Sample records for swimming

  1. Adaptation of the pituitary-adrenal axis to daily repeated forced swim exposure in rats is dependent on the temperature of water.

    PubMed

    Rabasa, Cristina; Delgado-Morales, Raúl; Gómez-Román, Almudena; Nadal, Roser; Armario, Antonio

    2013-11-01

    Comparison of exposure to certain predominantly emotional stressors reveals a qualitatively similar neuroendocrine response profile as well as a reduction of physiological responses after daily repeated exposure (adaptation). However, particular physical components of the stressor may interfere with adaptation. As defective adaptation to stress can enhance the probability to develop pathologies, we studied in adult male rats (n = 10/group) swimming behavior (struggling, immobility and mild swim) and physiological responses (ACTH, corticosterone and rectal temperature) to daily repeated exposure to forced swim (20 min, 13 d) at 25 or 36 °C (swim25 or swim36). Rats were repeatedly blood-sampled by tail-nick and hormones measured by radioimmunoassay. Some differences were observed between the two swim temperature groups after the first exposure to forced swim: (a) active behaviors were greater in swim25 than swim36 groups; (b) swim25 but not swim36 caused hypothermia; and (c) swim36 elicited the same ACTH response as swim25, but plasma corticosterone concentration was lower for swim36 at 30 min post-swim. After daily repeated exposure, adaptation in ACTH secretion was observed with swim36 already on day 4, whereas with swim25 adaptation was not observed until day 13 and was of lower magnitude. Nevertheless, after repeated exposure to swim25 a partial protection from hypothermia was observed and the two swim conditions resulted in progressive reduction of active behaviors. Thus, daily repeated swim at 25 °C impairs adaptation of the hypothalamic-pituitary-adrenal axis as compared to swim at 36 °C, supporting the hypothesis that certain physical components of predominantly emotional stressors can interfere with the process of adaptation.

  2. The Effect of Swimming Experience on Acquisition and Retention of Swimming-Based Taste Aversion Learning in Rats

    ERIC Educational Resources Information Center

    Masaki, Takahisa; Nakajima, Sadahiko

    2010-01-01

    Swimming endows rats with an aversion to a taste solution consumed before swimming. The present study explored whether the experience of swimming before or after the taste-swimming trials interferes with swimming-based taste aversion learning. Experiment 1 demonstrated that a single preexposure to 20 min of swimming was as effective as four or…

  3. Can you really swim? Validation of self and parental reports of swim skill with an inwater swim test among children attending community pools in Washington State.

    PubMed

    Mercado, Melissa C; Quan, Linda; Bennett, Elizabeth; Gilchrist, Julie; Levy, Benjamin A; Robinson, Candice L; Wendorf, Kristen; Gangan Fife, Maria Aurora; Stevens, Mark R; Lee, Robin

    2016-08-01

    Drowning is the second leading cause of unintentional injury death among US children. Multiple studies describe decreased drowning risk among children possessing some swim skills. Current surveillance for this protective factor is self/proxy-reported swim skill rather than observed inwater performance; however, children's self-report or parents' proxy report of swim skill has not been validated. This is the first US study to evaluate whether children or parents can validly report a child's swim skill. It also explores which swim skill survey measure(s) correlate with children's inwater swim performance. For this cross-sectional convenience-based sample, pilot study, child/parent dyads (N=482) were recruited at three outdoor public pools in Washington State. Agreement between measures of self-reports and parental-reports of children's swim skill was assessed via paired analyses, and validated by inwater swim test results. Participants were representative of pool's patrons (ie, non-Hispanic White, highly educated, high income). There was agreement in child/parent dyads' reports of the following child swim skill measures: 'ever taken swim lessons', perceived 'good swim skills' and 'comfort in water over head'. Correlation analyses suggest that reported 'good swim skills' was the best survey measure to assess a child's swim skill-best if the parent was the informant (r=0.25-0.47). History of swim lessons was not significantly correlated with passing the swim test. Reported 'good swim skills' was most correlated with observed swim skill. Reporting 'yes' to 'ever taken swim lessons' did not correlate with swim skill. While non-generalisable, findings can help inform future studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Anisotropic swim stress in active matter with nematic order

    NASA Astrophysics Data System (ADS)

    Yan, Wen; Brady, John F.

    2018-05-01

    Active Brownian particles (ABPs) transmit a swim pressure {{{\\Pi }}}{{swim}}=n\\zeta {D}{{swim}} to the container boundaries, where ζ is the drag coefficient, D swim is the swim diffusivity and n is the uniform bulk number density far from the container walls. In this work we extend the notion of the isotropic swim pressure to the anisotropic tensorial swim stress {{\\boldsymbol{σ }}}{{swim}}=-n\\zeta {{\\boldsymbol{D}}}{{swim}}, which is related to the anisotropic swim diffusivity {{\\boldsymbol{D}}}{{swim}}. We demonstrate this relationship with ABPs that achieve nematic orientational order via a bulk external field. The anisotropic swim stress is obtained analytically for dilute ABPs in both 2D and 3D systems. The anisotropy, defined as the ratio of the maximum to the minimum of the three principal stresses, is shown to grow exponentially with the strength of the external field. We verify that the normal component of the anisotropic swim stress applies a pressure {{{\\Pi }}}{{swim}}=-({{\\boldsymbol{σ }}}{{swim}}\\cdot {\\boldsymbol{n}})\\cdot {\\boldsymbol{n}} on a wall with normal vector {\\boldsymbol{n}}, and, through Brownian dynamics simulations, this pressure is shown to be the force per unit area transmitted by the active particles. Since ABPs have no friction with a wall, the difference between the normal and tangential stress components—the normal stress difference—generates a net flow of ABPs along the wall, which is a generic property of active matter systems.

  5. Cardiorespiratory performance during prolonged swimming tests with salmonids: a perspective on temperature effects and potential analytical pitfalls.

    PubMed

    Farrell, A P

    2007-11-29

    A prolonged swimming trial is the most common approach in studying steady-state changes in oxygen uptake, cardiac output and tissue oxygen extraction as a function of swimming speed in salmonids. The data generated by these sorts of studies are used here to support the idea that a maximum oxygen uptake is reached during a critical swimming speed test. Maximum oxygen uptake has a temperature optimum. Potential explanations are advanced to explain why maximum aerobic performance falls off at high temperature. The valuable information provided by critical swimming tests can be confounded by non-steady-state swimming behaviours, which typically occur with increasing frequency as salmonids approach fatigue. Two major concerns are noted. Foremost, measurements of oxygen uptake during swimming can considerably underestimate the true cost of transport near critical swimming speed, apparently in a temperature-dependent manner. Second, based on a comparison with voluntary swimming ascents in a raceway, forced swimming trials in a swim tunnel respirometer may underestimate critical swimming speed, possibly because fish in a swim tunnel respirometer are unable to sustain a ground speed.

  6. Use of chiral cell shape to ensure highly directional swimming in trypanosomes

    PubMed Central

    2017-01-01

    Swimming cells typically move along a helical path or undergo longitudinal rotation as they swim, arising from chiral asymmetry in hydrodynamic drag or propulsion bending the swimming path into a helix. Helical paths are beneficial for some forms of chemotaxis, but why asymmetric shape is so prevalent when a symmetric shape would also allow highly directional swimming is unclear. Here, I analyse the swimming of the insect life cycle stages of two human parasites; Trypanosoma brucei and Leishmania mexicana. This showed quantitatively how chirality in T. brucei cell shape confers highly directional swimming. High speed videomicrographs showed that T. brucei, L. mexicana and a T. brucei RNAi morphology mutant have a range of shape asymmetries, from wild-type T. brucei (highly chiral) to L. mexicana (near-axial symmetry). The chiral cells underwent longitudinal rotation while swimming, with more rapid longitudinal rotation correlating with swimming path directionality. Simulation indicated hydrodynamic drag on the chiral cell shape caused rotation, and the predicted geometry of the resulting swimming path matched the directionality of the observed swimming paths. This simulation of swimming path geometry showed that highly chiral cell shape is a robust mechanism through which microscale swimmers can achieve highly directional swimming at low Reynolds number. It is insensitive to random variation in shape or propulsion (biological noise). Highly symmetric cell shape can give highly directional swimming but is at risk of giving futile circular swimming paths in the presence of biological noise. This suggests the chiral T. brucei cell shape (associated with the lateral attachment of the flagellum) may be an adaptation associated with the bloodstream-inhabiting lifestyle of this parasite for robust highly directional swimming. It also provides a plausible general explanation for why swimming cells tend to have strong asymmetries in cell shape or propulsion. PMID:28141804

  7. The Physiology and Mechanics of Undulatory Swimming: A Student Laboratory Exercise Using Medicinal Leeches

    ERIC Educational Resources Information Center

    Ellerby, David J.

    2009-01-01

    The medicinal leech is a useful animal model for investigating undulatory swimming in the classroom. Unlike many swimming organisms, its swimming performance can be quantified without specialized equipment. A large blood meal alters swimming behavior in a way that can be used to generate a discussion of the hydrodynamics of swimming, muscle…

  8. Hydrodynamic advantages of swimming by salp chains.

    PubMed

    Sutherland, Kelly R; Weihs, Daniel

    2017-08-01

    Salps are marine invertebrates comprising multiple jet-propelled swimming units during a colonial life-cycle stage. Using theory, we show that asynchronous swimming with multiple pulsed jets yields substantial hydrodynamic benefit due to the production of steady swimming velocities, which limit drag. Laboratory comparisons of swimming kinematics of aggregate salps ( Salpa fusiformis and Weelia cylindrica ) using high-speed video supported that asynchronous swimming by aggregates results in a smoother velocity profile and showed that this smoother velocity profile is the result of uncoordinated, asynchronous swimming by individual zooids. In situ flow visualizations of W. cylindrica swimming wakes revealed that another consequence of asynchronous swimming is that fluid interactions between jet wakes are minimized. Although the advantages of multi-jet propulsion have been mentioned elsewhere, this is the first time that the theory has been quantified and the role of asynchronous swimming verified using experimental data from the laboratory and the field. © 2017 The Author(s).

  9. The evolution of phenotypic plasticity in fish swimming

    PubMed Central

    Oufiero, Christopher E.; Whitlow, Katrina R.

    2016-01-01

    Abstract Fish have a remarkable amount of variation in their swimming performance, from within species differences to diversity among major taxonomic groups. Fish swimming is a complex, integrative phenotype and has the ability to plastically respond to a myriad of environmental changes. The plasticity of fish swimming has been observed on whole-organismal traits such as burst speed or critical swimming speed, as well as underlying phenotypes such as muscle fiber types, kinematics, cardiovascular system, and neuronal processes. Whether the plastic responses of fish swimming are beneficial seems to depend on the environmental variable that is changing. For example, because of the effects of temperature on biochemical processes, alterations of fish swimming in response to temperature do not seem to be beneficial. In contrast, changes in fish swimming in response to variation in flow may benefit the fish to maintain position in the water column. In this paper, we examine how this plasticity in fish swimming might evolve, focusing on environmental variables that have received the most attention: temperature, habitat, dissolved oxygen, and carbon dioxide variation. Using examples from previous research, we highlight many of the ways fish swimming can plastically respond to environmental variation and discuss potential avenues of future research aimed at understanding how plasticity of fish swimming might evolve. We consider the direct and indirect effects of environmental variation on swimming performance, including changes in swimming kinematics and suborganismal traits thought to predict swimming performance. We also discuss the role of the evolution of plasticity in shaping macroevolutionary patterns of diversity in fish swimming. PMID:29491937

  10. Factors affecting swimming performance of fasted rainbow trout with implications of exhaustive exercise on overwinter mortality

    USGS Publications Warehouse

    Simpkins, D.G.; Hubert, W.A.; Del Rio, C.M.; Rule, D.C.

    2004-01-01

    We evaluated the effects of body size, water temperature, and sustained swimming activity on swimming performance and the effects of exhaustive exercise on mortality of fasted juvenile rainbow trout. Fasting caused swimming performance to decline more rapidly for small fish than large fish, and warmer water temperatures and sustained swimming activity further decreased swimming performance. Exhaustive exercise increased mortality among fasted fish. Our observations suggest that juvenile rainbow trout with little or no food intake during winter can swim for long periods of time with little effect on mortality, but swimming to exhaustion can enhance mortality, especially among the smallest juveniles.

  11. Swimming Performance and Metabolism of Golden Shiners

    USDA-ARS?s Scientific Manuscript database

    The swimming ability and metabolism of golden shiners, Notemigonus crysoleucas, was examined using swim tunnel respirometery. The oxygen consumption and tail beat frequencies at various swimming speeds, an estimation of the standard metabolic rate, and the critical swimming speed (Ucrit) was determ...

  12. Sericin and swimming on histomorphometric parameters of denervated plantar muscle in Wistar rats.

    PubMed

    Santana, André Junior; Debastiani, Jean Carlos; Buratti, Pâmela; Peretti, Ana Luiza; Kunz, Regina Inês; Brancalhão, Rose Meire Costa; Ribeiro, Lucinéia de Fátima Chasko; Torrejais, Márcia Miranda; Bertolini, Gladson Ricardo Flor

    2018-01-01

    Objective To analyze the combined effects of the silk protein sericin and swimming exercise on histomorphometry of the plantar muscle in Wistar rats. Methods Forty adult rats were randomly allocated into 5 groups comprising 8 animals each, as follows: Control, Injury, Sericin, Swim, and Swim plus Sericin. Three days after crushing of the sciatic nerve the rats in the Swim and Swim plus Sericin Groups were submitted to swimming exercise for 21 days. Rats were then euthanized and the plantar muscle harvested and processed. Results Cross-sectional area, peripheral nuclei and muscle fiber counts, nucleus/fiber ratio and smallest muscle fiber width did not differ significantly between groups. Morphological analysis revealed hypertrophic fibers in the Swim Group and evident muscle damage in the Swim plus Sericin and Injury Groups. The percentage of intramuscular collagen was apparently maintained in the Swim Group compared to remaining groups. Conclusion Combined treatment with sericin and swimming exercise did not improve muscle properties. However, physical exercise alone was effective in maintaining intramuscular connective tissue and preventing progression of deleterious effects of peripheral nerve injury.

  13. Morning Exercise: Enhancement of Afternoon Sprint-Swimming Performance.

    PubMed

    McGowan, Courtney J; Pyne, David B; Thompson, Kevin G; Raglin, John S; Rattray, Ben

    2017-05-01

    An exercise bout completed several hours prior to an event may improve competitive performance later that same day. To examine the influence of morning exercise on afternoon sprint-swimming performance. Thirteen competitive swimmers (7 male, mean age 19 ± 3 y; 6 female, mean age 17 ± 3 y) completed a morning session of 1200 m of variedintensity swimming (SwimOnly), a combination of varied-intensity swimming and a resistance-exercise routine (SwimDry), or no morning exercise (NoEx). After a 6-h break, swimmers completed a 100-m time trial. Time-trial performance was faster in SwimOnly (1.6% ± 0.6, mean ± 90% confidence limit, P < .01) and SwimDry (1.7% ± 0.7%, P < .01) than in NoEx. Split times for the 25- to 50-m distance were faster in both SwimOnly (1.7% ± 1.2%, P = .02) and SwimDry (1.5% ± 0.8%, P = .01) than in NoEx. The first 50-m stroke rate was higher in SwimOnly (0.70 ± 0.21 Hz, mean ± SD, P = .03) and SwimDry (0.69 ± 0.18 Hz, P = .05) than in NoEx (0.64 ± 0.16 Hz). Before the afternoon session, core (0.2°C ± 0.1°C [mean ± 90% confidence limit], P = .04), body (0.2°C ± 0.1°C, P = .02), and skin temperatures (0.3°C ± 0.3°C, P = .02) were higher in SwimDry than in NoEx. Completion of a morning swimming session alone or together with resistance exercise can substantially enhance sprint-swimming performance completed later the same day.

  14. Benefits and Enjoyment of a Swimming Intervention for Youth With Cerebral Palsy: An RCT Study.

    PubMed

    Declerck, Marlies; Verheul, Martine; Daly, Daniel; Sanders, Ross

    2016-01-01

    To investigate enjoyment and specific benefits of a swimming intervention for youth with cerebral palsy (CP). Fourteen youth with CP (aged 7 to 17 years, Gross Motor Function Classification System levels I to III) were randomly assigned to control and swimming groups. Walking ability, swimming skills, fatigue, and pain were assessed at baseline, after a 10-week swimming intervention (2/week, 40-50 minutes) or control period, after a 5-week follow-up and, for the intervention group, after a 20-week follow-up period. The level of enjoyment of each swim-session was assessed. Levels of enjoyment were high. Walking and swimming skills improved significantly more in the swimming than in the control group (P = .043; P = .002, respectively), whereas fatigue and pain did not increase. After 20 weeks, gains in walking and swimming skills were retained (P = .017; P = .016, respectively). We recommend a swimming program for youth with CP to complement a physical therapy program.

  15. Swimming Performance of Adult Asian Carp: Field Assessment Using a Mobile Swim Tunnel

    DTIC Science & Technology

    2016-08-01

    The effect of temperature on swimming performance and oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon stocks...tunnel to determine the critical swim speed (Ucrit), oxygen consumption (VO2), and endurance at a single velocity. Tunnel Type Tunnel Size (L...specially designed mobile swim tunnel indicated that it might be used effectively with other large, active, free-swimming planktivores, including bigheaded

  16. Swimming Stroke Mechanical Efficiency and Physiological Responses of 100-m Backstroke with and without the use of paddles

    PubMed Central

    Messinis, Spilios; Beidaris, Nikos; Messinis, Spyros; Soultanakis, Helen; Botonis, Petros; Platanou, Theodoros

    2014-01-01

    The use of swimming aids during training contributes to greater swimming efficiency by the improvement of the swimming specific power of the athlete. The purpose of this study was to compare the swimming stroke technical characteristics and the physiological responses of swimming 100-m backstroke, with and without the use of paddles at maximum and sub-maximum intensities at the same swimming speed. Eight swimmers competing at the national level participated in this study. The measurements took place at 4 different sessions. At every session, each participant swam individually one 100-m backstroke swimming trial with or without paddles at the same speed and two levels of intensity (100% and 85% of maximum speed). The results revealed lower stroke length, greater stroke number and gliding length without the use of swimming paddles at both intensities. Blood lactate concentration (10.03±2.96 vs. 5.85±2.23 mmol/l) and Rating of Perceived Exertion (17.43±2.07 vs. 12±2.82) were greater without the use of swimming paddles only at 100% of maximum speed. Thus, swimming backstroke with paddles compared to unaided swimming, at a similar speed, showed a greater efficiency at maximal but not at sub-maximal intensity. PMID:25031685

  17. Swimming Stroke Mechanical Efficiency and Physiological Responses of 100-m Backstroke with and without the use of paddles.

    PubMed

    Messinis, Spilios; Beidaris, Nikos; Messinis, Spyros; Soultanakis, Helen; Botonis, Petros; Platanou, Theodoros

    2014-03-27

    The use of swimming aids during training contributes to greater swimming efficiency by the improvement of the swimming specific power of the athlete. The purpose of this study was to compare the swimming stroke technical characteristics and the physiological responses of swimming 100-m backstroke, with and without the use of paddles at maximum and sub-maximum intensities at the same swimming speed. Eight swimmers competing at the national level participated in this study. The measurements took place at 4 different sessions. At every session, each participant swam individually one 100-m backstroke swimming trial with or without paddles at the same speed and two levels of intensity (100% and 85% of maximum speed). The results revealed lower stroke length, greater stroke number and gliding length without the use of swimming paddles at both intensities. Blood lactate concentration (10.03±2.96 vs. 5.85±2.23 mmol/l) and Rating of Perceived Exertion (17.43±2.07 vs. 12±2.82) were greater without the use of swimming paddles only at 100% of maximum speed. Thus, swimming backstroke with paddles compared to unaided swimming, at a similar speed, showed a greater efficiency at maximal but not at sub-maximal intensity.

  18. Tethered swimming can be used to evaluate force contribution for short-distance swimming performance.

    PubMed

    Morouço, Pedro G; Marinho, Daniel A; Keskinen, Kari L; Badillo, Juan J; Marques, Mário C

    2014-11-01

    The purpose of this study was two-fold: (a) to compare stroke and the physiological responses between maximal tethered and free front crawl swimming and (b) to evaluate the contribution of force exertion for swimming performance over short distances. A total of 34 male swimmers, representing various levels of competitive performance, participated in this study. Each participant was tested in both a 30-second maximal tethered swimming test and a 50-m free swimming test. The tethered force parameters, the swimming speed, stroke (stroke rate [SR]), and the physiological responses (increase in blood lactate concentration [ΔBLa], heart rate, and rate of perceived exertion) were recorded and calculated. The results showed no differences in stroke and the physiological responses between tethered and free swimming, with a high level of agreement for the SR and ΔBLa. A strong correlation was obtained between the maximum impulse of force per stroke and the speed (r = 0.91; p < 0.001). Multiple regression analysis revealed that the maximum impulse and SR in the tethered condition explained 84% of the free swimming performance. The relationship between the swimming speed and maximum force tended to be nonlinear, whereas linear relationships were observed with the maximum impulse. This study demonstrates that tethered swimming does not significantly alter stroke and the physiological responses compared with free swimming, and that the maximum impulse per stroke should be used to evaluate the balance between force and the ability to effectively apply force during sprint swimming. Consequently, coaches can rely on tethered forces to identify strength deficits and improve swimming performance over short distances.

  19. Swimming Pools for Schools.

    ERIC Educational Resources Information Center

    Neilson, Donald W.; Nixon, John E.

    The increasing interest in swimming instruction and recreation for elementary and secondary school children has resulted in the development of this guide for swimming pool use, design, and construction. Introductory material discussed the need for swimming in the educational program and the organization of swimming programs in the school. Design…

  20. 78 FR 35798 - Safety Zones; Swim Around Charleston; Charleston, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ...-AA00 Safety Zones; Swim Around Charleston; Charleston, SC AGENCY: Coast Guard, DHS. ACTION: Notice of... the Swim Around Charleston, a swimming race occurring on the Wando River, the Cooper River, Charleston Harbor, and the Ashley River, in Charleston, South Carolina. The Swim Around Charleston is scheduled on...

  1. The effects of low-speed swimming following exhaustive exercise on metabolic recovery and swimming performance in brook trout (Salvelinus fontinalis).

    PubMed

    Kieffer, James D; Kassie, Roshini S; Taylor, Susan G

    2011-01-01

    Experiments were conducted to determine whether low-speed swimming during recovery from exhaustive exercise improved both metabolic recovery and performance during a swimming challenge. For these experiments, brook trout were allowed to recover from exhaustive exercise for 2 h while swimming at 0, 0.5, 1.0, or 1.5 body length (BL) s(-1) or allowed to recover from exhaustive exercise for 1, 2, or 3 h while swimming at 1.0 BL s(-1). At the appropriate interval, either (i) muscle and blood samples were removed from the fish or (ii) fish were assessed for performance (i.e., fatigue time) during a fixed-interval swimming test. Low-speed swimming during recovery from exhaustive exercise resulted in significantly longer fatigue times compared with fish recovering in still water (i.e., 0 BL s(-1)). However, swimming during recovery did not expedite recovery of muscle lactate or blood variables (e.g., lactate, osmolarity, glucose). These observations suggest that metabolic recovery and subsequent swimming performance may not be directly linked and that other factors play a role in swimming recovery in brook trout.

  2. The effect of substratum type on aspects of swimming performance and behaviour in shortnose sturgeon Acipenser brevirostrum.

    PubMed

    May, L E; Kieffer, J D

    2017-01-01

    The swimming performance and associated swimming behaviour (i.e. substratum-skimming, station-holding and free swimming) were assessed in shortnose sturgeon Acipenser brevirostrum during critical swimming and endurance swimming tests over a rough and a smooth substratum. It was hypothesized that the addition of a rough substratum in the swimming flume may provide a surface for the A. brevirostrum to grip and offer an energetic advantage. Substratum type did not affect the critical swimming performance, but A. brevirostrum consistently performed more bottom behaviours (i.e. substratum-skimming and station-holding) while on a smooth substratum. Acipenser brevirostrum had little contact with the rough substratum until the velocity was >1 body length s -1 . Endurance swimming time was significantly lower for A. brevirostrum over the rough bottom at the highest velocity (30 cm s -1 ) which may be attributed to the observed increase in free swimming and decrease in bottom behaviours. During endurance swimming, the rough substratum was mainly used at intermediate velocities, suggesting that there may be a stability cost associated with being in contact with the rough substratum at certain velocities. © 2016 The Fisheries Society of the British Isles.

  3. Creatine supplementation and swim performance: a brief review.

    PubMed

    Hopwood, Melissa J; Graham, Kenneth; Rooney, Kieron B

    2006-03-01

    Nutritional supplements are popular among athletes participating in a wide variety of sports. Creatine is one of the most commonly used dietary supplements, as it has been shown to be beneficial in improving performance during repeated bouts of high-intensity anaerobic activity. This review examines the specific effects of creatine supplementation on swimming performance, and considers the effects of creatine supplementation on various measures of power development in this population. Research performed on the effect of creatine supplementation on swimming performance indicates that whilst creatine supplementation is ineffective in improving performance during a single sprint swim, dietary creatine supplementation may benefit repeated interval swim set performance. Considering the relationship between sprint swimming performance and measurements of power, the effect of creatine supplementation on power development in swimmers has also been examined. When measured on a swim bench ergometer, power development does show some improvement following a creatine supplementation regime. How this improvement in power output transfers to performance in the pool is uncertain. Although some evidence exists to suggest a gender effect on the performance improvements seen in swimmers following creatine supplementation, the majority of research indicates that male and female swimmers respond equally to supplementation. A major limitation to previous research is the lack of consideration given to the possible stroke dependant effect of creatine supplementation on swimming performance. The majority of the research conducted to date has involved examination of the freestyle swimming stroke only. The potential for performance improvements in the breaststroke and butterfly swimming strokes is discussed, with regards to the biomechanical differences and differences in efficiency between these strokes and freestyle. Key PointsCreatine supplementation does not improve single sprint swimming performance.Creatine supplementation does improve repeated interval swim set performance.Creatine supplementation does improve power development in swimmers when measured on a swim bench ergometer.As a result of the high energy demands of the butterfly and breaststroke competitive swimming styles, potentially, the benefits associated with creatine supplementation and swimming performance could be greater when swimming butterfly or breaststroke, compared to the commonly examined freestyle swimming stroke.

  4. Simulated front crawl swimming performance related to critical speed and critical power.

    PubMed

    Toussaint, H M; Wakayoshi, K; Hollander, A P; Ogita, F

    1998-01-01

    Competitive pool swimming events range in distance from 50 to 1500 m. Given the difference in performance times (+/- 23-1000 s), the contribution of the aerobic and anaerobic energy systems changes considerably with race distance. In training practice the regression line between swimming distance and time (Distance = critical velocity x time + anaerobic swimming capacity) is used to determine the individual capacity of the aerobic and anaerobic metabolic pathways. Although there is confidence that critical velocity and anaerobic swimming capacity are fitness measures that separate aerobic and anaerobic components, a firm theoretical basis for the interpretation of these results does not exist. The purpose of this study was to evaluate the critical power concept and anaerobic swimming capacity as measures of the aerobic and anaerobic capacity using a modeling approach. A systems model was developed that relates the mechanics and energetics involved in front crawl swimming performance. From actual swimming flume measurements, the time dependent aerobic and anaerobic energy release was modeled. Data derived from the literature were used to relate the energy cost of front crawl swimming to swimming velocity. A balance should exist between the energy cost to swim a distance in a certain time and the concomitant aerobic and anaerobic energy release. The ensuing model was used to predict performance times over a range of distances (50-1500 m) and to calculate the regression line between swimming distance and time. Using a sensitivity analysis, it was demonstrated that the critical velocity is indicative for the capacity of the aerobic energy system. Estimates of the anaerobic swimming capacity, however, were influenced by variations in both anaerobic and aerobic energy release. Therefore, it was concluded that the anaerobic swimming capacity does not provide a reliable estimate of the anaerobic capacity.

  5. Biochemical and hematological changes following the 120-km open-water marathon swim.

    PubMed

    Drygas, Wojciech; Rębowska, Ewa; Stępień, Ewa; Golański, Jacek; Kwaśniewska, Magdalena

    2014-09-01

    Data on physiological effects and potential risks of a ultraendurance swimming are scarce. This report presents the unique case of a 61-year old athlete who completed a non-stop open-water 120-km ultramarathon swim on the Warta River, Poland. Pre-swimming examinations revealed favorable conditions (blood pressure, 110/70 mmHg; rest heart rate, 54 beats/minute, ejection fraction, 60%, 20.2 metabolic equivalents in a maximal exercise test). The swimming time and distance covered were 27 h 33 min and 120 km, respectively. Blood samples for hematological and biochemical parameters were collected 30 min, 4 hrs, 10 hrs and 8 days after the swim. The body temperature of the swimmer was 36.7°C before and 35.1°C after the swim. The hematological parameters remained within the reference range in the postexercise period except for leucocytes (17.5 and 10.6 x G/l noted 30 minutes and 4 hours after the swim, respectively). Serum urea, aspartate aminotransferase and C-reactive protein increased above the reference range reaching 11.3 mmol/l, 1054 nmol/l/s and 25.9 mg/l, respectively. Symptomatic hyponatremia was not observed. Although the results demonstrate that an experienced athlete is able to complete an ultra-marathon swim without negative health consequences, further studies addressing the potential risks of marathon swimming are required. Key pointsData on biochemical changes due to long-distance swimming are scarce.This report presents the unique case of a 61-year old athlete who completed a non-stop open-water 120-km ultramarathon swim.An experienced athlete is able to complete an ultra-marathon swim without serious health consequences.Regarding the growing popularity of marathon swimming further studies addressing the potential risks of such exhaustive exercise are required.

  6. Changes in c-Fos Expression in the Forced Swimming Test: Common and Distinct Modulation in Rat Brain by Desipramine and Citalopram

    PubMed Central

    Choi, Sun Hye; Chung, Sung; Cho, Jin Hee; Cho, Yun Ha; Kim, Jin Wook; Kim, Jeong Min; Kim, Hee Jeong; Kim, Hyun Ju

    2013-01-01

    Rodents exposed to a 15-min pretest swim in the forced swimming test (FST) exhibit prolonged immobility in a subsequent 5-min test swim, and antidepressant treatment before the test swim reduces immobility. At present, neuronal circuits recruited by antidepressant before the test swim remain unclear, and also less is known about whether antidepressants with different mechanisms of action could influence neural circuits differentially. To reveal the neural circuits associated with antidepressant effect in the FST, we injected desipramine or citalopram 0.5 h, 19 h, and 23 h after the pretest swim and observed changes in c-Fos expression in rats before the test swim, namely 24 h after the pretest swim. Desipramine treatment alone in the absence of pretest swim was without effect, whereas citalopram treatment alone significantly increased the number of c-Fos-like immunoreactive cells in the central nucleus of the amygdala and bed nucleus of the stria terminalis, where this pattern of increase appears to be maintained after the pretest swim. Both desipramine and citalopram treatment after the pretest swim significantly increased the number of c-Fos-like immunoreactive cells in the ventral lateral septum and ventrolateral periaqueductal gray before the test swim. These results suggest that citalopram may affect c-Fos expression in the central nucleus of the amygdala and bed nucleus of the stria terminalis distinctively and raise the possibility that upregulation of c-Fos in the ventral lateral septum and ventrolateral periaqueductal gray before the test swim may be one of the probable common mechanisms underlying antidepressant effect in the FST. PMID:23946692

  7. 77 FR 14700 - Safety Zones; Swim Around Charleston, Charleston, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... the Swim Around Charleston, a swimming race occurring on the Wando River, the Cooper River, Charleston... 23, 2012, the Swim Around Charleston is scheduled to take place on the Wando River, the Cooper River...-AA00 Safety Zones; Swim Around Charleston, Charleston, SC AGENCY: Coast Guard, DHS. ACTION: Notice of...

  8. 76 FR 38586 - Safety Zone; Swim Around Charleston, Charleston, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... the Swim Around Charleston, a swimming race occurring on waters of the Wando River, the Cooper River... officially associated with the swim on the waters of the Wando River, the Cooper River, Charleston Harbor...-AA00 Safety Zone; Swim Around Charleston, Charleston, SC AGENCY: Coast Guard, DHS. ACTION: Notice of...

  9. 36 CFR 3.17 - What regulations apply to swimming areas and beaches?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... swimming areas and beaches? 3.17 Section 3.17 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR BOATING AND WATER USE ACTIVITIES § 3.17 What regulations apply to swimming areas and beaches? (a) The superintendent may designate areas as swimming areas or swimming beaches in...

  10. Near drowning

    MedlinePlus

    ... drugs while boating or swimming Falling through thin ice Inability to swim or panicking while swimming Swimming ... get into the water or go out onto ice unless you are absolutely sure it is safe. ...

  11. The key kinematic determinants of undulatory underwater swimming at maximal velocity.

    PubMed

    Connaboy, Chris; Naemi, Roozbeh; Brown, Susan; Psycharakis, Stelios; McCabe, Carla; Coleman, Simon; Sanders, Ross

    2016-01-01

    The optimisation of undulatory underwater swimming is highly important in competitive swimming performance. Nineteen kinematic variables were identified from previous research undertaken to assess undulatory underwater swimming performance. The purpose of the present study was to determine which kinematic variables were key to the production of maximal undulatory underwater swimming velocity. Kinematic data at maximal undulatory underwater swimming velocity were collected from 17 skilled swimmers. A series of separate backward-elimination analysis of covariance models was produced with cycle frequency and cycle length as dependent variables (DVs) and participant as a fixed factor, as including cycle frequency and cycle length would explain 100% of the maximal swimming velocity variance. The covariates identified in the cycle-frequency and cycle-length models were used to form the saturated model for maximal swimming velocity. The final parsimonious model identified three covariates (maximal knee joint angular velocity, maximal ankle angular velocity and knee range of movement) as determinants of the variance in maximal swimming velocity (adjusted-r2 = 0.929). However, when participant was removed as a fixed factor there was a large reduction in explained variance (adjusted r2 = 0.397) and only maximal knee joint angular velocity continued to contribute significantly, highlighting its importance to the production of maximal swimming velocity. The reduction in explained variance suggests an emphasis on inter-individual differences in undulatory underwater swimming technique and/or anthropometry. Future research should examine the efficacy of other anthropometric, kinematic and coordination variables to better understand the production of maximal swimming velocity and consider the importance of individual undulatory underwater swimming techniques when interpreting the data.

  12. The Relationship Between Propulsive Force in Tethered Swimming and 200-m Front Crawl Performance.

    PubMed

    Santos, Karini B; Bento, Paulo C B; Pereira, Gleber; Rodacki, André L F

    2016-09-01

    Santos, KB, Bento, PCB, Pereira, G, and Rodacki, ALF. The relationship between propulsive force in tethered swimming and 200-m front crawl performance. J Strength Cond Res 30(9): 2500-2507, 2016-The aims of this study were to determine whether propulsive force (peak force, mean force, impulse, and rate of force development) and stroke rate change during 2 minutes of front crawl tethered swimming and to correlate them with the stroke rate and swimming velocity in 200-m front crawl swimming. Twenty-one swimmers (21.6 ± 4.8 years, 1.78 ± 0.06 m, 71.7 ± 8.1 kg), with 200-m front crawl swimming performance equivalent to 78% of the world record (140.4 ± 10.1 seconds), were assessed during 2 minutes of maximal front crawl tethered swimming (propulsive forces and stroke rate) and 200-m front crawl swimming (stroke rate and clean velocity). Propulsive forces decreased between the beginning and the middle instants (∼20%; p ≤ 0.05) but remained stable between the middle and the end instants (∼6%; p > 0.05). The peak force was positively correlated with the clean velocity in the 200-m front crawl swimming (mean r = 0.61; p < 0.02). The stroke rates of the tethered swimming and 200-m front crawl swimming were positively correlated (r = 45; p≤ 0.01) at the middle instant. Therefore, the propulsive force and stroke rate changed throughout the 2 minutes of tethered swimming, and the peak force is the best propulsive force variable tested that correlated with 200-m front crawl swimming performance.

  13. Swimming for your life: locomotor effort and oxygen consumption during the green turtle (Chelonia mydas) hatchling frenzy.

    PubMed

    Booth, David T

    2009-01-01

    Swimming effort and oxygen consumption of newly emerged green turtle Chelonia mydas hatchlings was measured simultaneously and continuously for the first 18 h of swimming after hatchlings entered the water. Oxygen consumption was tightly correlated to swimming effort during the first 12 h of swimming indicating that swimming is powered predominantly by aerobic metabolism. The patterns of swimming effort and oxygen consumption could be divided into three distinct phases: (1) the rapid fatigue phase from 0 to 2 h when the mean swim thrust decreased from 45 to 30 mN and oxygen consumption decreased from 33 to 18 ml h(-1); (2) the slow fatigue phase from 2 to 12 h when the mean swim thrust decreased from 30 to 22 mN and oxygen consumption decreased from 18 to 10 ml h(-1); and (3) the sustained effort phase from 12 to 18 h when mean swim thrust averaged 22 mN and oxygen consumption averaged 10 ml h(-1). The decrease in mean swim thrust was caused by a combination of a decrease in front flipper stroke rate during a power stroking bout, a decrease in mean maximum thrust during a power stroking bout and a decrease in the proportion of time spent power stroking. Hence hatchlings maximise their swimming thrust as soon as they enter the water, a time when a fast swimming speed will maximise the chance of surviving the gauntlet of predators inhabiting the shallow fringing reef before reaching the relative safety of deeper water.

  14. The physiology and biomechanics of competitive swimming.

    PubMed

    Troup, J P

    1999-04-01

    Fast swimming, either in the pool, in open water swimming, or in water polo and synchronized swimming, requires maximizing the efficiencies with which the human body can move through a liquid medium. A multitude of factors can affect the ability to swim fast as well as the final outcome. Physiology and biomechanics are the present tools used by sports scientists to determine which factors are important to fast swimming and, subsequently, to determine how the swimmer may maximize these factors to improve performance.

  15. Disposable swim diaper retention of Cryptosporidium-sized particles on human subjects in a recreational water setting.

    PubMed

    Amburgey, James E; Anderson, J Brian

    2011-12-01

    Cryptosporidium is a chlorine-resistant protozoan parasite responsible for the majority of waterborne disease outbreaks in recreational water venues in the USA. Swim diapers are commonly used by diaper-aged children participating in aquatic activities. This research was intended to evaluate disposable swim diapers for retaining 5-μm diameter polystyrene microspheres, which were used as non-infectious surrogates for Cryptosporidium oocysts. A hot tub recirculating water without a filter was used for this research. The microsphere concentration in the water was monitored at regular intervals following introduction of microspheres inside of a swim diaper while a human subject undertook normal swim/play activities. Microsphere concentrations in the bulk water showed that the majority (50-97%) of Cryptosporidium-sized particles were released from the swim diaper within 1 to 5 min regardless of the swim diaper type or configuration. After only 10 min of play, 77-100% of the microspheres had been released from all swim diapers tested. This research suggests that the swim diapers commonly used by diaper-aged children in swimming pools and other aquatic activities are of limited value in retaining Cryptosporidium-sized particles. Improved swim diaper solutions are necessary to efficiently retain pathogens and effectively safeguard public health in recreational water venues.

  16. Comparative jet wake structure and swimming performance of salps.

    PubMed

    Sutherland, Kelly R; Madin, Laurence P

    2010-09-01

    Salps are barrel-shaped marine invertebrates that swim by jet propulsion. Morphological variations among species and life-cycle stages are accompanied by differences in swimming mode. The goal of this investigation was to compare propulsive jet wakes and swimming performance variables among morphologically distinct salp species (Pegea confoederata, Weelia (Salpa) cylindrica, Cyclosalpa sp.) and relate swimming patterns to ecological function. Using a combination of in situ dye visualization and particle image velocimetry (PIV) measurements, we describe properties of the jet wake and swimming performance variables including thrust, drag and propulsive efficiency. Locomotion by all species investigated was achieved via vortex ring propulsion. The slow-swimming P. confoederata produced the highest weight-specific thrust (T=53 N kg(-1)) and swam with the highest whole-cycle propulsive efficiency (eta(wc)=55%). The fast-swimming W. cylindrica had the most streamlined body shape but produced an intermediate weight-specific thrust (T=30 N kg(-1)) and swam with an intermediate whole-cycle propulsive efficiency (eta(wc)=52%). Weak swimming performance variables in the slow-swimming C. affinis, including the lowest weight-specific thrust (T=25 N kg(-1)) and lowest whole-cycle propulsive efficiency (eta(wc)=47%), may be compensated by low energetic requirements. Swimming performance variables are considered in the context of ecological roles and evolutionary relationships.

  17. Computational analysis of amoeboid swimming at low Reynolds number.

    PubMed

    Wang, Qixuan; Othmer, Hans G

    2016-06-01

    Recent experimental work has shown that eukaryotic cells can swim in a fluid as well as crawl on a substrate. We investigate the swimming behavior of Dictyostelium discoideum  amoebae who swim by initiating traveling protrusions at the front that propagate rearward. In our model we prescribe the velocity at the surface of the swimming cell, and use techniques of complex analysis to develop 2D models that enable us to study the fluid-cell interaction. Shapes that approximate the protrusions used by Dictyostelium discoideum  can be generated via the Schwarz-Christoffel transformation, and the boundary-value problem that results for swimmers in the Stokes flow regime is then reduced to an integral equation on the boundary of the unit disk. We analyze the swimming characteristics of several varieties of swimming Dictyostelium discoideum  amoebae, and discuss how the slenderness of the cell body and the shapes of the protrusion effect the swimming of these cells. The results may provide guidance in designing low Reynolds number swimming models.

  18. Swimming performance of a biomimetic compliant fish-like robot

    NASA Astrophysics Data System (ADS)

    Epps, Brenden P.; Valdivia Y Alvarado, Pablo; Youcef-Toumi, Kamal; Techet, Alexandra H.

    2009-12-01

    Digital particle image velocimetry and fluorescent dye visualization are used to characterize the performance of fish-like swimming robots. During nominal swimming, these robots produce a ‘V’-shaped double wake, with two reverse-Kármán streets in the far wake. The Reynolds number based on swimming speed and body length is approximately 7500, and the Strouhal number based on flapping frequency, flapping amplitude, and swimming speed is 0.86. It is found that swimming speed scales with the strength and geometry of a composite wake, which is constructed by freezing each vortex at the location of its centroid at the time of shedding. Specifically, we find that swimming speed scales linearly with vortex circulation. Also, swimming speed scales linearly with flapping frequency and the width of the composite wake. The thrust produced by the swimming robot is estimated using a simple vortex dynamics model, and we find satisfactory agreement between this estimate and measurements made during static load tests.

  19. Pre-task music improves swimming performance.

    PubMed

    Smirmaul, B P; Dos Santos, R V; Da Silva Neto, L V

    2015-12-01

    The purpose of this study was to investigate the effects of pre-task music on swimming performance and other psychological variables. A randomized counterbalanced within-subjects (experimental and control condition) design was employed. Eighteen regional level male swimmers performed two 200-m freestyle swimming time trials. Participants were exposed to either 5 minutes of self-selected music (pre-task music condition) or 5 minutes of silence (control condition) and, after 1 minute, performed the swimming task. Swimming time was significantly shorter (-1.44%) in the pre-task music condition. Listening to pre-task music increased motivation to perform the swimming task, while arousal remained unchanged. While fatigue increased after the swimming task in both conditions, vigor, ratings of perceived exertion and affective valence were unaltered. It is concluded, for the first time, that pre-task music improves swimming performance.

  20. Tethered Swimming for the Evaluation and Prescription of Resistance Training in Young Swimmers.

    PubMed

    Papoti, Marcelo; da Silva, Adelino S R; Kalva-Filho, Carlos Augusto; Araujo, Gustavo Gomes; Santiago, Vanessa; Martins, LuizEduardo Barreto; Cunha, Sérgio Augusto; Gobatto, Claudio Alexandre

    2017-02-01

    The aims of the present study were 1) to evaluate the effects of 11 weeks of a typical free-swimming training program on aerobic and stroke parameters determined in tethered swimming (Study 1; n=13) and 2) to investigate the responses of tethered swimming efforts, in addition to free-swimming sessions, through 7 weeks of training (Study 2; n=21). In both studies, subjects performed a graded exercise test in tethered swimming (GET) to determine anaerobic threshold (AnT), stroke rate at AnT (SR AnT ), peak force at GET (PF GET ) and peak blood lactate ([La-] GET ). Participants also swam 100-, 200- and 400-m lengths to evaluate performance. In Study 2, swimmers were divided into control (i. e., only free-swimming; GC [n=11]) and tethered swimming group (i. e., 50% of the main session; G TS [n=10]). The results of Study 1 demonstrate that AnT, PF GET , [La - ] GET and 200-m performance were improved with free-swimming training. The SR AnT decreased with training. In Study 2, free-swimming performance and most of the graded exercise test parameters were not altered in either group. However, [La-] GET improved only for G TS . These results demonstrate that aerobic parameters obtained in tethered swimming can be used to evaluate free-swimming training responses, and the addition of tethered efforts during training routine improves the lactate production capacity of swimmers. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Swimming-Induced Taste Aversion and Its Prevention by a Prior History of Swimming

    ERIC Educational Resources Information Center

    Masaki, Takahisa; Nakajima, Sadahiko

    2004-01-01

    In two experiments, the evidence showed that 20 min of forced swimming by rats caused aversion to a taste solution consumed before swimming. When one of two taste solutions (sodium saccharin or sodium chloride, counterbalanced across rats) was paired with swimming and the other was not, the rats' intakes of these two solutions showed less…

  2. Content Validity and Inter-Rater Reliability of the Halliwick-Concept-Based Instrument "Swimming with Independent Measure"

    ERIC Educational Resources Information Center

    Srsen, Katja Groleger; Vidmar, Gaj; Pikl, Masa; Vrecar, Irena; Burja, Cirila; Krusec, Klavdija

    2012-01-01

    The Halliwick concept is widely used in different settings to promote joyful movement in water and swimming. To assess the swimming skills and progression of an individual swimmer, a valid and reliable measure should be used. The Halliwick-concept-based Swimming with Independent Measure (SWIM) was introduced for this purpose. We aimed to determine…

  3. A Review of Swimming Cues and Tips for Physical Education

    ERIC Educational Resources Information Center

    Higginson, Kelsey; Barney, David

    2016-01-01

    Swimming is a low-impact activity that causes little stress on joints so it can be done for a lifetime. Many teachers may wish to teach swimming but do not have cues or ideas for doing so. This article reviews swimming cues, relays and equipment that can help a physical education teacher include a swimming unit in their curriculum. Certification…

  4. Kinematics and Hydrodynamics of Burst-and-Coast Strategy in Carangiform Swimming

    NASA Astrophysics Data System (ADS)

    Han, Pan; Dong, Haibo; di Santo, Valentina; Lauder, George

    2017-11-01

    In this work, burst-and-coast swimming hydrodynamics of a trout is studied using a combined experimental and computational approach. The associated kinematics is reconstructed from the output of a high-speed photogrammetry system. The hydrodynamic performance and wake structures are then investigated using an in-house immersed-boundary-method based flow solver and compared with those found in steady undulatory swimming. Results have shown that the carangiform swimmer uses a completely different trust producing strategy when conducts burst-and-coast swimming. Comparing to steady swimming, the trunk curvature of the fish has increased twofold during the burst phase. As a result, it contributes about 15% of total trust during the swimming. Results have also shown that the thrust produced by the caudal fin has increased by tenfold during burst swimming due to larger flapping amplitude and pitching angle. Vortex dynamics analysis has shown that unlike the steady swimming, vortex rings formed during burst swimming result in a stronger downstream jet, which suggests a new thrust enhancement mechanism in carangiform swimming. This work was funded by the Office of Naval Research under Program Director Dr B. Brizzolara, MURI Grant Number N00014-14-1-0533.

  5. Modeling hydrodynamic self-propulsion with Stokesian Dynamics. Or teaching Stokesian Dynamics to swim

    NASA Astrophysics Data System (ADS)

    Swan, James W.; Brady, John F.; Moore, Rachel S.; ChE 174

    2011-07-01

    We develop a general framework for modeling the hydrodynamic self-propulsion (i.e., swimming) of bodies (e.g., microorganisms) at low Reynolds number via Stokesian Dynamics simulations. The swimming body is composed of many spherical particles constrained to form an assembly that deforms via relative motion of its constituent particles. The resistance tensor describing the hydrodynamic interactions among the individual particles maps directly onto that for the assembly. Specifying a particular swimming gait and imposing the condition that the swimming body is force- and torque-free determine the propulsive speed. The body's translational and rotational velocities computed via this methodology are identical in form to that from the classical theory for the swimming of arbitrary bodies at low Reynolds number. We illustrate the generality of the method through simulations of a wide array of swimming bodies: pushers and pullers, spinners, the Taylor/Purcell swimming toroid, Taylor's helical swimmer, Purcell's three-link swimmer, and an amoeba-like body undergoing large-scale deformation. An open source code is a part of the supplementary material and can be used to simulate the swimming of a body with arbitrary geometry and swimming gait.

  6. Floppy swimming: Viscous locomotion of actuated elastica

    NASA Astrophysics Data System (ADS)

    Lauga, Eric

    2007-04-01

    Actuating periodically an elastic filament in a viscous liquid generally breaks the constraints of Purcell’s scallop theorem, resulting in the generation of a net propulsive force. This observation suggests a method to design simple swimming devices—which we call “elastic swimmers”—where the actuation mechanism is embedded in a solid body and the resulting swimmer is free to move. In this paper, we study theoretically the kinematics of elastic swimming. After discussing the basic physical picture of the phenomenon and the expected scaling relationships, we derive analytically the elastic swimming velocities in the limit of small actuation amplitude. The emphasis is on the coupling between the two unknowns of the problems—namely the shape of the elastic filament and the swimming kinematics—which have to be solved simultaneously. We then compute the performance of the resulting swimming device and its dependence on geometry. The optimal actuation frequency and body shapes are derived and a discussion of filament shapes and internal torques is presented. Swimming using multiple elastic filaments is discussed, and simple strategies are presented which result in straight swimming trajectories. Finally, we compare the performance of elastic swimming with that of swimming micro-organisms.

  7. The "Ice-Mile": Case Study of 2 Swimmers' Selected Physiological Responses and Performance.

    PubMed

    Kenny, John; Cullen, SarahJane; Warrington, Giles D

    2017-05-01

    "Ice-mile" swimming presents significant physiological challenges and potential safety issues, but few data are available. This study examined deep body temperature (BT), respiratory rate (RR), and swim performance in 2 swimmers completing an ice-mile swim of 1 mile (1600 m) in water less than 5°C. Two male cold-water-habituated swimmers completed a 1-mile lake swim in 3.9°C water. For comparative purposes, they completed an indoor 1-mile swim in 28.1°C water. The Equivital physiological monitoring system was used to record BT and RR before, during, and after each swim. Total time to complete the swims and 400-m splits were recorded. One swimmer became hypothermic after 27 min while swimming, reaching BT of 33.7°C at swim's end. On exiting the water the swimmers experienced large BT after-drops of -3.6°C and -2.4°C, reaching low points of 33.2°C and 31.3°C 38 and 23 min postswim, respectively. Respiratory rate and swim pace decreased over the course of the ice-mile swim for both swimmers. Swim pace for 1 swimmer declined sharply in the final 400-m lap of the ice mile when he was hypothermic. Both swimmers remained hypothermic 60 min postswim (34.2°C and 33.4°C). Ice-mile swimmers may become hypothermic while swimming, and the postswim BT after drop may expose them to dangerous levels of hypothermia. Pace and RR should be monitored as proxies for a swimmer's physiological state. Postswim recovery should also be monitored for hypothermia for at least 1 h.

  8. Impact of water temperature and stressor controllability on swim stress-induced changes in body temperature, serum corticosterone, and immobility in rats.

    PubMed

    Drugan, Robert C; Eren, Senem; Hazi, Agnes; Silva, Jennifer; Christianson, John P; Kent, Stephen

    2005-10-01

    The present study compared the effects of three different water temperatures (20, 25, and 30 degrees C) and stressor controllability on several physiological and behavioral endpoints in an intermittent swim stress paradigm. The escape latency of rats in the 20 and 25 degrees C water was less than that observed for the 30 degrees C group. Both escape and yoked groups at 20 and 25 degrees C exhibited moderate to severe hypothermia following the swim stress session that returned to prestress levels 30-40 min post-stress. At 30 degrees C core body temperature (Tb) only decreased by 1 degree C for either swim group. Following swim, serum corticosterone (CORT) levels were significantly elevated in both escape and yoked groups in comparison to confined and home cage controls. The confined control group showed a significant elevation that was approximately halfway between the home cage control and the swim stress groups. At 30 degrees C, there was still a significant elevation of serum CORT in both swim groups in comparison to confined and home cage controls. Therefore, 30 degrees C appears to be the optimal water temperature to evaluate stress controllability effects in the current paradigm. In a final experiment, swim stressor controllability effects were examined in a 5 min forced swim test (FST) 24 h following the initial stress exposure. Rats exposed to yoked-inescapable swim stress at 30 degrees C exhibited more immobility than their escapable swim stress and confined counterparts, while the escape and confined controls did not differ. These results demonstrate that the behavioral deficits observed in the FST are attributable to the stress of inescapable swim and not swim stress per se.

  9. Swimming performance in juvenile shortnose sturgeon (Acipenser brevirostrum): the influence of time interval and velocity increments on critical swimming tests

    PubMed Central

    Kieffer, James D.

    2017-01-01

    Abstract The most utilized method to measure swimming performance of fishes has been the critical swimming speed (UCrit) test. In this test, the fish is forced to swim against an incrementally increasing flow of water until fatigue. Before the water velocity is increased, the fish swims at the water velocity for a specific, pre-arranged time interval. The magnitude of the velocity increments and the time interval for each swimming period can vary across studies making the comparison between and within species difficult. This issue has been acknowledged in the literature, however, little empirical evidence exists that tests the importance of velocity and time increments on swimming performance in fish. A practical application for fish performance is through the design of fishways that enable fish to bypass anthropogenic structures (e.g. dams) that block migration routes, which is one of the causes of world-wide decline in sturgeon populations. While fishways will improve sturgeon conservation, they need to be specifically designed to accommodate the swimming capabilities specific for sturgeons, and it is possible that current swimming methodologies have under-estimated the swimming performance of sturgeons. The present study assessed the UCrit of shortnose sturgeon using modified UCrit to determine the importance of velocity increment (5 and 10 cm s−1) and time (5, 15 and 30 min) intervals on swimming performance. UCrit was found to be influenced by both time interval and water velocity. UCrit was generally lower in sturgeon when they were swum using 5cm s−1 compared with 10 cm s−1 increments. Velocity increment influences the UCrit more than time interval. Overall, researchers must consider the impacts of using particular swimming criteria when designing their experiments. PMID:28835841

  10. Sex-related differences and age of peak performance in breaststroke versus freestyle swimming

    PubMed Central

    2013-01-01

    Background Sex-related differences in performance and in age of peak performance have been reported for freestyle swimming. However, little is known about the sex-related differences in other swimming styles. The aim of the present study was to compare performance and age of peak performance for elite men and women swimmers in breaststroke versus freestyle. Methods Race results were analyzed for swimmers at national ranked in the Swiss high score list (during 2006 through 2010) and for international swimmers who qualified for the finals of the FINA World Swimming Championships (during 2003 through 2011). Results The sex-related difference in swimming speed was significantly greater for freestyle than for breaststroke over 50 m, 100 m, and 200 m race distances for Swiss swimmers, but not for FINA finalists. The sex-related difference for both freestyle and breaststroke swimming speeds decreased significantly with increasing swimming distance for both groups. Race distance did not affect the age of peak performance by women in breaststroke, but age of peak performance was four years older for FINA women than for Swiss women. Men achieved peak swimming performance in breaststroke at younger ages for longer race distances, and the age of peak swimming performance was six years older for FINA men than for Swiss men. In freestyle swimming, race distance did not affect the age of peak swimming performance for Swiss women, but the age of peak swimming performance decreased with increasing race distance for Swiss men and for both sexes at the FINA World Championships. Conclusions Results of the present study indicate that (i) sex-related differences in swimming speed were greater for freestyle than for breaststroke for swimmers at national level, but not for swimmers at international level, and (ii) both female and male swimmers achieved peak swimming speeds at younger ages in breaststroke than in freestyle. Further studies are required to better understand differences between trends at national and international levels. PMID:24351335

  11. Water safety training as a potential means of reducing risk of young children's drowning.

    PubMed Central

    Asher, K. N.; Rivara, F. P.; Felix, D.; Vance, L.; Dunne, R.

    1995-01-01

    OBJECTIVES: To determine the effects of training in swimming and water safety on young preschool-children's ability to recover safely from a simulated episode of falling into a swimming pool. DESIGN: Randomized trial of 12 or eight weeks' duration water safety and swimming lessons for children 24 to 42 months old. OUTCOME MEASURES: Swimming ability, deck behavior, water recovery, and swimming to side after jumping into pool were measured before, during, and after the training program. RESULTS: 109 children completed the study (61 in the 12 week group, 48 in the eight week group). The average age was 34.2 months, 54% were male. Swimming ability, deck behavior, water recovery, and jump and swim skills improved over baseline levels in both groups. By the end of training, the 12 week group improved more than the eight week group only in swimming ability. Improvements in water recovery and jump and swim skills were associated positively with changes in swimming ability. CONCLUSIONS: Swimming ability and safety skills of young preschool children can be improved through training. Such programs may offer some protection for children at risk of drowning and there was no indication that this program increased the risk of drowning. However, pool fencing, other barriers around water, and parental supervision still remain the most important prevention strategies to reduce drowning in young children. PMID:9346036

  12. Swimming

    MedlinePlus

    ... or eat while you swim — you could choke. Lakes and Ponds Lots of kids swim in streams, lakes, or ponds. Take extra care when swimming in ... can't always see the bottom of the lake or pond, so you don't always know ...

  13. Swimming invariant manifolds and the motion of bacteria in a fluid flow

    NASA Astrophysics Data System (ADS)

    Yoest, Helena; Mitchell, Kevin; Solomon, Tom

    2017-11-01

    We present experiments on the motion of both wild-type and smooth-swimming bacillus subtilis in a hyperbolic, microfluidic fluid flow. Passive invariant manifolds crossing the fixed point in the flow act as barriers that block inert tracers in the flow. Self-propelled tracers can cross these passive manifolds, but are blocked by and attracted to swimming invariant manifolds (SWIMs) that split from the passive manifolds with larger and larger non-dimensional swimming speed v0 ≡V0 / U , where V0 is the swimming speed in the absence of a flow and U is a characteristic flos speed. We present the theory that predicts these SWIMs for smooth-swimming tracers, along with experiments that we are conducting to test these theories. We also discuss potential effects of rheotaxis and chemotaxis on the phenomena. Supported by NSF Grant DMR-1361881.

  14. Swimming performance of young lake trout after chronic exposure to PCBs and DDE

    USGS Publications Warehouse

    Rottiers, Donald V.; Bergstedt, Roger A.

    1981-01-01

    Swimming performance was measured in fry of lake trout (Salvelinus namaycush) exposed to PCB's, DDE, and a combination of these two contaminants in both food and water at concentrations equal to, and 5 and 25 times higher than, levels found in Lake Michigan water and plankton. Fry were tested after about 50, 110, and 165 days of exposure. We measured swimming performance by forcing the fry to swim through a continuous series of incrementally increased velocities until the fish were exhausted. Although we observed significant differences in swimming performance between a few test groups, we detected no relation between swimming performance of the fry and exposure to PCB's or DDE, or both, at the concentrations tested. Inasmuch as swimming performance apparently was not affected by the levels of contamination by PCB's and DDE in Lake Michigan, impairment of swimming by these contaminants cannot account for the failure of lake trout reproduction in Lake Michigan.

  15. Kick, Stroke and Swim: Complement Your Swimming Program by Engaging the Whole Body on Dry Land and in the Pool

    ERIC Educational Resources Information Center

    Flynn, Susan; Duell, Kelly; Dehaven, Carole; Heidorn, Brent

    2017-01-01

    The Kick, Stroke and Swim (KSS) program can be used to engage students in swimming-skill acquisition and fitness training using a variety of modalities, strategies and techniques on dry land. Practicing swim strokes and techniques on land gives all levels of swimmers--from beginner to competitive--a kinesthetic awareness of the individual…

  16. The effects of chronic cadmium exposure on repeat swimming performance and anaerobic metabolism in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis).

    PubMed

    Cunningham, Jessie L; McGeer, James C

    2016-04-01

    This study investigates the effect of chronic Cd exposure on the ability to perform repeat swim challenges in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis). Fish were exposed to waterborne Cd (18nM) in moderately hard water (120mgL(-1) CaCO3) for 30 days. This level of exposure has been shown to cause sublethal physiological disruption and acclimation responses but no impairment of sustained swimming capacity (Ucrit) in single swim challenges. Swim trials were done over the course of the exposure and each one consisted of an initial swim to 85% of the Ucrit of control fish, a 30min recovery period and finally a second swim challenge to determine Ucrit. Plasma and tissue samples were collected before and after each of the swim periods. As expected from previous studies, Cd exposure resulted in significant accumulation of Cd in gills, liver and kidney but not in white muscle. Exposure also induced a loss of plasma Ca followed by subsequent recovery (in lake whitefish but not brown trout) with few mortalities (100% survival for lake whitefish and 93% for brown trout). Both control and exposed fish swam to 85% of the single swim Ucrit and no differences in performance were seen. The Ucrit of unexposed controls in the second swim challenges were not different from the single swim Ucrit. However, second swim performance was significantly reduced in Cd exposed fish, particularly after a week of exposure where 31% and 38% reductions were observed for brown trout and lake whitefish respectively. Swimming to 85% Ucrit resulted in metabolic expenditure with little recovery after 30min. Few differences were observed between control and Cd exposed fish with the exception of a reduction in resting white muscle ATP stores of Cd exposed fish after 1 week of exposure. The results show that chronic sublethal Cd exposure results in an impairment of swimming ability in repeat swim challenges but this impairment is generally not related to metabolic processes in white muscle. Copyright © 2016. Published by Elsevier B.V.

  17. The use of computed tomography for assessment of the swim bladder in koi carp (Cyprinus carpio).

    PubMed

    Pees, Michael; Pees, Kathrin; Kiefer, Ingmar

    2010-01-01

    Seven normal koi (Cyprinus carpio) and seven koi with negative buoyancy were examined using computed tomography (CT) to assess the swim bladder. The volume of the swim bladder was calculated in all animals. In the healthy koi there was a statistical correlation (r = 0.996) between body mass and swim bladder volume with volume (ml) being related to body mass according to the formula 4.9 +/- 0.054 x BM (g). In all koi with buoyancy problems, the gas volume of the swim bladder was reduced. Additionally, fluid was found within the swim bladder in three of the abnormal koi. CT proved to be a quick noninvasive technique for the examination of the swim bladder in koi.

  18. Simultaneous measurement of bacterial flagellar rotation rate and swimming speed.

    PubMed Central

    Magariyama, Y; Sugiyama, S; Muramoto, K; Kawagishi, I; Imae, Y; Kudo, S

    1995-01-01

    Swimming speeds and flagellar rotation rates of individual free-swimming Vibrio alginolyticus cells were measured simultaneously by laser dark-field microscopy at 25, 30, and 35 degrees C. A roughly linear relation between swimming speed and flagellar rotation rate was observed. The ratio of swimming speed to flagellar rotation rate was 0.113 microns, which indicated that a cell progressed by 7% of pitch of flagellar helix during one flagellar rotation. At each temperature, however, swimming speed had a tendency to saturate at high flagellar rotation rate. That is, the cell with a faster-rotating flagellum did not always swim faster. To analyze the bacterial motion, we proposed a model in which the torque characteristics of the flagellar motor were considered. The model could be analytically solved, and it qualitatively explained the experimental results. The discrepancy between the experimental and the calculated ratios of swimming speed to flagellar rotation rate was about 20%. The apparent saturation in swimming speed was considered to be caused by shorter flagella that rotated faster but produced less propelling force. Images FIGURE 1 FIGURE 4 PMID:8580359

  19. Propulsive efficiency of frog swimming with different feet and swimming patterns

    PubMed Central

    Jizhuang, Fan; Wei, Zhang; Bowen, Yuan; Gangfeng, Liu

    2017-01-01

    ABSTRACT Aquatic and terrestrial animals have different swimming performances and mechanical efficiencies based on their different swimming methods. To explore propulsion in swimming frogs, this study calculated mechanical efficiencies based on data describing aquatic and terrestrial webbed-foot shapes and swimming patterns. First, a simplified frog model and dynamic equation were established, and hydrodynamic forces on the foot were computed according to computational fluid dynamic calculations. Then, a two-link mechanism was used to stand in for the diverse and complicated hind legs found in different frog species, in order to simplify the input work calculation. Joint torques were derived based on the virtual work principle to compute the efficiency of foot propulsion. Finally, two feet and swimming patterns were combined to compute propulsive efficiency. The aquatic frog demonstrated a propulsive efficiency (43.11%) between those of drag-based and lift-based propulsions, while the terrestrial frog efficiency (29.58%) fell within the range of drag-based propulsion. The results illustrate the main factor of swimming patterns for swimming performance and efficiency. PMID:28302669

  20. The Complex Hydrodynamics of Swimming in the Spanish Dancer

    NASA Astrophysics Data System (ADS)

    Zhou, Zhuoyu; Mittal, Rajat

    2016-11-01

    The lack of a vertebra seems to have freed marine gastropods to explore and exploit a stupendous variety of swimming kinematics. In fact, examination of just a few animals in this group reveal locomotory modes ranging from insect-like flapping, to fish-like undulatory swimming, jet propulsion, and rajiform (manta-like) swimming. There are also a number of marine gastropods that have bizarre swimming gaits with no equivalent among fish or marine mammals. In this latter category is the Spanish Dancer (Hexabranchus sanguineus) a sea slug that swims with a complex combination of body undulations and flapping parapodia. While the neurobiology of these animals has been relatively well-studied, less is known about their propulsive mechanism and swimming energetics. In this study, we focus on the hydrodynamics of two distinct swimmers: the Spanish Dancer, and the sea hare Aplysia; the latter adopts a rajiform-like mode of swimming by passing travelling waves along its parapodia. In the present study an immersed boundary method is employed to examine the vortex structures, hydrodynamic forces and energy costs of the swimming in these animals. NSF Grant No. 1246317.

  1. Swimming of an assembly of rigid spheres at low Reynolds number.

    PubMed

    Felderhof, B U

    2014-11-01

    A matrix formulation is derived for the calculation of the swimming speed and the power required for swimming of an assembly of rigid spheres immersed in a viscous fluid of infinite extent. The spheres may have arbitrary radii and may interact with elastic forces. The analysis is based on the Stokes mobility matrix of the set of spheres, defined in low Reynolds number hydrodynamics. For small amplitude, swimming optimization of the swimming speed at given power leads to an eigenvalue problem. The method allows straightforward calculation of the swimming performance of structures modeled as assemblies of interacting rigid spheres.

  2. Effect of the starting and turning performances on the subsequent swimming parameters of elite swimmers.

    PubMed

    Veiga, Santiago; Roig, Andreu

    2017-03-01

    In the present research, we examined the effect of the starting and turning performances on the subsequent swimming parameters by (1) comparing the starting and turning velocities with the swimming parameters on the emersion and mid-pool segments and (2) by relating the individual behaviour of swimmers during the start and turns with subsequent behaviour on each swimming lap. One hundred and twelve 100 m performances on the FINA 2013 World Swimming Championships were analysed by an image-processing system (InThePool 2.0®). At the point of the start emersion, the swimming parameters of the 100-m elite swimmers were substantially greater than the mid-pool parameters, except on the breaststroke races. On the other hand, no diminution in the swimming parameters was observed between the turn emersion and the mid-pool swimming, except on the butterfly and backstroke male races. Changes on the surface swimming kinematics were not generally related to the starting or turning parameters, although male swimmers who develop faster starts seem to achieve faster velocities at emersion. Race analysts should be aware of a transfer of momentum when swimmers emerge from underwater with implications on the subsequent swimming kinematics, especially for male swimmers who employ underwater undulatory techniques.

  3. Estimating fish swimming metrics and metabolic rates with accelerometers: the influence of sampling frequency.

    PubMed

    Brownscombe, J W; Lennox, R J; Danylchuk, A J; Cooke, S J

    2018-06-21

    Accelerometry is growing in popularity for remotely measuring fish swimming metrics, but appropriate sampling frequencies for accurately measuring these metrics are not well studied. This research examined the influence of sampling frequency (1-25 Hz) with tri-axial accelerometer biologgers on estimates of overall dynamic body acceleration (ODBA), tail-beat frequency, swimming speed and metabolic rate of bonefish Albula vulpes in a swim-tunnel respirometer and free-swimming in a wetland mesocosm. In the swim tunnel, sampling frequencies of ≥ 5 Hz were sufficient to establish strong relationships between ODBA, swimming speed and metabolic rate. However, in free-swimming bonefish, estimates of metabolic rate were more variable below 10 Hz. Sampling frequencies should be at least twice the maximum tail-beat frequency to estimate this metric effectively, which is generally higher than those required to estimate ODBA, swimming speed and metabolic rate. While optimal sampling frequency probably varies among species due to tail-beat frequency and swimming style, this study provides a reference point with a medium body-sized sub-carangiform teleost fish, enabling researchers to measure these metrics effectively and maximize study duration. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Scaling the Thrust Production and Energetics of Inviscid Intermittent Swimming

    NASA Astrophysics Data System (ADS)

    Akoz, Emre; Moored, Keith

    2015-11-01

    Many fish have adopted an intermittent swimming gait sometimes referred as a burst-and-coast behavior. By using this gait, fish have been estimated at reducing their energetic cost of swimming by about 50%. Lighthill proposed that the skin friction drag of an undulating body can be around 400% greater than a rigidly-held coasting body, which may explain the energetic savings of intermittent swimming. Recent studies have confirmed the increase in skin friction drag over an undulating body, however, the increase is on the order of 20-70%. This more modest gain in skin friction drag is not sufficient to lead to the observed energy savings. Motivated by these observations, we investigate the inviscid mechanisms behind intermittent swimming for parameters typical of biology. We see that there is an energy savings at a fixed swimming speed for intermittent swimming as compared to continuous swimming. Then we consider three questions: What is the nature of the inviscid mechanism that leads to the observed energy savings, how do the forces and energetics of intermittent swimming scale with the swimming parameters, and what are the limitations to the benefit? Supported by the Office of Naval Research under Program Director Dr. Bob Brizzola, MURI grant number N00014-14-1-0533.

  5. The interactive effects of exercise and gill remodeling in goldfish (Carassius auratus).

    PubMed

    Perry, Steve F; Fletcher, Carmen; Bailey, Shawn; Ting, Jaimee; Bradshaw, Julia; Tzaneva, Velislava; Gilmour, Kathleen M

    2012-10-01

    Gill remodeling in goldfish (Carassius auratus) is accomplished by the appearance or retraction of a mass of cells (termed the interlamellar cell mass or ILCM) between adjacent lamellae. Given the presumed effects of gill remodeling on diffusing capacity, the goals of the current study were (1) to determine the consequences of increased aerobic O(2) demand (swimming) on gill remodelling and (2) to assess the consequences of the presence or absence of the ILCM on aerobic swimming capacity. Fish acclimated to 7 °C exhibited a marked increase in the ILCM which occupied, on average, 70.0 ± 4.1% of the total interlamellar channel area in comparison to an average ILCM area of only 28.3 ± 0.9% in fish acclimated to 25 °C. Incrementally increasing swimming velocity in fish at 7 °C to achieve a maximum aerobic swimming speed (U (CRIT)) within approximately 3 h resulted in a marked loss of the ILCM area to 44.8 ± 3.5%. Fish acclimated to 7 °C were subjected to 35 min swimming trials at 30, 60 or 80% U (CRIT) revealing that significant loss of the ILCM occurred at swimming speeds exceeding 60% U (CRIT). Prior exposure of cold water-acclimated fish to hypoxia to induce shedding of the ILCM did not affect swimming performance when assessed under normoxic conditions (control fish U (CRIT) = 2.34 ± 0.30 body lengths s(-1); previously hypoxic fish U (CRIT) = 2.99 ± 0.14 body lengths s(-1)) or the capacity to raise rates of O(2) consumption with increasing swimming speeds. Because shedding of ILCM during U (CRIT) trials complicated the interpretation of experiments designed to evaluate the impact of the ILCM on swimming performance, additional experiments using a more rapid 'ramp' protocol were performed to generate swimming scores. Neither prior hypoxia exposure nor a previous swim to U (CRIT) (both protocols are known to cause loss of the ILCM) affected swimming scores (the total distance swum during ramp U (CRIT) trials). However, partitioning all data based on the extent of ILCM coverage upon cessation of the swimming trial revealed that fish with less than 40% ILCM coverage exhibited a significantly greater swimming score (539 ± 86 m) than fish with greater than 50% ILCM coverage (285 ± 70 m). Thus, while loss of the ILCM at swimming speeds exceeding 60% U (CRIT) confounds the interpretation of experiments designed to assess the impact of the ILCM on swimming performance, we suggest that the shedding of the ILCM, in itself, coupled with improved swimming scores in fish exhibiting low ILCM coverage (<40%), provide evidence that the ILCM in goldfish acclimated to cold water (7 °C) is indeed an impediment to aerobic swimming capacity.

  6. Measuring Ucrit and endurance: equipment choice influences estimates of fish swimming performance.

    PubMed

    Kern, P; Cramp, R L; Gordos, M A; Watson, J R; Franklin, C E

    2018-01-01

    This study compared the critical swimming speed (U crit ) and endurance performance of three Australian freshwater fish species in different swim-test apparatus. Estimates of U crit measured in a large recirculating flume were greater for all species compared with estimates from a smaller model of the same recirculating flume. Large differences were also observed for estimates of endurance swimming performance between these recirculating flumes and a free-surface swim tunnel. Differences in estimates of performance may be attributable to variation in flow conditions within different types of swim chambers. Variation in estimates of swimming performance between different types of flumes complicates the application of laboratory-based measures to the design of fish passage infrastructure. © 2017 The Fisheries Society of the British Isles.

  7. Dioxin inhibition of swim bladder development in zebrafish: is it secondary to heart failure?

    PubMed

    Yue, Monica S; Peterson, Richard E; Heideman, Warren

    2015-05-01

    The swim bladder is a gas-filled organ that is used for regulating buoyancy and is essential for survival in most teleost species. In zebrafish, swim bladder development begins during embryogenesis and inflation occurs within 5 days post fertilization (dpf). Embryos exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) before 96 h post fertilization (hpf) developed swim bladders normally until the growth/elongation phase, at which point growth was arrested. It is known that TCDD exposure causes heart malformations that lead to heart failure in zebrafish larvae, and that blood circulation is a key factor in normal development of the swim bladder. The adverse effects of TCDD exposure on the heart occur during the same period of time that swim bladder development and growth occurs. Based on this coincident timing, and the dependence of swim bladder development on proper circulatory development, we hypothesized that the adverse effects of TCDD on swim bladder development were secondary to heart failure. We compared swim bladder development in TCDD-exposed embryos to: (1) silent heart morphants, which lack cardiac contractility, and (2) transiently transgenic cmlc2:caAHR-2AtRFP embryos, which mimic TCDD-induced heart failure via heart-specific, constitutive activation of AHR signaling. Both of these treatment groups, which were not exposed to TCDD, developed hypoplastic swim bladders of comparable size and morphology to those found in TCDD-exposed embryos. Furthermore, in all treatment groups swim bladder development was arrested during the growth/elongation phase. Together, these findings support a potential role for heart failure in the inhibition of swim bladder development caused by TCDD. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Beyond the central pattern generator: amine modulation of decision-making neural pathways descending from the brain of the medicinal leech.

    PubMed

    Crisp, Kevin M; Mesce, Karen A

    2006-05-01

    The biological mechanisms of behavioral selection, as it relates to locomotion, are far from understood, even in relatively simple invertebrate animals. In the medicinal leech, Hirudo medicinalis, the decision to swim is distributed across populations of swim-activating and swim-inactivating neurons descending from the subesophageal ganglion of the compound cephalic ganglion, i.e. the brain. In the present study, we demonstrate that the serotonergic LL and Retzius cells in the brain are excited by swim-initiating stimuli and during spontaneous swim episodes. This activity likely influences or resets the neuromodulatory state of neural circuits involved in the activation or subsequent termination of locomotion. When serotonin (5-HT) was perfused over the brain, multi-unit recordings from descending brain neurons revealed rapid and substantial alterations. Subsequent intracellular recordings from identified command-like brain interneurons demonstrated that 5-HT, especially in combination with octopamine, inhibited swim-triggering neuron Tr1, as well as swim-inactivating neurons Tr2 and SIN1. Although 5-HT inhibited elements of the swim-inactivation pathway, rather than promoting them, the indirect and net effect of the amine was a reliable and sustained reduction in the firing of the segmental swim-gating neuron 204. This modulation caused cell 204 to relinquish its excitatory drive to the swim central pattern generator. The activation pattern of serotonergic brain neurons that we observed during swimming and the 5-HT-immunoreactive staining pattern obtained, suggest that within the head brain 5-HT secretion is massive. Over time, 5-HT secretion may provide a homeostatic feedback mechanism to limit swimming activity at the level of the head brain.

  9. Turbulent flow reduces oxygen consumption in the labriform swimming shiner perch, Cymatogaster aggregata.

    PubMed

    van der Hoop, Julie M; Byron, Margaret L; Ozolina, Karlina; Miller, David L; Johansen, Jacob L; Domenici, Paolo; Steffensen, John F

    2018-06-12

    Fish swimming energetics are often measured in laboratory environments which attempt to minimize turbulence, though turbulent flows are common in the natural environment. To test whether the swimming energetics and kinematics of shiner perch, Cymatogaster aggregata (a labriform swimmer), were affected by turbulence, two flow conditions were constructed in a swim-tunnel respirometer. A low-turbulence flow was created using a common swim-tunnel respirometry setup with a flow straightener and fine-mesh grid to minimize velocity fluctuations. A high-turbulence flow condition was created by allowing large velocity fluctuations to persist without a flow straightener or fine grid. The two conditions were tested with particle image velocimetry to confirm significantly different turbulence properties throughout a range of mean flow speeds. Oxygen consumption rate of the swimming fish increased with swimming speed and pectoral fin beat frequency in both flow conditions. Higher turbulence also caused a greater positional variability in swimming individuals (versus low-turbulence flow) at medium and high speeds. Surprisingly, fish used less oxygen in high-turbulence compared with low-turbulence flow at medium and high swimming speeds. Simultaneous measurements of swimming kinematics indicated that these reductions in oxygen consumption could not be explained by specific known flow-adaptive behaviours such as Kármán gaiting or entraining. Therefore, fish in high-turbulence flow may take advantage of the high variability in turbulent energy through time. These results suggest that swimming behaviour and energetics measured in the lab in straightened flow, typical of standard swimming respirometers, might differ from that of more turbulent, semi-natural flow conditions. © 2018. Published by The Company of Biologists Ltd.

  10. From the Directors

    MedlinePlus

    ... knees, and I couldn't run. So, my mother said, "Well, if you can't run, you have to go and swim." And the doctor agreed: "You know, swimming would be good for you." I excelled at swimming, and I still love swimming today. One of the reasons I like ...

  11. Magnetically actuated and controlled colloidal sphere-pair swimmer

    NASA Astrophysics Data System (ADS)

    Ran, Sijie; Guez, Allon; Friedman, Gary

    2016-12-01

    Magnetically actuated swimming of microscopic objects has been attracting attention partly due to its promising applications in the bio-medical field and partly due to interesting physics of swimming in general. While colloidal particles that are free to move in fluid can be an attractive swimming system due it its simplicity and ability to assemble in situ, stability of their dynamics and the possibility of stable swimming behavior in periodically varying magnetic fields has not been considered. Dynamic behavior of two magnetically interacting colloidal particles subjected to rotating magnetic field of switching frequency is analyzed here and is shown to result in stable swimming without any stabilizing feedback. A new mechanism of swimming that relies only on rotations of the particles themselves and of the particle pair axis is found to dominate the swimming dynamics of the colloidal particle pair. Simulation results and analytical arguments demonstrate that this swimming strategy compares favorably to dragging the particles with an external magnetic force when colloidal particle sizes are reduced.

  12. Feeding of swimming Paramecium with fore-aft asymmetry in viscous fluid

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Jana, Saikat; Giarra, Matthew; Vlachos, Pavlos; Jung, Sunghwan

    2013-11-01

    Swimming behaviours and feeding efficiencies of Paramecium Multimicronucleatum with fore-aft asymmetric body shapes are studied experimentally and numerically. Among various possible swimming ways, ciliates typically exhibit only one preferred swimming directions in favorable conditions. Ciliates, like Paramecia, with fore-aft asymmetric shapes preferably swim towards the slender anterior while feeding fluid to the oral groove located at the center of the body. Since both feeding and swimming efficiencies are influenced by fluid motions around the body, it is important to reveal the fluid mechanics around a moving object. Experimentally, μ-PIV methods are employed to characterize the source-dipole streamline patterns and fluid motions around Paramecium. Numerical simulations by boundary element methods are also used to evaluate surface stresses and velocities, which give insights into the efficiencies of swimming and feeding depending on body asymmetry. It is concluded that a slender anterior and fat posterior increases the combined efficiency of swimming and feeding, which matches well with actual shapes of Paramecium. Discrepancies between experiments and simulations are also discussed.

  13. The effect of labyrinthectomy on postural control of upside-down swimming catfish, Synodontis nigriventris, under pseudomicrogravity.

    PubMed

    Ohnishi, K; Yamamoto, T; Takahashi, A; Tanaka, H; Koyama, M; Ohnishi, T

    1999-08-01

    The catfish (Synodontis nigriventris) has a unique habitat of keeping an upside-down posture under normal gravity. We examined its postural control under pseudomicrogravity generated artificially, and the effect of unilateral labyrinthectomy on the postural control. The stable swimming posture under pseudomicrogravity was observed in the upside-down swimming catfish but not in the catfish (Corydoras paleatus), which has normal swimming habitat. Furthermore, although S. nigriventris but not C. paleatus could keep the stable swimming posture under normal gravity condition after unilateral labyrinthectomy, the labyrinthectomized fishes could not keep it under pseudomicrogravity. Seven days after the operation, S. nigriventris alone partially recovered the ability to keep an upside-down swimming posture, and did completely, to the control level, 25 days after the operation. Furthermore, when S. nigriventris was under pseudomicrogravity in dark conditions, it showed disturbed swimming postures. These results suggest that the upside-down swimming catfish has superior ability of postural control depending on the labyrinth.

  14. Can Blood Gas and Acid-Base Parameters at Maximal 200 Meters Front Crawl Swimming be Different Between Former Competitive and Recreational Swimmers?

    PubMed Central

    Kapus, Jernej; Usaj, Anton; Strumbelj, Boro; Kapus, Venceslav

    2008-01-01

    The aim of the present study was to ascertain whether maximal 200 m front crawl swimming strategies and breathing patterns influenced blood gas and acid-base parameters in a manner which gives advantage to former competitive swimmers in comparison with their recreational colleagues. Twelve former competitive male swimmers (the CS group) and nine recreational male swimmers (the RS group) performed a maximal 200 m front crawl swimming with self- selected breathing pattern. Stroke rate (SR) and breathing frequency (BF) were measured during the swimming test. Measures also included blood lactate concentration ([LA]) and parameters of blood acid-base status before and during the first minute after the swimming test. The CS group swam faster then the RS group. Both groups have similar and steady SR throughout the swimming test. This was not matched by similar BF in the CS group but matched it very well in the RS group (r = 0.89). At the beginning of swimming test the CS group had low BF, but they increased it throughout the swimming test. The BF at the RS group remained constant with only mirror variations throughout the swimming test. Such difference in velocity and breathing resulted in maintaining of blood Po2 from hypoxia and Pco2 from hypercapnia. This was similar in both groups. [LA] increased faster in the CS group than in the RS group. On the contrary, the rate of pH decrease remained similar in both groups. The former competitive swimmers showed three possible advantages in comparison to recreational swimmers during maximal 200 m front crawl swimming: a more dynamic and precise regulation of breathing, more powerful bicarbonate buffering system and better synchronization between breathing needs and breathing response during swimming. Key pointsTraining programs for competitive swimmers should promote adaptations to maximal efforts.Those adaptations should include high and maximal intensity swims with controlled breathing frequency (taking breath every fourth, fifth, sixth or eighth stroke cycle for front crawl swimming).Such training will improve breathing regulation in order to impose a better synchronization between breathing needs and breathing response during maximal swimming. PMID:24150142

  15. Modeling the effect of varying swim speeds on fish passage through velocity barriers

    USGS Publications Warehouse

    Castro-Santos, T.

    2006-01-01

    The distance fish can swim through zones of high-velocity flow is an important factor limiting the distribution and conservation of riverine and diadromous fishes. Often, these barriers are characterized by nonuniform flow conditions, and it is likely that fish will swim at varying speeds to traverse them. Existing models used to predict passage success, however, typically include the unrealistic assumption that fish swim at a constant speed regardless of the speed of flow. This paper demonstrates how the maximum distance of ascent through velocity barriers can be estimated from the swim speed-fatigue time relationship, allowing for variation in both swim speed and water velocity.

  16. Hydrodynamic Attraction of Swimming Microorganisms by Surfaces

    NASA Astrophysics Data System (ADS)

    Berke, Allison P.; Turner, Linda; Berg, Howard C.; Lauga, Eric

    2008-07-01

    Cells swimming in confined environments are attracted by surfaces. We measure the steady-state distribution of smooth-swimming bacteria (Escherichia coli) between two glass plates. In agreement with earlier studies, we find a strong increase of the cell concentration at the boundaries. We demonstrate theoretically that hydrodynamic interactions of the swimming cells with solid surfaces lead to their reorientation in the direction parallel to the surfaces, as well as their attraction by the closest wall. A model is derived for the steady-state distribution of swimming cells, which compares favorably with our measurements. We exploit our data to estimate the flagellar propulsive force in swimming E. coli.

  17. Swimming-induced pulmonary oedema an uncommon condition diagnosed with POCUS ultrasound.

    PubMed

    Alonso, Joaquín Valle; Chowdhury, Motiur; Borakati, Raju; Gankande, Upali

    2017-12-01

    Swimming Induced Pulmonary Edema, or SIPE, is an emerging condition occurring in otherwise healthy individuals during surface swimming or diving that is characterized by cough, dyspnea, hemoptysis, and hypoxemia. It is typically found in those who spend time in cold water exercise with heavy swimming and surface swimming, such as civilian training for iron Man, triathalon, and military training. We report the case of a highly trained young female swimmer in excellent cardiopulmonary health, who developed acute alveolar pulmonary oedema in an open water swimming training diagnosed in the emergency department using POCUS ultrasound. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Determination of a quantitative parameter to evaluate swimming technique based on the maximal tethered swimming test.

    PubMed

    Soncin, Rafael; Mezêncio, Bruno; Ferreira, Jacielle Carolina; Rodrigues, Sara Andrade; Huebner, Rudolf; Serrão, Julio Cerca; Szmuchrowski, Leszek

    2017-06-01

    The aim of this study was to propose a new force parameter, associated with swimmers' technique and performance. Twelve swimmers performed five repetitions of 25 m sprint crawl and a tethered swimming test with maximal effort. The parameters calculated were: the mean swimming velocity for crawl sprint, the mean propulsive force of the tethered swimming test as well as an oscillation parameter calculated from force fluctuation. The oscillation parameter evaluates the force variation around the mean force during the tethered test as a measure of swimming technique. Two parameters showed significant correlations with swimming velocity: the mean force during the tethered swimming (r = 0.85) and the product of the mean force square root and the oscillation (r = 0.86). However, the intercept coefficient was significantly different from zero only for the mean force, suggesting that although the correlation coefficient of the parameters was similar, part of the mean velocity magnitude that was not associated with the mean force was associated with the product of the mean force square root and the oscillation. Thus, force fluctuation during tethered swimming can be used as a quantitative index of swimmers' technique.

  19. Analysis of swimming performance: perceptions and practices of US-based swimming coaches.

    PubMed

    Mooney, Robert; Corley, Gavin; Godfrey, Alan; Osborough, Conor; Newell, John; Quinlan, Leo Richard; ÓLaighin, Gearóid

    2016-01-01

    In elite swimming, a broad range of methods are used to assess performance, inform coaching practices and monitor athletic progression. The aim of this paper was to examine the performance analysis practices of swimming coaches and to explore the reasons behind the decisions that coaches take when analysing performance. Survey data were analysed from 298 Level 3 competitive swimming coaches (245 male, 53 female) based in the United States. Results were compiled to provide a generalised picture of practices and perceptions and to examine key emerging themes. It was found that a disparity exists between the importance swim coaches place on biomechanical analysis of swimming performance and the types of analyses that are actually conducted. Video-based methods are most frequently employed, with over 70% of coaches using these methods at least monthly, with analyses being mainly qualitative in nature rather than quantitative. Barriers to the more widespread use of quantitative biomechanical analysis in elite swimming environments were explored. Constraints include time, cost and availability of resources, but other factors such as sources of information on swimming performance and analysis and control over service provision are also discussed, with particular emphasis on video-based methods and emerging sensor-based technologies.

  20. 76 FR 60732 - Drawbridge Operation Regulations; Navesink (Swimming) River, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... Operation Regulations; Navesink (Swimming) River, NJ AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... (Swimming) River between Oceanic and Locust Point, New Jersey. The deviation is necessary to facilitate...: The Oceanic Bridge, across the Navesink (Swimming) River, mile 4.5, between Oceanic and Locust Point...

  1. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jönsson, Maria E., E-mail: maria.jonsson@ebc.uu.se; Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543; Kubota, Akira, E-mail: akubota@whoi.edu

    2012-12-01

    The teleost swim bladder is assumed a homolog of the tetrapod lung. Both swim bladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR) agonists; in zebrafish (Danio rerio) the swim bladder fails to inflate with exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P450 1 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swim bladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependencemore » of the effect of PCB126 on swim bladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24 h and then held in clean water until day 4, a normal time for swim bladder inflation. The effects of PCB126 were concentration-dependent with EC{sub 50} values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swim bladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swim bladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2 nM PCB126 approximately 30% of eleutheroembryos failed to inflate the swim bladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swim bladder. Our results indicate that PCB126 blocks swim bladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swim bladder cells. -- Highlights: ► PCB126 caused cellular changes in the developing swim bladder. ► Swim bladder inflation was not related to expression of CYP1 or cox-2. ► Failure of swim bladder inflation is mediated via an Ahr2-dependent mechanism. ► PCB126-exposed zebrafish larvae showed upregulation of the oncogene myca.« less

  2. On burst-and-coast swimming performance in fish-like locomotion.

    PubMed

    Chung, M-H

    2009-09-01

    Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-and-coast style is computed assuming that the burst phase is composed of a single tail-beat. Swimming efficiency is evaluated in terms of the mass-specific cost of transport instead of the Froude efficiency. The effects of the Reynolds number (based on the body length and burst time), duty cycle and fineness ratio (the body length over the largest thickness) on swimming performance (momentum capacity and the mass-specific cost of transport) are studied quantitatively. The results lead to a conclusion consistent with previous findings that a larval fish seldom swims in a burst-and-coast style. Given mass and swimming speed, a fish needs the least cost if it swims in a burst-and-coast style with a fineness ratio of 8.33. This energetically optimal fineness ratio is larger than that derived from the simple hydromechanical model proposed in literature. The calculated amount of energy saving in burst-and-coast swimming is comparable with the real-fish estimation in the literature. Finally, the predicted wake-vortex structures of both continuous and burst-and-coast swimming are biologically relevant.

  3. The swimming polarity of multicellular magnetotactic prokaryotes can change during an isolation process employing magnets: evidence of a relation between swimming polarity and magnetic moment intensity.

    PubMed

    de Melo, Roger Duarte; Acosta-Avalos, Daniel

    2017-09-01

    Magnetotactic microorganisms are characterized by swimming in the direction of an applied magnetic field. In nature, two types of swimming polarity have been observed: north-seeking microorganisms that swim in the same direction as the magnetic field, and south-seeking microorganisms that swim in the opposite direction. The present work studies the reversal in the swimming polarity of the multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis following an isolation process using high magnetic fields from magnets. The proportion of north- and south-seeking organisms was counted as a function of the magnetic field intensity used during the isolation of the organisms from sediment. It was observed that the proportion of north-seeking organisms increased when the magnetic field was increased. The magnetic moment for north- and south-seeking populations was estimated using the U-turn method. The average magnetic moment was higher for north- than south-seeking organisms. The results suggest that the reversal of swimming polarity must occur during the isolation process in the presence of high magnetic fields and magnetic field gradients. It is shown for the first time that the swimming polarity reversal depends on the magnetic moment intensity of multicellular magnetotactic prokaryotes, and new studies must be undertaken to understand the role of magnetic moment polarity and oxygen gradients in determination of swimming polarity.

  4. Water ingestion during swimming activities in a pool: a pilot study.

    PubMed

    Dufour, Alfred P; Evans, Otis; Behymer, Thomas D; Cantú, Ricardo

    2006-12-01

    Chloroisocyanurates are commonly added to outdoor swimming pools to stabilize chlorine disinfectants. The chloroisocyanurates decompose slowly to release chlorine and cyanuric acid. Studies conducted to determine if the chloroisocyanurates might be toxic to swimmers showed that they were not and that ingested cyanuric acid passed through the body unmetabolized. This fact was used to determine the amount of water swallowed during swimming activity. Fifty-three recreational swimmers, using a community swimming pool disinfected with cyanuric acid stabilized chlorine, participated in the study. The participants did not swim on the day before or after the test swim. The swimmers were asked to actively swim for at least 45 minutes and to collect their urine for the next 24 hours. Cyanuric acid was measured in pool water using high performance liquid chromatography and porous graphitic carbon columns with UV detection. The urine sample assay required a clean-up procedure to remove urinary proteins and interfering substances. Results of the study indicate that non-adults ingest about twice as much water as adults during swimming activity. The average amount of water swallowed by non-adults and adults was 37 ml and 16 ml, respectively. The design for this study and the analytical methodology used to assay cyanuric acid in swimming pool water and human urine were effective for measuring the volume of water swallowed during swimming activity.

  5. Swimming behavior of zebrafish is accurately classified by direct modeling and behavioral space analysis

    NASA Astrophysics Data System (ADS)

    Feng, Ruopei; Chemla, Yann; Gruebele, Martin

    Larval zebrafish is a popular organism in the search for the correlation between locomotion behavior and neural pathways because of their highly stereotyped and temporally episodic swimming motion. This correlation is usually investigated using electrophysiological recordings of neural activities in partially immobilized fish. Seeking for a way to study animal behavior without constraints or intruding electrodes, which can in turn modify their behavior, our lab has introduced a parameter-free approach which allows automated classification of the locomotion behaviors of freely swimming fish. We looked into several types of swimming bouts including free swimming and two modes of escape responses and established a new classification of these behaviors. Combined with a neurokinematic model, our analysis showed the capability to probe intrinsic properties of the underlying neural pathways of freely swimming larval zebrafish by inspecting swimming movies only.

  6. A numerical study on swimming micro-organisms inside a capillary tube

    NASA Astrophysics Data System (ADS)

    Zhu, Lailai; Lauga, Eric; Brandt, Luca

    2011-11-01

    The locomotivity of micro-organisms is highly dependent on the surrounding environments such as walls, free surface and neighbouring cells. In our current work, we perform simulations of swimming micro-organisms inside a capillary tube based on boundary element method. We focus on the swimming speed, power consumption and locomotive trajectory of swimming cells for different levels of confinement. For a cell propelling itself by tangential surface deformation, we show that it will swim along a helical trajectory with a specified swimming gait. Such a helical trajectory was observed before by experiments on swimming Paramecium inside a capillary tube. Funding by VR (the Swedish Research Council) and the National Science Foundation (grant CBET-0746285 to E.L.) is gratefully acknowledged. Computer time provided by SNIC (Swedish National Infrastructure for Computing) is also acknowledged.

  7. Warm water and cool nests are best. How global warming might influence hatchling green turtle swimming performance.

    PubMed

    Booth, David T; Evans, Andrew

    2011-01-01

    For sea turtles nesting on beaches surrounded by coral reefs, the most important element of hatchling recruitment is escaping predation by fish as they swim across the fringing reef, and as a consequence hatchlings that minimize their exposure to fish predation by minimizing the time spent crossing the fringing reef have a greater chance of surviving the reef crossing. One way to decrease the time required to cross the fringing reef is to maximize swimming speed. We found that both water temperature and nest temperature influence swimming performance of hatchling green turtles, but in opposite directions. Warm water increases swimming ability, with hatchling turtles swimming in warm water having a faster stroke rate, while an increase in nest temperature decreases swimming ability with hatchlings from warm nests producing less thrust per stroke.

  8. Going with the flow or swimming against the tide: should children with central venous catheters swim?

    PubMed

    Miller, Jessica; Dalton, Meghan K; Duggan, Christopher; Lam, Shirley; Iglesias, Julie; Jaksic, Tom; Gura, Kathleen M

    2014-02-01

    Children who require long-term parenteral nutrition (PN) have central venous catheters (CVCs) in place to allow the safe and effective infusion of life-sustaining fluids and nutrition. Many consider recreational swimming to be a common part of childhood, but for some, the risk may outweigh the benefit. Children with CVCs may be at increased risk of exit site, tunnel, and catheter-related bloodstream infections (CRBSIs) if these catheters are immersed in water. The purpose of this review is to evaluate the current literature regarding the risk of infection for patients with CVCs who swim and determine if there is consensus among home PN (HPN) programs on this controversial issue. A total 45 articles were reviewed and 16 pediatric HPN programs were surveyed regarding swimming and CVCs. Due to the limited data available, a firm recommendation cannot be made. Recreational water associated outbreaks are well documented in the general public, as is the presence of human pathogens even in chlorinated swimming pools. As a medical team, practitioners can provide information and education regarding the potential risk, but ultimately the decision lies with the parents. If the parents decide swimming is worth the risk, they are encouraged to use products designed for this use and to change their child's dressing immediately after swimming. Due to our experience with a fatal event immediately after swimming, we continue to strongly discourage patients with CVCs from swimming. Further large and well-designed studies regarding the risk of swimming with a CVC are needed to make a strong, evidence-based recommendation.

  9. Effect of wearing clothes on oxygen uptake and ratings of perceived exertion while swimming.

    PubMed

    Choi, S W; Kurokawa, T; Ebisu, Y; Kikkawa, K; Shiokawa, M; Yamasaki, M

    2000-07-01

    For a comparative study between swimming in swimwear (control-sw) and swimming in clothes (clothes-sw), oxygen uptake (VO2) and ratings of perceived exertion (RPE) were measured. The subjects were six male members of a university swimming team. Three swimming strokes--the breaststroke, the front crawl stroke and the elementary backstroke--were applied. With regards to clothes-sw, swimmers wore T-shirts, sportswear (shirt and pants) over swimwear and running shoes. In both cases of control-sw and clothes-sw, the VO2 was increased exponentially with increased swimming speed. The VO2 of the subjects during the clothed tests did not exceed 1.4 times of that in the case of control-sw at swimming speeds below 0.3 m/s. As swimming speeds increased, VO2 difference in both cases increased. Consequently, VO2 in the clothed tests was equal to 1.5-1.6 times and 1.5-1.8 times of that in the swimwear tests at speeds of 0.5 and 0.7 m/s, respectively. At speeds below 0.6 m/s in clothes-sw, the breaststroke showed lower VO2 than the front crawl stroke, and the elementary backstroke showed higher VO2 than the other two swimming strokes. RPE increased linearly with %peak VO2. In addition, any RPE differences among the three swimming strokes were not shown in the control-sw tests. At an exercise intensity above 60 %peak VO2, clothed swimmers showed slightly higher RPE in the front crawl stroke compared to that in the two other swimming strokes.

  10. The control of locomotor frequency by excitation and inhibition

    PubMed Central

    Li, Wen-Chang; Moult, Peter R

    2012-01-01

    Every type of neural rhythm has its own operational range of frequency. Neuronal mechanisms underlying rhythms at different frequencies, however, are poorly understood. We use a simple aquatic vertebrate, the two day old Xenopus tadpole, to investigate how the brainstem and spinal circuits generate swimming rhythms of different speeds. We first determined that the basic motor output pattern was not altered with varying swimming frequencies. The firing reliability of different types of rhythmic neuron involved in swimming was then analysed. The results showed that there was a drop in the firing reliability in some inhibitory interneurons when fictive swimming slowed. We have recently established that premotor excitatory interneurons (descending interneurons; dINs) are critical in rhythmically driving activity in the swimming circuit. Voltage-clamp recordings from dINs showed higher frequency swimming correlated with stronger background excitation and phasic inhibition, but did not correlate with phasic excitation. Two parallel mechanisms have been proposed for tadpole swimming maintenance: post-inhibition rebound firing and NMDA receptor (NMDAR) dependent pace-maker firing in dINs. Rebound tests in dINs in this study showed that greater background depolarization and phasic inhibition led to faster rebound firing. Higher depolarization was previously shown to accelerate dIN pace-maker firing in the presence of NMDA. Here we show that enhancing dIN background excitation during swimming speeds up fictive swimming frequency whilst weakening phasic inhibition without changing background excitation slows down swimming rhythms. We conclude that both strong background excitation and phasic inhibition can promote faster tadpole swimming. PMID:22553028

  11. Intra- and Intersexual swim bladder dimorphisms in the plainfin midshipman fish (Porichthys notatus): Implications of swim bladder proximity to the inner ear for sound pressure detection.

    PubMed

    Mohr, Robert A; Whitchurch, Elizabeth A; Anderson, Ryan D; Forlano, Paul M; Fay, Richard R; Ketten, Darlene R; Cox, Timothy C; Sisneros, Joseph A

    2017-11-01

    The plainfin midshipman fish, Porichthys notatus, is a nocturnal marine teleost that uses social acoustic signals for communication during the breeding season. Nesting type I males produce multiharmonic advertisement calls by contracting their swim bladder sonic muscles to attract females for courtship and spawning while subsequently attracting cuckholding type II males. Here, we report intra- and intersexual dimorphisms of the swim bladder in a vocal teleost fish and detail the swim bladder dimorphisms in the three sexual phenotypes (females, type I and II males) of plainfin midshipman fish. Micro-computerized tomography revealed that females and type II males have prominent, horn-like rostral swim bladder extensions that project toward the inner ear end organs (saccule, lagena, and utricle). The rostral swim bladder extensions were longer, and the distance between these swim bladder extensions and each inner-ear end organ type was significantly shorter in both females and type II males compared to that in type I males. Our results revealed that the normalized swim bladder length of females and type II males was longer than that in type I males while there was no difference in normalized swim bladder width among the three sexual phenotypes. We predict that these intrasexual and intersexual differences in swim bladder morphology among midshipman sexual phenotypes will afford greater sound pressure sensitivity and higher frequency detection in females and type II males and facilitate the detection and localization of conspecifics in shallow water environments, like those in which midshipman breed and nest. © 2017 Wiley Periodicals, Inc.

  12. 76 FR 58401 - Safety Zone; Swim Around Charleston, Charleston, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... Around Charleston, a swimming race occurring on waters of the Wando River, the Cooper River, Charleston... vessels that are officially associated with the swim on the waters of the Wando River, the Cooper River...-AA00 Safety Zone; Swim Around Charleston, Charleston, SC AGENCY: Coast Guard, DHS. ACTION: Temporary...

  13. DROWNING IN DISINFECTION BY-PRODUCTS? SWIMMING POOL WATER QUALITY RECONSIDERED.

    EPA Science Inventory

    The development of treated water for swimming pools has made swimming a year ¬round activity, widely enjoyed for leisure as well as exercise. Swimming pools can be found in different kinds and sizes in public areas, hotels and spas, or at private homes. In Germany ~250-300 millio...

  14. DROWNING IN DISINFECTION BY-PRODUCTS? ASSESSING SWIMMING POOL WATER

    EPA Science Inventory

    The development of treated water for swimming pools has made swimming a year round activity, widely enjoyed for leisure as well as exercise. Swimming pools can be found in different kinds and sizes in public areas, hotels and spas, or at private homes. In Germany ~250-300 million...

  15. 77 FR 51471 - Safety Zone; Swim Around Charleston, Charleston, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ...-AA00 Safety Zone; Swim Around Charleston, Charleston, SC AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary moving safety zone during the Swim Around Charleston, a swimming race occurring on waters of the Wando River, the Cooper River, Charleston...

  16. 1968 Listing of Swimming Pool Equipment.

    ERIC Educational Resources Information Center

    National Sanitation Foundation, Ann Arbor, MI. Testing Lab.

    An up-to-date listing of swimming pool equipment including--(1) companies authorized to display the National Sanitation Foundation seal of approval, (2) equipment listed as meeting NSF swimming pool equipment standards relating to diatomite type filters, (3) equipment listed as meeting NSF swimming pool equipment standard relating to sand type…

  17. Celebrating 50 years of SWIMs (Salt Water Intrusion Meetings)

    NASA Astrophysics Data System (ADS)

    Post, Vincent E. A.; Essink, Gualbert Oude; Szymkiewicz, Adam; Bakker, Mark; Houben, Georg; Custodio, Emilio; Voss, Clifford

    2018-06-01

    The Salt Water Intrusion Meetings, or SWIMs, are a series of meetings that focus on seawater intrusion in coastal aquifers and other salinisation processes. 2018 marks the 50th year of the SWIM and the 25th biennial meeting. The SWIM proceedings record half a century of research progress on site characterisation, geophysical and geochemical techniques, variable-density flow, modelling, and water management. The SWIM is positioning itself to remain a viable platform for discussing the coastal aquifer management challenges of the next 50 years.

  18. Micro- and nanorobots swimming in heterogeneous liquids.

    PubMed

    Nelson, Bradley J; Peyer, Kathrin E

    2014-09-23

    Essentially all experimental investigations of swimming micro- and nanorobots have focused on swimming in homogeneous Newtonian liquids. In this issue of ACS Nano, Schamel et al. investigate the actuation of "nanopropellers" in a viscoelastic biological gel that illustrates the importance of the size of the nanostructure relative to the gel mesh size. In this Perspective, we shed further light on the swimming performance of larger microrobots swimming in heterogeneous liquids. One of the interesting results of our work is that earlier findings on the swimming performance of motile bacteria in heterogeneous liquids agree, in principle, with our results. We also discuss future research directions that should be pursued in this fascinating interdisciplinary field.

  19. Estradiol or fluoxetine alters depressive behavior and tryptophan hydroxylase in rat raphe.

    PubMed

    Yang, Fu-Zhong; Wu, Yan; Zhang, Wei-Guo; Cai, Yi-Yun; Shi, Shen-Xun

    2010-03-10

    The effects of 17beta-estradiol and fluoxetine on behavior of ovariectomized rats subjected to the forced swimming test and the expression of tryptophan hydroxylase (TPH) in dorsal and median raphe were investigated, respectively through time sampling technique of behavior scoring and immunohistochemistry. Both estradiol and fluoxetine increased swimming and decreased immobility in the forced swimming test. The forced swimming stress decreased integrated optical density of TPH-positive regions in dorsal and median raphe. Both estradiol and fluoxetine administration prevented integrated optical density of TPH-positive regions from being decreased by forced swimming stress. These observations suggest that both estradiol and fluoxetine have protective bearing on ovariectomized rats enduring forced swimming stress.

  20. Upward swimming of a sperm cell in shear flow.

    PubMed

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.

  1. 78 FR 35135 - Special Local Regulation; Kelley's Island Swim, Lake Erie; Kelley's Island, Lakeside, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ...-AA08 Special Local Regulation; Kelley's Island Swim, Lake Erie; Kelley's Island, Lakeside, OH AGENCY... vessel movement in portions of Lake Erie during the annual Kelley's Island Swim from. This special local... special local regulations listed in 33 CFR 100.921 Special Local Regulation; Kelley's Island Swim, Lake...

  2. Swim Test Requirements at Four-Year Universities in the United States.

    ERIC Educational Resources Information Center

    Ormond, Frank; And Others

    1997-01-01

    Surveys of 331 four-year universities nationwide examined swim test requirements and reasons for administering or not administering swim tests. Responses from 331 returned questionnaires indicated that 5% of the schools had swim test requirements, though 25% had them previously. Lack of a physical education requirement was the most commonly cited…

  3. [Analysis of the swimming pattern and the velocity of bacteria using video tracking method].

    PubMed

    Shigematsu, M

    1997-04-01

    The swimming patterns and the velocities of several flagellated bacteria were measured by a computer assisted video tracking method. The moving path of the individual bacterium revealed that the bacterium frequently changed its swimming direction and velocity. The velocity among bacterial strains varies widely. In low viscous environment. Campylobacter jejuni has characteristic swimming pattern with frequent changes in their swimming direction. As the viscosity increase, C. jejuni increases its velocity at a little higher viscosity of 3 centipoise (cP) and secondly increases at about 40 cP. Different from other flagellated bacteria, the swimming pattern of C. jejuni in these two velocity peaks were changed. C. jejuni exhibited continuously forward moving path in the first peak, but in the second it repeated back and forth swimming pattern. We thus assumed that C. jejuni may use a different swimming mode in high viscous media from the original mode mediated by the propelling force of the flagella. This method is useful for a detail analysis of bacterial movement and moving patterns in different environmental conditions.

  4. Analysis of swimming performance from physical, physiological, and biomechanical parameters in young swimmers.

    PubMed

    Jürimäe, Jaak; Haljaste, Kaja; Cicchella, Antonio; Lätt, Evelin; Purge, Priit; Leppik, Aire; Jürimäe, Toivo

    2007-02-01

    The purpose of this study was to examine the influence of the energy cost of swimming, body composition, and technical parameters on swimming performance in young swimmers. Twenty-nine swimmers, 15 prepubertal (11.9 +/- 0.3 years; Tanner Stages 1-2) and 14 pubertal (14.3 +/- 1.4 years; Tanner Stages 3-4) boys participated in the study. The energy cost of swimming (Cs) and stroking parameters were assessed over maximal 400-m front-crawl swimming in a 25-m swimming pool. The backward extrapolation technique was used to evaluate peak oxygen consumption (VO2peak). A stroke index (SI; m2 . s(-1) . cycles(-1)) was calculated by multiplying the swimming speed by the stroke length. VO2peak results were compared with VO2peak test in the laboratory (bicycle, 2.86 +/- 0.74 L/min, vs. in water, 2.53 +/- 0.50 L/min; R2 = .713; p = .0001). Stepwise-regression analyses revealed that SI (R2 = .898), in-water VO2peak (R2 = .358), and arm span (R2 = .454) were the best predictors of swimming performance. The backward-extrapolation method could be used to assess VO2peak in young swimmers. SI, arm span, and VO2peak appear to be the major determinants of front-crawl swimming performance in young swimmers.

  5. Swimming Motility Reduces Deposition to Silica Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Nanxi; Massoudieh, Arash; Liang, Xiaomeng

    The role of swimming motility on bacterial transport and fate in porous media was evaluated. We present microscopic evidence showing that strong swimming motility reduces attachment of Azotobacter vinelandii cells to silica surfaces. Applying global and cluster statistical analyses to microscopic videos taken under non-flow conditions, wild type, flagellated A. vinelandii strain DJ showed strong swimming ability with an average speed of 13.1 μm/s, DJ77 showed impaired swimming averaged at 8.7 μm/s, and both the non-flagellated JZ52 and chemically treated DJ cells were non-motile. Quantitative analyses of trajectories observed at different distances above the collector of a radial stagnation pointmore » flow cell (RSPF) revealed that both swimming and non-swimming cells moved with the flow when at a distance of at least 20 μm from the collector surface. Near the surface, DJ cells showed both horizontal and vertical movement diverging them from reaching surfaces, while chemically treated DJ cells moved with the flow to reach surfaces, suggesting that strong swimming reduced attachment. In agreement with the RSPF results, the deposition rates obtained for two-dimensional multiple-collector micromodels were also lowest for DJ, while DJ77 and JZ52 showed similar values. Strong swimming specifically reduced deposition on the upstream surfaces of the micromodel collectors.« less

  6. The hydrodynamics of linear accelerations in bluegill sunfish, Lepomis macrochirus

    NASA Astrophysics Data System (ADS)

    Wise, Tyler; Boden, Alex; Schwalbe, Margot; Tytell, Eric

    2015-11-01

    As fish swim, their body interacts with the fluid around them in order to generate thrust. In this study, we examined the hydrodynamics of linear acceleration by bluegill sunfish, Lepomis macrochirus, which swims using a carangiform mode. Carangiform swimmers primarily use their caudal fin and posterior body for propulsion, which is different from anguilliform swimmers, like eels, that undulate almost their whole body to swim. Most previous studies have examined steady swimming, but few have looked at linear accelerations, even though most fish do not often swim steadily. During steady swimming, thrust and drag forces are balanced, which makes it difficult to separate the two, but during acceleration, thrust exceeds drag, making it easier to measure; this may reveal insights into how thrust is produced. This study used particle image velocimetry (PIV) to compare the structure of the wake during steady swimming and acceleration and to estimate the axial force. Axial force increased during acceleration, but the orientation of the vortices did not differ between steady swimming and acceleration, which is different than anguilliform swimmers, whose wakes change structure during acceleration. This difference may point to fundamental differences between the two swimming modes. This material is based upon work supported by the U. S. Army Research Office under grant number W911NF-14-1-0494.

  7. Swimming activity in marine fish.

    PubMed

    Wardle, C S

    1985-01-01

    Marine fish are capable of swimming long distances in annual migrations; they are also capable of high-speed dashes of short duration, and they can occupy small home territories for long periods with little activity. There is a large effect of fish size on the distance fish migrate at slow swimming speeds. When chased by a fishing trawl the effect of fish size on swimming performance can decide their fate. The identity and thickness of muscle used at each speed and evidence for the timing of myotomes used during the body movement cycle can be detected using electromyogram (EMG) electrodes. The cross-sectional area of muscle needed to maintain different swimming speeds can be predicted by relating the swimming drag force to the muscle force. At maximum swimming speed one completed cycle of swimming force is derived in sequence from the whole cross-sectional area of the muscles along the two sides of the fish. This and other aspects of the swimming cycle suggest that each myotome might be responsible for generating forces involved in particular stages of the tail sweep. The thick myotomes at the head end shorten during the peak thrust of the tail blade whereas the thinner myotomes nearer the tail generate stiffness appropriate for transmission of these forces and reposition the tail for the next cycle.

  8. Silk amino acids improve physical stamina and male reproductive function of mice.

    PubMed

    Shin, Sunhee; Yeon, Seongho; Park, Dongsun; Oh, Jiyoung; Kang, Hyomin; Kim, Sunghyun; Joo, Seong Soo; Lim, Woo-Taek; Lee, Jeong-Yong; Choi, Kyung-Chul; Kim, Ki Yon; Kim, Seung Up; Kim, Jong-Choon; Kim, Yun-Bae

    2010-01-01

    The effects of a silk amino acid (SAA) preparation on the physical stamina and male reproductive function of mice were investigated. Eight-week-old male ICR mice (29-31 g) were orally administered SAA (50, 160 or 500 mg/kg) for 44 d during 30-min daily swimming exercise. The mice were subjected to a weight-loaded (5% of body weight) forced swimming on the 14th, 28th and 42nd day to determine maximum swimming time, and after a 2-d recovery period (treated with SAA without swimming exercise), parameters related to fatigue and reproductive function were analyzed from blood, muscles and reproductive organs. Repeated swimming exercise increased the maximum swimming time to some extent, in spite of a marked reduction in body weight gain, and SAA further enhanced the stamina in a dose-dependent manner. Forced swimming exercises increased blood parameters of tissue injury, but depleted blood glucose and tissue glycogen, which were substantially prevented by SAA treatment. In addition, SAA significantly reduced the muscular thiobarbituric acid-reactive substances and blood corticosterone content increased by forced swimming. Swimming exercise decreased the blood testosterone level, which was recovered by SAA, leading to enhanced sperm counts. These combined results indicate that SAA not only enhances physical stamina by minimizing damage to tissues, including muscles, as well as preventing energy depletion caused by swimming stress, but also improves male reproductive function by increasing testosterone and sperm counts.

  9. Investigation of the swimming mechanics of Schistosoma cercariae and its role in disease transmission

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Deepak; Bhargava, Arjun; Katsikis, Georgios; Prakash, Manu

    2015-11-01

    Schistosomiasis is a Neglected Tropical Disease responsible for the deaths of an estimated 200,000 people annually. Human infection occurs when the infectious forms of the worm known as cercariae swim through freshwater, detect humans and penetrate the skin. Cercarial swimming is a bottleneck in disease transmission since cercariae have finite energy reserves, hence motivating studies of their swimming mechanics. Here we build on earlier studies which revealed the existence of two swimming modes: the tail-first and head-first modes. Of these the former was shown to display a novel symmetry breaking mechanism enabling locomotion at low Reynolds numbers. Here we propose simple models for the two swimming modes based on a three-link swimmer geometry. Using local slender-body-theory, we calculate the swimming gait for these model swimmers and compare with experiments, both on live cercariae and on scaled-up robotic swimmers. We use data from these experiments and the models to calculate the energy expended while swimming in the two modes. This along with long-time tracking of swimming cercariae in a lab setting allows estimation of the decrease in activity of the swimmer as a function of time which is an important factor in cercarial infectivity. Finally, we consider, through experiments and theoretical models, the effects of gravity since cercariae are negatively buoyant and sink in the water column while not swimming. This sinking affects cercarial spatial distribution which is important from a disease perspective.

  10. Swimming attenuates inflammation, oxidative stress, and apoptosis in a rat model of dextran sulfate sodium-induced chronic colitis.

    PubMed

    Qin, Ling; Yao, Zhi-Qiang; Chang, Qi; Zhao, Ya-Li; Liu, Ning-Ning; Zhu, Xiao-Shan; Liu, Qin-Qin; Wang, Li-Feng; Yang, An-Gang; Gao, Chun-Fang; Li, Jun-Tang

    2017-01-31

    Increasing evidence suggests that regular physical exercise suppresses chronic inflammation. However, the potential inhibitory effects of swimming on dextran sulfate sodium (DSS)-induced chronic colitis, and its underlying mechanisms, remain unclear. In this study, rats were orally administered DSS to induce chronic colitis, and subsequently treated with or without swimming exercise. A 7-week swimming program (1 or 1.5 hours per day, 5 days per week) ameliorated DSS-caused colon shortening, colon barrier disruption, spleen enlargement, serum LDH release, and reduction of body weight gain. Swimming for 1.5 hours per day afforded greater protection than 1 hour per day. Swimming ameliorated DSS-induced decrease in crypt depth, and increases in myeloperoxidase activity, infiltration of Ly6G+ neutrophils and TNF-α- and IFN-γ-expressing CD3+ T cells, as well as fecal calprotectin and lactoferrin. Swimming inhibited pro-inflammatory cytokine and chemokine production and decreased the protein expression of phosphorylated nuclear factor-κB p65 and cyclooxygenase 2, whereas it elevated interleukin-10 levels. Swimming impeded the generation of reactive oxygen species, malondialdehyde, and nitric oxide; however, it boosted glutathione levels, total antioxidant capacity, and superoxide dismutase and glutathione peroxidase activities. Additionally, swimming decreased caspase-3 activity and expression of apoptosis-inducing factor, cytochrome c, Bax, and cleaved-caspase-3, but increased Bcl-2 levels. Overall, these results suggest that swimming exerts beneficial effects on DSS-induced chronic colitis by modulating inflammation, oxidative stress, and apoptosis.

  11. The Impact of Immediate Verbal Feedback on the Improvement of Swimming Technique

    PubMed Central

    Zatoń, Krystyna; Szczepan, Stefan

    2014-01-01

    The present research attempts to ascertain the impact of immediate verbal feedback (IVF) on modifications of stroke length (SL). In all swimming styles, stroke length is considered an essential kinematic parameter of the swimming cycle. It is important for swimming mechanics and energetics. If SL shortens while the stroke rate (SR) remains unchanged or decreases, the temporal-spatial structure of swimming is considered erroneous. It results in a lower swimming velocity. Our research included 64 subjects, who were divided into two groups: the experimental – E (n=32) and the control – C (n=32) groups. A pretest and a post-test were conducted. The subjects swam the front crawl over the test distance of 25m at Vmax. Only the E group subjects were provided with IVF aiming to increase their SL. All tests were filmed by two cameras (50 samples•s-1). The kinematic parameters of the swimming cycle were analyzed using the SIMI Reality Motion Systems 2D software (SIMI Reality Motion Systems 2D GmbH, Germany). The movement analysis allowed to determine the average horizontal swimming velocity over 15 meters. The repeated measures analysis of variance ANOVA with a post-hoc Tukey range test demonstrated statistically significant (p<0.05) differences between the two groups in terms of SL and swimming velocity. IVF brought about a 6.93% (Simi method) and a 5.09% (Hay method) increase in SL, as well as a 2.92% increase in swimming velocity. PMID:25114741

  12. Swimming attenuates inflammation, oxidative stress, and apoptosis in a rat model of dextran sulfate sodium-induced chronic colitis

    PubMed Central

    Zhu, Xiao-shan; Liu, Qin-qin; Wang, Li-feng; Yang, An-gang; Gao, Chun-fang; Li, Jun-tang

    2017-01-01

    Increasing evidence suggests that regular physical exercise suppresses chronic inflammation. However, the potential inhibitory effects of swimming on dextran sulfate sodium (DSS)-induced chronic colitis, and its underlying mechanisms, remain unclear. In this study, rats were orally administered DSS to induce chronic colitis, and subsequently treated with or without swimming exercise. A 7-week swimming program (1 or 1.5 hours per day, 5 days per week) ameliorated DSS-caused colon shortening, colon barrier disruption, spleen enlargement, serum LDH release, and reduction of body weight gain. Swimming for 1.5 hours per day afforded greater protection than 1 hour per day. Swimming ameliorated DSS-induced decrease in crypt depth, and increases in myeloperoxidase activity, infiltration of Ly6G+ neutrophils and TNF-a- and IFN-?-expressing CD3+ T cells, as well as fecal calprotectin and lactoferrin. Swimming inhibited pro-inflammatory cytokine and chemokine production and decreased the protein expression of phosphorylated nuclear factor-?B p65 and cyclooxygenase 2, whereas it elevated interleukin-10 levels. Swimming impeded the generation of reactive oxygen species, malondialdehyde, and nitric oxide; however, it boosted glutathione levels, total antioxidant capacity, and superoxide dismutase and glutathione peroxidase activities. Additionally, swimming decreased caspase-3 activity and expression of apoptosis-inducing factor, cytochrome c, Bax, and cleaved-caspase-3, but increased Bcl-2 levels. Overall, these results suggest that swimming exerts beneficial effects on DSS-induced chronic colitis by modulating inflammation, oxidative stress, and apoptosis. PMID:28030847

  13. Methods matter: considering locomotory mode and respirometry technique when estimating metabolic rates of fishes

    PubMed Central

    Rummer, Jodie L.; Binning, Sandra A.; Roche, Dominique G.; Johansen, Jacob L.

    2016-01-01

    Respirometry is frequently used to estimate metabolic rates and examine organismal responses to environmental change. Although a range of methodologies exists, it remains unclear whether differences in chamber design and exercise (type and duration) produce comparable results within individuals and whether the most appropriate method differs across taxa. We used a repeated-measures design to compare estimates of maximal and standard metabolic rates (MMR and SMR) in four coral reef fish species using the following three methods: (i) prolonged swimming in a traditional swimming respirometer; (ii) short-duration exhaustive chase with air exposure followed by resting respirometry; and (iii) short-duration exhaustive swimming in a circular chamber. We chose species that are steady/prolonged swimmers, using either a body–caudal fin or a median–paired fin swimming mode during routine swimming. Individual MMR estimates differed significantly depending on the method used. Swimming respirometry consistently provided the best (i.e. highest) estimate of MMR in all four species irrespective of swimming mode. Both short-duration protocols (exhaustive chase and swimming in a circular chamber) produced similar MMR estimates, which were up to 38% lower than those obtained during prolonged swimming. Furthermore, underestimates were not consistent across swimming modes or species, indicating that a general correction factor cannot be used. However, SMR estimates (upon recovery from both of the exhausting swimming methods) were consistent across both short-duration methods. Given the increasing use of metabolic data to assess organismal responses to environmental stressors, we recommend carefully considering respirometry protocols before experimentation. Specifically, results should not readily be compared across methods; discrepancies could result in misinterpretation of MMR and aerobic scope. PMID:27382471

  14. Swimming physiology of European silver eels (Anguilla anguilla L.): energetic costs and effects on sexual maturation and reproduction.

    PubMed

    Palstra, Arjan P; van den Thillart, Guido E E J M

    2010-09-01

    The European eel migrates 5,000-6,000 km to the Sargasso Sea to reproduce. Because they venture into the ocean in a pre-pubertal state and reproduce after swimming for months, a strong interaction between swimming and sexual maturation is expected. Many swimming trials have been performed in 22 swim tunnels to elucidate their performance and the impact on maturation. European eels are able to swim long distances at a cost of 10-12 mg fat/km which is 4-6 times more efficient than salmonids. The total energy costs of reproduction correspond to 67% of the fat stores. During long distance swimming, the body composition stays the same showing that energy consumption calculations cannot be based on fat alone but need to be compensated for protein oxidation. The optimal swimming speed is 0.61-0.67 m s(-1), which is approximately 60% higher than the generally assumed cruise speed of 0.4 m s(-1) and implies that female eels may reach the Sargasso Sea within 3.5 months instead of the assumed 6 months. Swimming trials showed lipid deposition and oocyte growth, which are the first steps of sexual maturation. To investigate effects of oceanic migration on maturation, we simulated group-wise migration in a large swim-gutter with seawater. These trials showed suppressed gonadotropin expression and vitellogenesis in females, while in contrast continued sexual maturation was observed in silver males. The induction of lipid deposition in the oocytes and the inhibition of vitellogenesis by swimming in females suggest a natural sequence of events quite different from artificial maturation protocols.

  15. Swimming physiology of European silver eels (Anguilla anguilla L.): energetic costs and effects on sexual maturation and reproduction

    PubMed Central

    van den Thillart, Guido E. E. J. M.

    2010-01-01

    The European eel migrates 5,000–6,000 km to the Sargasso Sea to reproduce. Because they venture into the ocean in a pre-pubertal state and reproduce after swimming for months, a strong interaction between swimming and sexual maturation is expected. Many swimming trials have been performed in 22 swim tunnels to elucidate their performance and the impact on maturation. European eels are able to swim long distances at a cost of 10–12 mg fat/km which is 4–6 times more efficient than salmonids. The total energy costs of reproduction correspond to 67% of the fat stores. During long distance swimming, the body composition stays the same showing that energy consumption calculations cannot be based on fat alone but need to be compensated for protein oxidation. The optimal swimming speed is 0.61–0.67 m s−1, which is ~60% higher than the generally assumed cruise speed of 0.4 m s−1 and implies that female eels may reach the Sargasso Sea within 3.5 months instead of the assumed 6 months. Swimming trials showed lipid deposition and oocyte growth, which are the first steps of sexual maturation. To investigate effects of oceanic migration on maturation, we simulated group-wise migration in a large swim-gutter with seawater. These trials showed suppressed gonadotropin expression and vitellogenesis in females, while in contrast continued sexual maturation was observed in silver males. The induction of lipid deposition in the oocytes and the inhibition of vitellogenesis by swimming in females suggest a natural sequence of events quite different from artificial maturation protocols. PMID:20390348

  16. Applying physiological principles and assessment techniques to swimming the English Channel. A case study.

    PubMed

    Acevedo, E O; Meyers, M C; Hayman, M; Haskin, J

    1997-03-01

    This study presents the use of physiological principles and assessment techniques in addressing four objectives that can enhance a swimmer's likelihood of successfully swimming the English Channel. The four objective were: (1) to prescribe training intensities and determine ideal swimming pace; (2) to determine the amount of insulation needed, relative to heat produced, to diminish the likelihood of the swimmer suffering from hypothermia; (3) to calculate the caloric expenditure for the swim and the necessary glucose replacement required to prevent glycogen depletion; and (4) to determine the rate of acclimatization to cold water (15.56 C/60 F). The subject participated in several pool swimming data collection sessions including a tethered swim incremental protocol to determine peak oxygen consumption and onset of lactate accumulation and several steady state swims to determine ideal swimming pace at 4.0 mM/L of lactate. Additionally, these swims provided information on oxygen consumption, which in combination with ultrasound assessment of subcutaneous fat was used to assess heat production and insulation capabilities. Finally, the subject participated in 18 cold water immersions to document acclimatization rate. The data demonstrated the high fitness level of this subject and indicated that at a stroke rate of 63 stokes/min, HR was 130 heats/min and lactate was 4 mM/L. At this swimming pace the swimmer would need to consume 470 kcal of glucose/hr. In addition, the energy produced at this swim pace was 13.25 kcal/min while the energy lost at the present subcutaneous fat quantity was 13.40 kcal/min, requiring a fat weight gain of 6,363.03 g (13.88 lbs) to resist heat loss. Finally, the data from the cold water immersions suggested that acclimatization occurred following two weeks of immersions. There results were provided to the swimmer and utilized in making decisions in preparation for the swim.

  17. Genotoxic Effects in Swimmers Exposed to Disinfection By-products in Indoor Swimming Pools

    PubMed Central

    Kogevinas, Manolis; Villanueva, Cristina M.; Font-Ribera, Laia; Liviac, Danae; Bustamante, Mariona; Espinoza, Felicidad; Nieuwenhuijsen, Mark J.; Espinosa, Aina; Fernandez, Pilar; DeMarini, David M.; Grimalt, Joan O.; Grummt, Tamara; Marcos, Ricard

    2010-01-01

    Background Exposure to disinfection by-products (DBPs) in drinking water has been associated with cancer risk. A recent study (Villanueva et al. 2007; Am J Epidemiol 165:148–156) found an increased bladder cancer risk among subjects attending swimming pools relative to those not attending. Objectives We evaluated adults who swam in chlorinated pools to determine whether exposure to DBPs in pool water is associated with biomarkers of genotoxicity. Methods We collected blood, urine, and exhaled air samples from 49 nonsmoking adult volunteers before and after they swam for 40 min in an indoor chlorinated pool. We estimated associations between the concentrations of four trihalomethanes (THMs) in exhaled breath and changes in micronuclei (MN) and DNA damage (comet assay) in peripheral blood lymphocytes before and 1 hr after swimming; urine mutagenicity (Ames assay) before and 2 hr after swimming; and MN in exfoliated urothelial cells before and 2 weeks after swimming. We also estimated associations and interactions with polymorphisms in genes related to DNA repair or to DBP metabolism. Results After swimming, the total concentration of the four THMs in exhaled breath was seven times higher than before swimming. The change in the frequency of micronucleated lymphocytes after swimming increased in association with higher exhaled concentrations of the brominated THMs (p = 0.03 for bromodichloromethane, p = 0.05 for chlorodibromomethane, p = 0.01 for bromoform) but not chloroform. Swimming was not associated with DNA damage detectable by the comet assay. Urine mutagenicity increased significantly after swimming, in association with the higher concentration of exhaled bromoform (p = 0.004). We found no significant associations with changes in micronucleated urothelial cells. Conclusions Our findings support potential genotoxic effects of exposure to DBPs from swimming pools. The positive health effects gained by swimming could be increased by reducing the potential health risks of pool water. PMID:20833606

  18. Intraspecific variation in aerobic and anaerobic locomotion: gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata) do not exhibit a trade-off between maximum sustained swimming speed and minimum cost of transport

    PubMed Central

    Svendsen, Jon C.; Tirsgaard, Bjørn; Cordero, Gerardo A.; Steffensen, John F.

    2015-01-01

    Intraspecific variation and trade-off in aerobic and anaerobic traits remain poorly understood in aquatic locomotion. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), both axial swimmers, this study tested four hypotheses: (1) gait transition from steady to unsteady (i.e., burst-assisted) swimming is associated with anaerobic metabolism evidenced as excess post exercise oxygen consumption (EPOC); (2) variation in swimming performance (critical swimming speed; Ucrit) correlates with metabolic scope (MS) or anaerobic capacity (i.e., maximum EPOC); (3) there is a trade-off between maximum sustained swimming speed (Usus) and minimum cost of transport (COTmin); and (4) variation in Usus correlates positively with optimum swimming speed (Uopt; i.e., the speed that minimizes energy expenditure per unit of distance traveled). Data collection involved swimming respirometry and video analysis. Results showed that anaerobic swimming costs (i.e., EPOC) increase linearly with the number of bursts in S. aurata, with each burst corresponding to 0.53 mg O2 kg−1. Data are consistent with a previous study on striped surfperch (Embiotoca lateralis), a labriform swimmer, suggesting that the metabolic cost of burst swimming is similar across various types of locomotion. There was no correlation between Ucrit and MS or anaerobic capacity in S. aurata indicating that other factors, including morphological or biomechanical traits, influenced Ucrit. We found no evidence of a trade-off between Usus and COTmin. In fact, data revealed significant negative correlations between Usus and COTmin, suggesting that individuals with high Usus also exhibit low COTmin. Finally, there were positive correlations between Usus and Uopt. Our study demonstrates the energetic importance of anaerobic metabolism during unsteady swimming, and provides intraspecific evidence that superior maximum sustained swimming speed is associated with superior swimming economy and optimum speed. PMID:25741285

  19. Computer assisted video analysis of swimming performance in a forced swim test: simultaneous assessment of duration of immobility and swimming style in mice selected for high and low swim-stress induced analgesia.

    PubMed

    Juszczak, Grzegorz R; Lisowski, Paweł; Sliwa, Adam T; Swiergiel, Artur H

    2008-10-20

    In behavioral pharmacology, two problems are encountered when quantifying animal behavior: 1) reproducibility of the results across laboratories, especially in the case of manual scoring of animal behavior; 2) presence of different behavioral idiosyncrasies, common in genetically different animals, that mask or mimic the effects of the experimental treatments. This study aimed to develop an automated method enabling simultaneous assessment of the duration of immobility in mice and the depth of body submersion during swimming by means of computer assisted video analysis system (EthoVision from Noldus). We tested and compared parameters of immobility based either on the speed of an object (animal) movement or based on the percentage change in the object's area between the consecutive video frames. We also examined the effects of an erosion-dilation filtering procedure on the results obtained with both parameters of immobility. Finally, we proposed an automated method enabling assessment of depth of body submersion that reflects swimming performance. It was found that both parameters of immobility were sensitive to the effect of an antidepressant, desipramine, and that they yielded similar results when applied to mice that are good swimmers. The speed parameter was, however, more sensitive and more reliable because it depended less on random noise of the video image. Also, it was established that applying the erosion-dilation filtering procedure increased the reliability of both parameters of immobility. In case of mice that were poor swimmers, the assessed duration of immobility differed depending on a chosen parameter, thus resulting in the presence or lack of differences between two lines of mice that differed in swimming performance. These results substantiate the need for assessing swimming performance when the duration of immobility in the FST is compared in lines that differ in their swimming "styles". Testing swimming performance can also be important in the studies investigating the effects of swim stress on other behavioral or physiological parameters because poor swimming abilities displayed by some lines can increase severity of swim stress, masking the between-line differences or the main treatment effects.

  20. Similarities and Differences for Swimming in Larval and Adult Lampreys.

    PubMed

    McClellan, Andrew D; Pale, Timothée; Messina, J Alex; Buso, Scott; Shebib, Ahmad

    2016-01-01

    The spinal locomotor networks controlling swimming behavior in larval and adult lampreys may have some important differences. As an initial step in comparing the locomotor systems in lampreys, in larval animals the relative timing of locomotor movements and muscle burst activity were determined and compared to those previously published for adults. In addition, the kinematics for free swimming in larval and adult lampreys was compared in detail for the first time. First, for swimming in larval animals, the neuromechanical phase lag between the onsets or terminations of muscle burst activity and maximum concave curvature of the body increased with increasing distance along the body, similar to that previously shown in adults. Second, in larval lampreys, but not adults, absolute swimming speed (U; mm s(-1)) increased with animal length (L). In contrast, normalized swimming speed (U'; body lengths [bl] s(-1)) did not increase with L in larval or adult animals. In both larval and adult lampreys, U' and normalized wave speed (V') increased with increasing tail-beat frequency. Wavelength and mechanical phase lag did not vary significantly with tail-beat frequency but were significantly different in larval and adult animals. Swimming in larval animals was characterized by a smaller U/V ratio, Froude efficiency, and Strouhal number than in adults, suggesting less efficient swimming for larval animals. In addition, during swimming in larval lampreys, normalized lateral head movements were larger and normalized lateral tail movements were smaller than for adults. Finally, larval animals had proportionally smaller lateral surface areas of the caudal body and fin areas than adults. These differences are well suited for larval sea lampreys that spend most of the time buried in mud/sand, in which swimming efficiency is not critical, compared to adults that would experience significant selection pressure to evolve higher-efficiency swimming to catch up to and attach to fish for feeding as well as engage in long-distance migration during spawning. Finally, the differences in swim efficiency for larval and adult lampreys are compared to other animals employing the anguilliform mode of swimming.

  1. 77 FR 23120 - Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ...-AA08 Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount... at Patriots Point on the Cooper River. Approximately 600 swimmers will be participating in the swim... Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount Pleasant...

  2. Swimming Lessons: Learning, New Materialisms, Posthumanism, and Post Qualitative Research Emerge through a Pool Poem

    ERIC Educational Resources Information Center

    McKnight, Lucinda

    2016-01-01

    This article shifts from the formal learning spaces of school and university to an Australian public swimming pool to playfully engage some of the dilemmas that recent theory poses for curriculum studies. The article enacts multiple diffractions (Barad, 2007) as theory becomes swimming and swimming becomes theory, and ideas and movements are…

  3. 78 FR 19155 - Special Local Regulations; Marine Events, Wrightsville Channel; Wrightsville Beach, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... establish a Special Local Regulation for the ``Swim the Loop/Motts Channel Sprint'' swim event, to be held..., mile 283.1, at Wrightsville Beach, North Carolina, during the swim event. DATES: Comments and related...:45 a.m., Without Limits Coaching will sponsor ``Swim the Loop'' and the ``Motts Channel Sprint'' on...

  4. Examination of Teaching-Learning Process in Swimming Applying Chaffers' System of Interaction Categories

    ERIC Educational Resources Information Center

    Biro, Melinda; Birone, Edit N.; Fugedi, Balazs; Revesz, Laszlo; Szabo, Bela; Honfi, Laszlo

    2007-01-01

    The focus of this research is to examine the role of student-teacher interaction during swimming lessons. Forty-nine (49) elementary school PE teachers, swimming trainers and instructors (28 females, 21 males) consented to participate in this study. A total of seventy-seven (77) swimming lessons were videotaped and coded with the Cheffers'…

  5. 77 FR 41271 - Safety Zone; Newburgh to Beacon Swim, Newburgh, Hudson River, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... 1625-AA00 Safety Zone; Newburgh to Beacon Swim, Newburgh, Hudson River, NY AGENCY: Coast Guard, DHS... navigable waters of the Hudson River, NY in the vicinity of Newburgh, NY for the annual Newburgh Beacon Swim... hazards associated with swimmers competing in a swim across the Hudson River. Persons and vessels are...

  6. 76 FR 60729 - Special Local Regulations for Marine Events, Wrightsville Channel; Wrightsville Beach, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... special local regulations for the swim portions of ``Beach 2 Battleship Full and Half Iron Distance... is intended to restrict vessel traffic on Banks, Motts, and Wrightsville Channels during the swimming... engage in a three-part race, including run, bike, and swim portions. During the swim portion of the event...

  7. 76 FR 55561 - Special Local Regulations for Marine Events; Temporary Change of Dates for Recurring Marine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ... Wrightsville Channel during the swimming portion of this event. DATES: This rule is effective on September 17... bike-riding portion, and a swimming portion. The swimming portion of the Triathlon takes place in the... safety zone for the swimming portion of the Triathlon. The listing of annual recurring marine events...

  8. Sink or Swim: Navigating the Perilous Waters of Promotion and Tenure--What's Diversity Got to Do with It?

    ERIC Educational Resources Information Center

    Knight, Wanda B.

    2010-01-01

    The "sink-or-swim" ideology is pervasive in the United States society. At research universities, for example, promotion and tenure are institutional waters in which faculty are forced to sink or swim with respect to publishing. Either they publish ("swim") or they perish ("sink"). In throwing faculty overboard,…

  9. Competitive Swimming and Racial Disparities in Drowning

    PubMed Central

    Myers, Samuel L.; Cuesta, Ana M.; Lai, Yufeng

    2018-01-01

    This paper provides compelling evidence of an inverse relationship between competitive swimming rates and drowning rates using Centers for Disease Control and Prevention (CDC) data on fatal drowning rates and membership rates from USA Swimming, the governing organization of competitive swimming in the United States. Tobit and Poisson regression models are estimated using panel data by state from 1999–2007 separately for males, females, African Americans and whites. The strong inverse relationship between competitive swimming rates and unintentional deaths through fatal drowning is most pronounced among African Americans males.

  10. [Legal and management issues of public health requirements for swimming pools in Regione Toscana].

    PubMed

    Linguanti, Saverio; Totaro, Michele; Frendo, Lorenzo; Giorgi, Serena; Porretta, Andrea; Valentini, Paola; Baggiani, Angelo

    2018-01-01

    In this paper we describe the laws and rules applying to swimming pools. Authorization activity title for recreational swimming pools is regulated according to articles 80 and 86 of the TULPS R.D.n°773/1931. In Regione Toscana periodic management of the hygienic requirements for swimming pools is regulated by Regional Decree 54R/2015. It requires the evaluation of physical-chemical and microbiological indicators. The law applies to structural and organizational requirements of swimming pools as well as defines responsabilities of managers.

  11. Spiroplasma swim by a processive change in body helicity.

    NASA Astrophysics Data System (ADS)

    Shaevitz, Joshua

    2006-03-01

    Microscopic organisms must rely on very different strategies than their macroscopic counterparts to swim through liquid. To date, the best understood method for prokaryotic swimming employs the rotation of flagella. I will present data that Spiroplasma, tiny helical bacteria that infect plants and insects, use a very different approach. By measuring cell kinematics during free swimming, we find that propulsion is generated by the propagation of kink pairs down the length of the cell body. A processive change in the helicity of the body creates these waves and enables directional movement. Unlike the motion of other helical swimmers such as Spirochetes, Spiroplasma swimming velocity increases with increasing viscosity. In addition, cell morphological parameters such as helical pitch and cell length influence swimming velocity.

  12. Swimming Pattern of Vorticella convallaria Trophont in the Hele-Shaw Confinements

    NASA Astrophysics Data System (ADS)

    Park, Younggil; Ryu, Sangjin; Jung, Sunghwan

    In the trophont form Vorticella convallariais a sessile stalked ciliate, which consists of an inverted bell-shaped cell body (zooid) and a slender stalk attaching the zooid to a substrate. Under mechanical shearing, the zooid is separated from the stalk and can swim using circular cilia rows around the oral part. Here we present how the stalkless trophont zooid of V. convallariaswims in Hele-Shaw geometries, as a model system for microorganism swimming. After having harvested stalkless zooids, we observed their swimming in water between two glass surfaces with narrow gaps using video microscopy. Based on their swimming trajectories measured with image analysis, we investigated how the swimming pattern of the trophont zooid of V. convallaria was influenced by the constraints.

  13. Repeated exposure to corticosterone increases depression-like behavior in two different versions of the forced swim test without altering nonspecific locomotor activity or muscle strength.

    PubMed

    Marks, Wendie; Fournier, Neil M; Kalynchuk, Lisa E

    2009-08-04

    We have recently shown that repeated high dose injections of corticosterone (CORT) reliably increase depression-like behavior on a modified one-day version of the forced swim test. The main purpose of this experiment was to compare the effect of these CORT injections on our one-day version of the forced swim test and the more traditional two-day version of the test. A second purpose was to determine whether altered behavior in the forced swim test could be due to nonspecific changes in locomotor activity or muscle strength. Separate groups of rats received a high dose CORT injection (40 mg/kg) or a vehicle injection once per day for 21 consecutive days. Then, half the rats from each group were exposed to the traditional two-day forced swim test and the other half were exposed to our one-day forced swim test. After the forced swim testing, all the rats were tested in an open field and in a wire suspension grip strength test. The CORT injections significantly increased the time spent immobile and decreased the time spent swimming in both versions of the forced swim test. However, they had no significant effect on activity in the open field or grip strength in the wire suspension test. These results show that repeated CORT injections increase depression-like behavior regardless of the specific parameters of forced swim testing, and that these effects are independent of changes in locomotor activity or muscle strength.

  14. Homology and homoplasy of swimming behaviors and neural circuits in the Nudipleura (Mollusca, Gastropoda, Opisthobranchia)

    PubMed Central

    Newcomb, James M.; Sakurai, Akira; Lillvis, Joshua L.; Gunaratne, Charuni A.; Katz, Paul S.

    2012-01-01

    How neural circuit evolution relates to behavioral evolution is not well understood. Here the relationship between neural circuits and behavior is explored with respect to the swimming behaviors of the Nudipleura (Mollusca, Gastropoda, Opithobranchia). Nudipleura is a diverse monophyletic clade of sea slugs among which only a small percentage of species can swim. Swimming falls into a limited number of categories, the most prevalent of which are rhythmic left–right body flexions (LR) and rhythmic dorsal–ventral body flexions (DV). The phylogenetic distribution of these behaviors suggests a high degree of homoplasy. The central pattern generator (CPG) underlying DV swimming has been well characterized in Tritonia diomedea and in Pleurobranchaea californica. The CPG for LR swimming has been elucidated in Melibe leonina and Dendronotus iris, which are more closely related. The CPGs for the categorically distinct DV and LR swimming behaviors consist of nonoverlapping sets of homologous identified neurons, whereas the categorically similar behaviors share some homologous identified neurons, although the exact composition of neurons and synapses in the neural circuits differ. The roles played by homologous identified neurons in categorically distinct behaviors differ. However, homologous identified neurons also play different roles even in the swim CPGs of the two LR swimming species. Individual neurons can be multifunctional within a species. Some of those functions are shared across species, whereas others are not. The pattern of use and reuse of homologous neurons in various forms of swimming and other behaviors further demonstrates that the composition of neural circuits influences the evolution of behaviors. PMID:22723353

  15. Removal of spike frequency adaptation via neuromodulation intrinsic to the Tritonia escape swim central pattern generator.

    PubMed

    Katz, P S; Frost, W N

    1997-10-15

    For the mollusc Tritonia diomedea to generate its escape swim motor pattern, interneuron C2, a crucial member of the central pattern generator (CPG) for this rhythmic behavior, must fire repetitive bursts of action potentials. Yet, before swimming, repeated depolarizing current pulses injected into C2 at periods similar those in the swim motor program are incapable of mimicking the firing rate attained by C2 on each cycle of a swim motor program. This resting level of C2 inexcitability is attributable to its own inherent spike frequency adaptation (SFA). Clearly, this property must be altered for the swim behavior to occur. The pathway for initiation of the swimming behavior involves activation of the serotonergic dorsal swim interneurons (DSIs), which are also intrinsic members of the swim CPG. Physiologically appropriate DSI stimulation transiently decreases C2 SFA, allowing C2 to fire at higher rates even when repeatedly depolarized at short intervals. The increased C2 excitability caused by DSI stimulation is mimicked and occluded by serotonin application. Furthermore, the change in excitability is not caused by the depolarization associated with DSI stimulation or serotonin application but is correlated with a decrease in C2 spike afterhyperpolarization. This suggests that the DSIs use serotonin to evoke a neuromodulatory action on a conductance in C2 that regulates its firing rate. This modulatory action of one CPG neuron on another is likely to play a role in configuring the swim circuit into its rhythmic pattern-generating mode and maintaining it in that state.

  16. The Impact of Resistance Training on Swimming Performance: A Systematic Review.

    PubMed

    Crowley, Emmet; Harrison, Andrew J; Lyons, Mark

    2017-11-01

    The majority of propulsive forces in swimming are produced from the upper body, with strong correlations between upper body strength and sprint performance. There are significant gaps in the literature relating to the impact of resistance training on swimming performance, specifically the transfer to swimming performance. The aims of this systematic literature review are to (1) explore the transfer of resistance-training modalities to swimming performance, and (2) examine the effects of resistance training on technical aspects of swimming. Four online databases were searched with the following inclusion criteria: (1) journal articles with outcome measures related to swimming performance, and (2) competitive swimmers participating in a structured resistance-training programme. Exclusion criteria were (1) participants with a mean age <16 years; (2) untrained, novice, masters and paraplegic swimmers; (3) triathletes and waterpolo players; (4) swimmers with injuries or illness; and (5) studies of starts and turns specifically. Data were extracted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the Physiotherapy Evidence Database (PEDro) scale was applied. For optimal transfer, specific, low-volume, high-velocity/force resistance-training programmes are optimal. Stroke length is best achieved through resistance training with low repetitions at a high velocity/force. Resisted swims are the most appropriate training modality for improving stroke rate. Future research is needed with respect to the effects of long-term resistance-training interventions on both technical parameters of swimming and overall swimming performance. The results of such work will be highly informative for the scientific community, coaches and athletes.

  17. Swim performance and thermoregulatory effects of wearing clothing in a simulated cold-water survival situation.

    PubMed

    Bowes, Heather; Eglin, Clare M; Tipton, Michael J; Barwood, Martin J

    2016-04-01

    Accidental cold-water immersion (CWI) impairs swim performance, increases drowning risk and often occurs whilst clothed. The impact of clothing on thermoregulation and swim performance during CWI was explored with the view of making recommendations on whether swimming is viable for self-rescue; contrary to the traditional recommendations. Ten unhabituated males (age 24 (4) years; height 1.80 (0.08) m; mass 78.50 (10.93) kg; body composition 14.8 (3.4) fat %) completed four separate CWIs in 12 °C water. They either rested clothed or naked (i.e. wearing a bathing costume) or swum self-paced clothed or naked for up to 1 h. Swim speed, distance covered, oxygen consumption and thermal responses (rectal temperature (T re), mean skin temperature (T msk) and mean body temperature T b) were measured. When clothed, participants swum at a slower pace and for a significantly shorter distance (815 (482) m, 39 (19) min) compared to when naked (1264 (564) m, 52 (18) min), but had a similar oxygen consumption indicating clothing made them less efficient. Swimming accelerated the rate of T msk and T b cooling and wearing clothing partially attenuated this drop. The impairment to swimming performance caused by clothing was greater than the thermal benefit it provided; participants withdrew due to exhaustion before hypothermia developed. Swimming is a viable self-rescue method in 12 °C water, however, clothing impairs swimming capability. Self-rescue swimming could be considered before clinical hypothermia sets in for the majority of individuals. These suggestions must be tested for the wider population.

  18. Ice swimming - 'Ice Mile' and '1 km Ice event'.

    PubMed

    Knechtle, Beat; Rosemann, Thomas; Rüst, Christoph A

    2015-01-01

    Ice swimming for 1 mile and 1 km is a new discipline in open-water swimming since 2009. This study examined female and male performances in swimming 1 mile ('Ice Mile') and 1 km ('1 km Ice event') in water of 5 °C or colder between 2009 and 2015 with the hypothesis that women would be faster than men. Between 2009 and 2015, 113 men and 38 women completed one 'Ice Mile' and 26 men and 13 completed one '1 km Ice event' in water colder than +5 °C following the rules of International Ice Swimming Association (IISA). Differences in performance between women and men were determined. Sex difference (%) was calculated using the equation ([time for women] - [time for men]/[time for men] × 100). For 'Ice Mile', a mixed-effects regression model with interaction analyses was used to investigate the influence of sex and environmental conditions on swimming speed. The association between water temperature and swimming speed was assessed using Pearson correlation analyses. For 'Ice Mile' and '1 km Ice event', the best men were faster than the best women. In 'Ice Mile', calendar year, number of attempts, water temperature and wind chill showed no association with swimming speed for both women and men. For both women and men, water temperature was not correlated to swimming speed in both 'Ice Mile' and '1 km Ice event'. In water colder than 5 °C, men were faster than women in 'Ice Mile' and '1 km Ice event'. Water temperature showed no correlation to swimming speed.

  19. An immersed boundary method for two-phase fluids and gels and the swimming of Caenorhabditis elegans through viscoelastic fluids

    PubMed Central

    Lee, Pilhwa; Wolgemuth, Charles W.

    2016-01-01

    The swimming of microorganisms typically involves the undulation or rotation of thin, filamentary objects in a fluid or other medium. Swimming in Newtonian fluids has been examined extensively, and only recently have investigations into microorganism swimming through non-Newtonian fluids and gels been explored. The equations that govern these more complex media are often nonlinear and require computational algorithms to study moderate to large amplitude motions of the swimmer. Here, we develop an immersed boundary method for handling fluid-structure interactions in a general two-phase medium, where one phase is a Newtonian fluid and the other phase is viscoelastic (e.g., a polymer melt or network). We use this algorithm to investigate the swimming of an undulating, filamentary swimmer in 2D (i.e., a sheet). A novel aspect of our method is that it allows one to specify how forces produced by the swimmer are distributed between the two phases of the fluid. The algorithm is validated by comparing theoretical predictions for small amplitude swimming in gels and viscoelastic fluids. We show how the swimming velocity depends on material parameters of the fluid and the interaction between the fluid and swimmer. In addition, we simulate the swimming of Caenorhabditis elegans in viscoelastic fluids and find good agreement between the swimming speeds and fluid flows in our simulations and previous experimental measurements. These results suggest that our methodology provides an accurate means for exploring the physics of swimming through non-Newtonian fluids and gels. PMID:26858520

  20. Critical evaluation of oxygen-uptake assessment in swimming.

    PubMed

    Sousa, Ana; Figueiredo, Pedro; Pendergast, David; Kjendlie, Per-Ludvik; Vilas-Boas, João P; Fernandes, Ricardo J

    2014-03-01

    Swimming has become an important area of sport science research since the 1970s, with the bioenergetic factors assuming a fundamental performance-influencing role. The purpose of this study was to conduct a critical evaluation of the literature concerning oxygen-uptake (VO2) assessment in swimming, by describing the equipment and methods used and emphasizing the recent works conducted in ecological conditions. Particularly in swimming, due to the inherent technical constraints imposed by swimming in a water environment, assessment of VO2max was not accomplished until the 1960s. Later, the development of automated portable measurement devices allowed VO2max to be assessed more easily, even in ecological swimming conditions, but few studies have been conducted in swimming-pool conditions with portable breath-by-breath telemetric systems. An inverse relationship exists between the velocity corresponding to VO2max and the time a swimmer can sustain it at this velocity. The energy cost of swimming varies according to its association with velocity variability. As, in the end, the supply of oxygen (whose limitation may be due to central-O2 delivery and transportation to the working muscles-or peripheral factors-O2 diffusion and utilization in the muscles) is one of the critical factors that determine swimming performance, VO2 kinetics and its maximal values are critical in understanding swimmers' behavior in competition and to develop efficient training programs.

  1. Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum

    NASA Astrophysics Data System (ADS)

    Fujiwara, Yoshihisa; Tomishige, Masahiko; Itoh, Yasuhiro; Fujiwara, Masao; Shibata, Naho; Kosaka, Toshikazu; Hosoya, Hiroshi; Tanimoto, Yoshifumi

    2006-05-01

    Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum was studied by using a superconducting magnet. Around a centre of a round vessel, random swimming at 0 T and aligned swimming parallel to the magnetic field (MF) of 8 T were observed. Near a wall of the vessel, however, swimming round and round along the wall at 0 T and aligned swimming of turning at right angles upon collision with the wall, which was remarkable around 1-4 T, were detected. It was experimentally revealed that the former MF-induced parallel swimming at the vessel centre was caused physicochemically by the parallel magnetic orientation of the cell itself. From magnetic field dependence of the extent of the orientation, the magnetic susceptibility anisotropy (χ ∥-χ ⊥) was first obtained to be 3.4× 10-23 emu cell-1 at 298 K for Paramecium caudatum. The orientation of the cell was considered to result from the magnetic orientation of the cell membrane. On the other hand, although mechanisms of the latter swimming near the vessel wall regardless of the absence and presence of the magnetic field are unclear at present, these experimental results indicate that whether the cell exists near the wall alters the magnetic field effect on the swimming in the horizontal magnetic field.

  2. Paramecia swimming in viscous flow

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Jana, S.; Giarra, M.; Vlachos, P. P.; Jung, S.

    2015-12-01

    Ciliates like Paramecia exhibit fore-aft asymmetry in their body shapes, and preferentially swim in the direction of the slender anterior rather than the wider posterior. However, the physical reasons for this preference are not well understood. In this work, we propose that specific features of the fluid flow around swimming Paramecia confer some energetic advantage to the preferred swimming direction. Therefore, we seek to understand the effects of body asymmetry and swimming direction on the efficiency of swimming and the flux of fluid into the cilia layer (and thus of food into the oral groove), which we assumed to be primary factors in the energy budgets of these organisms. To this end, we combined numerical techniques (the boundary element method) and laboratory experiments (micro particle image velocimetry) to develop a quantitative model of the flow around a Paramecium and investigate the effect of the body shape on the velocity fields, as well as on the swimming and feeding behaviors. Both simulation and experimental results show that velocity fields exhibit fore-aft asymmetry. Moreover, the shape asymmetry revealed an increase of the fluid flux into the cilia layer compared to symmetric body shapes. Under the assumption that cilia fluid intake and feeding efficiency are primary factors in the energy budgets of Paramecia, our model predicts that the anterior swimming direction is energetically favorable to the posterior swimming direction.

  3. Swimming efficiency in a shear-thinning fluid

    NASA Astrophysics Data System (ADS)

    Nganguia, Herve; Pietrzyk, Kyle; Pak, On Shun

    2017-12-01

    Micro-organisms expend energy moving through complex media. While propulsion speed is an important property of locomotion, efficiency is another factor that may determine the swimming gait adopted by a micro-organism in order to locomote in an energetically favorable manner. The efficiency of swimming in a Newtonian fluid is well characterized for different biological and artificial swimmers. However, these swimmers often encounter biological fluids displaying shear-thinning viscosities. Little is known about how this nonlinear rheology influences the efficiency of locomotion. Does the shear-thinning rheology render swimming more efficient or less? How does the swimming efficiency depend on the propulsion mechanism of a swimmer and rheological properties of the surrounding shear-thinning fluid? In this work, we address these fundamental questions on the efficiency of locomotion in a shear-thinning fluid by considering the squirmer model as a general locomotion model to represent different types of swimmers. Our analysis reveals how the choice of surface velocity distribution on a squirmer may reduce or enhance the swimming efficiency. We determine optimal shear rates at which the swimming efficiency can be substantially enhanced compared with the Newtonian case. The nontrivial variations of swimming efficiency prompt questions on how micro-organisms may tune their swimming gaits to exploit the shear-thinning rheology. The findings also provide insights into how artificial swimmers should be designed to move through complex media efficiently.

  4. Observations on Side-Swimming Rainbow Trout in Water Recirculation Aquaculture Systems

    PubMed Central

    Good, Christopher; Davidson, John; Kinman, Christin; Kenney, P. Brett; Bæverfjord, Grete; Summerfelt, Steven

    2014-01-01

    Abstract During a controlled 6-month study using six replicated water recirculation aquaculture systems (WRASs), it was observed that Rainbow Trout Oncorhynchus mykiss in all WRASs exhibited a higher-than-normal prevalence of side swimming (i.e., controlled, forward swimming but with misaligned orientation such that the fish's sagittal axis is approximately parallel to the horizontal plane). To further our understanding of this abnormality, a substudy was conducted wherein side swimmers and normally swimming fish were selectively sampled from each WRAS and growth performance (length, weight), processing attributes (fillet yield, visceral index, ventrum [i.e., thickness of the ventral “belly flap”] index), blood gas and chemistry parameters, and swim bladder morphology and positioning were compared. Side swimmers were found to be significantly smaller in length and weight and had less fillet yield but higher ventrum indices. Whole-blood analyses demonstrated that, among other things, side swimmers had significantly lower whole-blood pH and higher Pco 2. Side swimmers typically exhibited swim bladder malformations, although the positive predictive value of this subjective assessment was only 73%. Overall, this study found several anatomical and physiological differences between side-swimming and normally swimming Rainbow Trout. Given the reduced weight and fillet yield of market-age side swimmers, producers would benefit from additional research to reduce side-swimming prevalence in their fish stocks. Received March 20, 2014; accepted May 20, 2014 PMID:25250476

  5. Effect of weight and frontal area of external telemetry packages on the kinematics, activity levels and swimming performance of small-bodied sharks.

    PubMed

    Bouyoucos, I A; Suski, C D; Mandelman, J W; Brooks, E J

    2017-05-01

    This study sought to observe the effects of submerged weight and frontal cross-sectional area of external telemetry packages on the kinematics, activity levels and swimming performance of small-bodied juvenile sharks, using lemon sharks Negaprion brevirostris (60-80 cm total length, L T ) as a model species. Juveniles were observed free-swimming in a mesocosm untagged and with small and large external accelerometer packages that increased frontal cross-sectional area of the animals and their submerged weight. Despite adhering to widely used standards for tag mass, the presence of an external telemetry package altered swimming kinematics, activity levels and swimming performance of juvenile N. brevirostris relative to untagged individuals, suggesting that tag mass is not a suitable standalone metric of device suitability. Changes in swimming performance could not be detected from tail-beat frequency, which suggests that tail-beat frequency is an unsuitable standalone metric of swimming performance for small N. brevirostris. Lastly, sharks experienced treatment-specific changes in activity level and swimming kinematics from morning to afternoon observation. Therefore, the presence of external telemetry packages altered the kinematics, activity levels and swimming performance of small young-of-the-year N. brevirostris and these data may therefore be relevant to other similar-sized juveniles of other shark species. © 2017 The Fisheries Society of the British Isles.

  6. 75 FR 52465 - Safety Zones; Swim Events Within the Sector New York Captain of the Port Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ...-AA00 Safety Zones; Swim Events Within the Sector New York Captain of the Port Zone AGENCY: Coast Guard... zones for swim events occurring on waters of the Hudson River, East River and Long Island Sound. These... with the swim events. Persons and vessels are prohibited from entering into, transiting through, or...

  7. 75 FR 29891 - Special Local Regulation; Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ...-AA08 Special Local Regulation; Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay... Lighthouse Dock, Fire Island, NY due to the annual Maggie Fischer Memorial Great South Bay Cross Bay Swim..., Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, NY, in the Federal Register (74...

  8. 77 FR 53769 - Safety Zone; Liberty to Freedom Swims, Liberty Island, Upper Bay and Hudson River, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... 1625-AA00 Safety Zone; Liberty to Freedom Swims, Liberty Island, Upper Bay and Hudson River, NY AGENCY... September 5, 2012 and September 15, 2012 Liberty to Freedom swim events. This temporary safety zone is necessary to protect the maritime public and event participants from the hazards associated with swim events...

  9. 36 CFR 3.16 - May I swim or wade in park waters?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false May I swim or wade in park waters? 3.16 Section 3.16 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR BOATING AND WATER USE ACTIVITIES § 3.16 May I swim or wade in park waters? Swimming or wading is...

  10. 77 FR 47520 - Special Local Regulations for Marine Events, Wrightsville Channel; Wrightsville Beach, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... Special Local Regulation for the ``Swim Harbor Island'' swim event, to be held on the waters adjacent to..., North Carolina, during the swim event. DATES: This rule is effective on September 29, 2012 and will be.... to 11 a.m., Without Limits Coaching will sponsor ``Swim Harbor Island'' on the waters adjacent to and...

  11. The Effect of Rehearsal Learning and Warm-up on the Speed of Different Swimming Strokes

    ERIC Educational Resources Information Center

    Magno, Carlo; Mascardo, Elizabeth

    2009-01-01

    The study investigated the effects of rehearsal learning and warm-up exercise on the time of performing different swimming strokes. The study was conducted among 202 college freshmen students taking up a course on physical education concentrated in swimming. The design employed is a mixed factorial (2 X 2) where time of swimming is measured before…

  12. 36 CFR 3.16 - May I swim or wade in park waters?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false May I swim or wade in park waters? 3.16 Section 3.16 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR BOATING AND WATER USE ACTIVITIES § 3.16 May I swim or wade in park waters? Swimming or wading is...

  13. Potential risks of TiO2 and ZnO nanoparticles released from sunscreens into outdoor swimming pools.

    PubMed

    Jeon, Soo-Kyung; Kim, Eun-Ju; Lee, Jaesang; Lee, Seunghak

    2016-11-05

    The potential risks of nanoparticles (NPs) in sunscreens being released into swimming water were evaluated by a series of laboratory experiments simulating the fate and transport of NPs in outdoor swimming pools. NPs released from sunscreen-applied skin were estimated using pig skins covered with five different commercial sunscreens containing TiO2, ZnO, or both at various concentrations. Assuming that the swimming water treatment processes consisted of filtration, UV irradiation, heating, and chlorination, possible removal of the released NPs by each process was estimated. Generation of hydrogen peroxide (H2O2) by the NPs under sunlight and after UV photochemical treatment were measured, and the H2O2 concentration possibly present in the swimming pool was calculated based on some specific scenarios of operating an outdoor swimming pool. It was found that a significant amount of the NPs in sunscreens could be released into the swimming water, and accumulate during circulation through the treatment system. However, the concentration of H2O2 possibly present in the swimming pool should be below the level at which an adverse effect to bathers is concerned. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Increased Risk of Tinea Pedis and Onychomycosis Among Swimming Pool Employees in Netanya Area, Israel.

    PubMed

    Shemer, Avner; Gupta, Aditya K; Amichai, Boaz; Baum, Sharon; Barzilai, Aviv; Farhi, Renata; Kaplan, Yehonathan; MacLeod, Melissa A

    2016-12-01

    Tinea pedis and onychomycosis often co-occur in individuals. A relationship between swimming pools and tinea pedis exists; however, little research has investigated the relationship between onychomycosis, tinea pedis, and swimming pools. This study sought to examine the prevalence of tinea pedis and onychomycosis among swimming pool employees, a population that may be at risk of tinea infections. Samples were taken from 169 employees at 21 swimming pools in the Netanya area, Israel. KOH microscopy and culture was used to identify fungi. About 46 % of swimming pool employees had concurrent tinea pedis and onychomycosis, 30 % had tinea pedis only, and 6 % had onychomycosis only, compared to 10, 8, and 8 % of controls, respectively. After adjusting for age and gender, swimming pool employees were 20× more likely to have concurrent tinea pedis and onychomycosis, 15× more likely to have tinea pedis only, and 3× more likely to have onychomycosis only compared to controls. The present results are in agreement with previous research and support that swimming pools remain an important source of fungal contamination. More attention to hygienic guidelines and preventative measures may be needed in these settings.

  15. Transitions between three swimming gaits in Paramecium escape.

    PubMed

    Hamel, Amandine; Fisch, Cathy; Combettes, Laurent; Dupuis-Williams, Pascale; Baroud, Charles N

    2011-05-03

    Paramecium and other protists are able to swim at velocities reaching several times their body size per second by beating their cilia in an organized fashion. The cilia beat in an asymmetric stroke, which breaks the time reversal symmetry of small scale flows. Here we show that Paramecium uses three different swimming gaits to escape from an aggression, applied in the form of a focused laser heating. For a weak aggression, normal swimming is sufficient and produces a steady swimming velocity. As the heating amplitude is increased, a higher acceleration and faster swimming are achieved through synchronized beating of the cilia, which begin by producing oscillating swimming velocities and later give way to the usual gait. Finally, escape from a life-threatening aggression is achieved by a "jumping" gait, which does not rely on the cilia but is achieved through the explosive release of a group of trichocysts in the direction of the hot spot. Measurements through high-speed video explain the role of trichocysts in defending against aggressions while showing unexpected transitions in the swimming of microorganisms. These measurements also demonstrate that Paramecium optimizes its escape pattern by taking advantage of its inertia.

  16. Transitions between three swimming gaits in Paramecium escape

    PubMed Central

    Hamel, Amandine; Fisch, Cathy; Combettes, Laurent; Dupuis-Williams, Pascale; Baroud, Charles N.

    2011-01-01

    Paramecium and other protists are able to swim at velocities reaching several times their body size per second by beating their cilia in an organized fashion. The cilia beat in an asymmetric stroke, which breaks the time reversal symmetry of small scale flows. Here we show that Paramecium uses three different swimming gaits to escape from an aggression, applied in the form of a focused laser heating. For a weak aggression, normal swimming is sufficient and produces a steady swimming velocity. As the heating amplitude is increased, a higher acceleration and faster swimming are achieved through synchronized beating of the cilia, which begin by producing oscillating swimming velocities and later give way to the usual gait. Finally, escape from a life-threatening aggression is achieved by a “jumping” gait, which does not rely on the cilia but is achieved through the explosive release of a group of trichocysts in the direction of the hot spot. Measurements through high-speed video explain the role of trichocysts in defending against aggressions while showing unexpected transitions in the swimming of microorganisms. These measurements also demonstrate that Paramecium optimizes its escape pattern by taking advantage of its inertia. PMID:21464291

  17. Sudden Failure of Swimming in Cold Water

    PubMed Central

    Keatinge, W. R.; Prys-Roberts, C.; Cooper, K. E.; Honour, A. J.; Haight, J.

    1969-01-01

    To investigate the effect of cold water on swimming four men who declared themselves good swimmers were immersed fully clothed on separate days in water at 23·7° and 4·7° C. The time that they were able to swim in the cold water was much shorter than in the warm. The two shortest swims ended after 1·5 and 7·6 minutes, before rectal temperature fell, when the men suddenly floundered after developing respiratory distress with breathing rates of 56–60/min. The other cold swims, by the two fattest men, ended less abruptly with signs of general and peripheral hypothermia. It is concluded that swimming in cold water was stopped partly by respiratory reflexes in the thin men and hypothermia in the fat, and partly by the cold water's high viscosity. The longer swimming times of the fat men are attributed largely to their greater buoyancy enabling them to keep their heads above water during the early hyperventilation. The findings explain some reports of sudden death in cold water. It is clearly highly dangerous to attempt to swim short distances to shore without a life-jacket in water near 0° C. PMID:5764250

  18. Field swimming performance of bluegill sunfish, Lepomis macrochirus: implications for field activity cost estimates and laboratory measures of swimming performance.

    PubMed

    Cathcart, Kelsey; Shin, Seo Yim; Milton, Joanna; Ellerby, David

    2017-10-01

    Mobility is essential to the fitness of many animals, and the costs of locomotion can dominate daily energy budgets. Locomotor costs are determined by the physiological demands of sustaining mechanical performance, yet performance is poorly understood for most animals in the field, particularly aquatic organisms. We have used 3-D underwater videography to quantify the swimming trajectories and propulsive modes of bluegills sunfish ( Lepomis macrochirus , Rafinesque) in the field with high spatial (1-3 mm per pixel) and temporal (60 Hz frame rate) resolution. Although field swimming trajectories were variable and nonlinear in comparison to quasi steady-state swimming in recirculating flumes, they were much less unsteady than the volitional swimming behaviors that underlie existing predictive models of field swimming cost. Performance analyses suggested that speed and path curvature data could be used to derive reasonable estimates of locomotor cost that fit within measured capacities for sustainable activity. The distinct differences between field swimming behavior and performance measures obtained under steady-state laboratory conditions suggest that field observations are essential for informing approaches to quantifying locomotor performance in the laboratory.

  19. Spatial organization and Synchronization in collective swimming of Hemigrammus bleheri

    NASA Astrophysics Data System (ADS)

    Ashraf, Intesaaf; Ha, Thanh-Tung; Godoy-Diana, Ramiro; Thiria, Benjamin; Halloy, Jose; Collignon, Bertrand; Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH) Team; Laboratoire Interdisciplinaire des Energies de Demain (LIED) Team

    2016-11-01

    In this work, we study the collective swimming of Hemigrammus bleheri fish using experiments in a shallow swimming channel. We use high-speed video recordings to track the midline kinematics and the spatial organization of fish pairs and triads. Synchronizations are characterized by observance of "out of phase" and "in phase" configurations. We show that the synchronization state is highly correlated to swimming speed. The increase in synchronization led to efficient swimming based on Strouhal number. In case of fish pairs, the collective swimming is 2D and the spatial organization is characterized by two characteristic lengths: the lateral and longitudinal separation distances between fish pairs.For fish triads, different swimming patterns or configurations are observed having three dimensional structures. We performed 3D kinematic analysis by employing 3D reconstruction using the Direct Linear Transformation (DLT). We show that fish still keep their nearest neighbor distance (NND) constant irrespective of swimming speeds and configuration. We also point out characteristic angles between neighbors, hence imposing preferred patterns. At last we will give some perspectives on spatial organization for larger population. Sorbonne Paris City College of Doctoral Schools. European Union Information and Communication Technologies project ASSISIbf, FP7-ICT-FET-601074.

  20. Effect of Resveratrol Administration on the Element Metabolism in the Blood and Brain Tissues of Rats Subjected to Acute Swimming Exercise.

    PubMed

    Baltaci, Abdulkerim Kasim; Arslangil, Dilek; Mogulkoc, Rasim; Patlar, Suleyman

    2017-02-01

    The aim of the present study is to examine how resveratrol administration affects the element metabolism in the blood and brain cortex tissues of rats subjected to an acute swimming exercise. The study was carried out on Wistar-Albino-type adult male rats supplied by the Center. Group 1 is the control group. Group 2 is the swimming control group. Group 3 is the resveratrol (10 mg/kg/day) + swimming group. Group 4 is the resveratrol (10 mg/kg/day) group. Blood and brain cortex tissues were analyzed for some elements. The acute swimming exercise led to increases in the rats' serum iron, selenium, lead, cobalt, and boron levels, while the resveratrol-swimming group has increases in copper, phosphorus, and calcium values. The brain cortex tissue of the resveratrol-swimming group had significantly higher molybdenum levels than others. The results obtained in the study indicate that acute swimming exercise altered the distribution of elements in the serum to a considerable extent; however, resveratrol's affect is limited. Especially, resveratrol supplementation may have a regulatory affect on serum iron and magnesium levels.

  1. Psychophysiological evidence for the genuineness of swimming-style colour synaesthesia.

    PubMed

    Rothen, Nicolas; Nikolić, Danko; Jürgens, Uta Maria; Mroczko-Wąsowicz, Aleksandra; Cock, Josephine; Meier, Beat

    2013-03-01

    Recently, swimming-style colour synaesthesia was introduced as a new form of synaesthesia. A synaesthetic Stroop test was used to establish its genuineness. Since Stroop interference can occur for any type of overlearned association, in the present study we used a modified Stroop test and psychophysiological synaesthetic conditioning to further establish the genuineness of this form of synaesthesia. We compared the performance of a swimming-style colour synaesthete and a control who was trained on swimming-style colour associations. Our results showed that behavioural aspects of swimming-style colour synaesthesia can be mimicked in a trained control. Importantly, however, our results showed a psychophysiological conditioning effect for the synaesthete only. We discuss the theoretical relevance of swimming-style colour synaesthesia according to different models of synaesthesia. We conclude that swimming-style colour synaesthesia is a genuine form of synaesthesia, can be mimicked behaviourally in non-synaesthetes, and is best explained by a re-entrant feedback model. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Helicobacter pylori Couples Motility and Diffusion to Actively Create a Heterogeneous Complex Medium in Gastric Mucus

    NASA Astrophysics Data System (ADS)

    Mirbagheri, Seyed Amir; Fu, Henry Chien

    2016-05-01

    Helicobacter pylori swims through mucus gel by generating ammonia that locally neutralizes the acidic gastric environment, turning nearby gel into a fluid pocket. The size of the fluid zone is important for determining the physics of the motility: in a large zone swimming occurs as in a fluid through hydrodynamic principles, while in a very small zone the motility could be strongly influenced by nonhydrodynamic cell-mucus interactions including chemistry and adhesion. Here, we calculate the size of the fluid pocket. We model how swimming depends on the de-gelation range using a Taylor sheet swimming through a layer of Newtonian fluid bounded by a Brinkman fluid. Then, we model how the de-gelation range depends on the swimming speed by considering the advection-diffusion of ammonia exuded from a translating sphere. Self-consistency between both models determines the values of the swimming speed and the de-gelation range. We find that H. pylori swims through mucus as if unconfined, in a large pocket of Newtonian fluid.

  3. Swimming motion of rod-shaped magnetotactic bacteria: the effects of shape and growing magnetic moment

    PubMed Central

    Kong, Dali; Lin, Wei; Pan, Yongxin; Zhang, Keke

    2014-01-01

    We investigate the swimming motion of rod-shaped magnetotactic bacteria affiliated with the Nitrospirae phylum in a viscous liquid under the influence of an externally imposed, time-dependent magnetic field. By assuming that fluid motion driven by the translation and rotation of a swimming bacterium is of the Stokes type and that inertial effects of the motion are negligible, we derive a new system of the twelve coupled equations that govern both the motion and orientation of a swimming rod-shaped magnetotactic bacterium with a growing magnetic moment in the laboratory frame of reference. It is revealed that the initial pattern of swimming motion can be strongly affected by the rate of the growing magnetic moment. It is also revealed, through comparing mathematical solutions of the twelve coupled equations to the swimming motion observed in our laboratory experiments with rod-shaped magnetotactic bacteria, that the laboratory trajectories of the swimming motion can be approximately reproduced using an appropriate set of the parameters in our theoretical model. PMID:24523716

  4. Relationship between isometric shoulder strength and arms-only swimming power among male collegiate swimmers: study of valid clinical assessment methods.

    PubMed

    Awatani, Takenori; Morikita, Ikuhiro; Mori, Seigo; Shinohara, Junji; Tatsumi, Yasutaka

    2018-04-01

    [Purpose] The purpose of the present study was to confirm the relationships between shoulder strength (extensor strength and internal rotator strength) of the abducted position and swimming power during arm-only swimming. [Subjects and Methods] Fourteen healthy male collegiate swimmers participated in the study. Main measures were shoulder strength (strength using torque that was calculated from the upper extremity length and the isometric force of the abducted position) and swimming power. [Results] Internal rotation torque of the dominant side in the abducted external rotated position (r=0.85) was significantly correlated with maximum swimming power. The rate of bilateral difference in extension torque in the maximum abducted position (r=-0.728) was significantly correlated with the swimming velocity-to-swimming power ratio. [Conclusion] The results of this study suggest that internal rotator strength measurement in the abducted external rotated position and extensor strength measurement in the maximum abducted position are valid assessment methods for swimmers.

  5. Synchronization and collective swimming patterns in fish (Hemigrammus bleheri).

    PubMed

    Ashraf, I; Godoy-Diana, R; Halloy, J; Collignon, B; Thiria, B

    2016-10-01

    In this work, we address the case of red nose tetra fish Hemigrammus bleheri swimming in groups in a uniform flow, giving special attention to the basic interactions and cooperative swimming of a single pair of fish. We first bring evidence of synchronization of the two fish, where the swimming modes are dominated by 'out-phase' and 'in-phase' configurations. We show that the transition to this synchronization state is correlated with the swimming speed (i.e. the flow rate), and thus with the magnitude of the hydrodynamic pressure generated by the fish body during each swimming cycle. From a careful spatio-temporal analysis corresponding to those synchronized modes, we characterize the distances between the two individuals in a pair in the basic schooling pattern. We test the conclusions of the analysis of fish pairs with a second set of experiments using groups of three fish. By identifying the typical spatial configurations, we explain how the nearest neighbour interactions constitute the building blocks of collective fish swimming. © 2016 The Author(s).

  6. Synchronization and collective swimming patterns in fish (Hemigrammus bleheri)

    PubMed Central

    Ashraf, I.; Collignon, B.

    2016-01-01

    In this work, we address the case of red nose tetra fish Hemigrammus bleheri swimming in groups in a uniform flow, giving special attention to the basic interactions and cooperative swimming of a single pair of fish. We first bring evidence of synchronization of the two fish, where the swimming modes are dominated by ‘out-phase’ and ‘in-phase’ configurations. We show that the transition to this synchronization state is correlated with the swimming speed (i.e. the flow rate), and thus with the magnitude of the hydrodynamic pressure generated by the fish body during each swimming cycle. From a careful spatio-temporal analysis corresponding to those synchronized modes, we characterize the distances between the two individuals in a pair in the basic schooling pattern. We test the conclusions of the analysis of fish pairs with a second set of experiments using groups of three fish. By identifying the typical spatial configurations, we explain how the nearest neighbour interactions constitute the building blocks of collective fish swimming. PMID:27798281

  7. Brief communication: Swimming and diving behavior in apes (Pan troglodytes and Pongo pygmaeus): first documented report.

    PubMed

    Bender, Renato; Bender, Nicole

    2013-09-01

    Extant hominoids, including humans, are well known for their inability to swim instinctively. We report swimming and diving in two captive apes using visual observation and video recording. One common chimpanzee and one orangutan swam repeatedly at the water surface over a distance of 2-6 m; both individuals submerged repeatedly. We show that apes are able to overcome their negative buoyancy by deliberate swimming, using movements which deviate from the doggy-paddle pattern observed in other primates. We suggest that apes' poor swimming ability is due to behavioral, anatomical, and neuromotor changes related to an adaptation to arboreal life in their early phylogeny. This strong adaptive focus on arboreal life led to decreased opportunities to interact with water bodies and consequently to a reduction of selective pressure to maintain innate swimming behavior. As the doggy paddle is associated with quadrupedal walking, a deviation from terrestrial locomotion might have interfered with the fixed rhythmic action patterns responsible for innate swimming. Copyright © 2013 Wiley Periodicals, Inc.

  8. Swimming speed alteration in the early developmental stages of Paracentrotus lividus sea urchin as ecotoxicological endpoint.

    PubMed

    Morgana, Silvia; Gambardella, Chiara; Falugi, Carla; Pronzato, Roberto; Garaventa, Francesca; Faimali, Marco

    2016-04-01

    Behavioral endpoints have been used for decades to assess chemical impacts at concentrations unlikely to cause mortality. With recently developed techniques, it is possible to investigate the swimming behavior of several organisms under laboratory conditions. The aims of this study were: i) assessing for the first time the feasibility of swimming speed analysis of the early developmental stage sea urchin Paracentrotus lividus by an automatic recording system ii) investigating any Swimming Speed Alteration (SSA) on P. lividus early stages exposed to a chemical reference; iii) identifying the most suitable stage for SSA test. Results show that the swimming speed of all the developmental stages was easily recorded. The swimming speed was inhibited as a function of toxicant concentration. Pluteus were the most appropriate stage for evaluating SSA in P. lividus as ecotoxicological endpoint. Finally, swimming of sea urchin early stages represents a sensitive endpoint to be considered in ecotoxicological investigations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Helicobacter pylori displays spiral trajectories while swimming like a cork-screw in solutions

    NASA Astrophysics Data System (ADS)

    Constantino, Maira A.; Hardcastle, Joseph M.; Bansil, Rama; Jabbarzadeh, Mehdi; Fu, Henry C.

    Helicobacter pylori is a helical shaped bacterium that causes gastritis, ulcers and gastric cancer in humans and other animals. In order to colonize the harsh acidic environment of the stomach H. pylori has evolved a unique biochemical mechanism to go across the viscoelastic gel-like gastric mucus layer. Many studies have been conducted on the swimming of H. pylori in viscous media. However a yet unanswered question is if the helical cell shape influences bacterial swimming dynamics or confers any advantage when swimming in viscous solution. We will present measurements of H. pylori trajectories displaying corkscrew motion while swimming in solution obtained by tracking single cells using 2-dimensional phase contrast imaging at high magnification and fast frame rates and simultaneously imaging their shape. We observe a linear relationship between swimming speed and rotation rate. The experimental trajectories show good agreement with trajectories calculated using a regularized Stokeslet method to model the low Reynolds number swimming behavior. Supported by NSF PHY 1410798 (PI: RB).

  10. Swimming pool granuloma

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001357.htm Swimming pool granuloma To use the sharing features on this page, please enable JavaScript. A swimming pool granuloma is a long-term (chronic) skin ...

  11. Molluscum Contagiosum

    MedlinePlus

    ... pit in the center. Molluscum Contagiosum in Special Environments Swimming Pools Day Care Centers and Schools At ... Risk Factors Treatment Prevention Long-Term Effects Special Environments Swimming Pools Swimming Pool Safety Recommendations Day Care ...

  12. Swim bladder function and buoyancy control in pink snapper (Pagrus auratus) and mulloway (Argyrosomus japonicus).

    PubMed

    Stewart, John; Hughes, Julian M

    2014-04-01

    Physoclist fish are able to regulate their buoyancy by secreting gas into their hydrostatic organ, the swim bladder, as they descend through the water column and by resorbing gas from their swim bladder as they ascend. Physoclists are restricted in their vertical movements due to increases in swim bladder gas volume that occur as a result of a reduction in hydrostatic pressure, causing fish to become positively buoyant and risking swim bladder rupture. Buoyancy control, rates of swim bladder gas exchange and restrictions to vertical movements are little understood in marine teleosts. We used custom-built hyperbaric chambers and laboratory experiments to examine these aspects of physiology for two important fishing target species in southern Australia, pink snapper (Pagrus auratus) and mulloway (Argyrosomus japonicus). The swim bladders of pink snapper and mulloway averaged 4.2 and 4.9 % of their total body volumes, respectively. The density of pink snapper was not significantly different to the density of seawater (1.026 g/ml), whereas mulloway were significantly denser than seawater. Pink snapper secreted gas into their swim bladders at a rate of 0.027 ± 0.005 ml/kg/min (mean ± SE), almost 4 times faster than mulloway (0.007 ± 0.001 ml/kg/min). Rates of swim bladder gas resorption were 11 and 6 times faster than the rates of gas secretion for pink snapper and mulloway, respectively. Pink snapper resorbed swim bladder gas at a rate of 0.309 ± 0.069 ml/kg/min, 7 times faster than mulloway (0.044 ± 0.009 ml/kg/min). Rates of gas exchange were not affected by water pressure or water temperature over the ranges examined in either species. Pink snapper were able to acclimate to changes in hydrostatic pressure reasonably quickly when compared to other marine teleosts, taking approximately 27 h to refill their swim bladders from empty. Mulloway were able to acclimate at a much slower rate, taking approximately 99 h to refill their swim bladders. We estimated that the swim bladders of pink snapper and mulloway ruptured after decreases in ~2.5 and 2.75 times the hydrostatic pressure to which the fish were acclimated, respectively. Differences in buoyancy, gas exchange rates, limitations to vertical movements and acclimation times between the two species are discussed in terms of their differing behaviour and ecology.

  13. Locomotor adaptations of some gelatinous zooplankton.

    PubMed

    Bone, Q

    1985-01-01

    Swimming behaviour and locomotor adaptations are described in chaetognaths, larvacean tunicates, some cnidaria, and thaliacean tunicates. The first two groups swim by oscillating a flattened tail, the others by jet propulsion. In chaetognaths, the locomotor muscle fibres are extensively coupled and relatively sparsely innervated, they exhibit compound spike-like potentials. The motoneurons controlling the rhythmic activity of the locomotor muscle lie in a ventral ganglion whose organization is briefly described. Rhythmic swimming bursts in larvaceans are similarly driven by a caudal ganglion near the base of the tail, but each caudal muscle cell is separately innervated by two sets of motor nerves, as well as being coupled to its neighbours. The external epithelium is excitable, and linked to the caudal ganglion by the axons of central cells. Mechanical stimulation of the epithelium evokes receptor potentials followed by action potentials and by bursts of rapid swimming. The trachyline medusa Aglantha and the small siphonophore Chelophyes also show rapid escape responses; in Aglantha these are driven by a specialized giant axon system lacking in other hydromedusae, and in Chelophyes. Slow swimming in Aglantha apparently involves a second nerve supply to the same muscle sheets used in rapid swimming, whereas in Chelophyes slow swimming results from the activity of the smaller posterior nectophore. Slow swimming in siphonophores is more economical than the rapid responses. In the hydrozoan medusa Polyorchis (as in Chelophyes) action potentials in the locomotor muscle sheet change in shape during swimming bursts, and their duration is related to the size of the medusa; they are not simply triggers of muscular contraction. The two groups of thaliacean tunicates are specialized differently. Doliolum is adapted for single rapid jet pulses (during which it achieves instantaneous velocities of 50 body lengths s-l), whilst salps are adapted for slow continuous swimming. The cost of locomotion is greater in Doliolum. Few gelatinous zooplankton show special adaptations both for rapid escape movements, and for slow sustained swimming, those that do deserve further study.

  14. Cardiovascular and Perceptual Responses to an Ultraendurance Channel Swim: A Case Study.

    PubMed

    Judelson, Daniel A; Bagley, James R; Schumacher, Jennifer M; Wiersma, Lenny D

    2015-09-01

    Ultraendurance open water swimming presents unique physiological challenges. This case study aimed to describe cardiovascular and perceptual responses during a successful solo channel swim. Investigators followed a female swimmer's Catalina Channel (32.2 km) crossing, monitoring water temperature (T(water)) and air temperature (T(air)), distance remaining (DR), average velocity, and heart rate (HR(swim)) at regular intervals. Every 24 minutes, the swimmer reported perceived pain (on a scale of 0-10), rating of perceived exertion (RPE [scale of 6-20]), perceived thermal sensation (scale 0-8), and thirst (scale 1-9). Data are presented as mean ± SD where applicable. The participant finished in 9 hours, 2 minutes, and 48 seconds; T(water) averaged 19.1 ± 0.4ºC, and T(air) averaged 18.6 ± 0.9ºC. Her HR(swim) ranged from 148 to 155 beats/min, and thermal sensation ranged from 3 to 4. Pain inconsistently varied from 0 to 5 during the swim. The RPE remained between 12 and 14 for the first 8 hours, but increased dramatically near the end (reaching 18). Thirst sensation steadily increased throughout the swim, again reaching maximal values on completion. Physiologically and statistically significant correlations existed between thirst and DR (r = -0.905), RPE and HR(swim) (r = 0.741), RPE and DR (r = -0.694), and pain and DR (r = -0.671). The primary findings were that, despite fluctuations in perceptual stressors, the swimmer maintained a consistent exercise intensity as indicated by HR(swim); and during ultraendurance swimming, pain, RPE, and thirst positively correlated with distance swum. We hope these findings aid in the preparation and performance of future athletes by providing information on what swimmers may expect during an ultraendurance attempt and by increasing the understanding of physiological and perceptual responses during open water swimming. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  15. Single swim sessions in C. elegans induce key features of mammalian exercise.

    PubMed

    Laranjeiro, Ricardo; Harinath, Girish; Burke, Daniel; Braeckman, Bart P; Driscoll, Monica

    2017-04-10

    Exercise exerts remarkably powerful effects on metabolism and health, with anti-disease and anti-aging outcomes. Pharmacological manipulation of exercise benefit circuits might improve the health of the sedentary and the aging populations. Still, how exercised muscle signals to induce system-wide health improvement remains poorly understood. With a long-term interest in interventions that promote animal-wide health improvement, we sought to define exercise options for Caenorhabditis elegans. Here, we report on the impact of single swim sessions on C. elegans physiology. We used microcalorimetry to show that C. elegans swimming has a greater energy cost than crawling. Animals that swam continuously for 90 min specifically consumed muscle fat supplies and exhibited post-swim locomotory fatigue, with both muscle fat depletion and fatigue indicators recovering within 1 hour of exercise cessation. Quantitative polymerase chain reaction (qPCR) transcript analyses also suggested an increase in fat metabolism during the swim, followed by the downregulation of specific carbohydrate metabolism transcripts in the hours post-exercise. During a 90 min swim, muscle mitochondria matrix environments became more oxidized, as visualized by a localized mitochondrial reduction-oxidation-sensitive green fluorescent protein reporter. qPCR data supported specific transcriptional changes in oxidative stress defense genes during and immediately after a swim. Consistent with potential antioxidant defense induction, we found that a single swim session sufficed to confer protection against juglone-induced oxidative stress inflicted 4 hours post-exercise. In addition to showing that even a single swim exercise bout confers physiological changes that increase robustness, our data reveal that acute swimming-induced changes share common features with some acute exercise responses reported in humans. Overall, our data validate an easily implemented swim experience as C. elegans exercise, setting the foundation for exploiting the experimental advantages of this model to genetically or pharmacologically identify the exercise-associated molecules and signaling pathways that confer system-wide health benefits.

  16. Swimming pool cleaner poisoning

    MedlinePlus

    Swimming pool cleaner poisoning occurs when someone swallows this type of cleaner, touches it, or breathes in ... The harmful substances in swimming pool cleaner are: Bromine ... copper Chlorine Soda ash Sodium bicarbonate Various mild acids

  17. Effect of temperature on maximum swimming speed and cost of transport in juvenile European sea bass (Dicentrarchus labrax).

    PubMed

    Claireaux, Guy; Couturier, Christine; Groison, Anne-Laure

    2006-09-01

    This study is an attempt to gain an integrated understanding of the interactions between temperature, locomotion activity and metabolism in the European sea bass (Dicentrarchus labrax). To our knowledge this study is among the few that have investigated the influence of the seasonal changes in water temperature on swimming performance in fish. Using a Brett-type swim-tunnel respirometer the relationship between oxygen consumption and swimming speed was determined in fish acclimatised to 7, 11, 14, 18, 22, 26 and 30 degrees C. The corresponding maximum swimming speed (U(max)), optimal swimming speed (U(opt)), active (AMR) and standard (SMR) metabolic rates as well as aerobic metabolic scope (MS) were calculated. Using simple mathematical functions, these parameters were modelled as a function of water temperature and swimming speed. Both SMR and AMR were positively related to water temperature up to 24 degrees C. Above 24 degrees C SMR and AMR levelled off and MS tended to decrease. We found a tight relationship between AMR and U(max) and observed that raising the temperature increased AMR and increased swimming ability. However, although fish swam faster at high temperature, the net cost of transport (COT(net)) at a given speed was not influence by the elevation of the water temperature. Although U(opt) doubled between 7 degrees C and 30 degrees C (from 0.3 to 0.6 m s(-1)), metabolic rate at U(opt) represented a relatively constant fraction of the animal active metabolic rate (40-45%). A proposed model integrates the effects of water temperature on the interaction between metabolism and swimming performance. In particular the controlling effect of temperature on AMR is shown to be the key factor limiting maximal swimming speed of sea bass.

  18. Effect of chromium picolinate on modified forced swimming test in diabetic rats: involvement of serotonergic pathways and potassium channels.

    PubMed

    Khanam, Razia; Pillai, K K

    2006-02-01

    Depression occurs frequently in patients with diabetes mellitus. Chromium picolinate, an essential trace element is recommended for diabetes and also has been reported to benefit depression, but its mechanism is still debated. To investigate the mechanism, we studied its effects on serum insulin, serum glucose and on modified forced swimming test, a behavioural paradigm for depression in rats. The study involving co-administration of sub-active doses of glimepiride, a K(+) channel blocker and chromium picolinate on blood glucose levels and modified forced swimming test was also performed to probe any role of K(+) channels in its antidiabetic and antidepressants effects. Streptozotocin (55 mg/kg, intraperitoneally) was injected in rats to induce diabetes (Type 1). After a week, chromium picolinate (8 microg/ml in drinking water) was administered for 4 weeks. Normal rats received similar drug treatment. The sub-active doses of chromium picolinate (4 microg/ml in drinking water) and glimeperide (2.5 mg/kg, orally) were co-administered and their effects on modified forced swimming test and on glucose levels were measured. Chromium picolinate (8 microg/ml in drinking water) produced hypoglycaemia in diabetic and normal rats. It had no effects on the streptozotocin-induced reduction in insulin levels. Chromium picolinate (8 microg/ml in drinking water) increased swimming with subsequent decrease in immobility. The sub-active doses of chromium picolinate and glimeperide showed significant additive effects in modified forced swimming test and reduction in serum glucose concentrations, though statistically insignificant. In conclusion chromium picolinate shows antidepressant action on modified forced swimming test affecting only swimming that suggests serotonergic pathways involvement. The additive effects on swimming in modified forced swimming test and reduction in serum glucose levels shows involvement of K(+) channels in antidiabetic and antidepressant actions of chromium picolinate.

  19. Effect of swimming exercise on three-dimensional trabecular bone microarchitecture in ovariectomized rats.

    PubMed

    Ju, Yong-In; Sone, Teruki; Ohnaru, Kazuhiro; Tanaka, Kensuke; Fukunaga, Masao

    2015-11-01

    Swimming is generally considered ineffective for increasing bone mass in humans, at least compared with weight-bearing sports. However, swimming exercise has sometimes been shown to have a strong positive effect on bone mass in small animals. This study investigated the effects of swimming on bone mass, strength, and microarchitecture in ovariectomized (OVX) rats. OVX or sham operations were performed on 18-wk-old female Fisher 344 rats. Rats were randomly divided into four groups: sham sedentary (Sham-CON), sham swimming exercised (Sham-SWI), OVX sedentary (OVX-CON), and OVX swimming exercised (OVX-SWI). Rats in exercise groups performed swimming in a water bath for 60 min/day, 5 days/wk, for 12 wk. Bone mineral density (BMD) in right femurs was analyzed using dual-energy X-ray absorptiometry. Three-dimensional trabecular architecture at the distal femoral metaphysis was analyzed using microcomputed tomography (μCT). Geometrical properties of diaphyseal cortical bone were evaluated in the midfemoral region using μCT. The biomechanical properties of femurs were analyzed using three-point bending. Femoral BMD was significantly decreased following ovariectomy. This change was suppressed by swimming. Trabecular bone thickness, number, and connectivity were decreased by ovariectomy, whereas structure model index (i.e., ratio of rod-like to plate-like trabeculae) increased. These changes were also suppressed by swimming exercise. Femurs displayed greater cortical width and maximum load in SWI groups than in CON groups. Together, these results demonstrate that swimming exercise drastically alleviated both OVX-induced decreases in bone mass and mechanical strength and the deterioration of trabecular microarchitecture in rat models of osteoporosis. Copyright © 2015 the American Physiological Society.

  20. Volumetric flow imaging reveals the importance of vortex ring formation in squid swimming tail-first and arms-first.

    PubMed

    Bartol, Ian K; Krueger, Paul S; Jastrebsky, Rachel A; Williams, Sheila; Thompson, Joseph T

    2016-02-01

    Squids use a pulsed jet and fin movements to swim both arms-first (forward) and tail-first (backward). Given the complexity of the squid multi-propulsor system, 3D velocimetry techniques are required for the comprehensive study of wake dynamics. Defocusing digital particle tracking velocimetry, a volumetric velocimetry technique, and high-speed videography were used to study arms-first and tail-first swimming of brief squid Lolliguncula brevis over a broad range of speeds [0-10 dorsal mantle lengths (DML) s(-1)] in a swim tunnel. Although there was considerable complexity in the wakes of these multi-propulsor swimmers, 3D vortex rings and their derivatives were prominent reoccurring features during both tail-first and arms-first swimming, with the greatest jet and fin flow complexity occurring at intermediate speeds (1.5-3.0 DML s(-1)). The jet generally produced the majority of thrust during rectilinear swimming, increasing in relative importance with speed, and the fins provided no thrust at speeds >4.5 DML s(-1). For both swimming orientations, the fins sometimes acted as stabilizers, producing negative thrust (drag), and consistently provided lift at low/intermediate speeds (<2.0 DML s(-1)) to counteract negative buoyancy. Propulsive efficiency (η) increased with speed irrespective of swimming orientation, and η for swimming sequences with clear isolated jet vortex rings was significantly greater (η=78.6±7.6%, mean±s.d.) than that for swimming sequences with clear elongated regions of concentrated jet vorticity (η=67.9±19.2%). This study reveals the complexity of 3D vortex wake flows produced by nekton with hydrodynamically distinct propulsors. © 2016. Published by The Company of Biologists Ltd.

  1. Circular swimming in mice after exposure to a high magnetic field.

    PubMed

    Houpt, Thomas A; Houpt, Charles E

    2010-06-16

    There is increasing evidence that exposure to high magnetic fields of 4T and above perturbs the vestibular system of rodents and humans. Performance in a swim test is a sensitive test of vestibular function. In order to determine the effect of magnet field exposure on swimming in mice, mice were exposed for 30 min within a 14.1T superconducting magnet and then tested at different times after exposure in a 2-min swim test. As previously observed in open field tests, mice swam in tight counter-clockwise circles when tested immediately after magnet exposure. The counter-clockwise orientation persisted throughout the 2-min swim test. The tendency to circle was transient, because no significant circling was observed when mice were tested at 3 min or later after magnet exposure. However, mice did show a decrease in total distance swum when tested between 3 and 40 min after magnet exposure. The decrease in swimming distance was accompanied by a pronounced postural change involving a counter-clockwise twist of the pelvis and hindlimbs that was particularly severe in the first 15s of the swim test. Finally, no persistent difference from sham-exposed mice was seen in the swimming of magnet-exposed mice when tested 60 min, 24h, or 96 h after magnet exposure. This suggests that there is no long-lasting effect of magnet exposure on the ability of mice to orient or swim. The transient deficits in swimming and posture seen shortly after magnet exposure are consistent with an acute perturbation of the vestibular system by the high magnetic field. (c) 2010 Elsevier Inc. All rights reserved.

  2. Locomotor activity during the frenzy swim: analysing early swimming behaviour in hatchling sea turtles.

    PubMed

    Pereira, Carla M; Booth, David T; Limpus, Colin J

    2011-12-01

    Swimming effort of hatchling sea turtles varies across species. In this study we analysed how swim thrust is produced in terms of power stroke rate, mean maximum thrust per power stroke and percentage of time spent power stroking throughout the first 18 h of swimming after entering the water, in both loggerhead and flatback turtle hatchlings and compared this with previous data from green turtle hatchlings. Loggerhead and green turtle hatchlings had similar power stroke rates and percentage of time spent power stroking throughout the trial, although mean maximum thrust was always significantly higher in green hatchlings, making them the most vigorous swimmers in our three-species comparison. Flatback hatchlings, however, were different from the other two species, with overall lower values in all three swimming variables. Their swimming effort dropped significantly during the first 2 h and kept decreasing significantly until the end of the trial at 18 h. These results support the hypothesis that ecological factors mould the swimming behaviour of hatchling sea turtles, with predator pressure being important in determining the strategy used to swim offshore. Loggerhead and green turtle hatchlings seem to adopt an intensely vigorous and energetically costly frenzy swim that would quickly take them offshore into the open ocean in order to reduce their exposure to near-shore aquatic predators. Flatback hatchlings, however, are restricted in geographic distribution and remain within the continental shelf region where predator pressure is probably relatively constant. For this reason, flatback hatchlings might use only part of their energy reserves during a less vigorous frenzy phase, with lower overall energy expenditure during the first day compared with loggerhead and green turtle hatchlings.

  3. Tethered Swimming Test: Reliability and the Association to Swimming Performance and Land-based Anaerobic Performance.

    PubMed

    Nagle Zera, Jacquelyn; Nagle, Elizabeth F; Nagai, Takashi; Lovalekar, Mita; Abt, John P; Lephart, Scott M

    2018-02-14

    The purpose of this study was three-fold: (a) to examine the test-retest reliability of a 30 second maximal tethered freestyle swimming test (TST), (b) to assess the validity of the TST by examining the association to sprint swimming performance and, (c) to examine the associations between a swim-specific and land-based measure of anaerobic performance. A total of twenty-nine male and female swimmers were recruited to participate in the study. Each participant completed a Wingate Anaerobic cycling test (WAnT), two or four TST, and a 22.9 meter (25 yard), 45.7 meter (50 yard), and 91.4 meter (100 yard) maximal freestyle performance swims (PS). Mean and peak force (Fmean, Fpeak) were recorded for both the WAnT and TST, and average swimming velocity and time were recorded for the PS. Additionally, physiological and perceptual measures were recorded immediate post exercise for all tests. The results of the present investigation showed strong intersession and intrasession reliability (R= 0.821-0.975; p<0.001) for force parameters of the TST. Moderate correlations were found between Fmean and PS time and velocity of all distances, with slightly weaker correlations between Fpeak and the 22.9 meter (time and velocity) and 45.7 meter (velocity) PS. Finally, moderate correlations were found for Fmean and Fpeak of the TST and WAnT. This study demonstrated that the TST is a reliable measure, with moderate association to swimming performance, producing similar physiological responses compared to free swimming. Therefore, future research shoulSd focus on investigating the potential benefits of utilizing the TST as a regular assessment tool as a part of a competitive swimming training program to track adaptations and inform training decisions.

  4. Efficient swimming of an assembly of rigid spheres at low Reynolds number.

    PubMed

    Felderhof, B U

    2015-08-01

    The swimming of an assembly of rigid spheres immersed in a viscous fluid of infinite extent is studied in low-Reynolds-number hydrodynamics. The instantaneous swimming velocity and rate of dissipation are expressed in terms of the time-dependent displacements of sphere centers about their collective motion. For small-amplitude swimming with periodically oscillating displacements, optimization of the mean swimming speed at given mean power leads to an eigenvalue problem involving a velocity matrix and a power matrix. The corresponding optimal stroke permits generalization to large-amplitude motion in a model of spheres with harmonic interactions and corresponding actuating forces. The method allows straightforward calculation of the swimming performance of structures modeled as assemblies of interacting rigid spheres. A model of three collinear spheres with motion along the common axis is studied as an example.

  5. B-type natriuretic peptide (BNP) serum levels in rats after forced repeated swimming stress.

    PubMed

    Hadzovic-Dzuvo, Almira; Valjevac, Amina; Avdagić, Nesina; Lepara, Orhan; Zaćiragić, Asija; Jadrić, Radivoj; Alajbegović, Jasmin; Prnjavorac, Besim

    2011-02-01

    To estimate the effects of forced repeated swimming stress on BNP serum levels in rats. Adult male Wistar rats weighting between 280-330 g were divided into two groups: control group (n = 8) and stress group (n = 8). Rats in the stress group were exposed to forced swimming stress daily, for 7 days. The rats were forced to swim in plastic tanks (90 cm wide, 120 cm deep) containing tap water (temperature ca. 25 degrees C). The depth of water was 40 cm. Duration of each swimming session progressively increased from 10 minutes on the first day to 40 minutes on days 6 and 7. Rats were sacrificed and blood was drawn from abdominal aorta for BNP analysis immediately after the last swimming session. B-type natriuretic serum level was determined by ELISA method using RAT BNP-32 kit (Phoenix Pharmaceutical Inc.). There was no statistically significant difference between mean BNP serum level in the stress group after the swimming period (0.81 +/- 0.14 ng/ml) as compared to the unstressed group of rats (0.8 +/- 0.08 ng/ml). After the swimming period mean body weight slightly decreased in the stress group in comparison with values before stress period (296.3 g vs. 272.8 g), but this difference was not statistically significant. The stress period had no influence on food intake in the stress rat group. The workload consisting of 40-minutes long swimming session is not sufficient to provoke BNP release from myocardium in rats.

  6. Water surface locomotion in tropical canopy ants.

    PubMed

    Yanoviak, S P; Frederick, D N

    2014-06-15

    Upon falling onto the water surface, most terrestrial arthropods helplessly struggle and are quickly eaten by aquatic predators. Exceptions to this outcome mostly occur among riparian taxa that escape by walking or swimming at the water surface. Here we document sustained, directional, neustonic locomotion (i.e. surface swimming) in tropical arboreal ants. We dropped 35 species of ants into natural and artificial aquatic settings in Peru and Panama to assess their swimming ability. Ten species showed directed surface swimming at speeds >3 body lengths s(-1), with some swimming at absolute speeds >10 cm s(-1). Ten other species exhibited partial swimming ability characterized by relatively slow but directed movement. The remaining species showed no locomotory control at the surface. The phylogenetic distribution of swimming among ant genera indicates parallel evolution and a trend toward negative association with directed aerial descent behavior. Experiments with workers of Odontomachus bauri showed that they escape from the water by directing their swimming toward dark emergent objects (i.e. skototaxis). Analyses of high-speed video images indicate that Pachycondyla spp. and O. bauri use a modified alternating tripod gait when swimming; they generate thrust at the water surface via synchronized treading and rowing motions of the contralateral fore and mid legs, respectively, while the hind legs provide roll stability. These results expand the list of facultatively neustonic terrestrial taxa to include various species of tropical arboreal ants. © 2014. Published by The Company of Biologists Ltd.

  7. Health risks of early swimming pool attendance.

    PubMed

    Schoefer, Yvonne; Zutavern, Anne; Brockow, Inken; Schäfer, Torsten; Krämer, Ursula; Schaaf, Beate; Herbarth, Olf; von Berg, Andrea; Wichmann, H-Erich; Heinrich, Joachim

    2008-07-01

    Swimming pool attendance and exposure to chlorination by-products showed adverse health effects on children. We assessed whether early swimming pool attendance, especially baby swimming, is related to higher rates of early infections and to the development of allergic diseases. In 2003-2005, 2192 children were analysed for the 6-year follow-up of a prospective birth cohort study. Data on early swimming pool attendance, other lifestyle factors and medical history were collected by parental-administered questionnaire. Bivariate and multivariate logistic regression analyses were used to evaluate associations. Babies who did not participate in baby swimming had lower rates of infection in the 1st year of life (i) diarrhoea: OR 0.68 CI 95% 0.54-0.85; (ii) otitis media: OR 0.81 CI 95% 0.62-1.05; (iii) airway infections: OR 0.85 CI 95% 0.67-1.09. No clear association could be found between late or non-swimmers and atopic dermatitis or hay fever until the age of 6 years, while higher rates of asthma were found (OR 2.15 95% CI 1.16-3.99), however, potentially due to reverse causation. The study indicates that, in terms of infections, baby swimming might not be as harmless as commonly thought. Further evidence is needed to make conclusions if the current regulations on chlorine in Germany might not protect swimming pool attendees from an increased risk of gastrointestinal infections. In terms of developing atopic diseases there is no verifiable detrimental effect of early swimming.

  8. A Correlational Analysis of Tethered Swimming, Swim Sprint Performance and Dry-land Power Assessments.

    PubMed

    Loturco, I; Barbosa, A C; Nocentini, R K; Pereira, L A; Kobal, R; Kitamura, K; Abad, C C C; Figueiredo, P; Nakamura, F Y

    2016-03-01

    Swimmers are often tested on both dry-land and in swimming exercises. The aim of this study was to test the relationships between dry-land, tethered force-time curve parameters and swimming performances in distances up to 200 m. 10 young male high-level swimmers were assessed using the maximal isometric bench-press and quarter-squat, mean propulsive power in jump-squat, squat and countermovement jumps (dry-land assessments), peak force, average force, rate of force development (RFD) and impulse (tethered swimming) and swimming times. Pearson product-moment correlations were calculated among the variables. Peak force and average force were very largely correlated with the 50- and 100-m swimming performances (r=- 0.82 and -0.74, respectively). Average force was very-largely/largely correlated with the 50- and 100-m performances (r=- 0.85 and -0.67, respectively). RFD and impulse were very-largely correlated with the 50-m time (r=- 0.72 and -0.76, respectively). Tethered swimming parameters were largely correlated (r=0.65 to 0.72) with mean propulsive power in jump-squat, squat-jump and countermovement jumps. Finally, mean propulsive power in jump-squat was largely correlated (r=- 0.70) with 50-m performance. Due to the significant correlations between dry-land assessments and tethered/actual swimming, coaches are encouraged to implement strategies able to increase leg power in sprint swimmers. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Hypothesised mechanisms of swimming-related death: a systematic review.

    PubMed

    Asplund, Chad A; Creswell, Lawrence L

    2016-11-01

    Recent reports from triathlon and competitive open-water swimming indicate that these events have higher rates of death compared with other forms of endurance sport. The potential causal mechanism for swimming-related death is unclear. To examine available studies on the hypothesised mechanisms of swimming-related death to determine the most likely aetiologies. MEDLINE, EMBASE and the Cochrane Database of Systematic Reviews (1950 to present) were searched, yielding 1950 potential results, which after title and citation reviews were reduced to 83 possible reports. Studies included discussed mechanisms of death during swimming in humans, and were Level 4 evidence or higher. A total of 17 studies (366 total swimmers) were included for further analysis: 5 investigating hyperthermia/hypothermia, 7 examining cardiac mechanisms and responses, and 5 determining the presence of pulmonary edema. The studies provide inconsistent and limited-quality or disease-oriented evidence that make definitive conclusions difficult. The available evidence is limited but may suggest that cardiac arrhythmias are the most likely aetiology of swimming-related death. While symptoms of pulmonary edema may occur during swimming, current evidence does not support swimming-induced pulmonary edema as a frequent cause of swimming-related death, nor is there evidence to link hypothermia or hyperthermia as a causal mechanism. Further higher level studies are needed. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Relationship between the effect of dietary fat on swimming endurance and energy metabolism in aged mice.

    PubMed

    Zhang, Guihua; Shirai, Nobuya; Suzuki, Hiramitsu

    2011-10-01

    The aim of this study was to investigate the effect of different dietary fats on alterations in endurance, energy metabolism, and plasma levels of interleukin-6 (IL-6) and minerals in mice. Male mice (aged 58 weeks) were fed diets containing 6% safflower oil, fish oil, or lard for 12 weeks. Swimming time to exhaustion, energy metabolism, and plasma IL-6 levels were subsequently determined. Mice fed safflower oil exhibited a marked increase in swimming time compared to the baseline level. Mice fed lard exhibited a significant decrease in swimming time, while mice on a fish oil diet exhibited a small decrease in swimming time. The final swimming time of mice fed safflower oil was significantly longer than that of animals fed lard. This improvement in endurance with dietary safflower oil was accompanied by decreased accumulation of lactate and less glycogen depletion during swimming. In the safflower oil group, muscle carnitine palmitoyltransferase activity increased significantly after swimming, while the plasma non-esterified fatty acid concentration decreased significantly. A trend to increased plasma IL-6 levels was observed in sedentary animals on a safflower oil diet compared to those on a lard diet. These results suggest that dietary safflower oil improves the swimming endurance of aged mice to a greater extent than lard, and that this effect appears to involve glycogen sparing through increased fatty acid utilization. Copyright © 2011 S. Karger AG, Basel.

  11. Behavioral effects of environmental enrichment on harbor seals (Phoca vitulina concolor) and gray seals (Hafichoerus grypus)

    USGS Publications Warehouse

    Hunter, S.A.; Bay, M.S.; Martin, M.L.; Hatfield, J.S.

    2002-01-01

    Zoos and aquariums have been incorporating environmental enrichment into their animal care programs for the past 30 years to increase mental stimulation and promote natural behaviors. However, most attempts to document the effects of enrichment on animal behavior have focused on terrestrial mammals. Staff at the National Aquarium in Baltimore conducted an investigation of the behavioral effects of enrichment on the seven harbor seals and two gray seals housed in the aquarium's outdoor seal exhibit. We expected that enrichment would change the amount of time the animals spent engaged in specific behaviors. The behaviors recorded were: resting in water, resting hauled out, maintenance, breeding display, breeding behavior, aggression, pattern swimming, random swimming, exploration, and out of sight. Activity levels (random swimming and exploration) were expected to increase, while stereotypic behaviors (pattern swimming) were expected to decrease. The frequency and duration of behaviors were documented for 90 hr in both the control phase (without enrichment) and the experimental phase (with enrichment). Statistically significant differences (P<0.05) in the time spent in pattern swimming, random swimming, exploration, and out of sight were observed between the two phases. With enrichment, pattern swimming and out of sight decreased, while random swimming and exploration behavior increased. These findings demonstrate that enrichment can promote behaviors (random swimming and exploration) that are likely to be normal for phocids in the wild, and that may contribute to the behavioral complexity of these seals in captivity.

  12. Behavioral effects of environmental enrichment on harbor seals (Phoca vitulina concolor) and gray seals (Halichoerus grypus)

    USGS Publications Warehouse

    Hunter, S.A.; Bay, M.S.; Martin, M.L.; Hatfield, J.S.

    2002-01-01

    Zoos and aquariums have been incorporating environmental enrichment into their animal care programs for the past 30 years to increase mental stimulation and promote natural behaviors. However, most attempts to document the effects of enrichment on animal behavior have focused on terrestrial mammals. Staff at the National Aquarium in Baltimore conducted an investigation of the behavioral effects of enrichment on the seven harbor seals and two gray seals housed in the aquarium's outdoor seal exhibit. We expected that enrichment would change the amount of time the animals spent engaged in specific behaviors. The behaviors recorded were: resting in water, resting hauled out, maintenance, breeding display, breeding behavior, aggression, pattern swimming, random swimming, exploration, and out of sight. Activity levels (random swimming and exploration) were expected to increase, while stereotypic behaviors (pattern swimming) were expected to decrease. The frequency and duration of behaviors were documented for 90 hr in both the control phase (without enrichment) and the experimental phase (with enrichment). Statistically significant differences (P < 0.05) in the time spent in pattern swimming, random swimming, exploration, and out of sight were observed between the two phases. With enrichment, pattern swimming and out of sight decreased, while random swimming and exploration behavior increased. These findings demonstrate that enrichment can promote behaviors (random swimming and exploration) that are likely to be normal for phocids in the wild, and that may contribute to the behavioral complexity of these seals in captivity. ?? 2002 Wiley-Liss, Inc.

  13. Pregnancy swimming causes short- and long-term neuroprotection against hypoxia-ischemia in very immature rats.

    PubMed

    Sanches, Eduardo Farias; Durán-Carabali, Luz Elena; Tosta, Andrea; Nicola, Fabrício; Schmitz, Felipe; Rodrigues, André; Siebert, Cassiana; Wyse, Angela; Netto, Carlos

    2017-09-01

    BackgroundHypoxia-ischemia (HI) is a major cause of neurological damage in preterm newborn. Swimming during pregnancy alters the offspring's brain development. We tested the effects of swimming during pregnancy in the very immature rat brain.MethodsFemale Wistar rats (n=12) were assigned to the sedentary (SE, n=6) or the swimming (SW, n=6) group. From gestational day 0 (GD0) to GD21 the rats in the SW group were made to swim for 20 min/day. HI on postnatal day (PND) 3 rats caused sensorimotor and cognitive impairments. Animals were distributed into SE sham (SESH), sedentary HIP3 (SEHI), swimming sham (SWSH), and swimming HIP3 (SWHI) groups. At PND4 and PND5, Na + /K + -ATPase activity and brain-derived neurotrophic factor (BDNF) levels were assessed. During lactation and adulthood, neurological reflexes, sensorimotor, anxiety-related, and cognitive evaluations were made, followed by histological assessment at PND60.ResultsAt early stages, swimming caused an increase in hippocampal BDNF levels and in the maintenance of Na + /K + -ATPase function in the SWHI group. The SWHI group showed smaller lesions and the preservation of white matter tracts. SEHI animals showed a delay in reflex maturation, which was reverted in the SWHI group. HIP3 induced spatial memory deficits and hypomyelination in SEHI rats, which was reverted in the SWHI group.ConclusionSwimming during pregnancy neuroprotected the brains against HI in very immature neonatal rats.

  14. An Action Research Approach to Fear as an Impact on Water Safety Outcomes among Adult African Americans in South Carolina

    ERIC Educational Resources Information Center

    Haynsworth, Nancy M.

    2017-01-01

    Research shows that compared to other groups, African Americans have historically had less access to swimming skills and thereby have a higher rate of drowning while swimming. Knowing how to swim is an important drowning prevention strategy, yet many African Americans residing in a county in South Carolina do not know how to swim, despite living…

  15. Attraction of swimming microorganisms by solid surfaces

    NASA Astrophysics Data System (ADS)

    Lauga, Eric; Berke, Allison; Turner, Linda; Berg, Howard

    2007-11-01

    Swimming microorganisms such as spermatozoa or bacteria are usually observed to accumulate near surfaces. Here, we report on an experiment aiming at measuring the distribution of smooth-swimming E. coli when moving in a density-matched fluid and between two glass plates. The distribution for the bacteria concentration is found to peak near the glass plates, in agreement with a simple physical model based on the far-field hydrodynamics of swimming cells.

  16. Baby swimming and respiratory health.

    PubMed

    Nystad, Wenche; Håberg, Siri E; London, Stephanie J; Nafstad, Per; Magnus, Per

    2008-05-01

    To estimate the effect of baby swimming in the first 6 months of life on respiratory diseases from 6 to 18 months. We used data from The Norwegian Mother and Child Cohort Study (MoBa) conducted by the Norwegian Institute of Public Health in children born between 1999 and 2005 followed from birth to the age of 18 months (n = 30,870). Health outcomes: lower respiratory tract infections (LRTI), wheeze and otitis media between 6 and 18 months of age. baby swimming at the age of 6 months. The effect of baby swimming was estimated by logistic regression analysis adjusting for potential confounders. About 25% of the children participated in baby swimming. The prevalence of LRTI was 13.3%, wheeze 40.0% and otitis media 30.4%. Children who were baby swimming were not more likely to have LRTI, to wheeze or to have otitis media. However, children with atopic mothers who attended baby swimming had an increased risk of wheeze, adjusted odds ratios (aOR) 1.24 (95% CI 1.11, 1.39), but not LRTI or otitis media. This was also the case for children without respiratory diseases before 6 months aOR 1.08 (95%CI 1.02-1.15). Baby swimming may be related to later wheeze. However, these findings warrant further investigation.

  17. Dispersal patterns, active behaviour, and flow environment during early life history of coastal cold water fishes.

    PubMed

    Stanley, Ryan; Snelgrove, Paul V R; Deyoung, Brad; Gregory, Robert S

    2012-01-01

    During the pelagic larval phase, fish dispersal may be influenced passively by surface currents or actively determined by swimming behaviour. In situ observations of larval swimming are few given the constraints of field sampling. Active behaviour is therefore often inferred from spatial patterns in the field, laboratory studies, or hydrodynamic theory, but rarely are these approaches considered in concert. Ichthyoplankton survey data collected during 2004 and 2006 from coastal Newfoundland show that changes in spatial heterogeneity for multiple species do not conform to predictions based on passive transport. We evaluated the interaction of individual larvae with their environment by calculating Reynolds number as a function of ontogeny. Typically, larvae hatch into a viscous environment in which swimming is inefficient, and later grow into more efficient intermediate and inertial swimming environments. Swimming is therefore closely related to length, not only because of swimming capacity but also in how larvae experience viscosity. Six of eight species sampled demonstrated consistent changes in spatial patchiness and concomitant increases in spatial heterogeneity as they transitioned into more favourable hydrodynamic swimming environments, suggesting an active behavioural element to dispersal. We propose the tandem assessment of spatial heterogeneity and hydrodynamic environment as a potential approach to understand and predict the onset of ecologically significant swimming behaviour of larval fishes in the field.

  18. Long-distance swimming by polar bears (Ursus maritimus) of the southern Beaufort Sea during years of extensive open water

    USGS Publications Warehouse

    2014-01-01

    Polar bears (Ursus maritimus Phipps, 1774) depend on sea ice for catching marine mammal prey. Recent sea-ice declines have been linked to reductions in body condition, survival, and population size. Reduced foraging opportunity is hypothesized to be the primary cause of sea-ice-linked declines, but the costs of travel through a deteriorated sea-ice environment also may be a factor. We used movement data from 52 adult female polar bears wearing Global Positioning System (GPS) collars, including some with dependent young, to document long-distance swimming (>50 km) by polar bears in the southern Beaufort and Chukchi seas. During 6 years (2004-2009), we identified 50 long-distance swims by 20 bears. Swim duration and distance ranged from 0.7 to 9.7 days (mean = 3.4 days) and 53.7 to 687.1 km (mean = 154.2 km), respectively. Frequency of swimming appeared to increase over the course of the study. We show that adult female polar bears and their cubs are capable of swimming long distances during periods when extensive areas of open water are present. However, long-distance swimming appears to have higher energetic demands than moving over sea ice. Our observations suggest long-distance swimming is a behavioral response to declining summer sea-ice conditions.

  19. Assessment of three-dimensional joint kinematics of the upper limb during simulated swimming using wearable inertial-magnetic measurement units.

    PubMed

    Fantozzi, Silvia; Giovanardi, Andrea; Magalhães, Fabrício Anício; Di Michele, Rocco; Cortesi, Matteo; Gatta, Giorgio

    2016-01-01

    The analysis of the joint kinematics during swimming plays a fundamental role both in sports conditioning and in clinical contexts. Contrary to the traditional video analysis, wearable inertial-magnetic measurements units (IMMUs) allow to analyse both the underwater and aerial phases of the swimming stroke over the whole length of the swimming pool. Furthermore, the rapid calibration and short data processing required by IMMUs provide coaches and athletes with an immediate feedback on swimming kinematics during training. This study aimed to develop a protocol to assess the three-dimensional kinematics of the upper limbs during swimming using IMMUs. Kinematics were evaluated during simulated dry-land swimming trials performed in the laboratory by eight swimmers. A stereo-photogrammetric system was used as the gold standard. The results showed high coefficient of multiple correlation (CMC) values, with median (first-third quartile) of 0.97 (0.93-0.95) and 0.99 (0.97-0.99) for simulated front-crawl and breaststroke, respectively. Furthermore, the joint angles were estimated with an accuracy increasing from distal to proximal joints, with wrist indices showing median CMC values always higher than 0.90. The present findings represent an important step towards the practical use of technology based on IMMUs for the kinematic analysis of swimming in applied contexts.

  20. Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat

    USGS Publications Warehouse

    Durner, George M.; Whiteman, J.P.; Harlow, H.J.; Amstrup, Steven C.; Regehr, E.V.; Ben-David, M.

    2011-01-01

    Polar bears (Ursus maritimus) prefer to live on Arctic sea ice but may swim between ice floes or between sea ice and land. Although anecdotal observations suggest that polar bears are capable of swimming long distances, no data have been available to describe in detail long distance swimming events or the physiological and reproductive consequences of such behavior. Between an initial capture in late August and a recapture in late October 2008, a radio-collared adult female polar bear in the Beaufort Sea made a continuous swim of 687 km over 9 days and then intermittently swam and walked on the sea ice surface an additional 1,800 km. Measures of movement rate, hourly activity, and subcutaneous and external temperature revealed distinct profiles of swimming and walking. Between captures, this polar bear lost 22% of her body mass and her yearling cub. The extraordinary long distance swimming ability of polar bears, which we confirm here, may help them cope with reduced Arctic sea ice. Our observation, however, indicates that long distance swimming in Arctic waters, and travel over deep water pack ice, may result in high energetic costs and compromise reproductive fitness.

  1. Effects of Swimming and Cycling Exercise Intervention on Vascular Function in Patients With Osteoarthritis.

    PubMed

    Alkatan, Mohammed; Machin, Daniel R; Baker, Jeffrey R; Akkari, Amanda S; Park, Wonil; Tanaka, Hirofumi

    2016-01-01

    Swimming exercise is an ideal and excellent form of exercise for patients with osteoarthritis (OA). However, there is no scientific evidence that regular swimming reduces vascular dysfunction and inflammation and elicits similar benefits compared with land-based exercises such as cycling in terms of reducing vascular dysfunction and inflammation in patients with OA. Forty-eight middle-aged and older patients with OA were randomly assigned to swimming or cycling training groups. Cycling training was included as a non-weight-bearing land-based comparison group. After 12 weeks of supervised exercise training, central arterial stiffness, as determined by carotid-femoral pulse wave velocity, and carotid artery stiffness, through simultaneous ultrasound and applanation tonometry, decreased significantly after both swimming and cycling training. Vascular endothelial function, as determined by brachial flow-mediated dilation, increased significantly after swimming but not after cycling training. Both swimming and cycling interventions reduced interleukin-6 levels, whereas no changes were observed in other inflammatory markers. In conclusion, these results indicate that regular swimming exercise can exert similar or even superior effects on vascular function and inflammatory markers compared with land-based cycling exercise in patients with OA who often has an increased risk of developing cardiovascular disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The effects of intensity on V̇O2 kinetics during incremental free swimming.

    PubMed

    de Jesus, Kelly; Sousa, Ana; de Jesus, Karla; Ribeiro, João; Machado, Leandro; Rodríguez, Ferran; Keskinen, Kari; Vilas-Boas, João Paulo; Fernandes, Ricardo J

    2015-09-01

    Swimming and training are carried out with wide variability in distances and intensities. However, oxygen uptake kinetics for the intensities seen in swimming has not been reported. The purpose of this study was to assess and compare the oxygen uptake kinetics throughout low-moderate to severe intensities during incremental swimming exercise. We hypothesized that the oxygen uptake kinetic parameters would be affected by swimming intensity. Twenty male trained swimmers completed an incremental protocol of seven 200-m crawl swims to exhaustion (0.05 m·s(-1) increments and 30-s intervals). Oxygen uptake was continuously measured by a portable gas analyzer connected to a respiratory snorkel and valve system. Oxygen uptake kinetics was assessed using a double exponential regression model that yielded both fast and slow components of the response of oxygen uptake to exercise. From low-moderate to severe swimming intensities changes occurred for the first and second oxygen uptake amplitudes (P ≤ 0.04), time constants (P = 0.01), and time delays (P ≤ 0.02). At the heavy and severe intensities, a notable oxygen uptake slow component (>255 mL·min(-1)) occurred in all swimmers. Oxygen uptake kinetics whilst swimming at different intensities offers relevant information regarding cardiorespiratory and metabolic stress that might be useful for appropriate performance diagnosis and training prescription.

  3. Roll and Yaw of Paramecium swimming in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Jung, Sunghwan; Jana, Saikat; Giarra, Matt; Vlachos, Pavlos

    2012-11-01

    Many free-swimming microorganisms like ciliates, flagellates, and invertebrates exhibit helical trajectories. In particular, the Paramecium spirally swims along its anterior direction by the beating of cilia. Due to the oblique beating stroke of cilia, the Paramecium rotates along its long axis as it swims forward. Simultaneously, this long axis turns toward the oral groove side. Combined roll and yaw motions of Paramecium result in swimming along a spiral course. Using Particle Image Velocimetry, we measure and quantify the flow field and fluid stress around Paramecium. We will discuss how the non-uniform stress distribution around the body induces this yaw motion.

  4. 3. SWIMMING POOL. VIEW TO SOUTHEAST. Rainbow Hydroelectric Facility, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SWIMMING POOL. VIEW TO SOUTHEAST. - Rainbow Hydroelectric Facility, Swimming Pool, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  5. 1. SWIMMING POOL. VIEW TO WEST. Rainbow Hydroelectric Facility, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SWIMMING POOL. VIEW TO WEST. - Rainbow Hydroelectric Facility, Swimming Pool, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  6. 2. SWIMMING POOL. VIEW TO SOUTHEAST. Rainbow Hydroelectric Facility, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SWIMMING POOL. VIEW TO SOUTHEAST. - Rainbow Hydroelectric Facility, Swimming Pool, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  7. 2012 Swimming Season Fact Sheets

    EPA Pesticide Factsheets

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  8. Helicobacter pylori Couples Motility and Diffusion to Actively Create a Heterogeneous Complex Medium in Gastric Mucus

    NASA Astrophysics Data System (ADS)

    Fu, Henry; Mirbagheri, Seyed Amir

    2016-11-01

    Helicobacter pylori swims through mucus gel by generating ammonia that locally neutralizes the acidic gastric environment, turning nearby gel into a fluid pocket. The size of the fluid zone is important for determining the physics of the motility: in a large zone swimming occurs as in a fluid through hydrodynamic principles, while in a very small zone the motility could be strongly influenced by nonhydrodynamic cell-mucus interactions including chemistry and adhesion. We calculate the size of the fluid pocket. We model how swimming depends on the de-gelation range using a Taylor sheet swimming through a layer of Newtonian fluid bounded by a Brinkman fluid. Then, we model how the de-gelation range depends on the swimming speed by considering the advection-diffusion of ammonia exuded from a translating sphere. Self-consistency between both models determines the values of the swimming speed and the de-gelation range. We find that H. pylori swims through mucus as if unconfined, in a large pocket of Newtonian fluid. Funded by National Science Foundation award CBET-1252182.

  9. 76 FR 37269 - Safety Zone; Charleston Sharkfest Swim, Charleston Harbor, Charleston, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ...-AA00 Safety Zone; Charleston Sharkfest Swim, Charleston Harbor, Charleston, SC AGENCY: Coast Guard, DHS... waters of Charleston Harbor, in Charleston, South Carolina during the Charleston Sharkfest Swim on Sunday, [[Page 37270

  10. Acidification reduced growth rate but not swimming speed of larval sea urchins.

    PubMed

    Chan, Kit Yu Karen; García, Eliseba; Dupont, Sam

    2015-05-15

    Swimming behaviors of planktonic larvae impact dispersal and population dynamics of many benthic marine invertebrates. This key ecological function is modulated by larval development dynamics, biomechanics of the resulting morphology, and behavioral choices. Studies on ocean acidification effects on larval stages have yet to address this important interaction between development and swimming under environmentally-relevant flow conditions. Our video motion analysis revealed that pH covering present and future natural variability (pH 8.0, 7.6 and 7.2) did not affect age-specific swimming of larval green urchin Strongylocentrotus droebachiensis in still water nor in shear, despite acidified individuals being significantly smaller in size (reduced growth rate). This maintenance of speed and stability in shear was accompanied by an overall change in size-corrected shape, implying changes in swimming biomechanics. Our observations highlight strong evolutionary pressure to maintain swimming in a varying environment and the plasticity in larval responses to environmental change.

  11. [Behavior in the forced-swimming test and expression of BDNF and Bcl-xl genes in the rat brain].

    PubMed

    Berezova, I V; Shishkina, G T; Kalinina, T S; Dygalo, N N

    2011-01-01

    A single exposure of rats to the forced-swimming stress decreased BDNF mRNA levels in the cortex and increased Bcl-xl gene expression in the hippocampus and amygdala 24 h after the stress. The animals demonstrated a depressive-like behavior and elevated blood corticosterone level. There was a significant negative correlation between BDNF mRNA level in the cortex and immobility time during swimming. Repeated exposure to swimming stress caused the elevation of the hippocampal BDNF mRNA level assessed 24 h after the second swimming session. The data suggest that stress-induced down-regulation of cortical BDNF gene expression and behavioral despair in the forced-swimming test may be interrelated. The increase in the BDNF and Bcl-xl mRNA levels may contribute to the mechanisms protecting the brain against negative effects of stress.

  12. Prey capture by freely swimming flagellates

    NASA Astrophysics Data System (ADS)

    Andersen, Anders; Dolger, Julia; Nielsen, Lasse Tor; Kiorboe, Thomas

    2017-11-01

    Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. Here, we explore the dependence of swimming kinematics and prey clearance rate on flagellar arrangement and determine optimal flagellar arrangements and essential trade-offs. To describe near-cell flows around freely swimming flagellates we consider a model in which the cell is represented by a no-slip sphere and each flagellum by a point force. For uniflagellates pulled by a single flagellum the model suggests that a long flagellum favors fast swimming, whereas high clearance rate is favored by a very short flagellum. For biflagellates with both a longitudinal and a transversal flagellum we explore the helical swimming kinematics and the prey capture sites. We compare our predictions with observations of swimming kinematics, prey capture, and flows around common marine flagellates. The Centre for Ocean Life is a VKR Centre of Excellence supported by the Villum Foundation.

  13. [Study on screening differentially expressed genes in mice livers by silver staining DD-PCR].

    PubMed

    Luan, Xin-Hong; Hu, Zhong-Ming; Liu, Wei-Quan; Jiang, Yu; Wang, Kai; Wu, Yong-Kui; Li, Qian-Xue

    2005-08-01

    To screen swimming-fatigue related genes in mice and lay theoretic basis for researching the molecular mechanism of fatigue. 30 male BALB/c mice (20 +/- 2g) were divided into control group, dipping in water group and swimming-fatigue group respectively. After fatigue for swimming in swimming-fatigue group, with control group and dipping in water group, liver tissues in mice were collected. With improved silver staining mRNA differential display method, the differentially expressed genes in mice livers were screened and evaluated by reversed Northern blot. The positive segments were analyzed homology by BLAST. 7 of DD-ESTs were gained. Two of them only expressed in swimming-fatigue group, two down-regulated expressed, and three up-regulated. One of them was a novel gene and was accepted by GenBank, AY615302. Seven DD-ESTs in swimming-fatigue mice were gained by silver staining mRNA differential display method.

  14. Benefits of carbon dioxide as pH reducer in chlorinated indoor swimming pools.

    PubMed

    Gomà, Anton; Guisasola, Albert; Tayà, Carlota; Baeza, Juan A; Baeza, Mireia; Bartrolí, Albert; Lafuente, Javier; Bartrolí, Jordi

    2010-06-01

    Carbon dioxide is seldom used as pH reducer in swimming pools. Nevertheless it offers two interesting advantages. First, its use instead of the usual hydrochloric acid avoids the characteristic and serious accident of mixing the disinfectant with that strong acid, which forms a dangerous chlorine gas cloud and, second, it allows the facility to become slightly a depository of that greenhouse gas. This work introduces the experience of using CO(2) as pH reducer in real working swimming pools, showing three more advantages: lower chlorine consumption, lower presence of oxidants in the air above the swimming pool and a diminished formation of trihalomethanes in the swimming pool water. Experiments lasted 4years and they were run in three swimming pools in the Barcelona area, where the conventional system based upon HCl and a system based upon CO(2) were consecutively exchanged.

  15. Effect of morphological fin curl on the swimming performance and station-holding ability of juvenile shovelnose sturgeon

    USGS Publications Warehouse

    Deslauriers, David; Johnston, Ryan; Chipps, Steven R.

    2016-01-01

    We assessed the effect of fin-curl on the swimming and station-holding ability of juvenile shovelnose sturgeon Scaphirhynchus platorynchus (mean fork length = 17 cm; mean weight = 16 g; n = 21) using a critical swimming speed test performed in a small swim chamber (90 L) at 20°C. We quantified fin-curl severity using the pectoral fin index. Results showed a positive relationship between pectoral fin index and critical swimming speed indicative of reduced swimming performance displayed by fish afflicted with a pectoral fin index < 8%. Fin-curl severity, however, did not affect the station-holding ability of individual fish. Rather, fish affected with severe fin-curl were likely unable to use their pectoral fins to position their body adequately in the water column, which led to the early onset of fatigue. Results generated from this study should serve as an important consideration for future stocking practices.

  16. Noncontact Cohesive Swimming of Bacteria in Two-Dimensional Liquid Films.

    PubMed

    Li, Ye; Zhai, He; Sanchez, Sandra; Kearns, Daniel B; Wu, Yilin

    2017-07-07

    Bacterial swimming in confined two-dimensional environments is ubiquitous in nature and in clinical settings. Characterizing individual interactions between swimming bacteria in 2D confinement will help to understand diverse microbial processes, such as bacterial swarming and biofilm formation. Here we report a novel motion pattern displayed by flagellated bacteria in 2D confinement: When two nearby cells align their moving directions, they tend to engage in cohesive swimming without direct cell body contact, as a result of hydrodynamic interaction but not flagellar intertwining. We further found that cells in cohesive swimming move with higher directional persistence, which can increase the effective diffusivity of cells by ∼3 times as predicted by computational modeling. As a conserved behavior for peritrichously flagellated bacteria, cohesive swimming in 2D confinement may be key to collective motion and self-organization in bacterial swarms; it may also promote bacterial dispersal in unsaturated soils and in interstitial space during infections.

  17. Swimming in a contained space: Understanding the experience of indoor lap swimmers.

    PubMed

    Ward, Miranda

    2017-07-01

    Drawing on ethnographic work, this paper explores the convergence of bodies, materialities and practices found at the indoor swimming pool - a space that has not often been the subject of geographical study, in spite of the fact that swimming is one of the most popular forms of exercise in countries such as the UK. The paper focuses on the "contained" nature of the indoor pool environment, examining the distinct experience this can create for lap swimmers. This focus is placed in the context of a broader politics of exercise, with an emphasis on the popularity and potential benefits of swimming, as well as less encouraging facts about participation and facility provision, suggesting that in order to encourage further uptake of swimming and preservation of swimming facilities the voices and experiences of regular swimmers should be considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effects of feeding, digestion and fasting on the respiration and swimming capability of juvenile sterlet sturgeon (Acipenser ruthenus, Linnaeus 1758).

    PubMed

    Cai, Lu; Johnson, David; Fang, Min; Mandal, Prashant; Tu, Zhiying; Huang, Yingping

    2017-02-01

    The objective of this study is to provide information on changes in swimming capability and respiration of the sterlet sturgeon (Acipenser ruthenus, Linnaeus 1758) caused by different levels of fasting. Before testing, the four groups of sturgeon (body length: 12.1-15.4 cm, body mass: 10.0-20.2 g) fasted for 6 h, 2 days, 1 and 2 weeks, respectively. Swimming tests were then performed to measure critical swimming speed and oxygen consumption at 20 ± 0.5 °C. Results show: (1) Fasting times shorter than 2 days has little effect on swimming capability, but it decreases significantly when the fasting time is longer than a week. (2) After 2 weeks of fasting, swimming efficiency is significantly reduced. (3) Anaerobic capacity increases when digestion nears completion.

  19. Function of identified motoneurones and co-ordination of primary and secondary motor systems during zebra fish swimming.

    PubMed Central

    Liu, D W; Westerfield, M

    1988-01-01

    1. The activity of the two classes of motoneurones, primary and secondary, which innervate myotomal muscle fibres in the zebra fish, was monitored with electromyographic and intracellular techniques. 2. Simultaneous EMG and intracellular recordings from muscle fibres showed that the activity of the two motor systems and of individual primary motoneurones can be distinguished by recording EMG spikes during swimming. 3. Measurements of EMG spikes demonstrated that primary and secondary motoneurones are co-ordinately activated over a wide range of conditions during normal swimming. 4. During swimming the primary motoneurones within a given segment are usually co-activated although they sometimes fire independently. 5. When different primary motoneurones within a given segment are co-activated, they fire nearly synchronously. 6. We conclude that the primary motoneurones are used principally, although not exclusively, during fast swimming, struggling and the startle response, whereas secondary motoneurones function primarily during slower swimming. PMID:3253426

  20. Maternal Forced Swimming Reduces Cell Proliferation in the Postnatal Dentate Gyrus of Mouse Offspring

    PubMed Central

    Wasinski, Frederick; Estrela, Gabriel R.; Arakaki, Aline M.; Bader, Michael; Alenina, Natalia; Klempin, Friederike; Araújo, Ronaldo C.

    2016-01-01

    Physical exercise positively affects the metabolism and induces proliferation of precursor cells in the adult brain. Maternal exercise likewise provokes adaptations early in the offspring. Using a high-intensity swimming protocol that comprises forced swim training before and during pregnancy, we determined the effect of maternal swimming on the mouse offspring's neurogenesis. Our data demonstrate decreased proliferation in sublayers of the postnatal dentate gyrus in offspring of swimming mother at postnatal day (P) 8 accompanied with decreased survival of newly generated cells 4 weeks later. The reduction in cell numbers was predominantly seen in the hilus and molecular layer. At P35, the reduced amount of cells was also reflected by a decrease in the population of newly generated immature and mature neurons of the granule cell layer. Our data suggest that forced maternal swimming at high-intensity has a negative effect on the neurogenic niche development in postnatal offspring. PMID:27621701

  1. [Effects of the maca extract on the ultrastructures of mitochondria in the spinal nerve cell and exercise endurance].

    PubMed

    Yu, Fa-Rong; Yang, Bo; Li, Zuo-Ping; Lian, Xiu-Zhen; Xie, Ming-Ren; Li, Deng-Lou; Zhang, Shi-Shuang

    2017-06-08

    To investigate the effects of maca extract on the ultrastructures of mitochondria in the spinal nerve cell and exercise endurance. The Wistar rats were randomly divided into 5 groups, including the control group (no swimming), the swimming group (free swimming), and 3 treatment groups treated with the maca extract at the doses of 4.0, 5.3 and 8.0 g/kg body weight. The animals in swimming and treatment groups were then for free swimming in the circulating water flow daily for 15 days. On the 16 th day after swimming endurance, the spinal and muscular tissues were collected from all groups. The mitochondrial ultrastructures of the neurons of the spinal cells were observed with the projection electron microscope, and the levels of the glycogen, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and Ca 2+ in muscle tissues were determined by the RIA method. When rats were treated with maca extract (at 4.0, 5.3, 8.0 g/kg body weight), the total swimming time and the swimming duration before sinking were increased by 19.83%, 60.28%, 77.55%, and 55.34%, 73.91%, 94.47%, respectively, compared with the simple swimming group( P <0.01), while the sinking times were decreased by 34.35%, 51.18% and 57.96%, compared with those of the swimming group. Also, the levels of SOD, GSH-Px, and muscle glycogen in three treatment groups were enhanced by 5.12%, 22.74%, 52.53%, 44.22%, 77.79%, 98.45%( P <0.01), and 35.08%, 47.83%,81.88% ( P <0.01)respectively over the swimming rats without treatment, but the MDA content and the Ca 2+ levels were reduced by 20.10%, 31.49% 38.72%, and 6.42%, 17.58%, 26.35%,compared with the simple swimming group( P <0.01). In addition, compared to the swimming group, the mitochondrial densities of volume (VD), surface (SD) and numbers (ND) of spinal nerve cells in rats treated with maca extract (4.0, 5.3, 8.0 g/kg body weight) were reduced by 7.79%, 18.18%, 31.17%, 16.95%, 27.34%, 43.31% and 13.51%, 23.19%, 43.15%, respectively. Our results demonstrated the protective effects of maca extract on the mitochondria of spinal cell and suggested that maca extract could improve the muscle antioxidant activity by increasing the levels of SOD, GSH-Px, and muscle glycogen.

  2. Swimming speed alteration of Artemia sp. and Brachionus plicatilis as a sub-lethal behavioural end-point for ecotoxicological surveys.

    PubMed

    Garaventa, Francesca; Gambardella, Chiara; Di Fino, Alessio; Pittore, Massimiliano; Faimali, Marco

    2010-03-01

    In this study, we investigated the possibility to improve a new behavioural bioassay (Swimming Speed Alteration test-SSA test) using larvae of marine cyst-forming organisms: e.g. the brine shrimp Artemia sp. and the rotifer Brachionus plicatilis. Swimming speed was investigated as a behavioural end-point for application in ecotoxicology studies. A first experiment to analyse the linear swimming speed of the two organisms was performed to verify the applicability of the video-camera tracking system, here referred to as Swimming Behavioural Recorder (SBR). A second experiment was performed, exposing organisms to different toxic compounds (zinc pyrithione, Macrotrol MT-200, and Eserine). Swimming speed alteration was analyzed together with mortality. The results of the first experiment indicate that SBR is a suitable tool to detect linear swimming speed of the two organisms, since the values have been obtained in accordance with other studies using the same organisms (3.05 mm s(-1) for Artemia sp. and 0.62 mm s(-1) for B. plicatilis). Toxicity test results clearly indicate that swimming speed of Artemia sp. and B. plicatilis is a valid behavioural end-point to detect stress at sub-lethal toxic substance concentrations. Indeed, alterations in swimming speed have been detected at toxic compound concentrations as low as less then 0.1-5% of their LC(50) values. In conclusion, the SSA test with B. plicatilis and Artemia sp. can be a good behavioural integrated output for application in marine ecotoxicology and environmental monitoring programs.

  3. London 2012 Paralympic swimming: passive drag and the classification system.

    PubMed

    Oh, Yim-Taek; Burkett, Brendan; Osborough, Conor; Formosa, Danielle; Payton, Carl

    2013-09-01

    The key difference between the Olympic and Paralympic Games is the use of classification systems within Paralympic sports to provide a fair competition for athletes with a range of physical disabilities. In 2009, the International Paralympic Committee mandated the development of new, evidence-based classification systems. This study aims to assess objectively the swimming classification system by determining the relationship between passive drag and level of swimming-specific impairment, as defined by the current swimming class. Data were collected on participants at the London 2012 Paralympic Games. The passive drag force of 113 swimmers (classes 3-14) was measured using an electro-mechanical towing device and load cell. Swimmers were towed on the surface of a swimming pool at 1.5 m/s while holding their most streamlined position. Passive drag ranged from 24.9 to 82.8 N; the normalised drag (drag/mass) ranged from 0.45 to 1.86 N/kg. Significant negative associations were found between drag and the swimming class (τ = -0.41, p < 0.01) and normalised drag and the swimming class (τ = -0.60, p < 0.01). The mean difference in drag between adjacent classes was inconsistent, ranging from 0 N (6 vs 7) to 11.9 N (5 vs 6). Reciprocal Ponderal Index (a measure of slenderness) correlated moderately with normalised drag (r(P) = -0.40, p < 0.01). Although swimmers with the lowest swimming class experienced the highest passive drag and vice versa, the inconsistent difference in mean passive drag between adjacent classes indicates that the current classification system does not always differentiate clearly between swimming groups.

  4. Isolated core training improves sprint performance in national-level junior swimmers.

    PubMed

    Weston, Matthew; Hibbs, Angela E; Thompson, Kevin G; Spears, Iain R

    2015-03-01

    To quantify the effects of a 12-wk isolated core-training program on 50-m front-crawl swim time and measures of core musculature functionally relevant to swimming. Twenty national-level junior swimmers (10 male and 10 female, 16±1 y, 171±5 cm, 63±4 kg) participated in the study. Group allocation (intervention [n=10], control [n=10]) was based on 2 preexisting swim-training groups who were part of the same swimming club but trained in different groups. The intervention group completed the core training, incorporating exercises targeting the lumbopelvic complex and upper region extending to the scapula, 3 times/wk for 12 wk. While the training was performed in addition to the normal pool-based swimming program, the control group maintained their usual pool-based swimming program. The authors made probabilistic magnitude-based inferences about the effect of the core training on 50-m swim time and functionally relevant measures of core function. Compared with the control group, the core-training intervention group had a possibly large beneficial effect on 50-m swim time (-2.0%; 90% confidence interval -3.8 to -0.2%). Moreover, it showed small to moderate improvements on a timed prone-bridge test (9.0%; 2.1-16.4%) and asymmetric straight-arm pull-down test (23.1%; 13.7-33.4%), and there were moderate to large increases in peak EMG activity of core musculature during isolated tests of maximal voluntary contraction. This is the first study to demonstrate a clear beneficial effect of isolated core training on 50-m front-crawl swim performance.

  5. The Generation of Antiphase Oscillations and Synchrony by a Rebound-Based Vertebrate Central Pattern Generator

    PubMed Central

    Merrison-Hort, Robert; Zhang, Hong-Yan; Borisyuk, Roman

    2014-01-01

    Many neural circuits are capable of generating multiple stereotyped outputs after different sensory inputs or neuromodulation. We have previously identified the central pattern generator (CPG) for Xenopus tadpole swimming that involves antiphase oscillations of activity between the left and right sides. Here we analyze the cellular basis for spontaneous left–right motor synchrony characterized by simultaneous bursting on both sides at twice the swimming frequency. Spontaneous synchrony bouts are rare in most tadpoles, and they instantly emerge from and switch back to swimming, most frequently within the first second after skin stimulation. Analyses show that only neurons that are active during swimming fire action potentials in synchrony, suggesting both output patterns derive from the same neural circuit. The firing of excitatory descending interneurons (dINs) leads that of other types of neurons in synchrony as it does in swimming. During synchrony, the time window between phasic excitation and inhibition is 7.9 ± 1 ms, shorter than that in swimming (41 ± 2.3 ms). The occasional, extra midcycle firing of dINs during swimming may initiate synchrony, and mismatches of timing in the left and right activity can switch synchrony back to swimming. Computer modeling supports these findings by showing that the same neural network, in which reciprocal inhibition mediates rebound firing, can generate both swimming and synchrony without circuit reconfiguration. Modeling also shows that lengthening the time window between phasic excitation and inhibition by increasing dIN synaptic/conduction delay can improve the stability of synchrony. PMID:24760866

  6. Digesting or swimming? Integration of the postprandial metabolism, behavior and locomotion in a frequently foraging fish.

    PubMed

    Nie, Li-Juan; Cao, Zhen-Dong; Fu, Shi-Jian

    2017-02-01

    Fish that are active foragers usually perform routine activities while digesting their food; thus, their postprandial swimming capacity and related behavior adjustments might be ecologically important. To test whether digestion affect swimming performance and the relationships of digestion with metabolism and behavior in an active forager, we investigated the postprandial metabolic response, spontaneous swimming activities, critical swimming speed (Ucrit), and fast-start escape performance of both fasted and digesting (3h after feeding to satiation) juvenile rose bitterling (Rhodeus ocellatus). Feeding to satiation elicited a 50% increase in the oxygen consumption rate, which peaked at 3h after feeding and returned to the prefeeding state after another 3h. However, approximately 50% and 90% of individuals resumed feeding behavior at 2 and 3h postfeeding, respectively, although the meal size varied substantially. Digestion showed no effect on either steady swimming performance as suggested by the Ucrit or unsteady swimming performance indicated by the maximum linear velocity in fast-start escape movement. However, digesting fish showed more spontaneous activity as indicated by the longer total distance traveled, mainly through an increased percentage of time spent moving (PTM). A further analysis found that fasting individuals with high swimming speed were more inclined to increase their PTM during digestive processes. The present study suggests that as an active forager With a small meal size and hence limited postprandial physiological and morphological changes, the swimming performance of rose bitterling is maintained during digestion, which might be crucial for its active foraging mode and anti-predation strategy. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Effect of desipramine and citalopram treatment on forced swimming test-induced changes in cocaine- and amphetamine-regulated transcript (CART) immunoreactivity in mice.

    PubMed

    Chung, Sung; Kim, Hee Jeong; Kim, Hyun Ju; Choi, Sun Hye; Kim, Jin Wook; Kim, Jeong Min; Shin, Kyung Ho

    2014-05-01

    Recent study demonstrates antidepressant-like effect of cocaine- and amphetamine-regulated transcript (CART) in the forced swimming test (FST), but less is known about whether antidepressant treatments alter levels of CART immunoreactivity (CART-IR) in the FST. To explore this possibility, we assessed the treatment effects of desipramine and citalopram, which inhibit the reuptake of norepinephrine and serotonin into the presynaptic terminals, respectively, on changes in levels of CART-IR before and after the test swim in mouse brain. Levels of CART-IR in the nucleus accumbens shell (AcbSh), dorsal bed nucleus of the stria terminalis (dBNST), and hypothalamic paraventricular nucleus (PVN) were significantly increased before the test swim by desipramine and citalopram treatments. This increase in CART-IR in the AcbSh, dBNST, and PVN before the test swim remained elevated by desipramine treatment after the test swim, but this increase in these brain areas returned to near control levels after test swim by citalopram treatment. Citalopram, but not desipramine, treatment increased levels of CART-IR in the central nucleus of the amygdala (CeA) and the locus ceruleus (LC) before the test swim, and this increase was returned to control levels after the test swim in the CeA, but not in the LC. These results suggest common and distinct regulation of CART by desipramine and citalopram treatments in the FST and raise the possibility that CART in the AcbSh, dBNST, and CeA may be involved in antidepressant-like effect in the FST.

  8. VIEW OF OUTDOOR SWIMMING POOL AND FILTER ROOM/ BATHHOUSE S196, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF OUTDOOR SWIMMING POOL AND FILTER ROOM/ BATHHOUSE S-196, FACING WEST. - U.S. Naval Base, Pearl Harbor, Outdoor Swimming Pool, Corner of Liscome Bay Street & St. Lo Avenue, Pearl City, Honolulu County, HI

  9. Estimating Burst Swim Speeds and Jumping Characteristics of Silver Carp (Hypophthalmichthys molitrix) Using Video Analyses and Principles of Projectile Physics

    DTIC Science & Technology

    2016-09-01

    Characteristics of Silver Carp (Hypophthalmichthys molitrix) Using Video Analyses and Principles of Projectile Physics by Glenn R. Parsons, Ehlana Stell...2002) estimated maximum swim speeds of videotaped, captive, and free-ranging dolphins, Delphinidae, by timed sequential analyses of video frames... videos to estimate the swim speeds and leap characteristics of carp as they exit the waters’ surface. We used both direct estimates of swim speeds as

  10. Simple phalanx pattern leads to energy saving in cohesive fish schooling.

    PubMed

    Ashraf, Intesaaf; Bradshaw, Hanaé; Ha, Thanh-Tung; Halloy, José; Godoy-Diana, Ramiro; Thiria, Benjamin

    2017-09-05

    The question of how individuals in a population organize when living in groups arises for systems as different as a swarm of microorganisms or a flock of seagulls. The different patterns for moving collectively involve a wide spectrum of reasons, such as evading predators or optimizing food prospection. Also, the schooling pattern has often been associated with an advantage in terms of energy consumption. In this study, we use a popular aquarium fish, the red nose tetra fish, Hemigrammus bleheri , which is known to swim in highly cohesive groups, to analyze the schooling dynamics. In our experiments, fish swim in a shallow-water tunnel with controlled velocity, and stereoscopic video recordings are used to track the 3D positions of each individual in a school, as well as their tail-beating kinematics. Challenging the widespread idea of fish favoring a diamond pattern to swim more efficiently [Weihs D (1973) Nature 241:290-291], we observe that when fish are forced to swim fast-well above their free-swimming typical velocity, and hence in a situation where efficient swimming would be favored-the most frequent configuration is the "phalanx" or "soldier" formation, with all individuals swimming side by side. We explain this observation by considering the advantages of tail-beating synchronization between neighbors, which we have also characterized. Most importantly, we show that schooling is advantageous as compared with swimming alone from an energy-efficiency perspective.

  11. A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming.

    PubMed

    Bhalla, Amneet Pal Singh; Griffith, Boyce E; Patankar, Neelesh A

    2013-01-01

    A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions ("active" swimming) or by forces imparted by the surrounding fluid ("passive" swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained.

  12. Dispersal Patterns, Active Behaviour, and Flow Environment during Early Life History of Coastal Cold Water Fishes

    PubMed Central

    Stanley, Ryan; Snelgrove, Paul V. R.; deYoung, Brad; Gregory, Robert S.

    2012-01-01

    During the pelagic larval phase, fish dispersal may be influenced passively by surface currents or actively determined by swimming behaviour. In situ observations of larval swimming are few given the constraints of field sampling. Active behaviour is therefore often inferred from spatial patterns in the field, laboratory studies, or hydrodynamic theory, but rarely are these approaches considered in concert. Ichthyoplankton survey data collected during 2004 and 2006 from coastal Newfoundland show that changes in spatial heterogeneity for multiple species do not conform to predictions based on passive transport. We evaluated the interaction of individual larvae with their environment by calculating Reynolds number as a function of ontogeny. Typically, larvae hatch into a viscous environment in which swimming is inefficient, and later grow into more efficient intermediate and inertial swimming environments. Swimming is therefore closely related to length, not only because of swimming capacity but also in how larvae experience viscosity. Six of eight species sampled demonstrated consistent changes in spatial patchiness and concomitant increases in spatial heterogeneity as they transitioned into more favourable hydrodynamic swimming environments, suggesting an active behavioural element to dispersal. We propose the tandem assessment of spatial heterogeneity and hydrodynamic environment as a potential approach to understand and predict the onset of ecologically significant swimming behaviour of larval fishes in the field. PMID:23029455

  13. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chao, E-mail: zhangchao@cqu.edu.cn; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030; Liao, Qiang, E-mail: lqzx@cqu.edu.cn

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competitionmore » between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated.« less

  14. Morphological correlates of swimming activity in wild largemouth bass (Micropterus salmoides) in their natural environment.

    PubMed

    Hanson, K C; Hasler, C T; Suski, C D; Cooke, S J

    2007-12-01

    Individual variation in morphology has been linked to organismal performance in numerous taxa. Recently, the relationship between functional morphology and swimming performance in teleost fishes has been studied in laboratory experiments. In this study, we evaluate the relationship between morphology and swimming activity of wild largemouth bass (Micropterus salmoides) during the reproductive period, providing the first data derived on free-swimming fish not exposed to forced swim trials in the laboratory. Sixteen male largemouth bass were angled from their nests, telemetered, and subsequently monitored by a whole-lake acoustic hydrophone array with sub-meter accuracy. Additionally, eleven morphological measurements were taken from digital images of each fish. A principal components analysis of the morphological measurements described 79.8% of the variance. PC1 was characterized by measures of overall body stoutness, PC2 was characterized by measures of the length and depth of the caudal region, and PC3 characterized individuals with relatively large anterior portions of the body and relatively small caudal areas. Of these variables, only PC3 showed significant relationships to swimming activity throughout the parental care period. PC3 was negatively correlated with multiple measures of swimming activity across the parental care period. Furthermore, swimming performance of individual male bass was noted to be repeatable across the parental care period indicating that this phenomenon extends beyond the laboratory.

  15. A Forced Damped Oscillation Framework for Undulatory Swimming Provides New Insights into How Propulsion Arises in Active and Passive Swimming

    PubMed Central

    Bhalla, Amneet Pal Singh; Griffith, Boyce E.; Patankar, Neelesh A.

    2013-01-01

    A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions (“active” swimming) or by forces imparted by the surrounding fluid (“passive” swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained. PMID:23785272

  16. Automation of water supply and recirculation-filtration of water at a swimming pool using Zelio PLC

    NASA Astrophysics Data System (ADS)

    Diniş, C. M.; Popa, G. N.; Iagăr, A.

    2018-01-01

    The paper proposes the use of the Zelio PLC for the automation of the water supply and recirculation-filtration system of a swimming pool. To do this, the Zelio SR3B261BD - 24V DC with 10 digital inputs (24V DC) and 10 digital outputs (relay contacts) was used. The proposed application makes the control of the water supply pumps and the water recirculation-filtration from a swimming pool. The recirculation-filtration systems for pools and swimming pools are designed to ensure water cleaning and recirculation to achieve optimum quality and lasting service life. The water filtration process is one of the important steps in water treatment in polls and swimming pools. It consists in recirculation of the entire volume of water and begins by absorbing the water in the pool by means of a pump followed by the passing of water through the filter, disinfectant and pH dosing, and reintroducing the water back into the pool or swimming pool through the discharge holes. Filters must to work 24 hours a day to remove pollutants from pools or swimming pools users. Filtration removes suspension particles with different origins. All newly built pools and swimming pools must be fitted with water recirculation systems, and existing ones will be equipped with water recirculation and water treatment systems.

  17. Swimming Speed of Larval Snail Does Not Correlate with Size and Ciliary Beat Frequency

    PubMed Central

    Chan, Kit Yu Karen; Jiang, Houshuo; Padilla, Dianna K.

    2013-01-01

    Many marine invertebrates have planktonic larvae with cilia used for both propulsion and capturing of food particles. Hence, changes in ciliary activity have implications for larval nutrition and ability to navigate the water column, which in turn affect survival and dispersal. Using high-speed high-resolution microvideography, we examined the relationship between swimming speed, velar arrangements, and ciliary beat frequency of freely swimming veliger larvae of the gastropod Crepidula fornicata over the course of larval development. Average swimming speed was greatest 6 days post hatching, suggesting a reduction in swimming speed towards settlement. At a given age, veliger larvae have highly variable speeds (0.8–4 body lengths s−1) that are independent of shell size. Contrary to the hypothesis that an increase in ciliary beat frequency increases work done, and therefore speed, there was no significant correlation between swimming speed and ciliary beat frequency. Instead, there are significant correlations between swimming speed and visible area of the velar lobe, and distance between centroids of velum and larval shell. These observations suggest an alternative hypothesis that, instead of modifying ciliary beat frequency, larval C. fornicata modify swimming through adjustment of velum extension or orientation. The ability to adjust velum position could influence particle capture efficiency and fluid disturbance and help promote survival in the plankton. PMID:24367554

  18. Shared Components of Rhythm Generation for Locomotion and Scratching Exist Prior to Motoneurons

    PubMed Central

    Hao, Zhao-Zhe; Berkowitz, Ari

    2017-01-01

    Does the spinal cord use a single network to generate locomotor and scratching rhythms or two separate networks? Previous research showed that simultaneous swim and scratch stimulation (“dual stimulation”) in immobilized, spinal turtles evokes a single rhythm in hindlimb motor nerves with a frequency often greater than during swim stimulation alone or scratch stimulation alone. This suggests that the signals that trigger swimming and scratching converge and are integrated within the spinal cord. However, these results could not determine whether the integration occurs in motoneurons themselves or earlier, in spinal interneurons. Here, we recorded intracellularly from hindlimb motoneurons during dual stimulation. Motoneuron membrane potentials displayed regular oscillations at a higher frequency during dual stimulation than during swim or scratch stimulation alone. In contrast, arithmetic addition of the oscillations during swimming alone and scratching alone with various delays always generated irregular oscillations. Also, the standard deviation of the phase-normalized membrane potential during dual stimulation was similar to those during swimming or scratching alone. In contrast, the standard deviation was greater when pooling cycles of swimming alone and scratching alone for two of the three forms of scratching. This shows that dual stimulation generates a single rhythm prior to motoneurons. Thus, either swimming and scratching largely share a rhythm generator or the two rhythms are integrated into one rhythm by strong interactions among interneurons. PMID:28848402

  19. Evaluation of the Finis Swimsense® and the Garmin Swim™ activity monitors for swimming performance and stroke kinematics analysis

    PubMed Central

    Mooney, Robert; Corley, Gavin; Godfrey, Alan; Osborough, Conor; ÓLaighin, Gearóid

    2017-01-01

    Aims The study aims were to evaluate the validity of two commercially available swimming activity monitors for quantifying temporal and kinematic swimming variables. Methods Ten national level swimmers (5 male, 5 female; 15.3±1.3years; 164.8±12.9cm; 62.4±11.1kg; 425±66 FINA points) completed a set protocol comprising 1,500m of swimming involving all four competitive swimming strokes. Swimmers wore the Finis Swimsense and the Garmin Swim activity monitors throughout. The devices automatically identified stroke type, swim distance, lap time, stroke count, stroke rate, stroke length and average speed. Video recordings were also obtained and used as a criterion measure to evaluate performance. Results A significant positive correlation was found between the monitors and video for the identification of each of the four swim strokes (Garmin: X2 (3) = 31.292, p<0.05; Finis:X2 (3) = 33.004, p<0.05). No significant differences were found for swim distance measurements. Swimming laps performed in the middle of a swimming interval showed no significant difference from the criterion (Garmin: bias -0.065, 95% confidence intervals -3.828–6.920; Finis bias -0.02, 95% confidence intervals -3.095–3.142). However laps performed at the beginning and end of an interval were not as accurately timed. Additionally, a statistical difference was found for stroke count measurements in all but two occasions (p<0.05). These differences affect the accuracy of stroke rate, stroke length and average speed scores reported by the monitors, as all of these are derived from lap times and stroke counts. Conclusions Both monitors were found to operate with a relatively similar performance level and appear suited for recreational use. However, issues with feature detection accuracy may be related to individual variances in stroke technique. It is reasonable to expect that this level of error would increase when the devices are used by recreational swimmers rather than elite swimmers. Further development to improve accuracy of feature detection algorithms, specifically for lap time and stroke count, would also increase their suitability within competitive settings. PMID:28178301

  20. Evaluation of the Finis Swimsense® and the Garmin Swim™ activity monitors for swimming performance and stroke kinematics analysis.

    PubMed

    Mooney, Robert; Quinlan, Leo R; Corley, Gavin; Godfrey, Alan; Osborough, Conor; ÓLaighin, Gearóid

    2017-01-01

    The study aims were to evaluate the validity of two commercially available swimming activity monitors for quantifying temporal and kinematic swimming variables. Ten national level swimmers (5 male, 5 female; 15.3±1.3years; 164.8±12.9cm; 62.4±11.1kg; 425±66 FINA points) completed a set protocol comprising 1,500m of swimming involving all four competitive swimming strokes. Swimmers wore the Finis Swimsense and the Garmin Swim activity monitors throughout. The devices automatically identified stroke type, swim distance, lap time, stroke count, stroke rate, stroke length and average speed. Video recordings were also obtained and used as a criterion measure to evaluate performance. A significant positive correlation was found between the monitors and video for the identification of each of the four swim strokes (Garmin: X2 (3) = 31.292, p<0.05; Finis:X2 (3) = 33.004, p<0.05). No significant differences were found for swim distance measurements. Swimming laps performed in the middle of a swimming interval showed no significant difference from the criterion (Garmin: bias -0.065, 95% confidence intervals -3.828-6.920; Finis bias -0.02, 95% confidence intervals -3.095-3.142). However laps performed at the beginning and end of an interval were not as accurately timed. Additionally, a statistical difference was found for stroke count measurements in all but two occasions (p<0.05). These differences affect the accuracy of stroke rate, stroke length and average speed scores reported by the monitors, as all of these are derived from lap times and stroke counts. Both monitors were found to operate with a relatively similar performance level and appear suited for recreational use. However, issues with feature detection accuracy may be related to individual variances in stroke technique. It is reasonable to expect that this level of error would increase when the devices are used by recreational swimmers rather than elite swimmers. Further development to improve accuracy of feature detection algorithms, specifically for lap time and stroke count, would also increase their suitability within competitive settings.

  1. Swim drink study: a randomised controlled trial of during-exercise rehydration and swimming performance.

    PubMed

    Briars, Graham L; Gordon, Gillian Suzanne; Lawrence, Andrew; Turner, Andrew; Perry, Sharon; Pillbrow, Dan; Walston, Florence Einstein; Molyneux, Paul

    2017-01-01

    To determine whether during-exercise rehydration improves swimming performance and whether sports drink or water have differential effects on performance. Randomised controlled multiple crossover trial. A UK competitive swimming club. 19 club-level competitive swimmers, median age (range) 13 (11-17) years. Subjects were scheduled to drink ad libitum commercial isotonic sports drink (3.9 g sugars and 0.13 g salt per 100 mL) or water (three sessions each) or no drink (six sessions) in the course of twelve 75 min training sessions, each of which was followed by a 30 min test set of ten 100 m maximum-effort freestyle sprints each starting at 3 min intervals. Times for the middle 50 m of each sprint measured using electronic timing equipment in a Federation Internationale de Natation (FINA)-compliant six-lane 25 m competition swimming pool. Software-generated individual random session order in sealed envelopes. Analysis subset of eight sessions randomly selected by software after data collection completed. Participants blind to drink allocation until session start. In the analysis data set of 1118 swims, there was no significant difference between swim times for drinking and not drinking nor between drinking water or a sports drink. Mean (SEM) 50 m time for no-drink swims was 38.077 (0.128) s and 38.105 (0.131) s for drink swims, p=0.701. Mean 50 m times were 38.031 (0.184) s for drinking sports drink and 38.182 (0.186) s for drinking water, p=0.073. Times after not drinking were 0.027 s faster than after drinking (95% CI 0.186 s faster to 0.113 s slower). Times after drinking sports drink were 0.151 s faster than after water (95% CI 0.309 s faster to 0.002 s slower). Mean (SEM) dehydration from exercise was 0.42 (0.11)%. Drinking water or sports drink over 105 min of sustained effort swimming training does not improve swimming performance. ISRCTN: 49860006.

  2. Women achieve peak freestyle swim speed at earlier ages than men

    PubMed Central

    Rüst, Christoph Alexander; Knechtle, Beat; Rosemann, Thomas

    2012-01-01

    Background The age of peak swim performance has been investigated for freestyle swimmers for distances ranging from 50 m to 1500 m among swimmers aged 19 to 99 years. However, studies have yet to investigate the 10 to 19 year-old age group. The aims of the present study were (1) to investigate the age range of peak freestyle swim speed, and (2) to find differences in age range and peak freestyle swim speed between male and female freestyle swimmers from 50 m to 1500 m at a national level. Methods The changes in age range and peak freestyle swim speed among Swiss elite freestyle swimmers aged 0–9 years and 70–79 years who were ranked on the Swiss high score list between 2006 and 2010 were analyzed using linear regression analyses and analysis of variance. Results Men were fastest at ages 22–23 years for 100 m and 200 m; at ages 24–25 years for 400 m and 800 m; and at 26–27 years for 50 m and 1500 m. Women achieved peak freestyle swim speed at ages 20–21 years for all distances with the exception of 800 m. In the 800 m, women were fastest at ages 26–27 years. The difference in peak freestyle swim speed decreased with increasing swim distance from 50 m to 800 m (ie, 13.1% ± 1.3% in 50 m; 13.2% ± 0.9% in 100 m; 10.8% ± 0.9% in 200 m; 7.9% ± 1.3% in 400 m; and 4.2% ± 2.0% in 800 m). For 1500 m, however, the gender difference increased to 6.4% ± 2.3%. Conclusion These findings suggest that peak freestyle swim speed is achieved at lower age ranges in women when compared to men at 50 m to 1500 m, but not at 800 m. The gender difference in peak freestyle swim speed decreased with increasing swim distance from 50 m to 800 m, but not for 1500 m. These data should be confirmed with swimmers at an international level. PMID:24198602

  3. The effects of a sublethal dose of botulinum serotype e on the swimming performance of channel catfish fingerlings.

    PubMed

    Beecham, Rachel; Thomas, Torri; Gao, Dana X; Gaunt, Patricia S

    2014-09-01

    Abstract Visceral toxicosis of catfish (VTC) is a disease of cultured Channel Catfish Ictalurus punctatus in the Mississippi Delta region and surrounding states. The etiology of VTC is associated with botulinum serotype E (BoNT/E), which causes blockage of acetylcholine release at the neuromuscular junction, leading to weakness and paralysis of skeletal muscles (including those involved in swimming). This study attempted to determine if sublethal exposure to purified BoNT/E caused reductions in swimming performance and metabolism of Channel Catfish. Catfish swimming performance was assessed on stocker-sized Channel Catfish (mean weight ± SD, 62.35 ± 2.5 g) with 10 sham-injected fish and 10 fish injected with a sublethal dose of BoNT/E. A modified Blazka-type swim chamber was used to assess swimming performance. We injected Channel Catfish with either 0.015% trypsin or 400 pg purified BoNT/E digested with 0.015% trypsin intracoelomically, then acclimated an individual catfish in the swim chamber for 17 h prior to the swimming trial. Water temperature was maintained at ∼28°C, and dissolved oxygen (DO) was between 4 and 7 mg/L. A critical swimming speed (Ucrit) protocol was followed, and DO and temperature were monitored every 2 min throughout the swim trial. Cost of transport was calculated from the oxygen consumption at each test speed (10-70 cm/s). There was a statistical difference between the Ucrits (P = 0.0034), but no differences were found between the cost of transports (P = 0.67) of the sham-injected and BoNT/E groups. There was a difference in the cost of transport as it relates to the speeds tested (P < 0.0001), cost of transports being highest at low speeds and decreasing as speed increased. These results indicate that botulinum E interferes with the swimming speed of the catfish, which could contribute to the mortality from the disease of VTC and potentially make the fish more susceptible to predation. Received September 20, 2013; accepted February 14, 2014.

  4. Experimental hydrodynamics of swimming in fishes

    NASA Astrophysics Data System (ADS)

    Tytell, Eric Daniel

    2005-11-01

    The great diversity of fish body shapes suggests that they have adapted to different selective pressures. For many fishes, the pressures include hydrodynamic demands: swimming efficiently or accelerating rapidly, for instance. However, the hydrodynamic advantages or disadvantages to specific morphologies are poorly understood. In particular, eels have been considered inefficient swimmers, but they migrate long distances without feeding, a task that requires efficient swimming. This dissertation, therefore, begins with an examination of the swimming hydrodynamics of American eels, Anguilla rostrata, at steady swimming speeds from 0.5 to 2 body lengths (L) per second and during accelerations from -1.4 to 1.3 L s -2. The final chapter examines the hydrodynamic effects of body shape directly by describing three-dimensional flow around swimming bluegill sunfish, Lepomis macrochirus. In all chapters, flow is quantified using digital particle image velocimetry, and simultaneous kinematics are measured from high-resolution digital video. The wake behind a swimming eel in the horizontal midline plane is described first. Rather than producing a wake with fluid jets angled backwards, like in fishes such as sunfish, eels have a wake with exclusively lateral jets. The lack of downstream momentum indicates that eels balance the axial forces of thrust and drag evenly over time and over their bodies, and therefore do not change axial fluid momentum. This even balance, present at all steady swimming speeds, is probably due to the relatively uniform body shape of eels. As eels accelerate, thrust exceeds drag, axial momentum increases, and the wake approaches that of other fishes. During steady swimming, though, the lack of axial momentum prevents direct efficiency estimation. The effect of body shape was examined directly by measuring flow in multiple transverse planes along the body of bluegill sunfish swimming at 1.2 L s-1. The dorsal and anal fin, neglected in many previous studies of fish swimming, are shown to produce forces comparable to that of the caudal fin. Additionally, the caudal fin absorbs some of the energy from the vortices these fins shed, possibly augmenting its efficiency. Finally, an updated structure for the three-dimensional vortex wake of a sunfish is proposed.

  5. Feasibility of Serial Saliva Collection for Surveillance of Swimming-Associated Illness

    EPA Science Inventory

    BACKGROUND. The symptoms of many swimming-associated illnesses overlap, and clinical diagnoses often require serum or stool samples. Therefore, it has been difficult to determine the contributions of different etiologic agents to swimming-associated illness. OBJECTIVES. We collec...

  6. Comprehensive Identification of Chemical DBPs from Chlorinated and Brominated Swimming Pools

    EPA Science Inventory

    Swimming pools have been recently recognized as important routes of exposure to potentially harmful chemicals. Previous epidemiologic research has shown increased incidence of asthma and other respiratory effects for people who have significant indoor swimming pool exposures, an...

  7. 3. View to northwest showing swimming pool, filtration/chlorination building (at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View to northwest showing swimming pool, filtration/chlorination building (at left), and southeast elevation of Carpenter & Paint Shop (HABS No. VA-1287-L, at rear) - Portsmouth Naval Hospital, Shower Room & Swimming Pool, Green Street, Portsmouth, Portsmouth, VA

  8. Development and aminergic neuromodulation of a spinal locomotor network controlling swimming in Xenopus larvae.

    PubMed

    Sillar, K T; Reith, C A; McDearmid, J R

    1998-11-16

    In this article we review our research on the development and intrinsic neuromodulation of a spinal network controlling locomotion in a simple vertebrate. Swimming in hatchling Xenopus embryos is generated by a restricted network of well-characterized spinal neurons. This network produces a stereotyped motor pattern which, like real swimming, involves rhythmic activity that alternates across the body and progresses rostrocaudally with a brief delay between muscle segments. The stereotypy results from motoneurons discharging a single impulse in each cycle; because all motoneurons appear to behave similarly there is little scope for altering the output to the myotomes from one cycle to the next. Just one day later, however, Xenopus larvae generate a more complex and flexible motor pattern in which motoneurons can discharge a variable number of impulses which contribute to ventral root bursts in each cycle. This maturation of swimming is due, in part, to the influence of serotonin released from brain-stem raphespinal interneurons whose axonal projections innervate the cord early in larval life. Larval swimming is differentially modulated by both serotonin and by noradrenaline: serotonin leads to relatively fast, intense swimming whereas noradrenaline favors slower, weaker activity. Thus, these two biogenic amines select opposite extremes from the spectrum of possible output patterns that the swimming network can produce. Our studies on the cellular and synaptic effects of the amines indicate that they can control the strength of reciprocal glycinergic inhibition in the spinal cord. Serotonin and noradrenaline act presynaptically on the terminals of glycinergic commissural interneurons to weaken and strengthen, respectively, crossed glycinergic inhibition during swimming. As a result, serotonin reduces and noradrenaline increases interburst intervals. The membrane properties of spinal neurons are also affected by the amines. In particular, serotonin can induce intrinsic oscillatory membrane properties in the presence of NMDA. These depolarizations are slow compared to the cycle periods during swimming and so may contribute to enhancement of swimming over several consecutive cycles of activity.

  9. Swimming performance of a bio-inspired robotic vessel with undulating fin propulsion.

    PubMed

    Liu, Hanlin; Curet, Oscar M

    2018-06-18

    Undulatory fin propulsion exhibits high degree of maneuver control -- an ideal for underwater vessels exploring complex environments. In this work, we developed and tested a self-contained, free-swimming robot with a single undulating fin running along the length of the robot, which controls both forward motion and directional maneuvers. We successfully replicated several maneuvers including forward swimming, reversed motion, diving, station-keeping and vertical swimming. For each maneuver, a series of experiments were performed as a function of fin frequency, wavelength and traveling wave direction to measure swimming velocities, orientation angles and mean power consumption. In addition, three-dimensional flow fields were measured during forward swimming and station-keeping using volumetric particle image velocimetry (PIV). The efficiency for forward swimming was compared using three metrics: cost of transport, wave efficiency and Strouhal number. The results indicate that the cost of transport exhibits a V-shape trend with the minimum value at low swimming velocity. The robot can reach optimal wave efficiency and locomotor performance at a range of 0.2 to 0.4 St. Volumetric PIV data reveal the shed of vortex tubes generated by the fin during forward swimming and station keeping. For forward swimming, a series of vortex tubes are shed off the fin edge with a lateral and downward direction with respect to the longitudinal axis of the fin. For station keeping, flow measurements suggest that the vortex tubes are shed at the mid-section of the fin while the posterior and anterior segment of the vortex stay attached to the fin. These results agree with the previous vortex structures based on simulations and 2D PIV. The further development of this vessel with high maneuverability and station keeping performance can be used for oceanography, coastal exploration, defense, oil industry and other marine industries where operations are unsafe or impractical for divers or human-piloted vessels. © 2018 IOP Publishing Ltd.

  10. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.

    PubMed

    Li, Ningyu; Liu, Huanxing; Su, Yumin

    2017-01-01

    Numerical simulations are employed to study the hydrodynamics of self-propelled thunniform swimming. The swimmer is modeled as a tuna-like flexible body undulating with kinematics of thunniform type. The wake evolution follows the vortex structures arranged nearly vertical to the forward direction, vortex dipole formation resulting in the propulsion motion, and finally a reverse Kármán vortex street. We also carry out a systematic parametric study of various aspects of the fluid dynamics behind the freely swimming behavior, including the swimming speed, hydrodynamic forces, power requirement and wake vortices. The present results show that the fin thrust as well as swimming velocity is an increasing function of both tail undulating amplitude Ap and oscillating amplitude of the caudal fin θm. Whereas change on the propulsive performance with Ap is associated with the strength of wake vortices and the area of suction region on the fin, the swimming performance improves with θm due to the favorable tilting of the fin that make the pressure difference force more oriented toward the thrust direction. Moreover, the energy loss in the transverse direction and the power requirement increase with Ap but decrease with θm, and this indicates that for achieving a desired swimming speed increasing θm seems more efficiently than increasing Ap. Furthermore, we have compared the current simulations with the published experimental studies on undulatory swimming. Comparisons show that our work tackles the flow regime of natural thunniform swimmers and follows the principal scaling law of undulatory locomotion reported. Finally, this study enables a detailed quantitative analysis, which is difficult to obtain by experiments, of the force production of the thunniform mode as well as its connection to the self-propelled swimming kinematics and vortex wake structure. The current findings help provide insights into the swimming performance and mechanisms of self-propelled thunniform locomotion.

  11. Experimental Studies and Dynamics Modeling Analysis of the Swimming and Diving of Whirligig Beetles (Coleoptera: Gyrinidae)

    PubMed Central

    Jia, Xinghua; Zhang, Mingjun

    2012-01-01

    Whirligig beetles (Coleoptera, Gyrinidae) can fly through the air, swiftly swim on the surface of water, and quickly dive across the air-water interface. The propulsive efficiency of the species is believed to be one of the highest measured for a thrust generating apparatus within the animal kingdom. The goals of this research were to understand the distinctive biological mechanisms that allow the beetles to swim and dive, while searching for potential bio-inspired robotics applications. Through static and dynamic measurements obtained using a combination of microscopy and high-speed imaging, parameters associated with the morphology and beating kinematics of the whirligig beetle's legs in swimming and diving were obtained. Using data obtained from these experiments, dynamics models of both swimming and diving were developed. Through analysis of simulations conducted using these models it was possible to determine several key principles associated with the swimming and diving processes. First, we determined that curved swimming trajectories were more energy efficient than linear trajectories, which explains why they are more often observed in nature. Second, we concluded that the hind legs were able to propel the beetle farther than the middle legs, and also that the hind legs were able to generate a larger angular velocity than the middle legs. However, analysis of circular swimming trajectories showed that the middle legs were important in maintaining stable trajectories, and thus were necessary for steering. Finally, we discovered that in order for the beetle to transition from swimming to diving, the legs must change the plane in which they beat, which provides the force required to alter the tilt angle of the body necessary to break the surface tension of water. We have further examined how the principles learned from this study may be applied to the design of bio-inspired swimming/diving robots. PMID:23209398

  12. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion

    PubMed Central

    Li, Ningyu; Liu, Huanxing

    2017-01-01

    Numerical simulations are employed to study the hydrodynamics of self-propelled thunniform swimming. The swimmer is modeled as a tuna-like flexible body undulating with kinematics of thunniform type. The wake evolution follows the vortex structures arranged nearly vertical to the forward direction, vortex dipole formation resulting in the propulsion motion, and finally a reverse Kármán vortex street. We also carry out a systematic parametric study of various aspects of the fluid dynamics behind the freely swimming behavior, including the swimming speed, hydrodynamic forces, power requirement and wake vortices. The present results show that the fin thrust as well as swimming velocity is an increasing function of both tail undulating amplitude Ap and oscillating amplitude of the caudal fin θm. Whereas change on the propulsive performance with Ap is associated with the strength of wake vortices and the area of suction region on the fin, the swimming performance improves with θm due to the favorable tilting of the fin that make the pressure difference force more oriented toward the thrust direction. Moreover, the energy loss in the transverse direction and the power requirement increase with Ap but decrease with θm, and this indicates that for achieving a desired swimming speed increasing θm seems more efficiently than increasing Ap. Furthermore, we have compared the current simulations with the published experimental studies on undulatory swimming. Comparisons show that our work tackles the flow regime of natural thunniform swimmers and follows the principal scaling law of undulatory locomotion reported. Finally, this study enables a detailed quantitative analysis, which is difficult to obtain by experiments, of the force production of the thunniform mode as well as its connection to the self-propelled swimming kinematics and vortex wake structure. The current findings help provide insights into the swimming performance and mechanisms of self-propelled thunniform locomotion. PMID:28362836

  13. Swimming of a Sea Butterfly with an Elongated Shell

    NASA Astrophysics Data System (ADS)

    Karakas, Ferhat; Maas, Amy E.; Murphy, David W.

    2017-11-01

    Sea butterflies (pteropods) are small, zooplanktonic marine snails which swim by flapping highly flexible parapodia. Previous studies show that the swimming hydrodynamics of Limacina helicina, a polar pteropod with a spiraled shell, is similar to tiny insect flight aerodynamics and that forward-backward pitching is key for lift generation. However, swimming by diverse pteropod species with different shell shapes has not been examined. We present measurements of the swimming of Cuvierina columnella, a warm water species with an elongated non-spiraled shell collected off the coast of Bermuda. With a body length of 9 mm, wing beat frequency of 4-6 Hz and swimming speed of 35 mm/s, these organisms swim at a Reynolds number of approximately 300, larger than that of L. helicina. High speed 3D kinematics acquired via two orthogonal cameras reveals that the elongated shell correlates with reduced body pitching and that the wings bend approximately 180 degrees in each direction, overlapping at the end of each half-stroke. Time resolved 2D flow measurements collected with a micro-PIV system reveal leading edge vortices present in both power and recovery strokes. Interactions between the overlapping wings and the shell also likely play a role in lift generation.

  14. Unsteady bio-fluid dynamics in flying and swimming

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen

    2017-08-01

    Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.

  15. Forced swimming and imipramine modify plasma and brain amino acid concentrations in mice.

    PubMed

    Murakami, Tatsuro; Yamane, Haruka; Tomonaga, Shozo; Furuse, Mitsuhiro

    2009-01-05

    The relationships between monoamine metabolism and forced swimming or antidepressants have been well studied, however information is lacking regarding amino acid metabolism under these conditions. Therefore, the aim of the present study was to investigate the effects of forced swimming and imipramine on amino acid concentrations in plasma, the cerebral cortex and the hypothalamus in mice. Forced swimming caused cerebral cortex concentrations of L-glutamine, L-alanine, and taurine to be increased, while imipramine treatment caused decreased concentrations of L-glutamate, L-alanine, L-tyrosine, L-methionine, and L-ornithine. In the hypothalamus, forced swimming decreased the concentration of L-serine while imipramine treatment caused increased concentration of beta-alanine. Forced swimming caused increased plasma concentration of taurine, while concentrations of L-serine, L-asparagine, L-glutamine and beta-alanine were decreased. Imipramine treatment caused increased plasma concentration of all amino acid, except for L-aspartate and taurine. In conclusion, forced swimming and imipramine treatment modify central and peripheral amino acid metabolism. These results may aid in the identification of amino acids that have antidepressant-like effects, or may help to refine the dosages of antidepressant drugs.

  16. Effect of Erabu sea snake (Laticauda semifasciata) lipids on the swimming endurance of mice.

    PubMed

    Zhang, Guihua; Higuchi, Tomoyuki; Shirai, Nobuya; Suzuki, Hiramitsu; Shimizu, Eiji

    2007-01-01

    This study was designed to investigate the effect of Erabu sea snake (Laticauda semifasciata) lipids on the swimming endurance of mice. Twelve-week-old male Crlj: CD-1 (ICR) mice were fed one of three experimental diets containing 6% lard, fish oil or sea snake lipids for 16 weeks. Swimming exercise was conducted in an acrylic plastic tank filled with 25 cm of water maintained at 23 degrees C. Every 4 weeks, the mice were made to perform swimming exercises with loads attached to their tails, corresponding to approximately 1 or 2% of their body weights. The group fed the sea snake lipid diet exhibited significantly improved swimming endurance compared with the lard diet group (p < 0.05); however, this result was not observed in the fish oil diet group. In the sea snake lipid diet group, plasma and muscle lactates were significantly lower, and plasma glucose and muscle glycogen were significantly higher than in the lard diet group (p < 0.05). These results suggest that the intake of sea snake lipids enhanced the swimming endurance of the mice by delaying the accumulation of lactate during swimming exercise. Copyright 2007 S. Karger AG, Basel.

  17. Wave energy and swimming performance shape coral reef fish assemblages

    PubMed Central

    Fulton, C.J; Bellwood, D.R; Wainwright, P.C

    2005-01-01

    Physical factors often have an overriding influence on the distribution patterns of organisms, and can ultimately shape the long-term structure of communities. Although distribution patterns in sessile marine organisms have frequently been attributed to functional characteristics interacting with wave-induced water motion, similar evidence for mobile organisms is lacking. Links between fin morphology and swimming performance were examined in three diverse coral reef fish families from two major evolutionary lineages. Among-habitat variation in morphology and performance was directly compared with quantitative values of wave-induced water motion from seven coral reef habitats of different depth and wave exposure on the Great Barrier Reef. Fin morphology was strongly correlated with both field and experimental swimming speeds in all three families. The range of observed swimming speeds coincided closely with the magnitude of water velocities commonly found on coral reefs. Distribution patterns in all three families displayed highly congruent relationships between fin morphology and wave-induced water motion. Our findings indicate a general functional relationship between fin morphology and swimming performance in labriform-swimming fishes, and provide quantitative evidence that wave energy may directly influence the assemblage structure of coral reef fishes through interactions with morphology and swimming performance. PMID:15888415

  18. Use of electromyogram telemetry to assess swimming activity of adult spring Chinook salmon migrating past a Columbia River dam

    USGS Publications Warehouse

    Brown, R.S.; Geist, D.R.; Mesa, M.G.

    2006-01-01

    Electromyogram (EMG) radiotelemetry was used to estimate the swim speeds of spring Chinook salmon Oncorhynchus tshawytscha migrating upstream past a Columbia River dam. Electrodes from EMG transmitters were surgically implanted in the red muscle of fish captured at Bonneville Dam, and output from the tags was calibrated to defined swim speeds for each fish in a tunnel respirometer. The fish were then released below Bonneville Dam and radio-tracked as they migrated through the tailraces, fishways, and forebays of the dam. On average, swim speed was significantly higher when tagged salmon were moving through tailraces than when they were moving through other parts of the dam. Specifically, swim speeds for fish in tailraces (106.4 cm/s) were 23% higher than those of fish in fishways (84.9 cm/s) and 32% higher than those of fish in forebays (80.2 cm/s). Swim speeds were higher in fishways during the day than during the night, but there were no diel differences in swim speeds in tailraces and forebays. During dam passage, Chinook salmon spent the most time in tailraces, followed by fishways and forebays. ?? Copyright by the American Fisheries Society 2006.

  19. Swimming Speed of The Breaststroke Kick

    PubMed Central

    Strzała, Marek; Krężałek, Piotr; Kaca, Marcin; Głąb, Grzegorz; Ostrowski, Andrzej; Stanula, Arkadiusz; Tyka, Aleksander

    2012-01-01

    The breaststroke kick is responsible for a considerable portion of the forward propulsion in breaststroke swimming. The aim of this study was to measure selected anthropometric variables and functional properties of a swimmer’s body: length of body parts; functional range of motion in the leg joints and anaerobic power of the lower limbs. Chosen kinematic variables useful in the evaluation of swimming performance in the breaststroke kick were evaluated. In the present research, swimming speed using breaststroke kicks depended to the largest extent on anaerobic endurance (0.46, p < 0.05 partial correlations with age control). In addition, knee external rotation and swimming technique index had an impact on swimming speed and kick length (both partial correlations with age control 0.35, p < 0.08). A kinematic analysis of the breaststroke kick hip displacement compatible with horizontal body displacement was significantly negatively correlated with foot slip in the water opposite to body displacement (partial correlations: with leg length control −0.43, p < 0.05; with shank length control −0.45, p < 0.05, respectively). Present research and measurements of selected body properties, physical endurance and kinematic movement analysis may help in making a precise determination of an athlete’s talent for breaststroke swimming. PMID:23486737

  20. Korean Affairs Report

    DTIC Science & Technology

    1986-09-25

    will 22 be equipped with 2,000 seats, a swimming pool equipped with 2,100 seats, a pingpong gymnasium equipped with 3,000 seats, a badminton ...swimming, diving, water polo, and synchronized swimming can be held. The badminton gymnasium will be octagonal, a unique shape. This gymnasium, which

  1. Health risks associated with swimming at an inland river

    EPA Science Inventory

    Swimming exposure to fecally-contaminated oceans and lakes has been associated with an increased risk of gastrointestinal (GI) illness. Although treated and untreated sewage are often discharged to rivers, the health risks of swimming exposure on rivers has been less frequently ...

  2. Routine and active metabolic rates of migrating adult wild sockeye salmon (Oncorhynchus nerka Walbaum) in seawater and freshwater.

    PubMed

    Wagner, G N; Kuchel, L J; Lotto, A; Patterson, D A; Shrimpton, J M; Hinch, S G; Farrell, A P

    2006-01-01

    We present the first data on the differences in routine and active metabolic rates for sexually maturing migratory adult sockeye salmon (Oncorhynchus nerka) that were intercepted in the ocean and then held in either seawater or freshwater. Routine and active oxygen uptake rates (MO2) were significantly higher (27%-72%) in seawater than in freshwater at all swimming speeds except those approaching critical swimming speed. During a 45-min recovery period, the declining postexercise oxygen uptake remained 58%-73% higher in seawater than in freshwater. When fish performed a second swim test, active metabolic rates again remained 28%-81% higher for fish in seawater except at the critical swimming speed. Despite their differences in metabolic rates, fish in both seawater and freshwater could repeat the swim test and reach a similar maximum oxygen uptake and critical swimming speed as in the first swim test, even without restoring routine metabolic rate between swim tests. Thus, elevated MO2 related to either being in seawater as opposed to freshwater or not being fully recovered from previous exhaustive exercise did not present itself as a metabolic loading that limited either critical swimming performance or maximum MO2. The basis for the difference in metabolic rates of migratory sockeye salmon held in seawater and freshwater is uncertain, but it could include differences in states of nutrition, reproduction, and restlessness, as well as ionic differences. Regardless, this study elucidates some of the metabolic costs involved during the migration of adult salmon from seawater to freshwater, which may have applications for fisheries conservation and management models of energy use.

  3. Desipramine and citalopram attenuate pretest swim-induced increases in prodynorphin immunoreactivity in the dorsal bed nucleus of the stria terminalis and the lateral division of the central nucleus of the amygdala in the forced swimming test.

    PubMed

    Chung, Sung; Kim, Hee Jeong; Kim, Hyun Ju; Choi, Sun Hye; Cho, Jin Hee; Cho, Yun Ha; Kim, Dong-Hoon; Shin, Kyung Ho

    2014-10-01

    Dynorphin in the nucleus accumbens shell plays an important role in antidepressant-like effect in the forced swimming test (FST), but it is unclear whether desipramine and citalopram treatments alter prodynorphin levels in other brain areas. To explore this possibility, we injected mice with desipramine and citalopram 0.5, 19, and 23 h after a 15-min pretest swim and observed changes in prodynorphin expression before the test swim, which was conducted 24 h after the pretest swim. The pretest swim increased prodynorphin immunoreactivity in the dorsal bed nucleus of the stria terminalis (dBNST) and lateral division of the central nucleus of the amygdala (CeL). This increase in prodynorphin immunoreactivity in the dBNST and CeL was blocked by desipramine and citalopram treatments. Similar changes in prodynorphin mRNA levels were observed in the dBNST and CeL, but these changes did not reach significance. To understand the underlying mechanism, we assessed changes in phosphorylated CREB at Ser(133) (pCREB) immunoreactivity in the dBNST and central nucleus of the amygdala (CeA). Treatment with citalopram but not desipramine after the pretest swim significantly increased pCREB immunoreactivity only in the dBNST. These results suggest that regulation of prodynorphin in the dBNST and CeL before the test swim may be involved in the antidepressant-like effect of desipramine and citalopram in the FST and suggest that changes in pCREB immunoreactivity in these areas may not play an important role in the regulation of prodynorphin in the dBNST and CeA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The effects of moderate exercise on chronic stress-induced intestinal barrier dysfunction and antimicrobial defense.

    PubMed

    Luo, Beibei; Xiang, Dao; Nieman, David C; Chen, Peijie

    2014-07-01

    The purpose of this study was to examine the effect of moderate exercise on repeated restraint stress (RRS)-induced intestinal barrier dysfunction and explore possible mechanisms in a mouse model. Male Balb/c mice (6weeks) were randomized into 7 groups: CON functioned as controls with no intervention; RRS was subjected to 6h per day RRS for 7 consecutive days; RRS+SWIM received 30min per day of swimming prior to RRS; CON+SWIM only received 30min per day of swimming; and the other groups received one session of 30min swimming prior to sacrifice at 1-, 3- and 6h recovery. Intestinal permeability was quantified with FITC-dextran. Bacterial translocation was determined by quantification of bacterial colony forming units (CFUs) in cultured mesenteric lymph nodes (MLN), and with fluorescence in situ hybridization (FISH). Antimicrobial related gene expression at baseline and 1h after one session of 30min swimming was tested by quantitative real-time polymerase chain reaction (Q-PCR) in small intestinal segments. Protein expression of 5 genes with statistically significant increase was measured at baseline, and 1-, 3- and 6h post-swimming using enzyme-linked immunosorbent assay (ELISA). Thirty minutes per day of swimming before RRS attenuated bacterial translocations and maintained intestinal permeability. Gene expression and protein levels for four antimicrobial peptides (α-defensin 5, β-defensin 1, RegIIIβ and RegIIIγ) were significantly increased after one 30min swimming session. In conclusion, moderate exercise attenuated chronic stress-induced intestinal barrier dysfunction in mice, possibly due to augmentation of antimicrobial responses in the small intestine. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Kinematics of ram filter feeding and beat-glide swimming in the northern anchovy Engraulis mordax.

    PubMed

    Carey, Nicholas; Goldbogen, Jeremy A

    2017-08-01

    In the dense aquatic environment, the most adept swimmers are streamlined to reduce drag and increase the efficiency of locomotion. However, because they open their mouth to wide gape angles to deploy their filtering apparatus, ram filter feeders apparently switch between diametrically opposite swimming modes: highly efficient, streamlined 'beat-glide' swimming, and ram filter feeding, which has been hypothesized to be a high-cost feeding mode because of presumed increased drag. Ram filter-feeding forage fish are thought to play an important role in the flux of nutrients and energy in upwelling ecosystems; however, the biomechanics and energetics of this feeding mechanism remain poorly understood. We quantified the kinematics of an iconic forage fish, the northern anchovy, Engraulis mordax , during ram filter feeding and non-feeding, mouth-closed beat-glide swimming. Although many kinematic parameters between the two swimming modes were similar, we found that swimming speeds and tailbeat frequencies were significantly lower during ram feeding. Rather than maintain speed with the school, a speed which closely matches theoretical optimum filter-feeding speeds was consistently observed. Beat-glide swimming was characterized by high variability in all kinematic parameters, but variance in kinematic parameters was much lower during ram filter feeding. Under this mode, body kinematics are substantially modified, and E. mordax swims more slowly and with decreased lateral movement along the entire body, but most noticeably in the anterior. Our results suggest that hydrodynamic effects that come with deployment of the filtering anatomy may limit behavioral options during foraging and result in slower swimming speeds during ram filtration. © 2017. Published by The Company of Biologists Ltd.

  6. Analysis of Relationships between the Level of Errors in Leg and Monofin Movement and Stroke Parameters in Monofin Swimming

    PubMed Central

    Rejman, Marek

    2013-01-01

    The aim of this study was to analyze the error structure in propulsive movements with regard to its influence on monofin swimming speed. The random cycles performed by six swimmers were filmed during a progressive test (900m). An objective method to estimate errors committed in the area of angular displacement of the feet and monofin segments was employed. The parameters were compared with a previously described model. Mutual dependences between the level of errors, stroke frequency, stroke length and amplitude in relation to swimming velocity were analyzed. The results showed that proper foot movements and the avoidance of errors, arising at the distal part of the fin, ensure the progression of swimming speed. The individual stroke parameters distribution which consists of optimally increasing stroke frequency to the maximal possible level that enables the stabilization of stroke length leads to the minimization of errors. Identification of key elements in the stroke structure based on the analysis of errors committed should aid in improving monofin swimming technique. Key points The monofin swimming technique was evaluated through the prism of objectively defined errors committed by the swimmers. The dependences between the level of errors, stroke rate, stroke length and amplitude in relation to swimming velocity were analyzed. Optimally increasing stroke rate to the maximal possible level that enables the stabilization of stroke length leads to the minimization of errors. Propriety foot movement and the avoidance of errors arising at the distal part of fin, provide for the progression of swimming speed. The key elements improving monofin swimming technique, based on the analysis of errors committed, were designated. PMID:24149742

  7. Swim-Training Changes the Spatio-Temporal Dynamics of Skeletogenesis in Zebrafish Larvae (Danio rerio)

    PubMed Central

    Fiaz, Ansa W.; Léon-Kloosterziel, Karen M.; Gort, Gerrit; Schulte-Merker, Stefan; van Leeuwen, Johan L.; Kranenbarg, Sander

    2012-01-01

    Fish larvae experience many environmental challenges during development such as variation in water velocity, food availability and predation. The rapid development of structures involved in feeding, respiration and swimming increases the chance of survival. It has been hypothesized that mechanical loading induced by muscle forces plays a role in prioritizing the development of these structures. Mechanical loading by muscle forces has been shown to affect larval and embryonic bone development in vertebrates, but these investigations were limited to the appendicular skeleton. To explore the role of mechanical load during chondrogenesis and osteogenesis of the cranial, axial and appendicular skeleton, we subjected zebrafish larvae to swim-training, which increases physical exercise levels and presumably also mechanical loads, from 5 until 14 days post fertilization. Here we show that an increased swimming activity accelerated growth, chondrogenesis and osteogenesis during larval development in zebrafish. Interestingly, swim-training accelerated both perichondral and intramembranous ossification. Furthermore, swim-training prioritized the formation of cartilage and bone structures in the head and tail region as well as the formation of elements in the anal and dorsal fins. This suggests that an increased swimming activity prioritized the development of structures which play an important role in swimming and thereby increasing the chance of survival in an environment where water velocity increases. Our study is the first to show that already during early zebrafish larval development, skeletal tissue in the cranial, axial and appendicular skeleton is competent to respond to swim-training due to increased water velocities. It demonstrates that changes in water flow conditions can result into significant spatio-temporal changes in skeletogenesis. PMID:22529905

  8. Respiratory muscle specific warm-up and elite swimming performance.

    PubMed

    Wilson, Emma E; McKeever, Tricia M; Lobb, Claire; Sherriff, Tom; Gupta, Luke; Hearson, Glenn; Martin, Neil; Lindley, Martin R; Shaw, Dominick E

    2014-05-01

    Inspiratory muscle training has been shown to improve performance in elite swimmers, when used as part of routine training, but its use as a respiratory warm-up has yet to be investigated. To determine the influence of inspiratory muscle exercise (IME) as a respiratory muscle warm-up in a randomised controlled cross-over trial. A total of 15 elite swimmers were assigned to four different warm-up protocols and the effects of IME on 100 m freestyle swimming times were assessed.Each swimmer completed four different IME warm-up protocols across four separate study visits: swimming-only warm-up; swimming warm-up plus IME warm-up (2 sets of 30 breaths with a 40% maximum inspiratory mouth pressure load using the Powerbreathe inspiratory muscle trainer); swimming warm-up plus sham IME warm-up (2 sets of 30 breaths with a 15% maximum inspiratory mouth pressure load using the Powerbreathe inspiratory muscle trainer); and IME-only warm-up. Swimmers performed a series of physiological tests and scales of perception (rate of perceived exertion and dyspnoea) at three time points (pre warm-up, post warm-up and post time trial). The combined standard swimming warm-up and IME warm-up were the fastest of the four protocols with a 100 m time of 57.05 s. This was significantly faster than the IME-only warm-up (mean difference=1.18 s, 95% CI 0.44 to 1.92, p<0.01) and the swim-only warm-up (mean difference=0.62 s, 95% CI 0.001 to 1.23, p=0.05). Using IME combined with a standard swimming warm-up significantly improves 100 m freestyle swimming performance in elite swimmers.

  9. Larval green and white sturgeon swimming performance in relation to water-diversion flows

    PubMed Central

    Verhille, Christine E.; Poletto, Jamilynn B.; Cocherell, Dennis E.; DeCourten, Bethany; Baird, Sarah; Cech, Joseph J.; Fangue, Nann A.

    2014-01-01

    Little is known of the swimming capacities of larval sturgeons, despite global population declines in many species due in part to fragmentation of their spawning and rearing habitats by man-made water-diversion structures. Larval green (Acipenser medirostris) and white sturgeon (Acipenser transmontanus) inhabit the highly altered Sacramento–San Joaquin watershed, making them logical species to examine vulnerability to entrainment by altered water flows. The risk of larval sturgeon entrainment is influenced by the ontogeny of swimming capacity and dispersal timing and their interactions with water-diversion structure operations. Therefore, the aim of this study was to describe and compare the ontogeny and allometry of larval green and white sturgeon swimming capacities until completion of metamorphosis into juveniles. Despite the faster growth rates and eventual larger size of larval white sturgeon, green sturgeon critical swimming velocities remained consistently, though modestly, greater than those of white sturgeon throughout the larval life stage. Although behavioural interactions with water-diversion structures are also important considerations, regarding swimming capacity, Sacramento–San Joaquin sturgeons are most vulnerable to entrainment in February–May, when white sturgeon early larvae are in the middle Sacramento River, and April–May, when green sturgeon early larvae are in the upper river. Green sturgeon migrating downstream to the estuary and bays in October–November are also susceptible to entrainment due to their movements combined with seasonal declines in their swimming capacity. An additional inter-species comparison of the allometric relationship between critical swimming velocities and total length with several sturgeon species found throughout the world suggests a similar ontogeny of swimming capacity with growth. Therefore, although dispersal and behaviour differ among river systems and sturgeon species, similar recommendations are applicable for managers seeking to balance water demands with restoration and conservation of sturgeons worldwide. PMID:27293652

  10. Paramecia Swim with a constant propulsion in Solutions of Varying Viscosity

    NASA Astrophysics Data System (ADS)

    Valles, James M., Jr.; Jung, Ilyong; Mickalide, Harry; Park, Hojin; Powers, Thomas

    2012-02-01

    Paramecia swim through the coordinated beating of the 1000's of cilia covering their body. We have measured the swimming speed of populations of Paramecium Caudatam in solutions of different viscosity, η, to see how their propulsion changes with increased drag. We have found the average instantaneous speed, V to decrease monotonically with increasing η. The product ηv is roughly constant over a factor of 7 change in viscosity suggesting that paramecia swim at constant propulsion force. The distribution of swimming speeds is Gaussian. The width appears proportional to the average speed implying that both fast and slow swimmers exert a constant propulsion. We discuss the possibility that this behavior implies that the body cilia beat at constant force with varying viscosity.

  11. Energy exchanges of swimming man

    NASA Technical Reports Server (NTRS)

    Nadel, E. R.; Holmer, I.; Bergh, U.; Astrand, P.-O.; Stolwijk, J. A. J.

    1974-01-01

    Three male swimmers underwent 10-min resting and 20-min swimming (breaststroke) exposures in a swimming flume. Water temperatures in separate exposures were 18, 26, and 33 C. At each water temperature the subjects rested and swam at water velocities of 0.50, 0.75, and 0.95 m/sec, which were designed to produce around 40, 70, and 100% of maximal aerobic power. Measurements were made of esophageal temperature, four skin temperatures, water temperature, heat flow from five local skin surfaces (Hatfield-Turner disks), and oxygen uptake. Calculations were made of mean area-weighted skin temperature and heat flow, metabolic rate, and heat storage. Internal body temperature changes after 20 min of swimming were related to water temperature, swimming intensity, and body composition.

  12. AN OBSERVATIONAL STUDY: DETERMINATION OF THE VOLUME OF WATER INGESTED DURING RECREATIONAL SWIMMING ACTIVITIES

    EPA Science Inventory

    EPA's Action Plan for Beaches and Recreational Waters describes research needs for exposure assessment related to swimming activities such as characterizing swimming populations with regard to routes and magnitudes of exposure. This includes characteristics such as the duration ...

  13. 16 CFR 1207.12 - Stockpiling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARD FOR SWIMMING POOL SLIDES § 1207.12 Stockpiling. (a) Definitions. As used in this section: (1) Stockpiling means manufacturing or importing swimming pool slides between the date of promulgation of part... importation) means the total number of swimming pool slides manufactured (or imported) during a stated time...

  14. 78 FR 23329 - Aircraft Access to SWIM Working Group Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Aircraft Access to SWIM Working Group... in FAA NextGen technologies to attend and participate in an Aircraft Access to SWIM Working Group... information environment. The AAtS initiative will utilize commercial air/ground network providers...

  15. DEVELOPMENT OF EXPOSURE-RESPONSE RELATIONSHIPS BETWEEN INDICATORS OF WATER QUALITY AND SWIMMING-ASSOCIATED ILLNESS

    EPA Science Inventory

    Exposure to contaminated water during recreational swimming has long been associated with adverse health effects. Swimming in rivers, streams and lakes with high levels of fecal contamination are regularly linked to outbreaks of gastrointestinal illness and related infections. Wh...

  16. Characterization of jellyfish turning using 3D-PTV

    NASA Astrophysics Data System (ADS)

    Xu, Nicole; Dabiri, John

    2017-11-01

    Aurelia aurita are oblate, radially symmetric jellyfish that consist of a gelatinous bell and subumbrellar muscle ring, which contracts to provide motive force. Swimming is typically modeled as a purely vertical motion; however, asymmetric activations of swim pacemakers (sensory organs that innervate the muscle at eight locations around the bell margin) result in turning and more complicated swim behaviors. More recent studies have examined flow fields around turning jellyfish, but the input/output relationship between locomotive controls and swim trajectories is unclear. To address this, bell kinematics for both straight swimming and turning are obtained using 3D particle tracking velocimetry (3D-PTV) by injecting biocompatible elastomer tags into the bell, illuminating the tank with ultraviolet light, and tracking the resulting fluorescent particles in a multi-camera setup. By understanding these kinematics in both natural and externally controlled free-swimming animals, we can connect neuromuscular control mechanisms to existing flow measurements of jellyfish turning for applications in designing more energy efficient biohybrid robots and underwater vehicles. NSF GRFP.

  17. Swimming Exercise in the Acute or Late Phase after Sciatic Nerve Crush Accelerates Nerve Regeneration

    PubMed Central

    Teodori, Rosana Macher; Betini, Joice; de Oliveira, Larissa Salgado; Sobral, Luciane Lobato; Takeda, Sibele Yoko Mattozo; Montebelo, Maria Imaculada de Lima

    2011-01-01

    There is no consensus about the best time to start exercise after peripheral nerve injury. We evaluated the morphological and functional characteristics of the sciatic nerves of rats that began to swim immediately after crush nerve injury (CS1), those that began to swim 14 days after injury (CS14), injured rats not submitted to swimming (C), and uninjured rats submitted to swimming (S). After 30 days the number of axons in CS1 and CS14 was lower than in C (P < 0.01). The diameter of axons and nerve fibers was larger in CS1 (P < 0.01) and CS14 (P < 0.05) than in C, and myelin sheath thickness was lower in all crushed groups (P < 0.05). There was no functional difference between CS1 and CS14 (P > 0.05). Swimming exercise applied during the acute or late phase of nerve injury accelerated nerve regeneration and synaptic elimination after axonotmesis, suggesting that exercise may be initiated immediately after injury. PMID:21876821

  18. Automated Reconstruction of Three-Dimensional Fish Motion, Forces, and Torques

    PubMed Central

    Voesenek, Cees J.; Pieters, Remco P. M.; van Leeuwen, Johan L.

    2016-01-01

    Fish can move freely through the water column and make complex three-dimensional motions to explore their environment, escape or feed. Nevertheless, the majority of swimming studies is currently limited to two-dimensional analyses. Accurate experimental quantification of changes in body shape, position and orientation (swimming kinematics) in three dimensions is therefore essential to advance biomechanical research of fish swimming. Here, we present a validated method that automatically tracks a swimming fish in three dimensions from multi-camera high-speed video. We use an optimisation procedure to fit a parameterised, morphology-based fish model to each set of video images. This results in a time sequence of position, orientation and body curvature. We post-process this data to derive additional kinematic parameters (e.g. velocities, accelerations) and propose an inverse-dynamics method to compute the resultant forces and torques during swimming. The presented method for quantifying 3D fish motion paves the way for future analyses of swimming biomechanics. PMID:26752597

  19. Development of low-cost open source 3D gel printer "RepRap SWIM-ER"

    NASA Astrophysics Data System (ADS)

    Sato, Kei; Basher, Samiul; Ota, Takafumi; Tase, Taishi; Takamatsu, Kyuichiro; Saito, Azusa; Khosla, Ajit; Kawakami, Masaru; Furuawa, Hidemitsu

    2017-04-01

    Gels are soft and wet materials having low friction, good biocompatibility, and material permeability. It is expected that gel materials will be used as new kinds of industrial materials in the engineering and medical applications. But it cannot build a complicated shape. Soft & Wet Matter Engineering Laboratory developed a 3D gel Printer "SWIM-ER", has enabled modeling of complex shapes of the gel. However, this is expensive. Therefore not all of the gel researchers and the companies have such a device. To solve this problem, we manufacture a low-cost open-source 3D gel printer "RepRap SWIM-ER" from the RepRap. We made the components required to manufacture the "RepRap SWIM-ER" from the 3D printer and chose a light source. In addition, we produced the P-DN gel for RepRap SWIM-ER and conducted the molding test to confirm whether RepRap SWIM-ER can used it.

  20. Hydrodynamic Trapping of Swimming Bacteria by Convex Walls

    NASA Astrophysics Data System (ADS)

    Sipos, O.; Nagy, K.; Di Leonardo, R.; Galajda, P.

    2015-06-01

    Swimming bacteria display a remarkable tendency to move along flat surfaces for prolonged times. This behavior may have a biological importance but can also be exploited by using microfabricated structures to manipulate bacteria. The main physical mechanism behind the surface entrapment of swimming bacteria is, however, still an open question. By studying the swimming motion of Escherichia coli cells near microfabricated pillars of variable size, we show that cell entrapment is also present for convex walls of sufficiently low curvature. Entrapment is, however, markedly reduced below a characteristic radius. Using a simple hydrodynamic model, we predict that trapped cells swim at a finite angle with the wall and a precise relation exists between the swimming angle at a flat wall and the critical radius of curvature for entrapment. Both predictions are quantitatively verified by experimental data. Our results demonstrate that the main mechanism for wall entrapment is hydrodynamic in nature and show the possibility of inhibiting cell adhesion, and thus biofilm formation, using convex features of appropriate curvature.

  1. Numerical model for the locomotion of spirilla.

    PubMed

    Ramia, M

    1991-11-01

    The swimming of trailing, leading, and bipolar spirilla (with realistic flagellar centerline geometries) is considered. A boundary element method is used to predict the instantaneous swimming velocity, counter-rotation angular velocity, and power dissipation of a given organism as functions of time and the geometry of the organism. Based on such velocities, swimming trajectories have been deduced enabling a realistic definition of mean swimming speeds. The power dissipation normalized in terms of the square of the mean swimming speed is considered to be a measure of hydrodynamic efficiency. In addition, kinematic efficiency is defined as the extent of deviation of the swimming motion from that of a previously proposed ideal corkscrew mechanism. The dependence of these efficiencies on the organism's geometry is examined giving estimates of its optimum dimensions. It is concluded that appreciable correlation exists between the two alternative definitions for many of the geometrical parameters considered. Furthermore, the organism having the deduced optimum dimensions closely resembles the real organism as experimentally observed.

  2. Numerical model for the locomotion of spirilla

    PubMed Central

    Ramia, M.

    1991-01-01

    The swimming of trailing, leading, and bipolar spirilla (with realistic flagellar centerline geometries) is considered. A boundary element method is used to predict the instantaneous swimming velocity, counter-rotation angular velocity, and power dissipation of a given organism as functions of time and the geometry of the organism. Based on such velocities, swimming trajectories have been deduced enabling a realistic definition of mean swimming speeds. The power dissipation normalized in terms of the square of the mean swimming speed is considered to be a measure of hydrodynamic efficiency. In addition, kinematic efficiency is defined as the extent of deviation of the swimming motion from that of a previously proposed ideal corkscrew mechanism. The dependence of these efficiencies on the organism's geometry is examined giving estimates of its optimum dimensions. It is concluded that appreciable correlation exists between the two alternative definitions for many of the geometrical parameters considered. Furthermore, the organism having the deduced optimum dimensions closely resembles the real organism as experimentally observed. PMID:19431804

  3. Melatonin improve the sperm quality in forced swimming test induced oxidative stress in nandrolone treated Wistar rats.

    PubMed

    Minaii, Bagher; Moayeri, Ardeshir; Shokri, Saeed; Habibi Roudkenar, Mehryar; Golmohammadi, Taghi; Malek, Fatemeh; Barbarestani, Mohammad

    2014-01-01

    This study investigates the effects of melatonin on the sperm quality and testis weight after the combination of swimming exercise and nandrolone decanoate (DECA). Two groups of male Wistar rats were treated for eight weeks as follows; group A consist of CO (control), Sham, N (DECA), S (swimming) and NS (DECA plus swimming); and group B: Sham M (sham melatonin), M (melatonin), MN (melatonin plus DECA), MS (melatonin plus swimming), MNS (melatonin, DECA plus swimming). The motility of sperm was significantly improved in melatonin groups in comparison to N, S and NS groups (P≤0.05).  The left testes weight was decreased in N, NS and MNS groups, and the right testes weight was decreased in N,S,NS, MS and MNS groups in compare with the control group. This study concluded that melatonin probably could improve the sperm motility and sex organs weight after the combination of DECA and exercise.

  4. Plasma renin activity, aldosterone and catecholamine levels when swimming and running.

    PubMed

    Guezennec, C Y; Defer, G; Cazorla, G; Sabathier, C; Lhoste, F

    1986-01-01

    The purpose of this study was to determine the response of plasma renin activity (PRA), plasma aldosterone concentration (PAC) and catecholamines to two graded exercises differing by posture. Seven male subjects (19-25 years) performed successively a running rest on a treadmill and a swimming test in a 50-m swimming pool. Each exercise was increased in severity in 5-min steps with intervals of 1 min. Oxygen consumption, heart rate and blood lactate, measured every 5 min, showed a similar progression in energy expenditure until exhaustion, but there was a shorter time to exhaustion in the last step of the running test. PRA, PAC and catecholamines were increased after both types of exercise. The PRA increase was higher after the running test (20.9 ng AngI X ml-1 X h-1) than after swimming (8.66 ng AngI X ml-1 X h-1). The PAC increase was slightly greater after running (123 pg X ml-1) than swimming (102 pg X ml-1), buth the difference was not significant. Plasma catecholamine was higher after the swimming test. These results suggest that the volume shift induced by the supine position and water pressure during swimming decreased the PRA response. The association after swimming compared to running of a decreased PRA and an enhanced catecholamine response rule out a strict dependence of renin release under the effect of plasma catecholamines and is evidence of the major role of neural pathways for renin secretion during physical exercise.

  5. Predicting performance in competitive apnea diving, part II: dynamic apnoea.

    PubMed

    Schagatay, Erika

    2010-03-01

    Part I of this series of articles identified the main physiological factors defining the limits of static apnea, while this paper reviews the factors involved when physical work is added in the dynamic distance disciplines, performed in shallow water in a swimming pool. Little scientific work has been done concerning the prerequisites and limitations of swimming with or without fins whilst breath holding to extreme limits. Apneic duration influences all competitive apnea disciplines, and can be prolonged by any means that increase gas storage or tolerance to asphyxia, or reduce metabolic rate, as reviewed in the first article. For horizontal underwater distance swimming, the main challenge is to restrict metabolism despite the work, and to direct blood flow only to areas where demand is greatest, to allow sustained function. Here, work economy, local tissue energy and oxygen stores and the anaerobic capacity of the muscles are key components. Improvements in swimming techniques and, especially in swimming with fins, equipment have already contributed to enhanced performance and may do so further. High lactate levels observed after competition swims suggest a high anaerobic component, and muscle hypoxia could ultimately limit muscle work and swimming distance. However, the frequency of syncope, especially in swimming without fins, suggests that cerebral oxygenation may often be compromised before this occurs. In these pool disciplines, safety is high and the dive can be interrupted by the competitor or safety diver within seconds. The safety routines in place during pool competitions are described.

  6. Simple phalanx pattern leads to energy saving in cohesive fish schooling

    PubMed Central

    Ashraf, Intesaaf; Bradshaw, Hanaé; Ha, Thanh-Tung; Halloy, José; Thiria, Benjamin

    2017-01-01

    The question of how individuals in a population organize when living in groups arises for systems as different as a swarm of microorganisms or a flock of seagulls. The different patterns for moving collectively involve a wide spectrum of reasons, such as evading predators or optimizing food prospection. Also, the schooling pattern has often been associated with an advantage in terms of energy consumption. In this study, we use a popular aquarium fish, the red nose tetra fish, Hemigrammus bleheri, which is known to swim in highly cohesive groups, to analyze the schooling dynamics. In our experiments, fish swim in a shallow-water tunnel with controlled velocity, and stereoscopic video recordings are used to track the 3D positions of each individual in a school, as well as their tail-beating kinematics. Challenging the widespread idea of fish favoring a diamond pattern to swim more efficiently [Weihs D (1973) Nature 241:290–291], we observe that when fish are forced to swim fast—well above their free-swimming typical velocity, and hence in a situation where efficient swimming would be favored—the most frequent configuration is the “phalanx” or “soldier” formation, with all individuals swimming side by side. We explain this observation by considering the advantages of tail-beating synchronization between neighbors, which we have also characterized. Most importantly, we show that schooling is advantageous as compared with swimming alone from an energy-efficiency perspective. PMID:28839092

  7. Influence of Anguillicola crassus (Nematoda) and Ichthyophthirius multifiliis (Ciliophora) on swimming activity of European eel Anguilla anguilla.

    PubMed

    Münderle, M; Sures, B; Taraschewski, H

    2004-08-09

    We investigated the swimming activity of 70 European eels Anguilla anguilla in relation to natural infection with 2 parasite species: the eel-specific swimbladder nematode Anguillicola crassus and the non-specific skin and gill protozoan Ichthyophthirius multifiliis. We measured how long individual eels exposed to a water current in a swimming channel with a steady-stream profile could withstand the water current. The parasites affected the swimming behaviour of eels in different ways. The maximum period of time the fish were able to swim against the current was not correlated with infection by A. crassus. In contrast, infection with I. multifiliis reduced the swimming time. The protozoan has a higher pathogenicity than the swimbladder nematode, at least in closed systems, where I. multifiliis is able to spread within a few days. Reduction in swimming capacity after infection with the ciliate averaged 47 % compared to capacity prior to infection. Thus, our results do not support the previously suggested strong negative relation between swimming activity of eels and intensity of A. crassus infection, at least in the short-term. However, there are indications in the literature that the pathological effects of A. crassus on the eel swimmbladder may involve a higher energy demand, possibly manifested in a prolonged spawning migration. As a result, eels heavily infected with this parasite may arrive too late at the spawning site to participate in mating. This could ensure a selection of 'good genes'.

  8. Swim Training Improves HOMA-IR in Type 2 Diabetes Induced by High Fat Diet and Low Dose of Streptozotocin in Male Rats.

    PubMed

    Ghiasi, Rafigheh; Ghadiri Soufi, Farhad; Somi, Mohammad Hossein; Mohaddes, Gisou; Mirzaie Bavil, Fariba; Naderi, Roya; Alipour, Mohammad Reza

    2015-09-01

    Insulin resistance plays a key role in the onset and development of type 2 diabetes mellitus (T2DM) and its complications. In this study, we evaluated the effect of swim training on insulin resistance in diabetic rats. Forty male Wistar rats were randomly divided into four groups (n=10): sedentary control (Con), sedentary diabetic (Dia), swim trained control (Exe) and swim trained diabetic (Dia+Exe) rats. Diabetes was induced by high fat diet (HFD) and a low dose of streptozotocin (35 mg/kg, i.p). In trained groups, one week after the induction of diabetes, animals were subjected to swimming (60 min/5 days a week) for 10 weeks. At the end of training, fasting blood sugar (FBS), oral glucose tolerance test (OGTT), fasting/basal insulin, glycosylated hemoglobin (HbA1c) levels, insulin resistance index, homeostasis model assessment method (HOMA-IR), triglycerides (TG,) total cholesterol (TCh), and high density lipoprotein (HDL) levels in blood were measured. Swimming significantly improved OGTT (P<0.01) and HOMA-IR (P<0.01). Swim training also significantly decreased FBS (p<0.01), fasting/basal insulin (P<0.01), HbA1C (p<0.01), TG (P<0.05), and TCh (P<0.05) levels. It also significantly increased HDL (p<0.05) level. Our findings indicate that swim training improved glycemic control and insulin sensitivity in type 2 diabetes caused by high fat diet in male rats.

  9. The Effect of Drag and Attachment Site of External Tags on Swimming Eels: Experimental Quantification and Evaluation Tool

    PubMed Central

    Tudorache, Christian; Burgerhout, Erik; Brittijn, Sebastiaan; van den Thillart, Guido

    2014-01-01

    Telemetry studies on aquatic animals often use external tags to monitor migration patterns and help to inform conservation effort. However, external tags are known to impair swimming energetics dramatically in a variety of species, including the endangered European eel. Due to their high swimming efficiency, anguilliform swimmers are very susceptibility for added drag. Using an integration of swimming physiology, behaviour and kinematics, we investigated the effect of additional drag and site of externally attached tags on swimming mode and costs. The results show a significant effect of a) attachment site and b) drag on multiple energetic parameters, such as Cost Of Transport (COT), critical swimming speed (Ucrit) and optimal swimming speed (Uopt), possibly due to changes in swimming kinematics. Attachment at 0.125 bl from the tip of the snout is a better choice than at the Centre Of Mass (0.35 bl), as it is the case in current telemetry studies. Quantification of added drag effect on COT and Ucrit show a (limited) correlation, suggesting that the Ucrit test can be used for evaluating external tags for telemetry studies until a certain threshold value. Uopt is not affected by added drag, validating previous findings of telemetry studies. The integrative methodology and the evaluation tool presented here can be used for the design of new studies using external telemetry tags, and the (re-) evaluation of relevant studies on anguilliform swimmers. PMID:25409179

  10. The effect of drag and attachment site of external tags on swimming eels: experimental quantification and evaluation tool.

    PubMed

    Tudorache, Christian; Burgerhout, Erik; Brittijn, Sebastiaan; van den Thillart, Guido

    2014-01-01

    Telemetry studies on aquatic animals often use external tags to monitor migration patterns and help to inform conservation effort. However, external tags are known to impair swimming energetics dramatically in a variety of species, including the endangered European eel. Due to their high swimming efficiency, anguilliform swimmers are very susceptibility for added drag. Using an integration of swimming physiology, behaviour and kinematics, we investigated the effect of additional drag and site of externally attached tags on swimming mode and costs. The results show a significant effect of a) attachment site and b) drag on multiple energetic parameters, such as Cost Of Transport (COT), critical swimming speed (Ucrit) and optimal swimming speed (Uopt), possibly due to changes in swimming kinematics. Attachment at 0.125 bl from the tip of the snout is a better choice than at the Centre Of Mass (0.35 bl), as it is the case in current telemetry studies. Quantification of added drag effect on COT and Ucrit show a (limited) correlation, suggesting that the Ucrit test can be used for evaluating external tags for telemetry studies until a certain threshold value. Uopt is not affected by added drag, validating previous findings of telemetry studies. The integrative methodology and the evaluation tool presented here can be used for the design of new studies using external telemetry tags, and the (re-) evaluation of relevant studies on anguilliform swimmers.

  11. Swimming for the Handicapped Child and Adult: Occasional Papers No. 10.

    ERIC Educational Resources Information Center

    Neishloss, Lou

    Outlined are physiological and psychological values of swimming for the handicapped, basic principles and teaching procedures for instructing physically handicapped persons, and specific suggestions for teaching swimming to persons with the following conditions; amputations, polio, paraplegia, cerebral palsy, spina bifida, Legg-Perthes Disease,…

  12. Effect of Overhydration on Time-Trial Swim Performance.

    ERIC Educational Resources Information Center

    Maresh, Carl M.; Bergeron, Michael E.; Kenefick, Robert W.; Castellani, John W.; Hoffman, Jay R.; Armstrong, Lawrence E.

    2001-01-01

    Examined whether moderate overhydration would enhance the performance of otherwise euhydrated collegiate swimmers during two 183-meter time-trial swims held 3 days apart. Participants swam in alternate, randomized euhydrated, and overhydrated states. Results indicated that euhydration before an intense, short-duration swim was adequate for peak…

  13. 16 CFR 1207.1 - Scope, purpose, and findings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SAFETY STANDARD FOR SWIMMING POOL SLIDES § 1207.1 Scope, purpose, and findings. (a) Scope and purpose... Commission for the manufacture and construction of slides for use in swimming pools. The requirements of this... swimming pool slides. This standard also makes certain recommendations regarding the installation...

  14. Genotoxic Effects in Swimmers Exposed to Disinfection By-products in Indoor Swimming Pool

    EPA Science Inventory

    BACKGROUND: Exposure to disinfection by-products (DBPs) in drinking water has been associated with cancer risk, and a recent study found an increased bladder cancer risk among subjects attending swimming pools. OBJECTIVES: To evaluate whether swimming in pools is associated with ...

  15. Exercise-training intervention studies in competitive swimming.

    PubMed

    Aspenes, Stian Thoresen; Karlsen, Trine

    2012-06-01

    Competitive swimming has a long history and is currently one of the largest Olympic sports, with 16 pool events. Several aspects separate swimming from most other sports such as (i) the prone position; (ii) simultaneous use of arms and legs for propulsion; (iii) water immersion (i.e. hydrostatic pressure on thorax and controlled respiration); (iv) propulsive forces that are applied against a fluctuant element; and (v) minimal influence of equipment on performance. Competitive swimmers are suggested to have specific anthropometrical features compared with other athletes, but are nevertheless dependent on physiological adaptations to enhance their performance. Swimmers thus engage in large volumes of training in the pool and on dry land. Strength training of various forms is widely used, and the energetic systems are addressed by aerobic and anaerobic swimming training. The aim of the current review was to report results from controlled exercise training trials within competitive swimming. From a structured literature search we found 17 controlled intervention studies that covered strength or resistance training, assisted sprint swimming, arms-only training, leg-kick training, respiratory muscle training, training the energy delivery systems and combined interventions across the aforementioned categories. Nine of the included studies were randomized controlled trials. Among the included studies we found indications that heavy strength training on dry land (one to five repetitions maximum with pull-downs for three sets with maximal effort in the concentric phase) or sprint swimming with resistance towards propulsion (maximal pushing with the arms against fixed points or pulling a perforated bowl) may be efficient for enhanced performance, and may also possibly have positive effects on stroke mechanics. The largest effect size (ES) on swimming performance was found in 50 m freestyle after a dry-land strength training regimen of maximum six repetitions across three sets in relevant muscle-groups (ES 1.05), and after a regimen of resisted- and assisted-sprint training with elastic surgical tubes (ES 1.21). Secondly, several studies suggest that high training volumes do not pose any immediate advantage over lower volumes (with higher intensity) for swim performance. Overall, very few studies were eligible for the current review although the search strategy was broad and fairly liberal. The included studies predominantly involved freestyle swimming and, overall, there seems to be more questions than answers within intervention-based competitive swimming research. We believe that this review may encourage other researchers to pursue the interesting topics within the physiology of competitive swimming.

  16. Basic Land Drills for Swimming Stroke Acquisition

    ERIC Educational Resources Information Center

    Zhang, Peng

    2014-01-01

    Teaching swimming strokes can be a challenging task in physical education. The purpose of the article is to introduce 12 on land drills that can be utilized to facilitate the learning of swimming strokes, including elementary back stroke, sidestroke, front crawl, back stroke, breaststroke, and butterfly. Each drill consists of four components…

  17. Advances in the Visualization and Analysis of Boundary Layer Flow in Swimming Fish

    DTIC Science & Technology

    2005-02-01

    caudal-fin amputation on the kinematics and metabolic rate of underyearling sockeye salmon ( Oncorhynchus nerka ) at steady swimming speeds. J. Exp. Biol...caudal-fin amputation on the kinematics and metabolic rate of underyearling sockeye salmon ( Oncorhynchus nerka ) at steady swimming speeds. J. Exp. Biol

  18. Teaching the Physically Handicapped to Swim.

    ERIC Educational Resources Information Center

    Anderson, William

    First principles of teaching swimming to the handicapped are reviewed; attention is given to children with cerebral palsy or muscular dystrophy, physical handicaps, blindness, and deafness. Swimming strokes, suggested exercises, group teaching, and a typical sequence of lessons and exercises are considered. Some case histories and a plan for a…

  19. Aquatics. NAGWS Guide. July 1979-July 1981. Tips and Techniques for Teachers and Coaches.

    ERIC Educational Resources Information Center

    Polvino, Geri, Ed.; And Others

    Articles covering a wide spectrum of aquatic sports are presented as aids to teachers and coaches of swimming. Included are suggestions for teaching swimming to the handicapped and infants, specific techniques for developing swimming skills, and tips for boating education and water safety. (JD)

  20. Assessment of Swimming in Physical Education

    ERIC Educational Resources Information Center

    Grosse, Susan J.

    2005-01-01

    This article presents an excerpt from the book "Assessment of Swimming in Physical Education" by Susan J. Grosse. In this excerpt, the different methods of assessment are discussed. Each type of assessment presented in the book has a place in swim curriculum. Assessments can measure form, skill application, knowledge, behavior, attitude, or…

  1. Metaphoric Perception of Coach Candidates towards Swimming Discipline: A Qualitative, Cognitive Research

    ERIC Educational Resources Information Center

    Gündogdu, Cemal; Aygün, Yalin

    2018-01-01

    This research evinces the value of the multidimensional perceptions of the metaphors towards swimming discipline and its relevant certain contexts according to swimming coach candidates. In this article, we used qualitative research paradigm away from positivist approaches to describe and interpret stories and personal experiences of the…

  2. Solid Waste Information Management System (SWIMS). Data summary, fiscal year 1980

    NASA Astrophysics Data System (ADS)

    Batchelder, H. M.

    1981-05-01

    The solid waste information management system (SWIMS) maintains computerized records on a master data base. It provides a comprehensive system for cataloging and assembling data into output reports. The SWIMS data base contains information on the transuranic (TRU) and low level waste (LLW) generated, buried, or stored.

  3. 43 CFR 423.36 - Swimming.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Swimming. (a) You may swim, wade, snorkel, scuba dive, raft, or tube at your own risk in Reclamation waters... sites, and designated mooring areas; or (5) As otherwise delineated by signs or other markers. (b) You... Guard guidelines when engaging in any underwater activities. (c) You must not dive, jump, or swing from...

  4. 33 CFR 117.734 - Navesink River (Swimming River).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navesink River (Swimming River). 117.734 Section 117.734 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... (Swimming River). The Oceanic Bridge, mile 4.5, shall open on signal; except that, from December 1 through...

  5. Observations on side-swimming rainbow trout Oncorhynchus mykiss in water recirculation aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    During a controlled 6-month study using six replicated water recirculation aquaculture systems (WRAS), it was observed that rainbow trout Oncorhynchus mykiss in all WRAS exhibited a higher-than-normal prevalence of side-swimming (i.e. controlled, forward swimming, but with misaligned orientation suc...

  6. Optimal translational swimming of a sphere at low Reynolds number.

    PubMed

    Felderhof, B U; Jones, R B

    2014-08-01

    Swimming velocity and rate of dissipation of a sphere with surface distortions are discussed on the basis of the Stokes equations of low-Reynolds-number hydrodynamics. At first the surface distortions are assumed to cause an irrotational axisymmetric flow pattern. The efficiency of swimming is optimized within this class of flows. Subsequently, more general axisymmetric polar flows with vorticity are considered. This leads to a considerably higher maximum efficiency. An additional measure of swimming performance is proposed based on the energy consumption for given amplitude of stroke.

  7. Efficient management design for swimming exercise treatment.

    PubMed

    Kim, Kyunghun; Kyung, Taewon; Kim, Wonhyun; Shin, Chungsick; Song, Youngjae; Lee, Moo Yeol; Lee, Hyunwoo; Cho, Yongchan

    2009-12-01

    Exercise-mediated physical treatment has attracted much recent interest. In particular, swimming is a representative exercise treatment method recommended for patients experiencing muscular and cardiovascular diseases. The present study sought to design a swimming-based exercise treatment management system. A survey questionnaire was completed by participants to assess the prevalence of muscular and cardiovascular diseases among adult males and females participating in swimming programs at sport centers in metropolitan regions of country. Using the Fuzzy Analytic Hierarchy Process (AHP) technique, weighted values of indices were determined, to maximize participant clarity. A patient management system model was devised using information technology. The favorable results are evidence of the validity of this approach. Additionally, the swimming-based exercise management system can be supplemented together with analyses of weighted values considering connectivity between established indices.

  8. Flow-induced attraction of swimming microorganisms by surfaces

    NASA Astrophysics Data System (ADS)

    Lauga, Eric; Berke, Allison; Turner, Linda; Berg, Howard

    2008-03-01

    In this talk, we present an experimental and theoretical investigation of the accumulation of swimming cells by nearby surfaces. First, we present results of an experiment aiming at measuring the distribution of smooth-swimming E. coli when moving in a density-matched fluid and between two glass plates; the distribution for the bacteria concentration is found to peak near the glass plates. We then present a physical model for the observed attraction, based on the hydrodynamics interactions between the swimming cells and the walls. We show that such interactions result in a reorientation of the cells in the direction parallel to the surfaces, and an attraction of these (parallel) cells by the nearest wall. Our results are exploited to obtain an estimate of the propulsive force of smooth-swimming E. coli.

  9. Swimming of a sphere in a viscous incompressible fluid with inertia

    NASA Astrophysics Data System (ADS)

    Felderhof, B. U.; Jones, R. B.

    2017-08-01

    The swimming of a sphere immersed in a viscous incompressible fluid with inertia is studied for surface modulations of small amplitude on the basis of the Navier-Stokes equations. The mean swimming velocity and the mean rate of dissipation are expressed as quadratic forms in term of the surface displacements. With a choice of a basis set of modes the quadratic forms correspond to two Hermitian matrices. Optimization of the mean swimming velocity for given rate of dissipation requires the solution of a generalized eigenvalue problem involving the two matrices. It is found for surface modulations of low multipole order that the optimal swimming efficiency depends in intricate fashion on a dimensionless scale number involving the radius of the sphere, the period of the cycle, and the kinematic viscosity of the fluid.

  10. A coin vibrational motor swimming at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; Askari, Hesam; Kelley, Douglas H.; Friedmann, Tamar; Oakes, Patrick W.

    2016-12-01

    Low-cost coin vibrational motors, used in haptic feedback, exhibit rotational internal motion inside a rigid case. Because the motor case motion exhibits rotational symmetry, when placed into a fluid such as glycerin, the motor does not swim even though its oscillatory motions induce steady streaming in the fluid. However, a piece of rubber foam stuck to the curved case and giving the motor neutral buoyancy also breaks the rotational symmetry allowing it to swim. We measured a 1 cm diameter coin vibrational motor swimming in glycerin at a speed of a body length in 3 seconds or at 3 mm/s. The swim speed puts the vibrational motor in a low Reynolds number regime similar to bacterial motility, but because of the oscillations of the motor it is not analogous to biological organisms. Rather the swimming vibrational motor may inspire small inexpensive robotic swimmers that are robust as they contain no external moving parts. A time dependent Stokes equation planar sheet model suggests that the swim speed depends on a steady streaming velocity V stream Re s 1/2 U 0 where U 0 is the velocity of surface oscillations, and streaming Reynolds number Re s = U 0 2 /( ων) for motor angular frequency ω and fluid kinematic viscosity ν.

  11. Swimming training alleviated insulin resistance through Wnt3a/β-catenin signaling in type 2 diabetic rats

    PubMed Central

    Yang, Qiang; Wang, Wen-wen; Ma, Pu; Ma, Zhong-xuan; Hao, Meng; Adelusi, Temitope I; Lei-Du; Yin, Xiao-Xing; Lu, Qian

    2017-01-01

    Objective(s): Increasing evidence suggests that regular physical exercise improves type 2 diabetes mellitus (T2DM). However, the potential beneficial effects of swimming on insulin resistance and lipid disorder in T2DM, and its underlying mechanisms remain unclear. Materials and Methods: Rats were fed with high fat diet and given a low dosage of Streptozotocin (STZ) to induce T2DM model, and subsequently treated with or without swimming exercise. An 8-week swimming program (30, 60 or 120 min per day, 5 days per week) decreased body weight, fasting blood glucose and fasting insulin. Results: Swimming ameliorated lipid disorder, improved muscular atrophy and revealed a reduced glycogen deposit in skeletal muscles of diabetic rats. Furthermore, swimming also inhibited the activation of Wnt3a/β-catenin signaling pathway, decreased Wnt3a mRNA and protein level, upregulated GSK3β phosphorylation activity and reduced the expression of β-catenin phosphorylation in diabetic rats. Conclusion: The trend of the result suggests that swimming exercise proved to be a potent ameliorator of insulin resistancein T2DM through the modulation of Wnt3a/β-catenin pathway and therefore, could present a promising therapeutic measure towards the treatment of diabetes and its relatives. PMID:29299199

  12. The mechanism of propulsion of a model microswimmer in a viscoelastic fluid next to a solid boundary

    NASA Astrophysics Data System (ADS)

    Ives, Thomas R.; Morozov, Alexander

    2017-12-01

    In this paper, we study the swimming of a model organism, the so-called Taylor's swimming sheet, in a viscoelastic fluid close to a solid boundary. This situation comprises natural habitats of many swimming microorganisms, and while previous investigations have considered the effects of both swimming next to a boundary and swimming in a viscoelastic fluid, seldom have both effects been considered simultaneously. We re-visit the small wave amplitude result obtained by Elfring and Lauga ["Theory of locomotion through complex fluids," in Complex Fluids in Biological Systems, Biological and Medical Physics, Biomedical Engineering, edited by S. E. Spagnolie (Springer New York, New York, NY, 2015), pp. 283-317] and give a mechanistic explanation to the decoupling of the effects of viscoelasticity, which tend to slow the sheet, and the presence of the boundary, which tends to speed up the sheet. We also develop a numerical spectral method capable of finding the swimming speed of a waving sheet with an arbitrary amplitude and waveform. We use it to show that the decoupling mentioned earlier does not hold at finite wave amplitudes and that for some parameters the presence of a boundary can cause the viscoelastic effects to increase the swimming speed of microorganisms.

  13. Swimming of a Tiny Subtropical Sea Butterfly with Coiled Shell

    NASA Astrophysics Data System (ADS)

    Murphy, David; Karakas, Ferhat; Maas, Amy

    2017-11-01

    Sea butterflies, also known as pteropods, include a variety of small, zooplanktonic marine snails. Thecosomatous pteropods possess a shell and swim at low Reynolds numbers by beating their wing-like parapodia in a manner reminiscent of insect flight. In fact, previous studies of the pteropod Limacina helicina have shown that pteropod swimming hydrodynamics and tiny insect flight aerodynamics are dynamically similar. Studies of L. helicina swimming have been performed in polar (0 degrees C) and temperate conditions (12 degrees C). Here we present measurements of the swimming of Heliconoides inflatus, a smaller yet morphologically similar pteropod that lives in warm Bermuda seawater (21 degrees C) with a viscosity almost half that of the polar seawater. The collected H. inflatus have shell sizes less than 1.5 mm in diameter, beat their wings at frequencies up to 11 Hz, and swim upwards in sawtooth trajectories at speeds up to approximately 25 mm/s. Using three-dimensional wing and body kinematics collected with two orthogonal high speed cameras and time-resolved, 2D flow measurements collected with a micro-PIV system, we compare the effects of smaller body size and lower water viscosity on the flow physics underlying flapping-based swimming by pteropods and flight by tiny insects.

  14. Hydrodynamic Trails Produced by Daphnia: Size and Energetics

    PubMed Central

    Wickramarathna, Lalith N.; Noss, Christian; Lorke, Andreas

    2014-01-01

    This study focuses on quantifying hydrodynamic trails produced by freely swimming zooplankton. We combined volumetric tracking of swimming trajectories with planar observations of the flow field induced by Daphnia of different size and swimming in different patterns. Spatial extension of the planar flow field along the trajectories was used to interrogate the dimensions (length and volume) and energetics (dissipation rate of kinetic energy and total dissipated power) of the trails. Our findings demonstrate that neither swimming pattern nor size of the organisms affect the trail width or the dissipation rate. However, we found that the trail volume increases with increasing organism size and swimming velocity, more precisely the trail volume is proportional to the third power of Reynolds number. This increase furthermore results in significantly enhanced total dissipated power at higher Reynolds number. The biggest trail volume observed corresponds to about 500 times the body volume of the largest daphnids. Trail-averaged viscous dissipation rate of the swimming daphnids vary in the range of to and the observed magnitudes of total dissipated power between and , respectively. Among other zooplankton species, daphnids display the highest total dissipated power in their trails. These findings are discussed in the context of fluid mixing and transport by organisms swimming at intermediate Reynolds numbers. PMID:24671019

  15. Burst Speed of Wild Fishes under High-Velocity Flow Conditions Using Stamina Tunnel with Natural Guidance System in River

    NASA Astrophysics Data System (ADS)

    Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei

    Swimming experiments were conducted on wild fishes in a natural guidance system stamina tunnel (cylindrical pipe) installed in a fishway of a local river under high-velocity flow conditions (tunnel flow velocity : 211 to 279 cm·s-1). In this study, the swimming characteristics of fishes were observed. The results show that (1) the swimming speeds of Tribolodon hakonensis (Japanese dace), Phoxinus lagowshi steindachneri (Japanese fat-minnow), Plecoglossus altivelis (Ayu), and Zacco platypus (Pale chub) were in proportion to their body length under identical water flow velocity conditions; (2) the maximum burst speed of Japanese dace and Japanese fat-minnow (measuring 4 to 6 cm in length) was 262 to 319 cm·s-1 under high flow velocity conditions (225 to 230 cm·s-1), while the maximum burst speed of Ayu and Pale chub (measuring 5 cm to 12 cm in length) was 308 to 355 cm·s-1 under high flow velocity conditions (264 to 273 cm·s-1) ; (3) the 50cm-maximum swimming speed of swimming fishes was 1.07 times faster than the pipe-swimming speed; (4) the faster the flow velocity, the shorter the swimming distance became.

  16. Wearable inertial sensors in swimming motion analysis: a systematic review.

    PubMed

    de Magalhaes, Fabricio Anicio; Vannozzi, Giuseppe; Gatta, Giorgio; Fantozzi, Silvia

    2015-01-01

    The use of contemporary technology is widely recognised as a key tool for enhancing competitive performance in swimming. Video analysis is traditionally used by coaches to acquire reliable biomechanical data about swimming performance; however, this approach requires a huge computational effort, thus introducing a delay in providing quantitative information. Inertial and magnetic sensors, including accelerometers, gyroscopes and magnetometers, have been recently introduced to assess the biomechanics of swimming performance. Research in this field has attracted a great deal of interest in the last decade due to the gradual improvement of the performance of sensors and the decreasing cost of miniaturised wearable devices. With the aim of describing the state of the art of current developments in this area, a systematic review of the existing methods was performed using the following databases: PubMed, ISI Web of Knowledge, IEEE Xplore, Google Scholar, Scopus and Science Direct. Twenty-seven articles published in indexed journals and conference proceedings, focusing on the biomechanical analysis of swimming by means of inertial sensors were reviewed. The articles were categorised according to sensor's specification, anatomical sites where the sensors were attached, experimental design and applications for the analysis of swimming performance. Results indicate that inertial sensors are reliable tools for swimming biomechanical analyses.

  17. Study of major factors developed among young swimmers during the practice session and competition causing interference of their performances.

    PubMed

    Das, Pradip Kumar; Panja, Debjit

    2013-12-01

    Swimming is a mass-oriented, well organised and health directed sport which helps to acquire good health for the participants. In our country it is started mostly in the 8-9 years of age and when compared to developed countries the children start the practices around the 3-6 years of age. In swimming like other sports, injury can happen particularly during practice and events competition. The different types of injuries like shoulder joint injury, knee joint injury, red eyes, ear-nose infections, muscle cramps, etc, so happened during swimming practice and swimming competition, affect the performances of the swimmers on many different levels, in both training and in swim meets. This is an ongoing problem for many swimmers, moreover swimming is an intense workout, so it's important to make sure for getting adequate nutrition throughout the day. Proper nutrition and dieting play a large role in optimising swimming performance. A poor diet has a negative effect on athletic performance, as it is also evident in this study where most of the swimmers are suffering from nutritional anaemia as detected by the low level of haemoglobin in their blood and so today the study work has obviously thrown some light on this aspect to highlight the problems and their solutions.

  18. Swimming kinematics and respiratory behaviour of Xenopus laevis larvae raised in altered gravity.

    PubMed

    Fejtek, M; Souza, K; Neff, A; Wassersug, R

    1998-06-01

    We examined the respiratory behaviours and swimming kinematics of Xenopus laevis tadpoles hatched in microgravity (Space Shuttle), simulated microgravity (clinostat) and hypergravity (3 g centrifuge). All observations were made in the normal 1 g environment. Previous research has shown that X. laevis raised in microgravity exhibit abnormalities in their lungs and vestibular system upon return to 1 g. The tadpoles raised in true microgravity exhibited a significantly lower tailbeat frequency than onboard 1 g centrifuge controls on the day of landing (day0), but this behaviour normalized within 9 days. The two groups did not differ significantly in buccal pumping rates. Altered buoyancy in the space-flight microgravity tadpoles was indicated by an increased swimming angle on the day after landing (day1). Tadpoles raised in simulated microgravity differed to a greater extent in swimming behaviours from their 1 g controls. The tadpoles raised in hypergravity showed no substantive effects on the development of swimming or respiratory behaviours, except swimming angle. Together, these results show that microgravity has a transient effect on the development of locomotion in X. laevis tadpoles, most notably on swimming angle, indicative of stunted lung development. On the basis of the behaviours we studied, there is no indication of neuromuscular retardation in amphibians associated with embryogenesis in microgravity.

  19. Are there limits to swimming world records?

    PubMed

    Nevill, A M; Whyte, G P; Holder, R L; Peyrebrune, M

    2007-12-01

    The purpose of this article was to investigate whether swimming world records are beginning to plateau and whether the inequality between men and women's swimming performances is narrowing, similar to that observed in running world records. A flattened "S-shaped curve" logistic curve is fitted to 100-m, 200-m, and 400-m front-crawl world-record swimming speeds for men and women from 1 May 1957 to the present time, using the non-linear least-squares regression. The inequality between men and women's world records is also assessed using the ratio, Women's/Men's world record speeds. The results confirm that men and women's front-crawl swimming world-record speeds are plateauing and the ratio between women's and men's world records has remained stable at approximately 0.9. In conclusion, the logistic curves provide evidence that swimming world-record speeds experienced a period of "accelerated" growth/improvements during the 1960 - 1970s, but are now beginning to plateau. The period of acceleration corresponded with numerous advances in science and technology but also coincided with the anecdotal evidence for institutionalised doping. Also noteworthy, however, is the remarkably consistency in the women's/men's world record ratio, circa 0.9, similar to those observed in middle and long distance running performances. These finding supports the notion that a 10 % gender inequality exists for both swimming and running.

  20. Effects of exposure to pile-driving sounds on the lake sturgeon, Nile tilapia and hogchoker

    PubMed Central

    Halvorsen, Michele B.; Casper, Brandon M.; Matthews, Frazer; Carlson, Thomas J.; Popper, Arthur N.

    2012-01-01

    Pile-driving and other impulsive sound sources have the potential to injure or kill fishes. One mechanism that produces injuries is the rapid motion of the walls of the swim bladder as it repeatedly contacts nearby tissues. To further understand the involvement of the swim bladder in tissue damage, a specially designed wave tube was used to expose three species to pile-driving sounds. Species included lake sturgeon (Acipenser fulvescens)—with an open (physostomous) swim bladder, Nile tilapia (Oreochromis niloticus)—with a closed (physoclistous) swim bladder and the hogchoker (Trinectes maculatus)—a flatfish without a swim bladder. There were no visible injuries in any of the exposed hogchokers, whereas a variety of injuries were observed in the lake sturgeon and Nile tilapia. At the loudest cumulative and single-strike sound exposure levels (SELcum and SELss respectively), the Nile tilapia had the highest total injuries and the most severe injuries per fish. As exposure levels decreased, the number and severity of injuries were more similar between the two species. These results suggest that the presence and type of swim bladder correlated with injury at higher sound levels, while the extent of injury at lower sound levels was similar for both kinds of swim bladders. PMID:23055066

  1. Tadpole swimming performance and activity affected by acute exposure to sublethal levels of carbaryl

    USGS Publications Warehouse

    Bridges, C.M.

    1997-01-01

    General activity and swimming performance (i.e., sprint speed and distance) of plains leopard frog tadpoles (Rana blairi) were examined after acute exposure to three sublethal concentrations of carbaryl (3.5, 5.0, and 7.2 mg/L). Both swimming performance and spontaneous swimming activity are important for carrying out life history functions (e.g., growth and development) and for escaping from predators. Measured tadpole activity diminished by nearly 90% at 3.5 mg/L carbaryl and completely ceased at 7.2 mg/L. Sprint speed and sprint distance also decreased significantly following exposure. Carbaryl affected both swimming performance and activity after just 24 h, suggesting that 24 h may be an adequate length of exposure to determine behavioral effects on tadpoles. Slight recovery of activity levels was noted at 24 and 48 h post-exposure; no recovery of swimming performance was observed. Reduction in activity and swimming performance may result in increased predation rates and, because activity is closely associated with feeding, may result in slowed growth leading to a failure to emerge before pond drying or an indirect reduction in adult fitness. Acute exposure to sublethal toxicants such as carbaryl may not only affect immediate survival of tadpoles but also impact critical life history functions and generate changes at the local population level.

  2. Kinematics, hydrodynamics and energetic advantages of burst-and-coast swimming of koi carps (Cyprinus carpio koi).

    PubMed

    Wu, Guanhao; Yang, Yan; Zeng, Lijiang

    2007-06-01

    Koi carps frequently swim in burst-and-coast style, which consists of a burst phase and a coast phase. We quantify the swimming kinematics and the flow patterns generated by the carps in burst-and-coast swimming. In the burst phase, the carps burst in two modes: in the first, the tail beats for at least one cycle (multiple tail-beat mode); in the second, the tail beats for only a half-cycle (half tail-beat mode). The carp generates a vortex ring in each half-cycle beat. The vortex rings generated during bursting in multiple tail-beat mode form a linked chain, but only one vortex ring is generated in half tail-beat mode. The wake morphologies, such as momentum angle and jet angle, also show much difference between the two modes. In the burst phase, the kinematic data and the impulse obtained from the wake are linked to obtain the drag coefficient (C(d,burst) approximately 0.242). In the coast phase, drag coefficient (C(d,coast) approximately 0.060) is estimated from swimming speed deceleration. Our estimation suggests that nearly 45% of energy is saved when burst-and-coast swimming is used by the koi carps compared with steady swimming at the same mean speed.

  3. The role of students’ self-confidence in relation with swimming routines, frequency, and tutor in swimming class

    NASA Astrophysics Data System (ADS)

    Hartoto, S.; Khory, F. D.; Prakoso, B. B.

    2018-01-01

    It is compulsory for prospective physical education teachers to have the ability to perform swimming. The average of students’ passing in swimming class has reached 72%. Most students who failed to pass the class are those who have had aquaphobia, the condition in which one failed to perceive a situation in a positive and objective, some of which are hard to detect. This perception may come from past experience and it could diminish students’ confidence. Furthermore, the lack of confidence in students may cause unsatisfactory learning results. Therefore it is critical for the teachers to have a comprehensive knowledge of their students’ past experience in formulating a lesson. This research used descriptive qualitative approach. The aim of this article is to investigate the correlation between students’ confidence level and swimming routines, frequency, and tutors in order to succeed swimming class. This article will attempt to describe the results of a research conducted to 139 students of Department of Sport Education Universitas Negeri Surabaya as prospective physical education teachers in Indonesia who took swimming class. Past experience and confidence level are measured by a questionnaire. The results of the research show that students who have a higher level of confidence are those who follow practice routines with adequate frequency and helped by a compatible tutor.

  4. Scaling in Free-Swimming Fish and Implications for Measuring Size-at-Time in the Wild

    PubMed Central

    Broell, Franziska; Taggart, Christopher T.

    2015-01-01

    This study was motivated by the need to measure size-at-age, and thus growth rate, in fish in the wild. We postulated that this could be achieved using accelerometer tags based first on early isometric scaling models that hypothesize that similar animals should move at the same speed with a stroke frequency that scales with length-1, and second on observations that the speed of primarily air-breathing free-swimming animals, presumably swimming ‘efficiently’, is independent of size, confirming that stroke frequency scales as length-1. However, such scaling relations between size and swimming parameters for fish remain mostly theoretical. Based on free-swimming saithe and sturgeon tagged with accelerometers, we introduce a species-specific scaling relationship between dominant tail beat frequency (TBF) and fork length. Dominant TBF was proportional to length-1 (r2 = 0.73, n = 40), and estimated swimming speed within species was independent of length. Similar scaling relations accrued in relation to body mass-0.29. We demonstrate that the dominant TBF can be used to estimate size-at-time and that accelerometer tags with onboard processing may be able to provide size-at-time estimates among free-swimming fish and thus the estimation of growth rate (change in size-at-time) in the wild. PMID:26673777

  5. Controlled-frequency breath swimming improves swimming performance and running economy.

    PubMed

    Lavin, K M; Guenette, J A; Smoliga, J M; Zavorsky, G S

    2015-02-01

    Respiratory muscle fatigue can negatively impact athletic performance, but swimming has beneficial effects on the respiratory system and may reduce susceptibility to fatigue. Limiting breath frequency during swimming further stresses the respiratory system through hypercapnia and mechanical loading and may lead to appreciable improvements in respiratory muscle strength. This study assessed the effects of controlled-frequency breath (CFB) swimming on pulmonary function. Eighteen subjects (10 men), average (standard deviation) age 25 (6) years, body mass index 24.4 (3.7) kg/m(2), underwent baseline testing to assess pulmonary function, running economy, aerobic capacity, and swimming performance. Subjects were then randomized to either CFB or stroke-matched (SM) condition. Subjects completed 12 training sessions, in which CFB subjects took two breaths per length and SM subjects took seven. Post-training, maximum expiratory pressure improved by 11% (15) for all 18 subjects (P < 0.05) while maximum inspiratory pressure was unchanged. Running economy improved by 6 (9)% in CFB following training (P < 0.05). Forced vital capacity increased by 4% (4) in SM (P < 0.05) and was unchanged in CFB. These findings suggest that limiting breath frequency during swimming may improve muscular oxygen utilization during terrestrial exercise in novice swimmers. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Assessment of the effect of prolonged forced swimming on CD-1 mice sperm morphology with and without antioxidant supplementation.

    PubMed

    Rodriguez, I; Diaz, A; Vaamonde, D

    2016-04-01

    As physical exercise has been shown to negatively affect sperm morphology, this study was undertaken to assess the effect of a 3-min forced swimming protocol during 50 days, with and without administration of antioxidants [N-acetylcysteine (NAC) and trans-resveratrol], on sperm morphology in CD-1 mice. Forty-four 13-week-old CD-1 mice were randomly allocated to four different groups: mice not submitted to exercise, control group (CG), mice submitted to swimming without administration of antioxidants (EX), mice submitted to swimming that received trans-resveratrol supplementation [exercise group (EX)+Resv] and mice submitted to swimming exercise that received NAC supplementation (EX+NAC). The EX showed 30.5% of spermatozoa with normal morphology, showing significant differences with regard to the CG, which showed 58.5%. The groups receiving antioxidant supplements showed significantly higher percentages of spermatozoa with normal morphology in comparison with the EX group (EX+Resv: 64.1%, EX+NAC: 48.2%). The imposed model of forced swimming caused alterations in sperm morphology. The antioxidants employed seem to be suitable antioxidants for avoiding exercise-associated sperm morphology anomalies in prolonged forced swimming exercise. Trans-resveratrol has proven to be more efficient for this purpose. © 2015 Blackwell Verlag GmbH.

  7. Concentration-dependent toxicity effect of SDBS on swimming behavior of freshwater fishes.

    PubMed

    Zhang, Ying; Ma, Jing; Zhou, Siyun; Ma, Fang

    2015-07-01

    Sodium dodecyl benzene sulfonate (SDBS) is a kind of widely used anionic surfactant and its discharge may pose potential risk to the receiving aquatic ecosystem. The aim of our study is to investigate the toxic effect of SDBS on fish swimming behavior quantitatively, followed by examination whether there are significant differences of swimming behavior among applied fish species (i.e. zebra fish (Danio rerio), Japanese medaka (Oryzias latipes) and red carp (Cyprinus carpio)). The swimming speed and vertical position were analyzed after the fish exposed to SDBS aiming to reflect the toxicity of SDBS on fish. Our results showed that the swimming behavior of three fishes was significantly affected by SDBS, although there were slight differences of swimming pattern changes among three fish species when they exposed to the same concentration of SDBS. It could be seen that red carp, one of the native fish species in China, can be used as a model fish to reflect the water quality changes as well as zebra fish and Japanese medaka which are commonly used as model fishes. Our study also illustrated that the swimming behavior monitoring may have a good application prospect in pre-warning of water quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Changes in the flagellar bundling time account for variations in swimming behavior of flagellated bacteria in viscous media

    NASA Astrophysics Data System (ADS)

    Qu, Zijie; Temel, Fatma; Henderikx, Rene; Breuer, Kenneth

    2017-11-01

    The motility of bacteria E.coli in viscous fluids has been widely studied, although conflicting results on the effect of viscosity on swimming speed abound. The swimming mode of wild-type E.coli is idealized as a run-and-tumble sequence in which periods of straight swimming at a constant speed are randomly interrupted by a tumble, defined as a sudden change of direction with a very low speed. Using a tracking microscope, we follow cells for extended time and find that the swimming behavior of a single cell can exhibit a variety of behaviors including run-and-tumble and ``slow-random-walk'' in which the cells move at relatively low speed without the characteristic run. Although the characteristic swimming speed varies between individuals and in different polymer solutions, we find that the skewness of the speed distribution is solely a function of viscosity, and uniquely determines the ratio of the average speed to the characteristic run speed. Using Resistive Force Theory and the cell-specific measured characteristic run speed, we show that differences in the swimming behavior observed in solutions of different viscosity are due to changes in the flagellar bundling time, which increases as the viscosity rises, due to lower rotation rate of the flagellar motor. National Science Foundation.

  9. Scaling of hydrodynamics and swimming kinematics of shelled Antarctic sea butterfly

    NASA Astrophysics Data System (ADS)

    Adhikari, Deepak; Webster, Donald; Yen, Jeannette

    2016-11-01

    A portable tomographic PIV system was used to study fluid dynamics and kinematics of pteropods (aquatic snails nicknamed 'sea butterflies') in Antarctica. These pteropods (Limacina helicina antarctica) swim with a pair of parapodia (or "wings") via a unique flapping propulsion mechanism that incorporates similar techniques as observed in small flying insects. The swimming velocity is typically 14 - 30 mm/s for pteropod size ranging 1.5 - 5 mm, and the pteropod shell pitches forward-and-backward at 1.9 - 3 Hz. It has been shown that pitching motion of the shell effectively positions the parapodia such that they flap downwards during both power and recovery strokes. The non-dimensional variables characterizing the motion of swimming pteropods are flapping, translating, and pitching Reynolds numbers (i.e. Ref, ReU, and ReΩ) . We found that the relationship between these Reynolds numbers show an existence of a critical ReΩ, below which pteropods fail to swim successfully. We explore the importance of this critical ReΩ by changing the viscosity of the seawater using methylcellulose. At higher viscosity, our results indicate that pteropods do not swim with optimal propulsion efficiency. Finally, we examine the wake signature of swimming pteropod, consisting of a pair of vortex rings, in the modified viscosity environment.

  10. Comparison of expert and nonexpert swimmers' opinions about the value, potency, and activity of four standard swimming strokes and underwater undulatory swimming.

    PubMed

    Collard, L; Oboeuf, A

    2009-04-01

    Underwater undulatory swimming (UUS) is often perceived to be a nonessential aspect of aquatic propulsion. Given their solid theoretical and practical training in swimming, physical education students should be capable of judging the true value of the "fifth stroke," since it appears to be the most efficient technique in high level, competitive swimming. To compare opinions and connotations associated with the stroke and the four official strokes (butterfly, backstroke, breaststroke, and crawl), 198 students (32 of whom were expert swimmers; M age = 20.6 yr., SD = 1.2), were surveyed using the semantic differential of Osgood, Suci, and Tannenbaum. Although answers of expert and nonexpert swimmers differed significantly (p < .01, except for the breaststroke), participants considered overall that undulatory stroke was less attractive, less powerful, and less rapid than the four surface strokes (d = 2.88 for the expert swimmers). Putting one arm in front of the other and repeating the sequence still remains the most solidly held representation of "the right way" to swim. However, the high observed standard deviations for the underwater undulatory stimulus (SD > or = 1.1 with SD max = 3 for the expert swimmers) attests to the view being less strongly held by swimming specialists.

  11. Swimming kinematics and respiratory behaviour of Xenopus laevis larvae raised in altered gravity

    NASA Technical Reports Server (NTRS)

    Fejtek, M.; Souza, K.; Neff, A.; Wassersug, R.

    1998-01-01

    We examined the respiratory behaviours and swimming kinematics of Xenopus laevis tadpoles hatched in microgravity (Space Shuttle), simulated microgravity (clinostat) and hypergravity (3 g centrifuge). All observations were made in the normal 1 g environment. Previous research has shown that X. laevis raised in microgravity exhibit abnormalities in their lungs and vestibular system upon return to 1 g. The tadpoles raised in true microgravity exhibited a significantly lower tailbeat frequency than onboard 1 g centrifuge controls on the day of landing (day0), but this behaviour normalized within 9 days. The two groups did not differ significantly in buccal pumping rates. Altered buoyancy in the space-flight microgravity tadpoles was indicated by an increased swimming angle on the day after landing (day1). Tadpoles raised in simulated microgravity differed to a greater extent in swimming behaviours from their 1 g controls. The tadpoles raised in hypergravity showed no substantive effects on the development of swimming or respiratory behaviours, except swimming angle. Together, these results show that microgravity has a transient effect on the development of locomotion in X. laevis tadpoles, most notably on swimming angle, indicative of stunted lung development. On the basis of the behaviours we studied, there is no indication of neuromuscular retardation in amphibians associated with embryogenesis in microgravity.

  12. Schistosoma mansoni cercariae swim efficiently by exploiting an elastohydrodynamic coupling

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Deepak; Katsikis, Georgios; Bhargava, Arjun; Prakash, Manu

    2017-03-01

    The motility of many parasites is critical for infecting their host, as exemplified in the transmission cycle of the parasite Schistosoma mansoni. In its human infectious stage, submillimetre-scale forms of the parasite known as cercariae swim in freshwater and infect humans by penetrating the skin. This infection causes schistosomiasis, a disease comparable to malaria in global socio-economic impact. Given that cercariae do not feed and hence have a lifetime of around 12 hours, efficient motility is crucial for schistosomiasis transmission. Despite this, a first-principles understanding of how cercariae swim is lacking. Combining biological experiments, a novel theoretical model and its robotic realization, we show that cercariae use their forked tail to swim against gravity using a novel swimming gait, described here as a `T-swimmer gait'. During this gait, cercariae beat their tail periodically while maintaining an increased flexibility near their posterior and anterior ends. This flexibility allows an interaction between fluid drag and bending resistance--an elastohydrodynamic coupling, to naturally break time-reversal symmetry and enable locomotion at small length scales. Finally, we find that cercariae maintain this flexibility at an optimal regime for efficient swimming. We anticipate that our work sets the ground for linking the swimming of cercariae to disease transmission, and could potentially enable explorations of novel strategies for schistosomiasis control and prevention.

  13. Swimming endurance of bull trout, lake trout, arctic char, and rainbow trout following challenge with Renibacterium salmoninarum

    USGS Publications Warehouse

    Jones, D.T.; Moffitt, C.M.

    2004-01-01

    We tested the swimming endurance of juvenile bull trout Salvelinus confluentus, lake trout S. namaycush, Arctic char S. alpinus, and rainbow trout Oncorhynchus mykiss at 9??C and 15??C to determine whether sublethal infection from a moderate challenge of Renibacterium salmoninarum administered months before testing affected the length of time fish could maintain a swimming speed of 5-6 body lengths per second in an experimental flume. Rainbow trout and Arctic char swam longer in trials than did bull trout or lake trout, regardless of challenge treatment. When we tested fish 14-23 weeks postchallenge, we found no measurable effect of R. salmoninarum on the swimming endurance of the study species except for bull trout, which showed a mixed response. We conducted additional trials with bull trout 5-8 weeks postchallenge to determine whether increasing the challenge dose would affect swimming endurance and hematocrit. In those tests, bull trout with clinical signs of disease and those exposed to the highest challenge doses had significantly reduced swimming endurance compared with unchallenged control fish. Fish hematocrit levels measured at the end of all swimming endurance tests varied among species and between test temperatures, and patterns were not always consistent between challenged and control fish.

  14. Effects of exposure to pile-driving sounds on the lake sturgeon, Nile tilapia and hogchoker.

    PubMed

    Halvorsen, Michele B; Casper, Brandon M; Matthews, Frazer; Carlson, Thomas J; Popper, Arthur N

    2012-12-07

    Pile-driving and other impulsive sound sources have the potential to injure or kill fishes. One mechanism that produces injuries is the rapid motion of the walls of the swim bladder as it repeatedly contacts nearby tissues. To further understand the involvement of the swim bladder in tissue damage, a specially designed wave tube was used to expose three species to pile-driving sounds. Species included lake sturgeon (Acipenser fulvescens)--with an open (physostomous) swim bladder, Nile tilapia (Oreochromis niloticus)--with a closed (physoclistous) swim bladder and the hogchoker (Trinectes maculatus)--a flatfish without a swim bladder. There were no visible injuries in any of the exposed hogchokers, whereas a variety of injuries were observed in the lake sturgeon and Nile tilapia. At the loudest cumulative and single-strike sound exposure levels (SEL(cum) and SEL(ss) respectively), the Nile tilapia had the highest total injuries and the most severe injuries per fish. As exposure levels decreased, the number and severity of injuries were more similar between the two species. These results suggest that the presence and type of swim bladder correlated with injury at higher sound levels, while the extent of injury at lower sound levels was similar for both kinds of swim bladders.

  15. Effects of Short-Interval and Long-Interval Swimming Protocols on Performance, Aerobic Adaptations, and Technical Parameters: A Training Study.

    PubMed

    Dalamitros, Athanasios A; Zafeiridis, Andreas S; Toubekis, Argyris G; Tsalis, George A; Pelarigo, Jailton G; Manou, Vasiliki; Kellis, Spiridon

    2016-10-01

    Dalamitros, AA, Zafeiridis, AS, Toubekis, AG, Tsalis, GA, Pelarigo, JG, Manou, V, and Kellis, S. Effects of short-interval and long-interval swimming protocols on performance, aerobic adaptations, and technical parameters: A training study. J Strength Cond Res 30(10): 2871-2879, 2016-This study compared 2-interval swimming training programs of different work interval durations, matched for total distance and exercise intensity, on swimming performance, aerobic adaptations, and technical parameters. Twenty-four former swimmers were equally divided to short-interval training group (INT50, 12-16 × 50 m with 15 seconds rest), long-interval training group (INT100, 6-8 × 100 m with 30 seconds rest), and a control group (CON). The 2 experimental groups followed the specified swimming training program for 8 weeks. Before and after training, swimming performance, technical parameters, and indices of aerobic adaptations were assessed. ΙΝΤ50 and ΙΝΤ100 improved swimming performance in 100 and 400-m tests and the maximal aerobic speed (p ≤ 0.05); the performance in the 50-m swim did not change. Posttraining V[Combining Dot Above]O2max values were higher compared with pretraining values in both training groups (p ≤ 0.05), whereas peak aerobic power output increased only in INT100 (p ≤ 0.05). The 1-minute heart rate and blood lactate recovery values decreased after training in both groups (p < 0.01). Stroke length increased in 100 and 400-m swimming tests after training in both groups (p ≤ 0.05); no changes were observed in stroke rate after training. Comparisons between groups on posttraining mean values, after adjusting for pretraining values, revealed no significant differences between ΙΝΤ50 and ΙΝΤ100 for all variables; however, all measures were improved vs. the respective values in the CON (p < 0.001-0.05). In conclusion, when matched for distance and exercise intensity, the short-interval (50 m) and long-interval (100 m) protocols confer analogous improvements in swimming performance, in stroke cycle parameters, and in indices of aerobic adaptations after 8 weeks of training.

  16. Swimming capability and swimming behavior of juvenile acipenser schrenckii.

    PubMed

    Cai, Lu; Taupier, Rachel; Johnson, David; Tu, Zhiying; Liu, Guoyong; Huang, Yingping

    2013-03-01

    Acipenser schrenckii, the Amur Sturgeon, was a commercially valuable fish species inhabiting the Amur (Heilongjiang) River but populations have rapidly declined in recent years. Dams impede A. schrenckii spawning migration and wild populations were critically endangered. Building fishways helped maintain fish populations but data on swimming performance and behavior was crucial for fishway design. To obtain such data on A. schrenckii, a laboratory study of juvenile A. schrenckii (n = 18, body mass = 32.7 ± 1.2 g, body length = 18.8 ± 0.3 cm) was conducted using a stepped velocity test carried out in a fish respirometer equipped with a high-speed video camera at 20°C. Results indicate: (1) The counter-current swimming capability of A. schrenckii was low with critical swimming speed of 1.96 ± 0.10 BL/sec. (2) When a linear function was fitted to the data, oxygen consumption, as a function of swimming speed, was determined to be MO2  = 337.29 + 128.10U (R(2)  = 0.971, P < 0.001) and the power value (1.0) of U indicated high swimming efficiency. (3) Excess post-exercise oxygen cost was 48.44 mgO2 /kg and indicated excellent fatigue recovery. (4) Cost of transport decreased slowly with increased swimming speed. (5) Increased swimming speed led to increases in the tail beat frequency and stride length. This investigation contributed to the basic science of fish swimming behavior and provided data required for the design of fishways. Innovative methods have allowed cultivation of the species in the Yangtze River and, if effective fishways could be incorporated into the design of future hydropower projects on the Amur River, it would contribute to conservation of wild populations of A. schrenckii. The information provided here contributes to the international effort to save this critically endangered species. J. Exp. Zool. 319A:149-155, 2013. © 2013 Wiley Periodicals, Inc. Copyright © 2013 Wiley Periodicals, Inc.

  17. Accelerated recovery of Atlantic salmon (Salmo salar) from effects of crowding by swimming.

    PubMed

    Veiseth, Eva; Fjaera, Svein Olav; Bjerkeng, Bjørn; Skjervold, Per Olav

    2006-07-01

    The effects of post-crowding swimming velocity (0, 0.35, and 0.70 m/s) and recovery time (1.5, 6, and 12 h) on physiological recovery and processing quality parameters of adult Atlantic salmon (Salmo salar) were determined. Atlantic salmon crowded to a density similar to that of a commercial slaughter process (>200 kg/m(3), 40 min) were transferred to a swimming chamber for recovery treatment. Osmolality and concentrations of cortisol, glucose and lactate in blood plasma were used as physiological stress indicators, whereas image analyses of extent and duration of rigor contraction, and fillet gaping were used as measures of processing quality. Crowded salmon had a 5.8-fold higher plasma cortisol concentration than control salmon (P<0.05). The elevated plasma cortisol concentration was reduced by increasing the swimming velocity, and had returned to control levels after 6 h recovery at high water velocity. Similar effects of swimming velocity were observed for plasma osmolality and lactate concentration. A lower plasma glucose concentration was present in crowded than in control fish (P<0.05), although a typical post-stress elevation in plasma glucose was observed after the recovery treatments. Lower muscle pH was found in crowded compared with control salmon (P<0.05), but muscle pH returned to control levels after 6 h recovery at intermediate and high swimming velocities and after 12 h in the low velocity group. Crowding caused an early onset of rigor mortis contraction. However, subjecting crowded salmon to active swimming for 6 h before slaughter delayed the onset of rigor mortis contraction from 2.5 to 7.5 h post mortem. The extent of rigor mortis contraction was also affected by crowding and post-stress swimming activity (P<0.05), and the largest degree of contraction was found in crowded salmon. In conclusion, active swimming accelerated the return of plasma cortisol, hydromineral balance, and the energy metabolism of adult Atlantic salmon to pre-stress levels. Moreover, an active swimming period delayed the onset of rigor mortis contraction, which has a positive technological implication for the salmon processing industry.

  18. Improved Function and Reduced Pain after Swimming and Cycling Training in Patients with Osteoarthritis.

    PubMed

    Alkatan, Mohammed; Baker, Jeffrey R; Machin, Daniel R; Park, Wonil; Akkari, Amanda S; Pasha, Evan P; Tanaka, Hirofumi

    2016-03-01

    Arthritis and its associated joint pain act as significant barriers for adults attempting to perform land-based physical activity. Swimming can be an ideal form of exercise for patients with arthritis. Yet there is no information on the efficacy of regular swimming exercise involving patients with arthritis. The effect of a swimming exercise intervention on joint pain, stiffness, and physical function was evaluated in patients with osteoarthritis (OA). Using a randomized study design, 48 sedentary middle-aged and older adults with OA underwent 3 months of either swimming or cycling exercise training. Supervised exercise training was performed for 45 min/day, 3 days/week at 60-70% heart rate reserve for 12 weeks. The Western Ontario and McMaster Universities Arthritis Index was used to measure joint pain, stiffness, and physical limitation. After the exercise interventions, there were significant reductions in joint pain, stiffness, and physical limitation accompanied by increases in quality of life in both groups (all p < 0.05). Functional capacity as assessed by maximal handgrip strength, isokinetic knee extension and flexion power (15-30% increases), and the distance covered in the 6-min walk test increased (all p < 0.05) in both exercise groups. No differences were observed in the magnitude of improvements between swimming and cycling training. Regular swimming exercise reduced joint pain and stiffness associated with OA and improved muscle strength and functional capacity in middle-aged and older adults with OA. Additionally, the benefits of swimming exercise were similar to the more frequently prescribed land-based cycling training. clinicaltrials.gov NCT01836380.

  19. Sex differences in elite swimming with advanced age are less than marathon running.

    PubMed

    Senefeld, J; Joyner, M J; Stevens, A; Hunter, S K

    2016-01-01

    The sex difference in marathon performance increases with finishing place and age of the runner but whether this occurs among swimmers is unknown. The purpose was to compare sex differences in swimming velocity across world record place (1st-10th), age group (25-89 years), and event distance. We also compared sex differences between freestyle swimming and marathon running. The world's top 10 swimming times of both sexes for World Championship freestyle stroke, backstroke, breaststroke, and butterfly events and the world's top 10 marathon times in 5-year age groups were obtained. Men were faster than women for freestyle (12.4 ± 4.2%), backstroke (12.8 ± 3.0%), and breaststroke (14.5 ± 3.2%), with the greatest sex differences for butterfly (16.7 ± 5.5%). The sex difference in swimming velocity increased across world record place for freestyle (P < 0.001), breaststroke, and butterfly for all age groups and distances (P < 0.001) because of a greater relative drop-off between first and 10th place for women. The sex difference in marathon running increased with the world record place and the sex difference for marathon running was greater than for swimming (P < 0.001). The sex difference in swimming increased with world record place and age, but was less than for marathon running. Collectively, these results suggest more depth in women's swimming than marathon running. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. [Swimming, physical activity and health: a historical perspective].

    PubMed

    Conti, A A

    2015-01-01

    Swimming, which is the coordinated and harmonic movement of the human body inside a liquid medium by means of the combined action of the superior and inferior limbs, is a physical activity which is diffused throughout the whole world and it is practiced by healthy and non-healthy subjects. Swimming is one of the physical activities with less contraindications and, with limited exceptions, can be suggested to individuals of both sexes and of every age range, including the most advanced. Swimming requires energy both for the floating process and for the anterograde progression, with a different and variable osteo-arthro-muscular involvement according to the different styles. The energetic requirement is about four times that for running, with an overall efficiency inferior to 10%; the energetic cost of swimming in the female subject is approximately two thirds of that in the male subject. The moderate aerobic training typical of swimming is useful for diabetic and hypertensive individuals, for people with painful conditions of rachis, as also for obese and orthopaedic patients. Motor activity inside the water reduces the risk of muscular-tendinous lesions and, without loading the joints in excess, requires the harmonic activation of the whole human musculature. Swimming is an activity requiring multiple abilities, ranging from a sense of equilibrium to that of rhythm, from reaction speed to velocity, from joint mobility to resistance. The structured interest for swimming in the perspective of human health from the beginning of civilization, as described in this contribution, underlines the relevance attributed to this activity in the course of human history.

  1. A Review of Prevention, Diagnosis and Treatment of Relative Energy Deficiency in Sport (RED-S) in Artistic (Synchronized) Swimming.

    PubMed

    Robertson, Sherry; Mountjoy, Margo

    2018-05-03

    The syndrome Relative Energy Deficiency in Sport (RED-S) is a clinical entity characterized by low energy availability (LEA), which can negatively affect the health and performance of both male and female athletes. The underlying mechanism of RED-S is an inadequacy of dietary energy to support optimal health and performance. This syndrome refers to impaired physiological function including metabolic rate, menstrual function, bone health, immunity, protein synthesis, and cardiovascular health, with psychological consequences which can either precede (through restrictive dietary habits) or result from RED-S. The term RED-S extends beyond the condition termed the "Female Athlete Triad". Formerly known as synchronized swimming, artistic swimming is an Olympic sport requiring a high level of fitness as well as technical skill and artistry. The risk of RED-S is high in artistic swimming as it is an aesthetic, judged sport with an emphasis on a lean physique. RED-S is of significant concern in the sport of artistic swimming because of the potential negative effects on physical and mental health as well as consequences on athletic performance. This paper reviews health and performance consequences associated with LEA resulting in RED-S in artistic swimming. Medical and nutritional considerations specific to artistic swimming are reviewed and methods to help detect and manage RED-S are discussed. Prevention and management of RED-S in this athlete population should be a priority for coaches and the sport medicine professionals working with artistic swimming athletes should utilize the RED-S CAT, a Clinical Assessment Tool for screening and managing RED-S.

  2. Quantification of upper limb kinetic asymmetries in front crawl swimming.

    PubMed

    Morouço, Pedro G; Marinho, Daniel A; Fernandes, Ricardo J; Marques, Mário C

    2015-04-01

    This study aimed at quantifying upper limb kinetic asymmetries in maximal front crawl swimming and to examine if these asymmetries would affect the contribution of force exertion to swimming performance. Eighteen high level male swimmers with unilateral breathing patterns and sprint or middle distance specialists, volunteered as participants. A load-cell was used to quantify the forces exerted in water by completing a 30s maximal front crawl tethered swimming test and a maximal 50 m free swimming was considered as a performance criterion. Individual force-time curves were obtained to calculate the mean and maximum forces per cycle, for each upper limb. Following, symmetry index was estimated and breathing laterality identified by questionnaire. Lastly, the pattern of asymmetries along the test was estimated for each upper limb using linear regression of peak forces per cycle. Asymmetrical force exertion was observed in the majority of the swimmers (66.7%), with a total correspondence of breathing laterality opposite to the side of the force asymmetry. Forces exerted by the dominant upper limb presented a higher decrease than from the non-dominant. Very strong associations were found between exerted forces and swimming performance, when controlling the isolated effect of symmetry index. Results point that force asymmetries occur in the majority of the swimmers, and that these asymmetries are most evident in the first cycles of a maximum bout. Symmetry index stood up as an influencing factor on the contribution of tethered forces over swimming performance. Thus, to some extent, a certain degree of asymmetry is not critical for short swimming performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Swimming and Water Safety. Grades K-12. Curriculum Bulletin No. 12, 1967-68.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY.

    This bulletin, designed to help upgrade swimming and water safety instruction in schools, is divided into nine sections. The introductory section includes values of swimming and water safety instruction, and the scope and objectives of the program. Section two, "Organization and Administration," discusses the roles of administrators, supervisors,…

  4. 77 FR 71531 - Special Local Regulation; Kelley's Island Swim, Lake Erie; Kelley's Island, Lakeside, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ...-AA08 Special Local Regulation; Kelley's Island Swim, Lake Erie; Kelley's Island, Lakeside, OH AGENCY... part 100 by adding a Special Local Regulation within the Captain of the Port Detroit Zone. This... Swim. This special local regulated area is necessary to protect swimmers from vessel traffic. DATES...

  5. Everyone Swims: A Community Partnership and Policy Approach to Address Health Disparities in Drowning and Obesity

    ERIC Educational Resources Information Center

    Stempski, Sarah; Liu, Lenna; Grow, H. Mollie; Pomietto, Maureen; Chung, Celeste; Shumann, Amy; Bennett, Elizabeth

    2015-01-01

    Well-known disparities exist in rates of obesity and drowning, two public health priorities. Addressing these disparities by increasing access to safe swimming and water recreation may yield benefits for both obesity and injury prevention. "Everyone Swims," a community partnership, brought community health clinics and water recreation…

  6. 33 CFR 100.113 - Provincetown Harbor Swim for Life, Provincetown, MA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Provincetown Harbor Swim for Life... SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.113 Provincetown Harbor Swim for Life, Provincetown, MA. (a) Regulated Area. All waters of Provincetown Harbor within 200 feet of...

  7. Swimming and Children with Attention-Deficit Hyperactive Disorder: A Winning Combination

    ERIC Educational Resources Information Center

    Dail, Teresa; Smith, Caroline

    2016-01-01

    The benefits of swimming for children with disabilities include improved motor skills, physical fitness, executive brain function and improved social skills. Swimming can also be an activity that provides a positive environment for children suffering from attention-deficit hyperactive disorder (ADHD). This article provides an overview of ADHD and…

  8. 33 CFR 100.112 - Swim the Bay, Narragansett Bay, Narragansett, RI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Swim the Bay, Narragansett Bay, Narragansett, RI. 100.112 Section 100.112 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.112 Swim the Bay...

  9. The Good, the Bad, and the Volatile - Can We Have Both Healthy Pools and Healthy People?

    EPA Science Inventory

    Given the popularity of swimming for recreation and sport, it is remarkable that we are only in the early stages of understanding swimming pool chemistry, human exposure(s), and potential health risks. This is partly due to the complexity of swimming pool water chemistry, which i...

  10. The effect of antibiotics on swimming and swarming motility of multidrug-resistant Salmonella enterica serovar Typhimurium

    USDA-ARS?s Scientific Manuscript database

    Motile bacteria can employ one or more different strategies to move, including swimming, swarming, twitching, gliding, sliding, and darting. Swimming is considered the movement of individual bacteria through a liquid or semi-solid medium, while swarming is the concerted movement of a group of bacte...

  11. 75 FR 17103 - Special Local Regulation for Marine Event; Temporary Change of Dates for Recurring Marine Event...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... recurring marine event that conducts swimming competitions. Special local regulations are necessary to... include sailing regattas, power boat races, swim races and holiday parades. For a description of the... Columbia Aquatics Club sponsors the ``Maryland Swim for Life'', on the waters of the Chester River near...

  12. 75 FR 55477 - Safety Zone; Revolution 3 Triathlon, Lake Erie & Sandusky Bay, Cedar Point, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ... necessary to protect participants of the swim portion of the triathlon race from potential hazards from... public interest because of the hazards associated with vessel operation in close proximity to swimming... and Purpose The temporary safety zone is necessary to ensure the safety of participants of the swim...

  13. 77 FR 41048 - Safety Zone; Hudson Valley Triathlon, Ulster Landing, Hudson River, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... Hudson Valley Triathlon swim event. This temporary safety zone is necessary to protect swimmers.... Regulatory History and Information The Hudson Valley Triathlon swim is an annual recurring event that has a... Valley Triathlon swim event will occur on July 15, 2012. On May 22, 2012, the sponsor of the event...

  14. Survey of Different Types of Communication in Swimming Education

    ERIC Educational Resources Information Center

    Biro, Melinda

    2007-01-01

    Study aim: To evaluate verbal and non-verbal behaviour of teachers and pupils in elementary swimming education and their impact on pupils' achievements. Material and methods: A total of 77 swimming lessons were videorecorded and coded with the modified Cheffers' Adaptation of Flanders Interaction Analysis System (CAFIAS); 46 PE teachers, swimming…

  15. RECESSED AUTOMATIC SURFACE SKIMMERS FOR SWIMMING POOLS. NATIONAL SANITATION FOUNDATION STANDARD NUMBER 11.

    ERIC Educational Resources Information Center

    National Sanitation Foundation, Ann Arbor, MI.

    THE NATIONAL SANITATION FOUNDATION STANDARD ON SWIMMING POOL EQUIPMENT CONCERNS ITSELF WITH THE SUCCESSFUL APPLICATION OF SURFACE SKIMMERS TO SWIMMING POOLS. THE MINIMUM DESIGN AND CONSTRUCTION REQUIREMENTS ESTABLISHED BY THIS STANDARD ARE SET FORTH TO PROVIDE A MEANS OF EVALUATING THE OVERALL CONSTRUCTION AND EFFECTIVENESS OF THE UNIT. ADDITIONAL…

  16. Children's Activity Levels and Lesson Context during Summer Swim Instruction

    ERIC Educational Resources Information Center

    Schwamberger, Benjamin; Wahl-Alexander, Zachary

    2016-01-01

    Summer swim programs provide a unique opportunity to engage children in PA as well as an important lifesaving skill. Offering summer swim programs is critical, especially for minority populations who tend to have higher rates of drowning, specifically in youth populations. The purpose of this study was to determine the lesson context and…

  17. 26 CFR 1.856-6 - Foreclosure property.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... as, for example, an outdoor swimming pool or a parking garage) may be considered to be an integral... wings, an access road, a parking lot, and an outdoor swimming pool planned for the motel were each less... parking lot, and the swimming pool: Provided, That the motel and the other improvements which the trust...

  18. 76 FR 54703 - Safety Zone; Myrtle Beach Triathlon, Atlantic Intracoastal Waterway, Myrtle Beach, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-02

    ... during the swim portions of the triathlon races. Persons and vessels are prohibited from entering..., spectators and the general public during the swim portion of the triathlon races. Discussion of Comments and... zone around the swim area of the Myrtle Beach Triathlon on the Atlantic Intracoastal Waterway in Myrtle...

  19. Identification of Personality Differences among Various Swimming Ability Groups by Sex. Final Report. CORD Project.

    ERIC Educational Resources Information Center

    Davis, Michael G.; Stewart, Charles W.

    This study investigates 16 personality factors and their relevance to the swimming proficiency of physical education students at Wisconsin State University-River Falls. Two instruments, a swimming skills test and the Cattell Sixteen Personality Factor Questionnaire, were utilized. The major hypotheses tested include: (1) there is no difference…

  20. 9 CFR 3.111 - Swim-with-the-dolphin programs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Transportation of Marine Mammals Animal Health and Husbandry Standards § 3.111 Swim-with-the-dolphin programs... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Swim-with-the-dolphin programs. 3.111 Section 3.111 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF...

  1. 9 CFR 3.111 - Swim-with-the-dolphin programs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Transportation of Marine Mammals Animal Health and Husbandry Standards § 3.111 Swim-with-the-dolphin programs... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Swim-with-the-dolphin programs. 3.111 Section 3.111 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF...

  2. 9 CFR 3.111 - Swim-with-the-dolphin programs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Transportation of Marine Mammals Animal Health and Husbandry Standards § 3.111 Swim-with-the-dolphin programs... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Swim-with-the-dolphin programs. 3.111 Section 3.111 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF...

  3. 9 CFR 3.111 - Swim-with-the-dolphin programs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Transportation of Marine Mammals Animal Health and Husbandry Standards § 3.111 Swim-with-the-dolphin programs... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Swim-with-the-dolphin programs. 3.111 Section 3.111 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF...

  4. Swimming behaviour of the upside-down swimming catfish ( Synodontis nigriventris) at high-quality microgravity - A drop-tower experiment

    NASA Astrophysics Data System (ADS)

    Anken, R.; Hilbig, R.

    2009-07-01

    The catfish Synodontis nigriventris often shows a unique swimming behaviour in being oriented upside-down. When swimming near a (e.g., vertical) substrate, however, the animals orient themselves with their ventral side towards this substrate. This tendency is called ventral substrate response (VSR). The VSR does not only override the upside-down swimming behaviour but also the dorsal light response and the ventral light response. In the course of an earlier drop-tower experiment performed at ZARM (Bremen, Germany) using cichlid fish ( Oreochromis mossambicus), we had observed that about 90% of the animals revealed sensorimotor disorders (kinetotic swimming) due to the almost complete lack of gravity as a cue for orientation. In order to further assess the importance of the VSR for postural control in S. nigriventris when being located near a substrate, we subjected catfish in relatively small chambers to drop-tower flights. In contrast to our results regarding cichlid fish, S. nigriventris showed no kinetotic behaviour. This clearly suggests that the VSR overrides even vestibular input and possibly represents the most important single behavioural response in this species.

  5. Effects of unsteady conditions on propulsion generated by the hand's motion in swimming: a systematic review.

    PubMed

    Gomes, Lara Elena; Loss, Jefferson Fagundes

    2015-01-01

    The understanding of swimming propulsion is a key factor in the improvement of performance in this sport. Propulsive forces have been quantified under steady conditions since the 1970s, but actual swimming involves unsteady conditions. Thus, the purpose of the present article was to review the effects of unsteady conditions on swimming propulsion based on studies that have compared steady and unsteady conditions while exploring their methods, their limitations and their results, as well as encouraging new studies based on the findings of this systematic review. A multiple database search was performed, and only those studies that met all eligibility criteria were included. Six studies that compared steady and unsteady conditions using physical experiments or numerical simulations were selected. The selected studies verified the effects of one or more factors that characterise a condition as unsteady on the propulsive forces. Consequently, much research is necessary to understand the effect of each individual variable that characterises a condition as unsteady on swimming propulsion, as well as the effects of these variables as a whole on swimming propulsion.

  6. Jump if you can't take the heat: three escape gaits of Paramecium swimming

    NASA Astrophysics Data System (ADS)

    Baroud, Charles N.; Hamel, Amandine; Fisch, Cathy; Combettes, Laurent; Dupuys-Williams, Pascale

    2010-11-01

    Paramecium is able to swim at velocities reaching several times its body size per second, by beating its thousands of cilia in an organized fashion. Here we show that Paramecium has in fact three distinct swimming gaits to escape from an aggression in the form of localized heating, depending on the magnitude of the aggression: For a weak agression, normal swimming is sufficient and produces a steady swimming velocity through cilia beating. As the heating amplitude is increased, a higher acceleration and faster swimming are achieved through synchronized beating of the cilia, which later give way to the usual metachronal waves. The synchronized beating yields high initial accelerations but requires the cell to coast through the synchrnized recovery. Finally, escape from a life-threatening agression is achieved by a "jumping" gait which does not rely on the cilia but is achieved from the explosive release of a rod-like organelles in the direction of the hot spot. Measurements through high-speed video explain the role of these rods in defending Paramecium. They also show that the zero-Reynolds number assumption is unverified in most cases.

  7. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment.

    PubMed

    Zhang, Chao; Liao, Qiang; Chen, Rong; Zhu, Xun

    2015-06-12

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Ingestion of swimming pool water by recreational swimmers.

    PubMed

    Dufour, A P; Behymer, T D; Cantú, R; Magnuson, M; Wymer, L J

    2017-06-01

    The volume of water ingested by swimmers while swimming is of great interest to individuals who develop risk assessments using quantitative microbial risk assessment or epidemiological approaches. We have used chloroisocyanurate disinfected swimming pool waters to determine the amount of water swallowed by swimmers during swimming activity. The chloroisocyanurate, which is in equilibrium with chlorine and cyanuric acid in the pool water, provides a biomarker, cyanuric acid, that once swallowed passes through the body into the urine unchanged. The concentration of cyanuric acid in a 24 hour urine specimen and the concentration in pool water can be used to calculate the amount of water swallowed. Our study population of 549 participants, which was about evenly divided by gender, and young and adult swimmers, indicated that swimmers ingest about 32 mL per hour (arithmetic mean) and that children swallowed about four times as much water as adults during swimming activities. It was also observed that males had a tendency to swallow more water than females during swimming activity and that children spent about twice as much time in the water than adults.

  9. Energetics of swimming by the ferret: consequences of forelimb paddling.

    PubMed

    Fish, Frank E; Baudinette, Russell V

    2008-06-01

    The domestic ferret (Mustela putorius furo) swims by alternate strokes of the forelimbs. This pectoral paddling is rare among semi-aquatic mammals. The energetic implications of swimming by pectoral paddling were examined by kinematic analysis and measurement of oxygen consumption. Ferrets maintained a constant stroke frequency, but increased swimming speed by increasing stroke amplitude. The ratio of swimming velocity to foot stroke velocity was low, indicating a low propulsive efficiency. Metabolic rate increased linearly with increasing speed. The cost of transport decreased with increasing swimming speed to a minimum of 3.59+/-0.28 J N(-1) m(-1) at U=0.44 m s(-1). The minimum cost of transport for the ferret was greater than values for semi-aquatic mammals using hind limb paddling, but lower than the minimum cost of transport for the closely related quadrupedally paddling mink. Differences in energetic performance may be due to the amount of muscle recruited for propulsion and the interrelationship hydrodynamic drag and interference between flow over the body surface and flow induced by propulsive appendages.

  10. A fish-like robot: Mechanics of swimming due to constraints

    NASA Astrophysics Data System (ADS)

    Tallapragada, Phanindra; Malla, Rijan

    2014-11-01

    It is well known that due to reasons of symmetry, a body with one degree of actuation cannot swim in an ideal fluid. However certain velocity constraints arising in fluid-body interactions, such as the Kutta condition classically applied at the trailing cusp of a Joukowski hydrofoil break this symmetry through vortex shedding. Thus Joukowski foils that vary shape periodically can be shown to be able to swim through vortex shedding. In general it can be shown that vortex shedding due to the Kutta condition is equivalent to nonintegrable constraints arising in the mechanics of finite-dimensional mechanical systems. This equivalence allows hydrodynamic problems involving vortex shedding, especially those pertaining to swimming and related phenomena to be framed in the context of geometric mechanics on manifolds. This formal equivalence also allows the design of bio inspired robots that swim not due to shape change but due to internal moving masses and rotors. Such robots lacking articulated joints are easy to design, build and control. We present such a fish-like robot that swims due to the rotation of internal rotors.

  11. 3D Kinematics and Hydrodynamic Analysis of Freely Swimming Cetacean

    NASA Astrophysics Data System (ADS)

    Ren, Yan; Sheinberg, Dustin; Liu, Geng; Dong, Haibo; Fish, Frank; Javed, Joveria

    2015-11-01

    It's widely thought that flexibility and the ability to control flexibility are crucial elements in determining the performance of animal swimming. However, there is a lack of quantification of both span-wise and chord-wise deformation of Cetacean's flukes and associated hydrodynamic performance during actively swimming. To fill this gap, we examined the motion and flexure of both dolphin fluke and orca fluke in steady swimming using a combined experimental and computational approach. It is found that the fluke surface morphing can effectively modulate the flow structures and influence the propulsive performance. Findings from this work are fundamental for understanding key kinematic features of effective Cetacean propulsors, and for quantifying the hydrodynamic force production that naturally occurs during different types of swimming. This work is supported by ONR MURI N00014-14-1-0533 and NSF CBET-1313217.

  12. Free Swimming in Ground Effect

    NASA Astrophysics Data System (ADS)

    Cochran-Carney, Jackson; Wagenhoffer, Nathan; Zeyghami, Samane; Moored, Keith

    2017-11-01

    A free-swimming potential flow analysis of unsteady ground effect is conducted for two-dimensional airfoils via a method of images. The foils undergo a pure pitching motion about their leading edge, and the positions of the body in the streamwise and cross-stream directions are determined by the equations of motion of the body. It is shown that the unconstrained swimmer is attracted to a time-averaged position that is mediated by the flow interaction with the ground. The robustness of this fluid-mediated equilibrium position is probed by varying the non-dimensional mass, initial conditions and kinematic parameters of motion. Comparisons to the foil's fixed-motion counterpart are also made to pinpoint the effect that free swimming near the ground has on wake structures and the fluid-mediated forces over time. Optimal swimming regimes for near-boundary swimming are determined by examining asymmetric motions.

  13. Action-specific effects underwater.

    PubMed

    Witt, Jessica K; Schuck, Donald M; Taylor, J Eric T

    2011-01-01

    Action-specific effects on perception are apparent in terrestrial environments. For example, targets that require more effort to walk, jump, or throw to look farther away than when the targets require less effort. Here, we examined whether action-specific effects would generalize to an underwater environment. Instead, perception might be geometrically precise, rather than action-specific, in an environment that is novel from an evolutionary perspective. We manipulated ease to swim by giving participants swimming flippers or taking them away. Those who estimated distance while wearing the flippers judged underwater targets to be closer than did participants who had taken them off. In addition, participants with better swimming ability judged the targets to be closer than did those with worse swimming ability. These results suggest perceived distance underwater is a function of the perceiver's ability to swim to the targets.

  14. Use of pneumocystoplasty for overinflation of the swim bladder in a goldfish.

    PubMed

    Britt, Tara; Weisse, Chick; Weber, E Scott; Matzkin, Zach; Klide, Alan

    2002-09-01

    A Ryukin goldfish was evaluated because of a 6-month history of progressive abdominal distention and positive buoyancy. Overinflation of the swim bladder was diagnosed, and the fish was anesthetized with tricaine methanesulfonate. Archimedes' principle was used to determine the volume of swim bladder that was removed surgically. The caudal swim bladder was exteriorized through an abdominal incision and 2 surgical clips were placed across it to limit its size. After surgery, the fish remained in a state of negative buoyancy in sternal and lateral recumbency on the bottom of the tank. Sutures were removed 15 days after surgery, but the fish died 24 days after surgery. A full necropsy could not be performed because of autolysis of the tissues, but the surgical clips and the swim bladder appeared unremarkable. Pneumocystoplasty may be a viable treatment for this condition.

  15. Stokesian swimming of a helical swimmer across an interface

    NASA Astrophysics Data System (ADS)

    Godinez, Francisco; Ramos, Armando; Zenit, Roberto

    2016-11-01

    Microorganisms swim in flows dominated by viscous effects but in many instances the motion occurs across heterogeneous environments where the fluid properties may vary. To our knowledge, the effect of such in-homogeneity has not been addressed in depth. We conduct experiments in which a magnetic self-propelled helical swimmer displaces across the interface between two immiscible density stratified fluids. As the swimmer crosses the interface, at a fixed rotation rate, its speed is reduced and a certain volume of the lower fluid is dragged across. We quantify the drift volume and the change of swimming speed for different swimming speeds and different fluid combinations. We relate the reduction of the swimming speed with the interfacial tension of the interface. We also compare the measurements of the drift volume with some recent calculations found in the literature.

  16. Novel method based on video tracking system for simultaneous measurement of kinematics and flow in the wake of a freely swimming fish

    NASA Astrophysics Data System (ADS)

    Wu, Guanhao; Yang, Yan; Zeng, Lijiang

    2006-11-01

    A novel method based on video tracking system for simultaneous measurement of kinematics and flow in the wake of a freely swimming fish is described. Spontaneous and continuous swimming behaviors of a variegated carp (Cyprinus carpio) are recorded by two cameras mounted on a translation stage which is controlled to track the fish. By processing the images recorded during tracking, the detailed kinematics based on calculated midlines and quantitative analysis of the flow in the wake during a low-speed turn and burst-and-coast swimming are revealed. We also draw the trajectory of the fish during a continuous swimming bout containing several moderate maneuvers. The results prove that our method is effective for studying maneuvers of fish both from kinematic and hydrodynamic viewpoints.

  17. Toxic cocaine- and convulsant-induced modification of forced swimming behaviors and their interaction with ethanol: comparison with immobilization stress

    PubMed Central

    Hayase, Tamaki; Yamamoto, Yoshiko; Yamamoto, Keiichi

    2002-01-01

    Background Swimming behaviors in the forced swimming test have been reported to be depressed by stressors. Since toxic convulsion-inducing drugs related to dopamine [cocaine (COC)], benzodiazepine [methyl 6,7-dimethoxy-4-ethyl-β-carboline-carboxylate (DMCM)], γ-aminobutyric acid (GABA) [bicuculline (BIC)], and glutamate [N-methyl-D-aspartate (NMDA)] receptors can function as stressors, the present study compared their effects on the forced swimming behaviors with the effects of immobilization stress (IM) in rats. Their interactions with ethanol (EtOH), the most frequently coabused drug with COC which also induces convulsions as withdrawal symptoms but interferes with the convulsions caused by other drugs, were also investigated. Results Similar to the IM (10 min) group, depressed swimming behaviors (attenuated time until immobility and activity counts) were observed in the BIC (5 mg/kg IP) and DMCM (10 mg/kg IP) groups at the 5 h time point, after which no toxic behavioral symptoms were observed. However, they were normalized to the control levels at the 12 h point, with or without EtOH (1.5 g/kg IP). In the COC (60 mg/kg IP) and NMDA (200 mg/kg IP) groups, the depression occurred late (12 h point), and was normalized by the EtOH cotreatment. At the 5 h point, the COC treatment enhanced the swimming behaviors above the control level. Conclusions Although the physiological stress (IM), BIC, and DMCM also depressed the swimming behaviors, a delayed occurrence and EtOH-induced recovery of depressed swimming were observed only in the COC and NMDA groups. This might be correlated with the previously-reported delayed responses of DA and NMDA neurons rather than direct effects of the drugs, which could be suppressed by EtOH. Furthermore, the characteristic psychostimulant effects of COC seemed to be correlated with an early enhancement of swimming behaviors. PMID:12425723

  18. The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway.

    PubMed

    Chandramohan, Yalini; Droste, Susanne K; Arthur, J Simon C; Reul, Johannes M H M

    2008-05-01

    The hippocampus is involved in learning and memory. Previously, we have shown that the acquisition of the behavioural immobility response after a forced swim experience is associated with chromatin modifications and transcriptional induction in dentate gyrus granule neurons. Given that both N-methyl-D-aspartate (NMDA) receptors and the extracellular signal-regulated kinases (ERK) 1/2 signalling pathway are involved in neuroplasticity processes underlying learning and memory, we investigated in rats and mice whether these signalling pathways regulate chromatin modifications and transcriptional events participating in the acquisition of the immobility response. We found that: (i) forced swimming evoked a transient increase in the number of phospho-acetylated histone H3-positive [P(Ser10)-Ac(Lys14)-H3(+)] neurons specifically in the middle and superficial aspects of the dentate gyrus granule cell layer; (ii) antagonism of NMDA receptors and inhibition of ERK1/2 signalling blocked forced swimming-induced histone H3 phospho-acetylation and the acquisition of the behavioural immobility response; (iii) double knockout (DKO) of the histone H3 kinase mitogen- and stress-activated kinases (MSK) 1/2 in mice completely abolished the forced swimming-induced increases in histone H3 phospho-acetylation and c-Fos induction in dentate granule neurons and the behavioural immobility response; (iv) blocking mineralocorticoid receptors, known not to be involved in behavioural immobility in the forced swim test, did not affect forced swimming-evoked histone H3 phospho-acetylation in dentate neurons; and (v) the pharmacological manipulations and gene deletions did not affect behaviour in the initial forced swim test. We conclude that the forced swimming-induced behavioural immobility response requires histone H3 phospho-acetylation and c-Fos induction in distinct dentate granule neurons through recruitment of the NMDA/ERK/MSK 1/2 pathway.

  19. IMMEDIATE EFFECTS OF DEEP TRUNK MUSCLE TRAINING ON SWIMMING START PERFORMANCE.

    PubMed

    Iizuka, Satoshi; Imai, Atsushi; Koizumi, Keisuke; Okuno, Keisuke; Kaneoka, Koji

    2016-12-01

    In recent years, deep trunk muscle training has been adopted in various sports, including swimming. This is performed both in everyday training and as part of the warm-up routine before competitive races. It is suggested that trunk stabilization exercises are effective in preventing injury, and aid in improving performance. However, conclusive evidence of the same is yet to be obtained. The time of start phase of swimming is a factor that can significantly influence competition performance in a swimming race. If trunk stabilization exercises can provide instantaneous trunk stability, it is expected that they will lead to performance improvements in the start phase of swimming. The purpose of this study was to investigate the immediate effect of trunk stabilization exercises on the start phase in swimming. Intervention study. Nine elite male swimmers (mean age 20.2 ± 1.0 years; height 174.4 ± 3.5 cm; weight 68.9 ± 4.1 kg) performed the swimming start movement. The measurement variables studied included flying distance, and the time and velocity of subjects at hands' entry and on reaching five meters. Measurements were taken in trials immediately before and after the trunk stabilization exercises. A comparison between pre- and post-exercise measurements was assessed. The time to reach five meters (T 5m ) decreased significantly after trunk stabilization exercises, by 0.019 s (p = 0.02). Velocity at entry (V entry ) did not demonstrate significant change, while velocity at five meters (V 5m ) increased significantly after the exercises (p = 0.023). In addition, the speed reduction rate calculated from V entry and V 5m significantly decreased by 5.17% after the intervention (p = 0.036). Trunk stabilization exercises may help reduce the time from start to five meters in the start phase in swimming. The results support the hypothesis that these exercises may improve swimming performance. Level 3b.

  20. Current Warm-Up Practices and Contemporary Issues Faced by Elite Swimming Coaches.

    PubMed

    McGowan, Courtney J; Pyne, David B; Raglin, John S; Thompson, Kevin G; Rattray, Ben

    2016-12-01

    McGowan, CJ, Pyne, DB, Raglin, JS, Thompson, KG, and Rattray, B. Current warm-up practices and contemporary issues faced by elite swimming coaches. J Strength Cond Res 30(12): 3471-3480, 2016-A better understanding of current swimming warm-up strategies is needed to improve their effectiveness. The purpose of this study was to describe current precompetition warm-up practices and identify contemporary issues faced by elite swimming coaches during competition. Forty-six state-international level swimming coaches provided information through a questionnaire on their prescription of volume, intensity, and recovery within their pool and dryland-based competition warm-ups, and challenges faced during the final stages of event preparation. Coaches identified four key objectives of the precompetition warm-up: physiological (elevate body temperature and increase muscle activation), kinesthetic (tactile preparation, increase "feel" of the water), tactical (race-pace rehearsal), and mental (improve focus, reduce anxiety). Pool warm-up volume ranged from ∼1300 to 2100 m, beginning with 400-1000 m of continuous, low-intensity (∼50-70% of perceived maximal exertion) swimming, followed by 200-600 m of stroke drills and 1-2 sets (100-400 m in length) of increasing intensity (∼60-90%) swimming, concluding with 3-4 race or near race-pace efforts (25-100 m; ∼90-100%) and 100-400 m easy swimming. Dryland-based warm-up exercises, involving stretch cords and skipping, were also commonly prescribed. Coaches preferred swimmers complete their warm-up 20-30 minutes before race start. Lengthy marshalling periods (15-20+ minutes) and the time required to don racing suits (>10 minutes) were identified as complicating issues. Coaches believed that the pool warm-up affords athletes the opportunity to gain a tactile feel for the water and surrounding pool environment. The combination of dryland-based activation exercises followed by pool-based warm-up routines seems to be the preferred approach taken by elite swimming coaches preparing their athletes for competition.

  1. Combined strength and endurance training in competitive swimmers.

    PubMed

    Aspenes, Stian; Kjendlie, Per-Ludvik; Hoff, Jan; Helgerud, Jan

    2009-01-01

    A combined intervention of strength and endurance training is common practice in elite swimming training, but the scientific evidence is scarce. The influences between strength and endurance training have been investigated in other sports but the findings are scattered. Some state the interventions are negative to each other, some state there is no negative relationship and some find bisected and supplementary benefits from the combination when training is applied appropriately. The aim of this study was to investigate the impact of a combined intervention among competitive swimmers. 20 subjects assigned to a training intervention group (n = 11) or a control group (n = 9) from two different teams completed the study. Anthropometrical data, tethered swimming force, land strength, performance in 50m, 100m and 400m, work economy, peak oxygen uptake, stroke length and stroke rate were investigated in all subjects at pre- and post-test. A combined intervention of maximal strength and high aerobic intensity interval endurance training 2 sessions per week over 11 weeks in addition to regular training were used, while the control group continued regular practice with their respective teams. The intervention group improved land strength, tethered swimming force and 400m freestyle performance more than the control group. The improvement of the 400m was correlated with the improvement of tethered swimming force in the female part of the intervention group. No change occurred in stroke length, stroke rate, performance in 50m or 100m, swimming economy or peak oxygen uptake during swimming. Two weekly dry-land strength training sessions for 11 weeks increase tethered swimming force in competitive swimmers. This increment further improves middle distance swimming performance. 2 weekly sessions of high- intensity interval training does not improve peak oxygen uptake compared with other competitive swimmers. Key pointsTwo weekly sessions of dry land strength training improves the swimming force.Two weekly sessions of high-intensity endurance training did not cause improved endurance capacity.It may seem that dry land strength training can improve middle distance performance.

  2. The effects of Creatine Long-Term Supplementation on Muscle Morphology and Swimming Performance in Rats

    PubMed Central

    Yildiz, Ahmet; Ozdemir, Ercan; Gulturk, Sefa; Erdal, Sena

    2009-01-01

    Creatine (Cr) has been shown to increase the total muscle mass. The purpose of this study was to investigate the effect of Cr supplementation on muscle morphology and swimming performance, using an animal model. Each rat was subjected to exercise 15-minute period daily for the 12 weeks. The rats were randomly divided into four groups: no Cr supplementation (CON), no Cr supplementation and incomplete food intake (lacking lysine and methionine in diet for rats) (INCO), Cr supplementation 1 g·kg-1·day-1 (CREAT-I) and Cr supplementation 2 g·kg-1·day-1 (CREAT-II). Three months later, all groups adult rats exercised in swimming pool chambers. Swimming time was recorded as minute for each rat. Following swimming performance period, the animals were killed by cervical dislocation and the gastrocnemius and diaphragm muscles were dissected. Serial slices of 5-7 μm were allocated paraffin wax and histochemical staining procedure of cross-sections was carried out with heamatoxylin-eosin technics. All groups gained body weight at the end of 12 weeks but there was no statistical difference among them. Swimming time values were statistical difference between CREAT-II and CON group as well as between CREAT-I and CON group (p < 0.05). In the INCO group was determined increased connective tissue cell of the muscle sample. In contrast, in the CREAT-I and CREAT-II group, the basic histological changes were large-scale muscle fibers and hypertrophic muscle cells. These results suggest that long-term creatine supplementation increased the number of muscle fibers and enhanced endurance swimming performance in rats. Key points There is no study about the effects of creatine long-term supplementation on muscle morphology and swimming performance in rats. Long-term creatine supplementation increase muscle hypertrophy (but not body weight) and enhance endurance swimming performance in rats. The quantitative analysis indicated that the number of muscle fibers per defined area increased in creatine supplementation groups. PMID:24149591

  3. Self-entrainment to optimal gaits of an underactuated biomimetic swimming robot using adaptive frequency oscillators.

    PubMed

    Alessi, Alessio; Accoto, Dino; Guglielmelli, Eugenio

    2015-08-01

    Underactuated compliant swimming robots are characterized by a simple mechanical structure, capable to mimic the body undulation of many fish species. One of the design issue for these robots is the generation and control of best performing swimming gaits. In this paper we propose a new controller, based on AFO oscillators, to address this issue. After analyzing the effects of the motion on the robot natural frequencies, we show that the closed loop system is able to generate self-sustained oscillations, at a characteristic frequency, while maximizing swimming velocity.

  4. Effect of fluid inertia on the motion of a collinear swimmer.

    PubMed

    Felderhof, B U

    2016-12-01

    The swimming of a two-sphere system and of a three-sphere chain in an incompressible viscous fluid is studied on the basis of simplified equations of motion which take account of both Stokes friction and added mass effects. The analysis is based on an explicit expression for the asymptotic periodic swimming velocity and a corresponding evaluation of the mean rate of dissipation. The mean swimming velocity of the two-sphere system is found to be nonvanishing provided that the two spheres are not identical. The swimming of a comparable chain of three identical spheres is much more efficient.

  5. Polymorphic transformation of helical flagella of bacteria

    NASA Astrophysics Data System (ADS)

    Lim, Sookkyung; Howard Berg Collaboration; William Ko Collaboration; Yongsam Kim Collaboration; Wanho Lee Collaboration; Charles Peskin Collaboration

    2016-11-01

    Bacteria such as E. coli swim in an aqueous environment by utilizing the rotation of flagellar motors and alternate two modes of motility, runs and tumbles. Runs are steady forward swimming driven by bundles of flagellar filaments whose motors are turning CCW; tumbles involve a reorientation of the direction of swimming triggered by motor reversals. During tumbling, the helical flagellum undergoes polymorphic transformations, which is a local change in helical pitch, helical radius, and handedness. In this work, we investigate the underlying mechanism of structural conformation and how this polymorphic transition plays a role in bacterial swimming. National Science Foundation.

  6. Laryngoscopy during swimming: A novel diagnostic technique to characterize swimming-induced laryngeal obstruction.

    PubMed

    Walsted, Emil S; Swanton, Laura L; van van Someren, Ken; Morris, Tessa E; Furber, Matthew; Backer, Vibeke; Hull, James H

    2017-10-01

    Exercise-induced laryngeal obstruction (EILO) is a key differential diagnosis for respiratory symptoms in athletes and is particularly prevalent in aquatic athletes. A definitive diagnosis of EILO is dependent on laryngoscopy, performed continuously, while an athlete engages in the sport that precipitates their symptoms. This report provides the first description of the feasibility of performing continuous laryngoscopy during exercise in a swimming environment. The report describes the methodology and safety of the use of continuous laryngoscopy while swimming. Laryngoscope, 127:2298-2301, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  7. Analysis of swimming motions.

    NASA Technical Reports Server (NTRS)

    Gallenstein, J.; Huston, R. L.

    1973-01-01

    This paper presents an analysis of swimming motion with specific attention given to the flutter kick, the breast-stroke kick, and the breast stroke. The analysis is completely theoretical. It employs a mathematical model of the human body consisting of frustrums of elliptical cones. Dynamical equations are written for this model including both viscous and inertia forces. These equations are then applied with approximated swimming strokes and solved numerically using a digital computer. The procedure is to specify the input of the swimming motion. The computer solution then provides the output displacement, velocity, and rotation or body roll of the swimmer.

  8. Quality versus Quantity Debate in Swimming: Perceptions and Training Practices of Expert Swimming Coaches.

    PubMed

    Nugent, Frank J; Comyns, Thomas M; Warrington, Giles D

    2017-06-01

    The debate over low-volume, high-intensity training versus high-volume, low-intensity training, commonly known as Quality versus Quantity, respectively, is a frequent topic of discussion among swimming coaches and academics. The aim of this study was to explore expert coaches' perceptions of quality and quantity coaching philosophies in competitive swimming and to investigate their current training practices. A purposeful sample of 11 expert swimming coaches was recruited for this study. The study was a mixed methods design and involved each coach participating in 1 semi-structured interview and completing 1 closed-ended questionnaire. The main findings of this study were that coaches felt quality training programmes would lead to short term results for youth swimmers, but were in many cases more appropriate for senior swimmers. The coaches suggested that quantity training programmes built an aerobic base for youth swimmers, promoted technical development through a focus on slower swimming and helped to enhance recovery from training or competition. However, the coaches continuously suggested that quantity training programmes must be performed with good technique and they felt this was a misunderstood element. This study was a critical step towards gaining a richer and broader understanding on the debate over Quality versus Quantity training from an expert swimming coaches' perspective which was not currently available in the research literature.

  9. Hydrodynamic trails produced by Daphnia: size and energetics.

    PubMed

    Wickramarathna, Lalith N; Noss, Christian; Lorke, Andreas

    2014-01-01

    This study focuses on quantifying hydrodynamic trails produced by freely swimming zooplankton. We combined volumetric tracking of swimming trajectories with planar observations of the flow field induced by Daphnia of different size and swimming in different patterns. Spatial extension of the planar flow field along the trajectories was used to interrogate the dimensions (length and volume) and energetics (dissipation rate of kinetic energy and total dissipated power) of the trails. Our findings demonstrate that neither swimming pattern nor size of the organisms affect the trail width or the dissipation rate. However, we found that the trail volume increases with increasing organism size and swimming velocity, more precisely the trail volume is proportional to the third power of Reynolds number. This increase furthermore results in significantly enhanced total dissipated power at higher Reynolds number. The biggest trail volume observed corresponds to about 500 times the body volume of the largest daphnids. Trail-averaged viscous dissipation rate of the swimming daphnids vary in the range of 1.8 x 10(-6) W/kg to 3.4 x 10(-6) W/kg and the observed magnitudes of total dissipated power between 1.3 x 10(-9) W and 1 x 10(-8) W, respectively. Among other zooplankton species, daphnids display the highest total dissipated power in their trails. These findings are discussed in the context of fluid mixing and transport by organisms swimming at intermediate Reynolds numbers.

  10. Underwater near-infrared spectroscopy can measure training adaptations in adolescent swimmers

    PubMed Central

    Parry, Dave; Cooper, Chris E.

    2018-01-01

    The development of an underwater near-infrared spectroscopy (uNIRS) device has enabled previously unattainable measurements of peripheral muscle hemodynamics and oxygenation to be taken within the natural aquatic environment. The purposes of this study were (i) to trial the use of uNIRS, in a real world training study, and (ii) to monitor the effects of a swim training program upon muscle oxygenation status in short distance swimming. A total of 14 junior club level swimmers completed a repeated swim sprint test before and after an eight week endurance training program. A waterproof, portable Near-Infrared Spectroscopy device was attached to the vastus lateralis. uNIRS successfully measured changes in muscle oxygenation and blood volume in all individuals; rapid sub-second time resolution of the device was able to demonstrate muscle oxygenation changes during the characteristic swim movements. Post training heart rate recovery and swim performance time were significantly improved. uNIRS data also showed significant changes. A larger rise in deoxyhemoglobin during individual sprints suggested training induced an increase in muscle oxygen extraction; a faster recovery time for muscle oxygenation suggested positive training induced changes and significant changes in muscle blood flow also occur. As a strong correlation was seen between an increased reoxygenation rate and an improved swim performance time, these findings support the use of uNIRS as a new performance analysis tool in swimming. PMID:29692951

  11. Underwater near-infrared spectroscopy can measure training adaptations in adolescent swimmers.

    PubMed

    Jones, Ben; Parry, Dave; Cooper, Chris E

    2018-01-01

    The development of an underwater near-infrared spectroscopy (uNIRS) device has enabled previously unattainable measurements of peripheral muscle hemodynamics and oxygenation to be taken within the natural aquatic environment. The purposes of this study were (i) to trial the use of uNIRS, in a real world training study, and (ii) to monitor the effects of a swim training program upon muscle oxygenation status in short distance swimming. A total of 14 junior club level swimmers completed a repeated swim sprint test before and after an eight week endurance training program. A waterproof, portable Near-Infrared Spectroscopy device was attached to the vastus lateralis . uNIRS successfully measured changes in muscle oxygenation and blood volume in all individuals; rapid sub-second time resolution of the device was able to demonstrate muscle oxygenation changes during the characteristic swim movements. Post training heart rate recovery and swim performance time were significantly improved. uNIRS data also showed significant changes. A larger rise in deoxyhemoglobin during individual sprints suggested training induced an increase in muscle oxygen extraction; a faster recovery time for muscle oxygenation suggested positive training induced changes and significant changes in muscle blood flow also occur. As a strong correlation was seen between an increased reoxygenation rate and an improved swim performance time, these findings support the use of uNIRS as a new performance analysis tool in swimming.

  12. How body torque and Strouhal number change with swimming speed and developmental stage in larval zebrafish.

    PubMed

    van Leeuwen, Johan L; Voesenek, Cees J; Müller, Ulrike K

    2015-09-06

    Small undulatory swimmers such as larval zebrafish experience both inertial and viscous forces, the relative importance of which is indicated by the Reynolds number (Re). Re is proportional to swimming speed (vswim) and body length; faster swimming reduces the relative effect of viscous forces. Compared with adults, larval fish experience relatively high (mainly viscous) drag during cyclic swimming. To enhance thrust to an equally high level, they must employ a high product of tail-beat frequency and (peak-to-peak) amplitude fAtail, resulting in a relatively high fAtail/vswim ratio (Strouhal number, St), and implying relatively high lateral momentum shedding and low propulsive efficiency. Using kinematic and inverse-dynamics analyses, we studied cyclic swimming of larval zebrafish aged 2-5 days post-fertilization (dpf). Larvae at 4-5 dpf reach higher f (95 Hz) and Atail (2.4 mm) than at 2 dpf (80 Hz, 1.8 mm), increasing swimming speed and Re, indicating increasing muscle powers. As Re increases (60 → 1400), St (2.5 → 0.72) decreases nonlinearly towards values of large swimmers (0.2-0.6), indicating increased propulsive efficiency with vswim and age. Swimming at high St is associated with high-amplitude body torques and rotations. Low propulsive efficiencies and large yawing amplitudes are unavoidable physical constraints for small undulatory swimmers. © 2015 The Author(s).

  13. How body torque and Strouhal number change with swimming speed and developmental stage in larval zebrafish

    PubMed Central

    van Leeuwen, Johan L.; Voesenek, Cees J.; Müller, Ulrike K.

    2015-01-01

    Small undulatory swimmers such as larval zebrafish experience both inertial and viscous forces, the relative importance of which is indicated by the Reynolds number (Re). Re is proportional to swimming speed (vswim) and body length; faster swimming reduces the relative effect of viscous forces. Compared with adults, larval fish experience relatively high (mainly viscous) drag during cyclic swimming. To enhance thrust to an equally high level, they must employ a high product of tail-beat frequency and (peak-to-peak) amplitude fAtail, resulting in a relatively high fAtail/vswim ratio (Strouhal number, St), and implying relatively high lateral momentum shedding and low propulsive efficiency. Using kinematic and inverse-dynamics analyses, we studied cyclic swimming of larval zebrafish aged 2–5 days post-fertilization (dpf). Larvae at 4–5 dpf reach higher f (95 Hz) and Atail (2.4 mm) than at 2 dpf (80 Hz, 1.8 mm), increasing swimming speed and Re, indicating increasing muscle powers. As Re increases (60 → 1400), St (2.5 → 0.72) decreases nonlinearly towards values of large swimmers (0.2–0.6), indicating increased propulsive efficiency with vswim and age. Swimming at high St is associated with high-amplitude body torques and rotations. Low propulsive efficiencies and large yawing amplitudes are unavoidable physical constraints for small undulatory swimmers. PMID:26269230

  14. Quality versus Quantity Debate in Swimming: Perceptions and Training Practices of Expert Swimming Coaches

    PubMed Central

    Nugent, Frank J; Comyns, Thomas M; Warrington, Giles D

    2017-01-01

    Abstract The debate over low-volume, high-intensity training versus high-volume, low-intensity training, commonly known as Quality versus Quantity, respectively, is a frequent topic of discussion among swimming coaches and academics. The aim of this study was to explore expert coaches’ perceptions of quality and quantity coaching philosophies in competitive swimming and to investigate their current training practices. A purposeful sample of 11 expert swimming coaches was recruited for this study. The study was a mixed methods design and involved each coach participating in 1 semi-structured interview and completing 1 closed-ended questionnaire. The main findings of this study were that coaches felt quality training programmes would lead to short term results for youth swimmers, but were in many cases more appropriate for senior swimmers. The coaches suggested that quantity training programmes built an aerobic base for youth swimmers, promoted technical development through a focus on slower swimming and helped to enhance recovery from training or competition. However, the coaches continuously suggested that quantity training programmes must be performed with good technique and they felt this was a misunderstood element. This study was a critical step towards gaining a richer and broader understanding on the debate over Quality versus Quantity training from an expert swimming coaches’ perspective which was not currently available in the research literature. PMID:28713467

  15. Simulation of swimming strings immersed in a viscous fluid flow

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Xi; Sung, Hyung Jin

    2006-11-01

    In nature, many phenomena involve interactions between flexible bodies and their surrounding viscous fluid, such as a swimming fish or a flapping flag. The intrinsic dynamics is complicate and not well understood. A flexible string can be regarded as a one-dimensional flag model. Many similarities can be found between the flapping string and swimming fish, although different wake speed results in a drag force for the flapping string and a propulsion force for the swimming fish. In the present study, we propose a mathematical formulation for swimming strings immersed in a viscous fluid flow. Fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A flexible inextensible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, including a hanging string which starts moving under gravity without ambient fluid, a swinging string immersed in a quiescent viscous fluid, a string swimming within a uniform surrounding flow, and flow over two side-by-side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Further simulation of a swimming fish is under consideration.

  16. Beyond the "High-Tech" Suits: Predicting 2012 Olympic Swim Performances

    ERIC Educational Resources Information Center

    Brammer, Chris L.; Stager, Joel M.; Tanner, Dave A.

    2012-01-01

    The purpose of the authors in this study was to predict the mean swim time of the top eight swimmers in swim events at the 2012 Olympic Games based upon prior Olympic performances from 1972 through 2008. Using the mean top eight time across all years, a best fit power curve [time = a x year[superscript b

  17. Effects of Swim Stress on Neophobia and Reconditioning Using a Conditioned Taste Aversion Procedure

    ERIC Educational Resources Information Center

    Walker, Jennifer M.; Ramsey, Ashley K.; Fowler, Stephanie W.; Schachtman, Todd R.

    2012-01-01

    Previous research has found that swim stress during a classical conditioning trial attenuates conditioned taste aversion (CTA). In the current study, rats were used to examine the effects of inescapable swim stress on the habituation of neophobia to a flavored solution and reacquisition of an extinguished conditioned taste aversion. In Experiment…

  18. 77 FR 39630 - Special Local Regulations for Marine Events; Potomac River, National Harbor Access Channel, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... 1625-AA08 Special Local Regulations for Marine Events; Potomac River, National Harbor Access Channel... special local regulations during the swim segment of the ``Swim Across the Potomac River'' swimming competition, to be held on the waters of the Potomac River on July 8, 2012. These special local regulations...

  19. 77 FR 42465 - Special Local Regulations, Cruce a Nado Internacional, Ponce Harbor; Ponce, PR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... Internacional, a swimming event. The event is scheduled to take place on Sunday, September 2, 2012. Approximately 85 swimmers are anticipated to participate in the swimming event, and there are not expected to be... special local regulations would establish a swim area, where all persons and vessels, except those persons...

  20. Swim Free. A 10 Day Program of Aquatic Exercises Adapted from Life in the Waterworld.

    ERIC Educational Resources Information Center

    Eberhardt, Lorraine; Sanborn, Laura

    The completely waterproof book contains instructions for an alternative form of swimming exercises based on the movements of 19 water creatures. The exercises can be used by groups or individuals to enhance training programs, to serve as part of a structured synchronized swimming program, or to supplement recreational activities. The book provides…

  1. Effect of Mental Rehearsal with Part and Whole Demonstration Models on Acquisition of Backstroke Swimming Skills.

    ERIC Educational Resources Information Center

    Yamamoto, Katsuaki; Inomata, Kimihiro

    1982-01-01

    Three groups of undergraduates participated in a swimming program and took tests related to vividness of general motor imagery, swimming imagery, and accuracy of imagined skill. Speed and distance of backstroke were dependent measures. Physical practice, as well as mental rehearsal, increased vividness and accuracy of imagining the swimming…

  2. Effects of temperature on sustained swimming performance and swimming kinematics of the chub mackerel Scomber japonicus.

    PubMed

    Dickson, Kathryn A; Donley, Jeanine M; Sepulveda, Chugey; Bhoopat, Lisa

    2002-04-01

    The effects of a 6 degrees C difference in water temperature on maximum sustained swimming speed, swimming energetics and swimming kinematics were measured in the chub mackerel Scomber japonicus (Teleostei: Scombridae), a primarily coastal, pelagic predator that inhabits subtropical and temperate transition waters of the Atlantic, Pacific and Indian Oceans. New data for chub mackerel acclimated to 18 degrees C are compared with published data from our laboratory at 24 degrees C. Twelve individuals acclimated to each of two temperatures (15.6-26.3 cm fork length, FL, and 34-179 g at 18 degrees C; 14.0-24.7 cm FL and 26-156 g at 24 degrees C) swam at a range of speeds in a temperature-controlled Brett-type respirometer, at the respective acclimation temperature. At a given fish size, the maximum speed that S. japonicus was able to maintain for a 30-min period, while swimming steadily using slow, oxidative locomotor muscle (U(max,c)), was significantly greater at 24 than at 18 degrees C (52.5-97.5 cm s(-1) at 18 degrees C and 70-120 cm s(-1) at 24 degrees C). At a given speed and fish size, the rate of oxygen consumption (VO(2)) was significantly higher at 24 than at 18 degrees C because of a higher net cost of transport (1073-4617 J km(-1) kg(-1) at 18 degrees C and 2708-14895 J km(-1) kg(-1) at 24 degrees C). Standard metabolic rate, calculated by extrapolating the logO(2) versus swimming speed relationship to zero speed, did not vary significantly with temperature or fish mass (126.4+/-67.2 mg O(2) h(-1) kg(-1) at 18 degrees C and 143.2+/-80.3 mg O(2) h(-1) kg(-1) at 24 degrees C; means +/- S.D., N=12). Swimming kinematics was quantified from high-speed (120 Hz) video recordings analyzed with a computerized, two-dimensional motion-analysis system. At a given speed and fish size, there were no significant effects of temperature on tail-beat frequency, tail-beat amplitude or stride length, but propulsive wavelength increased significantly with temperature as a result of an increase in propulsive wave velocity. Thus, the main effects of temperature on chub mackerel swimming were increases in both U(max,c) and the net cost of swimming at 24 degrees C. Like other fishes, S. japonicus apparently must recruit more slow, oxidative muscle fibers to swim at a given sustainable speed at the lower temperature because of the reduced power output. Thus, the 24 degrees C mackerel reach a higher speed before they must recruit the fast, glycolytic fibers, thereby increasing U(max,c) at 24 degrees C. By quantifying in vivo the effects of temperature on the swimming performance of an ectothermic species that is closely related to the endothermic tunas, this study also provides evidence that maintaining the temperature of the slow, oxidative locomotor muscle at 6 degrees C or more above ambient water temperature in tunas should significantly increase sustainable swimming speeds, but also increase the energetic cost of swimming, unless cardiac output limits muscle performance.

  3. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture.

    PubMed

    Trivedi, Chintan A; Bollmann, Johann H

    2013-01-01

    Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback.

  4. Combined intervention of swimming plus metformin ameliorates the insulin resistance and impaired lipid metabolism in murine gestational diabetes mellitus

    PubMed Central

    Wu, Xuefei; Yu, Ting; Wang, Yang; Zhou, Ji; Kong, Derun

    2018-01-01

    Gestational diabetes mellitus (GDM) has short- and long- term influence on pregnant women and fetus. Swimming, as an aerobic exercise, can effectively improve the blood glucose level in GDM, but the effect of mild swimming alone was not very substantial. Metformin, as an oral antidiabetic drug, has obvious hypoglycemic effect, and is economic also, but the long-term effect on pregnant women and fetus has not been completely clear. We hypothesize that combined intervention of mild swimming and low dose of metformin, may effectively reduce blood glucose, improve the pregnancy outcomes in GDM dams, but simultaneously avoiding the adverse effects caused by overdose of drug and impotence of mild swimming. The streptozotocin was used to stimulate C57BL/6J mice to develop GDM, by which serum glucose, TC, TG, LDL-C were increased significantly, meanwhile HDL-C was decreased significantly in the GDM control (DC) group compared with the normal control group. Swimming or metformin intervention slightly or moderately improves hyperglycemia, insulin sensitivity and lipid metabolism both in liver and skeletal muscle from GDM mice, while combined therapy of swimming plus metformin markedly ameliorated hyperglycemia (FPG, decreased by 22.2–59.5% from G10 to G18 versus DC group), insulin sensitivity (2.1 and 2.8 fold increase, respectively, in AKT activity versus DC group) and de novo lipogenesis (3.2 and 7.0 fold decrease, respectively, in ACC activity, and 1.94 and 5.1 fold decrease, respectively, in SREBP2 level, versus DC group) both in liver and skeletal muscle from GDM mice. We conclude that the combined intervention by metformin plus swimming may be more effective than single action to ameliorate glucose and lipid metabolism via improving insulin sensitivity in GDM mice. PMID:29677194

  5. Optimal swim speeds for traversing velocity barriers: An analysis of volitional high-speed swimming behavior of migratory fishes

    USGS Publications Warehouse

    Castro-Santos, T.

    2005-01-01

    Migrating fish traversing velocity barriers are often forced to swim at speeds greater than their maximum sustained speed (Ums). Failure to select an appropriate swim speed under these conditions can prevent fish from successfully negotiating otherwise passable barriers. I propose a new model of a distance-maximizing strategy for fishes traversing velocity barriers, derived from the relationships between swim speed and fatigue time in both prolonged and sprint modes. The model predicts that fish will maximize traversed distance by swimming at a constant groundspeed against a range of flow velocities, and this groundspeed is equal to the negative inverse of the slope of the swim speed-fatigue time relationship for each mode. At a predictable flow velocity, they should switch from the optimal groundspeed for prolonged mode to that for sprint mode. Data from six migratory fish species (anadromous clupeids: American shad Alosa sapidissima, alewife A. pseudoharengus and blueback herring A. aestivalis; amphidromous: striped bass Morone saxatilis; and potomodromous species: walleye (previously known as Stizostedion vitrium) and white sucker Catostomus commersonii) were used to explore the ability of fish to approximate the predicted distance-maximizing behaviors, as well as the consequences of deviating from the optima. Fish volitionally sprinted up an open-channel flume against fixed flow velocities of 1.5-4.5 m s-1, providing data on swim speeds and fatigue times, as well as their groundspeeds. Only anadromous clupeids selected the appropriate distance-maximizing groundspeed at both prolonged and sprint modes. The other three species maintained groundspeeds appropriate to the prolonged mode, even when they should have switched to the sprint optima. Because of this, these species failed to maximize distance of ascent. The observed behavioral variability has important implications both for distributional limits and fishway design.

  6. Effects of exposure to water disinfection by-products in a swimming pool: A metabolome-wide association study.

    PubMed

    van Veldhoven, Karin; Keski-Rahkonen, Pekka; Barupal, Dinesh K; Villanueva, Cristina M; Font-Ribera, Laia; Scalbert, Augustin; Bodinier, Barbara; Grimalt, Joan O; Zwiener, Christian; Vlaanderen, Jelle; Portengen, Lützen; Vermeulen, Roel; Vineis, Paolo; Chadeau-Hyam, Marc; Kogevinas, Manolis

    2018-02-01

    Exposure to disinfection by-products (DBPs) in drinking water and chlorinated swimming pools are associated with adverse health outcomes, but biological mechanisms remain poorly understood. Evaluate short-term changes in metabolic profiles in response to DBP exposure while swimming in a chlorinated pool. The PISCINA-II study (EXPOsOMICS project) includes 60 volunteers swimming 40min in an indoor pool. Levels of most common DBPs were measured in water and in exhaled breath before and after swimming. Blood samples, collected before and 2h after swimming, were used for metabolic profiling by liquid-chromatography coupled to high-resolution mass-spectrometry. Metabolome-wide association between DBP exposures and each metabolic feature was evaluated using multivariate normal (MVN) models. Sensitivity analyses and compound annotation were conducted. Exposure levels of all DBPs in exhaled breath were higher after the experiment. A total of 6,471 metabolic features were detected and 293 features were associated with at least one DBP in exhaled breath following Bonferroni correction. A total of 333 metabolic features were associated to at least one DBP measured in water or urine. Uptake of DBPs and physical activity were strongly correlated and mutual adjustment reduced the number of statistically significant associations. From the 293 features, 20 could be identified corresponding to 13 metabolites including compounds in the tryptophan metabolism pathway. Our study identified numerous molecular changes following a swim in a chlorinated pool. While we could not explicitly evaluate which experiment-related factors induced these associations, molecular characterization highlighted metabolic features associated with exposure changes during swimming. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Dynamic states of swimming bacteria in a nematic liquid crystal cell with homeotropic alignment

    DOE PAGES

    Zhou, Shuang; Tovkach, Oleh; Golovaty, Dmitry; ...

    2017-05-17

    Flagellated bacteria such as Escherichia coli and Bacillus subtilis exhibit effective mechanisms for swimming in fluids and exploring the surrounding environment. In isotropic fluids such as water, the bacteria change swimming direction through the run-and-tumble process. Lyotropic chromonic liquid crystals (LCLCs) have been introduced recently as an anisotropic environment in which the direction of preferred orientation, the director, guides the bacterial trajectories. In this work, we describe the behavior of bacteria B. subtilis in a homeotropic LCLC geometry, in which the director is perpendicular to the bounding plates of a shallow cell. We demonstrate that the bacteria are capable ofmore » overcoming the stabilizing elastic forces of the LCLC and swim perpendicularly to the imposed director (and parallel to the bounding plates). The effect is explained by a finite surface anchoring of the director at the bacterial body; the role of surface anchoring is analyzed by numerical simulations of a rod realigning in an otherwise uniform director field. Shear flows produced by a swimming bacterium cause director distortions around its body, as evidenced both by experiments and numerical simulations. These distortions contribute to a repulsive force that keeps the swimming bacterium at a distance of a few micrometers away from the bounding plates. The homeotropic alignment of the director imposes two different scenarios of bacterial tumbling: one with an 180° reversal of the horizontal velocity and the other with the realignment of the bacterium by two consecutive 90° turns. Finally, in the second case, the angle between the bacterial body and the imposed director changes from 90° to 0° and then back to 90°; the new direction of swimming does not correlate with the previous swimming direction.« less

  8. A computational model of amoeboid cell swimming

    NASA Astrophysics Data System (ADS)

    Campbell, Eric J.; Bagchi, Prosenjit

    2017-10-01

    Amoeboid cells propel by generating pseudopods that are finger-like protrusions of the cell body that continually grow, bifurcate, and retract. Pseudopod-driven motility of amoeboid cells represents a complex and multiscale process that involves bio-molecular reactions, cell deformation, and cytoplasmic and extracellular fluid motion. Here we present a 3D model of pseudopod-driven swimming of an amoeba suspended in a fluid without any adhesion and in the absence of any chemoattractant. Our model is based on front-tracking/immersed-boundary methods, and it combines large deformation of the cell, a coarse-grain model for molecular reactions, and cytoplasmic and extracellular fluid flow. The predicted shapes of the swimming cell from our model show similarity with experimental observations. We predict that the swimming behavior changes from random-like to persistent unidirectional motion, and that the swimming speed increases, with increasing cell deformability and protein diffusivity. The unidirectionality in cell swimming is observed without any external cues and as a direct result of a change in pseudopod dynamics. We find that pseudopods become preferentially focused near the front of the cell and appear in greater numbers with increasing cell deformability and protein diffusivity, thereby increasing the swimming speed and making the cell shape more elongated. We find that the swimming speed is minimum when the cytoplasm viscosity is close to the extracellular fluid viscosity. We further find that the speed increases significantly as the cytoplasm becomes less viscous compared with the extracellular fluid, resembling the viscous fingering phenomenon observed in interfacial flows. While these results support the notion that softer cells migrate more aggressively, they also suggest a strong coupling between membrane elasticity, membrane protein diffusivity, and fluid viscosity.

  9. Variation in body condition during the post-moult foraging trip of southern elephant seals and its consequences on diving behaviour.

    PubMed

    Richard, Gaëtan; Vacquié-Garcia, Jade; Jouma'a, Joffrey; Picard, Baptiste; Génin, Alexandre; Arnould, John P Y; Bailleul, Frédéric; Guinet, Christophe

    2014-07-15

    Mature female southern elephant seals (Mirounga leonina) come ashore only in October to breed and in January to moult, spending the rest of the year foraging at sea. Mature females may lose as much as 50% of their body mass, mostly in lipid stores, during the breeding season due to fasting and lactation. When departing to sea, post-breeding females are negatively buoyant, and the relative change in body condition (i.e. density) during the foraging trip has previously been assessed by monitoring the descent rate during drift dives. However, relatively few drift dives are performed, resulting in low resolution of the temporal reconstruction of body condition change. In this study, six post-breeding females were equipped with time-depth recorders and accelerometers to investigate whether changes in active swimming effort and speed could be used as an alternative method of monitoring density variations throughout the foraging trip. In addition, we assessed the consequences of density change on the swimming efforts of individuals while diving and investigated the effects on dive duration. Both descent swimming speed and ascent swimming effort were found to be strongly correlated to descent rate during drift dives, enabling the fine-scale monitoring of seal density change over the whole trip. Negatively buoyant seals minimized swimming effort during descents, gliding down at slower speeds, and reduced their ascent swimming effort to maintain a nearly constant swimming speed as their buoyancy increased. One per cent of seal density variation over time was found to induce a 20% variation in swimming effort during dives with direct consequences on dive duration. © 2014. Published by The Company of Biologists Ltd.

  10. Dynamic states of swimming bacteria in a nematic liquid crystal cell with homeotropic alignment

    NASA Astrophysics Data System (ADS)

    Zhou, Shuang; Tovkach, Oleh; Golovaty, Dmitry; Sokolov, Andrey; Aranson, Igor S.; Lavrentovich, Oleg D.

    2017-05-01

    Flagellated bacteria such as Escherichia coli and Bacillus subtilis exhibit effective mechanisms for swimming in fluids and exploring the surrounding environment. In isotropic fluids such as water, the bacteria change swimming direction through the run-and-tumble process. Lyotropic chromonic liquid crystals (LCLCs) have been introduced recently as an anisotropic environment in which the direction of preferred orientation, the director, guides the bacterial trajectories. In this work, we describe the behavior of bacteria B. subtilis in a homeotropic LCLC geometry, in which the director is perpendicular to the bounding plates of a shallow cell. We demonstrate that the bacteria are capable of overcoming the stabilizing elastic forces of the LCLC and swim perpendicularly to the imposed director (and parallel to the bounding plates). The effect is explained by a finite surface anchoring of the director at the bacterial body; the role of surface anchoring is analyzed by numerical simulations of a rod realigning in an otherwise uniform director field. Shear flows produced by a swimming bacterium cause director distortions around its body, as evidenced both by experiments and numerical simulations. These distortions contribute to a repulsive force that keeps the swimming bacterium at a distance of a few micrometers away from the bounding plates. The homeotropic alignment of the director imposes two different scenarios of bacterial tumbling: one with an 180° reversal of the horizontal velocity and the other with the realignment of the bacterium by two consecutive 90° turns. In the second case, the angle between the bacterial body and the imposed director changes from 90° to 0° and then back to 90° the new direction of swimming does not correlate with the previous swimming direction.

  11. Swimming attendance during childhood and development of asthma: Meta-analysis.

    PubMed

    Valeriani, Federica; Protano, Carmela; Vitali, Matteo; Romano Spica, Vincenzo

    2017-05-01

    The association between asthma and swimming pool attendance has not been demonstrated and currently there are conflicting results. In order to clarify the association between asthma diagnosis in children and swimming pool attendance, and to assess the consistency of the available epidemiological studies, we completed a literature analysis on the relationship between the exposure to disinfection by-products in indoor swimming pools during childhood and asthma diagnosis. Following the Meta-analysis of Observational Studies in Epidemiology (MOOSE) and Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) criteria, a systematic review and meta-analysis was performed by searching MEDLINE via PubMed, TOXNET, and Scopus databases (from inception to 20 April 2015) using the key word "Asthma" together with "swimming pool", "disinfection by-products", "indoor air pollution" and "children". Inclusion criteria were: English language, a complete analytic study design involving a cohort of children (0-16 years), a well-defined definition of exposure, and the presence of data on effect and variance. Studies on in vivo, in vitro or professional and accidental exposure were excluded. After a screening process, seven reports (n = 5851 subjects) were included out of a total of 2928 references. The reported OR of the association between swimming pool attendance and asthma prevalence ranged from 0.58 to 2.30. The present meta-analysis failed to identify a significant difference in asthma development between children attending swimming pools and controls (OR, 1.084; 95% CI: 0.89-1.31). Swimming in childhood does not increase the likelihood of doctor-diagnosed asthma. Based on this meta-analysis review, the association of the disease with indoor pool attendance is still unclear. © 2016 Japan Pediatric Society.

  12. Histomorphometric analysis of the response of rat skeletal muscle to swimming, immobilization and rehabilitation.

    PubMed

    Nascimento, C C F; Padula, N; Milani, J G P O; Shimano, A C; Martinez, E Z; Mattiello-Sverzut, A C

    2008-09-01

    The objective of the present study was to determine to what extent, if any, swimming training applied before immobilization in a cast interferes with the rehabilitation process in rat muscles. Female Wistar rats, mean weight 260.52 +/- 16.26 g, were divided into 4 groups of 6 rats each: control, 6 weeks under baseline conditions; trained, swimming training for 6 weeks; trained-immobilized, swimming training for 6 weeks and then immobilized for 1 week; trained-immobilized-rehabilitated, swimming training for 6 weeks, immobilized for 1 week and then remobilized with swimming for 2 weeks. The animals were then sacrificed and the soleus and tibialis anterior muscles were dissected, frozen in liquid nitrogen and processed histochemically (H&E and mATPase). Data were analyzed statistically by the mixed effects linear model (P < 0.05). Cytoarchitectural changes such as degenerative characteristics in the immobilized group and regenerative characteristics such as centralized nucleus, fiber size variation and cell fragmentation in the groups submitted to swimming were more significant in the soleus muscle. The diameters of the lesser soleus type 1 and type 2A fibers were significantly reduced in the trained-immobilized group compared to the trained group (P < 0.001). In the tibialis anterior, there was an increase in the number of type 2B fibers and a reduction in type 2A fibers when trained-immobilized rats were compared to trained rats (P < 0.001). In trained-immobilized-rehabilitated rats, there was a reduction in type 2B fibers and an increase in type 2A fibers compared to trained-immobilized rats (P < 0.009). We concluded that swimming training did not minimize the deleterious effects of immobilization on the muscles studied and that remobilization did not favor tissue re-adaptation.

  13. The central pattern generator underlying swimming in Dendronotus iris: a simple half-center network oscillator with a twist.

    PubMed

    Sakurai, Akira; Katz, Paul S

    2016-10-01

    The nudibranch mollusc, Dendronotus iris, swims by rhythmically flexing its body from left to right. We identified a bilaterally represented interneuron, Si3, that provides strong excitatory drive to the previously identified Si2, forming a half-center oscillator, which functions as the central pattern generator (CPG) underlying swimming. As with Si2, Si3 inhibited its contralateral counterpart and exhibited rhythmic bursts in left-right alternation during the swim motor pattern. Si3 burst almost synchronously with the contralateral Si2 and was coactive with the efferent impulse activity in the contralateral body wall nerve. Perturbation of bursting in either Si3 or Si2 by current injection halted or phase-shifted the swim motor pattern, suggesting that they are both critical CPG members. Neither Si2 nor Si3 exhibited endogenous bursting properties when activated alone; activation of all four neurons was necessary to initiate and maintain the swim motor pattern. Si3 made a strong excitatory synapse onto the contralateral Si2 to which it is also electrically coupled. When Si3 was firing tonically but not exhibiting bursting, artificial enhancement of the Si3-to-Si2 synapse using dynamic clamp caused all four neurons to burst. In contrast, negation of the Si3-to-Si2 synapse by dynamic clamp blocked ongoing swim motor patterns. Together, these results suggest that the Dendronotus swim CPG is organized as a "twisted" half-center oscillator in which each "half" is composed of two excitatory-coupled neurons from both sides of the brain, each of which inhibits its contralateral counterpart. Consisting of only four neurons, this is perhaps the simplest known network oscillator for locomotion. Copyright © 2016 the American Physiological Society.

  14. The effect of swim-up and gradient sperm preparation techniques on deoxyribonucleic acid (DNA) fragmentation in subfertile patients.

    PubMed

    Oguz, Yuksel; Guler, Ismail; Erdem, Ahmet; Mutlu, Mehmet Firat; Gumuslu, Seyhan; Oktem, Mesut; Bozkurt, Nuray; Erdem, Mehmet

    2018-03-23

    To compare the effect of two different sperm preparation techniques, including swim-up and gradient methods on sperm deoxyribonucleic acid (DNA) fragmentation status of semen samples from unexplained and mild male factor subfertile patients undergoing intrauterine insemination (IUI). A prospective randomized study was conducted in 65 subfertile patients, including 34 unexplained and 31 male factor infertility to compare basal and post-procedure DNA fragmentation rates in swim-up and gradient techniques. Sperm DNA fragmentation rates were evaluated by a sperm chromatin dispersion (SCD) test in two portions of each sample of semen that was prepared with either swim-up or gradient techniques. Sperm motility and morphology were also assessed based on WHO 2010 criteria. Swim-up but not gradient method yielded a statistically significant reduction in the DNA fragmented sperm rate after preparation as compared to basal rates, in the semen samples of both unexplained (41.85 ± 22.04 vs. 28.58 ± 21.93, p < 0.001 for swim-up; and 41.85 ± 22.04 vs. 38.79 ± 22.30, p = 0.160 for gradient) and mild male factor (46.61 ± 19.38 vs. 30.32 ± 18.20, p < 0.001 for swim-up and 46.61 ± 19.38 vs. 44.03 ± 20.87, p = 0.470 for gradient) subgroups. Swim-up method significantly reduces sperm DNA fragmentation rates and may have some prognostic value on intrauterine insemination in patients with decreased sperm DNA integrity.

  15. Temperature-dependent changes in the swimming behaviour of Tetrahymena pyriformis-NT1 and their interrelationships with electrophysiology and the state of membrane lipids.

    PubMed

    Connolly, J G; Brown, I D; Lee, A G; Kerkut, G A

    1985-01-01

    The swimming velocity and the amplitude of the helical swimming path of T. pyriformis-NT1 cells grown at 20 degrees C (Tg 20 degrees C) and 38 degrees C (Tg 38 degrees C) were monitored between 0 and 40 degrees C in the presence and absence of electric fields. Within physiological limits the swimming velocity increased and the amplitude decreased as temperature was raised. The temperature profiles of these properties were not linear, and showed discontinuities at different temperatures for the different cultures. The break points in Arrhenius plots of the resting potential, regenerative spike magnitude, repolarization time, swimming velocity and swimming amplitude are tabulated and compared. The initial breakpoints upon cooling were clustered about the breakpoints in fluorescence polarization of D.P.H. in extracted phospholipids, and around the transition temperatures estimated from the literature for the pellicular membrane of these cells. The average of the initial breakpoints on cooling was 22.9 degrees C for Tg 38 degrees C cells and 13.7 degrees C for Tg 20 degrees C cells, a shift of 9.2 degrees C. Unlike Paramecium there is no depolarizing receptor potential in Tetrahymena upon warming. It is suggested that this may be the basis of a behavioural difference between Tetrahymena and Paramecium--namely that in Tetrahymena maximum swimming velocity occurs above growth temperature whereas in Paramecium the two points coincide. Swimming velocity and resting potential were correlated with membrane fluidity within physiological limits, but for other parameters the relationship with fluidity was more complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Optimal Body Size and Limb Length Ratios Associated with 100-m Personal-Best Swim Speeds.

    PubMed

    Nevill, Alan M; Oxford, Samuel W; Duncan, Michael J

    2015-08-01

    This study aims to identify optimal body size and limb segment length ratios associated with 100-m personal-best (PB) swim speeds in children and adolescents. Fifty national-standard youth swimmers (21 males and 29 females age 11-16 yr; mean ± SD age, 13.5 ± 1.5 yr) participated in the study. Anthropometry comprised stature; body mass; skinfolds; maturity offset; upper arm, lower arm, and hand lengths; and upper leg, lower leg, and foot lengths. Swimming performance was taken as the PB time recorded in competition for the 100-m freestyle swim. To identify the optimal body size and body composition components associated with 100-m PB swim speeds (having controlled for age and maturity offset), we adopted a multiplicative allometric log-linear regression model, which was refined using backward elimination. Lean body mass was the singularly most important whole-body characteristic. Stature and body mass did not contribute to the model, suggesting that the advantage of longer levers was limb-specific rather than a general whole-body advantage. The allometric model also identified that having greater limb segment length ratios [i.e., arm ratio = (low arm)/(upper arm); foot-to-leg ratio = (foot)/(lower leg)] was key to PB swim speeds. It is only by adopting multiplicative allometric models that the above mentioned ratios could have been derived. The advantage of having a greater lower arm is clear; however, having a shorter upper arm (achieved by adopting a closer elbow angle technique or by possessing a naturally endowed shorter upper arm), at the same time, is a new insight into swimming performance. A greater foot-to-lower-leg ratio suggests that a combination of larger feet and shorter lower leg length may also benefit PB swim speeds.

  17. Relationships between metabolic rate, muscle electromyograms and swim performance of adult chinook salmon

    USGS Publications Warehouse

    Geist, D.R.; Brown, R.S.; Cullinan, V.I.; Mesa, M.G.; VanderKooi, S.P.; McKinstry, C.A.

    2003-01-01

    Oxygen consumption rates of adult spring chinook salmon Oncorhynchus tshawytscha increased with swim speed and, depending on temperature and fish mass, ranged from 609 mg O2 h-1 at 30 cm s-1 (c. 0.5 BLs-1) to 3347 mg O2 h-1 at 170 cm s -1 (c. 2.3 BLs-1). Corrected for fish mass, these values ranged from 122 to 670 mg O2 kg-1 h-1, and were similar to other Oncorhynchus species. At all temperatures (8, 12.5 and 17??C), maximum oxygen consumption values levelled off and slightly declined with increasing swim speed >170 cm s-1, and a third-order polynomial regression model fitted the data best. The upper critical swim speed (Ucrit) of fish tested at two laboratories averaged 155 cm s -1 (2.1 BLs-1), but Ucrit of fish tested at the Pacific Northwest National Laboratory were significantly higher (mean 165 cm s-1) than those from fish tested at the Columbia River Research Laboratory (mean 140 cm s-1). Swim trials using fish that had electromyogram (EMG) transmitters implanted in them suggested that at a swim speed of c. 135 cm s-1, red muscle EMG pulse rates slowed and white muscle EMG pulse rates increased. Although there was significant variation between individual fish, this swim speed was c. 80% of the Ucrit for the fish used in the EMG trials (mean Ucrit 168.2 cm s-1). Bioenergetic modelling of the upstream migration of adult chinook salmon should consider incorporating an anaerobic fraction of the energy budget when swim speeds are ???80% of the Ucrit. ?? 2003 The Fisheries Society of the British Isles.

  18. Effectiveness of the Power Dry-Land Training Programmes in Youth Swimmers

    PubMed Central

    Sadowski, Jerzy; Mastalerz, Andrzej; Gromisz, Wilhelm; NiŸnikowski, Tomasz

    2012-01-01

    The aim of the study was to evaluate the effects of the dry-land power training on swimming force, swimming performance and strength in youth swimmers. Twenty six male swimmers, free from injuries and training regularly at least 6 times a week, were enrolled in the study and randomly assigned to one of two groups: experimental (n=14, mean age 14.0 ± 0.5 yrs, mean height 1.67±0.08 m and mean body mass 55.71 ±9.55 kg) and control (n=12, mean age 14.1 ± 0.5 yrs, mean height 1.61±0.11 m and mean body mass 49.07 ±8.25 kg). The experimental group took part in a combined swimming and dry-land power training. The control group took part in swimming training only. The training programmes in water included a dominant aerobic work in front crawl. In this research the experimental group tended to present slightly greater improvements in sprint performance. However, the stroke frequency insignificantly decreased (−4.30%, p>0.05) in the experimental group and increased (6.28%, p>0.05) in the control group. The distance per stroke insignificantly increased in the experimental group (5.98%, p>0.05) and insignificantly decreased in the control group (−5.36%, p>0.05). A significant improvement of tethered swimming force for the experimental group (9.64%, p<0.02) was found, whereas the increase was not statistically significant in the control group (2.86%, p>0.05). The main data cannot clearly state that power training allowed an enhancement in swimming performance, although a tendency to improve swimming performance in tethered swimming was noticed. PMID:23486353

  19. Body Fineness Ratio as a Predictor of Maximum Prolonged-Swimming Speed in Coral Reef Fishes

    PubMed Central

    Walker, Jeffrey A.; Alfaro, Michael E.; Noble, Mae M.; Fulton, Christopher J.

    2013-01-01

    The ability to sustain high swimming speeds is believed to be an important factor affecting resource acquisition in fishes. While we have gained insights into how fin morphology and motion influences swimming performance in coral reef fishes, the role of other traits, such as body shape, remains poorly understood. We explore the ability of two mechanistic models of the causal relationship between body fineness ratio and endurance swimming-performance to predict maximum prolonged-swimming speed (Umax) among 84 fish species from the Great Barrier Reef, Australia. A drag model, based on semi-empirical data on the drag of rigid, submerged bodies of revolution, was applied to species that employ pectoral-fin propulsion with a rigid body at U max. An alternative model, based on the results of computer simulations of optimal shape in self-propelled undulating bodies, was applied to the species that swim by body-caudal-fin propulsion at Umax. For pectoral-fin swimmers, Umax increased with fineness, and the rate of increase decreased with fineness, as predicted by the drag model. While the mechanistic and statistical models of the relationship between fineness and Umax were very similar, the mechanistic (and statistical) model explained only a small fraction of the variance in Umax. For body-caudal-fin swimmers, we found a non-linear relationship between fineness and Umax, which was largely negative over most of the range of fineness. This pattern fails to support either predictions from the computational models or standard functional interpretations of body shape variation in fishes. Our results suggest that the widespread hypothesis that a more optimal fineness increases endurance-swimming performance via reduced drag should be limited to fishes that swim with rigid bodies. PMID:24204575

  20. Swimming kinematics of the Florida manatee (Trichechus manatus latirostris): hydrodynamic analysis of an undulatory mammalian swimmer.

    PubMed

    Kojeszewski, Tricia; Fish, Frank E

    2007-07-01

    The submerged swimming of the Florida manatee (Trichechus manatus latirostris), a subspecies of the West Indian manatee, was studied by filming individuals as they swam rectilinearly in a large pool at several rehabilitation centers. The swimming was analyzed using videography to detail the kinematics in conjunction with a hydromechanical model to determine the power output (P(t)) and propulsive efficiency (eta(p)). Manatees swam at velocities of 0.06-1.14 m s(-1). Locomotion was accomplished by undulation of the body and caudal fluke. Undulatory locomotion is a rapid and relatively high-powered propulsive mode involved in cruising and migrating by a variety of swimmers. Manatees displayed an undulatory swimming mode by passing a dorso-ventrally oriented traveling wave posteriorly along the body. The propulsive wave traveled at a higher velocity than the forward velocity of the animal. The frequency of the propulsive cycle (f) increased linearly with increasing swimming velocity (U). Amplitude at the tip of the caudal fluke (A) remained constant with respect to U and was 22% of body length. P(t) increased curvilinearly with U. The mean eta(p), expressing the relationship of the thrust power generated by the paddle-shaped caudal fluke to the total mechanical power, was 0.73. The maximum eta(p) was 0.82 at 0.95 m s(-1). Despite use of a primitive undulatory swimming mode and paddle-like fluke for propulsion, the manatee is capable of swimming with a high efficiency but lower power outputs compared with the oscillatory movements of the high-aspect ratio flukes of cetaceans. The swimming performance of the manatee is in accordance with its habits as an aquatic grazer that seasonally migrates over extended distances.

  1. Effects of Microphallus turgidus (Trematoda: Microphallidae) on the predation, behavior, and swimming stamina of the grass shrimp Palaemonetes pugio.

    PubMed

    Kunz, Alyssa K; Pung, Oscar J

    2004-06-01

    The effect of the trematode Microphallus turgidus on its second intermediate host, the grass shrimp, Palaemonetes pugio, was tested. To do so, we measured the susceptibility of infected and uninfected shrimp to predation by the mummichog, Fundulus heteroclitus. Shrimp behavior was compared in the presence and absence of a fish predator, and the swimming stamina and backthrust escape responses of infected and uninfected shrimp were measured. Infected shrimp were more likely to be eaten by a predator than uninfected shrimp, had lower swimming stamina, and spent more time swimming and less time motionless in the presence of a predator. There was no difference between backthrust distances traveled in response to a stimulus by either infected or uninfected shrimp. Thus, M. turgidus may increase the predation of P. pugio in the wild, possibly by affecting the swimming stamina and predator avoidance responses of the shrimp.

  2. The Fluid Dynamics of Competitive Swimming

    NASA Astrophysics Data System (ADS)

    Wei, Timothy; Mark, Russell; Hutchison, Sean

    2014-01-01

    Nowhere in sport is performance so dependent on the interaction of the athlete with the surrounding medium than in competitive swimming. As a result, understanding (at least implicitly) and controlling (explicitly) the fluid dynamics of swimming are essential to earning a spot on the medal stand. This is an extremely complex, highly multidisciplinary problem with a broad spectrum of research approaches. This review attempts to provide a historical framework for the fluid dynamics-related aspects of human swimming research, principally conducted roughly over the past five decades, with an emphasis on the past 25 years. The literature is organized below to show a continuous integration of computational and experimental technologies into the sport. Illustrations from the authors' collaborations over a 10-year period, coupling the knowledge and experience of an elite-level coach, a lead biomechanician at USA Swimming, and an experimental fluid dynamicist, are intended to bring relevance and immediacy to the review.

  3. Bio-inspired robot design for viscous fluids

    NASA Astrophysics Data System (ADS)

    Ma, Grace; Lipman, Tyler; Jung, Sunghwan

    Many modern micro-robots are designed for biomedical applications to transport drugs to targets or to operate tests in the body for diagnosis. However, most micro-robots simply mimic the morphology and the propulsive mechanism of micro-organisms without understanding the underlying physics of low-Re swimming. Two types of swimming motions have been observed in micro-organisms; stresslet and source-dipole swimming. The stresslet swimmer (e.g. E. coli) uses a rotating helical appendage, whereas the source-dipole swimmer (e.g. Paramecium) creates surface velocity for propulsion. Using this principle, we designed a robot to swim in very viscous fluids either by rotating a helix or creating surface velocity, simply by changing the orientation of the appendage. Further, we will discuss the performance of this robot (swimming speed and rotation speed) with respect to the number, winding angle, and radius of helices in a very viscous fluid.

  4. Swimming of Paramecium in confined channels

    NASA Astrophysics Data System (ADS)

    Jung, Sunghwan

    2012-02-01

    Many living organisms in nature have developed a few different swimming modes, presumably derived from hydrodynamic advantage. Paramecium is a ciliated protozoan covered by thousands of cilia with a few nanometers in diameter and tens of micro-meters in length and is able to exhibit both ballistic and meandering motions. First, we characterize ballistic swimming behaviors of ciliated microorganisms in glass capillaries of different diameters and explain the trajectories they trace out. We develop a theoretical model of an undulating sheet with a pressure gradient and discuss how it affects the swimming speed. Secondly, investigation into meandering swimmings within rectangular PDMS channels of dimension smaller than Paramecium length. We find that Paramecium executes a body-bend (an elastic buckling) using the cilia while it meanders. By considering an elastic beam model, we estimate and show the universal profile of forces it exerts on the walls. Finally, we discuss a few other locomotion of Paramecium in other extreme environments like gel.

  5. Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Sang Joon; Seo, Kyung Won; Choi, Yong Seok; Sohn, Myong Hwan

    2011-06-01

    A digital holographic microscope is employed to measure the 3D motion of free-swimming microorganisms. The focus function used to quantify image sharpness provides a better depth-directional accuracy with a smaller depth-of-focus compared with the intensity method in determining the depth-directional position of spherical particles of various diameters. The focus function is then applied to measure the 3D positions of free-swimming microorganisms, namely dinoflagellates C. polykrikoides and P. minimum. Both automatic segmentation and proper selection of a focus function for a selected segment are important processes in measuring the positional information of two free-swimming microorganisms of different shapes with various width-to-length ratios. The digital holographic microscopy technique improved in this work is useful for measuring 3D swimming trajectories, velocities and attitudes of hundreds of microorganisms simultaneously. It also exhibits exceptional depth-directional accuracy.

  6. Swimming in an anisotropic fluid: How speed depends on alignment angle

    NASA Astrophysics Data System (ADS)

    Shi, Juan; Powers, Thomas R.

    2017-12-01

    Orientational order in a fluid affects the swimming behavior of flagellated microorganisms. For example, bacteria tend to swim along the director in lyotropic nematic liquid crystals. To better understand how anisotropy affects propulsion, we study the problem of a sheet supporting small-amplitude traveling waves, also known as the Taylor swimmer, in a nematic liquid crystal. For the case of weak anchoring of the nematic director at the swimmer surface and in the limit of a minimally anisotropic model, we calculate the swimming speed as a function of the angle between the swimmer and the nematic director. The effect of the anisotropy can be to increase or decrease the swimming speed, depending on the angle of alignment. We also show that elastic torque dominates the viscous torque for small-amplitude waves and that the torque tends to align the swimmer along the local director.

  7. Propulsion by a helical flagellum in a capillary tube

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Breuer, Kenneth S.; Powers, Thomas R.

    2014-01-01

    We study the microscale propulsion of a rotating helical filament confined by a cylindrical tube, using a boundary-element method for Stokes flow that accounts for helical symmetry. We determine the effect of confinement on swimming speed and power consumption. Except for a small range of tube radii at the tightest confinements, the swimming speed at fixed rotation rate increases monotonically as the confinement becomes tighter. At fixed torque, the swimming speed and power consumption depend only on the geometry of the filament centerline, except at the smallest pitch angles for which the filament thickness plays a role. We find that the "normal" geometry of Escherichia coli flagella is optimized for swimming efficiency, independent of the degree of confinement. The efficiency peaks when the arc length of the helix within a pitch matches the circumference of the cylindrical wall. We also show that a swimming helix in a tube induces a net flow of fluid along the tube.

  8. Numerical modelling of chirality-induced bi-directional swimming of artificial flagella

    PubMed Central

    Namdeo, S.; Khaderi, S. N.; Onck, P. R.

    2014-01-01

    Biomimetic micro-swimmers can be used for various medical applications, such as targeted drug delivery and micro-object (e.g. biological cells) manipulation, in lab-on-a-chip devices. Bacteria swim using a bundle of flagella (flexible hair-like structures) that form a rotating cork-screw of chiral shape. To mimic bacterial swimming, we employ a computational approach to design a bacterial (chirality-induced) swimmer whose chiral shape and rotational velocity can be controlled by an external magnetic field. In our model, we numerically solve the coupled governing equations that describe the system dynamics (i.e. solid mechanics, fluid dynamics and magnetostatics). We explore the swimming response as a function of the characteristic dimensionless parameters and put special emphasis on controlling the swimming direction. Our results provide fundamental physical insight on the chirality-induced propulsion, and it provides guidelines for the design of magnetic bi-directional micro-swimmers. PMID:24511253

  9. Swimming Performance of Toy Robotic Fish

    NASA Astrophysics Data System (ADS)

    Petelina, Nina; Mendelson, Leah; Techet, Alexandra

    2015-11-01

    HEXBUG AquaBotsTM are a commercially available small robot fish that come in a variety of ``species''. These models have varying caudal fin shapes and randomly-varied modes of swimming including forward locomotion, diving, and turning. In this study, we assess the repeatability and performance of the HEXBUG swimming behaviors and discuss the use of these toys to develop experimental techniques and analysis methods to study live fish swimming. In order to determine whether these simple, affordable model fish can be a valid representation for live fish movement, two models, an angelfish and a shark, were studied using 2D Particle Image Velocimetry (PIV) and 3D Synthetic Aperture PIV. In a series of experiments, the robotic fish were either allowed to swim freely or towed in one direction at a constant speed. The resultant measurements of the caudal fin wake are compared to data from previous studies of a real fish and simplified flapping propulsors.

  10. Influence of externally attached trasmitters on the swimming performance of juvenile white sturgeon

    USGS Publications Warehouse

    Counihan, T.D.; Frost, C.N.

    1999-01-01

    We measured the critical swimming speed of juvenile white sturgeons Acipenser transmontanus equipped with externally attached dummy ultrasonic transmitters and of untagged control fish in the laboratory. White sturgeons ranging from 31.9 to 37.0 cm fork length were subjected to one of three treatments: Control (handled but not tagged), tag attached below the dorsal fin, and tag attached with the anterior insertion point between the fourth and fifth dorsal scutes. Although transmitters were of recommended weight, we found that the swimming performance of tagged white sturgeons was significantly less than that of untagged control fish. Swimming performance of tagged fish was not differentially affected by tag location. Our results suggest that data from ultrasonic telemetry studies of externally tagged juvenile white sturgeons should be interpreted with caution due to the reduced swimming performance caused by external transmitters.

  11. Searching for Criteria in Evaluating the Monofin Swimming Turn from the Perspective of Coaching and Improving Technique

    PubMed Central

    Rejman, Marek; Borowska, Grażyna

    2008-01-01

    This study aims to analysise the selected kinematic parameters of the monofin swimming turn. The high complexity of performing turns is hindered by the large surface of the monofin, which disturbs control and sense of the body in water. A lack of objective data available on monofin swimming turns has resulted in field research connected with the specification of parameters needed for the evaluation of the technique. Therefore, turns observed in elite swimmers contain underlying conclusions for objective criteria, ensuring the highest level of coaching and the improving of turns in young swimmers. Six, high level, male swimmers participated in the study. The subject of the analysis was the fastest turn, from one out of three trial turns made after swimming a distance of 25 m. Images of the turns were collected from two cameras located under water in accordance with the procedures of the previous analyses of freestyle turns. The images were digitized and analysed by the SIMI®- Movement Analysis System. The interdependency of the total turn time and the remaining recorded parameters, constituted the basis for analysis of the kinematic parameters of five turn phases. The interdependency was measured using r- Pearson’s correlation coefficients. The novel character of the subject covered in this study, forced interpretation of the results on the basis of turn analyses in freestyle swimming. The results allow for the creation of a diagram outlinig area of search for an effective and efficient monofin swimming turn mechanism. The activities performed from the moment of wall contact until the commencement of stroking seem to be crucial for turn improvement. A strong belief has resulted that, the correct monofin swimming turn, is more than just a simple consequence of the fastest performance of all its components. The most important criteria in evaluating the quality of the monofin swimming turn are: striving for the optimal extension of wall contact time, push-off time and glide time. Key pointsShort time and large surface of the monofin additionally hinders complexity of the turn performance by disturbance in sensing and controlling body in water. Availability of no objective data on monofin swimming turns resulted in research in the field connected with specifying parameters needed for the technique evaluation.Correct turn technique may help to improve swimming race results.The diagram constructed on the basis of the interdependency of the total turn time and the remaining recorded kinematic parameters should establish the areas of searching for mechanism of effective and efficient monofin swimming turn.The most crucial, from the coaching and improving point of view, seem to be activities which take place from the moment of feet wall contact till the first propulsive movements. Therefore, the high quality of the monofin swimming turn technique is not just a simple consequence of the fastest performance of all its component parts.The most important criteria of the quality in the monofin swimming turn technique are: striving for extending in the optimum scope of wall contact time, the time of the push-off phase and the glide time. PMID:24150136

  12. Evaluation and Treatment of Swimming Pool Avoidance Exhibited by an Adolescent Girl with Autism

    ERIC Educational Resources Information Center

    Rapp, John T.; Vollmer, Timothy R.; Hovanetz, Alyson N.

    2005-01-01

    We evaluated and treated swimming pool avoidance that was exhibited by a 14-year-old girl diagnosed with autism. In part, treatment involved blocking for flopping (dropping to the ground) and elopement (running away from the pool) and access to food for movements toward a swimming pool. Treatment also involved reinforcement for exposure to various…

  13. Accomplishments and Compromises in Prediction Research for World Records and Best Performances in Track and Field and Swimming

    ERIC Educational Resources Information Center

    Liu, Yuanlong; Paul, Stanley; Fu, Frank H.

    2012-01-01

    The conductors of this study reviewed prediction research and studied the accomplishments and compromises in predicting world records and best performances in track and field and swimming. The results of the study showed that prediction research only promises to describe the historical trends in track and field and swimming performances, to study…

  14. 75 FR 16700 - Special Local Regulation, Swim Across the Sound, Long Island Sound, Port Jefferson, NY to Captain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ...-AA08 Special Local Regulation, Swim Across the Sound, Long Island Sound, Port Jefferson, NY to Captain... permanent Special Local Regulation on the navigable waters of Long Island Sound between Port Jefferson, NY and Captain's Cove Seaport, Bridgeport, CT due to the annual Swim Across the Sound event. The proposed...

  15. The Effect of an Adapted Swimming Program on the Performance of an Individual with Kyphosis-Scoliosis

    ERIC Educational Resources Information Center

    Dimitrios, Voutsas; Dimitrios, Kokaridas

    2004-01-01

    The purpose of this action research study was to examine the effect of an adapted swimming program in terms of improving the performance and behaviour of an individual with kyphosis-scoliosis, with the use of an individualised education approach. The sample consisted of an adult woman with kyphosis-scoliosis. The pre-swimming phase included a…

  16. 77 FR 34285 - Safety Zone; 2012 Ironman U.S. Championship Swim, Hudson River, Fort Lee, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ...-AA00 Safety Zone; 2012 Ironman U.S. Championship Swim, Hudson River, Fort Lee, NJ AGENCY: Coast Guard... safety zone on the navigable waters of the Hudson River in the vicinity of Englewood Cliffs and Fort Lee... the Hudson River in the vicinity of Englewood Cliffs and Fort Lee, New Jersey. This swim event poses...

  17. 77 FR 46613 - Safety Zone; 2012 Ironman US Championship Swim, Hudson River, Fort Lee, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... 1625-AA00 Safety Zone; 2012 Ironman US Championship Swim, Hudson River, Fort Lee, NJ AGENCY: Coast... navigable waters of the Hudson River in the vicinity of Englewood Cliffs and Fort Lee, NJ for the 2012... Championship Swim, Hudson River, Fort Lee, NJ in the Federal Register (77 FR 34285). We received no comments on...

  18. 76 FR 53824 - Safety Zone; 2011 Rohto Ironman 70.3 Miami, Biscayne Bay, Miami, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... public during the 1.2 mile swim portion of this competition. Persons and vessels are prohibited from... protect race participants, participant vessels, and the general public during the 1.2 mile swim portion of... Rohto Ironman 70.3 Miami. This event includes a 1.2 mile swim, which will take place on the waters of...

  19. 33 CFR 100.121 - Swim Across the Sound, Long Island Sound, Port Jefferson, NY to Captain's Cove Seaport...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Swim Across the Sound, Long Island Sound, Port Jefferson, NY to Captain's Cove Seaport, Bridgeport, CT. 100.121 Section 100.121... SAFETY OF LIFE ON NAVIGABLE WATERS § 100.121 Swim Across the Sound, Long Island Sound, Port Jefferson, NY...

  20. 36 CFR 3.17 - What regulations apply to swimming areas and beaches?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF THE INTERIOR BOATING AND WATER USE ACTIVITIES § 3.17 What regulations apply to swimming areas... accordance with §§ 1.5 and 1.7 of this chapter. (b) Within designated swimming areas, the use of a surfboard or similar rigid device is prohibited. (c) The superintendent may prohibit the use or possession of...

  1. Swimming and other activities: applied aspects of fish swimming performance

    USGS Publications Warehouse

    Castro-Santos, Theodore R.; Farrell, A.P.

    2011-01-01

    Human activities such as hydropower development, water withdrawals, and commercial fisheries often put fish species at risk. Engineered solutions designed to protect species or their life stages are frequently based on assumptions about swimming performance and behaviors. In many cases, however, the appropriate data to support these designs are either unavailable or misapplied. This article provides an overview of the state of knowledge of fish swimming performance – where the data come from and how they are applied – identifying both gaps in knowledge and common errors in application, with guidance on how to avoid repeating mistakes, as well as suggestions for further study.

  2. Pilot study on infant swimming classes and early motor development.

    PubMed

    Dias, Jorge A B de S; Manoel, Edison de J; Dias, Roberta B de M; Okazaki, Victor H A

    2013-12-01

    Alberta Infant Motor Scale (AIMS) scores were examined before and after four months of swimming classes in 12 babies (ages 7 to 9 mo.) assigned to Experimental (n = 6) and Control (n = 6) groups matched on age and developmental status. Infants from both groups improved their developmental status from pre- to post-test; the Experimental group improved on mean percentile rank. The sample size and the discriminative power of the AIMS do not allow conclusive judgments on these group differences, hence on the effect of infant swimming classes. Nevertheless, a number of recommendations are made for future studies on the effect of swimming classes on infant motor development.

  3. Antithrombotic Protective Effects of Arg-Pro-Gly-Pro Peptide during Emotional Stress Provoked by Forced Swimming Test in Rats.

    PubMed

    Grigor'eva, M E; Lyapina, L A

    2017-01-01

    Blood coagulation was enhanced and all factors (total, enzyme, and non-enzyme) of the fibrinolytic system were suppressed in rats in 60 min after forced swimming test. Argininecontaining tetrapeptide glyproline Arg-Pro-Gly-Pro administered prior to this test activated fibrinolysis and prevented hypercoagulation. Administration of this peptide in 5 min after swimming test also enhanced anticoagulant, fibrinolytic, and antithrombotic activity of the blood. Therefore, glyproline Arg-Pro-Gly-Pro exerted both preventive and curative effects on the hemostasis system and prevented enhancement of blood coagulation provoked by emotional stress modeled by forced swimming test.

  4. Multi-fractal characterization of bacterial swimming dynamics: a case study on real and simulated Serratia marcescens

    PubMed Central

    Bogdan, Paul; Wei, Guopeng; Marculescu, Radu; Zhuang, Jiang; Carlsen, Rika Wright; Sitti, Metin

    2017-01-01

    To add to the current state of knowledge about bacterial swimming dynamics, in this paper, we study the fractal swimming dynamics of populations of Serratia marcescens bacteria both in vitro and in silico, while accounting for realistic conditions like volume exclusion, chemical interactions, obstacles and distribution of chemoattractant in the environment. While previous research has shown that bacterial motion is non-ergodic, we demonstrate that, besides the non-ergodicity, the bacterial swimming dynamics is multi-fractal in nature. Finally, we demonstrate that the multi-fractal characteristic of bacterial dynamics is strongly affected by bacterial density and chemoattractant concentration. PMID:28804259

  5. Pacing the phasing of leg and arm movements in breaststroke swimming to minimize intra-cyclic velocity fluctuations

    PubMed Central

    Roerdink, Melvyn; Huibers, Alja V.; Evers, Lotte L. W.; Beek, Peter J.

    2017-01-01

    In swimming propelling efficiency is partly determined by intra-cyclic velocity fluctuations. The higher these fluctuations are at a given average swimming velocity, the less efficient is the propulsion. This study explored whether the leg-arm coordination (i.e. phase relation ϕ) within the breaststroke cycle can be influenced with acoustic pacing, and whether the so induced changes are accompanied by changes in intra-cyclic velocity fluctuations. Twenty-six participants were asked to couple their propulsive leg and arm movements to a double-tone metronome beat and to keep their average swimming velocity constant over trials. The metronome imposed five different phase relations ϕi (90, 135, 180, 225 and 270°) of leg-arm coordination. Swimmers adjusted their technique under the influence of the metronome, but failed to comply to the velocity requirement for ϕ = 90 and 135°. For imposed ϕ = 180, 225 and 270°, the intra-cyclic velocity fluctuations increased with increasing ϕ, while average swimming velocity did not differ. This suggests that acoustic pacing may be used to adjust ϕ and thereby performance of breaststroke swimming given the dependence of propelling efficiency on ϕ. PMID:29023496

  6. Controlled regular locomotion of algae cell microrobots.

    PubMed

    Xie, Shuangxi; Jiao, Niandong; Tung, Steve; Liu, Lianqing

    2016-06-01

    Algae cells can be considered as microrobots from the perspective of engineering. These organisms not only have a strong reproductive ability but can also sense the environment, harvest energy from the surroundings, and swim very efficiently, accommodating all these functions in a body of size on the order of dozens of micrometers. An interesting topic with respect to random swimming motions of algae cells in a liquid is how to precisely control them as microrobots such that they swim according to manually set routes. This study developed an ingenious method to steer swimming cells based on the phototaxis. The method used a varying light signal to direct the motion of the cells. The swimming trajectory, speed, and force of algae cells were analyzed in detail. Then the algae cell could be controlled to swim back and forth, and traverse a crossroad as a microrobot obeying specific traffic rules. Furthermore, their motions along arbitrarily set trajectories such as zigzag, and triangle were realized successfully under optical control. Robotize algae cells can be used to precisely transport and deliver cargo such as drug particles in microfluidic chip for biomedical treatment and pharmacodynamic analysis. The study findings are expected to bring significant breakthrough in biological drives and new biomedical applications.

  7. Breaking the speed limit--comparative sprinting performance of brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta)

    USGS Publications Warehouse

    Castro-Santos, Theodore; Sanz-Ronda, Francisco Javier; Ruiz-Legazpi, Jorge

    2013-01-01

    Sprinting behavior of free-ranging fish has long been thought to exceed that of captive fish. Here we present data from wild-caught brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta), volitionally entering and sprinting against high-velocity flows in an open-channel flume. Performance of the two species was nearly identical, with the species attaining absolute speeds > 25 body lengths·s−1. These speeds far exceed previously published observations for any salmonid species and contribute to the mounting evidence that commonly accepted estimates of swimming performance are low. Brook trout demonstrated two distinct modes in the relationship between swim speed and fatigue time, similar to the shift from prolonged to sprint mode described by other authors, but in this case occurring at speeds > 19 body lengths·s−1. This is the first demonstration of multiple modes of sprint swimming at such high swim speeds. Neither species optimized for distance maximization, however, indicating that physiological limits alone are poor predictors of swimming performance. By combining distributions of volitional swim speeds with endurance, we were able to account for >80% of the variation in distance traversed by both species.

  8. Swimming at low Reynolds number in fluids with odd, or Hall, viscosity.

    PubMed

    Lapa, Matthew F; Hughes, Taylor L

    2014-04-01

    We apply the geometric theory of swimming at low Reynolds number to the study of nearly circular swimmers in two-dimensional fluids with nonvanishing "odd," or Hall, viscosity. The odd viscosity gives an off-diagonal contribution to the fluid stress tensor, which results in a number of striking effects. In particular, we find that a swimmer whose area is changing will experience a torque proportional to the rate of change of the area, with the constant of proportionality given by the coefficient ηo of odd viscosity. After working out the general theory of swimming in fluids with odd viscosity for a class of simple swimmers, we give a number of example swimming strokes which clearly demonstrate the differences between swimming in a fluid with conventional viscosity and a fluid which also has an odd viscosity. We also include a discussion of the extension of the famous Scallop theorem of low Reynolds number swimming to the case where the fluid has a nonzero odd viscosity. A number of more technical results, including a proof of the torque-area relation for swimmers of more general shape, are explained in a set of Appendixes.

  9. Electromyography in the four competitive swimming strokes: a systematic review.

    PubMed

    Martens, Jonas; Figueiredo, Pedro; Daly, Daniel

    2015-04-01

    The aim of this paper is to give an overview on 50 years of research in electromyography in the four competitive swimming strokes (crawl, breaststroke, butterfly, and backstroke). A systematic search of the existing literature was conducted using the combined keywords "swimming" and "EMG" on studies published before August 2013, in the electronic databases PubMed, ISI Web of Knowledge, SPORT discus, Academic Search Elite, Embase, CINAHL and Cochrane Library. The quality of each publication was assessed by two independent reviewers using a custom made checklist. Frequency of topics, muscles studied, swimming activities, populations, types of equipment and data treatment were determined from all selected papers and, when possible, results were compared and contrasted. In the first 20 years of EMG studies in swimming, most papers were published as congress proceedings. The methodological quality was low. Crawl stroke was most often studied. There was no standardized manner of defining swimming phases, normalizing the data or of presenting the results. Furthermore, the variability around the mean muscle activation patterns is large which makes it difficult to define a single pattern applicable to all swimmers in any activity examined. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effects of a flavonoid extract from Cynomorium songaricum on the swimming endurance of rats.

    PubMed

    Yu, Fa-Rong; Liu, Ying; Cui, Yong-Zhi; Chan, Er-Qing; Xie, Ming-Ren; McGuire, Peter P; Yu, Fa-Hong

    2010-01-01

    The present study investigated the effects of a flavonoid extract from Cynomorium songaricum on the swimming endurance of rats by measuring changes of free radical scavenging enzymes, such as CuZn-SOD (copper, zinc-superoxide dismutase) and GSH-px (glutathione peroxidase), and body weights. Significant and dose-dependent antioxidant and anti-fatigue effects of flavonoids (rutin, catechin and isoquercitrin) on swimming rats were observed during 10 days of swimming exercise. After treatment with the flavonoid extract at doses of 0.5, 1.0, and 2.0 g/kg body weight, the CuZn-SOD and GSH-px activities in swimming rats were increased by 1.4%, 3.3%, 4.1% and 112.2%, 208.7%, 261.7%, respectively, while the levels of MDA (malondialdehyde) were decreased by 64.7%, 79.4%, and 86.4% respectively. Furthermore, the average body weight and the total swimming time were increased by 3.1%, 8.8%, 10.6%, and 7.7%, 34.5%, 61.5%, respectively. Our experimental results suggest that flavonoid supplementation could not only reduce free radical formation and scavenge free radicals, but also enhance endurance exercise performance by reducing muscle fatigue.

  11. Ion selectivity of the Vibrio alginolyticus flagellar motor.

    PubMed Central

    Liu, J Z; Dapice, M; Khan, S

    1990-01-01

    The marine bacterium, Vibrio alginolyticus, normally requires sodium for motility. We found that lithium will substitute for sodium. In neutral pH buffers, the membrane potential and swimming speed of glycolyzing bacteria reached maximal values as sodium or lithium concentration was increased. While the maximal potentials obtained in the two cations were comparable, the maximal swimming speed was substantially lower in lithium. Over a wide range of sodium concentration, the bacteria maintained an invariant sodium electrochemical potential as determined by membrane potential and intracellular sodium measurements. Over this range the increase of swimming speed took Michaelis-Menten form. Artificial energization of swimming motility required imposition of a voltage difference in concert with a sodium pulse. The cation selectivity and concentration dependence exhibited by the motile apparatus depended on the viscosity of the medium. In high-viscosity media, swimming speeds were relatively independent of either ion type or concentration. These facts parallel and extend observations of the swimming behavior of bacteria propelled by proton-powered flagella. In particular, they show that ion transfers limit unloaded motor speed in this bacterium and imply that the coupling between ion transfers and force generation must be fairly tight. PMID:2394685

  12. Spiral swimming of an artificial micro-swimmer

    NASA Astrophysics Data System (ADS)

    Keaveny, Eric E.; Maxey, Martin R.

    A device constructed from a filament of paramagnetic beads connected to a human red blood cell will swim when subject to an oscillating magnetic field. Bending waves propagate from the tip of the tail toward the red blood cell in a fashion analogous to flagellum beating, making the artificial swimmer a candidate for studying what has been referred to as micro-swimming. In this study, we demonstrate that under the influence of a rotating field the artificial swimmer will perform -type swimming. We conduct numerical simulations of the swimmer where the paramagnetic tail is represented as a series of rigid spheres connected by flexible but inextensible links. An optimal range of parameters governing the relative strength of viscous, elastic and magnetic forces is identified for swimming speed. A parameterization of the motion is extracted and examined as a function of the driving frequency. With a continuous elastica/resistive force model, we obtain an expression for the swimming speed in the low-frequency limit. Using this expression we explore further the effects of the applied field, the ratio of the transverse field to the constant field, and the ratio of the radius of the sphere to the length of the filament tail on the resulting dynamics.

  13. Pacing the phasing of leg and arm movements in breaststroke swimming to minimize intra-cyclic velocity fluctuations.

    PubMed

    van Houwelingen, Josje; Roerdink, Melvyn; Huibers, Alja V; Evers, Lotte L W; Beek, Peter J

    2017-01-01

    In swimming propelling efficiency is partly determined by intra-cyclic velocity fluctuations. The higher these fluctuations are at a given average swimming velocity, the less efficient is the propulsion. This study explored whether the leg-arm coordination (i.e. phase relation ϕ) within the breaststroke cycle can be influenced with acoustic pacing, and whether the so induced changes are accompanied by changes in intra-cyclic velocity fluctuations. Twenty-six participants were asked to couple their propulsive leg and arm movements to a double-tone metronome beat and to keep their average swimming velocity constant over trials. The metronome imposed five different phase relations ϕi (90, 135, 180, 225 and 270°) of leg-arm coordination. Swimmers adjusted their technique under the influence of the metronome, but failed to comply to the velocity requirement for ϕ = 90 and 135°. For imposed ϕ = 180, 225 and 270°, the intra-cyclic velocity fluctuations increased with increasing ϕ, while average swimming velocity did not differ. This suggests that acoustic pacing may be used to adjust ϕ and thereby performance of breaststroke swimming given the dependence of propelling efficiency on ϕ.

  14. Swimming mechanics and propulsive efficiency in the chambered nautilus

    NASA Astrophysics Data System (ADS)

    Neil, Thomas R.; Askew, Graham N.

    2018-02-01

    The chambered nautilus (Nautilus pompilius) encounters severe environmental hypoxia during diurnal vertical movements in the ocean. The metabolic cost of locomotion (Cmet) and swimming performance depend on how efficiently momentum is imparted to the water and how long on-board oxygen stores last. While propulsive efficiency is generally thought to be relatively low in jet propelled animals, the low Cmet in Nautilus indicates that this is not the case. We measured the wake structure in Nautilus during jet propulsion swimming, to determine their propulsive efficiency. Animals swam with either an anterior-first or posterior-first orientation. With increasing swimming speed, whole cycle propulsive efficiency increased during posterior-first swimming but decreased during anterior-first swimming, reaching a maximum of 0.76. The highest propulsive efficiencies were achieved by using an asymmetrical contractile cycle in which the fluid ejection phase was relatively longer than the refilling phase, reducing the volume flow rate of the ejected fluid. Our results demonstrate that a relatively high whole cycle propulsive efficiency underlies the low Cmet in Nautilus, representing a strategy to reduce the metabolic demands in an animal that spends a significant part of its daily life in a hypoxic environment.

  15. Effective Propulsion in Swimming: Grasping the Hydrodynamics of Hand and Arm Movements.

    PubMed

    van Houwelingen, Josje; Schreven, Sander; Smeets, Jeroen B J; Clercx, Herman J H; Beek, Peter J

    2017-02-01

    In this paper, a literature review is presented regarding the hydrodynamic effects of different hand and arm movements during swimming with the aim to identify lacunae in current methods and knowledge, and to distil practical guidelines for coaches and swimmers seeking to increase swimming speed. Experimental and numerical studies are discussed, examining the effects of hand orientation, thumb position, finger spread, sculling movements, and hand accelerations during swimming, as well as unsteady properties of vortices due to changes in hand orientation. Collectively, the findings indicate that swimming speed may be increased by avoiding excessive sculling movements and by spreading the fingers slightly. In addition, it appears that accelerating the hands rather than moving them at constant speed may be beneficial, and that (in front crawl swimming) the thumb should be abducted during entry, catch, and upsweep, and adducted during the pull phase. Further experimental and numerical research is required to confirm these suggestions and to elucidate their hydrodynamic underpinnings and identify optimal propulsion techniques. To this end, it is necessary that the dynamical motion and resulting unsteady effects are accounted for, and that flow visualization techniques, force measurements, and simulations are combined in studying those effects.

  16. Morphometric partitioning of the respiratory surface area and diffusion capacity of the gills and swim bladder in juvenile Amazonian air-breathing fish, Arapaima gigas.

    PubMed

    Fernandes, Marisa Narciso; da Cruz, André Luis; da Costa, Oscar Tadeu Ferreira; Perry, Steven Franklin

    2012-09-01

    The gills and the respiratory swim bladders of juvenile specimens (mean body mass 100g) of the basal teleost Arapaima gigas (Cuvier 1829) were evaluated using stereological methods in vertical sections. The surface areas, harmonic mean barrier thicknesses and morphometric diffusing capacities for oxygen and carbon dioxide were estimated. The average respiratory surface area of the swim bladder (2173 cm² kg⁻¹) exceeded that of the gills (780 cm² kg⁻¹) by a factor of 2.79. Due to the extremely thin air-blood barrier in the swim bladder (harmonic mean 0.22 μm) and the much thicker water-blood barrier of the gills (9.61 μm), the morphometric diffusing capacity for oxygen and carbon dioxide was 88 times greater in the swim bladder than in the gills. These data clearly indicate the importance of the swim bladder, even in juvenile A. gigas that still engage in aquatic respiration. Because of the much greater diffusion constant of CO₂ than O₂ in water, the gills also remain important for CO₂ release. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. In the making: SA-PIV applied to swimming practice

    NASA Astrophysics Data System (ADS)

    van Houwelingen, Josje; van de Water, Willem; Kunnen, Rudie; van Heijst, Gertjan; Clercx, Herman

    2017-11-01

    To understand and optimize the propulsion in human swimming, a deep understanding of the hydrodynamics of swimming is required. This is usually based on experiments and numerical simulations under laboratory conditions.. In this study, we bring basic fluid mechanics knowledge and experimental measurement techniques to analyze the flow towards the swimming practice itself. A flow visualization setup is build and placed in a regular swimming pool. The measurement volume contains five homogeneous air bubble curtains illuminated by ambient light. The bubbles in these curtains act as tracer particles. The bubble motion is captured by six cameras placed in the side wall of the pool. It is intended to apply SA-PIV (synthetic aperture PIV) for analyzing the flow structures on multiple planes in the measurement volume. The system has been calibrated and the calibration data are used to refocus on the planes of interest. Multiple preprocessing steps need to be executed to obtain the proper quality of images before applying PIV. With a specially programmed video card to process and analyze the images in real-time feedback about swimming performance will become possible. We report on the first experimental data obtained by this system.

  18. Antioxidant and Antifatigue Properties of the Aqueous Extract of Moringa oleifera in Rats Subjected to Forced Swimming Endurance Test.

    PubMed

    Lamou, Bonoy; Taiwe, Germain Sotoing; Hamadou, André; Abene; Houlray, Justin; Atour, Mahamat Mey; Tan, Paul Vernyuy

    2016-01-01

    The effects of the aqueous extract of Moringa oleifera on swimming performance and related biochemical parameters were investigated in male Wistar rats (130-132 g). Four groups of rats (16 per group) were fed a standard laboratory diet and given distilled water, 100, 200, or 400 mg/kg of extract, respectively, for 28 days. On day 28, 8 rats from each group were subjected to the forced swimming test with tail load (10% of body weight). The remaining 8 rats per group were subjected to the 90-minute free swim. Maximum swimming time, glycemia, lactamia, uremia, triglyceridemia, hepatic and muscle glycogen, hematological parameters, and oxidative stress parameters (superoxide dismutase, catalase, reduced glutathione, and malondialdehyde) were measured. Results. M. oleifera extract increased maximum swimming time, blood hemoglobin, blood glucose, and hepatic and muscle glycogen reserves. The extract also increased the activity of antioxidant enzymes and decreased the blood concentrations of malondialdehyde. Furthermore, it decreased blood concentrations of lactate, triglycerides, and urea. In conclusion, the antifatigue properties of M. oleifera extract are demonstrated by its ability to improve body energy stores and tissue antioxidant capacity and to reduce the tissue build-up of lactic acid.

  19. The influence of winter swimming on the rheological properties of blood.

    PubMed

    Teległów, Aneta; Dąbrowski, Zbigniew; Marchewka, Anna; Tyka, Aleksander; Krawczyk, Marcin; Głodzik, Jacek; Szyguła, Zbigniew; Mleczko, Edward; Bilski, Jan; Tyka, Anna; Tabarowski, Zbigniew; Czepiel, Jacek; Filar-Mierzwa, Katarzyna

    2014-01-01

    The aim of this study was to analyze the changes in blood rheology resulting from regular winter swimming. The study was carried out on 12 male winter swimmers. Venous blood for morphological, biochemical and rheological analysis was sampled twice from each winter swimmer - at the beginning of the season and after its completion. There were no significant changes detected in the median values of most blood morphological parameters. The only exception pertained to MCHC which was significantly lower after the season. Winter swimming entailed significant decrease in median elongation index values at shear stress levels of 0.30 Pa and 0.58 Pa, and significant increase in median values of this parameter at shear stress levels ≥1.13 Pa. No significant changes were observed in winter swimmers' median values of aggregation indices and plasma viscosity. The median level of glucose was lower post winter swimming in comparison to the pre-seasonal values. In contrast, one season of winter swimming did not influence swimmers' median value of fibrinogen concentration. In summary, this study revealed positive effects of winter swimming on the rheological properties of blood, manifested by an increase in erythrocyte deformability without accompanying changes in erythrocyte aggregation.

  20. Characterization of undulatory locomotion in granular media

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei; Pak, On Shun; Elfring, Gwynn

    2015-11-01

    Undulatory locomotion is ubiquitous in nature, from the swimming of flagellated microorganisms in biological fluids, to the slithering of snakes on land, or the locomotion of sandfish lizards in sand. Analysis of locomotion in granular materials is relatively less developed compared with fluids partially due to a lack of validated force models but a recently proposed resistive force theory (RFT) in granular media has been shown useful in studying the locomotion of a sand-swimming lizard. Here we employ this model to investigate the swimming characteristics of an undulating slender filament of both finite and infinite length. For infinite swimmers, similar to results in viscous fluids, the sawtooth waveform is found to be optimal for propulsion speed at a given power consumption. We also compare the swimming characteristics of sinusoidal and sawtooth swimmers with swimming in viscous fluids. More complex swimming dynamics emerge when the assumption of an infinite swimmer is removed. In particular, we characterize the effects of drifting and pitching in terms of propulsion speed and efficiency for a finite sinusoidal swimmer. The results complement our understanding of undulatory locomotion and provide insights into the effective design of locomotive systems in granular media.

  1. Flexion Reflex Can Interrupt and Reset the Swimming Rhythm.

    PubMed

    Elson, Matthew S; Berkowitz, Ari

    2016-03-02

    The spinal cord can generate the hip flexor nerve activity underlying leg withdrawal (flexion reflex) and the rhythmic, alternating hip flexor and extensor activities underlying locomotion and scratching, even in the absence of brain inputs and movement-related sensory feedback. It has been hypothesized that a common set of spinal interneurons mediates flexion reflex and the flexion components of locomotion and scratching. Leg cutaneous stimuli that evoke flexion reflex can alter the timing of (i.e., reset) cat walking and turtle scratching rhythms; in addition, reflex responses to leg cutaneous stimuli can be modified during cat and human walking and turtle scratching. Both of these effects depend on the phase (flexion or extension) of the rhythm in which the stimuli occur. However, similar interactions between leg flexion reflex and swimming have not been reported. We show here that a tap to the foot interrupted and reset the rhythm of forward swimming in spinal, immobilized turtles if the tap occurred during the swim hip extensor phase. In addition, the hip flexor nerve response to an electrical foot stimulus was reduced or eliminated during the swim hip extensor phase. These two phase-dependent effects of flexion reflex on the swim rhythm and vice versa together demonstrate that the flexion reflex spinal circuit shares key components with or has strong interactions with the swimming spinal network, as has been shown previously for cat walking and turtle scratching. Therefore, leg flexion reflex circuits likely share key spinal interneurons with locomotion and scratching networks across limbed vertebrates generally. The spinal cord can generate leg withdrawal (flexion reflex), locomotion, and scratching in limbed vertebrates. It has been hypothesized that there is a common set of spinal cord neurons that produce hip flexion during flexion reflex, locomotion, and scratching based on evidence from studies of cat and human walking and turtle scratching. We show here that flexion reflex and swimming also share key spinal cord components based on evidence from turtles. Foot stimulation can reset the timing of the swimming rhythm and the response to each foot stimulation can itself be altered by the swim rhythm. Collectively, these studies suggest that spinal cord neuronal networks underlying flexion reflex, multiple forms of locomotion, and scratching share key components. Copyright © 2016 the authors 0270-6474/16/362819-08$15.00/0.

  2. Assessment of Physicochemical and Microbiological Quality of Public Swimming Pools in Addis Ababa, Ethiopia

    PubMed Central

    Yedeme, Kokebe; Legese, Melese Hailu; Gonfa, Almaz; Girma, Somson

    2017-01-01

    Background: From swimming pools, bathers may acquire many potential pathogens or may be affected by the physicochemical characteristics of water used during bathing. Hence, this study aimed at assessing the physicochemical and microbiological quality of public swimming pools located at different hotels and recreation center in Addis Ababa, Ethiopia. Method: A cross sectional study was carried out from February to May, 2016. Nine hotels and one recreation center which recognized to have public swimming services were included. A total of 60 swimming pool water samples from 10 swimming pools were collected at deeper, shallow and intake point twice on a weekly basis using a 250 ml sterile bottle containing sodium thiosulphate. PH, residual chlorine and temperature of samples were recorded at the time of collection. Sample containing bottles were transported in ice box to microbiological laboratory and analyzed on the same day. Standard cultural and biochemical methods were used for isolation and characterization of the main microbial groups. Total viable count, total coliform count, fecal coliform count and E. coli were determined. Data was analyzed using SPSS Version 20. Results: Average PH and temperature of swimming pool water samples were 7.1 and 29oC respectively. Of all analyzed water samples, 58.4% (n=35/60) of them had PH range of 7.2-7.8, 58.3% (n=35/60) of samples had temperature in the range of 21oC-32oC and 25% (n=15/60) of water samples had residual chlorine in the range of 2-3mg/l. 73.3% (n=44/60) of the samples had a total viable count below 200 MPN/ml and 70% (n-42/60) of the samples had Total Coliform Count values less than 2 MPN/100 ml. Moreover, 66.7% (n=40/60) of the samples had fecal coliform counts falling below 1 MPN /100 ml. E. coli was absent in 70% (n=42/60) of the samples while it was present in 30% (n=18/60) of the samples. Conclusion: PH, residual chlorine and temperature value of majority of the swimming pools’ water samples were within the acceptable limit. Regarding microbial quality, most swimming pools’ water samples complied to the WHO standard. Swimming pools that did not comply to the standard both in physicochemical levels and microbial quality need improvement due to their significant health implication. PMID:28761562

  3. Health Effects from Swimming Training in Chlorinated Pools and the Corresponding Metabolic Stress Pathways

    PubMed Central

    Li, Jiang-Hua; Wang, Zhi-Hui; Zhu, Xiao-Juan; Deng, Zhao-Hui; Cai, Can-Xin; Qiu, Li-Qiang; Chen, Wei; Lin, Ya-Jun

    2015-01-01

    Chlorination is the most popular method for disinfecting swimming pool water; however, although pathogens are being killed, many toxic compounds, called disinfection by-products (DBPs), are formed. Numerous epidemiological publications have associated the chlorination of pools with dysfunctions of the respiratory system and with some other diseases. However, the findings concerning these associations are not always consistent and have not been confirmed by toxicological studies. Therefore, the health effects from swimming in chlorinated pools and the corresponding stress reactions in organisms are unclear. In this study, we show that although the growth and behaviors of experimental rats were not affected, their health, training effects and metabolic profiles were significantly affected by a 12-week swimming training program in chlorinated water identical to that of public pools. Interestingly, the eyes and skin are the organs that are more directly affected than the lungs by the irritants in chlorinated water; instead of chlorination, training intensity, training frequency and choking on water may be the primary factors for lung damage induced by swimming. Among the five major organs (the heart, liver, spleen, lungs and kidneys), the liver is the most likely target of DBPs. Through metabolomics analysis, the corresponding metabolic stress pathways and a defensive system focusing on taurine were presented, based on which the corresponding countermeasures can be developed for swimming athletes and for others who spend a lot of time in chlorinated swimming pools. PMID:25742134

  4. Design of hair-like appendages and comparative analysis on their coordination toward steady and efficient swimming.

    PubMed

    Kwak, Bokeon; Bae, Joonbum

    2017-05-22

    The locomotion of water beetles has been widely studied in biology owing to their remarkable swimming skills. Inspired by the oar-like legs of water beetles, designing a robot that swims under the principle of drag-powered propulsion can lead to highly agile mobility. But its motion can easily be discontinuous and jerky due to backward motions (i.e. retraction) of the legs. Here we proposed novel hair-like appendages and consider their coordination to achieve steady and efficient swimming on the water surface. First of all, we propose several design schemes and fabrication methods of the hair-like appendages, which can passively adjust their projected area while obtaining enough thrust. The coordination between the two pairs of legs, as with water beetles in nature, were also investigated to achieve steady swimming without backward movement by varying the beating frequency and phase of the legs. To verify the functionality of the hair-like appendages and their coordinations, six different types of appendages were fabricated, and two robots (one with a single pair of legs and the other with two pairs of legs) were built. Locomotion of the robots was extensively compared through experiments, and it was found that steady swimming was achieved by properly coordinating the two pairs of legs without sacrificing their speed. Also, owing to the lower velocity fluctuation during swimming, it was shown that using two pairs of legs was more energy efficient than the robot with single pair of legs.

  5. Ovarian and uterine alterations following forced swimming: An immunohistochemical study.

    PubMed

    Seyed Saadat, Seyedeh Nazanin; Mohammadghasemi, Fahimeh; Ebrahimi, Hannan; Rafati Sajedi, Hanieh; Chatrnour, Gelayol

    2016-10-01

    Physical exercise is known to be a stressor stimulus that leads to reproductive disruption. The aim of this study was to evaluate the effect of forced swimming on the uterus and ovaries in mice. Adult mice (N=24) were divided into the following three groups: A, control; B, swimming in water (10 o C); and C, swimming in water (23 o C). Swimmers swam for 5 min daily for 5 consecutive days/ wk during 2 wks. An enzyme linked immunosorbent assay was used to determine serum estradiol, follicle stimulating hormone (FSH) and testosterone levels. Immunohistochemistry was performed to study apoptotic cells or estrogen receptor (ER) expression in uterine epithelial cells and ovaries. ANOVA was used for statistical analysis. Swimming in both groups reduced the serum FSH and estradiol levels (p<0.01) without having a significant effect on the serum testosterone level or percentage of apoptosis in ovarian and uterine tissues (p<0.01) compared with controls. A significant reduction in the number of ERs in the uterus and ovaries, and secondary and graafian follicles were observed in groups B and C compared with controls (p<0.01); however the number of primordial and primary follicles were not significantly changed in the ovaries. Forced swimming of 2 wks duration reduces the serum levels of FSH and estradiol without having effects on apoptosis in the ovaries or uteri of mice. Over a long period of time, forced swimming may have an adverse effect on fertility.

  6. Ovarian and uterine alterations following forced swimming: An immunohistochemical study

    PubMed Central

    Seyed Saadat, Seyedeh Nazanin; Mohammadghasemi, Fahimeh; Ebrahimi, Hannan; Rafati Sajedi, Hanieh; Chatrnour, Gelayol

    2016-01-01

    Background: Physical exercise is known to be a stressor stimulus that leads to reproductive disruption. Objective: The aim of this study was to evaluate the effect of forced swimming on the uterus and ovaries in mice. Materials and Methods: Adult mice (N=24) were divided into the following three groups: A, control; B, swimming in water (10oC); and C, swimming in water (23oC). Swimmers swam for 5 min daily for 5 consecutive days/ wk during 2 wks. An enzyme linked immunosorbent assay was used to determine serum estradiol, follicle stimulating hormone (FSH) and testosterone levels. Immunohistochemistry was performed to study apoptotic cells or estrogen receptor (ER) expression in uterine epithelial cells and ovaries. ANOVA was used for statistical analysis. Results: Swimming in both groups reduced the serum FSH and estradiol levels (p<0.01) without having a significant effect on the serum testosterone level or percentage of apoptosis in ovarian and uterine tissues (p<0.01) compared with controls. A significant reduction in the number of ERs in the uterus and ovaries, and secondary and graafian follicles were observed in groups B and C compared with controls (p<0.01); however the number of primordial and primary follicles were not significantly changed in the ovaries. Conclusion: Forced swimming of 2 wks duration reduces the serum levels of FSH and estradiol without having effects on apoptosis in the ovaries or uteri of mice. Over a long period of time, forced swimming may have an adverse effect on fertility. PMID:27921086

  7. Influence of robotic shoal size, configuration, and activity on zebrafish behavior in a free-swimming environment.

    PubMed

    Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio

    2014-12-15

    In animal studies, robots have been recently used as a valid tool for testing a wide spectrum of hypotheses. These robots often exploit visual or auditory cues to modulate animal behavior. The propensity of zebrafish, a model organism in biological studies, toward fish with similar color patterns and shape has been leveraged to design biologically inspired robots that successfully attract zebrafish in preference tests. With an aim of extending the application of such robots to field studies, here, we investigate the response of zebrafish to multiple robotic fish swimming at different speeds and in varying arrangements. A soft real-time multi-target tracking and control system remotely steers the robots in circular trajectories during the experimental trials. Our findings indicate a complex behavioral response of zebrafish to biologically inspired robots. More robots produce a significant change in salient measures of stress, with a fast robot swimming alone causing more freezing and erratic activity than two robots swimming slowly together. In addition, fish spend more time in the proximity of a robot when they swim far apart than when the robots swim close to each other. Increase in the number of robots also significantly alters the degree of alignment of fish motion with a robot. Results from this study are expected to advance our understanding of robot perception by live animals and aid in hypothesis-driven studies in unconstrained free-swimming environments. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Impact of metformin treatment and swimming exercise on visfatin levels in high-fat-induced obesity rats.

    PubMed

    Gao, Ya; Wang, Changjiang; Pan, Tianrong; Luo, Li

    2014-02-01

    Visfatin is a recently discovered adipocytokine that contributes to glucose and obesity-related conditions. Until now, its responses to the insulin-sensitizing agent metformin and to exercise are largely unknown. We aim to investigate the impact of metformin treatment and/or swimming exercise on serum visfatin and visfatin levels in subcutaneous adipose tissue (SAT), peri-renal adipose tissue (PAT) and skeletal muscle (SM) of high-fat-induced obesity rats. Sprague-Dawley rats were fed a normal diet or a high-fat diet for 16 weeks to develop obesity model. The high-fat-induced obesity model rats were then randomized to metformin (MET), swimming exercise (SWI), or adjunctive therapy of metformin and swimming exercise (MAS), besides high-fat obesity control group and a normal control group, all with 10 rats per group. Zoometric and glycemic parameters, lipid profile, and serum visfatin levels were assessed at baseline and after 6 weeks of therapy. Visfatin levels in SAT, PAT and SM were determined by Western Blot. Metformin and swimming exercise improved lipid profile, and increased insulin sensitivity and body weight reduction were observed. Both metformin and swimming exercise down-regulated visfatin levels in SAT and PAT, while the adjunctive therapy conferred greater benefits, but no changes of visfatin levels were observed in SM. Our results indicate that visfatin down-regulation in SAT and PAT may be one of the mechanisms by which metformin and swimming exercise inhibit obesity.

  9. Aerobic and Anaerobic Swimming Force Evaluation in One Single Test Session for Young Swimmers.

    PubMed

    de Barros Sousa, Filipe Antônio; Rodrigues, Natalia Almeida; Messias, Leonardo Henrique Dalcheco; Queiroz, Jair Borges; Manchado-Gobatto, Fulvia Barros; Gobatto, Claudio Alexandre

    2017-05-01

    This study aims to propose and validate the tethered swimming lactate minimum test (TSLacmin) estimating aerobic and anaerobic capacity in one single test session, using force as measurement parameter. 6 male and 6 female young swimmers (age=15.7±1.1 years; height=173.3±9.5 cm; weight=66.1±9.5 kg) performed 4 sessions comprising i) an all-out 30 s test and incremental test (TSLacmin); ii) 30 min of tethered swimming at constant intensity (2 sessions); iii) free-swimming time trials used to calculate critical velocity. Tethered swimming sessions used an acquisition system enabling maximum (Fmax) and mean (Fmean) force measurement and intensity variation. The tethered all-out test lasting 30 s resulted in hyperlactatemia of 7.9±2.0 mmol·l -1 . TSLacmin presented a 100% success applicability rate, which is equivalent to aerobic capacity in 75% of cases. TSLacmin intensity was 37.7±7.3 N, while maximum force in the all-out test was 105±27 N. Aerobic and anaerobic TSLacmin parameters were significantly related to free-swimming performance (r=-0.67 for 100 m and r=-0.80 for 200 m) and critical velocity (r=0.80). TSLacmin estimates aerobic capacity in most cases, and both aerobic and anaerobic force parameters are well related to critical velocity and free swimming performance. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Increased exhaled breath condensate 8-isoprostane after a swimming session in competitive swimmers.

    PubMed

    Morissette, Mathieu C; Murray, Nicolas; Turmel, Julie; Milot, Julie; Boulet, Louis-Philippe; Bougault, Valérie

    2016-08-01

    This study aimed to evaluate the levels of 8-isoprostane (8-IsoP) in the airways of competitive swimmers at baseline and after a swimming session according to their airway responsiveness. Twenty-three swimmers and six lifeguards had a baseline spirometry and bronchoprovocative challenges. During a second visit, swimmers performed a usual swimming session while lifeguards stayed in the same pool environment for the same time period. Forced expiratory volume in one second (FEV1) was measured before and 5 min after the end of the session. Exhaled breath condensate (EBC) was sampled before and 10 min after the session and EBC 8-IsoP levels were analysed by enzyme immunoassay. Change in EBC 8-IsoP from baseline to post-swimming session was calculated. We observed no relationships between airway hyper-responsiveness and 8-IsoP values before or after swimming in swimmers. The levels of 8-IsoP were significantly higher after the training session (mean value 2.9, s = 0.5 pg mL(-1)) than at baseline (mean value 1.9, s = 0.4 pg mL(-1)) in swimmers only (p = .012). EBC 8-IsoP levels after the swimming session significantly correlated with the percent change in FEV1 after swimming. EBC 8-IsoP levels were increased after training in swimmers but not in lifeguards, suggesting that exercise-induced hyperpnoea in a chlorinated pool environment increases airways oxidative stress.

  11. Developmental changes in head movement kinematics during swimming in Xenopus laevis tadpoles.

    PubMed

    Hänzi, Sara; Straka, Hans

    2017-01-15

    During the post-embryonic developmental growth of animals, a number of physiological parameters such as locomotor performance, dynamics and behavioural repertoire are adjusted to match the requirements determined by changes in body size, proportions and shape. Moreover, changes in movement parameters also cause changes in the dynamics of self-generated sensory stimuli, to which motion-detecting sensory systems have to adapt. Here, we examined head movements and swimming kinematics of Xenopus laevis tadpoles with a body length of 10-45 mm (developmental stage 46-54) and compared these parameters with fictive swimming, recorded as ventral root activity in semi-intact in vitro preparations. Head movement kinematics was extracted from high-speed video recordings of freely swimming tadpoles. Analysis of these locomotor episodes indicated that the swimming frequency decreased with development, along with the angular velocity and acceleration of the head, which represent self-generated vestibular stimuli. In contrast, neither head oscillation amplitude nor forward velocity changed with development despite the ∼3-fold increase in body size. The comparison between free and fictive locomotor dynamics revealed very similar swimming frequencies for similarly sized animals, including a comparable developmental decrease of the swimming frequency. Body morphology and the motor output rhythm of the spinal central pattern generator therefore develop concurrently. This study thus describes development-specific naturalistic head motion profiles, which form the basis for more natural stimuli in future studies probing the vestibular system. © 2017. Published by The Company of Biologists Ltd.

  12. In vivo and in vitro evaluation of the effects of Urtica dioica and swimming activity on diabetic factors and pancreatic beta cells.

    PubMed

    Ranjbari, Abbas; Azarbayjani, Mohammad Ali; Yusof, Ashril; Halim Mokhtar, Abdul; Akbarzadeh, Samad; Ibrahim, Mohamed Yousif; Tarverdizadeh, Bahman; Farzadinia, Parviz; Hajiaghaee, Reza; Dehghan, Firouzeh

    2016-03-15

    Urtica dioica (UD) has been identified as a traditional herbal medicine. This study aimed to investigate the effect of UD extract and swimming activity on diabetic parameters through in vivo and in vitro experiments. Adult WKY male rats were randomly distributed in nine groups: intact control, diabetic control, diabetic + 625 mg/kg, 1.25 g/kg UD, diabetic + 100 mg/kg Metformin, diabetic + swimming, diabetic + swimming 625 mg/kg, 1.25 g/kg UD, and diabetic +100 mg/kg Metformin + swimming. The hearts of the animals were punctured, and blood samples were collected for biochemical analysis. The entire pancreas was exposed for histologic examination. The effect of UD on insulin secretion by RIN-5F cells in 6.25 or 12.5 mM glucose dose was examined. Glucose uptake by cultured L6 myotubes was determined. The serum glucose concentration decreased, the insulin resistance and insulin sensitivity significantly increased in treated groups. These changes were more pronounced in the group that received UD extract and swimming training. Regeneration and less beta cell damage of Langerhans islets were observed in the treated groups. UD treatment increased insulin secretion in the RIN-5F cells and glucose uptake in the L6 myotubes cells. Swimming exercises accompanied by consuming UD aqueous extracts effectively improved diabetic parameters, repaired pancreatic tissues in streptozotocin-induced diabetics in vivo, and increased glucose uptake or insulin in UD-treated cells in vitro.

  13. Turtle mimetic soft robot with two swimming gaits.

    PubMed

    Song, Sung-Hyuk; Kim, Min-Soo; Rodrigue, Hugo; Lee, Jang-Yeob; Shim, Jae-Eul; Kim, Min-Cheol; Chu, Won-Shik; Ahn, Sung-Hoon

    2016-05-04

    This paper presents a biomimetic turtle flipper actuator consisting of a shape memory alloy composite structure for implementation in a turtle-inspired autonomous underwater vehicle. Based on the analysis of the Chelonia mydas, the flipper actuator was divided into three segments containing a scaffold structure fabricated using a 3D printer. According to the filament stacking sequence of the scaffold structure in the actuator, different actuating motions can be realized and three different types of scaffold structures were proposed to replicate the motion of the different segments of the flipper of the Chelonia mydas. This flipper actuator can mimic the continuous deformation of the forelimb of Chelonia mydas which could not be realized in previous motor based robot. This actuator can also produce two distinct motions that correspond to the two different swimming gaits of the Chelonia mydas, which are the routine and vigorous swimming gaits, by changing the applied current sequence of the SMA wires embedded in the flipper actuator. The generated thrust and the swimming efficiency in each swimming gait of the flipper actuator were measured and the results show that the vigorous gait has a higher thrust but a relatively lower swimming efficiency than the routine gait. The flipper actuator was implemented in a biomimetic turtle robot, and its average swimming speed in the routine and vigorous gaits were measured with the vigorous gait being capable of reaching a maximum speed of 11.5 mm s(-1).

  14. SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters

    NASA Technical Reports Server (NTRS)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Bailey, Sean W.; Shea, Donald M.; Feldman, Gene C.

    2014-01-01

    In clear shallow waters, light that is transmitted downward through the water column can reflect off the sea floor and thereby influence the water-leaving radiance signal. This effect can confound contemporary ocean color algorithms designed for deep waters where the seafloor has little or no effect on the water-leaving radiance. Thus, inappropriate use of deep water ocean color algorithms in optically shallow regions can lead to inaccurate retrievals of inherent optical properties (IOPs) and therefore have a detrimental impact on IOP-based estimates of marine parameters, including chlorophyll-a and the diffuse attenuation coefficient. In order to improve IOP retrievals in optically shallow regions, a semi-analytical inversion algorithm, the Shallow Water Inversion Model (SWIM), has been developed. Unlike established ocean color algorithms, SWIM considers both the water column depth and the benthic albedo. A radiative transfer study was conducted that demonstrated how SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Properties algorithm (GIOP) and Quasi-Analytical Algorithm (QAA), performed in optically deep and shallow scenarios. The results showed that SWIM performed well, whilst both GIOP and QAA showed distinct positive bias in IOP retrievals in optically shallow waters. The SWIM algorithm was also applied to a test region: the Great Barrier Reef, Australia. Using a single test scene and time series data collected by NASA's MODIS-Aqua sensor (2002-2013), a comparison of IOPs retrieved by SWIM, GIOP and QAA was conducted.

  15. Cholinergic mechanisms of analgesia produced by physostigmine, morphine and cold water swimming.

    PubMed

    Romano, J A; Shih, T M

    1983-07-01

    This study concerns the cholinergic involvement in three experimental procedures which produce analgesia. Rats were given one of seven treatments: saline (1.0 ml/kg, i.p.); morphine sulfate (3.5, 6.0 or 9.0 mg/kg, i.p.); physostigmine salicylate (0.65 mg/kg, i.p.); warm water swim (3.5 min at 28 degrees C); and cold water swim (3.5 min at 2 degrees C). Each rat was tested on a hot plate (59.1 degrees C) once prior to and 30 min after treatment. Immediately after the last test the rats were killed with focussed microwave radiation. Levels of acetylcholine (ACh) and choline (Ch) in six brain areas (brain stem, cerebral cortex, hippocampus, midbrain, cerebellum and striatum) were analyzed by gas chromatograph-mass spectrometer. Morphine (9.0 mg/kg), physostigmine and cold water swimming caused significant analgesia. Morphine elevated the levels of ACh in the cerebellum and striatum, cold water swimming--in the cerebellum, striatum and cortex, and physostigmine--in the striatum and hippocampus. Levels of choline were elevated by morphine in the cerebellum, cortex and hippocampus, while cold water swimming elevated levels of choline in the cerebellum, cortex, striatum and hippocampus. Physostigmine did not change levels of choline in any of the brain areas studied. These data suggest that the analgetic effects of morphine or cold water swimming may be mediated by components of the cholinergic system that differ from those involved in the analgetic effects of physostigmine.

  16. Solar-heated municipal swimming pools, a case study: Dade County, Florida

    NASA Astrophysics Data System (ADS)

    Levin, M.

    1981-09-01

    The installation of a solar energy system to heat the water in the swimming pool in one of Dade County, Florida's major parks is described. The mechanics of solar heated swimming pools are explained. The solar heating system consists of 216 unglazed polypropylene tube collectors, a differential thermostat, and the distribution system. The systems performance and economics as well as future plants are discussed.

  17. 33 CFR 100.124 - Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York. 100.124 Section 100.124 Navigation and Navigable... NAVIGABLE WATERS § 100.124 Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York...

  18. 75 FR 30296 - Special Local Regulation for Marine Event; Maryland Swim for Life, Chester River, Chestertown, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ...-AA08 Special Local Regulation for Marine Event; Maryland Swim for Life, Chester River, Chestertown, MD... Chestertown, MD during the Maryland Swim for Life. Special local regulations are necessary to provide for the safety of life on navigable waters during the event. DATES: This rule is effective from 5:30 a.m. to 2:30...

  19. The Investigation of the Relationship between Children's 50m Freestyle Swimming Performances and Motor Performances

    ERIC Educational Resources Information Center

    Aktug, Zait Burak; Iri, Ruckan; Top, Elif

    2018-01-01

    The aim of the study is to examine the relationship between children's 50 m freestyle swimming performances and motor performances. There were 32 swimmers (male = 21, female = 11), who had been swimming for at least one and a half year, participated in the study. The motor performances of the participating swimmers were determined through the…

  20. 76 FR 53829 - Safety Zone; ESI Ironman 70.3 Augusta Triathlon, Savannah River, Augusta, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... participants, participant vessels, spectators, and the general public during the 1.1 mile swim portion of the... scheduled to take place in Augusta, Georgia. This event includes a 1.1 mile swim that will take place on the waters of the Savannah River. The swim starts at the 6th Street Railroad Bridge and finishes at Mile Post...

  1. 75 FR 47215 - Special Local Regulation; Marine Events Within the Captain of the Port Sector Boston Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ... special local regulations within the Captain of the Port Sector Boston Zone for several swim events and... vessels during annual swim and high speed races that may pose a hazard to the public in the Captain of the..., and after the events. The Captain of the Port will inform the public about the details of each swim...

  2. 33 CFR 100.124 - Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... South Bay Cross Bay Swim, Great South Bay, New York. 100.124 Section 100.124 Navigation and Navigable... NAVIGABLE WATERS § 100.124 Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York. (a) Regulated area. All navigable waters of Great South Bay, NY within a 100 yard radius of each...

  3. Effect of swimming on bone metabolism in adolescents.

    PubMed

    Derman, Orhan; Cinemre, Alphan; Kanbur, Nuray; Doğan, Muhsin; Kiliç, Mustafa; Karaduman, Erdem

    2008-01-01

    Physical activity has been shown to have a positive effect on bone metabolism among adolescents. The objective of this study was to determine the effect of swimming on bone metabolism during adolescence. Swimming, as a non-weight-bearing sport, has been considered to be insignificant in the maintenance of bone mass. We studied whether swimming is associated with a higher peak bone mass. Forty swimmers (males aged 10-17 years and females aged 9-16 years) were studied. The control group consisted of the same number of adolescents aged between 10-16 years who did not swim; distribution of male and female gender was similar in the non-swimming control group compared to the swimming group. Adolescents were matched for age, gender and pubertal stages based on Tanner staging. All subjects underwent combined measurement of bone mineral metabolism by dual-energy X-ray absorptiometry of total body calcium content, and specific biochemical markers of turnover including osteocalcin, calcium, phosphorus and alkaline phosphatase. Bone age (determined by Greulich and Pyle's Radiographic Atlas of Skeletal Development of the Hand and Wrist), weight, height, ideal body weight, ideal body weight ratio, body mass index, Tanner classification (rated by examiner), diet, history of tobacco and alcohol exposure, exercise, socioeconomic status and history of chronic illness and medications were recorded to evaluate potential mediators that would affect bone metabolism. Tanner staging was used to assess puberty, and diet was evaluated based on reported consumption of milk, yogurt and cheese and cola/caffeine beverage consumption daily. There was significant difference in bone mineral content between adolescent male swimmers and the control group males. Consumption of cola beverages were significantly higher among the control group compared with the swimmer group. Ideal body weight ratio was significantly high among the female control group compared with female swimmers. Milk consumption was significantly higher for both male and female swimmer groups, whereas yogurt consumption was only significantly higher in the male swimmer group compared with control group. These results indicate that a highly active nonimpact sport such as swimming may lead to increased bone mineral content only for male swimmers. However, dietary behaviors may be more important than swimming on bone metabolism among adolescents.

  4. Social Status-Dependent Shift in Neural Circuit Activation Affects Decision Making.

    PubMed

    Miller, Thomas H; Clements, Katie; Ahn, Sungwoo; Park, Choongseok; Hye Ji, Eoon; Issa, Fadi A

    2017-02-22

    In a social group, animals make behavioral decisions that fit their social ranks. These behavioral choices are dependent on the various social cues experienced during social interactions. In vertebrates, little is known of how social status affects the underlying neural mechanisms regulating decision-making circuits that drive competing behaviors. Here, we demonstrate that social status in zebrafish ( Danio rerio ) influences behavioral decisions by shifting the balance in neural circuit activation between two competing networks (escape and swim). We show that socially dominant animals enhance activation of the swim circuit. Conversely, social subordinates display a decreased activation of the swim circuit, but an enhanced activation of the escape circuit. In an effort to understand how social status mediates these effects, we constructed a neurocomputational model of the escape and swim circuits. The model replicates our findings and suggests that social status-related shift in circuit dynamics could be mediated by changes in the relative excitability of the escape and swim networks. Together, our results reveal that changes in the excitabilities of the Mauthner command neuron for escape and the inhibitory interneurons that regulate swimming provide a cellular mechanism for the nervous system to adapt to changes in social conditions by permitting the animal to select a socially appropriate behavioral response. SIGNIFICANCE STATEMENT Understanding how social factors influence nervous system function is of great importance. Using zebrafish as a model system, we demonstrate how social experience affects decision making to enable animals to produce socially appropriate behavior. Based on experimental evidence and computational modeling, we show that behavioral decisions reflect the interplay between competing neural circuits whose activation thresholds shift in accordance with social status. We demonstrate this through analysis of the behavior and neural circuit responses that drive escape and swim behaviors in fish. We show that socially subordinate animals favor escape over swimming, while socially dominants favor swimming over escape. We propose that these differences are mediated by shifts in relative circuit excitability. Copyright © 2017 the authors 0270-6474/17/372137-12$15.00/0.

  5. NIR camera and spectrograph SWIMS for TAO 6.5m telescope: array control system and its performance

    NASA Astrophysics Data System (ADS)

    Terao, Yasunori; Motohara, Kentaro; Konishi, Masahiro; Takahashi, Hidenori; Kato, Natsuko M.; Kitagawa, Yutaro; Kobayakawa, Yutaka; Ohashi, Hirofumi; Tateuchi, Ken; Todo, Soya

    2016-08-01

    SWIMS (Simultaneous-color Wide-field Infrared Multi-object Spectrograph) is a near-infrared imager and multi-object spectrograph as one of the first generation instruments for the University of Tokyo Atacama Observatory (TAO) 6.5m telescope. In this paper, we describe an array control system of SWIMS and results of detector noise performance evaluation. SWIMS incorporates four (and eight in future) HAWAII-2RG focal plane arrays for detectors, each driven by readout electronics components: a SIDECAR ASIC and a JADE2 Card. The readout components are controlled by a HAWAII-2RG Testing Software running on a virtual Windows machine on a Linux PC called array control PC. All of those array control PCs are then supervised by a SWIMS control PC. We have developed an "array control software system", which runs on the array control PC to control the HAWAII-2RG Testing Software, and consists of a socket client and a dedicated server called device manager. The client runs on the SWIMS control PC, and the device manager runs on the array control PC. An exposure command, issued by the client on the SWIMS control PC, is sent to the multiple device managers on the array control PCs, and then multiple HAWAII-2RGs are driven simultaneously. Using this system, we evaluate readout noise performances of the detectors, both in a test dewar and in a SWIMS main dewar. In the test dewar, we confirm the readout noise to be 4.3 e- r.m.s. by 32 times multiple sampling when we operate only a single HAWAII-2RG, whereas in the case of simultaneous driving of two HAWAII-2RGs, we still obtain sufficiently low readout noise of 10 e- r.m.s. In the SWIMS main dewar, although there are some differences between the detectors, the readout noise is measured to be 4:1-4:6 e- r.m.s. with simultaneous driving by 64 times multiple sampling, which meets the requirement for background-limited observations in J band of 14 e- r.m.s..

  6. Influence of swimming time in alleviating the deleterious effects of hot summer on growing Muscovy duck performance.

    PubMed

    Farghly, Mohamed F A; Mahrose, Khalid M; Ullah, Zafar; Rehman, Zaib Ur; Ding, Chan

    2017-09-01

    This experiment was conducted to observe the effects of varying swimming times (ST) of Muscovy ducks, raised in an open-sided house, in alleviating the deleterious effects of high temperature in hotter times of the day in the summer season on growth performance (body weight, average daily gain, feed consumption, and feed conversion ratio), carcass characteristics, body temperature, and some health aspects. We hypothesized that swimming times during the hottest periods of the day would show different performances. To test this hypothesis a total of 180 Muscovy ducklings were randomly distributed into 4 equal groups in a completely randomized design experiment. All groups were raised under similar housing conditions. Birds of the first group (C) were raised in the indoor system and had no access to a swimming pond. While all birds of the second, third, and fourth groups (T1, T2, and T3) had access to a swimming pond during 10:00 to 12:00 h, 12:00 to 14:00 h, and 14:00 to 16:00 h, respectively. The swimming pond (dimensions of 30 m length × 10 m width × 3 m depth with cement floor) was located in the front of the house. Vaccination and medical programs were undertaken according to the different ages under supervision of a licensed veterinarian. The obtained results indicated that swimming during 12:00 to 14:00 h improved (P < 0.05) growth performance, dressed carcass, meat tenderness, lymphocyte, heterophils/lymphocytes ratio, body temperature, and mortality rate of Muscovy ducks. However, bone measurement, plumage conditions, foot pad dermatitis, hock discoloration, breast blisters score, and blood hematocrit values were insignificantly better in the group with access to the swimming pond during 12:00 to 14:00 h. In conclusion, raising ducks during hot conditions in an open-sided house with access to a swimming pond at 12:00 to 14:00 h is highly recommended due to the high BW, better immunity, decreased mortality rate, and low body temperature of ducks which was positively reflected in the health condition. © 2017 Poultry Science Association Inc.

  7. Alpha-conotoxin ImI Disrupts Central Control of Swimming in the Medicinal Leech

    PubMed Central

    Wagenaar, Daniel A.; Gonzalez, Ruben; Ries, David C.; Kristan, William B.; French, Kathleen A.

    2010-01-01

    Medicinal leeches (Hirudo spp.) swim using a metachronal, front-to-back undulation. The behavior is generated by central pattern generators (CPGs) distributed along the animal’s midbody ganglia and is coordinated by both central and peripheral mechanisms. Here we report that a component of the venom of Conus imperialis, α-conotoxin ImI, known to block nicotinic acetylcholine receptors in other species, disrupts swimming. Leeches injected with the toxin swam in circles with exaggerated dorsoventral bends and reduced forward velocity. Fictive swimming in isolated nerve cords was even more strongly disrupted, indicating that the toxin targets the CPGs and central coordination, while peripheral coordination partially rescues the behavior in intact animals. PMID:20833225

  8. Flowfield measurements in the wake of a robotic lamprey

    PubMed Central

    Hultmark, Marcus; Leftwich, Megan

    2009-01-01

    Experiments are reported on the hydrodynamics of a swimming robotic lamprey under conditions of steady swimming and where the thrust exceeds the drag. The motion of the robot was based on the swimming of live lampreys, which is described by an equation similar to that developed for the American eel by Tytell and Lauder (J Exp Biol 207:1825–1841, 2004). For steady swimming, the wake structure closely resembles that of the American eel, where two pairs of same sign vortices are shed each tail beat cycle, giving the wake a 2P structure. Force estimates suggest that the major part of the thrust is produced at or close to the end of the tail. PMID:19946623

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potomkin, Mykhailo; Kaiser, Andreas; Berlyand, Leonid

    We consider active particles swimming in a convergent fluid flow in a trapezoid nozzle with no-slip walls. We use mathematical modeling to analyze trajectories of these particles inside the nozzle. By extensive Monte Carlo simulations, we show that trajectories are strongly affected by the background fluid flow and geometry of the nozzle leading to wall accumulation and upstream motion (rheotaxis). In particular, we describe the non-trivial focusing of active rods depending on physical and geometrical parameters. It is also established that the convergent component of the background flow leads to stability of both downstream and upstream swimming at the centerline.more » The stability of downstream swimming enhances focusing, and the stability of upstream swimming enables rheotaxis in the bulk.« less

  10. Stereoscopic Particle Image Velocimetry Used to Study the Wake Patterns of an Ideal Anguilliform Swimming Motion

    NASA Astrophysics Data System (ADS)

    Taravella, Brandon; Potts, J. Baker; Stegmeir, Matthew

    2014-11-01

    The University of New Orleans recently acquired a self-contained stereoscopic particle image velocimetry system for use in their 125 ft long towing tank. This system is being used to study the wake flow behind an anguilliform swimming robot that swims with an ideal motion that is theorized not to produce any trailing vortices. The presentation will describe the particulars of the SPIV system along with details of installation of the SPIV system within the towing tank. The calibration routine will be discussed in detail and results of the free-flow runs will be discussed. Preliminary results from the anguilliform swimming motion will also be presented.

  11. Blood lactate accumulation in top level swimmers following competition.

    PubMed

    Bonifazi, M; Martelli, G; Marugo, L; Sardella, F; Carli, G

    1993-03-01

    The purposes of this study were to evaluate the significance of blood lactate values after competitions and the blood lactate-swimming speed relationship to swimming performances. Auricular blood samples (N = 421) were collected in 203 top level Italian swimmers (116 males and 87 females) at the end of competitions performed in a 25 m swimming pool. The distribution of all lactate values differed between males and females. The lowest lactate values occurred in swimmers performing the longest distances both in males (1500 m) and females (800 m). In swimmers performing freestyle events a relationship between V-4 mM (swimming speed at 4 mmol/l blood lactate value) and competition velocities was observed, in males, at 200, 400 and 1500 m and, in females, at 400 and 800 m. The predicted velocity corresponding to the competition lactate value assessed by the individual blood lactate-swimming speed relationship was found to be highly related to the actual competition velocity. Results suggest that blood lactate values in swimmers are a useful indication of individual aptitudes.

  12. PADDLEFISH BUCCAL FLOW VELOCITY DURING RAM SUSPENSION FEEDING AND RAM VENTILATION

    PubMed

    Cech; Cheer

    1994-01-01

    A micro-thermistor probe was inserted into the buccal cavity of freely swimming paddlefish to measure flow velocity during ram ventilation, ram suspension feeding and prey processing. Swimming speed was measured from videotapes recorded simultaneously with the buccal flow velocity measurements. Both swimming velocity and buccal flow velocity were significantly higher during suspension feeding than during ram ventilation. As the paddlefish shifted from ventilation to feeding, buccal flow velocity increased to approximately 60 % of the swimming velocity. During prey processing, buccal flow velocity was significantly higher than the swimming velocity, indicating that prey processing involves the generation of suction. The Reynolds number (Re) for flow at the level of the paddlefish gill rakers during feeding is about 30, an order of magnitude lower than the Re calculated previously for pump suspension-feeding blackfish. These data, combined with data available from the literature, indicate that the gill rakers of ram suspension-feeding teleost fishes may operate at a substantially lower Re than the rakers of pump suspension feeders.

  13. Hydrodynamics of Fishlike Swimming: Effects of swimming kinematics and Reynolds number

    NASA Astrophysics Data System (ADS)

    Gilmanov, Anvar; Posada, Nicolas; Sotiropoulos, Fotis

    2003-11-01

    We carry out a series of numerical simulations to investigate the effects of swimming kinematics and Reynolds number on the flow past a three-dimensional fishlike body undergoing undulatory motion. The simulated body shape is that of a real mackerel fish. The mackerel was frozen and subsequently sliced in several thin fillets whose dimensions were carefully measured and used to construct the fishlike body shape used in the simulations. The flow induced by the undulating body is simulated by solving the 3D, unsteady, incompressible Navier-Stokes equations with the second-order accurate, hybrid Cartesian/Immersed Boundary formulation of Gilmanov and Sotiropoulos (J. Comp. Physics, under review, 2003). We consider in-line swimming at constant speed and carry out simulations for various types of swimming kinematics, varying the tailbeat amplitude, frequency, and Reynolds number (300

  14. Limiting swimming pool outbreaks of cryptosporidiosis - the roles of regulations, staff, patrons and research.

    PubMed

    Ryan, Una; Lawler, Sheleigh; Reid, Simon

    2017-02-01

    Cryptosporidium is the leading cause of swimming pool outbreaks of gastroenteritis. Transmission occurs through the ingestion of oocysts that are passed in the faeces of an infected person or animal when an accidental faecal release event occurs. Cryptosporidium parasites present specific challenges for infection control as oocysts are highly resistant to chlorine levels used for pool disinfection, infected individuals can shed large numbers of oocysts, there is a long incubation period and shedding of oocysts occurs even after symptom resolution. The purposes of this review are to identify key barriers to limiting swimming pool-associated outbreaks of cryptosporidiosis and to outline needs for research and collaboration to advance co-ordinated management practices. We reviewed swimming pool-associated cryptosporidiosis outbreaks, disinfection teachniques, current regulations and the role of staff and patrons. Key barriers to limiting swimming pool-associated outbreaks of cryptosporidiosis are a lack of uniform national and international standards, poor adherence and understanding of regulations governing staff and patron behaviour, and low levels of public knowledge and awareness.

  15. Amplified effect of Brownian motion in bacterial near-surface swimming

    PubMed Central

    Li, Guanglai; Tam, Lick-Kong; Tang, Jay X.

    2008-01-01

    Brownian motion influences bacterial swimming by randomizing displacement and direction. Here, we report that the influence of Brownian motion is amplified when it is coupled to hydrodynamic interaction. We examine swimming trajectories of the singly flagellated bacterium Caulobacter crescentus near a glass surface with total internal reflection fluorescence microscopy and observe large fluctuations over time in the distance of the cell from the solid surface caused by Brownian motion. The observation is compared with computer simulation based on analysis of relevant physical factors, including electrostatics, van der Waals force, hydrodynamics, and Brownian motion. The simulation reproduces the experimental findings and reveals contribution from fluctuations of the cell orientation beyond the resolution of present observation. Coupled with hydrodynamic interaction between the bacterium and the boundary surface, the fluctuations in distance and orientation subsequently lead to variation of the swimming speed and local radius of curvature of swimming trajectory. These results shed light on the fundamental roles of Brownian motion in microbial motility, nutrient uptake, and adhesion. PMID:19015518

  16. Environmental estrogen(s) induced swimming behavioural alterations in adult zebrafish (Danio rerio).

    PubMed

    Goundadkar, Basavaraj B; Katti, Pancharatna

    2017-09-01

    The present study is an attempt to investigate the effects of long-term (75days) exposure to environmental estrogens (EE) on the swimming behaviour of zebrafish (Danio rerio). Adult zebrafish were exposed semi-statically to media containing commonly detected estrogenic water contaminants (EE2, DES and BPA) at a concentration (5ng/L) much lower than environmentally recorded levels. Time spent in swimming, surface preference, patterns and path of swimming were recorded (6mins) for each fish using two video cameras on day 15, 30 60 and 75. Video clips were analysed using a software program. Results indicate that chronic exposure to EE leads to increased body weight and size of females, reduced (P<0.05) swimming time, delay in latency, increased (P<0.05) immobility, erratic movements and freezing episodes. We conclude that estrogenic contamination of natural aquatic systems induces alterations in locomotor behaviour and associated physiological disturbances in inhabitant fish fauna. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Humeral loads during swimming and walking in turtles: implications for morphological change during aquatic reinvasions.

    PubMed

    Young, Vanessa K H; Wienands, Charlotte E; Wilburn, Brittany P; Blob, Richard W

    2017-11-01

    During evolutionary reinvasions of water by terrestrial vertebrates, ancestrally tubular limb bones often flatten to form flippers. Differences in skeletal loading between land and water might have facilitated such changes. In turtles, femoral shear strains are significantly lower during swimming than during walking, potentially allowing a release from loads favoring tubular shafts. However, flipper-like morphology in specialized tetrapod swimmers is most accentuated in the forelimbs. To test whether the forelimbs of turtles also experience reduced torsional loading in water, we compared strains on the humerus of river cooters ( Pseudemys concinna ) between swimming and terrestrial walking. We found that humeral shear strains are also lower during swimming than during terrestrial walking; however, this appears to relate to a reduction in overall strain magnitude, rather than a specific reduction in twisting. These results indicate that shear strains show similar reductions between swimming and walking for forelimb and hindlimb, but these reductions are produced through different mechanisms. © 2017. Published by The Company of Biologists Ltd.

  18. Healthy Swimming/Recreational Water

    MedlinePlus

    ... the Pool Raccoons & Pools Birds & Pools Aquatics Professionals Design & Construction Designing Public Swimming Facilities Historic CDC Design & Operation Manuals Operation & Maintenance 12 Steps for Prevention ...

  19. 77 FR 40518 - Swim Events in the Captain of the Port New York Zone; Hudson River, East River, Upper New York...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... 1625-AA00 Swim Events in the Captain of the Port New York Zone; Hudson River, East River, Upper New York Bay, Lower New York Bay; New York, NY ACTION: Final rule. SUMMARY: The Coast Guard is establishing seven temporary safety zones for swim events within the Captain of the Port (COTP) New York Zone. These...

  20. Sustained Swimming Speeds of Dolphins.

    PubMed

    Johannessen, C L; Harder, J A

    1960-11-25

    Observations of fout large groups of dolphins suggest that they are able to swim at a sustained speed of 14 to 18 knots. The blackfish are able to maintain speeds of about 22 knots, and one killer whale seemed able to swim somewhat faster. This implies that the apparent coefficient of surface friction remains approximately constant for dolphins from 6 to 22 ft long, as is the case for rigid bodies.

Top