized for flutter analysis of the outer wing of a Blended Wing Body concept, proposed by McDonnell Douglas Corporation. Using a set of assumed data, preliminary flutter boundary and flutter dynamic pressure variation with altitude, Mach number and torsional stiffness were determined.

  14. Streak camera based SLR receiver for two color atmospheric measurements

    NASA Technical Reports Server (NTRS)

    Varghese, Thomas K.; Clarke, Christopher; Oldham, Thomas; Selden, Michael

    1993-01-01

    To realize accurate two-color differential measurements, an image digitizing system with variable spatial resolution was designed, built, and integrated to a photon-counting picosecond streak camera, yielding a temporal scan resolution better than 300 femtosecond/pixel. The streak camera is configured to operate with 3 spatial channels; two of these support green (532 nm) and uv (355 nm) while the third accommodates reference pulses (764 nm) for real-time calibration. Critical parameters affecting differential timing accuracy such as pulse width and shape, number of received photons, streak camera/imaging system nonlinearities, dynamic range, and noise characteristics were investigated to optimize the system for accurate differential delay measurements. The streak camera output image consists of three image fields, each field is 1024 pixels along the time axis and 16 pixels across the spatial axis. Each of the image fields may be independently positioned across the spatial axis. Two of the image fields are used for the two wavelengths used in the experiment; the third window measures the temporal separation of a pair of diode laser pulses which verify the streak camera sweep speed for each data frame. The sum of the 16 pixel intensities across each of the 1024 temporal positions for the three data windows is used to extract the three waveforms. The waveform data is processed using an iterative three-point running average filter (10 to 30 iterations are used) to remove high-frequency structure. The pulse pair separations are determined using the half-max and centroid type analysis. Rigorous experimental verification has demonstrated that this simplified process provides the best measurement accuracy. To calibrate the receiver system sweep, two laser pulses with precisely known temporal separation are scanned along the full length of the sweep axis. The experimental measurements are then modeled using polynomial regression to obtain a best fit to the data. Data aggregation using normal point approach has provided accurate data fitting techniques and is found to be much more convenient than using the full rate single shot data. The systematic errors from this model have been found to be less than 3 ps for normal points.

  15. Design of a Low Speed Fan Stage for Noise Suppression

    NASA Technical Reports Server (NTRS)

    Dalton, W. N.; Elliot, D. B.; Nickols, K. L.

    1999-01-01

    This report describes the design of a low tip speed, moderate pressure rise fan stage for demonstration of noise reduction concepts. The fan rotor is a fixed-pitch configuration delivering a design pressure ratio of 1.378 at a specific flow of 43.1 lbm/sec/sq ft. Four exit stator configurations were provided to demonstrate the effectiveness of circumferential and axial sweep in reducing rotor-stator interaction tone noise. The fan stage design was combined with an axisymmetric inlet, conical convergent nozzle, and nacelle to form a powered fan-nacelle subscale model. This model has a 22-inch cylindrical flow path and employs a rotor with a 0.30 hub-to-tip radius ratio. The design is fully compatible with an existing NASA force balance and rig drive system. The stage aerodynamic and structural design is described in detail. Three-dimensional (3-D) computational fluid dynamics (CFD) tools were used to define optimum airfoil sections for both the rotor and stators. A fan noise predictive system developed by Pratt & Whitney under contract to NASA was used to determine the acoustic characteristics of the various stator configurations. Parameters varied included rotor-to-stator spacing and vane leading edge sweep. The structural analysis of the rotor and stator are described herein. An integral blade and disk configuration was selected for the rotor. Analysis confirmed adequate low cycle fatigue life, vibratory endurance strength, and aeroelastic suitability. A unique load carrying stator arrangement was selected to minimize generation of tonal noise due to sources other than rotor-stator interaction. Analysis of all static structural components demonstrated adequate strength, fatigue life, and vibratory characteristics.

  16. Accelerating NLTE radiative transfer by means of the Forth-and-Back Implicit Lambda Iteration: A two-level atom line formation in 2D Cartesian coordinates

    NASA Astrophysics Data System (ADS)

    Milić, Ivan; Atanacković, Olga

    2014-10-01

    State-of-the-art methods in multidimensional NLTE radiative transfer are based on the use of local approximate lambda operator within either Jacobi or Gauss-Seidel iterative schemes. Here we propose another approach to the solution of 2D NLTE RT problems, Forth-and-Back Implicit Lambda Iteration (FBILI), developed earlier for 1D geometry. In order to present the method and examine its convergence properties we use the well-known instance of the two-level atom line formation with complete frequency redistribution. In the formal solution of the RT equation we employ short characteristics with two-point algorithm. Using an implicit representation of the source function in the computation of the specific intensities, we compute and store the coefficients of the linear relations J=a+bS between the mean intensity J and the corresponding source function S. The use of iteration factors in the ‘local’ coefficients of these implicit relations in two ‘inward’ sweeps of 2D grid, along with the update of the source function in other two ‘outward’ sweeps leads to four times faster solution than the Jacobi’s one. Moreover, the update made in all four consecutive sweeps of the grid leads to an acceleration by a factor of 6-7 compared to the Jacobi iterative scheme.

  17. Compact terahertz passive spectrometer with wideband superconductor-insulator-superconductor mixer.

    PubMed

    Kikuchi, K; Kohjiro, S; Yamada, T; Shimizu, N; Wakatsuki, A

    2012-02-01

    We developed a compact terahertz (THz) spectrometer with a superconductor-insulator-superconductor (SIS) mixer, aiming to realize a portable and highly sensitive spectrometer to detect dangerous gases at disaster sites. The receiver cryostat which incorporates the SIS mixer and a small cryocooler except for a helium compressor has a weight of 27 kg and dimensions of 200 mm × 270 mm × 690 mm. In spite of the small cooling capacity of the cryocooler, the SIS mixer is successfully cooled lower than 4 K, and the temperature variation is suppressed for the sensitive measurement. By adopting a frequency sweeping system using photonic local oscillator, we demonstrated a spectroscopic measurement of CH(3)CN gas in 0.2-0.5 THz range.

  18. Combined optical coherence tomography and hyper-spectral imaging

    NASA Astrophysics Data System (ADS)

    Attendu, Xavier; Guay-Lord, Robin; Strupler, Mathias; Godbout, Nicolas; Boudoux, Caroline

    2017-02-01

    In this proceeding we demonstrate a system combining optical coherence tomography (OCT) and hyper-spectral imaging (HSI) into a single dual-clad fiber (DCF). Combining these modalities gives access to the sample morphology through OCT and to its molecular content through HSI. Both modalities have their illumination through the fiber core. The OCT is then collected through the core while the HSI is collected through the inner cladding of the DCF. A double-clad fiber coupler (DCFC) is used to address both channels separately. A scanning spectral filter was developed to successively inject narrow spectral bands of visible light into the fiber core and sweep across the entire visible spectrum. This allows for rapid HSI acquisition and high miniaturization potential.

  19. QCD and strongly coupled gauge theories: Challenges and perspectives

    DOE PAGES

    Brambilla, N.; Eidelman, S.; Foka, P.; ...

    2014-10-21

    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to stongly-coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many researchmore » streams which flow into and out of QCD, as well as a vision for future developments.« less

  20. QCD and strongly coupled gauge theories: challenges and perspectives.

    PubMed

    Brambilla, N; Eidelman, S; Foka, P; Gardner, S; Kronfeld, A S; Alford, M G; Alkofer, R; Butenschoen, M; Cohen, T D; Erdmenger, J; Fabbietti, L; Faber, M; Goity, J L; Ketzer, B; Lin, H W; Llanes-Estrada, F J; Meyer, H B; Pakhlov, P; Pallante, E; Polikarpov, M I; Sazdjian, H; Schmitt, A; Snow, W M; Vairo, A; Vogt, R; Vuorinen, A; Wittig, H; Arnold, P; Christakoglou, P; Di Nezza, P; Fodor, Z; Garcia I Tormo, X; Höllwieser, R; Janik, M A; Kalweit, A; Keane, D; Kiritsis, E; Mischke, A; Mizuk, R; Odyniec, G; Papadodimas, K; Pich, A; Pittau, R; Qiu, J-W; Ricciardi, G; Salgado, C A; Schwenzer, K; Stefanis, N G; von Hippel, G M; Zakharov, V I

    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.

  1. LLE review, volume 73. Quarterly report, October 1997--December 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-04-01

    This progress report contains discussion on the following topics: A high-bandwidth electrical-waveform generator based on aperture-coupled striplines for OMEGA pulse-shaping applications; sweep deflection circuit development using computer-aided circuit design for the OMEGA multichannel streak camera; D-{sup 3}He protons as a diagnostic for target {rho}R; growth rates of the ablative Rayleigh-Taylor instability in inertial confinement fusion; three-dimensional analysis of the power transfer between crossed laser beams; characterization of freestanding polymer films for application in 351-nm, high-peak-power laser systems; subsurface damage in microgrinding optical glasses; bound-abrasive polishers for optical glass; and color gamut of cholesteric liquid crystal films and flakes by standardmore » colorimetry.« less

  2. Design, development and manufacture of a breadboard radio frequency mass gauging system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The feasibility of the RF gauging mode, counting technique was demonstrated for gauging liquid hydrogen and liquid oxygen under all attitude conditions. With LH2, it was also demonstrated under dynamic fluid conditions, in which the fluid assumes ever changing positions within the tank, that the RF gauging technique on the average provides a very good indication of mass. It is significant that the distribution of the mode count data at each fill level during dynamic LH2 and LOX orientation testing does approach a statistical normal distribution. Multiple space-diversity probes provide better coupling to the resonant modes than utilization of a single probe element. The variable sweep rate generator technique provides a more uniform mode versus time distribution for processing.

  3. Experimental Evaluation of Stagnation Point Collection Efficiency of the NACA 0012 Swept Wing Tip

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Kreeger, Richard E.

    2010-01-01

    This paper presents the experimental work of a number of icing tests conducted in the Icing Research Tunnel at NASA Glenn Research Center to develop a test method for measuring the local collection efficiency of an impinging cloud at the leading edge of a NACA 0012 swept wing and with the data obtained to further calibrate a proposed correlation for such impingement efficiency calculation as a function of the modified inertia parameter and the sweep angle. The preliminary results showed that there could be some limitation of the test method due to the ice erosion problem when encountered, and also found that, for conditions free of such problem, the stagnation point collection efficiency measurement for sweep angles up to 45 could be well approximated by the proposed correlation. Further evaluation of this correlation is recommended in order to assess its applicability for swept-wing icing scaling analysis.

  4. On-line concentration and determination of all-trans- and 13-cis- retinoic acids in rabbit serum by application of sweeping technique in micellar electrokinetic chromatography.

    PubMed

    Zhao, Yongxi; Kong, Yu; Wang, Bo; Wu, Yayan; Wu, Hong

    2007-03-30

    A simple and rapid micellar electrokinetic chromatography (MEKC) method with UV detection was developed for the simultaneous separation and determination of all-trans- and 13-cis-retinoic acids in rabbit serum by on-line sweeping concentration technique. The serum sample was simply deproteinized and centrifuged. Various parameters affecting sample enrichment and separation were systematically investigated. Under optimal conditions, the analytes could be well separated within 17min, and the relative standard deviations (RSD) of migration times and peak areas were less than 3.4%. Compared with the conventional MEKC injection method, the 18- and 19-fold improvements in sensitivity were achieved, respectively. The proposed method has been successfully applied to the determination of all-trans- and 13-cis-retinoic acids in serum samples from rabbits and could be feasible for the further pharmacokinetics study of all-trans-retinoic acid.

  5. NASTRAN flutter analysis of advanced turbopropellers

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Smith, G. C. C.

    1982-01-01

    An existing capability developed to conduct modal flutter analysis of tuned bladed-shrouded discs in NASTRAN was modified and applied to investigate the subsonic unstalled flutter characteristics of advanced turbopropellers. The modifications pertain to the inclusion of oscillatory modal aerodynamic loads of blades with large (backward and forward) variable sweep. The two dimensional subsonic cascade unsteady aerodynamic theory was applied in a strip theory manner with appropriate modifications for the sweep effects. Each strip is associated with a chord selected normal to any spanwise reference curve such as the blade leading edge. The stability of three operating conditions of a 10-bladed propeller is analyzed. Each of these operating conditions is iterated once to determine the flutter boundary. A 5-bladed propeller is also analyzed at one operating condition to investigate stability. Analytical results obtained are in very good agreement with those from wind tunnel tests.

  6. Planning a Design Course for Play Experience and FabLab

    ERIC Educational Resources Information Center

    Teng, Chien-Kuo; Chuang, Ming-Chuen; Hsu, Chun-Cheng

    2015-01-01

    With the current popularity and widespread use of high-tech and telecommunication products, digital information with varied forms of software, hardware, and multimedia was engaged in designs for entertainment and daily life; its related products are sweeping the globe. On the other hand, the rapid development of 3D printing technology further…

  7. 2007 Mississippi Curriculum Framework: Secondary Custodian/Caretaker Services. (Program CIP: 19.0702 - Adult Development and Aging)

    ERIC Educational Resources Information Center

    Blake, LC; Harthcock, Sandra

    2007-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  8. 2005 Mississippi Curriculum Framework: Secondary Aging Services. (Program CIP: 19.0702 - Adult Development and Aging)

    ERIC Educational Resources Information Center

    Walker, Kathy

    2005-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  9. Contribution to Vocabulary Learning via Mobiles

    ERIC Educational Resources Information Center

    Khazaie, Saeed; Ketabi, Saeed

    2011-01-01

    As mobile connectedness continues to sweep across the landscape, the value of deploying mobile technology at the service of learning and teaching seems to be both self-evident and unavoidable. To this end, this study employed multimedia to develop three types of vocabulary learning materials. Due to the importance of short-term memory in the realm…

  10. Big Bang and context-driven collapse.

    PubMed

    Robertson-Tessi, Mark; Anderson, Alexander R A

    2015-03-01

    Heterogeneity is the single most important factor driving cancer progression and treatment failure, yet little is understood about how and when this heterogeneity arises. A new study shows that colorectal cancers acquire their dominant mutations early in development and that subsequent mutations, even if they confer greater fitness, are unlikely to sweep through the tumor.

  11. Development of Nitrogen Sensor for Determination of PN(2) in Body Tissues.

    DTIC Science & Technology

    1982-07-01

    3) The progress of the reduction reaction (1) was followed by voltammetry. A single anodic potential sweep , starting from the open circuit...Graphite Electrode The progressive attachment of [Ru(NH3 ) 5 H2 0] +2 to PVP-coated graphite electrodes was observed by cyclic voltametry as an

  12. Student Learning Outcomes from a Pilot Medical Innovations Course with Nursing, Engineering, and Biology Undergraduate Students

    ERIC Educational Resources Information Center

    Ludwig, Patrice M.; Nagel, Jacquelyn K.; Lewis, Erica J.

    2017-01-01

    Background: Preparing today's undergraduate students from science, technology, engineering, and math (STEM) and related health professions to solve wide-sweeping healthcare challenges is critical. Moreover, it is imperative that educators help students develop the capabilities needed to meet those challenges, including problem solving,…

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, C.; Potts, I.; Reeks, M. W., E-mail: mike.reeks@ncl.ac.uk

    We present a simple stochastic quadrant model for calculating the transport and deposition of heavy particles in a fully developed turbulent boundary layer based on the statistics of wall-normal fluid velocity fluctuations obtained from a fully developed channel flow. Individual particles are tracked through the boundary layer via their interactions with a succession of random eddies found in each of the quadrants of the fluid Reynolds shear stress domain in a homogeneous Markov chain process. In this way, we are able to account directly for the influence of ejection and sweeping events as others have done but without resorting tomore » the use of adjustable parameters. Deposition rate predictions for a wide range of heavy particles predicted by the model compare well with benchmark experimental measurements. In addition, deposition rates are compared with those obtained from continuous random walk models and Langevin equation based ejection and sweep models which noticeably give significantly lower deposition rates. Various statistics related to the particle near wall behavior are also presented. Finally, we consider the model limitations in using the model to calculate deposition in more complex flows where the near wall turbulence may be significantly different.« less

  14. Determination of Bosentan in Pharmaceutical Preparations by Linear Sweep, Square Wave and Differential Pulse Voltammetry Methods

    PubMed Central

    Atila, Alptug; Yilmaz, Bilal

    2015-01-01

    In this study, simple, fast and reliable cyclic voltammetry (CV), linear sweep voltammetry (LSV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV) methods were developed and validated for determination of bosentan in pharmaceutical preparations. The proposed methods were based on electrochemical oxidation of bosentan at platinum electrode in acetonitrile solution containing 0.1 M TBACIO4. The well-defined oxidation peak was observed at 1.21 V. The calibration curves were linear for bosentan at the concentration range of 5-40 µg/mL for LSV and 5-35 µg/mL for SWV and DPV methods, respectively. Intra- and inter-day precision values for bosentan were less than 4.92, and accuracy (relative error) was better than 6.29%. The mean recovery of bosentan was 100.7% for pharmaceutical preparations. No interference was found from two tablet excipients at the selected assay conditions. Developed methods in this study are accurate, precise and can be easily applied to Tracleer and Diamond tablets as pharmaceutical preparation. PMID:25901151

  15. Evaluation of Icing Scaling on Swept NACA 0012 Airfoil Models

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Lee, Sam

    2012-01-01

    Icing scaling tests in the NASA Glenn Icing Research Tunnel (IRT) were performed on swept wing models using existing recommended scaling methods that were originally developed for straight wing. Some needed modifications on the stagnation-point local collection efficiency (i.e., beta(sub 0) calculation and the corresponding convective heat transfer coefficient for swept NACA 0012 airfoil models have been studied and reported in 2009, and the correlations will be used in the current study. The reference tests used a 91.4-cm chord, 152.4-cm span, adjustable sweep airfoil model of NACA 0012 profile at velocities of 100 and 150 knot and MVD of 44 and 93 mm. Scale-to-reference model size ratio was 1:2.4. All tests were conducted at 0deg angle of attack (AoA) and 45deg sweep angle. Ice shape comparison results were presented for stagnation-point freezing fractions in the range of 0.4 to 1.0. Preliminary results showed that good scaling was achieved for the conditions test by using the modified scaling methods developed for swept wing icing.

  16. Determination of bosentan in pharmaceutical preparations by linear sweep, square wave and differential pulse voltammetry methods.

    PubMed

    Atila, Alptug; Yilmaz, Bilal

    2015-01-01

    In this study, simple, fast and reliable cyclic voltammetry (CV), linear sweep voltammetry (LSV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV) methods were developed and validated for determination of bosentan in pharmaceutical preparations. The proposed methods were based on electrochemical oxidation of bosentan at platinum electrode in acetonitrile solution containing 0.1 M TBACIO4. The well-defined oxidation peak was observed at 1.21 V. The calibration curves were linear for bosentan at the concentration range of 5-40 µg/mL for LSV and 5-35 µg/mL for SWV and DPV methods, respectively. Intra- and inter-day precision values for bosentan were less than 4.92, and accuracy (relative error) was better than 6.29%. The mean recovery of bosentan was 100.7% for pharmaceutical preparations. No interference was found from two tablet excipients at the selected assay conditions. Developed methods in this study are accurate, precise and can be easily applied to Tracleer and Diamond tablets as pharmaceutical preparation.

  17. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    NASA Astrophysics Data System (ADS)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  18. Liquid membrane purification of biogas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majumdar, S.; Guha, A.K.; Lee, Y.T.

    1991-03-01

    Conventional gas purification technologies are highly energy intensive. They are not suitable for economic removal of CO{sub 2} from methane obtained in biogas due to the small scale of gas production. Membrane separation techniques on the other hand are ideally suited for low gas production rate applications due to their modular nature. Although liquid membranes possess a high species permeability and selectivity, they have not been used for industrial applications due to the problems of membrane stability, membrane flooding and poor operational flexibility, etc. A new hollow-fiber-contained liquid membrane (HFCLM) technique has been developed recently. This technique overcomes the shortcomingsmore » of the traditional immobilized liquid membrane technology. A new technique uses two sets of hydrophobic, microporous hollow fine fibers, packed tightly in a permeator shell. The inter-fiber space is filled with an aqueous liquid acting as the membrane. The feed gas mixture is separated by selective permeation of a species through the liquid from one fiber set to the other. The second fiber set carries a sweep stream, gas or liquid, or simply the permeated gas stream. The objectives (which were met) of the present investigation were as follows. To study the selective removal of CO{sub 2} from a model biogas mixture containing 40% CO{sub 2} (the rest being N{sub 2} or CH{sub 4}) using a HFCLM permeator under various operating modes that include sweep gas, sweep liquid, vacuum and conventional permeation; to develop a mathematical model for each mode of operation; to build a large-scale purification loop and large-scale permeators for model biogas separation and to show stable performance over a period of one month.« less

  19. Learning Peri-saccadic Remapping of Receptive Field from Experience in Lateral Intraparietal Area.

    PubMed

    Wang, Xiao; Wu, Yan; Zhang, Mingsha; Wu, Si

    2017-01-01

    Our eyes move constantly at a frequency of 3-5 times per second. These movements, called saccades, induce the sweeping of visual images on the retina, yet we perceive the world as stable. It has been suggested that the brain achieves this visual stability via predictive remapping of neuronal receptive field (RF). A recent experimental study disclosed details of this remapping process in the lateral intraparietal area (LIP), that is, about the time of the saccade, the neuronal RF expands along the saccadic trajectory temporally, covering the current RF (CRF), the future RF (FRF), and the region the eye will sweep through during the saccade. A cortical wave (CW) model was also proposed, which attributes the RF remapping as a consequence of neural activity propagating in the cortex, triggered jointly by a visual stimulus and the corollary discharge (CD) signal responsible for the saccade. In this study, we investigate how this CW model is learned naturally from visual experiences at the development of the brain. We build a two-layer network, with one layer consisting of LIP neurons and the other superior colliculus (SC) neurons. Initially, neuronal connections are random and non-selective. A saccade will cause a static visual image to sweep through the retina passively, creating the effect of the visual stimulus moving in the opposite direction of the saccade. According to the spiking-time-dependent-plasticity rule, the connection path in the opposite direction of the saccade between LIP neurons and the connection path from SC to LIP are enhanced. Over many such visual experiences, the CW model is developed, which generates the peri-saccadic RF remapping in LIP as observed in the experiment.

  20. Learning Peri-saccadic Remapping of Receptive Field from Experience in Lateral Intraparietal Area

    PubMed Central

    Wang, Xiao; Wu, Yan; Zhang, Mingsha; Wu, Si

    2017-01-01

    Our eyes move constantly at a frequency of 3–5 times per second. These movements, called saccades, induce the sweeping of visual images on the retina, yet we perceive the world as stable. It has been suggested that the brain achieves this visual stability via predictive remapping of neuronal receptive field (RF). A recent experimental study disclosed details of this remapping process in the lateral intraparietal area (LIP), that is, about the time of the saccade, the neuronal RF expands along the saccadic trajectory temporally, covering the current RF (CRF), the future RF (FRF), and the region the eye will sweep through during the saccade. A cortical wave (CW) model was also proposed, which attributes the RF remapping as a consequence of neural activity propagating in the cortex, triggered jointly by a visual stimulus and the corollary discharge (CD) signal responsible for the saccade. In this study, we investigate how this CW model is learned naturally from visual experiences at the development of the brain. We build a two-layer network, with one layer consisting of LIP neurons and the other superior colliculus (SC) neurons. Initially, neuronal connections are random and non-selective. A saccade will cause a static visual image to sweep through the retina passively, creating the effect of the visual stimulus moving in the opposite direction of the saccade. According to the spiking-time-dependent-plasticity rule, the connection path in the opposite direction of the saccade between LIP neurons and the connection path from SC to LIP are enhanced. Over many such visual experiences, the CW model is developed, which generates the peri-saccadic RF remapping in LIP as observed in the experiment. PMID:29249953

  1. Automatic image fusion of real-time ultrasound with computed tomography images: a prospective comparison between two auto-registration methods.

    PubMed

    Cha, Dong Ik; Lee, Min Woo; Kim, Ah Yeong; Kang, Tae Wook; Oh, Young-Taek; Jeong, Ja-Yeon; Chang, Jung-Woo; Ryu, Jiwon; Lee, Kyong Joon; Kim, Jaeil; Bang, Won-Chul; Shin, Dong Kuk; Choi, Sung Jin; Koh, Dalkwon; Seo, Bong Koo; Kim, Kyunga

    2017-11-01

    Background A major drawback of conventional manual image fusion is that the process may be complex, especially for less-experienced operators. Recently, two automatic image fusion techniques called Positioning and Sweeping auto-registration have been developed. Purpose To compare the accuracy and required time for image fusion of real-time ultrasonography (US) and computed tomography (CT) images between Positioning and Sweeping auto-registration. Material and Methods Eighteen consecutive patients referred for planning US for radiofrequency ablation or biopsy for focal hepatic lesions were enrolled. Image fusion using both auto-registration methods was performed for each patient. Registration error, time required for image fusion, and number of point locks used were compared using the Wilcoxon signed rank test. Results Image fusion was successful in all patients. Positioning auto-registration was significantly faster than Sweeping auto-registration for both initial (median, 11 s [range, 3-16 s] vs. 32 s [range, 21-38 s]; P < 0.001] and complete (median, 34.0 s [range, 26-66 s] vs. 47.5 s [range, 32-90]; P = 0.001] image fusion. Registration error of Positioning auto-registration was significantly higher for initial image fusion (median, 38.8 mm [range, 16.0-84.6 mm] vs. 18.2 mm [6.7-73.4 mm]; P = 0.029), but not for complete image fusion (median, 4.75 mm [range, 1.7-9.9 mm] vs. 5.8 mm [range, 2.0-13.0 mm]; P = 0.338]. Number of point locks required to refine the initially fused images was significantly higher with Positioning auto-registration (median, 2 [range, 2-3] vs. 1 [range, 1-2]; P = 0.012]. Conclusion Positioning auto-registration offers faster image fusion between real-time US and pre-procedural CT images than Sweeping auto-registration. The final registration error is similar between the two methods.

  2. Non-Newtonian fluid structure interaction in flexible biomimetic microchannels

    NASA Astrophysics Data System (ADS)

    Kiran, M.; Dasgupta, Sunando; Chakraborty, Suman

    2017-11-01

    To investigate the complex fluid structure interactions in a physiologically relevant microchannel with deformable wall and non-Newtonian fluid that flows within it, we fabricated cylindrical microchannels of various softness out of PDMS. Experiments to measure the transient pressure drop across the channel were carried out with high sampling frequencies to capture the intricate flow physics. In particular, we showed that the waveforms varies greatly for each of the non-Newtonian and Newtonian cases for both non-deformable and deformable microchannels in terms of the peak amplitude, r.m.s amplitude and the crest factor. In addition, we carried out frequency sweep experiments to evaluate the frequency response of the system. We believe that these results will aid in the design of polymer based microfluidic phantoms for arterial FSI studies, and in particular for studying blood analog fluids in cylindrical microchannels as well as developing frequency specific Lab-on-chip systems for medical diagnostics.

  3. Phenomenological study of subsonic turbulent flow over a swept rearward-facing step. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Selby, G. V.

    1982-01-01

    The phenomenology of turbulent, subsonic flow over a swept, rearward-facing step was studied. Effects of variations in step height, sweep angle, base geometry, and end conditions on the 3-D separated flow were examined. The separated flow was visualized using smoke wire, oil drop, and surface tuft techniques. Measurements include surface pressure, reattachment distance and swirl angle. Results indicate: (1) model/test section coupling affects the structure of the separated flow, but spanwise end conditions do not; (2) the independence principle is evidently valid for sweep angles up to 38 deg; (3) a sweep angle/swirl angle correlation exists; and (4) base modifications can significantly reduce the reattachment distance.

  4. Laryngeal flow due to longitudinal sweeping motion of the vocal folds and its contribution to auto-oscillation.

    PubMed

    Boutin, Henri; Smith, John; Wolfe, Joe

    2015-07-01

    Analysis of published depth-kymography data [George, de Mul, Qiu, Rakhorst, and Schutte (2008). Phys. Med. Biol. 53, 2667-2675] shows that, for the subject studied, the flow due to the longitudinal sweeping motion of the vocal folds contributes several percent of a typical acoustic flow at the larynx. This sweeping flow is a maximum when the glottis is closed. This observation suggests that assumption of zero laryngeal flow during the closed phase as a criterion when determining parameters in inverse filtering should be used with caution. Further, these data suggest that the swinging motion contributes work to overcome mechanical losses and thus to assist auto-oscillation.

  5. Gate frequency sweep: An effective method to evaluate the dynamic performance of AlGaN/GaN power heterojunction field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santi, C. de; Meneghini, M., E-mail: matteo.meneghini@dei.unipd.it; Meneghesso, G.

    2014-08-18

    With this paper we propose a test method for evaluating the dynamic performance of GaN-based transistors, namely, gate-frequency sweep measurements: the effectiveness of the method is verified by characterizing the dynamic performance of Gate Injection Transistors. We demonstrate that this method can provide an effective description of the impact of traps on the transient performance of Heterojunction Field Effect Transistors, and information on the properties (activation energy and cross section) of the related defects. Moreover, we discuss the relation between the results obtained by gate-frequency sweep measurements and those collected by conventional drain current transients and double pulse characterization.

  6. Taiwan: Major U.S. Arms Sales Since 1990

    DTIC Science & Technology

    2012-11-29

    vehicles; AN/ALE-50 electronic countermeasure (ECM) systems for F-16s; and 12 MH-53 mine -sweeping helicopters. President Bush approved four...Review Process, by Richard F. Grimmett. 256 Commercial sale. Opall Barbara and David Silverberg, “Taiwanese May Soon Coproduce Patriot,” Defense News...Sheng C4 systems) $340 01/29 (2) Osprey-class mine hunting ships (refurbished and upgraded) $105 2011 09/21 Retrofit of 145 F-16A/B fighters, with 176

  7. Taiwan: Major U.S. Arms Sales Since 1990

    DTIC Science & Technology

    2012-02-24

    howitzers; 54 AAV7A1 amphibious assault vehicles; AN/ALE-50 electronic countermeasure (ECM) systems for F-16s; and 12 MH-53 mine -sweeping helicopters...Grimmett. 279 Commercial sale. Opall Barbara and David Silverberg, “Taiwanese May Soon Coproduce Patriot,” Defense News, February 22-28, 1993...Sheng C4 systems) $340 01/29 (2) Osprey-class mine hunting ships (refurbished and upgraded) $105 2011 09/21 Retrofit of 145 F-16A/B fighters, with

  8. Taiwan: Major U.S. Arms Sales Since 1990

    DTIC Science & Technology

    2014-03-03

    vehicles; AN/ALE-50 electronic countermeasure (ECM) systems for F-16s; and 12 MH-53 mine -sweeping helicopters. President Bush approved four...resolution of disapproval) as stipulated under Section 36(b) of the AECA. 239 Commercial sale. Opall Barbara and David Silverberg, “Taiwanese May Soon...Sheng C4 systems) $340 01/29 (2) Osprey-class mine hunting ships (refurbished and upgraded) $105 2011 09/21 Retrofit of 145 F-16A/B fighters, with

  9. Multi-Scale Experiments to Evaluate Mobility Control Methods for Enhancing the Sweep Efficiency of Injected Subsurface Remediation Amendments

    DTIC Science & Technology

    2010-08-01

    petroleum industry. Moreover, heterogeneity control strategies can be applied to improve the efficiency of a variety of in situ remediation technologies...conditions that differ significantly from those found in environmental systems . Therefore many of the design criteria used by the petroleum industry for...were helpful in constructing numerical models in up-scaled systems (2-D tanks). The UTCHEM model was able to successfully simulate 2-D experimental

  10. Characterization of ultrathin insulators in CMOS technology: Wearout and failure mechanisms due to processing and operation

    NASA Astrophysics Data System (ADS)

    Okandan, Murat

    In the CMOS technology the gate dielectric is the most critical layer, as its condition directly dictates the ultimate performance of the devices. In this thesis, the wear-out and failure mechanisms in ultra-thin (around 50A and lower) oxides are investigated. A new degradation phenomenon, quasi-breakdown (or soft-breakdown), and the annealing and stressing behavior of devices after quasi-breakdown are considered in detail. Devices that are in quasi-breakdown continue to operate as switches, but the gate leakage current is two orders of magnitude higher than the leakage in healthy devices and the stressing/annealing behavior of the devices are completely altered. This phenomenon is of utmost interest, since the reduction in SiO2 dielectric thickness has reached its physical limits, and the quasi-breakdown behavior is seen to dominate as a failure mode in this regime. The quasi-breakdown condition can be brought on by stresses during operation or processing. To further study this evolution through stresses and anneals, cyclic current-voltage (I-V) measurement has been further developed and utilized in this thesis. Cyclic IV is a simple and fast, two terminal measurement technique that looks at the transient current flowing in an MOS system during voltage sweeps from accumulation to inversion and back. During these sweeps, carrier trapping/detrapping, generation and recombination are observed. An experimental setup using a fast electrometer and analog to digital conversion (A/D) card and the software for control of the setup and data analysis were also developed to gain further insight into the detailed physics involved. Overall, the crucial aspects of wear-out and quasi-breakdown of ultrathin dielectrics, along with the methods for analyzing this evolution are presented in this thesis.

  11. Evaluation of Street Sweeping as a Stormwater-Quality-Management Tool in Three Residential Basins in Madison, Wisconsin

    USGS Publications Warehouse

    Selbig, William R.; Bannerman, Roger T.

    2007-01-01

    Recent technological improvements have increased the ability of street sweepers to remove sediment and other debris from street surfaces; the effect of these technological advancements on stormwater quality is largely unknown. The U.S. Geological Survey, in cooperation with the City of Madison and the Wisconsin Department of Natural Resources, evaluated three street-sweeper technologies from 2002 through 2006. Regenerative-air, vacuum-assist, and mechanical-broom street sweepers were operated on a frequency of once per week (high frequency) in separate residential basins in Madison, Wis., to measure each sweeper's ability to not only reduce street-dirt yield but also improve the quality of stormwater runoff. A second mechanical-broom sweeper operating on a frequency of once per month (low frequency) was also evaluated to measure reductions in street-dirt yield only. A paired-basin study design was used to compare street-dirt and stormwater-quality samples during a calibration (no sweeping) and a treatment period (weekly sweeping). The basis of this paired-basin approach is that the relation between paired street-dirt and stormwater-quality loads for the control and tests basins is constant until a major change is made at one of the basins. At that time, a new relation will develop. Changes in either street-dirt and/or stormwater quality as a result of street sweeping could then be quantified by use of statistical tests. Street-dirt samples collected weekly during the calibration period and twice per week during the treatment period, once before and once after sweeping, were dried and separated into seven particle-size fractions ranging from less than 63 micrometers to greater than 2 millimeters. Street-dirt yield evaluation was based on a computed mass per unit length of pounds per curb-mile. An analysis of covariance was used to measure the significance of the effect of street sweeping at the end of the treatment period and to quantify any reduction in street-dirt yield. Both the regenerative-air and vacuum-assist sweepers produced reductions in street-dirt yield at the 5-percent significance level. Street-dirt yield was reduced by an average of 76, 63, and 20 percent in the regenerative-air, vacuum-assist, and high-frequency broom basins, respectively. The low-frequency broom basin showed no significant reductions in street-dirt yield. Sand-size particles (greater than 63 micrometers) recorded the greatest overall reduction. Street-sweeper pickup efficiency was determined by computing the difference between weekly street-dirt yields before and after sweeping cleaning. The regenerative-air and vacuum-assist sweepers had similar pickup efficiencies of 25 and 30 percent, respectively. The mechanical broom sweeper operating at high frequency was considerably less efficient, removing an average of 5 percent of street-dirt yield. The effects of street sweeping on stormwater quality were evaluated by use of statistical tests to compare event mean concentrations and loads computed for individual storms at the control and test basins. Loads were computed by multiplying the event mean concentrations by storm-runoff volumes. Only ammonia-nitrogen for the test basin with the vacuum-assist sweeper showed significant load increases over the control basin, at the 10-percent significance level, of 63 percent. Difficulty in detecting significant changes in constituent stormwater-quality loads could be due, in part, to the large amount of variability in the data. Coefficients of variation for the majority of constituent loads were greater than 1, indicating substantial variability. The ability to detect changes in constituent stormwater-quality loads was likely hampered by an inadequate number of samples in the data set. However, sediment transport in the storm-sewer pipe, sediment washing onto the street from other source areas, winter sand application, and sampling challenges were additional sources of variability within each study ba

  12. Wingbeat frequency-sweep and visual stimuli for trapping male Aedes aegypti (Diptera: Culicidae)

    USDA-ARS?s Scientific Manuscript database

    Combinations of female wingbeat acoustic cues and visual cues were evaluated to determine their potential for use in male Aedes aegypti (L.) traps in peridomestic environments. A modified Centers for Disease control (CDC) light trap using a 350-500 Hz frequency-sweep broadcast from a speaker as an a...

  13. Recovery from simulated sawn logs with sweep.

    Treesearch

    Robert A. Monserud; Dean L. Parry; Christine L. Todoroki

    2004-01-01

    A sawing simulator, AUTOSAW, was used to examine the effect of increasing sweep on lumber recovery. Sample material consisted of 51 logs from 22 western hemlock (Tsuga heterophylla (Raf.) Sarg. ) trees in western Oregon, United States. All knots on the 4.9-m logs were measured, mapped, and converted into 3-dimensional digital formats. The digital...

  14. Automatic sweep circuit

    DOEpatents

    Keefe, Donald J.

    1980-01-01

    An automatically sweeping circuit for searching for an evoked response in an output signal in time with respect to a trigger input. Digital counters are used to activate a detector at precise intervals, and monitoring is repeated for statistical accuracy. If the response is not found then a different time window is examined until the signal is found.

  15. Electrochemical Features of the Ferric Sulfate Leaching of CuFeS2/C Aggregates.

    DTIC Science & Technology

    1984-11-28

    HCl at room temperature by linear sweep f’ -" !, voltametry Ai potentiostatic electrolysis. For example, they found #i j n one case that the anodic...converter and Model 175 potential sweep generator. Potentlo- * dynamic polarization experiments were designed to examine the nature :of the half-cell

  16. Pectin from Husk Tomato (Physalis ixocarpa Brot.): Rheological behavior at different extraction conditions.

    PubMed

    Morales-Contreras, Blanca E; Rosas-Flores, Walfred; Contreras-Esquivel, Juan C; Wicker, Louise; Morales-Castro, Juliana

    2018-01-01

    A rheological study was carried out to evaluate formulations of test dispersions and gels of high methoxyl pectins (HTHMP) obtained at different conditions from husk tomato waste (Physalis ixocarpa Brot.). The effect of extraction agent (hydrochloric acid or citric acid), blanching time (10 or 15min) and extraction time (15, 20 or 25min) on the rheology of the tested samples was evaluated. Flow behavior and activation energy were evaluated on the test dispersions, while (E a ) frequency sweeps, temperature sweep, creep-recovery test and penetration test were performed on the gels. HTHMP dispersions showed shear thinning flow behavior, while showing a good fit to Cross model. Extraction agent, blanching time and extraction time did not have effect on Cross parameters (η z , η∞, C, and m). E a decreased as blanching time and extraction time increased. Frequency sweeps revealed high dependence on frequency for both G' and G", while temperature sweeps (25- 95°C) showed thermostable husk tomato pectin gels. Hydrocloric acid (HCl) extracted pectin gels showed stronger structure than citric acid (CA) gels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Phase stability analysis of chirp evoked auditory brainstem responses by Gabor frame operators.

    PubMed

    Corona-Strauss, Farah I; Delb, Wolfgang; Schick, Bernhard; Strauss, Daniel J

    2009-12-01

    We have recently shown that click evoked auditory brainstem responses (ABRs) can be efficiently processed using a novelty detection paradigm. Here, ABRs as a large-scale reflection of a stimulus locked neuronal group synchronization at the brainstem level are detected as novel instance-novel as compared to the spontaneous activity which does not exhibit a regular stimulus locked synchronization. In this paper we propose for the first time Gabor frame operators as an efficient feature extraction technique for ABR single sweep sequences that is in line with this paradigm. In particular, we use this decomposition technique to derive the Gabor frame phase stability (GFPS) of sweep sequences of click and chirp evoked ABRs. We show that the GFPS of chirp evoked ABRs provides a stable discrimination of the spontaneous activity from stimulations above the hearing threshold with a small number of sweeps, even at low stimulation intensities. It is concluded that the GFPS analysis represents a robust feature extraction method for ABR single sweep sequences. Further studies are necessary to evaluate the value of the presented approach for clinical applications.

  18. Airloads Correlation of the UH-60A Rotor Inside the 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Chang, I-Chung; Norman, Thomas R.; Romander, Ethan A.

    2013-01-01

    The presented research validates the capability of a loosely-coupled computational fluid dynamics (CFD) and comprehensive rotorcraft analysis (CRA) code to calculate the flowfield around a rotor and test stand mounted inside a wind tunnel. The CFD/CRA predictions for the full-scale UH-60A Airloads Rotor inside the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center are compared with the latest measured airloads and performance data. The studied conditions include a speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed up to and including stall. For the speed sweep, wind tunnel modeling becomes important at advance ratios greater than 0.37 and test stand modeling becomes increasingly important as the advance ratio increases. For the thrust sweep, both the wind tunnel and test stand modeling become important as the rotor approaches stall. Despite the beneficial effects of modeling the wind tunnel and test stand, the new models do not completely resolve the current airload discrepancies between prediction and experiment.

  19. Control of Viscous Fingering in Miscible Displacements in Porous Media with a Periodic Change of Injection Rate

    NASA Astrophysics Data System (ADS)

    Yuan, Q.; Zeng, F.; Knorr, K. D.; Imran, M.

    2017-12-01

    Context/PurposeThe viscous fingering (VF) is widely encountered in a series of miscible displacements such as CO2 sequestration and solvent-based enhanced oil recovery (EOR). Accurate prediction and effective control of its development are significant. Commercial simulators cannot capture VF because of large numerical diffusion. Moreover, previous measures for controlling VF using polymer are very expensive. In the present study, a periodic change of injection rate involving injection and extraction is used to control and reduce VF instabilities at zero cost. MethodsHighly accurate spectral method and fully implicit alternating direction implicit method are used to simulate VF with concentration-dependent diffusion (CDD) and velocity-induced dispersion (VID), although the consideration of CDD and VID may result in strong nonlinearity and stiff problem under unfavourable viscosity ratio. In-house code is developed. The VF is reduced by optimizing period and amplitude of injection rate. ResultsThe results show that the periodic change of injection rates can strongly affect VF and sweep efficiency. In particular, a period-stabilizing range is found in which the VF is reduced compared with widely used constant injection with the same amount of fluid injected. The frequent change of rate results in high sweep efficiency. The optimal injection scheme, when compared with constant injection, can improve sweep efficiency by 20-35%. InterpretationDispersion plays a key role in the mitigation of VF in periodic displacement rates. It enhances the uniform mixing of two fluids in injection stage in any period, while it can more effectively attenuate VF instabilities through the following extraction stage. Fast switch of injection and extraction can mitigate flow instability once it develops. ConclusionThis finding is very novel and significant as it is the first time to control VF instability in porous media without any additional cost. It shows great potential for EOR at zero cost.

  20. Time-of-flight radio location system

    DOEpatents

    McEwan, T.E.

    1996-04-23

    A bi-static radar configuration measures the direct time-of-flight of a transmitted RF pulse and is capable of measuring this time-of-flight with a jitter on the order of about one pico-second, or about 0.01 inch of free space distance for an electromagnetic pulse over a range of about one to ten feet. A transmitter transmits a sequence of electromagnetic pulses in response to a transmit timing signal, and a receiver samples the sequence of electromagnetic pulses with controlled timing in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the sequence of electromagnetic pulses such that the time between transmission of pulses in the sequence and sampling by the receiver sweeps over a range of delays. The receive timing signal sweeps over the range of delays in a sweep cycle such that pulses in the sequence are sampled at the pulse repetition rate, and with different delays in the range of delays to produce a sample signal representing magnitude of a received pulse in equivalent time. Automatic gain control circuitry in the receiver controls the magnitude of the equivalent time sample signal. A signal processor analyzes the sample signal to indicate the time-of-flight of the electromagnetic pulses in the sequence. 7 figs.

  1. Time-of-flight radio location system

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A bi-static radar configuration measures the direct time-of-flight of a transmitted RF pulse and is capable of measuring this time-of-flight with a jitter on the order of about one pico-second, or about 0.01 inch of free space distance for an electromagnetic pulse over a range of about one to ten feet. A transmitter transmits a sequence of electromagnetic pulses in response to a transmit timing signal, and a receiver samples the sequence of electromagnetic pulses with controlled timing in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the sequence of electromagnetic pulses such that the time between transmission of pulses in the sequence and sampling by the receiver sweeps over a range of delays. The receive timing signal sweeps over the range of delays in a sweep cycle such that pulses in the sequence are sampled at the pulse repetition rate, and with different delays in the range of delays to produce a sample signal representing magnitude of a received pulse in equivalent time. Automatic gain control circuitry in the receiver controls the magnitude of the equivalent time sample signal. A signal processor analyzes the sample signal to indicate the time-of-flight of the electromagnetic pulses in the sequence.

  2. Testing inferior colliculus neurons for selectivity to the rate or duration of frequency modulated sweeps

    NASA Astrophysics Data System (ADS)

    Faure, Paul A.; Morrison, James A.; Valdizón-Rodríguez, Roberto

    2018-05-01

    Here we propose a method for testing how the responses of so-called "FM duration-tuned neurons (DTNs)" encode temporal properties of frequency modulated (FM) sweeps to determine if the responses of so-called "FM duration-tuned neurons (DTNs)" are tuned to FM rate or FM duration. Based on previous studies it was unclear if the responses of "FM DTNs" were tuned to signal duration, like pure-tone DTNs, or FM sweep rate. We tested this using single-unit extracellular recording in the inferior colliculus (IC) of the big brown bat (Eptesicus fuscus). We presented IC cells with linear FM sweeps that were varied in FM center frequency (CEF) and spectral bandwidth (BW) to measure the FM rate tuning responses of a cell. We also varied FM signal duration to measure the best duration (BD) and temporal BW of duration tuning of a cell. We then doubled (and halved) the best FM BW, while keeping the CEF constant, and remeasured the BD and temporal BW of duration tuning with FM bandwidth manipulated signals. We reasoned that the range of excitatory signal durations should not change in a true FM DTN whose responses are tuned to signal duration; however, when stimulated with bandwidth manipulated FM sounds the range of excitatory signal durations should predictably vary in a FM rate-tuned cell. Preliminary data indicate that our stimulus paradigm can disambiguate whether the evoked responses of an IC neuron are FM sweep rate tuned or FM duration tuned.

  3. A comparison of spider communities in Bt and non-Bt rice fields.

    PubMed

    Lee, Sue Yeon; Kim, Seung Tae; Jung, Jong Kook; Lee, Joon-Ho

    2014-06-01

    To assess the potential adverse effects of a Bt rice line (Japonica rice cultivar, Nakdong) expressing a synthetic cry1Ac1 gene, C7-1-9-1-B, which was highly active against all larval stages of Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Crambidae), we investigated the community structure of spiders in Bt and non-Bt rice fields during the rice-growing season in 2007 and 2008 in Chungcheongnam-do, Korea. Spiders were surveyed with a sweep net and suction device. Suction sampling captured more spiders, measured in terms of species level and abundance, than sweeping. Araneidae and Thomisidae were captured more by sweeping, and certain species were captured only by sweeping. These findings show that both suction and sweep sampling methods should be used because these methods are most likely complementary. In total, 29 species in 23 genera and nine families were identified from the 4,937 spiders collected, and both Bt and non-Bt rice fields showed a typical Korean spider assemblage. The temporal patterns of spider species richness and spider abundance were very similar between Bt and non-Bt rice, although significant differences in species richness were observed on a few occasions. Overall, spider community structure, including diversity, the dominant species, and abundance did not differ between Bt and non-Bt rice. The results of the study indicated that the transgenic Cry1Ac rice lines tested in this study had no adverse effects on the spider community structure of the rice fields.

  4. Nonlinearity of bituminous mixtures

    NASA Astrophysics Data System (ADS)

    Mangiafico, S.; Babadopulos, L. F. A. L.; Sauzéat, C.; Di Benedetto, H.

    2018-02-01

    This paper presents an experimental characterization of the strain dependency of the complex modulus of bituminous mixtures for strain amplitude levels lower than about 110 μm/m. A series of strain amplitude sweep tests are performed at different temperatures (8, 10, 12 and 14°C) and frequencies (0.3, 1, 3 and 10 Hz), during which complex modulus is monitored. For each combination of temperature and frequency, four maximum strain amplitudes are targeted (50, 75, 100 and 110 μm/m). For each of them, two series of 50 loading cycles are applied, respectively at decreasing and increasing strain amplitudes. Before each decreasing strain sweep and after each increasing strain sweep, 5 cycles are performed at constant maximum targeted strain amplitude. Experimental results show that the behavior of the studied material is strain dependent. The norm of the complex modulus decreases and phase angle increases with strain amplitude. Results are presented in Black and Cole-Cole plots, where characteristic directions of nonlinearity can be identified. Both the effects of nonlinearity in terms of the complex modulus variation and of the direction of nonlinearity in Black space seem to validate the time-temperature superposition principle with the same shift factors as for linear viscoelasticity. The comparison between results obtained during increasing and decreasing strain sweeps suggests the existence of another phenomenon occurring during cyclic loading, which appears to systematically induce a decrease of the norm of the complex modulus and an increase of the phase angle, regardless of the type of the strain sweep (increasing or decreasing).

  5. LONG-TERM PERFORMANCE OF SOLID OXIDE STACKS WITH ELECTRODE-SUPPORTED CELLS OPERATING IN THE STEAM ELECTROLYSIS MODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. E. O'Brien; R. C. O'Brien; X. Zhang

    2011-11-01

    Performance characterization and durability testing have been completed on two five-cell high-temperature electrolysis stacks constructed with advanced cell and stack technologies. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. The per-cell active area is 100 cm2. The stack is internally manifolded with compliant mica-glass seals. Treated metallic interconnects with integral flow channels separate the cells. Stack compression is accomplished by means of a custom spring-loaded test fixture. Initial stack performance characterization was determined through a series of DC potential sweeps in both fuel cellmore » and electrolysis modes of operation. Results of these sweeps indicated very good initial performance, with area-specific resistance values less than 0.5 ?.cm2. Long-term durability testing was performed with A test duration of 1000 hours. Overall performance degradation was less than 10% over the 1000-hour period. Final stack performance characterization was again determined by a series of DC potential sweeps at the same flow conditions as the initial sweeps in both electrolysis and fuel cell modes of operation. A final sweep in the fuel cell mode indicated a power density of 0.356 W/cm2, with average per-cell voltage of 0.71 V at a current of 50 A.« less

  6. Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS)

    NASA Technical Reports Server (NTRS)

    Guerra, David V.; Schwemmer, Geary K.; Wooten, Albert D., Jr.; Chaudhuri, Sandipan S.; Wilkerson, Thomas D.

    1995-01-01

    A ground-based atmospheric lidar system that utilizes a Holographic Optical Telescope and Scanner has been developed and successfully operated to obtain atmospheric backscatter profiles. The Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing is built around a volume phase reflection Holographic Optical Element. This single optical element both directs and collimates the outgoing laser beam as well as collects, focuses, and filters the atmospheric laser backscatter, while offering significant weight savings over existing telescope mirror technology. Conical scanning is accomplished as the HOE rotates on a turntable sweeping the 1.2 mrad field of view around a 42deg cone. During this technology demonstration, atmospheric aerosol and cloud return signals have been received in both stationary and scanning modes. The success of this program has led to the further development of this technology for integration into airborne and eventually satellite earth observing scanning lidar telescopes.

  7. How does the connectivity of open-framework conglomerates within multi-scale hierarchical fluvial architecture affect oil-sweep efficiency in waterflooding?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gershenzon, Naum I.; Soltanian, Mohamad Reza; Ritzi, Robert W.

    Understanding multi-phase fluid flow and transport processes within aquifers, candidate reservoirs for CO 2 sequestration, and petroleum reservoirs requires understanding a diverse set of geologic properties of the aquifer or reservoir, over a wide range of spatial and temporal scales. We focus on multiphase flow dynamics with wetting (e.g., water) and non-wetting (e.g., gas or oil) fluids, with one invading another. This problem is of general interest in a number of fields and is illustrated here by considering the sweep efficiency of oil during a waterflood. Using a relatively fine-resolution grid throughout a relatively large domain in these simulations andmore » probing the results with advanced scientific visualization tools (Reservoir Visualization Analysis [RVA]/ ParaView software) promote a better understanding of how smaller-scale features affect the aggregate behavior at larger scales. We studied the effects on oil-sweep efficiency of the proportion, hierarchical organization, and connectivity of high-permeability open-framework conglomerate (OFC) cross-sets within the multi-scale stratal architecture found in fluvial deposits. We further analyzed oil production rate, water breakthrough time, and spatial and temporal distribution of residual oil saturation. As expected, the effective permeability of the reservoir exhibits large-scale anisotropy created by the organization of OFC cross-sets within unit bars, and the organization of unit bars within compound- bars. As a result, oil-sweep efficiency critically depends on the direction of the pressure gradient. However, contrary to expectations, the total amount of trapped oil due to the effect of capillary trapping does not depend on the magnitude of the pressure gradient within the examined range. Hence the pressure difference between production and injection wells does not affect sweep efficiency; although the spatial distribution of oil remaining in the reservoir depends on this value. Whether or not clusters of connected OFC span the domain affects only the absolute rate of oil production—not sweep efficiency.« less

  8. How does the connectivity of open-framework conglomerates within multi-scale hierarchical fluvial architecture affect oil-sweep efficiency in waterflooding?

    DOE PAGES

    Gershenzon, Naum I.; Soltanian, Mohamad Reza; Ritzi, Robert W.; ...

    2015-10-23

    Understanding multi-phase fluid flow and transport processes within aquifers, candidate reservoirs for CO 2 sequestration, and petroleum reservoirs requires understanding a diverse set of geologic properties of the aquifer or reservoir, over a wide range of spatial and temporal scales. We focus on multiphase flow dynamics with wetting (e.g., water) and non-wetting (e.g., gas or oil) fluids, with one invading another. This problem is of general interest in a number of fields and is illustrated here by considering the sweep efficiency of oil during a waterflood. Using a relatively fine-resolution grid throughout a relatively large domain in these simulations andmore » probing the results with advanced scientific visualization tools (Reservoir Visualization Analysis [RVA]/ ParaView software) promote a better understanding of how smaller-scale features affect the aggregate behavior at larger scales. We studied the effects on oil-sweep efficiency of the proportion, hierarchical organization, and connectivity of high-permeability open-framework conglomerate (OFC) cross-sets within the multi-scale stratal architecture found in fluvial deposits. We further analyzed oil production rate, water breakthrough time, and spatial and temporal distribution of residual oil saturation. As expected, the effective permeability of the reservoir exhibits large-scale anisotropy created by the organization of OFC cross-sets within unit bars, and the organization of unit bars within compound- bars. As a result, oil-sweep efficiency critically depends on the direction of the pressure gradient. However, contrary to expectations, the total amount of trapped oil due to the effect of capillary trapping does not depend on the magnitude of the pressure gradient within the examined range. Hence the pressure difference between production and injection wells does not affect sweep efficiency; although the spatial distribution of oil remaining in the reservoir depends on this value. Whether or not clusters of connected OFC span the domain affects only the absolute rate of oil production—not sweep efficiency.« less

  9. What's Missing from No Child Left Behind? A Policy Analysis from a Social Work Perspective

    ERIC Educational Resources Information Center

    Lagana-Riordan, Christine; Aguilar, Jemel P.

    2009-01-01

    The No Child Left Behind Act of 2001 (NCLB) initiated sweeping changes to the U.S. educational system. However, many have argued that NCLB is not accomplishing its stated purposes of improving education for disadvantaged students and closing the achievement gap. This policy analysis sheds light on the social and emotional risk factors that prevent…

  10. Principal Self-Government and Subjectification: The Exercise of Principal Autonomy in the Western Australian Independent Public Schools Programme

    ERIC Educational Resources Information Center

    Gobby, Brad

    2013-01-01

    The launch of the Independent Public Schools (IPS) programme in Western Australia (WA) in 2010 reflects the neoliberal policy discourse of decentralisation and school self-management sweeping across many of the world's education systems. IPS provides WA state school principals with decision-making authority in a range of areas, including the…

  11. From linear mechanics to nonlinear mechanics

    NASA Technical Reports Server (NTRS)

    Loeb, Julian

    1955-01-01

    Consideration is given to the techniques used in telecommunication where a nonlinear system (the modulator) results in a linear transposition of a signal. It is then shown that a similar method permits linearization of electromechanical devices or nonlinear mechanical devices. A sweep function plays the same role as the carrier wave in radio-electricity. The linearizations of certain nonlinear functionals are presented.

  12. Facilities Management Guide for Asbestos and Lead

    DTIC Science & Technology

    2004-11-01

    equipment such as HEPA filtered power tools, portable welding exhaust systems, and paint removal equipment when work disturbs lead. Do not dry sweep ...sampling and analysis of [______] paint bulk and wipe samples by atomic absorption spectrophotometry (AA) or anodic stripping voltametry (ASV...analysis. e. All bulk (destructive) collected for lead shall be analyzed by atomic absorption spectrophotometry (AA) or anodic stripping voltametry

  13. The Politics of Teacher Reform in Florida: Analyzing Causal Narratives Surrounding State Adoption of Performance-Based Evaluations, Performance Pay, and Tenure Elimination

    ERIC Educational Resources Information Center

    Harrison, Christopher; Cohen-Vogel, Lora

    2012-01-01

    Following a multiyear debate, Florida lawmakers passed the "Student Success Act" in March 2011, introducing some of the most sweeping educational reforms in the state's history--the introduction of teacher evaluation systems based on value-added modeling, mandatory "performance pay" for teachers, and the elimination of…

  14. Forward rotor vortex effects on counter rotating propeller noise

    NASA Technical Reports Server (NTRS)

    Laur, Michele; Squires, Becky; Nagel, Robert T.

    1992-01-01

    Three configurations of a model counter rotating propeller manipulate the blade tip flow by: placing the CRP at angle of attack, installing shrouds, and turning the upstream blades to provide forward sweep. Flow visualization and flow measurements with thermal anemometry show no evidence of a tip vortex; however, a leading edge vortex was detected on aft swept blades. The modifications served to alter the strength and/or path of the leading edge vortex. The vortical flow is eliminated by forward sweep on the upstream propeller blades. Far field acoustic data from each test indicate only small influences on the level and directivity of the BPFs. The interaction tone at the sum of the two BPF's was significantly altered in a consistent manner. As the vortex system varied, the interaction tone was affected: far field noise levels in the forward quandrant increased and the characteristic noise minimum near the plane of rotation became less pronounced and in some cases were eliminated. If the forward propeller leading edge vortex system does not impact the rear propeller in the standard manner, a net increase in the primary interaction tone occurs for the model tested. If the leading edge vortex is removed, the interaction tone increases.

  15. Voltage sweep ion mobility spectrometry.

    PubMed

    Davis, Eric J; Williams, Michael D; Siems, William F; Hill, Herbert H

    2011-02-15

    Ion mobility spectrometry (IMS) is a rapid, gas-phase separation technique that exhibits excellent separation of ions as a standalone instrument. However, IMS cannot achieve optimal separation power with both small and large ions simultaneously. Similar to the general elution problem in chromatography, fast ions are well resolved using a low electric field (50-150 V/cm), whereas slow drifting molecules are best separated using a higher electric field (250-500 V/cm). While using a low electric field, IMS systems tend to suffer from low ion transmission and low signal-to-noise ratios. Through the use a novel voltage algorithm, some of these effects can be alleviated. The electric field was swept from low to high while monitoring a specific drift time, and the resulting data were processed to create a 'voltage-sweep' spectrum. If an optimal drift time is calculated for each voltage and scanned simultaneously, a spectrum may be obtained with optimal separation throughout the mobility range. This increased the resolving power up to the theoretical maximum for every peak in the spectrum and extended the peak capacity of the IMS system, while maintaining accurate drift time measurements. These advantages may be extended to any IMS, requiring only a change in software.

  16. New Insight into the Solar System’s Transition Disk Phase Provided by the Metal-rich Carbonaceous Chondrite Isheyevo

    NASA Astrophysics Data System (ADS)

    Morris, Melissa A.; Garvie, Laurence A. J.; Knauth, L. Paul

    2015-03-01

    Many aspects of planet formation are controlled by the amount of gas remaining in the natal protoplanetary disks (PPDs). Infrared observations show that PPDs undergo a transition stage at several megayears, during which gas densities are reduced. Our Solar System would have experienced such a stage. However, there is currently no data that provides insight into this crucial time in our PPD’s evolution. We show that the Isheyevo meteorite contains the first definitive evidence for a transition disk stage in our Solar System. Isheyevo belongs to a class of metal-rich meteorites whose components have been dated at almost 5 Myr after formation of Ca, Al-rich inclusions, and exhibits unique sedimentary layers that imply formation through gentle sedimentation. We show that such layering can occur via the gentle sweep-up of material found in the impact plume resulting from the collision of two planetesimals. Such sweep-up requires gas densities consistent with observed transition disks (10-12-10-11 g cm-3). As such, Isheyevo presents the first evidence of our own transition disk and provides new constraints on the evolution of our solar nebula.

  17. Development of PZT-excited stroboscopic shearography for full-field nondestructive evaluation.

    PubMed

    Asemani, Hamidreza; Park, Jinwoo; Lee, Jung-Ryul; Soltani, Nasser

    2017-05-01

    Nondestructive evaluation using shearography requires a way to stress the inspection target. This technique is able to directly measure the displacement gradient distribution on the object surface. Shearography visualizes the internal structural damages as the anomalous pattern in the shearograpic fringe pattern. A piezoelectric (PZT) excitation system is able to generate loadings in the vibrational, acoustic, and ultrasonic regimes. In this paper, we propose a PZT-excited stroboscopic shearography. The PZT excitation could generate vibrational loading, a stationary wavefield, and a nonstationary propagation wave to fulfill the external loading requirement of shearography. The sweeping of the PZT excitation frequency, the formation of a standing wave, and a small shearing to suppress the incident wave were powerful controllable tools to detect the defects. The sweeping of the PZT excitation frequency enabled us to determine one of the defect-sensitive frequencies almost in real time. In addition, because the defect sensitive frequencies always existed in wide and plural ranges, the risk of the defect being overlooked by the inspector could be alleviated. The results of evaluation using stroboscopic shearography showed that an artificial 20 mm-diameter defect could be visualized at the excitation frequencies of 5-8 kHz range and 12.5-15.5 kHz range. This technique provided full field reliable and repeatable inspection results. Additionally, the proposed method overcame the important drawback of the time-averaged shearography, being required to identify the resonance vibration frequency sensitive to the defect.

  18. How far are rheological parameters from amplitude sweep tests predictable using common physicochemical soil properties?

    NASA Astrophysics Data System (ADS)

    Stoppe, N.; Horn, R.

    2017-01-01

    A basic understanding of soil behavior on the mesoscale resp. macroscale (i.e. soil aggregates resp. bulk soil) requires knowledge of the processes at the microscale (i.e. particle scale), therefore rheological investigations of natural soils receive growing attention. In the present research homogenized and sieved (< 2 mm) samples from Marshland soils of the riparian zone of the River Elbe (North Germany) were analyzed with a modular compact rheometer MCR 300 (Anton Paar, Ostfildern, Germany) with a profiled parallel-plate measuring system. Amplitude sweep tests (AST) with controlled shear deformation were conducted to investigate the viscoelastic properties of the studied soils under oszillatory stress. The gradual depletion of microstructural stiffness during AST cannot only be characterized by the well-known rheological parameters G, G″ and tan δ but also by the dimensionless area parameter integral z, which quantifies the elasticity of microstructure. To discover the physicochemical parameters, which influences the microstructural stiffness, statistical tests were used taking the combined effects of these parameters into account. Although the influence of the individual factors varies depending on soil texture, the physicochemical features significantly affecting soil micro structure were identified. Based on the determined statistical relationships between rheological and physicochemical parameters, pedotransfer functions (PTF) have been developed, which allow a mathematical estimation of the rheological target value integral z. Thus, stabilizing factors are: soil organic matter, concentration of Ca2+, content of CaCO3 and pedogenic iron oxides; whereas the concentration of Na+ and water content represent structurally unfavorable factors.

  19. Techno-economic assessment of polymer membrane systems for postcombustion carbon capture at coal-fired power plants.

    PubMed

    Zhai, Haibo; Rubin, Edward S

    2013-03-19

    This study investigates the feasibility of polymer membrane systems for postcombustion carbon dioxide (CO(2)) capture at coal-fired power plants. Using newly developed performance and cost models, our analysis shows that membrane systems configured with multiple stages or steps are capable of meeting capture targets of 90% CO(2) removal efficiency and 95+% product purity. A combined driving force design using both compressors and vacuum pumps is most effective for reducing the cost of CO(2) avoided. Further reductions in the overall system energy penalty and cost can be obtained by recycling a portion of CO(2) via a two-stage, two-step membrane configuration with air sweep to increase the CO(2) partial pressure of feed flue gas. For a typical plant with carbon capture and storage, this yielded a 15% lower cost per metric ton of CO(2) avoided compared to a plant using a current amine-based capture system. A series of parametric analyses also is undertaken to identify paths for enhancing the viability of membrane-based capture technology.

  20. Characterization of a multi-module tunable EC-QCL system for mid-infrared biofluid spectroscopy for hospital use and personalized diabetes technology

    NASA Astrophysics Data System (ADS)

    Grafen, M.; Nalpantidis, K.; Ostendorf, A.; Ihrig, D.; Heise, H. M.

    2016-03-01

    Blood glucose monitoring systems are important point-of-care devices for the hospital and personalised diabetes technology. FTIR-spectrometers have been successfully employed for the development of continuous bed-side monitoring systems in combination with micro-dialysis. For implementation in miniaturised portable systems, external-cavity quantum cascade lasers (EC-QCL) are suited. An ultra-broadly tunable pulsed EC-QCL system, covering a spectral range from 1920 to 780 cm-1, has been characterised with regard to the spectral emission profiles and wavenumber scale accuracy. The measurement of glucose in aqueous solution is presented and problems with signal linearity using Peltier-cooled MCT-detectors are discussed. The use of larger optical sample pathlengths for attenuating the laser power in transmission measurements has recently been suggested and implemented, but implications for broad mid-infrared measurements have now been investigated. The utilization of discrete wavenumber variables as an alternative for sweep-tune measurements has also been studied and sparse multivariate calibration models intended for clinical chemistry applications are described for glucose and lactate.

Top