Sample records for switched network based

  1. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks.

    PubMed

    Shen, Yiwen; Hattink, Maarten H N; Samadi, Payman; Cheng, Qixiang; Hu, Ziyiz; Gazman, Alexander; Bergman, Keren

    2018-04-16

    Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. We present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly network testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 µs control plane latency for data-center and high performance computing platforms.

  2. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks

    DOE PAGES

    Shen, Yiwen; Hattink, Maarten; Samadi, Payman; ...

    2018-04-13

    Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. Here, we present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly networkmore » testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 microsecond control plane latency for data-center and high performance computing platforms.« less

  3. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yiwen; Hattink, Maarten; Samadi, Payman

    Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. Here, we present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly networkmore » testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 microsecond control plane latency for data-center and high performance computing platforms.« less

  4. Optical burst switching based satellite backbone network

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Guo, Hongxiang; Wang, Cen; Wu, Jian

    2018-02-01

    We propose a novel time slot based optical burst switching (OBS) architecture for GEO/LEO based satellite backbone network. This architecture can provide high speed data transmission rate and high switching capacity . Furthermore, we design the control plane of this optical satellite backbone network. The software defined network (SDN) and network slice (NS) technologies are introduced. Under the properly designed control mechanism, this backbone network is flexible to support various services with diverse transmission requirements. Additionally, the LEO access and handoff management in this network is also discussed.

  5. Programmable on-chip and off-chip network architecture on demand for flexible optical intra-datacenters.

    PubMed

    Rofoee, Bijan Rahimzadeh; Zervas, Georgios; Yan, Yan; Amaya, Norberto; Qin, Yixuan; Simeonidou, Dimitra

    2013-03-11

    The paper presents a novel network architecture on demand approach using on-chip and-off chip implementations, enabling programmable, highly efficient and transparent networking, well suited for intra-datacenter communications. The implemented FPGA-based adaptable line-card with on-chip design along with an architecture on demand (AoD) based off-chip flexible switching node, deliver single chip dual L2-Packet/L1-time shared optical network (TSON) server Network Interface Cards (NIC) interconnected through transparent AoD based switch. It enables hitless adaptation between Ethernet over wavelength switched network (EoWSON), and TSON based sub-wavelength switching, providing flexible bitrates, while meeting strict bandwidth, QoS requirements. The on and off-chip performance results show high throughput (9.86Ethernet, 8.68Gbps TSON), high QoS, as well as hitless switch-over.

  6. Architecture design and performance evaluation of multigranularity optical networks based on optical code division multiplexing

    NASA Astrophysics Data System (ADS)

    Huang, Shaowei; Baba, Ken-Ichi; Murata, Masayuki; Kitayama, Ken-Ichi

    2006-12-01

    In traditional lambda-based multigranularity optical networks, a lambda is always treated as the basic routing unit, resulting in low wavelength utilization. On the basis of optical code division multiplexing (OCDM) technology, a novel OCDM-based multigranularity optical cross-connect (MG-OXC) is proposed. Compared with the traditional lambda-based MG-OXC, its switching capability has been extended to support fiber switching, waveband switching, lambda switching, and OCDM switching. In a network composed of OCDM-based MG-OXCs, a single wavelength can be shared by distinct label switched paths (LSPs) called OCDM-LSPs, and OCDM-LSP switching can be implemented in the optical domain. To improve the network flexibility for an OCDM-LSP provisioning, two kinds of switches enabling hybrid optical code (OC)-wavelength conversion are designed. Simulation results indicate that a blocking probability reduction of 2 orders can be obtained by deploying only five OCs to a single wavelength. Furthermore, compared with time-division-multiplexing LSP (TDM-LSP), owing to the asynchronous accessibility and the OC conversion, OCDM-LSPs have been shown to permit a simpler switch architecture and achieve better blocking performance than TDM-LSPs.

  7. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  8. A three-sided rearrangeable switching network for a binary fat tree

    NASA Astrophysics Data System (ADS)

    Yen, Mao-Hsu; Yu, Chu; Shin, Haw-Yun; Chen, Sao-Jie

    2011-06-01

    A binary fat tree needs an internal node to interconnect the left-children, right-children and parent terminals to each other. In this article, we first propose a three-stage, 3-sided rearrangeable switching network for the implementation of a binary fat tree. The main component of this 3-sided switching network (3SSN) consists of a polygonal switch block (PSB) interconnected by crossbars. With the same size and the same number of switches as our 3SSN, a three-stage, 3-sided clique-based switching network is shown to be not rearrangeable. Also, the effects of the rearrangeable structure and the number of terminals on the network switch-efficiency are explored and a proper set of parameters has been determined to minimise the number of switches. We derive that a rearrangeable 3-sided switching network with switches proportional to N 3/2 is most suitable to interconnect N terminals. Moreover, we propose a new Polygonal Field Programmable Gate Array (PFPGA) that consists of logic blocks interconnected by our 3SSN, such that the logic blocks in this PFPGA can be grouped into clusters to implement different logic functions. Since the programmable switches usually have high resistance and capacitance and occupy a large area, we have to consider the effect of the 3SSN structure and the granularity of its cluster logic blocks on the switch efficiency of PFPGA. Experiments on benchmark circuits show that the switch and speed performances are significantly improved. Based on the experimental results, we can determine the parameters of PFPGA for the VLSI implementation.

  9. Performance of highly connected photonic switching lossless metro-access optical networks

    NASA Astrophysics Data System (ADS)

    Martins, Indayara Bertoldi; Martins, Yara; Barbosa, Felipe Rudge

    2018-03-01

    The present work analyzes the performance of photonic switching networks, optical packet switching (OPS) and optical burst switching (OBS), in mesh topology of different sizes and configurations. The "lossless" photonic switching node is based on a semiconductor optical amplifier, demonstrated and validated with experimental results on optical power gain, noise figure, and spectral range. The network performance was evaluated through computer simulations based on parameters such as average number of hops, optical packet loss fraction, and optical transport delay (Am). The combination of these elements leads to a consistent account of performance, in terms of network traffic and packet delivery for OPS and OBS metropolitan networks. Results show that a combination of highly connected mesh topologies having an ingress e-buffer present high efficiency and throughput, with very low packet loss and low latency, ensuring fast data delivery to the final receiver.

  10. QKD-Based Secured Burst Integrity Design for Optical Burst Switched Networks

    NASA Astrophysics Data System (ADS)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2016-03-01

    The field of optical transmission has undergone numerous advancements and is still being researched mainly due to the fact that optical data transmission can be done at enormous speeds. It is quite evident that people prefer optical communication when it comes to large amount of data involving its transmission. The concept of switching in networks has matured enormously with several researches, architecture to implement and methods starting with Optical circuit switching to Optical Burst Switching. Optical burst switching is regarded as viable solution for switching bursts over networks but has several security vulnerabilities. However, this work exploited the security issues associated with Optical Burst Switching with respect to integrity of burst. This proposed Quantum Key based Secure Hash Algorithm (QKBSHA-512) with enhanced compression function design provides better avalanche effect over the conventional integrity algorithms.

  11. Deep learning based state recognition of substation switches

    NASA Astrophysics Data System (ADS)

    Wang, Jin

    2018-06-01

    Different from the traditional method which recognize the state of substation switches based on the running rules of electrical power system, this work proposes a novel convolutional neuron network-based state recognition approach of substation switches. Inspired by the theory of transfer learning, we first establish a convolutional neuron network model trained on the large-scale image set ILSVRC2012, then the restricted Boltzmann machine is employed to replace the full connected layer of the convolutional neuron network and trained on our small image dataset of 110kV substation switches to get a stronger model. Experiments conducted on our image dataset of 110kV substation switches show that, the proposed approach can be applicable to the substation to reduce the running cost and implement the real unattended operation.

  12. Universal method for constructing N-port non-blocking optical router based on 2 × 2 optical switch for photonic networks-on-chip.

    PubMed

    Chen, Qiaoshan; Zhang, Fanfan; Ji, Ruiqiang; Zhang, Lei; Yang, Lin

    2014-05-19

    We propose a universal method for constructing N-port non-blocking optical router for photonic networks-on-chip, in which all microring (MR) optical switches or Mach-Zehnder (M-Z) optical switches behave as 2 × 2 optical switches. The optical router constructed by the proposed method has minimum optical switches, in which the number of the optical switches is reduced about 50% compared to the reported optical routers based on MR optical switches and more than 30% compared to the reported optical routers based on M-Z optical switches, and therefore is more compact in footprint and more power-efficient. We also present a strict mathematical proof of the non-blocking routing of the proposed N-port optical router.

  13. Fault tolerant high-performance PACS network design and implementation

    NASA Astrophysics Data System (ADS)

    Chimiak, William J.; Boehme, Johannes M.

    1998-07-01

    The Wake Forest University School of Medicine and the Wake Forest University/Baptist Medical Center (WFUBMC) are implementing a second generation PACS. The first generation PACS provided helpful information about the functional and temporal requirements of the system. It highlighted the importance of image retrieval speed, system availability, RIS/HIS integration, the ability to rapidly view images on any PACS workstation, network bandwidth, equipment redundancy, and the ability for the system to evolve using standards-based components. This paper deals with the network design and implementation of the PACS. The physical layout of the hospital areas served by the PACS, the choice of network equipment and installation issues encountered are addressed. Efforts to optimize fault tolerance are discussed. The PACS network is a gigabit, mixed-media network based on LAN emulation over ATM (LANE) with a rapid migration from LANE to Multiple Protocols Over ATM (MPOA) planned. Two fault-tolerant backbone ATM switches serve to distribute network accesses with two load-balancing 622 megabit per second (Mbps) OC-12 interconnections. The switch was sized to be upgradable to provide a 2.54 Gbps OC-48 interconnection with an OC-12 interconnection as a load-balancing backup. Modalities connect with legacy network interface cards to a switched-ethernet device. This device has two 155 Mbps OC-3 load-balancing uplinks to each of the backbone ATM switches of the PACS. This provides a fault-tolerant logical connection to the modality servers which pass verified DICOM images to the PACS servers and proper PACS diagnostic workstations. Where fiber pulls were prohibitively expensive, edge ATM switches were installed with an OC-12 uplink to a backbone ATM switches. The PACS and data base servers are fault-tolerant, hot-swappable Sun Enterprise Servers with an OC-12 connection to a backbone ATM switch and a fast-ethernet connection to a back-up network. The workstations come with 10/100 BASET autosense cards. A redundant switched-ethernet network will be installed to provide yet another degree of network fault-tolerance. The switched-ethernet devices are connected to each of the backbone ATM switches with two-load-balancing OC-3 connections to provide fault-tolerant connectivity in the event of a primary network failure.

  14. Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks.

    PubMed

    Huang, Tao; Yan, Siyu; Yang, Fan; Liu, Jiang

    2016-11-06

    Wireless sensor networks (WSNs) have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs) have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs). However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture.

  15. Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks

    PubMed Central

    Huang, Tao; Yan, Siyu; Yang, Fan; Liu, Jiang

    2016-01-01

    Wireless sensor networks (WSNs) have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs) have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs). However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture. PMID:27827971

  16. Global exponential stability for switched memristive neural networks with time-varying delays.

    PubMed

    Xin, Youming; Li, Yuxia; Cheng, Zunshui; Huang, Xia

    2016-08-01

    This paper considers the problem of exponential stability for switched memristive neural networks (MNNs) with time-varying delays. Different from most of the existing papers, we model a memristor as a continuous system, and view switched MNNs as switched neural networks with uncertain time-varying parameters. Based on average dwell time technique, mode-dependent average dwell time technique and multiple Lyapunov-Krasovskii functional approach, two conditions are derived to design the switching signal and guarantee the exponential stability of the considered neural networks, which are delay-dependent and formulated by linear matrix inequalities (LMIs). Finally, the effectiveness of the theoretical results is demonstrated by two numerical examples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Asynchronous Transfer Mode (ATM) Switch Technology and Vendor Survey

    NASA Technical Reports Server (NTRS)

    Berry, Noemi

    1995-01-01

    Asynchronous Transfer Mode (ATM) switch and software features are described and compared in order to make switch comparisons meaningful. An ATM switch's performance cannot be measured solely based on its claimed switching capacity; traffic management and congestion control are emerging as the determining factors in an ATM network's ultimate throughput. Non-switch ATM products and experiences with actual installations of ATM networks are described. A compilation of select vendor offerings as of October 1994 is provided in chart form.

  18. TWC and AWG based optical switching structure for OVPN in WDM-PON

    NASA Astrophysics Data System (ADS)

    Bai, Hui-feng; Chen, Yu-xin; Wang, Qin

    2015-03-01

    With the rapid development of optical elements with large capacity and high speed, the network architecture is of great importance in determing the performance of wavelength division multiplexing passive optical network (WDM-PON). This paper proposes a switching structure based on the tunable wavelength converter (TWC) and the arrayed-waveguide grating (AWG) for WDM-PON, in order to provide the function of opitcal virtual private network (OVPN). Using the tunable wavelength converter technology, this switch structure is designed and works between the optical line terminal (OLT) and optical network units (ONUs) in the WDM-PON system. Moreover, the wavelength assignment of upstream/downstream can be realized and direct communication between ONUs is also allowed by privite wavelength channel. Simulation results show that the proposed TWC and AWG based switching structure is able to achieve OVPN function and to gain better performances in terms of bite error rate (BER) and time delay.

  19. Selective randomized load balancing and mesh networks with changing demands

    NASA Astrophysics Data System (ADS)

    Shepherd, F. B.; Winzer, P. J.

    2006-05-01

    We consider the problem of building cost-effective networks that are robust to dynamic changes in demand patterns. We compare several architectures using demand-oblivious routing strategies. Traditional approaches include single-hop architectures based on a (static or dynamic) circuit-switched core infrastructure and multihop (packet-switched) architectures based on point-to-point circuits in the core. To address demand uncertainty, we seek minimum cost networks that can carry the class of hose demand matrices. Apart from shortest-path routing, Valiant's randomized load balancing (RLB), and virtual private network (VPN) tree routing, we propose a third, highly attractive approach: selective randomized load balancing (SRLB). This is a blend of dual-hop hub routing and randomized load balancing that combines the advantages of both architectures in terms of network cost, delay, and delay jitter. In particular, we give empirical analyses for the cost (in terms of transport and switching equipment) for the discussed architectures, based on three representative carrier networks. Of these three networks, SRLB maintains the resilience properties of RLB while achieving significant cost reduction over all other architectures, including RLB and multihop Internet protocol/multiprotocol label switching (IP/MPLS) networks using VPN-tree routing.

  20. ATM encryption testing

    NASA Astrophysics Data System (ADS)

    Capell, Joyce; Deeth, David

    1996-01-01

    This paper describes why encryption was selected by Lockheed Martin Missiles & Space as the means for securing ATM networks. The ATM encryption testing program is part of an ATM network trial provided by Pacific Bell under the California Research Education Network (CalREN). The problem being addressed is the threat to data security which results when changing from a packet switched network infrastructure to a circuit switched ATM network backbone. As organizations move to high speed cell-based networks, there is a break down in the traditional security model which is designed to protect packet switched data networks from external attacks. This is due to the fact that most data security firewalls filter IP packets, restricting inbound and outbound protocols, e.g. ftp. ATM networks, based on cell-switching over virtual circuits, does not support this method for restricting access since the protocol information is not carried by each cell. ATM switches set up multiple virtual connections, thus there is no longer a single point of entry into the internal network. The problem is further complicated by the fact that ATM networks support high speed multi-media applications, including real time video and video teleconferencing which are incompatible with packet switched networks. The ability to restrict access to Lockheed Martin networks in support of both unclassified and classified communications is required before ATM network technology can be fully deployed. The Lockheed Martin CalREN ATM testbed provides the opportunity to test ATM encryption prototypes with actual applications to assess the viability of ATM encryption methodologies prior to installing large scale ATM networks. Two prototype ATM encryptors are being tested: (1) `MILKBUSH' a prototype encryptor developed by NSA for transmission of government classified data over ATM networks, and (2) a prototype ATM encryptor developed by Sandia National Labs in New Mexico, for the encryption of proprietary data.

  1. Denoising of genetic switches based on Parrondo's paradox

    NASA Astrophysics Data System (ADS)

    Fotoohinasab, Atiyeh; Fatemizadeh, Emad; Pezeshk, Hamid; Sadeghi, Mehdi

    2018-03-01

    Random decision making in genetic switches can be modeled as tossing a biased coin. In other word, each genetic switch can be considered as a game in which the reactive elements compete with each other to increase their molecular concentrations. The existence of a very small number of reactive element molecules has caused the neglect of effects of noise to be inevitable. Noise can lead to undesirable cell fate in cellular differentiation processes. In this paper, we study the robustness to noise in genetic switches by considering another switch to have a new gene regulatory network (GRN) in which both switches have been affected by the same noise and for this purpose, we will use Parrondo's paradox. We introduce two networks of games based on possible regulatory relations between genes. Our results show that the robustness to noise can increase by combining these noisy switches. We also describe how one of the switches in network II can model lysis/lysogeny decision making of bacteriophage lambda in Escherichia coli and we change its fate by another switch.

  2. All-optical OXC transition strategy from WDM optical network to elastic optical network.

    PubMed

    Chen, Xin; Li, Juhao; Guo, Bingli; Zhu, Paikun; Tang, Ruizhi; Chen, Zhangyuan; He, Yongqi

    2016-02-22

    Elastic optical network (EON) has been proposed recently as a spectrum-efficient optical layer to adapt to rapidly-increasing traffic demands instead of current deployed wavelength-division-multiplexing (WDM) optical network. In contrast with conventional WDM optical cross-connect (OXCs) based on wavelength selective switches (WSSs), the EON OXCs are based on spectrum selective switches (SSSs) which are much more expensive than WSSs, especially for large-scale switching architectures. So the transition cost from WDM OXCs to EON OXCs is a major obstacle to realizing EON. In this paper, we propose and experimentally demonstrate a transition OXC (TOXC) structure based on 2-stage cascading switching architectures, which make full use of available WSSs in current deployed WDM OXCs to reduce number and port count of required SSSs. Moreover, we propose a contention-aware spectrum allocation (CASA) scheme for EON built with the proposed TOXCs. We show by simulation that the TOXCs reduce the network capital expenditure transiting from WDM optical network to EON about 50%, with a minor traffic blocking performance degradation and about 10% accommodated traffic number detriment compared with all-SSS EON OXC architectures.

  3. A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks.

    PubMed

    Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong

    2015-01-01

    This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme.

  4. Clustering promotes switching dynamics in networks of noisy neurons

    NASA Astrophysics Data System (ADS)

    Franović, Igor; Klinshov, Vladimir

    2018-02-01

    Macroscopic variability is an emergent property of neural networks, typically manifested in spontaneous switching between the episodes of elevated neuronal activity and the quiescent episodes. We investigate the conditions that facilitate switching dynamics, focusing on the interplay between the different sources of noise and heterogeneity of the network topology. We consider clustered networks of rate-based neurons subjected to external and intrinsic noise and derive an effective model where the network dynamics is described by a set of coupled second-order stochastic mean-field systems representing each of the clusters. The model provides an insight into the different contributions to effective macroscopic noise and qualitatively indicates the parameter domains where switching dynamics may occur. By analyzing the mean-field model in the thermodynamic limit, we demonstrate that clustering promotes multistability, which gives rise to switching dynamics in a considerably wider parameter region compared to the case of a non-clustered network with sparse random connection topology.

  5. Design of a digital, ultra-broadband electro-optic switch for reconfigurable optical networks-on-chip.

    PubMed

    Van Campenhout, Joris; Green, William M J; Vlasov, Yurii A

    2009-12-21

    We present a novel design for a noise-tolerant, ultra-broadband electro-optic switch, based on a Mach-Zehnder lattice (MZL) interferometer. We analyze the switch performance through rigorous optical simulations, for devices implemented in silicon-on-insulator with carrier-injection-based phase shifters. We show that such a MZL switch can be designed to have a step-like switching response, resulting in improved tolerance to drive-voltage noise and temperature variations as compared to a single-stage Mach-Zehnder switch. Furthermore, we show that degradation in switching crosstalk and insertion loss due to free-carrier absorption can be largely overcome by a MZL switch design. Finally, MZL switches can be designed for having an ultra-wide, temperature-insensitive optical bandwidth of more than 250 nm. The proposed device shows good potential as a broadband optical switch in reconfigurable optical networks-on-chip.

  6. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch.

    PubMed

    Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang

    2016-01-19

    Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.

  7. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch

    PubMed Central

    Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang

    2016-01-01

    Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture. PMID:26797616

  8. High speed all optical networks

    NASA Technical Reports Server (NTRS)

    Chlamtac, Imrich; Ganz, Aura

    1990-01-01

    An inherent problem of conventional point-to-point wide area network (WAN) architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. The first solution to wavelength division multiplexing (WDM) based WAN networks that overcomes this limitation is presented. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs. The principle of the Lightnet architecture is the construction and use of virtual topology networks, embedded in the original network in the wavelength domain. For this construction Lightnets utilize the new concept of lightpaths which constitute the links of the virtual topology. Lightpaths are all-optical, multihop, paths in the network that allow data to be switched through intermediate nodes using high throughput passive optical switches. The use of the virtual topologies and the associated switching design introduce a number of new ideas, which are discussed in detail.

  9. Three-tier multi-granularity switching system based on PCE

    NASA Astrophysics Data System (ADS)

    Wang, Yubao; Sun, Hao; Liu, Yanfei

    2017-10-01

    With the growing demand for business communications, electrical signal processing optical path switching can't meet the demand. The multi-granularity switch system that can improve node routing and switching capabilities came into being. In the traditional network, each node is responsible for calculating the path; synchronize the whole network state, which will increase the burden on the network, so the concept of path calculation element (PCE) is proposed. The PCE is responsible for routing and allocating resources in the network1. In the traditional band-switched optical network, the wavelength is used as the basic routing unit, resulting in relatively low wavelength utilization. Due to the limitation of wavelength continuity, the routing design of the band technology becomes complicated, which directly affects the utilization of the system. In this paper, optical code granularity is adopted. There is no continuity of the optical code, and the number of optical codes is more flexible than the wavelength. For the introduction of optical code switching, we propose a Code Group Routing Entity (CGRE) algorithm. In short, the combination of three-tier multi-granularity optical switching system and PCE can simplify the network structure, reduce the node load, and enhance the network scalability and survivability. Realize the intelligentization of optical network.

  10. Low threshold all-optical crossbar switch on GaAs-GaAlAs channel waveguide arrays

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Kostrzewski, Andrew

    1994-09-01

    During the Phase 2 project entitled 'Low Threshold All-Optical Crossbar Switch on GaAs - GaAlAs Channel Waveguide Array,' Physical Optics Corporation (POC) developed the basic principles for the fabrication of all-optical crossbar switches. Based on this development. POC fabricated a 2 x 2 GaAs/GaAlAs switch that changes the direction of incident light with minimum insertion loss and nonlinear distortion. This unique technology can be used in both analog and digital networks. The applications of this technology are widespread. Because the all-optical network does not have any speed limitations (RC time constant), POC's approach will be beneficial to SONET networks, phased array radar networks, very high speed oscilloscopes, all-optical networks, IR countermeasure systems, BER equipment, and the fast growing video conferencing network market. The novel all-optical crossbar switch developed in this program will solve interconnect problems. and will be a key component in the widely proposed all-optical 200 Gb/s SONET/ATM networks.

  11. Traffic shaping and scheduling for OBS-based IP/WDM backbones

    NASA Astrophysics Data System (ADS)

    Elhaddad, Mahmoud S.; Melhem, Rami G.; Znati, Taieb; Basak, Debashis

    2003-10-01

    We introduce Proactive Reservation-based Switching (PRS) -- a switching architecture for IP/WDM networks based on Labeled Optical Burst Switching. PRS achieves packet delay and loss performance comparable to that of packet-switched networks, without requiring large buffering capacity, or burst scheduling across a large number of wavelengths at the core routers. PRS combines proactive channel reservation with periodic shaping of ingress-egress traffic aggregates to hide the offset latency and approximate the utilization/buffering characteristics of discrete-time queues with periodic arrival streams. A channel scheduling algorithm imposes constraints on burst departure times to ensure efficient utilization of wavelength channels and to maintain the distance between consecutive bursts through the network. Results obtained from simulation using TCP traffic over carefully designed topologies indicate that PRS consistently achieves channel utilization above 90% with modest buffering requirements.

  12. A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks

    PubMed Central

    Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong

    2015-01-01

    This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme. PMID:26690571

  13. Clustering and Flow Conservation Monitoring Tool for Software Defined Networks.

    PubMed

    Puente Fernández, Jesús Antonio; García Villalba, Luis Javier; Kim, Tai-Hoon

    2018-04-03

    Prediction systems present some challenges on two fronts: the relation between video quality and observed session features and on the other hand, dynamics changes on the video quality. Software Defined Networks (SDN) is a new concept of network architecture that provides the separation of control plane (controller) and data plane (switches) in network devices. Due to the existence of the southbound interface, it is possible to deploy monitoring tools to obtain the network status and retrieve a statistics collection. Therefore, achieving the most accurate statistics depends on a strategy of monitoring and information requests of network devices. In this paper, we propose an enhanced algorithm for requesting statistics to measure the traffic flow in SDN networks. Such an algorithm is based on grouping network switches in clusters focusing on their number of ports to apply different monitoring techniques. Such grouping occurs by avoiding monitoring queries in network switches with common characteristics and then, by omitting redundant information. In this way, the present proposal decreases the number of monitoring queries to switches, improving the network traffic and preventing the switching overload. We have tested our optimization in a video streaming simulation using different types of videos. The experiments and comparison with traditional monitoring techniques demonstrate the feasibility of our proposal maintaining similar values decreasing the number of queries to the switches.

  14. Prioritized retransmission in slotted all-optical packet-switched networks

    NASA Astrophysics Data System (ADS)

    Ghaffar Pour Rahbar, Akbar; Yang, Oliver

    2006-12-01

    We consider an all-optical slotted packet-switched network interconnected by a number of bufferless all-optical switches with contention-based operation. One approach to reduce the cost of the expensive contention resolution hardware could be retransmission in which each ingress switch keeps a copy of the transmitted traffic in the electronic buffer and retransmits whenever required. The conventional retransmission technique may need a higher number of retransmissions until traffic passes through the network. This in turn may lead to a retransmission at a higher layer and reduce the network throughput. In this paper, we propose and analyze a simple but effective prioritized retransmission technique in which dropped traffic is prioritized when retransmitted from ingress switches so that the core switch can process them with a higher priority. We present the analysis of both techniques in multifiber network architecture and verify it via simulation to demonstrate that our proposed algorithm can limit the number of retransmissions significantly and can improve TCP throughput better than the conventional retransmission technique.

  15. Piezoelectric Diffraction-Based Optical Switches

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan; Fuhr, Peter; Schipper, John

    2003-01-01

    Piezoelectric diffraction-based optoelectronic devices have been invented to satisfy requirements for switching signals quickly among alternative optical paths in optical communication networks. These devices are capable of operating with switching times as short as microseconds or even nanoseconds in some cases.

  16. Neural network-based sliding mode control for atmospheric-actuated spacecraft formation using switching strategy

    NASA Astrophysics Data System (ADS)

    Sun, Ran; Wang, Jihe; Zhang, Dexin; Shao, Xiaowei

    2018-02-01

    This paper presents an adaptive neural networks-based control method for spacecraft formation with coupled translational and rotational dynamics using only aerodynamic forces. It is assumed that each spacecraft is equipped with several large flat plates. A coupled orbit-attitude dynamic model is considered based on the specific configuration of atmospheric-based actuators. For this model, a neural network-based adaptive sliding mode controller is implemented, accounting for system uncertainties and external perturbations. To avoid invalidation of the neural networks destroying stability of the system, a switching control strategy is proposed which combines an adaptive neural networks controller dominating in its active region and an adaptive sliding mode controller outside the neural active region. An optimal process is developed to determine the control commands for the plates system. The stability of the closed-loop system is proved by a Lyapunov-based method. Comparative results through numerical simulations illustrate the effectiveness of executing attitude control while maintaining the relative motion, and higher control accuracy can be achieved by using the proposed neural-based switching control scheme than using only adaptive sliding mode controller.

  17. An absorptive single-pole four-throw switch using multiple-contact MEMS switches and its application to a monolithic millimeter-wave beam-forming network

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyo; Kim, Jong-Man; Kim, Yong-Kweon; Kwon, Youngwoo

    2009-01-01

    In this paper, a new absorptive single-pole four-throw (SP4T) switch based on multiple-contact switching is proposed and integrated with a Butler matrix to demonstrate a monolithic beam-forming network at millimeter waves (mm waves). In order to simplify the switching driving circuit and reduce the number of unit switches in an absorptive SP4T switch, the individual switches were replaced with long-span multiple-contact switches using stress-free single-crystalline-silicon MEMS technology. This approach improves the mechanical stability as well as the manufacturing yield, thereby allowing successful integration into a monolithic beam former. The fabricated absorptive SP4T MEMS switch shows insertion loss less than 1.3 dB, return losses better than 11 dB at 30 GHz and wideband isolation performance higher than 39 dB from 20 to 40 GHz. The absorptive SP4T MEMS switch is integrated with a 4 × 4 Butler matrix on a single chip to implement a monolithic beam-forming network, directing beam into four distinct angles. Array factors from the measured data show that the proposed absorptive SPnT MEMS switch can be effectively used for high-performance mm-wave beam-switching systems. This work corresponds to the first demonstration of a monolithic beam-forming network using switched beams.

  18. Optical burst switching for the next generation Optical Internet

    NASA Astrophysics Data System (ADS)

    Yoo, Myungsik

    2000-11-01

    In recent years, Internet Protocol (IP) over Wavelength Division Multiplexing (WDM) networks for the next generation Internet (or the so-called Optical Internet) have received enormous attention. There are two main drivers for an Optical Internet. One is the explosion of Internet traffic, which seems to keep growing exponentially. The other driver is the rapid advance in the WDM optical networking technology. In this study, key issues in the optical (WDM) layer will be investigated. As a novel switching paradigm for Optical Internet, Optical Burst Switching (OBS) is discussed. By leveraging the attractive properties of optical communications and at the same time, taking into account its limitations, OBS can combine the best of optical circuit-switching and packet/cell switching. The general concept of JET-based OBS protocol is described, including offset time and delayed reservation. In the next generation Optical Internet, one must address how to support Quality of Service (QoS) at the WDM layer since current IP provides only best effort services. The offset-time- based QoS scheme is proposed as a way of supporting QoS at the WDM layer. Unlike existing QoS schemes, offset- time-based QoS scheme does not mandate the use of buffer to differentiate services. For the bufferless WDM switch, the performance of offset- time-based QoS scheme is evaluated in term of blocking probability. In addition, the extra offset time required for class isolation is quantified and the theoretical bounds on blocking probability are analyzed. The offset-time-based scheme is applied to WDM switch with limited fiber delay line (FDL) buffer. We evaluate the effect of having a FDL buffer on the QoS performance of the offset-time-based scheme in terms of the loss probability and queuing delay of bursts. Finally, in order to dimension the network resources in Optical Internet backbone networks, the performance of the offset-time-based QoS scheme is evaluated for the multi-hop case. In particular, we consider very high performance Backbone Network Service (vBNS) backbone network. Various policies such as drop, retransmission, deflection routing and buffering are considered for performance evaluation. The performance results obtained under these policies are compared to decide the most efficient policy for the WDM backbone network.

  19. Hyperswitch Network For Hypercube Computer

    NASA Technical Reports Server (NTRS)

    Chow, Edward; Madan, Herbert; Peterson, John

    1989-01-01

    Data-driven dynamic switching enables high speed data transfer. Proposed hyperswitch network based on mixed static and dynamic topologies. Routing header modified in response to congestion or faults encountered as path established. Static topology meets requirement if nodes have switching elements that perform necessary routing header revisions dynamically. Hypercube topology now being implemented with switching element in each computer node aimed at designing very-richly-interconnected multicomputer system. Interconnection network connects great number of small computer nodes, using fixed hypercube topology, characterized by point-to-point links between nodes.

  20. Enhanced Thermo-Optical Switching of Paraffin-Wax Composite Spots under Laser Heating

    PubMed Central

    Said, Asmaa; Salah, Abeer; Abdel Fattah, Gamal

    2017-01-01

    Thermo-optical switches are of particular significance in communications networks where increasingly high switching speeds are required. Phase change materials (PCMs), in particular those based on paraffin wax, provide wealth of exciting applications with unusual thermally-induced switching properties, only limited by paraffin’s rather low thermal conductivity. In this paper, the use of different carbon fillers as thermal conductivity enhancers for paraffin has been investigated, and a novel structure based on spot of paraffin wax as a thermo-optic switch is presented. Thermo-optical switching parameters are enhanced with the addition of graphite and graphene, due to the extreme thermal conductivity of the carbon fillers. Differential Scanning Calorimetry (DSC) and Scanning electron microscope (SEM) are performed on paraffin wax composites, and specific heat capacities are calculated based on DSC measurements. Thermo-optical switching based on transmission is measured as a function of the host concentration under conventional electric heating and laser heating of paraffin-carbon fillers composites. Further enhancements in thermo-optical switching parameters are studied under Nd:YAG laser heating. This novel structure can be used in future networks with huge bandwidth requirements and electric noise free remote aerial laser switching applications. PMID:28772884

  1. Enhanced Thermo-Optical Switching of Paraffin-Wax Composite Spots under Laser Heating.

    PubMed

    Said, Asmaa; Salah, Abeer; Fattah, Gamal Abdel

    2017-05-12

    Thermo-optical switches are of particular significance in communications networks where increasingly high switching speeds are required. Phase change materials (PCMs), in particular those based on paraffin wax, provide wealth of exciting applications with unusual thermally-induced switching properties, only limited by paraffin's rather low thermal conductivity. In this paper, the use of different carbon fillers as thermal conductivity enhancers for paraffin has been investigated, and a novel structure based on spot of paraffin wax as a thermo-optic switch is presented. Thermo-optical switching parameters are enhanced with the addition of graphite and graphene, due to the extreme thermal conductivity of the carbon fillers. Differential Scanning Calorimetry (DSC) and Scanning electron microscope (SEM) are performed on paraffin wax composites, and specific heat capacities are calculated based on DSC measurements. Thermo-optical switching based on transmission is measured as a function of the host concentration under conventional electric heating and laser heating of paraffin-carbon fillers composites. Further enhancements in thermo-optical switching parameters are studied under Nd:YAG laser heating. This novel structure can be used in future networks with huge bandwidth requirements and electric noise free remote aerial laser switching applications.

  2. Clustering and Flow Conservation Monitoring Tool for Software Defined Networks

    PubMed Central

    Puente Fernández, Jesús Antonio

    2018-01-01

    Prediction systems present some challenges on two fronts: the relation between video quality and observed session features and on the other hand, dynamics changes on the video quality. Software Defined Networks (SDN) is a new concept of network architecture that provides the separation of control plane (controller) and data plane (switches) in network devices. Due to the existence of the southbound interface, it is possible to deploy monitoring tools to obtain the network status and retrieve a statistics collection. Therefore, achieving the most accurate statistics depends on a strategy of monitoring and information requests of network devices. In this paper, we propose an enhanced algorithm for requesting statistics to measure the traffic flow in SDN networks. Such an algorithm is based on grouping network switches in clusters focusing on their number of ports to apply different monitoring techniques. Such grouping occurs by avoiding monitoring queries in network switches with common characteristics and then, by omitting redundant information. In this way, the present proposal decreases the number of monitoring queries to switches, improving the network traffic and preventing the switching overload. We have tested our optimization in a video streaming simulation using different types of videos. The experiments and comparison with traditional monitoring techniques demonstrate the feasibility of our proposal maintaining similar values decreasing the number of queries to the switches. PMID:29614049

  3. On-board B-ISDN fast packet switching architectures. Phase 2: Development. Proof-of-concept architecture definition report

    NASA Technical Reports Server (NTRS)

    Shyy, Dong-Jye; Redman, Wayne

    1993-01-01

    For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices.

  4. High-performance flat data center network architecture based on scalable and flow-controlled optical switching system

    NASA Astrophysics Data System (ADS)

    Calabretta, Nicola; Miao, Wang; Dorren, Harm

    2016-03-01

    Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and applications. Virtualization mechanisms and technologies can leverage statistical multiplexing and fast switch reconfiguration to further extend the DC efficiency and agility. We present a novel high performance flat DCN employing bufferless and distributed fast (sub-microsecond) optical switches with wavelength, space, and time switching operation. The fast optical switches can enhance the performance of the DCNs by providing large-capacity switching capability and efficiently sharing the data plane resources by exploiting statistical multiplexing. Benefiting from the Software-Defined Networking (SDN) control of the optical switches, virtual DCNs can be flexibly created and reconfigured by the DCN provider. Numerical and experimental investigations of the DCN based on the fast optical switches show the successful setup of virtual network slices for intra-data center interconnections. Experimental results to assess the DCN performance in terms of latency and packet loss show less than 10^-5 packet loss and 640ns end-to-end latency with 0.4 load and 16- packet size buffer. Numerical investigation on the performance of the systems when the port number of the optical switch is scaled to 32x32 system indicate that more than 1000 ToRs each with Terabit/s interface can be interconnected providing a Petabit/s capacity. The roadmap to photonic integration of large port optical switches will be also presented.

  5. Burst switching without guard interval in all-optical software-define star intra-data center network

    NASA Astrophysics Data System (ADS)

    Ji, Philip N.; Wang, Ting

    2014-02-01

    Optical switching has been introduced in intra-data center networks (DCNs) to increase capacity and to reduce power consumption. Recently we proposed a star MIMO OFDM-based all-optical DCN with burst switching and software-defined networking. Here, we introduce the control procedure for the star DCN in detail for the first time. The timing, signaling, and operation are described for each step to achieve efficient bandwidth resource utilization. Furthermore, the guidelines for the burst assembling period selection that allows burst switching without guard interval are discussed. The star all-optical DCN offers flexible and efficient control for next-generation data center application.

  6. MOBS - A modular on-board switching system

    NASA Astrophysics Data System (ADS)

    Berner, W.; Grassmann, W.; Piontek, M.

    The authors describe a multibeam satellite system that is designed for business services and for communications at a high bit rate. The repeater is regenerative with a modular onboard switching system. It acts not only as baseband switch but also as the central node of the network, performing network control and protocol evaluation. The hardware is based on a modular bus/memory architecture with associated processors.

  7. A Fully Implemented 12 × 12 Data Vortex Optical Packet Switching Interconnection Network

    NASA Astrophysics Data System (ADS)

    Shacham, Assaf; Small, Benjamin A.; Liboiron-Ladouceur, Odile; Bergman, Keren

    2005-10-01

    A fully functional optical packet switching (OPS) interconnection network based on the data vortex architecture is presented. The photonic switching fabric uniquely capitalizes on the enormous bandwidth advantage of wavelength division multiplexing (WDM) wavelength parallelism while delivering minimal packet transit latency. Utilizing semiconductor optical amplifier (SOA)-based switching nodes and conventional fiber-optic technology, the 12-port system exhibits a capacity of nearly 1 Tb/s. Optical packets containing an eight-wavelength WDM payload with 10 Gb/s per wavelength are routed successfully to all 12 ports while maintaining a bit error rate (BER) of 10-12 or better. Median port-to-port latencies of 110 ns are achieved with a distributed deflection routing network that resolves packet contention on-the-fly without the use of optical buffers and maintains the entire payload path in the optical domain.

  8. A Novel QKD-based Secure Edge Router Architecture Design for Burst Confidentiality in Optical Burst Switched Networks

    NASA Astrophysics Data System (ADS)

    Balamurugan, A. M.; Sivasubramanian, A.

    2014-06-01

    The Optical Burst Switching (OBS) is an emergent result to the technology issue that could achieve a viable network in future. They have the ability to meet the bandwidth requisite of those applications that call for intensive bandwidth. The field of optical transmission has undergone numerous advancements and is still being researched mainly due to the fact that optical data transmission can be done at enormous speeds. The concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution and quality of service (QoS). This paper proposes a framework based on QKD based secure edge router architecture design to provide burst confidentiality. The QKD protocol offers high level of confidentiality as it is indestructible. The design architecture was implemented in FPGA using diverse models and the results were taken. The results show that the proposed model is suitable for real time secure routing applications of the Optical burst switched networks.

  9. Effects of fundamentals acquisition and strategy switch on stock price dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Songtao; He, Jianmin; Li, Shouwei

    2018-02-01

    An agent-based artificial stock market is developed to simulate trading behavior of investors. In the market, acquisition and employment of information about fundamentals and strategy switch are investigated to explain stock price dynamics. Investors could obtain the information from both market and neighbors resided on their social networks. Depending on information status and performances of different strategies, an informed investor may switch to the strategy of fundamentalist. This in turn affects the information acquisition process, since fundamentalists are more inclined to search and spread the information than chartists. Further investigation into price dynamics generated from three typical networks, i.e. regular lattice, small-world network and random graph, are conducted after general relation between network structures and price dynamics is revealed. In each network, integrated effects of different combinations of information efficiency and switch intensity are investigated. Results have shown that, along with increasing switch intensity, market and social information efficiency play different roles in the formation of price distortion, standard deviation and kurtosis of returns.

  10. Principle and verification of novel optical virtual private networks over multiprotocol label switching/optical packet switching networks

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Wang, Zhengsuan; Jin, Wei; Qiu, Kun

    2012-11-01

    A novel realization method of the optical virtual private networks (OVPN) over multiprotocol label switching/optical packet switching (MPLS/OPS) networks is proposed. In this scheme, the introduction of MPLS control plane makes OVPN over OPS networks more reliable and easier; OVPN makes use of the concept of high reconfiguration of light-paths offered by MPLS, to set up secure tunnels of high bandwidth across intelligent OPS networks. Through resource management, the signal mechanism, connection control, and the architecture of the creation and maintenance of OVPN are efficiently realized. We also present an OVPN architecture with two traffic priorities, which is used to analyze the capacity, throughput, delay time of the proposed networks, and the packet loss rate performance of the OVPN over MPLS/OPS networks based on full mesh topology. The results validate the applicability of such reliable connectivity to high quality services in the OVPN over MPLS/OPS networks. Along with the results, the feasibility of the approach as the basis for the next generation networks is demonstrated and discussed.

  11. Multistage switching hardware and software implementations for student experiment purpose

    NASA Astrophysics Data System (ADS)

    Sani, A.; Suherman

    2018-02-01

    Current communication and internet networks are underpinned by the switching technologies that interconnect one network to the others. Students’ understanding on networks rely on how they conver the theories. However, understanding theories without touching the reality may exert spots in the overall knowledge. This paper reports the progress of the multistage switching design and implementation for student laboratory activities. The hardware and software designs are based on three stages clos switching architecture with modular 2x2 switches, controlled by an arduino microcontroller. The designed modules can also be extended for batcher and bayan switch, and working on circuit and packet switching systems. The circuit analysis and simulation show that the blocking probability for each switch combinations can be obtained by generating random or patterned traffics. The mathematic model and simulation analysis shows 16.4% blocking probability differences as the traffic generation is uniform. The circuits design components and interfacing solution have been identified to allow next step implementation.

  12. DISCRETE EVENT SIMULATION OF OPTICAL SWITCH MATRIX PERFORMANCE IN COMPUTER NETWORKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imam, Neena; Poole, Stephen W

    2013-01-01

    In this paper, we present application of a Discrete Event Simulator (DES) for performance modeling of optical switching devices in computer networks. Network simulators are valuable tools in situations where one cannot investigate the system directly. This situation may arise if the system under study does not exist yet or the cost of studying the system directly is prohibitive. Most available network simulators are based on the paradigm of discrete-event-based simulation. As computer networks become increasingly larger and more complex, sophisticated DES tool chains have become available for both commercial and academic research. Some well-known simulators are NS2, NS3, OPNET,more » and OMNEST. For this research, we have applied OMNEST for the purpose of simulating multi-wavelength performance of optical switch matrices in computer interconnection networks. Our results suggest that the application of DES to computer interconnection networks provides valuable insight in device performance and aids in topology and system optimization.« less

  13. Fault-Tolerant Local-Area Network

    NASA Technical Reports Server (NTRS)

    Morales, Sergio; Friedman, Gary L.

    1988-01-01

    Local-area network (LAN) for computers prevents single-point failure from interrupting communication between nodes of network. Includes two complete cables, LAN 1 and LAN 2. Microprocessor-based slave switches link cables to network-node devices as work stations, print servers, and file servers. Slave switches respond to commands from master switch, connecting nodes to two cable networks or disconnecting them so they are completely isolated. System monitor and control computer (SMC) acts as gateway, allowing nodes on either cable to communicate with each other and ensuring that LAN 1 and LAN 2 are fully used when functioning properly. Network monitors and controls itself, automatically routes traffic for efficient use of resources, and isolates and corrects its own faults, with potential dramatic reduction in time out of service.

  14. Traffic protection in MPLS networks using an off-line flow optimization model

    NASA Astrophysics Data System (ADS)

    Krzesinski, Anthony E.; Muller, Karen E.

    2002-07-01

    MPLS-based recovery is intended to effect rapid and complete restoration of traffic affected by a fault in an MPLS network. Two MPLS-based recovery models have been proposed: IP re-routing which establishes recovery paths on demand, and protection switching which works with pre-established recovery paths. IP re-routing is robust and frugal since no resources are pre-committed but is inherently slower than protection switching which is intended to offer high reliability to premium services where fault recovery takes place at the 100 ms time scale. We present a model of protection switching in MPLS networks. A variant of the flow deviation method is used to find and capacitate a set of optimal label switched paths. The traffic is routed over a set of working LSPs. Global repair is implemented by reserving a set of pre-established recovery LSPs. An analytic model is used to evaluate the MPLS-based recovery mechanisms in response to bi-directional link failures. A simulation model is used to evaluate the MPLS recovery cycle in terms of the time needed to restore the traffic after a uni-directional link failure. The models are applied to evaluate the effectiveness of protection switching in networks consisting of between 20 and 100 nodes.

  15. Optical slotted circuit switched network: a bandwidth efficient alternative to wavelength-routed network

    NASA Astrophysics Data System (ADS)

    Li, Yan; Collier, Martin

    2007-11-01

    Wavelength-routed networks have received enormous attention due to the fact that they are relatively simple to implement and implicitly offer Quality of Service (QoS) guarantees. However, they suffer from a bandwidth inefficiency problem and require complex Routing and Wavelength Assignment (RWA). Most attempts to address the above issues exploit the joint use of WDM and TDM technologies. The resultant TDM-based wavelength-routed networks partition the wavelength bandwidth into fixed-length time slots organized as a fixed-length frame. Multiple connections can thus time-share a wavelength and the grooming of their traffic leads to better bandwidth utilization. The capability of switching in both wavelength and time domains in such networks also mitigates the RWA problem. However, TMD-based wavelength-routed networks work in synchronous mode and strict synchronization among all network nodes is required. Global synchronization for all-optical networks which operate at extremely high speed is technically challenging, and deploying an optical synchronizer for each wavelength involves considerable cost. An Optical Slotted Circuit Switching (OSCS) architecture is proposed in this paper. In an OSCS network, slotted circuits are created to better utilize the wavelength bandwidth than in classic wavelength-routed networks. The operation of the protocol is such as to avoid the need for global synchronization required by TDM-based wavelength-routed networks.

  16. Nonvolatile Ionic Two-Terminal Memory Device

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.

    1990-01-01

    Conceptual solid-state memory device nonvolatile and erasable and has only two terminals. Proposed device based on two effects: thermal phase transition and reversible intercalation of ions. Transfer of sodium ions between source of ions and electrical switching element increases or decreases electrical conductance of element, turning switch "on" or "off". Used in digital computers and neural-network computers. In neural networks, many small, densely packed switches function as erasable, nonvolatile synaptic elements.

  17. A programmable Si-photonic node for SDN-enabled Bloom filter forwarding in disaggregated data centers

    NASA Astrophysics Data System (ADS)

    Moralis-Pegios, M.; Terzenidis, N.; Vagionas, C.; Pitris, S.; Chatzianagnostou, E.; Brimont, A.; Zanzi, A.; Sanchis, P.; Marti, J.; Kraft, J.; Rochracher, K.; Dorrestein, S.; Bogdan, M.; Tekin, T.; Syrivelis, D.; Tassiulas, L.; Miliou, A.; Pleros, N.; Vyrsokinos, K.

    2017-02-01

    Programmable switching nodes supporting Software-Defined Networking (SDN) over optical interconnecting technologies arise as a key enabling technology for future disaggregated Data Center (DC) environments. The SDNenabling roadmap of intra-DC optical solutions is already a reality for rack-to-rack interconnects, with recent research reporting on interesting applications of programmable silicon photonic switching fabrics addressing board-to-board and even on-board applications. In this perspective, simplified information addressing schemes like Bloom filter (BF)-based labels emerge as a highly promising solution for ensuring rapid switch reconfiguration, following quickly the changes enforced in network size, network topology or even in content location. The benefits of BF-based forwarding have been so far successfully demonstrated in the Information-Centric Network (ICN) paradigm, while theoretical studies have also revealed the energy consumption and speed advantages when applied in DCs. In this paper we present for the first time a programmable 4x4 Silicon Photonic switch that supports SDN through the use of BF-labeled router ports. Our scheme significantly simplifies packet forwarding as it negates the need for large forwarding tables, allowing for its remote control through modifications in the assigned BF labels. We demonstrate 1x4 switch operation controlling the Si-Pho switch by a Stratix V FPGA module, which is responsible for processing the packet ID and correlating its destination with the appropriate BF-labeled outgoing port. DAC- and amplifier-less control of the carrier-injection Si-Pho switches is demonstrated, revealing successful switching of 10Gb/s data packets with BF-based forwarding information changes taking place at a time-scale that equals the duration of four consecutive packets.

  18. An approach to efficient mobility management in intelligent networks

    NASA Technical Reports Server (NTRS)

    Murthy, K. M. S.

    1995-01-01

    Providing personal communication systems supporting full mobility require intelligent networks for tracking mobile users and facilitating outgoing and incoming calls over different physical and network environments. In realizing the intelligent network functionalities, databases play a major role. Currently proposed network architectures envision using the SS7-based signaling network for linking these DB's and also for interconnecting DB's with switches. If the network has to support ubiquitous, seamless mobile services, then it has to support additionally mobile application parts, viz., mobile origination calls, mobile destination calls, mobile location updates and inter-switch handovers. These functions will generate significant amount of data and require them to be transferred between databases (HLR, VLR) and switches (MSC's) very efficiently. In the future, the users (fixed or mobile) may use and communicate with sophisticated CPE's (e.g. multimedia, multipoint and multisession calls) which may require complex signaling functions. This will generate volumness service handling data and require efficient transfer of these message between databases and switches. Consequently, the network providers would be able to add new services and capabilities to their networks incrementally, quickly and cost-effectively.

  19. Switch-connected HyperX network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Heidelberger, Philip

    A network system includes a plurality of sub-network planes and global switches. The sub-network planes have a same network topology as each other. Each of the sub-network planes includes edge switches. Each of the edge switches has N ports. Each of the global switches is configured to connect a group of edge switches at a same location in the sub-network planes. In each of the sub-network planes, some of the N ports of each of the edge switches are connected to end nodes, and others of the N ports are connected to other edge switches in the same sub-network plane,more » other of the N ports are connected to at least one of the global switches.« less

  20. FPGA Based Reconfigurable ATM Switch Test Bed

    NASA Technical Reports Server (NTRS)

    Chu, Pong P.; Jones, Robert E.

    1998-01-01

    Various issues associated with "FPGA Based Reconfigurable ATM Switch Test Bed" are presented in viewgraph form. Specific topics include: 1) Network performance evaluation; 2) traditional approaches; 3) software simulation; 4) hardware emulation; 5) test bed highlights; 6) design environment; 7) test bed architecture; 8) abstract sheared-memory switch; 9) detailed switch diagram; 10) traffic generator; 11) data collection circuit and user interface; 12) initial results; and 13) the following conclusions: Advances in FPGA make hardware emulation feasible for performance evaluation, hardware emulation can provide several orders of magnitude speed-up over software simulation; due to the complexity of hardware synthesis process, development in emulation is much more difficult than simulation and requires knowledge in both networks and digital design.

  1. A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing.

    PubMed

    Sillin, Henry O; Aguilera, Renato; Shieh, Hsien-Hang; Avizienis, Audrius V; Aono, Masakazu; Stieg, Adam Z; Gimzewski, James K

    2013-09-27

    Atomic switch networks (ASNs) have been shown to generate network level dynamics that resemble those observed in biological neural networks. To facilitate understanding and control of these behaviors, we developed a numerical model based on the synapse-like properties of individual atomic switches and the random nature of the network wiring. We validated the model against various experimental results highlighting the possibility to functionalize the network plasticity and the differences between an atomic switch in isolation and its behaviors in a network. The effects of changing connectivity density on the nonlinear dynamics were examined as characterized by higher harmonic generation in response to AC inputs. To demonstrate their utility for computation, we subjected the simulated network to training within the framework of reservoir computing and showed initial evidence of the ASN acting as a reservoir which may be optimized for specific tasks by adjusting the input gain. The work presented represents steps in a unified approach to experimentation and theory of complex systems to make ASNs a uniquely scalable platform for neuromorphic computing.

  2. A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing

    NASA Astrophysics Data System (ADS)

    Sillin, Henry O.; Aguilera, Renato; Shieh, Hsien-Hang; Avizienis, Audrius V.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.

    2013-09-01

    Atomic switch networks (ASNs) have been shown to generate network level dynamics that resemble those observed in biological neural networks. To facilitate understanding and control of these behaviors, we developed a numerical model based on the synapse-like properties of individual atomic switches and the random nature of the network wiring. We validated the model against various experimental results highlighting the possibility to functionalize the network plasticity and the differences between an atomic switch in isolation and its behaviors in a network. The effects of changing connectivity density on the nonlinear dynamics were examined as characterized by higher harmonic generation in response to AC inputs. To demonstrate their utility for computation, we subjected the simulated network to training within the framework of reservoir computing and showed initial evidence of the ASN acting as a reservoir which may be optimized for specific tasks by adjusting the input gain. The work presented represents steps in a unified approach to experimentation and theory of complex systems to make ASNs a uniquely scalable platform for neuromorphic computing.

  3. Call for Papers: Photonics in Switching

    NASA Astrophysics Data System (ADS)

    Wosinska, Lena; Glick, Madeleine

    2006-04-01

    Call for Papers: Photonics in Switching

    Guest Editors:

    Lena Wosinska, Royal Institute of Technology (KTH) / ICT Sweden Madeleine Glick, Intel Research, Cambridge, UK

    Technologies based on DWDM systems allow data transmission with bit rates of Tbit/s on a single fiber. To facilitate this enormous transmission volume, high-capacity and high-speed network nodes become inevitable in the optical network. Wideband switching, WDM switching, optical burst switching (OBS), and optical packet switching (OPS) are promising technologies for harnessing the bandwidth of WDM optical fiber networks in a highly flexible and efficient manner. As a number of key optical component technologies approach maturity, photonics in switching is becoming an increasingly attractive and practical solution for the next-generation of optical networks. The scope of this special issue is focused on the technology and architecture of optical switching nodes, including the architectural and algorithmic aspects of high-speed optical networks.

    Scope of Submission

    The scope of the papers includes, but is not limited to, the following topics:
    • WDM node architectures
    • Novel device technologies enabling photonics in switching, such as optical switch fabrics, optical memory, and wavelength conversion
    • Routing protocols
    • WDM switching and routing
    • Quality of service
    • Performance measurement and evaluation
    • Next-generation optical networks: architecture, signaling, and control
    • Traffic measurement and field trials
    • Optical burst and packet switching
    • OBS/OPS node architectures
    • Burst/Packet scheduling and routing algorithms
    • Contention resolution/avoidance strategies
    • Services and applications for OBS/OPS (e.g., grid networks, storage-area networks, etc.)
    • Burst assembly and ingress traffic shaping
    • Hybrid OBS/TDM or OBS/wavelength routing

    Manuscript Submission

    To submit to this special issue, follow the normal procedure for submission to JON and select ``Photonics in Switching' in the features indicator of the online submission form. For all other questions relating to this feature issue, please send an e-mail to jon@osa.org, subject line ``Photonics in Switching.' Additional information can be found on the JON website: http://www.osa-jon.org/journal/jon/author.cfm. Submission Deadline: 15 September 2006

  4. Experimental demonstration of software defined data center optical networks with Tbps end-to-end tunability

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Zhang, Jie; Ji, Yuefeng; Li, Hui; Wang, Huitao; Ge, Chao

    2015-10-01

    The end-to-end tunability is important to provision elastic channel for the burst traffic of data center optical networks. Then, how to complete the end-to-end tunability based on elastic optical networks? Software defined networking (SDN) based end-to-end tunability solution is proposed for software defined data center optical networks, and the protocol extension and implementation procedure are designed accordingly. For the first time, the flexible grid all optical networks with Tbps end-to-end tunable transport and switch system have been online demonstrated for data center interconnection, which are controlled by OpenDayLight (ODL) based controller. The performance of the end-to-end tunable transport and switch system has been evaluated with wavelength number tuning, bit rate tuning, and transmit power tuning procedure.

  5. Study on multiple-hops performance of MOOC sequences-based optical labels for OPS networks

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun; Ma, Chunli

    2009-11-01

    In this paper, we utilize a new study method that is under independent case of multiple optical orthogonal codes to derive the probability function of MOOCS-OPS networks, discuss the performance characteristics for a variety of parameters, and compare some characteristics of the system employed by single optical orthogonal code or multiple optical orthogonal codes sequences-based optical labels. The performance of the system is also calculated, and our results verify that the method is effective. Additionally it is found that performance of MOOCS-OPS networks would, negatively, be worsened, compared with single optical orthogonal code-based optical label for optical packet switching (SOOC-OPS); however, MOOCS-OPS networks can greatly enlarge the scalability of optical packet switching networks.

  6. High speed all-optical networks

    NASA Technical Reports Server (NTRS)

    Chlamtac, Imrich

    1993-01-01

    An inherent problem of conventional point-to-point WAN architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. This report presents the first solution to WDM based WAN networks that overcomes this limitation. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs.

  7. High-speed on-chip windowed centroiding using photodiode-based CMOS imager

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce (Inventor)

    2003-01-01

    A centroid computation system is disclosed. The system has an imager array, a switching network, computation elements, and a divider circuit. The imager array has columns and rows of pixels. The switching network is adapted to receive pixel signals from the image array. The plurality of computation elements operates to compute inner products for at least x and y centroids. The plurality of computation elements has only passive elements to provide inner products of pixel signals the switching network. The divider circuit is adapted to receive the inner products and compute the x and y centroids.

  8. High-speed on-chip windowed centroiding using photodiode-based CMOS imager

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce (Inventor)

    2004-01-01

    A centroid computation system is disclosed. The system has an imager array, a switching network, computation elements, and a divider circuit. The imager array has columns and rows of pixels. The switching network is adapted to receive pixel signals from the image array. The plurality of computation elements operates to compute inner products for at least x and y centroids. The plurality of computation elements has only passive elements to provide inner products of pixel signals the switching network. The divider circuit is adapted to receive the inner products and compute the x and y centroids.

  9. Next generation satellite communications networks

    NASA Astrophysics Data System (ADS)

    Garland, P. J.; Osborne, F. J.; Streibl, I.

    The paper introduces two potential uses for new space hardware to permit enhanced levels of signal handling and switching in satellite communication service for Canada. One application involves increased private-sector services in the Ku band; the second supports new personal/mobile services by employing higher levels of handling and switching in the Ka band. First-generation satellite regeneration and switching experiments involving the NASA/ACTS spacecraft are described, where the Ka band and switching satellite network problems are emphasized. Second-generation satellite development is outlined based on demand trends for more packet-based switching, low-cost earth stations, and closed user groups. A demonstration mission for new Ka- and Ku-band technologies is proposed, including the payload configuration. The half ANIK E payload is shown to meet the demonstration objectives, and projected to maintain a fully operational payload for at least 10 years.

  10. Toward next-generation optical networks: a network operator perspective based on experimental tests and economic analysis

    NASA Astrophysics Data System (ADS)

    Xiao, Xiaojun; Du, Chunsheng; Zhou, Rongsheng

    2004-04-01

    As a result of data traffic"s exponential growth, network is currently evolving from fixed circuit switched services to dynamic packet switched services, which has brought unprecedented changes to the existing transport infrastructure. It is generally agreed that automatic switched optical network (ASON) is one of the promising solutions for the next generation optical networks. In this paper, we present the results of our experimental tests and economic analysis on ASON. The intention of this paper is to present our perspective, in terms of evolution strategy toward ASON, on next generation optical networks. It is shown through experimental tests that the performance of current Pre-standard ASON enabled equipments satisfies the basic requirements of network operators and is ready for initial deployment. The results of the economic analysis show that network operators can be benefit from the deployment of ASON from three sides. Firstly, ASON can reduce the CAPEX for network expanding by integrating multiple ADM & DCS into one box. Secondly, ASON can reduce the OPEX for network operation by introducing automatic resource control scheme. Finally, ASON can increase margin revenue by providing new optical network services such as Bandwidth on Demand, optical VPN etc. Finally, the evolution strategy is proposed as our perspective toward next generation optical networks. We hope the evolution strategy introduced may be helpful for the network operators to gracefully migrate their fixed ring based legacy networks to next generation dynamic mesh based network.

  11. A hybrid optical switch architecture to integrate IP into optical networks to provide flexible and intelligent bandwidth on demand for cloud computing

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Hall, Trevor J.

    2013-12-01

    The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users. As a consequence, the nature of the Internet traffic has been fundamentally transformed from a pure packet-based pattern to today's predominantly flow-based pattern. Cloud computing has also brought about an unprecedented growth in the Internet traffic. In this paper, a hybrid optical switch architecture is presented to deal with the flow-based Internet traffic, aiming to offer flexible and intelligent bandwidth on demand to improve fiber capacity utilization. The hybrid optical switch is capable of integrating IP into optical networks for cloud-based traffic with predictable performance, for which the delay performance of the electronic module in the hybrid optical switch architecture is evaluated through simulation.

  12. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system.

    PubMed

    Miao, Wang; Luo, Jun; Di Lucente, Stefano; Dorren, Harm; Calabretta, Nicola

    2014-02-10

    We propose and demonstrate an optical flat datacenter network based on scalable optical switch system with optical flow control. Modular structure with distributed control results in port-count independent optical switch reconfiguration time. RF tone in-band labeling technique allowing parallel processing of the label bits ensures the low latency operation regardless of the switch port-count. Hardware flow control is conducted at optical level by re-using the label wavelength without occupying extra bandwidth, space, and network resources which further improves the performance of latency within a simple structure. Dynamic switching including multicasting operation is validated for a 4 x 4 system. Error free operation of 40 Gb/s data packets has been achieved with only 1 dB penalty. The system could handle an input load up to 0.5 providing a packet loss lower that 10(-5) and an average latency less that 500 ns when a buffer size of 16 packets is employed. Investigation on scalability also indicates that the proposed system could potentially scale up to large port count with limited power penalty.

  13. Output synchronization of discrete-time dynamical networks based on geometrically incremental dissipativity.

    PubMed

    Li, Chensong; Zhao, Jun

    2017-01-01

    In this work, we investigate the output synchronization problem for discrete-time dynamical networks with identical nodes. Firstly, if each node of a network is geometrically incrementally dissipative, the entire network can be viewed as a geometrically dissipative nonlinear system by choosing a particular input-output pair. Then, based on the geometrical dissipativity property, we consider two cases: output synchronization under arbitrary topology and switching topology, respectively. For the first case, we establish several criteria of output synchronization under arbitrary switching between a set of connection topologies by employing a common Lyapunov function. For the other case, we give the design method of a switching signal to achieve output synchronization even if all subnetworks are not synchronous. Finally, an example is provided to illustrate the effectiveness of the main results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  14. A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching.

    PubMed

    Lin, Yuanhai; Zhang, Xinping; Fang, Xiaohui; Liang, Shuyan

    2016-01-21

    We report an ultrafast optical switching device constructed by stacking two layers of gold nanowires into a perpendicularly crossed network, which works at a speed faster than 280 fs with an on/off modulation depth of about 22.4%. The two stacks play different roles in enhancing consistently the optical switching performance due to their different dependence on the polarization of optical electric fields. The cross-plasmon resonance based on the interaction between the perpendicularly stacked gold nanowires and its Fano-coupling with Rayleigh anomaly is the dominant mechanism for such a high-contrast optical switching device.

  15. Fully programmable and scalable optical switching fabric for petabyte data center.

    PubMed

    Zhu, Zhonghua; Zhong, Shan; Chen, Li; Chen, Kai

    2015-02-09

    We present a converged EPS and OCS switching fabric for data center networks (DCNs) based on a distributed optical switching architecture leveraging both WDM & SDM technologies. The architecture is topology adaptive, well suited to dynamic and diverse *-cast traffic patterns. Compared to a typical folded-Clos network, the new architecture is more readily scalable to future multi-Petabyte data centers with 1000 + racks while providing a higher link bandwidth, reducing transceiver count by 50%, and improving cabling efficiency by more than 90%.

  16. Performance of circuit switching in the Internet

    NASA Astrophysics Data System (ADS)

    Molinero-Fernández, Pablo; McKeown, Nick

    2003-04-01

    We study the performance of an Internet that uses circuit switching (CS) instead of, or in addition to, packet switching (PS). On the face of it, this would seem a pointless exercise; the Internet is packet switched, and it was deliberately built that way to enable the efficiencies afforded by statistical multiplexing and the robustness of fast rerouting around failures. But link utilization is low particularly at the core of the Internet, which makes statistical multiplexing less important than it once was. Moreover, circuit switches today are capable of rapid reconfiguration around failures. There is also renewed interest in CS because of the ease of building very-high-capacity optical circuit switches. Although several proposals have suggested ways in which CS may be introduced into the Internet, the research presented here is based on Transmission Control Protocol (TCP) switching, in which a new circuit is created for each application flow. Here we explore the performance of a network that uses TCP switching, with particular emphasis on the response time experienced by users. We use simple M/GI/1 and M/GI/N queues to model application flows in both packet-switched and circuit-switched networks, as well as ns-2 simulations. We conclude that because of high-bandwidth long-lived flows, it does not make sense to use CS in shared-access or local area networks. But our results suggest that in the core of the network, where high capacity is needed most, and where peak flow rate is limited by the access link, there is little or no difference in performance between CS and PS. Given that circuit switches can be built to be much faster than packet switches, this suggests that a circuit-switched core warrants further investigation.

  17. Reconfigurable radio-over-fiber system based on optical switch and tunable filter

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Yin, Rui; Ji, Wei; Sun, Kai; Zhang, Shicheng

    2017-09-01

    As the best candidate for wireless-access networks, radio-over-fiber (RoF) technology can carry a variety of business. It is necessary to provide differentiated services for different users, so the network needs to produce signals with different modulation formats and different frequencies. A reconfigurable RoF system based on a switch and tunable optical filter that can realize modulation format conversion and multiple frequency signal switching functions is designed. It has a good performance in terms of bit error rate and an eye diagram. The design can help to use radio frequency resources efficiently and make dynamic bandwidth resources controllable.

  18. Binary synaptic connections based on memory switching in a-Si:H for artificial neural networks

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Lamb, J. L.; Moopenn, A.; Khanna, S. K.

    1987-01-01

    A scheme for nonvolatile associative electronic memory storage with high information storage density is proposed which is based on neural network models and which uses a matrix of two-terminal passive interconnections (synapses). It is noted that the massive parallelism in the architecture would require the ON state of a synaptic connection to be unusually weak (highly resistive). Memory switching using a-Si:H along with ballast resistors patterned from amorphous Ge-metal alloys is investigated for a binary programmable read only memory matrix. The fabrication of a 1600 synapse test array of uniform connection strengths and a-Si:H switching elements is discussed.

  19. Controllability of switched singular mix-valued logical control networks with constraints

    NASA Astrophysics Data System (ADS)

    Deng, Lei; Gong, Mengmeng; Zhu, Peiyong

    2018-03-01

    The present paper investigates the controllability problem of switched singular mix-valued logical control networks (SSMLCNs) with constraints on states and controls. First, using the semi-tenser product (STP) of matrices, the SSMLCN is expressed in an algebraic form, based on which a necessary and sufficient condition is given for the uniqueness of solution of SSMLCNs. Second, a necessary and sufficient criteria is derived for the controllability of constrained SSMLCNs, by converting a constrained SSMLCN into a parallel constrained switched mix-valued logical control network. Third, an algorithm is presented to design a proper switching sequence and a control scheme which force a state to a reachable state. Finally, a numerical example is given to demonstrate the efficiency of the results obtained in this paper.

  20. Functional brain and age-related changes associated with congruency in task switching

    PubMed Central

    Eich, Teal S.; Parker, David; Liu, Dan; Oh, Hwamee; Razlighi, Qolamreza; Gazes, Yunglin; Habeck, Christian; Stern, Yaakov

    2016-01-01

    Alternating between completing two simple tasks, as opposed to completing only one task, has been shown to produce costs to performance and changes to neural patterns of activity, effects which are augmented in old age. Cognitive conflict may arise from factors other than switching tasks, however. Sensorimotor congruency (whether stimulus-response mappings are the same or different for the two tasks) has been shown to behaviorally moderate switch costs in older, but not younger adults. In the current study, we used fMRI to investigate the neurobiological mechanisms of response-conflict congruency effects within a task switching paradigm in older (N=75) and younger (N=62) adults. Behaviorally, incongruency moderated age-related differences in switch costs. Neurally, switch costs were associated with greater activation in the dorsal attention network for older relative to younger adults. We also found that older adults recruited an additional set of brain areas in the ventral attention network to a greater extent than did younger adults to resolve congruency-related response-conflict. These results suggest both a network and an age-based dissociation between congruency and switch costs in task switching. PMID:27520472

  1. New MPLS network management techniques based on adaptive learning.

    PubMed

    Anjali, Tricha; Scoglio, Caterina; de Oliveira, Jaudelice Cavalcante

    2005-09-01

    The combined use of the differentiated services (DiffServ) and multiprotocol label switching (MPLS) technologies is envisioned to provide guaranteed quality of service (QoS) for multimedia traffic in IP networks, while effectively using network resources. These networks need to be managed adaptively to cope with the changing network conditions and provide satisfactory QoS. An efficient strategy is to map the traffic from different DiffServ classes of service on separate label switched paths (LSPs), which leads to distinct layers of MPLS networks corresponding to each DiffServ class. In this paper, three aspects of the management of such a layered MPLS network are discussed. In particular, an optimal technique for the setup of LSPs, capacity allocation of the LSPs and LSP routing are presented. The presented techniques are based on measurement of the network state to adapt the network configuration to changing traffic conditions.

  2. SDN architecture for optical packet and circuit integrated networks

    NASA Astrophysics Data System (ADS)

    Furukawa, Hideaki; Miyazawa, Takaya

    2016-02-01

    We have been developing an optical packet and circuit integrated (OPCI) network, which realizes dynamic optical path, high-density packet multiplexing, and flexible wavelength resource allocation. In the OPCI networks, a best-effort service and a QoS-guaranteed service are provided by employing optical packet switching (OPS) and optical circuit switching (OCS) respectively, and users can select these services. Different wavelength resources are assigned for OPS and OCS links, and the amount of their wavelength resources are dynamically changed in accordance with the service usage conditions. To apply OPCI networks into wide-area (core/metro) networks, we have developed an OPCI node with a distributed control mechanism. Moreover, our OPCI node works with a centralized control mechanism as well as a distributed one. It is therefore possible to realize SDN-based OPCI networks, where resource requests and a centralized configuration are carried out. In this paper, we show our SDN architecture for an OPS system that configures mapping tables between IP addresses and optical packet addresses and switching tables according to the requests from multiple users via a web interface. While OpenFlow-based centralized control protocol is coming into widespread use especially for single-administrative, small-area (LAN/data-center) networks. Here, we also show an interworking mechanism between OpenFlow-based networks (OFNs) and the OPCI network for constructing a wide-area network, and a control method of wavelength resource selection to automatically transfer diversified flows from OFNs to the OPCI network.

  3. Networks.

    ERIC Educational Resources Information Center

    Maughan, George R.; Petitto, Karen R.; McLaughlin, Don

    2001-01-01

    Describes the connectivity features and options of modern campus communication and information system networks, including signal transmission (wire-based and wireless), signal switching, convergence of networks, and network assessment variables, to enable campus leaders to make sound future-oriented decisions. (EV)

  4. A 10Gbps optical burst switching network incorporating ultra-fast (5ns) wavelength switched tunable laser sources

    NASA Astrophysics Data System (ADS)

    Ryan, Neil; Todd, Michael; Farrell, Tom; Lavin, Adrian; Rigole, Pierre-Jean; Corbett, Brian; Roycroft, Brendan; Engelstaedter, Jan-Peter

    2017-11-01

    This paper outlines the development of a prototype optical burst mode switching network based upon a star topology, the ultimate application of which could be as a transparent payload processor onboard satellite repeaters. The network architecture incorporates multiple tunable laser sources, burst mode receivers and a passive optical router (Arrayed Waveguide Grating). Each tunable optical signal should carry >=10Gbps and be capable of wavelength switching in c. 5ns timescales. Two monolithic tunable laser types, based upon different technologies, will be utilised: a Slotted Fabry Perot laser (a Fabry Perot laser with slots added in order to introduce controlled cavity perturbations); and a Modulated Grating Y-Branch Laser (MGY: a widely tunable, multi-section device similar to the DBR laser). While the Slotted Fabry Perot laser is expected to achieve the required switching times, it is an immature technology not yet capable of achieving tunability over 80 ITU channels from a single chip. The MGY device is a more mature technology and has full C-band ITU channel coverage, but is not capable of the required short switching times. Hence, in order to facilitate the integration of this more mature technology into the prototype breadboard with the requisite switching time capabilities, a system of `dual laser' transmitters is being developed to enable data transmission from one MGY laser while the other switches and vice-versa. This work is being performed under ESA contract AO 1-5025/06/NL/PM, Optical Technologies for Ultra - fast Processing.

  5. Experience with PACS in an ATM/Ethernet switched network environment.

    PubMed

    Pelikan, E; Ganser, A; Kotter, E; Schrader, U; Timmermann, U

    1998-03-01

    Legacy local area network (LAN) technologies based on shared media concepts are not adequate for the growth of a large-scale picture archiving and communication system (PACS) in a client-server architecture. First, an asymmetric network load, due to the requests of a large number of PACS clients for only a few main servers, should be compensated by communication links to the servers with a higher bandwidth compared to the clients. Secondly, as the number of PACS nodes increases, the network throughout should not measurably cut production. These requirements can easily be fulfilled using switching technologies. Here asynchronous transfer mode (ATM) is clearly one of the hottest topics in networking because the ATM architecture provides integrated support for a variety of communication services, and it supports virtual networking. On the other hand, most of the imaging modalities are not yet ready for integration into a native ATM network. For a lot of nodes already joining an Ethernet, a cost-effective and pragmatic way to benefit from the switching concept would be a combined ATM/Ethernet switching environment. This incorporates an incremental migration strategy with the immediate benefits of high-speed, high-capacity ATM (for servers and high-sophisticated display workstations), while preserving elements of the existing network technologies. In addition, Ethernet switching instead of shared media Ethernet improves the performance considerably. The LAN emulation (LANE) specification by the ATM forum defines mechanisms that allow ATM networks to coexist with legacy systems using any data networking protocol. This paper points out the suitability of this network architecture in accordance with an appropriate system design.

  6. Coactivation of cognitive control networks during task switching.

    PubMed

    Yin, Shouhang; Deák, Gedeon; Chen, Antao

    2018-01-01

    The ability to flexibly switch between tasks is considered an important component of cognitive control that involves frontal and parietal cortical areas. The present study was designed to characterize network dynamics across multiple brain regions during task switching. Functional magnetic resonance images (fMRI) were captured during a standard rule-switching task to identify switching-related brain regions. Multiregional psychophysiological interaction (PPI) analysis was used to examine effective connectivity between these regions. During switching trials, behavioral performance declined and activation of a generic cognitive control network increased. Concurrently, task-related connectivity increased within and between cingulo-opercular and fronto-parietal cognitive control networks. Notably, the left inferior frontal junction (IFJ) was most consistently coactivated with the 2 cognitive control networks. Furthermore, switching-dependent effective connectivity was negatively correlated with behavioral switch costs. The strength of effective connectivity between left IFJ and other regions in the networks predicted individual differences in switch costs. Task switching was supported by coactivated connections within cognitive control networks, with left IFJ potentially acting as a key hub between the fronto-parietal and cingulo-opercular networks. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Performance analysis of signaling protocols on OBS switches

    NASA Astrophysics Data System (ADS)

    Kirci, Pinar; Zaim, A. Halim

    2005-10-01

    In this paper, Just-In-Time (JIT), Just-Enough-Time (JET) and Horizon signalling schemes for Optical Burst Switched Networks (OBS) are presented. These signaling schemes run over a core dWDM network and a network architecture based on Optical Burst Switches (OBS) is proposed to support IP, ATM and Burst traffic. In IP and ATM traffic several packets are assembled in a single packet called burst and the burst contention is handled by burst dropping. The burst length distribution in IP traffic is arbitrary between 0 and 1, and is fixed in ATM traffic at 0,5. Burst traffic on the other hand is arbitrary between 1 and 5. The Setup and Setup ack length distributions are arbitrary. We apply the Poisson model with rate λ and Self-Similar model with pareto distribution rate α to identify inter-arrival times in these protocols. We consider a communication between a source client node and a destination client node over an ingress and one or more multiple intermediate switches.We use buffering only in the ingress node. The communication is based on single burst connections in which, the connection is set up just before sending a burst and then closed as soon as the burst is sent. Our analysis accounts for several important parameters, including the burst setup, burst setup ack, keepalive messages and the optical switching protocol. We compare the performance of the three signalling schemes on the network under as burst dropping probability under a range of network scenarios.

  8. Report of the Defense Science Board Task Force on Defensive Information Operations. 2000 Summer Study. Volume II

    DTIC Science & Technology

    2001-03-01

    distinguishing between attacks and other events such as accidents, system failures, or hacking by thrill-seekers. This challenge is exacerbated by the...and is referred to as Signaling System # 7 ( SS7 ). Commercial Intelligent Network Architecture Switching Signal Point (SSP) Service - Originates...Wireless access point to fixed infrastructure Ut c Signaling Transfer Point (STP) - Packet switch in CCITT#7 Network SP SW SS7 System Data Bases Network

  9. Pattern Switchable Antenna System Using Inkjet-Printed Directional Bow-Tie for Bi-Direction Sensing Applications

    PubMed Central

    Eom, Seung-Hyun; Seo, Yunsik; Lim, Sungjoon

    2015-01-01

    In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT) switch and a balun element. A double-sided parallel-strip line (DSPSL) is employed to convert the unbalanced microstrip mode to the balanced strip mode. Two directional bow-tie antennas have different radiation patterns because of the different orientation of the reflectors and antennas. It is demonstrated from electromagnetic (EM) simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT switch. PMID:26690443

  10. Pattern Switchable Antenna System Using Inkjet-Printed Directional Bow-Tie for Bi-Direction Sensing Applications.

    PubMed

    Eom, Seung-Hyun; Seo, Yunsik; Lim, Sungjoon

    2015-12-10

    In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT) switch and a balun element. A double-sided parallel-strip line (DSPSL) is employed to convert the unbalanced microstrip mode to the balanced strip mode. Two directional bow-tie antennas have different radiation patterns because of the different orientation of the reflectors and antennas. It is demonstrated from electromagnetic (EM) simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT switch.

  11. Satellite networks in the ISDN era

    NASA Astrophysics Data System (ADS)

    Amadesi, P.; Haines, P.; Patacchini, A.

    1986-12-01

    The development of an integrated service digital network (ISDN) capable of supporting a wide range of services using a small set of standard multipurpose user-network interfaces is examined. The ISDN environment is expected to consist of functional elements such as, circuit switching, packet switching, and common channel signaling. The use of satellites or fiber optics in the ISDN is evaluated. The relation between satellites and the ISDN in the short-, medium-, and long-terms is analyzed. The recommendations of the consultative committee, CCIR, concerning the definition of the hypothetical reference digital path and the required quality and availability for ISDN applications, and the proposed plans of Eutelsat and Intelsat for satellite systems compatible with an ISDN are discussed. The application of business satellite networks and packet satellite networks to an ISDN is studied. The long-term objectives for an ISDN is a wideband system that accommodates digital transmission on circuit and packet switched bases.

  12. Network Speech Systems Technology Program.

    DTIC Science & Technology

    1980-09-30

    ognized that the lumped-speaker approximation could be extended even more generally to include cases of combined circuit-switched speech and packet...based on these tables. The first function is an im- portant element of the more general task of system control for a switched network, which in...programs are in preparation, as described below, for both steady-state evaluation and dynamic performance simulation of the algorithm in general

  13. Communications Management at the Parks Reserve Forces Training Area, Camp Parks, California

    DTIC Science & Technology

    1994-10-31

    The overall objective of the audit was to evaluate DoD management of circuit configurations for Defense Switched Network access requirements. The specific objective for this segment of the audit was to determine whether the Army used the most cost effective configuration of base and long haul telecommunications equipment and services at Camp Parks to access the Defense Switched Network.

  14. Silicon Modulators, Switches and Sub-systems for Optical Interconnect

    NASA Astrophysics Data System (ADS)

    Li, Qi

    Silicon photonics is emerging as a promising platform for manufacturing and integrating photonic devices for light generation, modulation, switching and detection. The compatibility with existing CMOS microelectronic foundries and high index contrast in silicon could enable low cost and high performance photonic systems, which find many applications in optical communication, data center networking and photonic network-on-chip. This thesis first develops and demonstrates several experimental work on high speed silicon modulators and switches with record performance and novel functionality. A 8x40 Gb/s transmitter based on silicon microrings is first presented. Then an end-to-end link using microrings for Binary Phase Shift Keying (BPSK) modulation and demodulation is shown, and its performance with conventional BPSK modulation/ demodulation techniques is compared. Next, a silicon traveling-wave Mach- Zehnder modulator is demonstrated at data rate up to 56 Gb/s for OOK modulation and 48 Gb/s for BPSK modulation, showing its capability at high speed communication systems. Then a single silicon microring is shown with 2x2 full crossbar switching functionality, enabling optical interconnects with ultra small footprint. Then several other experiments in the silicon platform are presented, including a fully integrated in-band Optical Signal to Noise Ratio (OSNR) monitor, characterization of optical power upper bound in a silicon microring modulator, and wavelength conversion in a dispersion-engineered waveguide. The last part of this thesis is on network-level application of photonics, specically a broadcast-and-select network based on star coupler is introduced, and its scalability performance is studied. Finally a novel switch architecture for data center networks is discussed, and its benefits as a disaggregated network are presented.

  15. Design framework for entanglement-distribution switching networks

    NASA Astrophysics Data System (ADS)

    Drost, Robert J.; Brodsky, Michael

    2016-09-01

    The distribution of quantum entanglement appears to be an important component of applications of quantum communications and networks. The ability to centralize the sourcing of entanglement in a quantum network can provide for improved efficiency and enable a variety of network structures. A necessary feature of an entanglement-sourcing network node comprising several sources of entangled photons is the ability to reconfigurably route the generated pairs of photons to network neighbors depending on the desired entanglement sharing of the network users at a given time. One approach to such routing is the use of a photonic switching network. The requirements for an entanglement distribution switching network are less restrictive than for typical conventional applications, leading to design freedom that can be leveraged to optimize additional criteria. In this paper, we present a mathematical framework defining the requirements of an entanglement-distribution switching network. We then consider the design of such a switching network using a number of 2 × 2 crossbar switches, addressing the interconnection of these switches and efficient routing algorithms. In particular, we define a worst-case loss metric and consider 6 × 6, 8 × 8, and 10 × 10 network designs that optimize both this metric and the number of crossbar switches composing the network. We pay particular attention to the 10 × 10 network, detailing novel results proving the optimality of the proposed design. These optimized network designs have great potential for use in practical quantum networks, thus advancing the concept of quantum networks toward reality.

  16. Future optical communication networks beyond 160 Gbit/s based on OTDM

    NASA Astrophysics Data System (ADS)

    Prati, Giancarlo; Bogoni, Antonella; Poti, Luca

    2005-01-01

    The virtually unlimited bandwidth of optical fibers has caused a great increase in data transmission speed over the past decade and, hence, stimulated high-demand multimedia services such as distance learning, video-conferencing and peer to peer applications. For this reason data traffic is exceeding telephony traffic, and this trend is driving the convergence of telecommunications and computer communications. In this scenario Internet Protocol (IP) is becoming the dominant protocol for any traffic, shifting the attention of the network designers from a circuit switching approach to a packet switching approach. A role of paramount importance in packet switching networks is played by the router that must implement the functionalities to set up and maintain the inter-nodal communications. The main functionalities a router must implement are routing, forwarding, switching, synchronization, contention resolution, and buffering. Nowadays, opto-electronic conversion is still required at each network node to process the incoming signal before routing that to the right output port. However, when the single channel bit rate increases beyond electronic speed limit, Optical Time Division Multiplexing (OTDM) becomes a forced choice, and all-optical processing must be performed to extract the information from the incoming packet. In this paper enabling techniques for ultra-fast all-optical network will be addressed. First a 160 Gbit/s complete transmission system will be considered. As enabling technique, an overview for all-optical logics will be discussed and experimental results will be presented using a particular reconfigurable NOLM based on Self-Phase-Modulation (SPM) or Cross-Phase-Modulation (XPM). Finally, a rough experiment on label extraction, all-optical switching and packet forwarding is shown.

  17. On-board congestion control for satellite packet switching networks

    NASA Technical Reports Server (NTRS)

    Chu, Pong P.

    1991-01-01

    It is desirable to incorporate packet switching capability on-board for future communication satellites. Because of the statistical nature of packet communication, incoming traffic fluctuates and may cause congestion. Thus, it is necessary to incorporate a congestion control mechanism as part of the on-board processing to smooth and regulate the bursty traffic. Although there are extensive studies on congestion control for both baseband and broadband terrestrial networks, these schemes are not feasible for space based switching networks because of the unique characteristics of satellite link. Here, we propose a new congestion control method for on-board satellite packet switching. This scheme takes into consideration the long propagation delay in satellite link and takes advantage of the the satellite's broadcasting capability. It divides the control between the ground terminals and satellite, but distributes the primary responsibility to ground terminals and only requires minimal hardware resource on-board satellite.

  18. Low power digitally controlled oscillator designs with a novel 3-transistor XNOR gate

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Arya, Sandeep K.; Pandey, Sujata

    2012-03-01

    Digital controlled oscillators (DCOs) are the core of all digital phase locked loop (ADPLL) circuits. Here, DCO structures with reduced hardware and power consumption having full digital control have been proposed. Three different DCO architectures have been proposed based on ring based topology. Three, four and five bit controlled DCO with NMOS, PMOS and NMOS & PMOS transistor switching networks are presented. A three-transistor XNOR gate has been used as the inverter which is used as the delay cell. Delay has been controlled digitally with a switch network of NMOS and PMOS transistors. The three bit DCO with one NMOS network shows frequency variations of 1.6141-1.8790 GHz with power consumption variations 251.9224-276.8591 μW. The four bit DCO with one NMOS network shows frequency variation of 1.6229-1.8868 GHz with varying power consumption of 251.9225-278.0740 μW. A six bit DCO with one NMOS switching network gave an output frequency of 1.7237-1.8962 GHz with power consumption of 251.928-278.998 μW. Output frequency and power consumption results for 4 & 6 bit DCO circuits with one PMOS and NMOS & PMOS switching network have also been presented. The phase noise parameter with an offset frequency of 1 MHz has also been reported for the proposed circuits. Comparisons with earlier reported circuits have been made and the present approach shows advantages over previous circuits.

  19. Network topology mapper

    DOEpatents

    Quist, Daniel A [Los Alamos, NM; Gavrilov, Eugene M [Los Alamos, NM; Fisk, Michael E [Jemez, NM

    2008-01-15

    A method enables the topology of an acyclic fully propagated network to be discovered. A list of switches that comprise the network is formed and the MAC address cache for each one of the switches is determined. For each pair of switches, from the MAC address caches the remaining switches that see the pair of switches are located. For each pair of switches the remaining switches are determined that see one of the pair of switches on a first port and the second one of the pair of switches on a second port. A list of insiders is formed for every pair of switches. It is determined whether the insider for each pair of switches is a graph edge and adjacent ones of the graph edges are determined. A symmetric adjacency matrix is formed from the graph edges to represent the topology of the data link network.

  20. Method to optimize optical switch topology for photonic network-on-chip

    NASA Astrophysics Data System (ADS)

    Zhou, Ting; Jia, Hao

    2018-04-01

    In this paper, we propose a method to optimize the optical switch by substituting optical waveguide crossings for optical switching units and an optimizing algorithm to complete the optimization automatically. The functionality of the optical switch remains constant under optimization. With this method, we simplify the topology of optical switch, which means the insertion loss and power consumption of the whole optical switch can be effectively minimized. Simulation result shows that the number of switching units of the optical switch based on Spanke-Benes can be reduced by 16.7%, 20%, 20%, 19% and 17.9% for the scale from 4 × 4 to 8 × 8 respectively. As a proof of concept, the experimental demonstration of an optimized six-port optical switch based on Spanke-Benes structure by means of silicon photonics chip is reported.

  1. Stability analysis for uncertain switched neural networks with time-varying delay.

    PubMed

    Shen, Wenwen; Zeng, Zhigang; Wang, Leimin

    2016-11-01

    In this paper, stability for a class of uncertain switched neural networks with time-varying delay is investigated. By exploring the mode-dependent properties of each subsystem, all the subsystems are categorized into stable and unstable ones. Based on Lyapunov-like function method and average dwell time technique, some delay-dependent sufficient conditions are derived to guarantee the exponential stability of considered uncertain switched neural networks. Compared with general results, our proposed approach distinguishes the stable and unstable subsystems rather than viewing all subsystems as being stable, thus getting less conservative criteria. Finally, two numerical examples are provided to show the validity and the advantages of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Finite-time synchronization of uncertain coupled switched neural networks under asynchronous switching.

    PubMed

    Wu, Yuanyuan; Cao, Jinde; Li, Qingbo; Alsaedi, Ahmed; Alsaadi, Fuad E

    2017-01-01

    This paper deals with the finite-time synchronization problem for a class of uncertain coupled switched neural networks under asynchronous switching. By constructing appropriate Lyapunov-like functionals and using the average dwell time technique, some sufficient criteria are derived to guarantee the finite-time synchronization of considered uncertain coupled switched neural networks. Meanwhile, the asynchronous switching feedback controller is designed to finite-time synchronize the concerned networks. Finally, two numerical examples are introduced to show the validity of the main results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Fulfillment of HTTP Authentication Based on Alcatel OmniSwitch 9700

    NASA Astrophysics Data System (ADS)

    Liu, Hefu

    This paper provides a way of HTTP authentication On Alcatel OmniSwitch 9700. Authenticated VLANs control user access to network resources based on VLAN assignment and user authentication. The user can be authenticated through the switch via any standard Web browser software. Web browser client displays the username and password prompts. Then a way for HTML forms can be given to pass HTTP authentication data when it's submitted. A radius server will provide a database of user information that the switch checks whenever it tries to authenticate through the switch. Before or after authentication, the client can get an address from a Dhcp server.

  4. GMPLS-based control plane for optical networks: early implementation experience

    NASA Astrophysics Data System (ADS)

    Liu, Hang; Pendarakis, Dimitrios; Komaee, Nooshin; Saha, Debanjan

    2002-07-01

    Generalized Multi-Protocol Label Switching (GMPLS) extends MPLS signaling and Internet routing protocols to provide a scalable, interoperable, distributed control plane, which is applicable to multiple network technologies such as optical cross connects (OXCs), photonic switches, IP routers, ATM switches, SONET and DWDM systems. It is intended to facilitate automatic service provisioning and dynamic neighbor and topology discovery across multi-vendor intelligent transport networks, as well as their clients. Efforts to standardize such a distributed common control plane have reached various stages in several bodies such as the IETF, ITU and OIF. This paper describes the design considerations and architecture of a GMPLS-based control plane that we have prototyped for core optical networks. Functional components of GMPLS signaling and routing are integrated in this architecture with an application layer controller module. Various requirements including bandwidth, network protection and survivability, traffic engineering, optimal utilization of network resources, and etc. are taken into consideration during path computation and provisioning. Initial experiments with our prototype demonstrate the feasibility and main benefits of GMPLS as a distributed control plane for core optical networks. In addition to such feasibility results, actual adoption and deployment of GMPLS as a common control plane for intelligent transport networks will depend on the successful completion of relevant standardization activities, extensive interoperability testing as well as the strengthening of appropriate business drivers.

  5. Voltage control in pulsed system by predict-ahead control

    DOEpatents

    Payne, Anthony N.; Watson, James A.; Sampayan, Stephen E.

    1994-01-01

    A method and apparatus for predict-ahead pulse-to-pulse voltage control in a pulsed power supply system is disclosed. A DC power supply network is coupled to a resonant charging network via a first switch. The resonant charging network is coupled at a node to a storage capacitor. An output load is coupled to the storage capacitor via a second switch. A de-Q-ing network is coupled to the resonant charging network via a third switch. The trigger for the third switch is a derived function of the initial voltage of the power supply network, the initial voltage of the storage capacitor, and the present voltage of the storage capacitor. A first trigger closes the first switch and charges the capacitor. The third trigger is asserted according to the derived function to close the third switch. When the third switch is closed, the first switch opens and voltage on the node is regulated. The second trigger may be thereafter asserted to discharge the capacitor into the output load.

  6. Voltage control in pulsed system by predict-ahead control

    DOEpatents

    Payne, A.N.; Watson, J.A.; Sampayan, S.E.

    1994-09-13

    A method and apparatus for predict-ahead pulse-to-pulse voltage control in a pulsed power supply system is disclosed. A DC power supply network is coupled to a resonant charging network via a first switch. The resonant charging network is coupled at a node to a storage capacitor. An output load is coupled to the storage capacitor via a second switch. A de-Q-ing network is coupled to the resonant charging network via a third switch. The trigger for the third switch is a derived function of the initial voltage of the power supply network, the initial voltage of the storage capacitor, and the present voltage of the storage capacitor. A first trigger closes the first switch and charges the capacitor. The third trigger is asserted according to the derived function to close the third switch. When the third switch is closed, the first switch opens and voltage on the node is regulated. The second trigger may be thereafter asserted to discharge the capacitor into the output load. 4 figs.

  7. All-optical clocked delay flip-flop using a single terahertz optical asymmetric demultiplexer-based switch: a theoretical study.

    PubMed

    Chattopadhyay, Tanay

    2010-10-01

    A flip-flop (FF) is a kind of latch and the simplest form of memory device, which stores various values either temporarily or permanently. Optical FF memories form a fundamental building block for all-optical packet switches in next-generation communication networks. An all-optical clocked delay FF using a single terahertz optical asymmetric demultiplexer-based interferometric switch is proposed and described. Numerical simulation results are also reported.

  8. Optical switch based on thermocapillarity

    NASA Astrophysics Data System (ADS)

    Sakata, Tomomi; Makihara, Mitsuhiro; Togo, Hiroyoshi; Shimokawa, Fusao; Kaneko, Kazumasa

    2001-11-01

    Space-division optical switches are essential for the protection, optical cross-connects (OXCs), and optical add/drop multiplexers (OADMs) needed in future fiber-optic communication networks. For applications in these areas, we proposed a thermocapillarity switch called oil-latching interfacial-tension variation effect (OLIVE) switch. An OLIVE switch is a micro-mechanical optical switch fabricated on planar lightwave circuits (PLC) using micro-electro-mechanical systems (MEMS) technology. It consists of a crossing waveguide that has a groove at each crossing point and a pair of microheaters. The groove is partially filled with the refractive-index-matching liquid, and optical signals are switched according to the liquid's position in the groove, i.e., whether it is passing straight through the groove or reflecting at the sidewall of the groove. The liquid is driven by thermocapillarity and latched by capillarity. Using the total internal reflection to switch the optical path, the OLIVE switch exhibits excellent optical characteristics, such as high transparency (insertion loss: < 2 dB), high extinction ratio (> 50 dB), and low crosstalk (< -50 dB). Moreover, since this switch has a simple structure and bi-stability, it has wide variety of applications in wavelength division multiplexing (WDM) networks.

  9. Advances in integrated photonic circuits for packet-switched interconnection

    NASA Astrophysics Data System (ADS)

    Williams, Kevin A.; Stabile, Ripalta

    2014-03-01

    Sustained increases in capacity and connectivity are needed to overcome congestion in a range of broadband communication network nodes. Packet routing and switching in the electronic domain are leading to unsustainable energy- and bandwidth-densities, motivating research into hybrid solutions: optical switching engines are introduced for massive-bandwidth data transport while the electronic domain is clocked at more modest GHz rates to manage routing. Commercially-deployed optical switching engines using MEMS technologies are unwieldy and too slow to reconfigure for future packet-based networking. Optoelectronic packet-compliant switch technologies have been demonstrated as laboratory prototypes, but they have so far mostly used discretely pigtailed components, which are impractical for control plane development and product assembly. Integrated photonics has long held the promise of reduced hardware complexity and may be the critical step towards packet-compliant optical switching engines. Recently a number of laboratories world-wide have prototyped optical switching circuits using monolithic integration technology with up to several hundreds of integrated optical components per chip. Our own work has focused on multi-input to multi-output switching matrices. Recently we have demonstrated 8×8×8λ space and wavelength selective switches using gated cyclic routers and 16×16 broadband switching chips using monolithic multi-stage networks. We now operate these advanced circuits with custom control planes implemented with FPGAs to explore real time packet routing in multi-wavelength, multi-port test-beds. We review our contributions in the context of state of the art photonic integrated circuit technology and packet optical switching hardware demonstrations.

  10. Quantum key based burst confidentiality in optical burst switched networks.

    PubMed

    Balamurugan, A M; Sivasubramanian, A

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS). This paper deals with employing RC4 (stream cipher) to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks.

  11. Quantum Key Based Burst Confidentiality in Optical Burst Switched Networks

    PubMed Central

    Balamurugan, A. M.; Sivasubramanian, A.

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS). This paper deals with employing RC4 (stream cipher) to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks. PMID:24578663

  12. Integrated network analysis identifies fight-club nodes as a class of hubs encompassing key putative switch genes that induce major transcriptome reprogramming during grapevine development.

    PubMed

    Palumbo, Maria Concetta; Zenoni, Sara; Fasoli, Marianna; Massonnet, Mélanie; Farina, Lorenzo; Castiglione, Filippo; Pezzotti, Mario; Paci, Paola

    2014-12-01

    We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named "fight-club hubs" characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named "switch genes" was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops. © 2014 American Society of Plant Biologists. All rights reserved.

  13. Integrated Network Analysis Identifies Fight-Club Nodes as a Class of Hubs Encompassing Key Putative Switch Genes That Induce Major Transcriptome Reprogramming during Grapevine Development[W][OPEN

    PubMed Central

    Palumbo, Maria Concetta; Zenoni, Sara; Fasoli, Marianna; Massonnet, Mélanie; Farina, Lorenzo; Castiglione, Filippo; Pezzotti, Mario; Paci, Paola

    2014-01-01

    We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named “fight-club hubs” characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named “switch genes” was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops. PMID:25490918

  14. A proposal for an SDN-based SIEPON architecture

    NASA Astrophysics Data System (ADS)

    Khalili, Hamzeh; Sallent, Sebastià; Piney, José Ramón; Rincón, David

    2017-11-01

    Passive Optical Network (PON) elements such as Optical Line Terminal (OLT) and Optical Network Units (ONUs) are currently managed by inflexible legacy network management systems. Software-Defined Networking (SDN) is a new networking paradigm that improves the operation and management of networks. In this paper, we propose a novel architecture, based on the SDN concept, for Ethernet Passive Optical Networks (EPON) that includes the Service Interoperability standard (SIEPON). In our proposal, the OLT is partially virtualized and some of its functionalities are allocated to the core network management system, while the OLT itself is replaced by an OpenFlow (OF) switch. A new MultiPoint MAC Control (MPMC) sublayer extension based on the OpenFlow protocol is presented. This would allow the SDN controller to manage and enhance the resource utilization, flow monitoring, bandwidth assignment, quality-of-service (QoS) guarantees, and energy management of the optical network access, to name a few possibilities. The OpenFlow switch is extended with synchronous ports to retain the time-critical nature of the EPON network. OpenFlow messages are also extended with new functionalities to implement the concept of EPON Service Paths (ESPs). Our simulation-based results demonstrate the effectiveness of the new architecture, while retaining a similar (or improved) performance in terms of delay and throughput when compared to legacy PONs.

  15. Fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes.

    PubMed

    Amaya, N; Irfan, M; Zervas, G; Nejabati, R; Simeonidou, D; Sakaguchi, J; Klaus, W; Puttnam, B J; Miyazawa, T; Awaji, Y; Wada, N; Henning, I

    2013-04-08

    We present the first elastic, space division multiplexing, and multi-granular network based on two 7-core MCF links and four programmable optical nodes able to switch traffic utilising the space, frequency and time dimensions with over 6000-fold bandwidth granularity. Results show good end-to-end performance on all channels with power penalties between 0.75 dB and 3.7 dB.

  16. Defense switched network technology and experiments program

    NASA Astrophysics Data System (ADS)

    Weinstein, C. J.

    1983-09-01

    This report documents work performed during FY 1983 on the DCA-sponsored Defense Switched Network Technology and Experiments Program. The areas of work reported are: (1) development of routing algorithms for application in the Defense Switched Network (DSN); (2) instrumentation and integration of the Experimental Integrated Switched Network (EISN) test facility; (3) development and test of data communication techniques using DoD-standard data protocols in an integrated voice/data network; and (4) EISN system coordination and experiment planning.

  17. Neural network for control of rearrangeable Clos networks.

    PubMed

    Park, Y K; Cherkassky, V

    1994-09-01

    Rapid evolution in the field of communication networks requires high speed switching technologies. This involves a high degree of parallelism in switching control and routing performed at the hardware level. The multistage crossbar networks have always been attractive to switch designers. In this paper a neural network approach to controlling a three-stage Clos network in real time is proposed. This controller provides optimal routing of communication traffic requests on a call-by-call basis by rearranging existing connections, with a minimum length of rearrangement sequence so that a new blocked call request can be accommodated. The proposed neural network controller uses Paull's rearrangement algorithm, along with the special (least used) switch selection rule in order to minimize the length of rearrangement sequences. The functional behavior of our model is verified by simulations and it is shown that the convergence time required for finding an optimal solution is constant, regardless of the switching network size. The performance is evaluated for random traffic with various traffic loads. Simulation results show that applying the least used switch selection rule increases the efficiency in switch rearrangements, reducing the network convergence time. The implementation aspects are also discussed to show the feasibility of the proposed approach.

  18. A new switching control for finite-time synchronization of memristor-based recurrent neural networks.

    PubMed

    Gao, Jie; Zhu, Peiyong; Alsaedi, Ahmed; Alsaadi, Fuad E; Hayat, Tasawar

    2017-02-01

    In this paper, finite-time synchronization (FTS) of memristor-based recurrent neural networks (MNNs) with time-varying delays is investigated by designing a new switching controller. First, by using the differential inclusions theory and set-valued maps, sufficient conditions to ensure FTS of MNNs are obtained under the two cases of 0<α<1 and α=0, and it is derived that α=0 is the critical value of 0<α<1. Next, it is discussed deeply on the relation between the parameter α and the synchronization time. Then, a new controller with a switching parameter α is designed which can shorten the synchronization time. Finally, some numerical simulation examples are provided to illustrate the effectiveness of the proposed results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Spin switches for compact implementation of neuron and synapse

    NASA Astrophysics Data System (ADS)

    Quang Diep, Vinh; Sutton, Brian; Behin-Aein, Behtash; Datta, Supriyo

    2014-06-01

    Nanomagnets driven by spin currents provide a natural implementation for a neuron and a synapse: currents allow convenient summation of multiple inputs, while the magnet provides the threshold function. The objective of this paper is to explore the possibility of a hardware neural network implementation using a spin switch (SS) as its basic building block. SS is a recently proposed device based on established technology with a transistor-like gain and input-output isolation. This allows neural networks to be constructed with purely passive interconnections without intervening clocks or amplifiers. The weights for the neural network are conveniently adjusted through analog voltages that can be stored in a non-volatile manner in an underlying CMOS layer using a floating gate low dropout voltage regulator. The operation of a multi-layer SS neural network designed for character recognition is demonstrated using a standard simulation model based on coupled Landau-Lifshitz-Gilbert equations, one for each magnet in the network.

  20. Vibration reduction for smart periodic structures via periodic piezoelectric arrays with nonlinear interleaved-switched electronic networks

    NASA Astrophysics Data System (ADS)

    Bao, Bin; Guyomar, Daniel; Lallart, Mickaël

    2017-01-01

    Smart periodic structures covered by periodically distributed piezoelectric patches have drawn more and more attention in recent years for wave propagation attenuation and corresponding structural vibration suppression. Since piezoelectric materials are special type of energy conversion materials that link mechanical characteristics with electrical characteristics, shunt circuits coupled with such materials play a key role in the wave propagation and/or vibration control performance in smart periodic structures. Conventional shunt circuit designs utilize resistive shunt (R-shunt) and resonant shunt (RL-shunt). More recently, semi-passive nonlinear approaches have also been developed for efficiently controlling the vibrations of such structures. In this paper, an innovative smart periodic beam structure with nonlinear interleaved-switched electric networks based on synchronized switching damping on inductor (SSDI) is proposed and investigated for vibration reduction and wave propagation attenuation. Different from locally resonant band gap mechanism forming narrow band gaps around the desired resonant frequencies, the proposed interleaved electrical networks can induce new broadly low-frequency stop bands and broaden primitive Bragg stop bands by virtue of unique interleaved electrical configurations and the SSDI technique which has the unique feature of realizing automatic impedance adaptation with a small inductance. Finite element modeling of a Timoshenko electromechanical beam structure is also presented for validating dispersion properties of the structure. Both theoretical and experimental results demonstrate that the proposed beam structure not only shows better vibration and wave propagation attenuation than the smart beam structure with independent switched networks, but also has technical simplicity of requiring only half of the number of switches than the independent switched network needs.

  1. Flow-aggregated traffic-driven label mapping in label-switching networks

    NASA Astrophysics Data System (ADS)

    Nagami, Kenichi; Katsube, Yasuhiro; Esaki, Hiroshi; Nakamura, Osamu

    1998-12-01

    Label switching technology enables high performance, flexible, layer-3 packet forwarding based on the fixed length label information mapped to the layer-3 packet stream. A Label Switching Router (LSR) forwards layer-3 packets based on their label information mapped to the layer-3 address information as well as their layer-3 address information. This paper evaluates the required number of labels under traffic-driven label mapping policy using the real backbone traffic traces. The evaluation shows that the label mapping policy requires a large number of labels. In order to reduce the required number of labels, we propose a label mapping policy which is a traffic-driven label mapping for the traffic toward the same destination network. The evaluation shows that the proposed label mapping policy requires only about one tenth as many labels compared with the traffic-driven label mapping for the host-pair packet stream,and the topology-driven label mapping for the destination network packet stream.

  2. Experimental demonstration of OSPF-TE extensions in muiti-domain OBS networks connected by GMPLS network

    NASA Astrophysics Data System (ADS)

    Tian, Chunlei; Yin, Yawei; Wu, Jian; Lin, Jintong

    2008-11-01

    The interworking network of Generalized Multi-Protocol Label Switching (GMPLS) and Optical Burst Switching (OBS) is attractive network architecture for the future IP/DWDM network nowadays. In this paper, OSPF-TE extensions for multi-domain Optical Burst Switching networks connected by GMPLS controlled WDM network are proposed, the corresponding experimental results such as the advertising latency are also presented by using an OBS network testbed. The experimental results show that it works effectively on the OBS/GMPLS networks.

  3. Final Report for the project titled "Enabling Supernova Computations by Integrated Transport and Provisioning Methods Optimized for Dedicated Channels"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malathi Veeraraghavan

    2007-10-31

    A high-speed optical circuit network is one that offers users rate-guaranteed connectivity between two endpoints, unlike today’s IP-routed Internet in which the rate available to a pair of users fluctuates based on the volume of competing traffic. This particular research project advanced our understanding of circuit networks in two ways. First, transport protocols were developed for circuit networks. In a circuit network, since bandwidth resources are reserved for each circuit on an end-to-end basis (much like how a person reserves a seat on every leg of a multi-segment flight), and the sender is limited to send at the rate ofmore » the circuit, there is no possibility of congestion during data transfer. Therefore, no congestion control functions are necessary in a transport protocol designed for circuits. However, error control and flow control are still required because bits can become errored due to noise and interference even on highly reliable optical links, and receivers can, due to multitasking or other reasons, not deplete the receive buffer fast enough to keep up with the sending rate (e.g., if the receiving host is multitasking between receiving a file transfer and some other computation). In this work, we developed two transport protocols for circuits, both of which are described below. Second, this project developed techniques for internetworking different types of connection-oriented networks, which are of two types: circuit-switched or packet-switched. In circuit-switched networks, multiplexing on links is “position based,” where “position” refers to the frequency, time slot, and port (fiber), while connection-oriented packet-switched networks use packet header information to demultiplex packets and switch them from node to node. The latter are commonly referred to as virtual circuit networks. Examples of circuit networks are time-division multiplexed Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) and Wavelength Division Multiplexing (WDM) networks, while examples of virtual-circuit networks are MultiProtocol Label Switched (MPLS) networks and Ethernet Virtual Local Area Network (VLAN) networks. A series of new technologies have been developed to carry Ethernet VLAN tagged frames on SONET/SDH and WDM networks, such as Generic Framing Procedure (GFP) and ITU G.709, respectively. These technologies form the basis of our solution for connection-oriented internetworking. The benefit of developing such an architecture is that it allows different providers to choose different connection-oriented networking technologies for their networks, and yet be able to allow their customers to connect to those of other providers. As Metcalfe, the inventor of Ethernet, noted, the value of a network service grows exponentially with the number of endpoints to which any single endpoint can connect. Therefore internetworking solutions are key to commercial success. The technical effectiveness of our solutions was measured with proof-of-concept prototypes and experiments. These solutions were shown to be highly effective. Economic feasibility requires business case analyses that were beyond the scope of this project. The project results are beneficial to the public as they demonstrate the viability of simultaneously supporting different types of networks and data communication services much like the variety of services available for the transportation of people and goods. For example, Fedex service offers a deadline based delivery while the USPS offers basic package delivery service. Similarly, a circuit network can offer a deadline based delivery of a data file while the IP-routed network offers only basic delivery service with no guarantees. Two project Web sites, 13 publications, 7 software programs, 21 presentations resulted from this work. This report provides the complete list of publications, software programs and presentations. As for student education and training (human resources), this DOE project, along with an NSF project, jointly supported two postdoctoral fellowships, three PhDs, three Masters, and two undergraduate students. Specifically, two of the Masters students were directly funded on this DOE project.« less

  4. Research on performance of three-layer MG-OXC system based on MLAG and OCDM

    NASA Astrophysics Data System (ADS)

    Wang, Yubao; Ren, Yanfei; Meng, Ying; Bai, Jian

    2017-10-01

    At present, as traffic volume which optical transport networks convey and species of traffic grooming methods increase rapidly, optical switching techniques are faced with a series of issues, such as more requests for the number of wavelengths and complicated structure management and implementation. This work introduces optical code switching based on wavelength switching, constructs the three layers multi-granularity optical cross connection (MG-OXC) system on the basis of optical code division multiplexing (OCDM) and presents a new traffic grooming algorithm. The proposed architecture can improve the flexibility of traffic grooming, reduce the amount of used wavelengths and save the number of consumed ports, hence, it can simplify routing device and enhance the performance of the system significantly. Through analyzing the network model of switching structure on multicast layered auxiliary graph (MLAG) and the establishment of traffic grooming links, and the simulation of blocking probability and throughput, this paper shows the excellent performance of this mentioned architecture.

  5. Synchronization of Switched Neural Networks With Communication Delays via the Event-Triggered Control.

    PubMed

    Wen, Shiping; Zeng, Zhigang; Chen, Michael Z Q; Huang, Tingwen

    2017-10-01

    This paper addresses the issue of synchronization of switched delayed neural networks with communication delays via event-triggered control. For synchronizing coupled switched neural networks, we propose a novel event-triggered control law which could greatly reduce the number of control updates for synchronization tasks of coupled switched neural networks involving embedded microprocessors with limited on-board resources. The control signals are driven by properly defined events, which depend on the measurement errors and current-sampled states. By using a delay system method, a novel model of synchronization error system with delays is proposed with the communication delays and event-triggered control in the unified framework for coupled switched neural networks. The criteria are derived for the event-triggered synchronization analysis and control synthesis of switched neural networks via the Lyapunov-Krasovskii functional method and free weighting matrix approach. A numerical example is elaborated on to illustrate the effectiveness of the derived results.

  6. Network speech systems technology program

    NASA Astrophysics Data System (ADS)

    Weinstein, C. J.

    1981-09-01

    This report documents work performed during FY 1981 on the DCA-sponsored Network Speech Systems Technology Program. The two areas of work reported are: (1) communication system studies in support of the evolving Defense Switched Network (DSN) and (2) design and implementation of satellite/terrestrial interfaces for the Experimental Integrated Switched Network (EISN). The system studies focus on the development and evaluation of economical and endurable network routing procedures. Satellite/terrestrial interface development includes circuit-switched and packet-switched connections to the experimental wideband satellite network. Efforts in planning and coordination of EISN experiments are reported in detail in a separate EISN Experiment Plan.

  7. Wavelength-tunable filter utilizing non-cyclic arrayed waveguide grating to create colorless, directionless, contentionless ROADMs

    NASA Astrophysics Data System (ADS)

    Niwa, Masaki; Takashina, Shoichi; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi; Watanabe, Toshio

    2015-01-01

    With the continuous increase in Internet traffic, reconfigurable optical add-drop multiplexers (ROADMs) have been widely adopted in the core and metro core networks. Current ROADMs, however, allow only static operation. To realize future dynamic optical-network services, and to minimize any human intervention in network operation, the optical signal add/drop part should have colorless/directionless/contentionless (C/D/C) capabilities. This is possible with matrix switches or a combination of splitter-switches and optical tunable filters. The scale of the matrix switch increases with the square of the number of supported channels, and hence, the matrix-switch-based architecture is not suitable for creating future large-scale ROADMs. In contrast, the numbers of splitter ports, switches, and tunable filters increase linearly with the number of supported channels, and hence the tunable-filter-based architecture will support all future traffic. So far, we have succeeded in fabricating a compact tunable filter that consists of multi-stage cyclic arrayed-waveguide gratings (AWGs) and switches by using planar-lightwave-circuit (PLC) technologies. However, this multistage configuration suffers from large insertion loss and filter narrowing. Moreover, power-consuming temperature control is necessary since it is difficult to make cyclic AWGs athermal. We propose here novel tunable-filter architecture that sandwiches a single-stage non-cyclic athermal AWG having flatter-topped passbands between small-scale switches. With this configuration, the optical tunable filter attains low insertion loss, large passband bandwidths, low power consumption, compactness, and high cost-effectiveness. A prototype is monolithically fabricated with PLC technologies and its excellent performance is experimentally confirmed utilizing 80-channel 30-GBaud dual-polarization quadrature phase-shift-keying (QPSK) signals.

  8. Microsecond reconfigurable NxN data-communication switch using DMD

    NASA Astrophysics Data System (ADS)

    Blanche, Pierre-Alexandre; Miles, Alexander; Lynn, Brittany; Wissinger, John; Carothers, Daniel; Norwood, Robert A.; Peyghambarian, Nasser

    2014-03-01

    We present here the use the DMD as a diffraction-based optical switch, where Fourier diffraction patterns are used to steer the incoming beams to any output configuration. We have implemented a single-mode fiber coupled N X N switch and demonstrated its ability to operate over the entire telecommunication C-band centered at 1550 nm. The all-optical switch was built primarily with off-the-shelf components and a Texas Instruments DLP7000™with an array of 1024 X 768 micromirrors. This DMD is capable of switching 100 times faster than currently available technology (3D MOEMS). The switch is robust to typical failure modes, protocol and bit-rate agnostic, and permits full reconfigurable optical add drop multiplexing (ROADM). The switch demonstrator was inserted into a networking testbed for the majority of the measurements. The testbed assembled under the Center for Integrated Access Networks (ClAN), a National Science Foundation (NSF) Engineering Research Center (ERC), provided an environment in which to simulate and test the data routing functionality of the switch. A Fujitsu Flashwave 9500 PS was used to provide the data signal, which was sent through the switch and received by a second Flashwave node. We successfully transmitted an HD video stream through a switched channel without any measurable data loss.

  9. Heteroclinic switching between chimeras

    NASA Astrophysics Data System (ADS)

    Bick, Christian

    2018-05-01

    Functional oscillator networks, such as neuronal networks in the brain, exhibit switching between metastable states involving many oscillators. We give exact results how such global dynamics can arise in paradigmatic phase oscillator networks: Higher-order network interactions give rise to metastable chimeras—localized frequency synchrony patterns—which are joined by heteroclinic connections. Moreover, we illuminate the mechanisms that underly the switching dynamics in these experimentally accessible networks.

  10. Flexible-rate optical packet generation/detection and label swapping for optical label switching networks

    NASA Astrophysics Data System (ADS)

    Wu, Zhongying; Li, Juhao; Tian, Yu; Ge, Dawei; Zhu, Paikun; Chen, Yuanxiang; Chen, Zhangyuan; He, Yongqi

    2017-03-01

    In recent years, optical label switching (OLS) gains lots of attentions due to its intrinsic advantages to implement protocol, bit-rate, granularity and data format transparency packet switching. In this paper, we propose a novel scheme to realize flexible-rate optical packet switching for OLS networks. At the transmitter node, flexible-rate packet is generated by parallel modulating different combinations of optical carriers generated from the optical multi-carrier generator (OMCG), among which the low-speed optical label occupies one carrier. At the switching node, label is extracted and re-generated in label processing unit (LPU). The payloads are switched based on routing information and new label is added after switching. At the receiver node, another OMCG serves as local oscillators (LOs) for optical payloads coherent detection. The proposed scheme offers good flexibility for dynamic optical packet switching by adjusting the payload bandwidth and could also effectively reduce the number of lasers, modulators and receivers for packet generation/detection. We present proof-of-concept demonstrations of flexible-rate packet generation/detection and label swapping in 12.5 GHz grid. The influence of crosstalk for cascaded label swapping is also investigated.

  11. Feasibility study of an integrated optic switching center. [satellite tracking application

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design of a high data rate switching center for a satellite tracking station is discussed. The feasibility of a switching network using an integrated switching matrix is assessed. The preferred integrated optical switching scheme was found to be an electro-optic Bragg diffraction switch. To ascertain the advantages of the integrated optics switching center, its properties are compared to those of opto-electronic and to electronics switching networks.

  12. Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata

    PubMed Central

    Chen, Yangzhou; Guo, Yuqi; Wang, Ying

    2017-01-01

    In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research. PMID:28353664

  13. Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata.

    PubMed

    Chen, Yangzhou; Guo, Yuqi; Wang, Ying

    2017-03-29

    In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research.

  14. Three layers multi-granularity OCDM switching system based on learning-stateful PCE

    NASA Astrophysics Data System (ADS)

    Wang, Yubao; Liu, Yanfei; Sun, Hao

    2017-10-01

    In the existing three layers multi-granularity OCDM switching system (TLMG-OCDMSS), F-LSP, L-LSP and OC-LSP can be bundled as switching granularity. For CPU-intensive network, the node not only needs to compute the path but also needs to bundle the switching granularity so that the load of single node is heavy. The node will paralyze when the traffic of the node is too heavy, which will impact the performance of the whole network seriously. The introduction of stateful PCE(S-PCE) will effectively solve these problems. PCE is composed of two parts, namely, the path computation element and the database (TED and LSPDB), and returns the result of path computation to PCC (path computation clients) after PCC sends the path computation request to it. In this way, the pressure of the distributed path computation in each node is reduced. In this paper, we propose the concept of Learning PCE (L-PCE), which uses the existing LSPDB as the data source of PCE's learning. By this means, we can simplify the path computation and reduce the network delay, as a result, improving the performance of network.

  15. Neural network based feed-forward high density associative memory

    NASA Technical Reports Server (NTRS)

    Daud, T.; Moopenn, A.; Lamb, J. L.; Ramesham, R.; Thakoor, A. P.

    1987-01-01

    A novel thin film approach to neural-network-based high-density associative memory is described. The information is stored locally in a memory matrix of passive, nonvolatile, binary connection elements with a potential to achieve a storage density of 10 to the 9th bits/sq cm. Microswitches based on memory switching in thin film hydrogenated amorphous silicon, and alternatively in manganese oxide, have been used as programmable read-only memory elements. Low-energy switching has been ascertained in both these materials. Fabrication and testing of memory matrix is described. High-speed associative recall approaching 10 to the 7th bits/sec and high storage capacity in such a connection matrix memory system is also described.

  16. Parallel Algorithms for Switching Edges in Heterogeneous Graphs.

    PubMed

    Bhuiyan, Hasanuzzaman; Khan, Maleq; Chen, Jiangzhuo; Marathe, Madhav

    2017-06-01

    An edge switch is an operation on a graph (or network) where two edges are selected randomly and one of their end vertices are swapped with each other. Edge switch operations have important applications in graph theory and network analysis, such as in generating random networks with a given degree sequence, modeling and analyzing dynamic networks, and in studying various dynamic phenomena over a network. The recent growth of real-world networks motivates the need for efficient parallel algorithms. The dependencies among successive edge switch operations and the requirement to keep the graph simple (i.e., no self-loops or parallel edges) as the edges are switched lead to significant challenges in designing a parallel algorithm. Addressing these challenges requires complex synchronization and communication among the processors leading to difficulties in achieving a good speedup by parallelization. In this paper, we present distributed memory parallel algorithms for switching edges in massive networks. These algorithms provide good speedup and scale well to a large number of processors. A harmonic mean speedup of 73.25 is achieved on eight different networks with 1024 processors. One of the steps in our edge switch algorithms requires the computation of multinomial random variables in parallel. This paper presents the first non-trivial parallel algorithm for the problem, achieving a speedup of 925 using 1024 processors.

  17. Parallel Algorithms for Switching Edges in Heterogeneous Graphs☆

    PubMed Central

    Khan, Maleq; Chen, Jiangzhuo; Marathe, Madhav

    2017-01-01

    An edge switch is an operation on a graph (or network) where two edges are selected randomly and one of their end vertices are swapped with each other. Edge switch operations have important applications in graph theory and network analysis, such as in generating random networks with a given degree sequence, modeling and analyzing dynamic networks, and in studying various dynamic phenomena over a network. The recent growth of real-world networks motivates the need for efficient parallel algorithms. The dependencies among successive edge switch operations and the requirement to keep the graph simple (i.e., no self-loops or parallel edges) as the edges are switched lead to significant challenges in designing a parallel algorithm. Addressing these challenges requires complex synchronization and communication among the processors leading to difficulties in achieving a good speedup by parallelization. In this paper, we present distributed memory parallel algorithms for switching edges in massive networks. These algorithms provide good speedup and scale well to a large number of processors. A harmonic mean speedup of 73.25 is achieved on eight different networks with 1024 processors. One of the steps in our edge switch algorithms requires the computation of multinomial random variables in parallel. This paper presents the first non-trivial parallel algorithm for the problem, achieving a speedup of 925 using 1024 processors. PMID:28757680

  18. 77 FR 21996 - Certain Equipment for Communications Networks, Including Switches, Routers, Gateways, Bridges...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-12

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-778] Certain Equipment for Communications Networks, Including Switches, Routers, Gateways, Bridges, Wireless Access Points, Cable Modems, IP Phones... networks, including switches, routers, gateways, bridges, wireless access points, cable modems, IP phones...

  19. Switch for serial or parallel communication networks

    DOEpatents

    Crosette, D.B.

    1994-07-19

    A communication switch apparatus and a method for use in a geographically extensive serial, parallel or hybrid communication network linking a multi-processor or parallel processing system has a very low software processing overhead in order to accommodate random burst of high density data. Associated with each processor is a communication switch. A data source and a data destination, a sensor suite or robot for example, may also be associated with a switch. The configuration of the switches in the network are coordinated through a master processor node and depends on the operational phase of the multi-processor network: data acquisition, data processing, and data exchange. The master processor node passes information on the state to be assumed by each switch to the processor node associated with the switch. The processor node then operates a series of multi-state switches internal to each communication switch. The communication switch does not parse and interpret communication protocol and message routing information. During a data acquisition phase, the communication switch couples sensors producing data to the processor node associated with the switch, to a downlink destination on the communications network, or to both. It also may couple an uplink data source to its processor node. During the data exchange phase, the switch couples its processor node or an uplink data source to a downlink destination (which may include a processor node or a robot), or couples an uplink source to its processor node and its processor node to a downlink destination. 9 figs.

  20. Switch for serial or parallel communication networks

    DOEpatents

    Crosette, Dario B.

    1994-01-01

    A communication switch apparatus and a method for use in a geographically extensive serial, parallel or hybrid communication network linking a multi-processor or parallel processing system has a very low software processing overhead in order to accommodate random burst of high density data. Associated with each processor is a communication switch. A data source and a data destination, a sensor suite or robot for example, may also be associated with a switch. The configuration of the switches in the network are coordinated through a master processor node and depends on the operational phase of the multi-processor network: data acquisition, data processing, and data exchange. The master processor node passes information on the state to be assumed by each switch to the processor node associated with the switch. The processor node then operates a series of multi-state switches internal to each communication switch. The communication switch does not parse and interpret communication protocol and message routing information. During a data acquisition phase, the communication switch couples sensors producing data to the processor node associated with the switch, to a downlink destination on the communications network, or to both. It also may couple an uplink data source to its processor node. During the data exchange phase, the switch couples its processor node or an uplink data source to a downlink destination (which may include a processor node or a robot), or couples an uplink source to its processor node and its processor node to a downlink destination.

  1. 77 FR 4910 - Editorial Revisions to the Commission's Rules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ... prevent unintentional access to the public switched telephone network by base units, and unintentional..., as defined in paragraph (b)(3) of this section, the isolation between the antenna and cable input... applies at 550 MHz. In the case of a transfer switch requiring a power source, the required isolation...

  2. A novel all-optical label processing based on multiple optical orthogonal codes sequences for optical packet switching networks

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun; Xu, Bo; Ling, Yun

    2008-05-01

    This paper proposes an all-optical label processing scheme that uses the multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) networks. In this scheme, each MOOCS is a permutation or combination of the multiple optical orthogonal codes (MOOC) selected from the multiple-groups optical orthogonal codes (MGOOC). Following a comparison of different optical label processing (OLP) schemes, the principles of MOOCS-OPS network are given and analyzed. Firstly, theoretical analyses are used to prove that MOOCS is able to greatly enlarge the number of available optical labels when compared to the previous single optical orthogonal code (SOOC) for OPS (SOOC-OPS) network. Then, the key units of the MOOCS-based optical label packets, including optical packet generation, optical label erasing, optical label extraction and optical label rewriting etc., are given and studied. These results are used to verify that the proposed MOOCS-OPS scheme is feasible.

  3. Secure videoconferencing equipment switching system and method

    DOEpatents

    Hansen, Michael E [Livermore, CA

    2009-01-13

    A switching system and method are provided to facilitate use of videoconference facilities over a plurality of security levels. The system includes a switch coupled to a plurality of codecs and communication networks. Audio/Visual peripheral components are connected to the switch. The switch couples control and data signals between the Audio/Visual peripheral components and one but nor both of the plurality of codecs. The switch additionally couples communication networks of the appropriate security level to each of the codecs. In this manner, a videoconferencing facility is provided for use on both secure and non-secure networks.

  4. Optical datacenter network employing slotted (TDMA) operation for dynamic resource allocation

    NASA Astrophysics Data System (ADS)

    Bakopoulos, P.; Tokas, K.; Spatharakis, C.; Patronas, I.; Landi, G.; Christodoulopoulos, K.; Capitani, M.; Kyriakos, A.; Aziz, M.; Reisis, D.; Varvarigos, E.; Zahavi, E.; Avramopoulos, H.

    2018-02-01

    The soaring traffic demands in datacenter networks (DCNs) are outpacing progresses in CMOS technology, challenging the bandwidth and energy scalability of currently established technologies. Optical switching is gaining traction as a promising path for sustaining the explosive growth of DCNs; however, its practical deployment necessitates extensive modifications to the network architecture and operation, tailored to the technological particularities of optical switches (i.e. no buffering, limitations in radix size and speed). European project NEPHELE is developing an optical network infrastructure that leverages optical switching within a software-defined networking (SDN) framework to overcome the bandwidth and energy scaling challenges of datacenter networks. An experimental validation of the NEPHELE data plane is reported based on commercial off-the-shelf optical components controlled by FPGA boards. To facilitate dynamic allocation of the network resources and perform collision-free routing in a lossless network environment, slotted operation is employed (i.e. using time-division multiple-access - TDMA). Error-free operation of the NEPHELE data plane is verified for 200 μs slots in various scenarios that involve communication between Ethernet hosts connected to custom-designed top-of-rack (ToR) switches, located in the same or in different datacenter pods. Control of the slotted data plane is obtained through an SDN framework comprising an OpenDaylight controller with appropriate add-ons. Communication between servers in the optical-ToR is demonstrated with various routing scenarios, concerning communication between hosts located in the same rack or in different racks, within the same or different datacenter pods. Error-free operation is confirmed for all evaluated scenarios, underpinning the feasibility of the NEPHELE architecture.

  5. Simulation and modeling of the temporal performance of path-based restoration schemes in planar mesh networks

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Manish; McCaughan, Leon; Olkhovets, Anatoli; Korotky, Steven K.

    2006-12-01

    We formulate an analytic framework for the restoration performance of path-based restoration schemes in planar mesh networks. We analyze various switch architectures and signaling schemes and model their total restoration interval. We also evaluate the network global expectation value of the time to restore a demand as a function of network parameters. We analyze a wide range of nominally capacity-optimal planar mesh networks and find our analytic model to be in good agreement with numerical simulation data.

  6. An intelligent switch with back-propagation neural network based hybrid power system

    NASA Astrophysics Data System (ADS)

    Perdana, R. H. Y.; Fibriana, F.

    2018-03-01

    The consumption of conventional energy such as fossil fuels plays the critical role in the global warming issues. The carbon dioxide, methane, nitrous oxide, etc. could lead the greenhouse effects and change the climate pattern. In fact, 77% of the electrical energy is generated from fossil fuels combustion. Therefore, it is necessary to use the renewable energy sources for reducing the conventional energy consumption regarding electricity generation. This paper presents an intelligent switch to combine both energy resources, i.e., the solar panels as the renewable energy with the conventional energy from the State Electricity Enterprise (PLN). The artificial intelligence technology with the back-propagation neural network was designed to control the flow of energy that is distributed dynamically based on renewable energy generation. By the continuous monitoring on each load and source, the dynamic pattern of the intelligent switch was better than the conventional switching method. The first experimental results for 60 W solar panels showed the standard deviation of the trial at 0.7 and standard deviation of the experiment at 0.28. The second operation for a 900 W of solar panel obtained the standard deviation of the trial at 0.05 and 0.18 for the standard deviation of the experiment. Moreover, the accuracy reached 83% using this method. By the combination of the back-propagation neural network with the observation of energy usage of the load using wireless sensor network, each load can be evenly distributed and will impact on the reduction of conventional energy usage.

  7. Spin switches for compact implementation of neuron and synapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quang Diep, Vinh, E-mail: vdiep@purdue.edu; Sutton, Brian; Datta, Supriyo

    2014-06-02

    Nanomagnets driven by spin currents provide a natural implementation for a neuron and a synapse: currents allow convenient summation of multiple inputs, while the magnet provides the threshold function. The objective of this paper is to explore the possibility of a hardware neural network implementation using a spin switch (SS) as its basic building block. SS is a recently proposed device based on established technology with a transistor-like gain and input-output isolation. This allows neural networks to be constructed with purely passive interconnections without intervening clocks or amplifiers. The weights for the neural network are conveniently adjusted through analog voltagesmore » that can be stored in a non-volatile manner in an underlying CMOS layer using a floating gate low dropout voltage regulator. The operation of a multi-layer SS neural network designed for character recognition is demonstrated using a standard simulation model based on coupled Landau-Lifshitz-Gilbert equations, one for each magnet in the network.« less

  8. Stochastic Spiking Neural Networks Enabled by Magnetic Tunnel Junctions: From Nontelegraphic to Telegraphic Switching Regimes

    NASA Astrophysics Data System (ADS)

    Liyanagedera, Chamika M.; Sengupta, Abhronil; Jaiswal, Akhilesh; Roy, Kaushik

    2017-12-01

    Stochastic spiking neural networks based on nanoelectronic spin devices can be a possible pathway to achieving "brainlike" compact and energy-efficient cognitive intelligence. The computational model attempt to exploit the intrinsic device stochasticity of nanoelectronic synaptic or neural components to perform learning or inference. However, there has been limited analysis on the scaling effect of stochastic spin devices and its impact on the operation of such stochastic networks at the system level. This work attempts to explore the design space and analyze the performance of nanomagnet-based stochastic neuromorphic computing architectures for magnets with different barrier heights. We illustrate how the underlying network architecture must be modified to account for the random telegraphic switching behavior displayed by magnets with low barrier heights as they are scaled into the superparamagnetic regime. We perform a device-to-system-level analysis on a deep neural-network architecture for a digit-recognition problem on the MNIST data set.

  9. Demonstration of 720×720 optical fast circuit switch for intra-datacenter networks

    NASA Astrophysics Data System (ADS)

    Ueda, Koh; Mori, Yojiro; Hasegawa, Hiroshi; Matsuura, Hiroyuki; Ishii, Kiyo; Kuwatsuka, Haruhiko; Namiki, Shu; Sato, Ken-ichi

    2016-03-01

    Intra-datacenter traffic is growing more than 20% a year. In typical datacenters, many racks/pods including servers are interconnected via multi-tier electrical switches. The electrical switches necessitate power-consuming optical-to- electrical (OE) and electrical-to-optical (EO) conversion, the power consumption of which increases with traffic. To overcome this problem, optical switches that eliminate costly OE and EO conversion and enable low power consumption switching are being investigated. There are two major requirements for the optical switch. First, it must have a high port count to construct reduced tier intra-datacenter networks. Second, switching speed must be short enough that most of the traffic load can be offloaded from electrical switches. Among various optical switches, we focus on those based on arrayed-waveguide gratings (AWGs), since the AWG is a passive device with minimal power consumption. We previously proposed a high-port-count optical switch architecture that utilizes tunable lasers, route-and-combine switches, and wavelength-routing switches comprised of couplers, erbium-doped fiber amplifiers (EDFAs), and AWGs. We employed conventional external cavity lasers whose wavelength-tuning speed was slower than 100 ms. In this paper, we demonstrate a large-scale optical switch that offers fast wavelength routing. We construct a 720×720 optical switch using recently developed lasers whose wavelength-tuning period is below 460 μs. We evaluate the switching time via bit-error-ratio measurements and achieve 470-μs switching time (includes 10-μs guard time to handle EDFA surge). To best of our knowledge, this is the first demonstration of such a large-scale optical switch with practical switching time.

  10. Adaptive Neural Networks Prescribed Performance Control Design for Switched Interconnected Uncertain Nonlinear Systems.

    PubMed

    Li, Yongming; Tong, Shaocheng

    2017-06-28

    In this paper, an adaptive neural networks (NNs)-based decentralized control scheme with the prescribed performance is proposed for uncertain switched nonstrict-feedback interconnected nonlinear systems. It is assumed that nonlinear interconnected terms and nonlinear functions of the concerned systems are unknown, and also the switching signals are unknown and arbitrary. A linear state estimator is constructed to solve the problem of unmeasured states. The NNs are employed to approximate unknown interconnected terms and nonlinear functions. A new output feedback decentralized control scheme is developed by using the adaptive backstepping design technique. The control design problem of nonlinear interconnected switched systems with unknown switching signals can be solved by the proposed scheme, and only a tuning parameter is needed for each subsystem. The proposed scheme can ensure that all variables of the control systems are semi-globally uniformly ultimately bounded and the tracking errors converge to a small residual set with the prescribed performance bound. The effectiveness of the proposed control approach is verified by some simulation results.

  11. Dynamic Testing and Automatic Repair of Reconfigurable Wiring Harnesses

    DTIC Science & Technology

    2006-11-27

    Switch An M ×N grid of switches configured to provide a M -input, N -output routing network. Permutation Network A permutation network performs an...wiring reduces the effective advantage of their reduced switch count, particularly when considering that regular grids (crossbar switches being a...are connected to. The outline circuit shown in Fig. 20 shows how a suitable ‘discovery probe’ might be implemented. The circuit shows a UART

  12. Rational Design of an Ultrasensitive Quorum-Sensing Switch.

    PubMed

    Zeng, Weiqian; Du, Pei; Lou, Qiuli; Wu, Lili; Zhang, Haoqian M; Lou, Chunbo; Wang, Hongli; Ouyang, Qi

    2017-08-18

    One of the purposes of synthetic biology is to develop rational methods that accelerate the design of genetic circuits, saving time and effort spent on experiments and providing reliably predictable circuit performance. We applied a reverse engineering approach to design an ultrasensitive transcriptional quorum-sensing switch. We want to explore how systems biology can guide synthetic biology in the choice of specific DNA sequences and their regulatory relations to achieve a targeted function. The workflow comprises network enumeration that achieves the target function robustly, experimental restriction of the obtained candidate networks, global parameter optimization via mathematical analysis, selection and engineering of parts based on these calculations, and finally, circuit construction based on the principles of standardization and modularization. The performance of realized quorum-sensing switches was in good qualitative agreement with the computational predictions. This study provides practical principles for the rational design of genetic circuits with targeted functions.

  13. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Applicants for new land stations to be interconnected with the public switched telephone network must... switched telephone network only after modifying their license. See § 1.929 of this chapter. In all cases a..., 896-901 MHz, and 935-940 MHz, interconnection with the public switched telephone network is authorized...

  14. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Applicants for new land stations to be interconnected with the public switched telephone network must... switched telephone network only after modifying their license. See § 1.929 of this chapter. In all cases a..., 896-901 MHz, and 935-940 MHz, interconnection with the public switched telephone network is authorized...

  15. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Applicants for new land stations to be interconnected with the public switched telephone network must... switched telephone network only after modifying their license. See § 1.929 of this chapter. In all cases a..., 896-901 MHz, and 935-940 MHz, interconnection with the public switched telephone network is authorized...

  16. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Applicants for new land stations to be interconnected with the public switched telephone network must... switched telephone network only after modifying their license. See § 1.929 of this chapter. In all cases a..., 896-901 MHz, and 935-940 MHz, interconnection with the public switched telephone network is authorized...

  17. Optical Circuit Switched Protocol

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P. (Inventor)

    2000-01-01

    The present invention is a system and method embodied in an optical circuit switched protocol for the transmission of data through a network. The optical circuit switched protocol is an all-optical circuit switched network and includes novel optical switching nodes for transmitting optical data packets within a network. Each optical switching node comprises a detector for receiving the header, header detection logic for translating the header into routing information and eliminating the header, and a controller for receiving the routing information and configuring an all optical path within the node. The all optical path located within the node is solely an optical path without having electronic storage of the data and without having optical delay of the data. Since electronic storage of the header is not necessary and the initial header is eliminated by the first detector of the first switching node. multiple identical headers are sent throughout the network so that subsequent switching nodes can receive and read the header for setting up an optical data path.

  18. Tablet based distributed intelligent load management

    DOEpatents

    Lu, Yan; Zhou, Siyuan

    2018-01-09

    A facility is connected to an electricity utility and is responsive to Demand Response Events. A plurality of devices is each individually connected to the electricity grid via an addressable switch connected to a secure network that is enabled to be individually switched off by a server. An occupant of a room in control of the plurality of devices provides via a Human Machine Interface on a tablet a preferred order of switching off the plurality of devices in case of a Demand Response Event. A configuration file based at least partially on the preferred order and on a severity of the Demand Response Events determines which devices which of the plurality devices will be switched off. The server accesses the configuration file and switches off the devices included in the configuration file.

  19. Construction of large scale switch matrix by interconnecting integrated optical switch chips with EDFAs

    NASA Astrophysics Data System (ADS)

    Liao, Mingle; Wu, Baojian; Hou, Jianhong; Qiu, Kun

    2018-03-01

    Large scale optical switches are essential components in optical communication network. We aim to build up a large scale optical switch matrix by the interconnection of silicon-based optical switch chips using 3-stage CLOS structure, where EDFAs are needed to compensate for the insertion loss of the chips. The optical signal-to-noise ratio (OSNR) performance of the resulting large scale optical switch matrix is investigated for TE-mode light and the experimental results are in agreement with the theoretical analysis. We build up a 64 ×64 switch matrix by use of 16 ×16 optical switch chips and the OSNR and receiver sensibility can respectively be improved by 0.6 dB and 0.2 dB by optimizing the gain configuration of the EDFAs.

  20. Stochastic models for regulatory networks of the genetic toggle switch.

    PubMed

    Tian, Tianhai; Burrage, Kevin

    2006-05-30

    Bistability arises within a wide range of biological systems from the lambda phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.

  1. Stochastic models for regulatory networks of the genetic toggle switch

    PubMed Central

    Tian, Tianhai; Burrage, Kevin

    2006-01-01

    Bistability arises within a wide range of biological systems from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks. PMID:16714385

  2. WDM Network and Multicasting Protocol Strategies

    PubMed Central

    Zaim, Abdul Halim

    2014-01-01

    Optical technology gains extensive attention and ever increasing improvement because of the huge amount of network traffic caused by the growing number of internet users and their rising demands. However, with wavelength division multiplexing (WDM), it is easier to take the advantage of optical networks and optical burst switching (OBS) and to construct WDM networks with low delay rates and better data transparency these technologies are the best choices. Furthermore, multicasting in WDM is an urgent solution for bandwidth-intensive applications. In the paper, a new multicasting protocol with OBS is proposed. The protocol depends on a leaf initiated structure. The network is composed of source, ingress switches, intermediate switches, edge switches, and client nodes. The performance of the protocol is examined with Just Enough Time (JET) and Just In Time (JIT) reservation protocols. Also, the paper involves most of the recent advances about WDM multicasting in optical networks. WDM multicasting in optical networks is given as three common subtitles: Broadcast and-select networks, wavelength-routed networks, and OBS networks. Also, in the paper, multicast routing protocols are briefly summarized and optical burst switched WDM networks are investigated with the proposed multicast schemes. PMID:24744683

  3. Switching synchronization in one-dimensional memristive networks

    NASA Astrophysics Data System (ADS)

    Slipko, Valeriy A.; Shumovskyi, Mykola; Pershin, Yuriy V.

    2015-11-01

    We report on a switching synchronization phenomenon in one-dimensional memristive networks, which occurs when several memristive systems with different switching constants are switched from the high- to low-resistance state. Our numerical simulations show that such a collective behavior is especially pronounced when the applied voltage slightly exceeds the combined threshold voltage of memristive systems. Moreover, a finite increase in the network switching time is found compared to the average switching time of individual systems. An analytical model is presented to explain our observations. Using this model, we have derived asymptotic expressions for memory resistances at short and long times, which are in excellent agreement with results of our numerical simulations.

  4. Controlled Photon Switch Assisted by Coupled Quantum Dots

    PubMed Central

    Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun

    2015-01-01

    Quantum switch is a primitive element in quantum network communication. In contrast to previous switch schemes on one degree of freedom (DOF) of quantum systems, we consider controlled switches of photon system with two DOFs. These controlled photon switches are constructed by exploring the optical selection rules derived from the quantum-dot spins in one-sided optical microcavities. Several double controlled-NOT gate on different joint systems are greatly simplified with an auxiliary DOF of the controlling photon. The photon switches show that two DOFs of photons can be independently transmitted in quantum networks. This result reduces the quantum resources for quantum network communication. PMID:26095049

  5. Apollo Ring Optical Switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maestas, J.H.

    1987-03-01

    An optical switch was designed, built, and installed at Sandia National Laboratories in Albuquerque, New Mexico, to facilitate the integration of two Apollo computer networks into a single network. This report presents an overview of the optical switch as well as its layout, switch testing procedure and test data, and installation.

  6. GLOBECOM '88 - IEEE Global Telecommunications Conference and Exhibition, Hollywood, FL, Nov. 28-Dec. 1, 1988, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    Various papers on communications for the information age are presented. Among the general topics considered are: telematic services and terminals, satellite communications, telecommunications mangaement network, control of integrated broadband networks, advances in digital radio systems, the intelligent network, broadband networks and services deployment, future switch architectures, performance analysis of computer networks, advances in spread spectrum, optical high-speed LANs, and broadband switching and networks. Also addressed are: multiple access protocols, video coding techniques, modulation and coding, photonic switching, SONET terminals and applications, standards for video coding, digital switching, progress in MANs, mobile and portable radio, software design for improved maintainability, multipath propagation and advanced countermeasure, data communication, network control and management, fiber in the loop, network algorithm and protocols, and advances in computer communications.

  7. Time-varying multiplex network: Intralayer and interlayer synchronization

    NASA Astrophysics Data System (ADS)

    Rakshit, Sarbendu; Majhi, Soumen; Bera, Bidesh K.; Sinha, Sudeshna; Ghosh, Dibakar

    2017-12-01

    A large class of engineered and natural systems, ranging from transportation networks to neuronal networks, are best represented by multiplex network architectures, namely a network composed of two or more different layers where the mutual interaction in each layer may differ from other layers. Here we consider a multiplex network where the intralayer coupling interactions are switched stochastically with a characteristic frequency. We explore the intralayer and interlayer synchronization of such a time-varying multiplex network. We find that the analytically derived necessary condition for intralayer and interlayer synchronization, obtained by the master stability function approach, is in excellent agreement with our numerical results. Interestingly, we clearly find that the higher frequency of switching links in the layers enhances both intralayer and interlayer synchrony, yielding larger windows of synchronization. Further, we quantify the resilience of synchronous states against random perturbations, using a global stability measure based on the concept of basin stability, and this reveals that intralayer coupling strength is most crucial for determining both intralayer and interlayer synchrony. Lastly, we investigate the robustness of interlayer synchronization against a progressive demultiplexing of the multiplex structure, and we find that for rapid switching of intralayer links, the interlayer synchronization persists even when a large number of interlayer nodes are disconnected.

  8. Time-varying multiplex network: Intralayer and interlayer synchronization.

    PubMed

    Rakshit, Sarbendu; Majhi, Soumen; Bera, Bidesh K; Sinha, Sudeshna; Ghosh, Dibakar

    2017-12-01

    A large class of engineered and natural systems, ranging from transportation networks to neuronal networks, are best represented by multiplex network architectures, namely a network composed of two or more different layers where the mutual interaction in each layer may differ from other layers. Here we consider a multiplex network where the intralayer coupling interactions are switched stochastically with a characteristic frequency. We explore the intralayer and interlayer synchronization of such a time-varying multiplex network. We find that the analytically derived necessary condition for intralayer and interlayer synchronization, obtained by the master stability function approach, is in excellent agreement with our numerical results. Interestingly, we clearly find that the higher frequency of switching links in the layers enhances both intralayer and interlayer synchrony, yielding larger windows of synchronization. Further, we quantify the resilience of synchronous states against random perturbations, using a global stability measure based on the concept of basin stability, and this reveals that intralayer coupling strength is most crucial for determining both intralayer and interlayer synchrony. Lastly, we investigate the robustness of interlayer synchronization against a progressive demultiplexing of the multiplex structure, and we find that for rapid switching of intralayer links, the interlayer synchronization persists even when a large number of interlayer nodes are disconnected.

  9. Scalable Active Optical Access Network Using Variable High-Speed PLZT Optical Switch/Splitter

    NASA Astrophysics Data System (ADS)

    Ashizawa, Kunitaka; Sato, Takehiro; Tokuhashi, Kazumasa; Ishii, Daisuke; Okamoto, Satoru; Yamanaka, Naoaki; Oki, Eiji

    This paper proposes a scalable active optical access network using high-speed Plumbum Lanthanum Zirconate Titanate (PLZT) optical switch/splitter. The Active Optical Network, called ActiON, using PLZT switching technology has been presented to increase the number of subscribers and the maximum transmission distance, compared to the Passive Optical Network (PON). ActiON supports the multicast slot allocation realized by running the PLZT switch elements in the splitter mode, which forces the switch to behave as an optical splitter. However, the previous ActiON creates a tradeoff between the network scalability and the power loss experienced by the optical signal to each user. It does not use the optical power efficiently because the optical power is simply divided into 0.5 to 0.5 without considering transmission distance from OLT to each ONU. The proposed network adopts PLZT switch elements in the variable splitter mode, which controls the split ratio of the optical power considering the transmission distance from OLT to each ONU, in addition to PLZT switch elements in existing two modes, the switching mode and the splitter mode. The proposed network introduces the flexible multicast slot allocation according to the transmission distance from OLT to each user and the number of required users using three modes, while keeping the advantages of ActiON, which are to support scalable and secure access services. Numerical results show that the proposed network dramatically reduces the required number of slots and supports high bandwidth efficiency services and extends the coverage of access network, compared to the previous ActiON, and the required computation time for selecting multicast users is less than 30msec, which is acceptable for on-demand broadcast services.

  10. 76 FR 36154 - In the Matter of Certain Equipment for Communications Networks, Including Switches, Routers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... Communications Networks, Including Switches, Routers, Gateways, Bridges, Wireless Access Points, Cable Modems, IP... networks, including switches, routers, gateways, bridges, wireless access points, cable modems, IP phones... points, cable modems, IP phones, and products containing same that infringe one or more of claims 1, 5, 9...

  11. Nonsmooth Finite-Time Synchronization of Switched Coupled Neural Networks.

    PubMed

    Liu, Xiaoyang; Cao, Jinde; Yu, Wenwu; Song, Qiang

    2016-10-01

    This paper is concerned with the finite-time synchronization (FTS) issue of switched coupled neural networks with discontinuous or continuous activations. Based on the framework of nonsmooth analysis, some discontinuous or continuous controllers are designed to force the coupled networks to synchronize to an isolated neural network. Some sufficient conditions are derived to ensure the FTS by utilizing the well-known finite-time stability theorem for nonlinear systems. Compared with the previous literatures, such synchronization objective will be realized when the activations and the controllers are both discontinuous. The obtained results in this paper include and extend the earlier works on the synchronization issue of coupled networks with Lipschitz continuous conditions. Moreover, an upper bound of the settling time for synchronization is estimated. Finally, numerical simulations are given to demonstrate the effectiveness of the theoretical results.

  12. Multigranular integrated services optical network

    NASA Astrophysics Data System (ADS)

    Yu, Oliver; Yin, Leping; Xu, Huan; Liao, Ming

    2006-12-01

    Based on all-optical switches without requiring fiber delay lines and optical-electrical-optical interfaces, the multigranular optical switching (MGOS) network integrates three transport services via unified core control to efficiently support bursty and stream traffic of subwavelength to multiwavelength bandwidth. Adaptive robust optical burst switching (AR-OBS) aggregates subwavelength burst traffic into asynchronous light-rate bursts, transported via slotted-time light paths established by fast two-way reservation with robust blocking recovery control. Multiwavelength optical switching (MW-OS) decomposes multiwavelength stream traffic into a group of timing-related light-rate streams, transported via a light-path group to meet end-to-end delay-variation requirements. Optical circuit switching (OCS) simply converts wavelength stream traffic from an electrical-rate into a light-rate stream. The MGOS network employs decoupled routing, wavelength, and time-slot assignment (RWTA) and novel group routing and wavelength assignment (GRWA) to select slotted-time light paths and light-path groups, respectively. The selected resources are reserved by the unified multigranular robust fast optical reservation protocol (MG-RFORP). Simulation results show that elastic traffic is efficiently supported via AR-OBS in terms of loss rate and wavelength utilization, while connection-oriented wavelength traffic is efficiently supported via wavelength-routed OCS in terms of connection blocking and wavelength utilization. The GRWA-tuning result for MW-OS is also shown.

  13. Characteristics of silicon-based Sagnac optical switches using magneto-optical micro-ring array

    NASA Astrophysics Data System (ADS)

    Ni, Shuang; Wu, Baojian; Liu, Yawen

    2018-01-01

    The miniaturization and integration of optical switches are necessary for photonic switching networks and the utilization of magneto optical effects is a promising candidate. We propose a Sagnac optical switch chip based on the principle of nonreciprocal phase shift (NPS) of the magneto-optical (MO) micro-ring (MOMR) array, composed of SiO2/Si/Ce:YIG/SGGG. The MO switching function is realized by controlling the drive current in the snake-like metal microstrip circuit layered on the MOMRs. The transmission characteristics of the Sagnac MO switch chip dependent on magnetization intensity, waveguide coupling coefficient and waveguide loss are simulated. By optimizing the coupling coefficients, we design an MO switch using two serial MOMRs with a circumference of 38.37 μm, and the 3dB bandwidth and the extinction ratio are respectively up to 1.6 nm and 50dB for the waveguide loss coefficient of ?. And the switching magnetization can be further reduced by increasing the number of parallel MOMRs. The frequency response of the MO Sagnac switch is analyzed as well.

  14. Neural networks supporting switching, hypothesis testing, and rule application

    PubMed Central

    Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S.; Seger, Carol A.

    2015-01-01

    We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example “choose the blue letter.” Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest learning speed late in the time course of learning. As subjects shifted from hypothesis testing to rule application, activity in this network decreased and activity in the somatomotor and default mode networks increased. PMID:26197092

  15. Neural networks supporting switching, hypothesis testing, and rule application.

    PubMed

    Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S; Seger, Carol A

    2015-10-01

    We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example "choose the blue letter". Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest learning speed late in the time course of learning. As subjects shifted from hypothesis testing to rule application, activity in this network decreased and activity in the somatomotor and default mode networks increased. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A Lossless Network for Data Acquisition

    NASA Astrophysics Data System (ADS)

    Jereczek, Grzegorz; Lehmann Miotto, Giovanna; Malone, David; Walukiewicz, Miroslaw

    2017-06-01

    The bursty many-to-one communication pattern, typical for data acquisition systems, is particularly demanding for commodity TCP/IP and Ethernet technologies. We expand the study of lossless switching in software running on commercial off-the-shelf servers, using the ATLAS experiment as a case study. In this paper, we extend the popular software switch, Open vSwitch, with a dedicated, throughput-oriented buffering mechanism for data acquisition. We compare the performance under heavy congestion on typical Ethernet switches to a commodity server acting as a switch. Our results indicate that software switches with large buffers perform significantly better. Next, we evaluate the scalability of the system when building a larger topology of interconnected software switches, exploiting the integration with software-defined networking technologies. We build an IP-only leaf-spine network consisting of eight software switches running on distinct physical servers as a demonstrator.

  17. Structural Controllability of Temporal Networks with a Single Switching Controller

    PubMed Central

    Yao, Peng; Hou, Bao-Yu; Pan, Yu-Jian; Li, Xiang

    2017-01-01

    Temporal network, whose topology evolves with time, is an important class of complex networks. Temporal trees of a temporal network describe the necessary edges sustaining the network as well as their active time points. By a switching controller which properly selects its location with time, temporal trees are used to improve the controllability of the network. Therefore, more nodes are controlled within the limited time. Several switching strategies to efficiently select the location of the controller are designed, which are verified with synthetic and empirical temporal networks to achieve better control performance. PMID:28107538

  18. Fast packet switch architectures for broadband integrated services digital networks

    NASA Technical Reports Server (NTRS)

    Tobagi, Fouad A.

    1990-01-01

    Background information on networking and switching is provided, and the various architectures that have been considered for fast packet switches are described. The focus is solely on switches designed to be implemented electronically. A set of definitions and a brief description of the functionality required of fast packet switches are given. Three basic types of packet switches are identified: the shared-memory, shared-medium, and space-division types. Each of these is described, and examples are given.

  19. Finite-time robust passive control for a class of switched reaction-diffusion stochastic complex dynamical networks with coupling delays and impulsive control

    NASA Astrophysics Data System (ADS)

    Syed Ali, M.; Yogambigai, J.; Kwon, O. M.

    2018-03-01

    Finite-time boundedness and finite-time passivity for a class of switched stochastic complex dynamical networks (CDNs) with coupling delays, parameter uncertainties, reaction-diffusion term and impulsive control are studied. Novel finite-time synchronisation criteria are derived based on passivity theory. This paper proposes a CDN consisting of N linearly and diffusively coupled identical reaction- diffusion neural networks. By constructing of a suitable Lyapunov-Krasovskii's functional and utilisation of Jensen's inequality and Wirtinger's inequality, new finite-time passivity criteria for the networks are established in terms of linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. Finally, two interesting numerical examples are given to show the effectiveness of the theoretical results.

  20. Development of the network architecture of the Canadian MSAT system

    NASA Technical Reports Server (NTRS)

    Davies, N. George; Shoamanesh, Alireza; Leung, Victor C. M.

    1988-01-01

    A description is given of the present concept for the Canadian Mobile Satellite (MSAT) System and the development of the network architecture which will accommodate the planned family of three categories of service: a mobile radio service (MRS), a mobile telephone service (MTS), and a mobile data service (MDS). The MSAT satellite will have cross-strapped L-band and Ku-band transponders to provide communications services between L-band mobile terminals and fixed base stations supporting dispatcher-type MRS, gateway stations supporting MTS interconnections to the public telephone network, data hub stations supporting the MDS, and the network control center. The currently perceived centralized architecture with demand assignment multiple access for the circuit switched MRS, MTS and permanently assigned channels for the packet switched MDS is discussed.

  1. Development of the network architecture of the Canadian MSAT system

    NASA Astrophysics Data System (ADS)

    Davies, N. George; Shoamanesh, Alireza; Leung, Victor C. M.

    1988-05-01

    A description is given of the present concept for the Canadian Mobile Satellite (MSAT) System and the development of the network architecture which will accommodate the planned family of three categories of service: a mobile radio service (MRS), a mobile telephone service (MTS), and a mobile data service (MDS). The MSAT satellite will have cross-strapped L-band and Ku-band transponders to provide communications services between L-band mobile terminals and fixed base stations supporting dispatcher-type MRS, gateway stations supporting MTS interconnections to the public telephone network, data hub stations supporting the MDS, and the network control center. The currently perceived centralized architecture with demand assignment multiple access for the circuit switched MRS, MTS and permanently assigned channels for the packet switched MDS is discussed.

  2. Optical implementation of (3, 3, 2) regular rectangular CC-Banyan optical network

    NASA Astrophysics Data System (ADS)

    Yang, Junbo; Su, Xianyu

    2007-07-01

    CC-Banyan network plays an important role in the optical interconnection network. Based on previous reports of (2, 2, 3) the CC-Banyan network, another rectangular-Banyan network, i.e. (3, 3, 2) rectangular CC-Banyan network, has been discussed. First, according to its construction principle, the topological graph and the routing rule of (3, 3, 2) rectangular CC-Banyan network have been proposed. Then, the optically experimental setup of (3, 3, 2) rectangular CC-Banyan network has been designed and achieved. Each stage of node switch consists of phase spatial light modulator (PSLM) and polarizing beam-splitter (PBS), and fiber has been used to perform connection between adjacent stages. PBS features that s-component (perpendicular to the incident plane) of the incident light beam is reflected, and p-component (parallel to the incident plane) passes through it. According to switching logic, under the control of external electrical signals, PSLM functions to control routing paths of the signal beams, i.e. the polarization of each optical signal is rotated or not rotated 90° by a programmable PSLM. Finally, the discussion and analysis show that the experimental setup designed here can realize many functions such as optical signal switch and permutation. It has advantages of large number of input/output-ports, compact in structure, and low energy loss. Hence, the experimental setup can be used in optical communication and optical information processing.

  3. Local area network with fault-checking, priorities, and redundant backup

    NASA Technical Reports Server (NTRS)

    Morales, Sergio (Inventor); Friedman, Gary L. (Inventor)

    1989-01-01

    This invention is a redundant error detecting and correcting local area networked computer system having a plurality of nodes each including a network connector board within the node for connecting to an interfacing transceiver operably attached to a network cable. There is a first network cable disposed along a path to interconnect the nodes. The first network cable includes a plurality of first interfacing transceivers attached thereto. A second network cable is disposed in parallel with the first cable and, in like manner, includes a plurality of second interfacing transceivers attached thereto. There are a plurality of three position switches each having a signal input, three outputs for individual selective connection to the input, and a control input for receiving signals designating which of the outputs is to be connected to the signal input. Each of the switches includes means for designating a response address for responding to addressed signals appearing at the control input and each of the switches further has its signal input connected to a respective one of the input/output lines from the nodes. Also, one of the three outputs is connected to a repective one of the plurality of first interfacing transceivers. There is master switch control means having an output connected to the control inputs of the plurality of three position switches and an input for receiving directive signals for outputting addressed switch position signals to the three position switches as well as monitor and control computer means having a pair of network connector boards therein connected to respective ones of one of the first interfacing transceivers and one of the second interfacing transceivers and an output connected to the input of the master switch means for monitoring the status of the networked computer system by sending messages to the nodes and receiving and verifying messages therefrom and for sending control signals to the master switch to cause the master switch to cause respective ones of the nodes to use a desired one of the first and second cables for transmitting and receiving messages and for disconnecting desired ones of the nodes from both cables.

  4. Asynchronous transfer mode distribution network by use of an optoelectronic VLSI switching chip.

    PubMed

    Lentine, A L; Reiley, D J; Novotny, R A; Morrison, R L; Sasian, J M; Beckman, M G; Buchholz, D B; Hinterlong, S J; Cloonan, T J; Richards, G W; McCormick, F B

    1997-03-10

    We describe a new optoelectronic switching system demonstration that implements part of the distribution fabric for a large asynchronous transfer mode (ATM) switch. The system uses a single optoelectronic VLSI modulator-based switching chip with more than 4000 optical input-outputs. The optical system images the input fibers from a two-dimensional fiber bundle onto this chip. A new optomechanical design allows the system to be mounted in a standard electronic equipment frame. A large section of the switch was operated as a 208-Mbits/s time-multiplexed space switch, which can serve as part of an ATM switch by use of an appropriate out-of-band controller. A larger section with 896 input light beams and 256 output beams was operated at 160 Mbits/s as a slowly reconfigurable space switch.

  5. Switching auditory attention using spatial and non-spatial features recruits different cortical networks.

    PubMed

    Larson, Eric; Lee, Adrian K C

    2014-01-01

    Switching attention between different stimuli of interest based on particular task demands is important in many everyday settings. In audition in particular, switching attention between different speakers of interest that are talking concurrently is often necessary for effective communication. Recently, it has been shown by multiple studies that auditory selective attention suppresses the representation of unwanted streams in auditory cortical areas in favor of the target stream of interest. However, the neural processing that guides this selective attention process is not well understood. Here we investigated the cortical mechanisms involved in switching attention based on two different types of auditory features. By combining magneto- and electro-encephalography (M-EEG) with an anatomical MRI constraint, we examined the cortical dynamics involved in switching auditory attention based on either spatial or pitch features. We designed a paradigm where listeners were cued in the beginning of each trial to switch or maintain attention halfway through the presentation of concurrent target and masker streams. By allowing listeners time to switch during a gap in the continuous target and masker stimuli, we were able to isolate the mechanisms involved in endogenous, top-down attention switching. Our results show a double dissociation between the involvement of right temporoparietal junction (RTPJ) and the left inferior parietal supramarginal part (LIPSP) in tasks requiring listeners to switch attention based on space and pitch features, respectively, suggesting that switching attention based on these features involves at least partially separate processes or behavioral strategies. © 2013 Elsevier Inc. All rights reserved.

  6. Impairments Computation for Routing Purposes in a Transparent-Access Optical Network Based on Optical CDMA and WDM

    NASA Astrophysics Data System (ADS)

    Musa, Ahmed

    2016-06-01

    Optical access networks are becoming more widespread and the use of multiple services might require a transparent optical network (TON). Multiplexing and privacy could benefit from the combination of wavelength division multiplexing (WDM) and optical coding (OC) and wavelength conversion in optical switches. The routing process needs to be cognizant of different resource types and characteristics such as fiber types, fiber linear impairments such as attenuation, dispersion, etc. as well as fiber nonlinear impairments such as four-wave mixing, cross-phase modulation, etc. Other types of impairments, generated by optical nodes or photonic switches, also affect the signal quality (Q) or the optical signal to noise ratio (OSNR), which is related to the bit error rate (BER). Therefore, both link and switch impairments must be addressed and somehow incorporated into the routing algorithm. However, it is not practical to fully integrate all photonic-specific attributes in the routing process. In this study, new routing parameters and constraints are defined that reflect the distinct characteristics of photonic networking. These constraints are applied to the design phase of TON and expressed as a cost or metric form that will be used in the network routing algorithm.

  7. Chip-set for quality of service support in passive optical networks

    NASA Astrophysics Data System (ADS)

    Ringoot, Edwin; Hoebeke, Rudy; Slabbinck, B. Hans; Verhaert, Michel

    1998-10-01

    In this paper the design of a chip-set for QoS provisioning in ATM-based Passive Optical Networks is discussed. The implementation of a general-purpose switch chip on the Optical Network Unit is presented, with focus on the design of the cell scheduling and buffer management logic. The cell scheduling logic supports `colored' grants, priority jumping and weighted round-robin scheduling. The switch chip offers powerful buffer management capabilities enabling the efficient support of GFR and UBR services. Multicast forwarding is also supported. In addition, the architecture of a MAC controller chip developed for a SuperPON access network is introduced. In particular, the permit scheduling logic and its implementation on the Optical Line Termination will be discussed. The chip-set enables the efficient support of services with different service requirements on the SuperPON. The permit scheduling logic built into the MAC controller chip in combination with the cell scheduling and buffer management capabilities of the switch chip can be used by network operators to offer guaranteed service performance to delay sensitive services, and to efficiently and fairly distribute any spare capacity to delay insensitive services.

  8. Simultaneous and coordinated rotational switching of all molecular rotors in a network

    DOE PAGES

    Zhang, Y.; Kersell, H.; Stefak, R.; ...

    2016-05-09

    A range of artificial molecular systems have been created that can exhibit controlled linear and rotational motion. In the development of such systems, a key step is the addition of communication between molecules in a network. Here, we show that a two-dimensional array of dipolar molecular rotors can undergo simultaneous rotational switching by applying an electric field from the tip of a scanning tunnelling microscope. Several hundred rotors made from porphyrin-based double-decker complexes can be simultaneously rotated when in a hexagonal rotor network on a Cu(111) surface by applying biases above ±1 V at 80 K. The phenomenon is observedmore » only in a hexagonal rotor network due to the degeneracy of the ground state dipole rotational energy barrier of the system. Defects are essential to increase electric torque on the rotor network and to stabilize the switched rotor domains. At low biases and low initial rotator angles, slight reorientations of individual rotors can occur resulting in the rotator arms pointing in different directions. In conclusion, analysis reveals that the rotator arm directions here are not random, but are coordinated to minimize energy via cross talk among the rotors through dipolar interactions.« less

  9. Design of 1 MHz Solid State High Frequency Power Supply

    NASA Astrophysics Data System (ADS)

    Parmar, Darshan; Singh, N. P.; Gajjar, Sandip; Thakar, Aruna; Patel, Amit; Raval, Bhavin; Dhola, Hitesh; Dave, Rasesh; Upadhay, Dishang; Gupta, Vikrant; Goswami, Niranjan; Mehta, Kush; Baruah, Ujjwal

    2017-04-01

    High Frequency Power supply (HFPS) is used for various applications like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600 W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with Class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50ohm respectively. This paper describes the conceptual design of a 200 kW high frequency power supply and experimental results of the prototype 600 W, 1 MHz source.

  10. Communication using VCSEL laser array

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    2008-01-01

    Ultrafast directional beam switching, using coupled vertical cavity surface emitting lasers (VCSELs) is combined with a light modulator to provide information transfer at bit rates of tens of GHz. This approach is demonstrated to achieve beam switching frequencies of 32-50 GHz in some embodiments and directional beam switching with angular differences of about eight degrees. This switching scheme is likely to be useful for ultrafast optical networks at frequencies much higher than achievable with other approaches. A Mach-Zehnder interferometer, a Fabry-Perot etalon, or a semiconductor-based electro-absorption transmission channel, among others, can be used as a light modulator.

  11. Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems

    PubMed Central

    Medford, June; Prasad, Ashok

    2014-01-01

    Biological protein interactions networks such as signal transduction or gene transcription networks are often treated as modular, allowing motifs to be analyzed in isolation from the rest of the network. Modularity is also a key assumption in synthetic biology, where it is similarly expected that when network motifs are combined together, they do not lose their essential characteristics. However, the interactions that a network module has with downstream elements change the dynamical equations describing the upstream module and thus may change the dynamic and static properties of the upstream circuit even without explicit feedback. In this work we analyze the behavior of a ubiquitous motif in gene transcription and signal transduction circuits: the switch. We show that adding an additional downstream component to the simple genetic toggle switch changes its dynamical properties by changing the underlying potential energy landscape, and skewing it in favor of the unloaded side, and in some situations adding loads to the genetic switch can also abrogate bistable behavior. We find that an additional positive feedback motif found in naturally occurring toggle switches could tune the potential energy landscape in a desirable manner. We also analyze autocatalytic signal transduction switches and show that a ubiquitous positive feedback switch can lose its switch-like properties when connected to a downstream load. Our analysis underscores the necessity of incorporating the effects of downstream components when understanding the physics of biochemical network motifs, and raises the question as to how these effects are managed in real biological systems. This analysis is particularly important when scaling synthetic networks to more complex organisms. PMID:24676102

  12. Silica-Based Optical Time-Shift Network.

    DTIC Science & Technology

    1996-03-01

    consisted of semiconductor lasers and detectors, RF transfer -switches, low noise RF amplifiers (LNA), and T2L circuitries installed to enable switching...F/O TRANSFER BOX (1) RADIATING ELEMENTS 1:8 POWER DIVIDER (24 CARDS) 1.4 POWER DIVIDER (24) Tr/R MODULE (24) F/O DELAY WITH 2 TRANSFER SWITCHES AND 1...of the mode can travel is the velocity of light (= c/ni) in the outer clad, the part of it that lies beyond a critical radius Rc would not be able to

  13. Stochastic Dynamics Underlying Cognitive Stability and Flexibility

    PubMed Central

    Ueltzhöffer, Kai; Armbruster-Genç, Diana J. N.; Fiebach, Christian J.

    2015-01-01

    Cognitive stability and flexibility are core functions in the successful pursuit of behavioral goals. While there is evidence for a common frontoparietal network underlying both functions and for a key role of dopamine in the modulation of flexible versus stable behavior, the exact neurocomputational mechanisms underlying those executive functions and their adaptation to environmental demands are still unclear. In this work we study the neurocomputational mechanisms underlying cue based task switching (flexibility) and distractor inhibition (stability) in a paradigm specifically designed to probe both functions. We develop a physiologically plausible, explicit model of neural networks that maintain the currently active task rule in working memory and implement the decision process. We simplify the four-choice decision network to a nonlinear drift-diffusion process that we canonically derive from a generic winner-take-all network model. By fitting our model to the behavioral data of individual subjects, we can reproduce their full behavior in terms of decisions and reaction time distributions in baseline as well as distractor inhibition and switch conditions. Furthermore, we predict the individual hemodynamic response timecourse of the rule-representing network and localize it to a frontoparietal network including the inferior frontal junction area and the intraparietal sulcus, using functional magnetic resonance imaging. This refines the understanding of task-switch-related frontoparietal brain activity as reflecting attractor-like working memory representations of task rules. Finally, we estimate the subject-specific stability of the rule-representing attractor states in terms of the minimal action associated with a transition between different rule states in the phase-space of the fitted models. This stability measure correlates with switching-specific thalamocorticostriatal activation, i.e., with a system associated with flexible working memory updating and dopaminergic modulation of cognitive flexibility. These results show that stochastic dynamical systems can implement the basic computations underlying cognitive stability and flexibility and explain neurobiological bases of individual differences. PMID:26068119

  14. Six-port optical switch for cluster-mesh photonic network-on-chip

    NASA Astrophysics Data System (ADS)

    Jia, Hao; Zhou, Ting; Zhao, Yunchou; Xia, Yuhao; Dai, Jincheng; Zhang, Lei; Ding, Jianfeng; Fu, Xin; Yang, Lin

    2018-05-01

    Photonic network-on-chip for high-performance multi-core processors has attracted substantial interest in recent years as it offers a systematic method to meet the demand of large bandwidth, low latency and low power dissipation. In this paper we demonstrate a non-blocking six-port optical switch for cluster-mesh photonic network-on-chip. The architecture is constructed by substituting three optical switching units of typical Spanke-Benes network to optical waveguide crossings. Compared with Spanke-Benes network, the number of optical switching units is reduced by 20%, while the connectivity of routing path is maintained. By this way the footprint and power consumption can be reduced at the expense of sacrificing the network latency performance in some cases. The device is realized by 12 thermally tuned silicon Mach-Zehnder optical switching units. Its theoretical spectral responses are evaluated by establishing a numerical model. The experimental spectral responses are also characterized, which indicates that the optical signal-to-noise ratios of the optical switch are larger than 13.5 dB in the wavelength range from 1525 nm to 1565 nm. Data transmission experiment with the data rate of 32 Gbps is implemented for each optical link.

  15. Shipboard Calibration Network Extension Utilizing COTS Products

    DTIC Science & Technology

    2014-09-01

    to emulate the MCS system console. C. KEYBOARD VIDEO AND MOUSE (KVM) SWITCH A ServSwitch Wizard IP Plus KVM switch is used to allow remote access...9 C. KEYBOARD VIDEO AND MOUSE (KVM) SWITCH .......................... 10 D. ROUTER...mechanical, and electrical KVM Keyboard Video and Mouse LAN Local Area Network MCS Machinery Control Systems NIST National Institute of Standards and

  16. Secured Hash Based Burst Header Authentication Design for Optical Burst Switched Networks

    NASA Astrophysics Data System (ADS)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2017-12-01

    The optical burst switching (OBS) is a promising technology that could meet the fast growing network demand. They are featured with the ability to meet the bandwidth requirement of applications that demand intensive bandwidth. OBS proves to be a satisfactory technology to tackle the huge bandwidth constraints, but suffers from security vulnerabilities. The objective of this proposed work is to design a faster and efficient burst header authentication algorithm for core nodes. There are two important key features in this work, viz., header encryption and authentication. Since the burst header is an important in optical burst switched network, it has to be encrypted; otherwise it is be prone to attack. The proposed MD5&RC4-4S based burst header authentication algorithm runs 20.75 ns faster than the conventional algorithms. The modification suggested in the proposed RC4-4S algorithm gives a better security and solves the correlation problems between the publicly known outputs during key generation phase. The modified MD5 recommended in this work provides 7.81 % better avalanche effect than the conventional algorithm. The device utilization result also shows the suitability of the proposed algorithm for header authentication in real time applications.

  17. Using of explosive technologies for development of a compact current-limiting device for operation on 110 kV class systems

    NASA Astrophysics Data System (ADS)

    Shurupov, A. V.; Shurupov, M. A.; Kozlov, A. A.; Kotov, A. V.

    2016-11-01

    This paper considers the possibility of creating on new physical principles a highspeed current-limiting device (CLD) for the networks with voltage of 110 kV, namely, on the basis of the explosive switching elements. The device is designed to limit the steady short-circuit current to acceptable values for the time does not exceed 3 ms at electric power facilities. The paper presents an analysis of the electrical circuit of CLD. The main features of the scheme are: a new high-speed switching element with high regenerating voltage; fusible switching element that enables to limit the overvoltage after sudden breakage of network of the explosive switch; non-inductive resistor with a high heat capacity and a special reactor with operating time less than 1 s. We analyzed the work of the CLD with help of special software PSPICE, which is based on the equivalent circuit of single-phase short circuit to ground in 110 kV network. Analysis of the equivalent circuit operation CLD shows its efficiency and determines the CLD as a perspective direction of the current-limiting devices of new generation.

  18. Introduction to focus issue: quantitative approaches to genetic networks.

    PubMed

    Albert, Réka; Collins, James J; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks using field-programmable gate arrays. Mathematical analyses will be essential for understanding naturally occurring genetic networks in diverse organisms and for providing a foundation for the improved development of synthetic genetic networks.

  19. Introduction to Focus Issue: Quantitative Approaches to Genetic Networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka; Collins, James J.; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks using field-programmable gate arrays. Mathematical analyses will be essential for understanding naturally occurring genetic networks in diverse organisms and for providing a foundation for the improved development of synthetic genetic networks.

  20. 47 CFR 68.201 - Connection to the public switched telephone network.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... network. 68.201 Section 68.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) CONNECTION OF TERMINAL EQUIPMENT TO THE TELEPHONE NETWORK Terminal Equipment Approval Procedures § 68.201 Connection to the public switched telephone network. Terminal equipment may...

  1. 47 CFR 68.201 - Connection to the public switched telephone network.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... network. 68.201 Section 68.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) CONNECTION OF TERMINAL EQUIPMENT TO THE TELEPHONE NETWORK Terminal Equipment Approval Procedures § 68.201 Connection to the public switched telephone network. Terminal equipment may...

  2. Discrete-time systems with random switches: From systems stability to networks synchronization.

    PubMed

    Guo, Yao; Lin, Wei; Ho, Daniel W C

    2016-03-01

    In this article, we develop some approaches, which enable us to more accurately and analytically identify the essential patterns that guarantee the almost sure stability of discrete-time systems with random switches. We allow for the case that the elements in the switching connection matrix even obey some unbounded and continuous-valued distributions. In addition to the almost sure stability, we further investigate the almost sure synchronization in complex dynamical networks consisting of randomly connected nodes. Numerical examples illustrate that a chaotic dynamics in the synchronization manifold is preserved when statistical parameters enter some almost sure synchronization region established by the developed approach. Moreover, some delicate configurations are considered on probability space for ensuring synchronization in networks whose nodes are described by nonlinear maps. Both theoretical and numerical results on synchronization are presented by setting only a few random connections in each switch duration. More interestingly, we analytically find it possible to achieve almost sure synchronization in the randomly switching complex networks even with very large population sizes, which cannot be easily realized in non-switching but deterministically connected networks.

  3. Discrete-time systems with random switches: From systems stability to networks synchronization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yao; Lin, Wei, E-mail: wlin@fudan.edu.cn; Shanghai Key Laboratory of Contemporary Applied Mathematics, LMNS, and Shanghai Center for Mathematical Sciences, Shanghai 200433

    2016-03-15

    In this article, we develop some approaches, which enable us to more accurately and analytically identify the essential patterns that guarantee the almost sure stability of discrete-time systems with random switches. We allow for the case that the elements in the switching connection matrix even obey some unbounded and continuous-valued distributions. In addition to the almost sure stability, we further investigate the almost sure synchronization in complex dynamical networks consisting of randomly connected nodes. Numerical examples illustrate that a chaotic dynamics in the synchronization manifold is preserved when statistical parameters enter some almost sure synchronization region established by the developedmore » approach. Moreover, some delicate configurations are considered on probability space for ensuring synchronization in networks whose nodes are described by nonlinear maps. Both theoretical and numerical results on synchronization are presented by setting only a few random connections in each switch duration. More interestingly, we analytically find it possible to achieve almost sure synchronization in the randomly switching complex networks even with very large population sizes, which cannot be easily realized in non-switching but deterministically connected networks.« less

  4. Stability analysis of switched cellular neural networks: A mode-dependent average dwell time approach.

    PubMed

    Huang, Chuangxia; Cao, Jie; Cao, Jinde

    2016-10-01

    This paper addresses the exponential stability of switched cellular neural networks by using the mode-dependent average dwell time (MDADT) approach. This method is quite different from the traditional average dwell time (ADT) method in permitting each subsystem to have its own average dwell time. Detailed investigations have been carried out for two cases. One is that all subsystems are stable and the other is that stable subsystems coexist with unstable subsystems. By employing Lyapunov functionals, linear matrix inequalities (LMIs), Jessen-type inequality, Wirtinger-based inequality, reciprocally convex approach, we derived some novel and less conservative conditions on exponential stability of the networks. Comparing to ADT, the proposed MDADT show that the minimal dwell time of each subsystem is smaller and the switched system stabilizes faster. The obtained results extend and improve some existing ones. Moreover, the validness and effectiveness of these results are demonstrated through numerical simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hang, E-mail: hangchen@mit.edu; Thill, Peter; Cao, Jianshu

    In biochemical systems, intrinsic noise may drive the system switch from one stable state to another. We investigate how kinetic switching between stable states in a bistable network is influenced by dynamic disorder, i.e., fluctuations in the rate coefficients. Using the geometric minimum action method, we first investigate the optimal transition paths and the corresponding minimum actions based on a genetic toggle switch model in which reaction coefficients draw from a discrete probability distribution. For the continuous probability distribution of the rate coefficient, we then consider two models of dynamic disorder in which reaction coefficients undergo different stochastic processes withmore » the same stationary distribution. In one, the kinetic parameters follow a discrete Markov process and in the other they follow continuous Langevin dynamics. We find that regulation of the parameters modulating the dynamic disorder, as has been demonstrated to occur through allosteric control in bistable networks in the immune system, can be crucial in shaping the statistics of optimal transition paths, transition probabilities, and the stationary probability distribution of the network.« less

  6. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.

    PubMed

    Löwenberg, Candy; Balk, Maria; Wischke, Christian; Behl, Marc; Lendlein, Andreas

    2017-04-18

    The ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts. In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light permeability of hydrogels and the fully hydrated state with easy permeation by small molecules, other types of stimuli like light, pH, or ions can be employed that may not be easily used in hydrophobic SMPs. In some cases, those molecular switches can respond to more than one stimulus, thus increasing the number of opportunities to induce actuation of these synthetic hydrogels. Beyond this, biopolymer-based hydrogels can be equipped with a shape switching function when facilitating, for example, triple helix formation in proteins or ionic interactions in polysaccharides. Eventually, microstructured SMHs such as hybrid or porous structures can combine the shape-switching function with an improved performance by helping to overcome frequent shortcomings of hydrogels such as low mechanical strength or volume change upon temporary cross-link cleavage. Specifically, shape switching without major volume alteration is possible in porous SMHs by decoupling small volume changes of pore walls on the microscale and the macroscopic sample size. Furthermore, oligomeric rather than short aliphatic side chains as molecular switches allow stabilization of the sample volumes. Based on those structural principles and switching functionalities, SMHs have already entered into applications as soft actuators and are considered, for example, for cell manipulation in biomedicine. In the context of those applications, switching kinetics, switching forces, and reversibility of switching are aspects to be further explored.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yanhong; Gao, Ping; Bi, Kaifeng

    Conducting pathway of percolation network was identified in resistive switching devices (RSDs) with the structure of silver/amorphous silicon/p-type silicon (Ag/a-Si/p-Si) based on its gradual RESET-process and the stochastic complex impedance spectroscopy characteristics (CIS). The formation of the percolation network is attributed to amounts of nanocrystalline Si particles as well as defect sites embedded in a-Si layer, in which the defect sites supply positions for Ag ions to nucleate and grow. The similar percolation network has been only observed in Ag-Ge-Se based RSD before. This report provides a better understanding for electric properties of RSD based on the percolation network.

  8. Migration of optical core network to next generation networks - Carrier Grade Ethernet Optical Transport Network

    NASA Astrophysics Data System (ADS)

    Glamočanin, D.

    2017-05-01

    In order to maintain the continuity of the telecom operators’ network construction, while monitoring development needs, increasing customers’ demands and application of technological improvements, it is necessary to migrate optical transport core network to the next generation networks - Carrier Grade Ethernet Optical Transport Network (OTN CE). The primary objective of OTN CE is to realize an environment that is based solely on the switching in the optical domain, i.e. the realization of transparent optical networks and optical switching to the second layer of ISO / OSI model. The realization of such a network provides opportunities for further development of existing, but also technologically more demanding, new services. It is also a prerequisite to provide higher scalability, reliability, security and quality of QoS service, as well as prerequisites for the establishment of SLA (Service Level Agreement) for existing services, especially traffic in real time. This study aims to clarify the proposed model, which has the potential to be eventually adjusted in accordance with new scientific knowledge in this field as well as market requirements.

  9. SDN-Enabled Dynamic Feedback Control and Sensing in Agile Optical Networks

    NASA Astrophysics Data System (ADS)

    Lin, Likun

    Fiber optic networks are no longer just pipelines for transporting data in the long haul backbone. Exponential growth in traffic in metro-regional areas has pushed higher capacity fiber toward the edge of the network, and highly dynamic patterns of heterogeneous traffic have emerged that are often bursty, severely stressing the historical "fat and dumb pipe" static optical network, which would need to be massively over-provisioned to deal with these loads. What is required is a more intelligent network with a span of control over the optical as well as electrical transport mechanisms which enables handling of service requests in a fast and efficient way that guarantees quality of service (QoS) while optimizing capacity efficiency. An "agile" optical network is a reconfigurable optical network comprised of high speed intelligent control system fed by real-time in situ network sensing. It provides fast response in the control and switching of optical signals in response to changing traffic demands and network conditions. This agile control of optical signals is enabled by pushing switching decisions downward in the network stack to the physical layer. Implementing such agility is challenging due to the response dynamics and interactions of signals in the physical layer. Control schemes must deal with issues such as dynamic power equalization, EDFA transients and cascaded noise effects, impairments due to self-phase modulation and dispersion, and channel-to-channel cross talk. If these issues are not properly predicted and mitigated, attempts at dynamic control can drive the optical network into an unstable state. In order to enable high speed actuation of signal modulators and switches, the network controller must be able to make decisions based on predictive models. In this thesis, we consider how to take advantage of Software Defined Networking (SDN) capabilities for network reconfiguration, combined with embedded models that access updates from deployed network monitoring sensors. In order to maintain signal quality while optimizing network resources, we find that it is essential to model and update estimates of the physical link impairments in real-time. In this thesis, we consider the key elements required to enable an agile optical network, with contributions as follows: • Control Framework: extended the SDN concept to include the optical transport network through extensions to the OpenFlow (OF) protocol. A unified SDN control plane is built to facilitate control and management capability across the electrical/packet-switched and optical/circuit-switched portions of the network seamlessly. The SDN control plane serves as a platform to abstract the resources of multilayer/multivendor networks. Through this platform, applications can dynamically request the network resources to meet their service requirements. • Use of In-situ Monitors: enabled real-time physical impairment sensing in the control plane using in-situ Optical Performance Monitoring (OPM) and bit error rate (BER) analyzers. OPM and BER values are used as quantitative indicators of the link status and are fed to the control plane through a high-speed data collection interface to form a closed-loop feedback system to enable adaptive resource allocation. • Predictive Network Model: used a network model embedded in the control layer to study the link status. The estimated results of network status is fed into the control decisions to precompute the network resources. The performance of the network model can be enhanced by the sensing results. • Real-Time Control Algorithms: investigated various dynamic resource allocation mechanisms supporting an agile optical network. Intelligent routing and wavelength switching for recovering from traffic impairments is achieved experimentally in the agile optical network within one second. A distance-adaptive spectrum allocation scheme to address transmission impairments caused by cascaded Wavelength Selective Switches (WSS) is proposed and evaluated for improving network spectral efficiency.

  10. Advanced optical components for next-generation photonic networks

    NASA Astrophysics Data System (ADS)

    Yoo, S. J. B.

    2003-08-01

    Future networks will require very high throughput, carrying dominantly data-centric traffic. The role of Photonic Networks employing all-optical systems will become increasingly important in providing scalable bandwidth, agile reconfigurability, and low-power consumptions in the future. In particular, the self-similar nature of data traffic indicates that packet switching and burst switching will be beneficial in the Next Generation Photonic Networks. While the natural conclusion is to pursue Photonic Packet Switching and Photonic Burst Switching systems, there are significant challenges in realizing such a system due to practical limitations in optical component technologies. Lack of a viable all-optical memory technology will continue to drive us towards exploring rapid reconfigurability in the wavelength domain. We will introduce and discuss the advanced optical component technologies behind the Photonic Packet Routing system designed and demonstrated at UC Davis. The system is capable of packet switching and burst switching, as well as circuit switching with 600 psec switching speed and scalability to 42 petabit/sec aggregated switching capacity. By utilizing a combination of rapidly tunable wavelength conversion and a uniform-loss cyclic frequency (ULCF) arrayed waveguide grating router (AWGR), the system is capable of rapidly switching the packets in wavelength, time, and space domains. The label swapping module inside the Photonic Packet Routing system containing a Mach-Zehnder wavelength converter and a narrow-band fiber Bragg-grating achieves all-optical label swapping with optical 2R (potentially 3R) regeneration while maintaining optical transparency for the data payload. By utilizing the advanced optical component technologies, the Photonic Packet Routing system successfully demonstrated error-free, cascaded, multi-hop photonic packet switching and routing with optical-label swapping. This paper will review the advanced optical component technologies and their role in the Next Generation Photonic Networks.

  11. An associative capacitive network based on nanoscale complementary resistive switches for memory-intensive computing

    NASA Astrophysics Data System (ADS)

    Kavehei, Omid; Linn, Eike; Nielen, Lutz; Tappertzhofen, Stefan; Skafidas, Efstratios; Valov, Ilia; Waser, Rainer

    2013-05-01

    We report on the implementation of an Associative Capacitive Network (ACN) based on the nondestructive capacitive readout of two Complementary Resistive Switches (2-CRSs). ACNs are capable of performing a fully parallel search for Hamming distances (i.e. similarity) between input and stored templates. Unlike conventional associative memories where charge retention is a key function and hence, they require frequent refresh cycles, in ACNs, information is retained in a nonvolatile resistive state and normal tasks are carried out through capacitive coupling between input and output nodes. Each device consists of two CRS cells and no selective element is needed, therefore, CMOS circuitry is only required in the periphery, for addressing and read-out. Highly parallel processing, nonvolatility, wide interconnectivity and low-energy consumption are significant advantages of ACNs over conventional and emerging associative memories. These characteristics make ACNs one of the promising candidates for applications in memory-intensive and cognitive computing, switches and routers as binary and ternary Content Addressable Memories (CAMs) and intelligent data processing.

  12. Crossbar Switches For Optical Data-Communication Networks

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P.

    1994-01-01

    Optoelectronic and electro-optical crossbar switches called "permutation engines" (PE's) developed to route packets of data through fiber-optic communication networks. Basic network concept described in "High-Speed Optical Wide-Area Data-Communication Network" (NPO-18983). Nonblocking operation achieved by decentralized switching and control scheme. Each packet routed up or down in each column of this 5-input/5-output permutation engine. Routing algorithm ensures each packet arrives at its designated output port without blocking any other packet that does not contend for same output port.

  13. Analysis of adaptive algorithms for an integrated communication network

    NASA Technical Reports Server (NTRS)

    Reed, Daniel A.; Barr, Matthew; Chong-Kwon, Kim

    1985-01-01

    Techniques were examined that trade communication bandwidth for decreased transmission delays. When the network is lightly used, these schemes attempt to use additional network resources to decrease communication delays. As the network utilization rises, the schemes degrade gracefully, still providing service but with minimal use of the network. Because the schemes use a combination of circuit and packet switching, they should respond to variations in the types and amounts of network traffic. Also, a combination of circuit and packet switching to support the widely varying traffic demands imposed on an integrated network was investigated. The packet switched component is best suited to bursty traffic where some delays in delivery are acceptable. The circuit switched component is reserved for traffic that must meet real time constraints. Selected packet routing algorithms that might be used in an integrated network were simulated. An integrated traffic places widely varying workload demands on a network. Adaptive algorithms were identified, ones that respond to both the transient and evolutionary changes that arise in integrated networks. A new algorithm was developed, hybrid weighted routing, that adapts to workload changes.

  14. Partner switching promotes cooperation among myopic agents on a geographical plane

    NASA Astrophysics Data System (ADS)

    Li, Yixiao; Min, Yong; Zhu, Xiaodong; Cao, Jie

    2013-02-01

    We study the coupling dynamics between the evolution of cooperation and the evolution of partnership network on a geographical plane. While agents play networked prisoner’s dilemma games, they can dynamically adjust their partnerships based on local information about reputation. We incorporate geographical features into the process of the agent’s partner switching and investigate the corresponding effects. At each time step of the coevolution, a random agent can either update his strategy by imitation or adjust his partnership by switching from the lowest reputation partner to the highest reputation one among his neighbors. We differentiate two types of neighbors: geographical neighbors (i.e., the set of agents who are close to the focal agent in terms of geographical distance) and connectivity neighbors (i.e., the set of agents who are close to the focal agent in the partnership network in terms of geodesic distance). We find that switching to either geographical neighbors or connectivity neighbors enhances cooperation greatly in a wide parameter range. Cooperation can be favored in a much stricter condition when agents switch to connectivity neighbors more frequently. However, an increasing tendency of reconnecting to geographical neighbors shortens the geographical distance between a pair of partners on average. When agents consider the cost of geographical distance in adjusting the partnership, they are prone to reconnect to geographical neighbors.

  15. Analysis and Design of a Novel W-band SPST Switch by Employing Full-Wave EM Simulator

    NASA Astrophysics Data System (ADS)

    Xu, Zhengbin; Guo, Jian; Qian, Cheng; Dou, Wenbin

    2011-12-01

    In this paper, a W-band single pole single throw (SPST) switch based on a novel PIN diode model is presented. The PIN diode is modeled using a full-wave electromagnetic (EM) simulator and its parasitic parameters under both forward and reverse bias states are described by a T-network. By this approach, the measurement-based model, which is usually a must for high performance switch design, is no longer necessary. A compensation structure is optimized to obtain a high isolation of the switch. Accordingly, a W-band SPST switch is designed using a full wave EM simulator. Measurement results agree very well with simulated ones. Our measurements show that the developed switch has less than 1.5 dB insertion loss under the `on' state from 88 GHz to 98 GHz. Isolation greater than 30 dB over 2 GHz bandwidth and greater than 20 dB over 5 GHz bandwidth can be achieved at the center frequency of 94 GHz under the `off' state.

  16. Method and apparatus for determining and utilizing a time-expanded decision network

    NASA Technical Reports Server (NTRS)

    de Weck, Olivier (Inventor); Silver, Matthew (Inventor)

    2012-01-01

    A method, apparatus and computer program for determining and utilizing a time-expanded decision network is presented. A set of potential system configurations is defined. Next, switching costs are quantified to create a "static network" that captures the difficulty of switching among these configurations. A time-expanded decision network is provided by expanding the static network in time, including chance and decision nodes. Minimum cost paths through the network are evaluated under plausible operating scenarios. The set of initial design configurations are iteratively modified to exploit high-leverage switches and the process is repeated to convergence. Time-expanded decision networks are applicable, but not limited to, the design of systems, products, services and contracts.

  17. Congestion control and routing over satellite networks

    NASA Astrophysics Data System (ADS)

    Cao, Jinhua

    Satellite networks and transmissions find their application in fields of computer communications, telephone communications, television broadcasting, transportation, space situational awareness systems and so on. This thesis mainly focuses on two networking issues affecting satellite networking: network congestion control and network routing optimization. Congestion, which leads to long queueing delays, packet losses or both, is a networking problem that has drawn the attention of many researchers. The goal of congestion control mechanisms is to ensure high bandwidth utilization while avoiding network congestion by regulating the rate at which traffic sources inject packets into a network. In this thesis, we propose a stable congestion controller using data-driven, safe switching control theory to improve the dynamic performance of satellite Transmission Control Protocol/Active Queue Management (TCP/AQM) networks. First, the stable region of the Proportional-Integral (PI) parameters for a nominal model is explored. Then, a PI controller, whose parameters are adaptively tuned by switching among members of a given candidate set, using observed plant data, is presented and compared with some classical AQM policy examples, such as Random Early Detection (RED) and fixed PI control. A new cost detectable switching law with an interval cost function switching algorithm, which improves the performance and also saves the computational cost, is developed and compared with a law commonly used in the switching control literature. Finite-gain stability of the system is proved. A fuzzy logic PI controller is incorporated as a special candidate to achieve good performance at all nominal points with the available set of candidate controllers. Simulations are presented to validate the theory. An effocient routing algorithm plays a key role in optimizing network resources. In this thesis, we briefly analyze Low Earth Orbit (LEO) satellite networks, review the Cross Entropy (CE) method and then develop a novel on-demand routing system named Cross Entropy Accelerated Ant Routing System (CEAARS) for regular constellation LEO satellite networks. By implementing simulations on an Iridium-like satellite network, we compare the proposed CEAARS algorithm with the two approaches to adaptive routing protocols on the Internet: distance-vector (DV) and link-state (LS), as well as with the original Cross Entropy Ant Routing System (CEARS). DV algorithms are based on distributed Bellman Ford algorithm, and LS algorithms are implementation of Dijkstras single source shortest path. The results show that CEAARS not only remarkably improves the convergence speed of achieving optimal or suboptimal paths, but also reduces the number of overhead ants (management packets).

  18. A first packet processing subdomain cluster model based on SDN

    NASA Astrophysics Data System (ADS)

    Chen, Mingyong; Wu, Weimin

    2017-08-01

    For the current controller cluster packet processing performance bottlenecks and controller downtime problems. An SDN controller is proposed to allocate the priority of each device in the SDN (Software Defined Network) network, and the domain contains several network devices and Controller, the controller is responsible for managing the network equipment within the domain, the switch performs data delivery based on the load of the controller, processing network equipment data. The experimental results show that the model can effectively solve the risk of single point failure of the controller, and can solve the performance bottleneck of the first packet processing.

  19. Architecture for on-die interconnect

    DOEpatents

    Khare, Surhud; More, Ankit; Somasekhar, Dinesh; Dunning, David S.

    2016-03-15

    In an embodiment, an apparatus includes: a plurality of islands configured on a semiconductor die, each of the plurality of islands having a plurality of cores; and a plurality of network switches configured on the semiconductor die and each associated with one of the plurality of islands, where each network switch includes a plurality of output ports, a first set of the output ports are each to couple to the associated network switch of an island via a point-to-point interconnect and a second set of the output ports are each to couple to the associated network switches of a plurality of islands via a point-to-multipoint interconnect. Other embodiments are described and claimed.

  20. On-line Monitoring Device for High-voltage Switch Cabinet Partial Discharge Based on Pulse Current Method

    NASA Astrophysics Data System (ADS)

    Y Tao, S.; Zhang, X. Z.; Cai, H. W.; Li, P.; Feng, Y.; Zhang, T. C.; Li, J.; Wang, W. S.; Zhang, X. K.

    2017-12-01

    The pulse current method for partial discharge detection is generally applied in type testing and other off-line tests of electrical equipment at delivery. After intensive analysis of the present situation and existing problems of partial discharge detection in switch cabinets, this paper designed the circuit principle and signal extraction method for partial discharge on-line detection based on a high-voltage presence indicating systems (VPIS), established a high voltage switch cabinet partial discharge on-line detection circuit based on the pulse current method, developed background software integrated with real-time monitoring, judging and analyzing functions, carried out a real discharge simulation test on a real-type partial discharge defect simulation platform of a 10KV switch cabinet, and verified the sensitivity and validity of the high-voltage switch cabinet partial discharge on-line monitoring device based on the pulse current method. The study presented in this paper is of great significance for switch cabinet maintenance and theoretical study on pulse current method on-line detection, and has provided a good implementation method for partial discharge on-line monitoring devices for 10KV distribution network equipment.

  1. Routing and wavelength assignment based on normalized resource and constraints for all-optical network

    NASA Astrophysics Data System (ADS)

    Joo, Seong-Soon; Nam, Hyun-Soon; Lim, Chang-Kyu

    2003-08-01

    With the rapid growth of the Optical Internet, high capacity pipes is finally destined to support end-to-end IP on the WDM optical network. Newly launched 2D MEMS optical switching module in the market supports that expectations of upcoming a transparent optical cross-connect in the network have encouraged the field applicable research on establishing real all-optical transparent network. To open up a customer-driven bandwidth services, design of the optical transport network becomes more challenging task in terms of optimal network resource usage. This paper presents a practical approach to finding a route and wavelength assignment for wavelength routed all-optical network, which has λ-plane OXC switches and wavelength converters, and supports that optical paths are randomly set up and released by dynamic wavelength provisioning to create bandwidth between end users with timescales on the order of seconds or milliseconds. We suggest three constraints to make the RWA problem become more practical one on deployment for wavelength routed all-optical network in network view: limitation on maximum hop of a route within bearable optical network impairments, limitation on minimum hops to travel before converting a wavelength, and limitation on calculation time to find all routes for connections requested at once. We design the NRCD (Normalized Resource and Constraints for All-Optical Network RWA Design) algorithm for the Tera OXC: network resource for a route is calculated by the number of internal switching paths established in each OXC nodes on the route, and is normalized by ratio of number of paths established and number of paths equipped in a node. We show that it fits for the RWA algorithm of the wavelength routed all-optical network through real experiments on the distributed objects platform.

  2. Development of a Real-Time Intelligent Network Environment.

    ERIC Educational Resources Information Center

    Gordonov, Anatoliy; Kress, Michael; Klibaner, Roberta

    This paper presents a model of an intelligent computer network that provides real-time evaluation of students' performance by incorporating intelligence into the application layer protocol. Specially designed drills allow students to independently solve a number of problems based on current lecture material; students are switched to the most…

  3. Intelligent optical networking with photonic cross connections

    NASA Astrophysics Data System (ADS)

    Ceuppens, L.; Jerphagnon, Olivier L.; Lang, Jonathan; Banerjee, Ayan; Blumenthal, Daniel J.

    2002-09-01

    Optical amplification and dense wavelength division multiplexing (DWDM) have fundamentally changed optical transport networks. Now that these technologies are widely adopted, the bottleneck has moved from the outside line plant to nodal central offices, where electrical switching equipment has not kept pace. While OEO technology was (and still is) necessary for grooming and traffic aggregation, the transport network has dramatically changed, requiring a dramatic rethinking of how networks need to be designed and operated. While todays transport networks carry remarkable amounts of bandwidth, their optical layer is fundamentally static and provides for only simple point-to-point transport. Efficiently managing the growing number of wavelengths can only be achieved through a new breed of networking element. Photonic switching systems (PSS) can efficiently execute these functions because they are bit rate, wavelength, and protocol transparent. With their all-optical switch cores and interfaces, PSS can switch optical signals at various levels of granularity wavelength, sub band, and composite DWDM fiber levels. Though cross-connect systems with electrical switch cores are available, they perform these functions at very high capital costs and operational inefficiencies. This paper examines enabling technologies for deployment of intelligent optical transport networks (OTN), and takes a practical perspective on survivability architecture migration and implementation issues.

  4. Optical computer switching network

    NASA Technical Reports Server (NTRS)

    Clymer, B.; Collins, S. A., Jr.

    1985-01-01

    The design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve is presented. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. The basic system, the matrix-based connecting system, and some of the optical components to be used are described. Finally, the details of the control system are given and illustrated with a discussion of timing.

  5. Recent progress on fabrication of memristor and transistor-based neuromorphic devices for high signal processing speed with low power consumption

    NASA Astrophysics Data System (ADS)

    Hadiyawarman; Budiman, Faisal; Goldianto Octensi Hernowo, Detiza; Pandey, Reetu Raj; Tanaka, Hirofumi

    2018-03-01

    The advanced progress of electronic-based devices for artificial neural networks and recent trends in neuromorphic engineering are discussed in this review. Recent studies indicate that the memristor and transistor are two types of devices that can be implemented as neuromorphic devices. The electrical switching characteristics and physical mechanism of neuromorphic devices based on metal oxide, metal sulfide, silicon, and carbon materials are broadly covered in this review. Moreover, the switching performance comparison of several materials mentioned above are well highlighted, which would be useful for the further development of memristive devices. Recent progress in synaptic devices and the application of a switching device in the learning process is also discussed in this paper.

  6. 47 CFR 68.110 - Compatibility of the public switched telephone network and terminal equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... network and terminal equipment. 68.110 Section 68.110 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) CONNECTION OF TERMINAL EQUIPMENT TO THE TELEPHONE NETWORK Conditions on Use of Terminal Equipment § 68.110 Compatibility of the public switched telephone network and...

  7. 47 CFR 68.110 - Compatibility of the public switched telephone network and terminal equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... network and terminal equipment. 68.110 Section 68.110 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) CONNECTION OF TERMINAL EQUIPMENT TO THE TELEPHONE NETWORK Conditions on Use of Terminal Equipment § 68.110 Compatibility of the public switched telephone network and...

  8. Asynchronous State Estimation for Discrete-Time Switched Complex Networks With Communication Constraints.

    PubMed

    Zhang, Dan; Wang, Qing-Guo; Srinivasan, Dipti; Li, Hongyi; Yu, Li

    2018-05-01

    This paper is concerned with the asynchronous state estimation for a class of discrete-time switched complex networks with communication constraints. An asynchronous estimator is designed to overcome the difficulty that each node cannot access to the topology/coupling information. Also, the event-based communication, signal quantization, and the random packet dropout problems are studied due to the limited communication resource. With the help of switched system theory and by resorting to some stochastic system analysis method, a sufficient condition is proposed to guarantee the exponential stability of estimation error system in the mean-square sense and a prescribed performance level is also ensured. The characterization of the desired estimator gains is derived in terms of the solution to a convex optimization problem. Finally, the effectiveness of the proposed design approach is demonstrated by a simulation example.

  9. The P-Mesh: A Commodity-based Scalable Network Architecture for Clusters

    NASA Technical Reports Server (NTRS)

    Nitzberg, Bill; Kuszmaul, Chris; Stockdale, Ian; Becker, Jeff; Jiang, John; Wong, Parkson; Tweten, David (Technical Monitor)

    1998-01-01

    We designed a new network architecture, the P-Mesh which combines the scalability and fault resilience of a torus with the performance of a switch. We compare the scalability, performance, and cost of the hub, switch, torus, tree, and P-Mesh architectures. The latter three are capable of scaling to thousands of nodes, however, the torus has severe performance limitations with that many processors. The tree and P-Mesh have similar latency, bandwidth, and bisection bandwidth, but the P-Mesh outperforms the switch architecture (a lower bound for tree performance) on 16-node NAB Parallel Benchmark tests by up to 23%, and costs 40% less. Further, the P-Mesh has better fault resilience characteristics. The P-Mesh architecture trades increased management overhead for lower cost, and is a good bridging technology while the price of tree uplinks is expensive.

  10. Low-power, 2 x 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks.

    PubMed

    Van Campenhout, Joris; Green, William M J; Assefa, Solomon; Vlasov, Yurii A

    2009-12-21

    We present an ultra-broadband Mach-Zehnder based optical switch in silicon, electrically driven through carrier injection. Crosstalk levels lower than -17 dB are obtained for both the 'on' and 'off' switching states over an optical bandwidth of 110 nm, owing to the implementation of broadband 50% couplers. Full 2 x 2 switching functionality is demonstrated, with low power consumption (approximately 3 mW) and a fast switching time (< 4 ns). The utilization of standard CMOS metallization results in a low drive voltage (approximately 1 V) and a record-low V(pi)L (approximately 0.06 V x mm). The wide optical bandwidth is maintained for temperature variations up to 30 K.

  11. Survivable architectures for time and wavelength division multiplexed passive optical networks

    NASA Astrophysics Data System (ADS)

    Wong, Elaine

    2014-08-01

    The increased network reach and customer base of next-generation time and wavelength division multiplexed PON (TWDM-PONs) have necessitated rapid fault detection and subsequent restoration of services to its users. However, direct application of existing solutions for conventional PONs to TWDM-PONs is unsuitable as these schemes rely on the loss of signal (LOS) of upstream transmissions to trigger protection switching. As TWDM-PONs are required to potentially use sleep/doze mode optical network units (ONU), the loss of upstream transmission from a sleeping or dozing ONU could erroneously trigger protection switching. Further, TWDM-PONs require its monitoring modules for fiber/device fault detection to be more sensitive than those typically deployed in conventional PONs. To address the above issues, three survivable architectures that are compliant with TWDM-PON specifications are presented in this work. These architectures combine rapid detection and protection switching against multipoint failure, and most importantly do not rely on upstream transmissions for LOS activation. Survivability analyses as well as evaluations of the additional costs incurred to achieve survivability are performed and compared to the unprotected TWDM-PON. Network parameters that impact the maximum achievable network reach, maximum split ratio, connection availability, fault impact, and the incremental reliability costs for each proposed survivable architecture are highlighted.

  12. Tele-Medicine Applications of an ISDN-Based Tele-Working Platform

    DTIC Science & Technology

    2001-10-25

    developed over the Hellenic Integrated Services Digital Network (ISDN), is based on user terminals (personal computers), networking apparatus, and a...key infrastructure, ready to offer enhanced message switching and translation in response to market trends [8]. Three (3) years ago, the Hellenic PTT...should outcome to both an integrated Tele- Working platform, a main central database (completed with maintenance facilities), and a ready-to-be

  13. MEMS for optical switching: technologies, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Lin, Lih-Y.; Goldstein, Evan L.

    1999-09-01

    Micro-electro-mechanical-systems (MEMS), due to their unique ability to integrate electrical, mechanical, and optical elements on a single chip, have recently begun to exhibit great potential for realizing optical components and subsystems in compact, lowcost form. Recently, this technology has been applied to wavelength-division-multiplexed (WDM) networks, and resulted in advances in several network elements, including switches, filters, modulators, and wavelength-add/drop multiplexers. Due largely to the exploding capacity demand arising from data traffic, the transmission capacity demanded of and available from WDM networks is anticipated to increase rapidly. For managing such networks, optical switching is of particular interest due to the fact that its complexity is essentially immune to steady advances in the per-channel bit-rate. We will review various micromachined optical-switching technologies, emphasizing studies of their reliability. We then summarizing recent progress in the free-space MEMS optical switch we have demonstrated.

  14. MEMS for optical switching: technologies, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Lin, Lih-Yuan; Goldstein, Evan L.

    1999-09-01

    Micro-electro-mechanical-systems (MEMS), due to their unique ability to integrate electrical, mechanical, and optical elements on a single chip, have recently begun to exhibit great potential for realizing optical components and subsystems in compact, low-cost form. Recently, this technology has been applied to wavelength-division-multiplexed (WDM) networks, and resulted in advances in several network elements, including switches, filters, modulators, and wavelength-add/drop multiplexers. Due largely to the exploding capacity demand arising from data traffic, the transmission capacity demanded of and available from WDM networks is anticipated to increase rapidly. For managing such networks, optical switching is of particular interest due to the fact that its complexity is essentially immune to steady advances in the per-channel bit-rate. We will review various micromachined optical-switching technologies, emphasizing studies of their reliability. We then summarizing recent progress in the free-space MEMS optical switch we have demonstrated.

  15. Optical network scaling: roles of spectral and spatial aggregation.

    PubMed

    Arık, Sercan Ö; Ho, Keang-Po; Kahn, Joseph M

    2014-12-01

    As the bit rates of routed data streams exceed the throughput of single wavelength-division multiplexing channels, spectral and spatial traffic aggregation become essential for optical network scaling. These aggregation techniques reduce network routing complexity by increasing spectral efficiency to decrease the number of fibers, and by increasing switching granularity to decrease the number of switching components. Spectral aggregation yields a modest decrease in the number of fibers but a substantial decrease in the number of switching components. Spatial aggregation yields a substantial decrease in both the number of fibers and the number of switching components. To quantify routing complexity reduction, we analyze the number of multi-cast and wavelength-selective switches required in a colorless, directionless and contentionless reconfigurable optical add-drop multiplexer architecture. Traffic aggregation has two potential drawbacks: reduced routing power and increased switching component size.

  16. Cost-effective method of manufacturing a 3D MEMS optical switch

    NASA Astrophysics Data System (ADS)

    Carr, Emily; Zhang, Ping; Keebaugh, Doug; Chau, Kelvin

    2009-02-01

    growth of data and video transport networks. All-optical switching eliminates the need for optical-electrical conversion offering the ability to switch optical signals transparently: independent of data rates, formats and wavelength. It also provides network operators much needed automation capabilities to create, monitor and protect optical light paths. To further accelerate the market penetration, it is necessary to identify a path to reduce the manufacturing cost significantly as well as enhance the overall system performance, uniformity and reliability. Currently, most MEMS optical switches are assembled through die level flip-chip bonding with either epoxies or solder bumps. This is due to the alignment accuracy requirements of the switch assembly, defect matching of individual die, and cost of the individual components. In this paper, a wafer level assembly approach is reported based on silicon fusion bonding which aims to reduce the packaging time, defect count and cost through volume production. This approach is successfully demonstrated by the integration of two 6-inch wafers: a mirror array wafer and a "snap-guard" wafer, which provides a mechanical structure on top of the micromirror to prevent electrostatic snap-down. The direct silicon-to-silicon bond eliminates the CTEmismatch and stress issues caused by non-silicon bonding agents. Results from a completed integrated switch assembly will be presented, which demonstrates the reliability and uniformity of some key parameters of this MEMS optical switch.

  17. Cooperative Adaptive Output Regulation for Second-Order Nonlinear Multiagent Systems With Jointly Connected Switching Networks.

    PubMed

    Liu, Wei; Huang, Jie

    2018-03-01

    This paper studies the cooperative global robust output regulation problem for a class of heterogeneous second-order nonlinear uncertain multiagent systems with jointly connected switching networks. The main contributions consist of the following three aspects. First, we generalize the result of the adaptive distributed observer from undirected jointly connected switching networks to directed jointly connected switching networks. Second, by performing a new coordinate and input transformation, we convert our problem into the cooperative global robust stabilization problem of a more complex augmented system via the distributed internal model principle. Third, we solve the stabilization problem by a distributed state feedback control law. Our result is illustrated by the leader-following consensus problem for a group of Van der Pol oscillators.

  18. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit.

    PubMed

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo

    2016-12-21

    Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10 -9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers.

  19. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit

    NASA Astrophysics Data System (ADS)

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J.; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo

    2016-12-01

    Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10-9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers.

  20. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit

    PubMed Central

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J.; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo

    2016-01-01

    Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than −30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10−9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers. PMID:28000735

  1. Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity

    PubMed Central

    Hull, Michael J.; Soffe, Stephen R.; Willshaw, David J.; Roberts, Alan

    2016-01-01

    What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition. PMID:26824331

  2. GLOBECOM '89 - IEEE Global Telecommunications Conference and Exhibition, Dallas, TX, Nov. 27-30, 1989, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    The present conference discusses topics in multiwavelength network technology and its applications, advanced digital radio systems in their propagation environment, mobile radio communications, switching programmability, advancements in computer communications, integrated-network management and security, HDTV and image processing in communications, basic exchange communications radio advancements in digital switching, intelligent network evolution, speech coding for telecommunications, and multiple access communications. Also discussed are network designs for quality assurance, recent progress in coherent optical systems, digital radio applications, advanced communications technologies for mobile users, communication software for switching systems, AI and expert systems in network management, intelligent multiplexing nodes, video and image coding, network protocols and performance, system methods in quality and reliability, the design and simulation of lightwave systems, local radio networks, mobile satellite communications systems, fiber networks restoration, packet video networks, human interfaces for future networks, and lightwave networking.

  3. Optical MEMS platform for low-cost on-chip integration of planar light circuits and optical switching

    NASA Astrophysics Data System (ADS)

    German, Kristine A.; Kubby, Joel; Chen, Jingkuang; Diehl, James; Feinberg, Kathleen; Gulvin, Peter; Herko, Larry; Jia, Nancy; Lin, Pinyen; Liu, Xueyuan; Ma, Jun; Meyers, John; Nystrom, Peter; Wang, Yao Rong

    2004-07-01

    Xerox Corporation has developed a technology platform for on-chip integration of latching MEMS optical waveguide switches and Planar Light Circuit (PLC) components using a Silicon On Insulator (SOI) based process. To illustrate the current state of this new technology platform, working prototypes of a Reconfigurable Optical Add/Drop Multiplexer (ROADM) and a l-router will be presented along with details of the integrated latching MEMS optical switches. On-chip integration of optical switches and PLCs can greatly reduce the size, manufacturing cost and operating cost of multi-component optical equipment. It is anticipated that low-cost, low-overhead optical network products will accelerate the migration of functions and services from high-cost long-haul markets to price sensitive markets, including networks for metropolitan areas and fiber to the home. Compared to the more common silica-on-silicon PLC technology, the high index of refraction of silicon waveguides created in the SOI device layer enables miniaturization of optical components, thereby increasing yield and decreasing cost projections. The latching SOI MEMS switches feature moving waveguides, and are advantaged across multiple attributes relative to alternative switching technologies, such as thermal optical switches and polymer switches. The SOI process employed was jointly developed under the auspice of the NIST APT program in partnership with Coventor, Corning IntelliSense Corp., and MicroScan Systems to enable fabrication of a broad range of free space and guided wave MicroOptoElectroMechanical Systems (MOEMS).

  4. Machine-Learning Based Channel Quality and Stability Estimation for Stream-Based Multichannel Wireless Sensor Networks.

    PubMed

    Rehan, Waqas; Fischer, Stefan; Rehan, Maaz

    2016-09-12

    Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end, simulations are made using MATLAB, and the results show that the Extended version of NEAMCBTC algorithm (Ext-NEAMCBTC) outperforms the compared techniques in terms of channel quality and stability assessment. It also minimizes channel switching overheads (in terms of switching delays and energy consumption) for accommodating stream-based communication in multichannel WSNs.

  5. Machine-Learning Based Channel Quality and Stability Estimation for Stream-Based Multichannel Wireless Sensor Networks

    PubMed Central

    Rehan, Waqas; Fischer, Stefan; Rehan, Maaz

    2016-01-01

    Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end, simulations are made using MATLAB, and the results show that the Extended version of NEAMCBTC algorithm (Ext-NEAMCBTC) outperforms the compared techniques in terms of channel quality and stability assessment. It also minimizes channel switching overheads (in terms of switching delays and energy consumption) for accommodating stream-based communication in multichannel WSNs. PMID:27626429

  6. On-board B-ISDN fast packet switching architectures. Phase 1: Study

    NASA Technical Reports Server (NTRS)

    Faris, Faris; Inukai, Thomas; Lee, Fred; Paul, Dilip; Shyy, Dong-Jye

    1993-01-01

    The broadband integrate services digital network (B-ISDN) is an emerging telecommunications technology that will meet most of the telecommunications networking needs in the mid-1990's to early next century. The satellite-based system is well positioned for providing B-ISDN service with its inherent capabilities of point-to-multipoint and broadcast transmission, virtually unlimited connectivity between any two points within a beam coverage, short deployment time of communications facility, flexible and dynamic reallocation of space segment capacity, and distance insensitive cost. On-board processing satellites, particularly in a multiple spot beam environment, will provide enhanced connectivity, better performance, optimized access and transmission link design, and lower user service cost. The following are described: the user and network aspects of broadband services; the current development status in broadband services; various satellite network architectures including system design issues; and various fast packet switch architectures and their detail designs.

  7. Electrical switching and oscillations in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Pergament, Alexander; Velichko, Andrey; Belyaev, Maksim; Putrolaynen, Vadim

    2018-05-01

    We have studied electrical switching with S-shaped I-V characteristics in two-terminal MOM devices based on vanadium dioxide thin films. The switching effect is associated with the metal-insulator phase transition. Relaxation oscillations are observed in circuits with VO2-based switches. Dependences of the oscillator critical frequency Fmax, threshold power and voltage, as well as the time of current rise, on the switching structure size are obtained by numerical simulation. The empirical dependence of the threshold voltage on the switching region dimensions and film thickness is found. It is shown that, for the VO2 channel sizes of 10 × 10 nm, Fmax can reach the value of 300 MHz at a film thickness of 20 nm. Next, it is shown that oscillatory neural networks can be implemented on the basis of coupled VO2 oscillators. For the weak capacitive coupling, we revealed the dependence of the phase difference upon synchronization on the coupling capacitance value. When the switches are scaled down, the limiting time of synchronization is reduced to Ts 13 μs, and the number of oscillation periods for the entering to the synchronization mode remains constant, Ns 17. In the case of weak thermal coupling in the synchronization mode, we observe in-phase behavior of oscillators, and there is a certain range of parameters of the supply current, in which the synchronization effect becomes possible. With a decrease in dimensions, a decrease in the thermal coupling action radius is observed, which can vary in the range from 0.5 to 50 μm for structures with characteristic dimensions of 0.1-5 μm, respectively. Thermal coupling may have a promising effect for realization of a 3D integrated oscillatory neural network.

  8. Design of an All-Optical Network Based on LCoS Technologies

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Shiau, Yhi

    2016-06-01

    In this paper, an all-optical network composed of the ROADMs (reconfigurable optical add-drop multiplexer), L2/L3 optical packet switches, and the fiber optical cross-connection for fiber scheduling and measurement based on LCoS (liquid crystal on silicon) technologies is proposed. The L2/L3 optical packet switches are designed with optical output buffers. Only the header of optical packets is converted to electronic signals to control the wavelength of input ports and the packet payloads can be transparently destined to their output ports. An optical output buffer is designed to queue the packets when more than one incoming packet should reach to the same destination output port. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The wavelength of input ports is designed for routing incoming packets using LCoS technologies. Finally, the proposed OFS (optical flow switch) with input buffers can quickly transfer the big data to the output ports and the main purpose of the OFS is to reduce the number of wavelength reflections. The all-optical content delivery network is comprised of the OFSs for a large amount of audio and video data transmissions in the future.

  9. An overview of the technical design of MSAT mobile satellite communications services

    NASA Astrophysics Data System (ADS)

    Davies, N. George

    The Canadian MSAT mobile satellite communications system is being implemented in cooperation with the American Mobile Satellite Consortium (AMSC). Two satellites are to be jointly acquired and each satellite is expected to backup the other. This paper describes the technical concepts of the services to be offered and the baseline planning of the infrastructure for the ground segment. MSAT service requirements are analyzed for mobile radio, telephone, data, and aeronautical services. The MSAT system will use nine beams in a narrow range of L-band frequencies with frequency reuse. Beams may be added to cover flight information areas in the Atlantic and Pacific oceans. The elements of the network architecture are: a network control centre, data hub stations, gateway stations, base stations, mobile terminals, and a signalling system to interconnect the elements of the system. The network control center will manage the network and allocate space segment capacity; data hub stations will support a switched packet mobile data service; the gateway stations will provide interconnection to the public telephone system and data networks; and the base stations will support private circuit switched voice and data services. Several alternative designs for the signalling system are described.

  10. Integrated DoD Voice and Data Networks and Ground Packet Radio Technology

    DTIC Science & Technology

    1976-08-01

    as the traffic requirement level increases. Moreover, the satellite switch selection problem is only meaningful over a limited traffic range. When...5: CPU TIMES VS. NUMBER OF SWITCHES SATELLITE SWITCH SELECTION ALGORITHM Computer Used: PDP-10 ♦O’S" means 0 minutes and 5 seconds. 5.30...Saturation Algorithm for Topo\\ogical Design of Parket-Switched Communications Networks," National Te3 ecommunications Conference Proceed- ings, San

  11. Interconnecting network for switching data packets and method for switching data packets

    DOEpatents

    Benner, Alan Frederic; Minkenberg, Cyriel Johan Agnes; Stunkel, Craig Brian

    2010-05-25

    The interconnecting network for switching data packets, having data and flow control information, comprises a local packet switch element (S1) with local input buffers (I(1,1) . . . I(1,y)) for buffering the incoming data packets, a remote packet switch element (S2) with remote input buffers (I(2,1) . . . I(2,y)) for buffering the incoming data packets, and data lines (L) for interconnecting the local and the remote packet switch elements (S1, S2). The interconnecting network further comprises a local and a remote arbiter (A1, A2) which are connected via control lines (CL) to the input buffers (I(1,1) . . . I(1,y), I(2,1) . . . I(2,y)), and which are formed such that they can provide that the flow control information is transmitted via the data lines (L) and the control lines (CL).

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Heidelberger, Philip; Sugawara, Yutaka

    An apparatus and method for extending the scalability and improving the partitionability of networks that contain all-to-all links for transporting packet traffic from a source endpoint to a destination endpoint with low per-endpoint (per-server) cost and a small number of hops. An all-to-all wiring in the baseline topology is decomposed into smaller all-to-all components in which each smaller all-to-all connection is replaced with star topology by using global switches. Stacking multiple copies of the star topology baseline network creates a multi-planed switching topology for transporting packet traffic. Point-to-point unified stacking method using global switch wiring methods connects multiple planes ofmore » a baseline topology by using the global switches to create a large network size with a low number of hops, i.e., low network latency. Grouped unified stacking method increases the scalability (network size) of a stacked topology.« less

  13. Highly uniform resistive switching properties of amorphous InGaZnO thin films prepared by a low temperature photochemical solution deposition method.

    PubMed

    Hu, Wei; Zou, Lilan; Chen, Xinman; Qin, Ni; Li, Shuwei; Bao, Dinghua

    2014-04-09

    We report on highly uniform resistive switching properties of amorphous InGaZnO (a-IGZO) thin films. The thin films were fabricated by a low temperature photochemical solution deposition method, a simple process combining chemical solution deposition and ultraviolet (UV) irradiation treatment. The a-IGZO based resistive switching devices exhibit long retention, good endurance, uniform switching voltages, and stable distribution of low and high resistance states. Electrical conduction mechanisms were also discussed on the basis of the current-voltage characteristics and their temperature dependence. The excellent resistive switching properties can be attributed to the reduction of organic- and hydrogen-based elements and the formation of enhanced metal-oxide bonding and metal-hydroxide bonding networks by hydrogen bonding due to UV irradiation, based on Fourier-transform-infrared spectroscopy, X-ray photoelectron spectroscopy, and Field emission scanning electron microscopy analysis of the thin films. This study suggests that a-IGZO thin films have potential applications in resistive random access memory and the low temperature photochemical solution deposition method can find the opportunity for further achieving system on panel applications if the a-IGZO resistive switching cells were integrated with a-IGZO thin film transistors.

  14. Analysis of 100Mb/s Ethernet for the Whitney Commodity Computing Testbed

    NASA Technical Reports Server (NTRS)

    Fineberg, Samuel A.; Pedretti, Kevin T.; Kutler, Paul (Technical Monitor)

    1997-01-01

    We evaluate the performance of a Fast Ethernet network configured with a single large switch, a single hub, and a 4x4 2D torus topology in a testbed cluster of "commodity" Pentium Pro PCs. We also evaluated a mixed network composed of ethernet hubs and switches. An MPI collective communication benchmark, and the NAS Parallel Benchmarks version 2.2 (NPB2) show that the torus network performs best for all sizes that we were able to test (up to 16 nodes). For larger networks the ethernet switch outperforms the hub, though its performance is far less than peak. The hub/switch combination tests indicate that the NAS parallel benchmarks are relatively insensitive to hub densities of less than 7 nodes per hub.

  15. Multilevel-Dc-Bus Inverter For Providing Sinusoidal And Pwm Electrical Machine Voltages

    DOEpatents

    Su, Gui-Jia [Knoxville, TN

    2005-11-29

    A circuit for controlling an ac machine comprises a full bridge network of commutation switches which are connected to supply current for a corresponding voltage phase to the stator windings, a plurality of diodes, each in parallel connection to a respective one of the commutation switches, a plurality of dc source connections providing a multi-level dc bus for the full bridge network of commutation switches to produce sinusoidal voltages or PWM signals, and a controller connected for control of said dc source connections and said full bridge network of commutation switches to output substantially sinusoidal voltages to the stator windings. With the invention, the number of semiconductor switches is reduced to m+3 for a multi-level dc bus having m levels. A method of machine control is also disclosed.

  16. LEOPACK The integrated services communications system based on LEO satellites

    NASA Astrophysics Data System (ADS)

    Negoda, A.; Bunin, S.; Bushuev, E.; Dranovsky, V.

    LEOPACK is yet another LEO satellite project which provides global integrated services for 'business' communications. It utilizes packet rather then circuit switching in both terrestrial and satellite chains as well as cellular approach for frequencies use. Original multiple access protocols and decentralized network control make it possible to organize regionally or logically independent and world-wide networks. Relatively small number of satellites (28) provides virtually global network coverage.

  17. Energy Efficient, Cross-Layer Enabled, Dynamic Aggregation Networks for Next Generation Internet

    NASA Astrophysics Data System (ADS)

    Wang, Michael S.

    Today, the Internet traffic is growing at a near exponential rate, driven predominately by data center-based applications and Internet-of-Things services. This fast-paced growth in Internet traffic calls into question the ability of the existing optical network infrastructure to support this continued growth. The overall optical networking equipment efficiency has not been able to keep up with the traffic growth, creating a energy gap that makes energy and cost expenditures scale linearly with the traffic growth. The implication of this energy gap is that it is infeasible to continue using existing networking equipment to meet the growing bandwidth demand. A redesign of the optical networking platform is needed. The focus of this dissertation is on the design and implementation of energy efficient, cross-layer enabled, dynamic optical networking platforms, which is a promising approach to address the exponentially growing Internet bandwidth demand. Chapter 1 explains the motivation for this work by detailing the huge Internet traffic growth and the unsustainable energy growth of today's networking equipment. Chapter 2 describes the challenges and objectives of enabling agile, dynamic optical networking platforms and the vision of the Center for Integrated Access Networks (CIAN) to realize these objectives; the research objectives of this dissertation and the large body of related work in this field is also summarized. Chapter 3 details the design and implementation of dynamic networking platforms that support wavelength switching granularity. The main contribution of this work involves the experimental validation of deep cross-layer communication across the optical performance monitoring (OPM), data, and control planes. The first experiment shows QoS-aware video streaming over a metro-scale test-bed through optical power monitoring of the transmission wavelength and cross-layer feedback control of the power level. The second experiment extends the performance monitoring capabilities to include real-time monitoring of OSNR and polarization mode dispersion (PMD) to enable dynamic wavelength switching and selective restoration. Chapter 4 explains the author?s contributions in designing dynamic networking at the sub-wavelength switching granularity, which can provide greater network efficiency due to its finer granularity. To support dynamic switching, regeneration, adding/dropping, and control decisions on each individual packet, the cross-layer enabled node architecture is enhanced with a FPGA controller that brings much more precise timing and control to the switching, OPM, and control planes. Furthermore, QoS-aware packet protection and dynamic switching, dropping, and regeneration functionalities were experimentally demonstrated in a multi-node network. Chapter 5 describes a technique to perform optical grooming, a process of optically combining multiple incoming data streams into a single data stream, which can simultaneously achieve greater bandwidth utilization and increased spectral efficiency. In addition, an experimental demonstration highlighting a fully functioning multi-node, agile optical networking platform is detailed. Finally, a summary and discussion of future work is provided in Chapter 6. The future of the Internet is very exciting, filled with not-yet-invented applications and services driven by cloud computing and Internet-of-Things. The author is cautiously optimistic that agile, dynamically reconfigurable optical networking is the solution to realizing this future.

  18. A new routing enhancement scheme based on node blocking state advertisement in wavelength-routed WDM networks

    NASA Astrophysics Data System (ADS)

    Hu, Peigang; Jin, Yaohui; Zhang, Chunlei; He, Hao; Hu, WeiSheng

    2005-02-01

    The increasing switching capacity brings the optical node with considerable complexity. Due to the limitation in cost and technology, an optical node is often designed with partial switching capability and partial resource sharing. It means that the node is of blocking to some extent, for example multi-granularity switching node, which in fact is a structure using pass wavelength to reduce the dimension of OXC, and partial sharing wavelength converter (WC) OXC. It is conceivable that these blocking nodes will have great effects on the problem of routing and wavelength assignment. Some previous works studied the blocking case, partial WC OXC, using complicated wavelength assignment algorithm. But the complexities of these schemes decide them to be not in practice in real networks. In this paper, we propose a new scheme based on the node blocking state advertisement to reduce the retry or rerouting probability and improve the efficiency of routing in the networks with blocking nodes. In the scheme, node blocking state are advertised to the other nodes in networks, which will be used for subsequent route calculation to find a path with lowest blocking probability. The performance of the scheme is evaluated using discrete event model in 14-node NSFNET, all the nodes of which employ a kind of partial sharing WC OXC structure. In the simulation, a simple First-Fit wavelength assignment algorithm is used. The simulation results demonstrate that the new scheme considerably reduces the retry or rerouting probability in routing process.

  19. Proton Single Event Effects (SEE) Testing of the Myrinet Crossbar Switch and Network Interface Card

    NASA Technical Reports Server (NTRS)

    Howard, James W., Jr.; LaBel, Kenneth A.; Carts, Martin A.; Stattel, Ronald; Irwin, Timothy L.; Day, John H. (Technical Monitor)

    2002-01-01

    As part of the Remote Exploration and Experimentation Project (REE), work was performed to do a proton SEE (Single Event Effect) evaluation of the Myricom network protocol system (Myrinet). This testing included the evaluation of the Myrinet crossbar switch and the Network Interface Card (NIC). To this end, two crossbar switch devices and five components in the NIC were exposed to the proton beam at the University of California at Davis Crocker Nuclear Laboratory (CNL).

  20. Apparatus and method for fusion of compute and switching functions of exascale system into a single component by using configurable network-on-chip fabric with distributed dual mode input-output ports and programmable network interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khare, Surhud; Somasekhar, Dinesh; More, Ankit

    Described is an apparatus which comprises: a Network-On-Chip fabric using crossbar switches, having distributed ingress and egress ports; and a dual-mode network interface coupled to at least one crossbar switch, the dual-mode network interface is to include: a dual-mode circuitry; a controller operable to: configure the dual-mode circuitry to transmit and receive differential signals via the egress and ingress ports, respectively, and configure the dual-mode circuitry to transmit and receive signal-ended signals via the egress and ingress ports, respectively.

  1. Packet Switching Networks: An Introduction with Some Attention to Selected Vendors.

    ERIC Educational Resources Information Center

    Sanchez, James Joseph

    The purpose of this paper is to provide an overview of the history, development, and services of the packet switching network services that currently exist in the United States. The character of packet switching, a computerized method of transmitting data, is used as the basis for tracing the development of the industry itself. Contending that the…

  2. Anterior Cingulate Cortex Instigates Adaptive Switches in Choice by Integrating Immediate and Delayed Components of Value in Ventromedial Prefrontal Cortex

    PubMed Central

    Guitart-Masip, Marc; Kurth-Nelson, Zeb; Dolan, Raymond J.

    2014-01-01

    Actions can lead to an immediate reward or punishment and a complex set of delayed outcomes. Adaptive choice necessitates the brain track and integrate both of these potential consequences. Here, we designed a sequential task whereby the decision to exploit or forego an available offer was contingent on comparing immediate value and a state-dependent future cost of expending a limited resource. Crucially, the dynamics of the task demanded frequent switches in policy based on an online computation of changing delayed consequences. We found that human subjects choose on the basis of a near-optimal integration of immediate reward and delayed consequences, with the latter computed in a prefrontal network. Within this network, anterior cingulate cortex (ACC) was dynamically coupled to ventromedial prefrontal cortex (vmPFC) when adaptive switches in choice were required. Our results suggest a choice architecture whereby interactions between ACC and vmPFC underpin an integration of immediate and delayed components of value to support flexible policy switching that accommodates the potential delayed consequences of an action. PMID:24573291

  3. Anterior cingulate cortex instigates adaptive switches in choice by integrating immediate and delayed components of value in ventromedial prefrontal cortex.

    PubMed

    Economides, Marcos; Guitart-Masip, Marc; Kurth-Nelson, Zeb; Dolan, Raymond J

    2014-02-26

    Actions can lead to an immediate reward or punishment and a complex set of delayed outcomes. Adaptive choice necessitates the brain track and integrate both of these potential consequences. Here, we designed a sequential task whereby the decision to exploit or forego an available offer was contingent on comparing immediate value and a state-dependent future cost of expending a limited resource. Crucially, the dynamics of the task demanded frequent switches in policy based on an online computation of changing delayed consequences. We found that human subjects choose on the basis of a near-optimal integration of immediate reward and delayed consequences, with the latter computed in a prefrontal network. Within this network, anterior cingulate cortex (ACC) was dynamically coupled to ventromedial prefrontal cortex (vmPFC) when adaptive switches in choice were required. Our results suggest a choice architecture whereby interactions between ACC and vmPFC underpin an integration of immediate and delayed components of value to support flexible policy switching that accommodates the potential delayed consequences of an action.

  4. Free-space optics technology employed in an UMTS release 4 bearer independent core network access part

    NASA Astrophysics Data System (ADS)

    Bibac, Ionut

    2005-08-01

    The UMTS Bearer Independent Core Network program introduced the 3rd Generation Partnership Program Release 4 BICN architecture into the legacy UMTS TDM-switched network. BICN is the application of calI server archltecture for voice and circuit switched data, enabling the provisioning of traditional circuit-switched services using a packet-switched transport network. Today"s business climate has made it essential for service providers to develop a comprehensive networking strategy that means introduction of RCBICN networks. The R4-BICN solution to the evolution of the Core Network in UMTS will enable operators to significantly reduce the capital and operational costs of delivering both traditional voice sewices and new multimedia services. To build the optical backbone, which can support the third generation (3G) packetized infrastructure, the operators could choose a fibre connection, or they could retain the benefits of a wireless connectivity by using a FSO - Free Space Optical lmk, the only wireless technology available that is capable of achieving data rates up to 2.4 Gbit/s. FSO offers viable alternatives for both core transmission networks and for replacing microwaves links in NodeB - RNC access networks. The paper and presentation aim to demonstrate the manner in which FSO products and networks are employed into R4-BICN design solutions.

  5. Reputation-based partner choice promotes cooperation in social networks

    NASA Astrophysics Data System (ADS)

    Fu, Feng; Hauert, Christoph; Nowak, Martin A.; Wang, Long

    2008-08-01

    We investigate the cooperation dynamics attributed to the interplay between the evolution of individual strategies and evolution of individual partnerships. We focus on the effect of reputation on an individual’s partner-switching process. We assume that individuals can either change their strategies by imitating their partners or adjust their partnerships based on local information about reputations. We manipulate the partner switching in two ways; that is, individuals can switch from the lowest reputation partners, either to their partners’ partners who have the highest reputation (i.e., ordering in partnership) or to others randomly chosen from the entire population (i.e., randomness in partnership). We show that when individuals are able to alter their behavioral strategies and their social interaction partnerships on the basis of reputation, cooperation can prevail. We find that the larger temptation to defect and the denser the partner network, the more frequently individuals need to shift their partnerships in order for cooperation to thrive. Furthermore, an increasing tendency of switching to partners’ partners is more likely to lead to a higher level of cooperation. We show that when reputation is absent in such partner-switching processes, cooperation is much less favored than that of the reputation involved. Moreover, we investigate the effect of discounting an individual’s reputation on the evolution of cooperation. Our results highlight the importance of the consideration of reputation (indirect reciprocity) on the promotion of cooperation when individuals can adjust their partnerships.

  6. A knowledge-based system with learning for computer communication network design

    NASA Technical Reports Server (NTRS)

    Pierre, Samuel; Hoang, Hai Hoc; Tropper-Hausen, Evelyne

    1990-01-01

    Computer communication network design is well-known as complex and hard. For that reason, the most effective methods used to solve it are heuristic. Weaknesses of these techniques are listed and a new approach based on artificial intelligence for solving this problem is presented. This approach is particularly recommended for large packet switched communication networks, in the sense that it permits a high degree of reliability and offers a very flexible environment dealing with many relevant design parameters such as link cost, link capacity, and message delay.

  7. Self-healing ring-based WDM-PON

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Gan, Chaoqin; Zhu, Long

    2010-05-01

    In this paper, a survivable ring-based wavelength-division-multiplexing (WDM)-passive optical network (PON) for fiber protection is proposed. Protections for feeder fiber and distributed fiber are independent in the scheme. Optical line terminal (OLT) and optical network units (ONUs) can automatically switch to protection link when fiber failure occurs. Protection distributed fiber is not required in the scheme. Cost-effective components are used in ONUs to minimize costs of network. A simulation study is performed to demonstrate the scheme. Its result shows good performance of upstream and downstream signals.

  8. Exploring adolescent cognitive control in a combined interference switching task.

    PubMed

    Mennigen, Eva; Rodehacke, Sarah; Müller, Kathrin U; Ripke, Stephan; Goschke, Thomas; Smolka, Michael N

    2014-08-01

    Cognitive control enables individuals to flexibly adapt to environmental challenges. In the present functional magnetic resonance imaging (fMRI) study, we investigated 185 adolescents at the age of 14 with a combined response interference switching task measuring behavioral responses (reaction time, RT and error rate, ER) and brain activity during the task. This task comprises two types of conflict which are co-occurring, namely, task switching and stimulus-response incongruence. Data indicated that already in adolescents an overlapping cognitive control network comprising the dorsal anterior cingulate cortex (dACC), dorsolateral prefrontal cortex (DLPFC), pre-supplementary motor area (preSMA) and posterior parietal cortex (PPC) is recruited by conflicts arising from task switching and response incongruence. Furthermore our study revealed higher blood oxygenation level dependent (BOLD) responses elicited by incongruent stimuli in participants with a pronounced incongruence effect, calculated as the RT difference between incongruent and congruent trials. No such correlation was observed for switch costs. Furthermore, increased activation of the default mode network (DMN) was only observed in congruent trials compared to incongruent trials, but not in task repetition relative to task switch trials. These findings suggest that even though the two processes of task switching and response incongruence share a common cognitive control network they might be processed differentially within the cognitive control network. Results are discussed in the context of a novel hypothesis concerning antagonistic relations between the DMN and the cognitive control network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. DNA-Binding Kinetics Determines the Mechanism of Noise-Induced Switching in Gene Networks

    PubMed Central

    Tse, Margaret J.; Chu, Brian K.; Roy, Mahua; Read, Elizabeth L.

    2015-01-01

    Gene regulatory networks are multistable dynamical systems in which attractor states represent cell phenotypes. Spontaneous, noise-induced transitions between these states are thought to underlie critical cellular processes, including cell developmental fate decisions, phenotypic plasticity in fluctuating environments, and carcinogenesis. As such, there is increasing interest in the development of theoretical and computational approaches that can shed light on the dynamics of these stochastic state transitions in multistable gene networks. We applied a numerical rare-event sampling algorithm to study transition paths of spontaneous noise-induced switching for a ubiquitous gene regulatory network motif, the bistable toggle switch, in which two mutually repressive genes compete for dominant expression. We find that the method can efficiently uncover detailed switching mechanisms that involve fluctuations both in occupancies of DNA regulatory sites and copy numbers of protein products. In addition, we show that the rate parameters governing binding and unbinding of regulatory proteins to DNA strongly influence the switching mechanism. In a regime of slow DNA-binding/unbinding kinetics, spontaneous switching occurs relatively frequently and is driven primarily by fluctuations in DNA-site occupancies. In contrast, in a regime of fast DNA-binding/unbinding kinetics, switching occurs rarely and is driven by fluctuations in levels of expressed protein. Our results demonstrate how spontaneous cell phenotype transitions involve collective behavior of both regulatory proteins and DNA. Computational approaches capable of simulating dynamics over many system variables are thus well suited to exploring dynamic mechanisms in gene networks. PMID:26488666

  10. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.

    PubMed

    Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-08-22

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing. Copyright © 2014, American Association for the Advancement of Science.

  11. A unique all-optic switch based on an innovatively designed liquid crystal waveguide

    NASA Astrophysics Data System (ADS)

    Nam, Sung-Hyun; Su, Wei-Hung; Chavez, Jesus; Yin, Shizhuo

    2003-10-01

    A unique, all-optic switch based on an innovatively designed planar lightwave circuit (PLC) is presented in this paper. The switching function is achieved by using ultra large birefringence of nematic liquid crystals (NLC) filled at the trench of waveguides. The trench at the crossing forms a waveguide mirror or a matching medium when extraordinary and ordinary refractive indices of NLC are employed, respectively. The major advantages of our unique design are: (1) the limitation that refractive index of liquid crystal must be less than that of waveguide material itself is eliminated so that conventional NCL material such as E7 can be used; (2) it is a self aligned fabrication process that alleviates the tight tolerance of later tilt error; (3) the design is thermally stable. The successful fabrication of this unqiue switch could result in an enabling element for the next generation all-optic networks.

  12. Self-learning ability realized with a resistive switching device based on a Ni-rich nickel oxide thin film

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Chen, T. P.; Liu, Z.; Yu, Y. F.; Yu, Q.; Li, P.; Fung, S.

    2011-12-01

    The resistive switching device based on a Ni-rich nickel oxide thin film exhibits an inherent learning ability of a neural network. The device has the short-term-memory and long-term-memory functions analogous to those of the human brain, depending on the history of its experience of voltage pulsing or sweeping. Neuroplasticity could be realized with the device, as the device can be switched from a high-resistance state to a low-resistance state due to the formation of stable filaments by a series of electrical pulses, resembling the changes such as the growth of new connections and the creation of new neurons in the brain in response to experience.

  13. Modelling switching-time effects in high-frequency power conditioning networks

    NASA Technical Reports Server (NTRS)

    Owen, H. A.; Sloane, T. H.; Rimer, B. H.; Wilson, T. G.

    1979-01-01

    Power transistor networks which switch large currents in highly inductive environments are beginning to find application in the hundred kilohertz switching frequency range. Recent developments in the fabrication of metal-oxide-semiconductor field-effect transistors in the power device category have enhanced the movement toward higher switching frequencies. Models for switching devices and of the circuits in which they are imbedded are required to properly characterize the mechanisms responsible for turning on and turning off effects. Easily interpreted results in the form of oscilloscope-like plots assist in understanding the effects of parametric studies using topology oriented computer-aided analysis methods.

  14. P2MP MPLS-Based Hierarchical Service Management System

    NASA Astrophysics Data System (ADS)

    Kumaki, Kenji; Nakagawa, Ikuo; Nagami, Kenichi; Ogishi, Tomohiko; Ano, Shigehiro

    This paper proposes a point-to-multipoint (P2MP) Multi-Protocol Label Switching (MPLS) based hierarchical service management system. Traditionally, general management systems deployed in some service providers control MPLS Label Switched Paths (LSPs) (e.g., RSVP-TE and LDP) and services (e.g., L2VPN, L3VPN and IP) separately. In order for dedicated management systems for MPLS LSPs and services to cooperate with each other automatically, a hierarchical service management system has been proposed with the main focus on point-to-point (P2P) TE LSPs in MPLS path management. In the case where P2MP TE LSPs and services are deployed in MPLS networks, the dedicated management systems for P2MP TE LSPs and services must work together automatically. Therefore, this paper proposes a new algorithm that uses a correlation between P2MP TE LSPs and multicast VPN services based on a P2MP MPLS-based hierarchical service management architecture. Also, the capacity and performance of the proposed algorithm are evaluated by simulations, which are actually based on certain real MPLS production networks, and are compared to that of the algorithm for P2P TE LSPs. Results show this system is very scalable within real MPLS production networks. This system, with the automatic correlation, appears to be deployable in real MPLS production networks.

  15. Path connectivity based spectral defragmentation in flexible bandwidth networks.

    PubMed

    Wang, Ying; Zhang, Jie; Zhao, Yongli; Zhang, Jiawei; Zhao, Jie; Wang, Xinbo; Gu, Wanyi

    2013-01-28

    Optical networks with flexible bandwidth provisioning have become a very promising networking architecture. It enables efficient resource utilization and supports heterogeneous bandwidth demands. In this paper, two novel spectrum defragmentation approaches, i.e. Maximum Path Connectivity (MPC) algorithm and Path Connectivity Triggering (PCT) algorithm, are proposed based on the notion of Path Connectivity, which is defined to represent the maximum variation of node switching ability along the path in flexible bandwidth networks. A cost-performance-ratio based profitability model is given to denote the prons and cons of spectrum defragmentation. We compare these two proposed algorithms with non-defragmentation algorithm in terms of blocking probability. Then we analyze the differences of defragmentation profitability between MPC and PCT algorithms.

  16. Optimizing the switching time for 400 kV SF6 circuit breakers

    NASA Astrophysics Data System (ADS)

    Ciulica, D.

    2018-01-01

    This paper presents real-time voltage and current analysis for optimizing the wave switching point of the circuit breaker SF6. Circuit Breaker plays an important role in power systems. It provides protection for equipment in embedded stations in transport networks. SF6 Circuit Breaker is very important equipment in Power Systems, which is used for up to 400 kV due to its excellent performance. The controlled switching is used to eliminate transient modes and electrodynamic and dielectric charges in the network at manual switching of capacitor, shunt reactors and power transformers. These effects reduce the reliability and lifetime of the equipment installed on the network, or may lead to erroneous protection.

  17. Radial Basis Function Neural Network Application to Power System Restoration Studies

    PubMed Central

    Sadeghkhani, Iman; Ketabi, Abbas; Feuillet, Rene

    2012-01-01

    One of the most important issues in power system restoration is overvoltages caused by transformer switching. These overvoltages might damage some equipment and delay power system restoration. This paper presents a radial basis function neural network (RBFNN) to study transformer switching overvoltages. To achieve good generalization capability for developed RBFNN, equivalent parameters of the network are added to RBFNN inputs. The developed RBFNN is trained with the worst-case scenario of switching angle and remanent flux and tested for typical cases. The simulated results for a partial of 39-bus New England test system show that the proposed technique can estimate the peak values and duration of switching overvoltages with good accuracy. PMID:22792093

  18. Forming free and ultralow-power erase operation in atomically crystal TiO2 resistive switching

    NASA Astrophysics Data System (ADS)

    Dai, Yawei; Bao, Wenzhong; Hu, Linfeng; Liu, Chunsen; Yan, Xiao; Chen, Lin; Sun, Qingqing; Ding, Shijin; Zhou, Peng; Zhang, David Wei

    2017-06-01

    Two-dimensional layered materials (2DLMs) have attracted broad interest from fundamental sciences to industrial applications. Their applications in memory devices have been demonstrated, yet much still remains to explore optimal materials and device structure for practical application. In this work, a forming-free, bipolar resistive switching behavior are demonstrated in 2D TiO2-based resistive random access memory (RRAM). Physical adsorption method is adopted to achieve high quality, continuous 2D TiO2 network efficiently. The 2D TiO2 RRAM devices exhibit superior properties such as fast switching capability (20 ns of erase operation) and extremely low erase energy consumption (0.16 fJ). Furthermore, the resistive switching mechanism is attributed to the formation and rupture of oxygen vacancies-based percolation path in 2D TiO2 crystals. Our results pave the way for the implementation of high performance 2DLMs-based RRAM in the next generation non-volatile memory (NVM) application.

  19. Implementation of logic functions and computations by chemical kinetics

    NASA Astrophysics Data System (ADS)

    Hjelmfelt, A.; Ross, J.

    We review our work on the computational functions of the kinetics of chemical networks. We examine spatially homogeneous networks which are based on prototypical reactions occurring in living cells and show the construction of logic gates and sequential and parallel networks. This work motivates the study of an important biochemical pathway, glycolysis, and we demonstrate that the switch that controls the flux in the direction of glycolysis or gluconeogenesis may be described as a fuzzy AND operator. We also study a spatially inhomogeneous network which shares features of theoretical and biological neural networks.

  20. Design and evaluation of a DAMQ multiprocessor network with self-compacting buffers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.; O`Krafka, B.W.O.; Vassiliadis, S.

    1994-12-31

    This paper describes a new approach to implement Dynamically Allocated Multi-Queue (DAMQ) switching elements using a technique called ``self-compacting buffers``. This technique is efficient in that the amount of hardware required to manage the buffers is relatively small; it offers high performance since it is an implementation of a DAMQ. The first part of this paper describes the self-compacting buffer architecture in detail, and compares it against a competing DAMQ switch design. The second part presents extensive simulation results comparing the performance of a self compacting buffer switch against an ideal switch including several examples of k-ary n-cubes and deltamore » networks. In addition, simulation results show how the performance of an entire network can be quickly and accurately approximated by simulating just a single switching element.« less

  1. 3 x 3 free-space optical router based on crossbar network and its control algorithm

    NASA Astrophysics Data System (ADS)

    Hou, Peipei; Sun, Jianfeng; Yu, Zhou; Lu, Wei; Wang, Lijuan; Liu, Liren

    2015-08-01

    A 3 × 3 free-space optical router, which comprises optical switches and polarizing beam splitter (PBS) and based on crossbar network, is proposed in this paper. A control algorithm for the 3 × 3 free-space optical router is also developed to achieve rapid control without rearrangement. In order to test the performance of the network based on 3 × 3 free-space optical router and that of the algorithm developed for the optical router, experiments are designed. The experiment results show that the interconnection network based on the 3 × 3 free-space optical router has low cross talk, fast connection speed. Under the control of the algorithm developed, a non-block and real free interconnection network is obtained based on the 3 × 3 free-space optical router we proposed.

  2. Lag Synchronization of Switched Neural Networks via Neural Activation Function and Applications in Image Encryption.

    PubMed

    Wen, Shiping; Zeng, Zhigang; Huang, Tingwen; Meng, Qinggang; Yao, Wei

    2015-07-01

    This paper investigates the problem of global exponential lag synchronization of a class of switched neural networks with time-varying delays via neural activation function and applications in image encryption. The controller is dependent on the output of the system in the case of packed circuits, since it is hard to measure the inner state of the circuits. Thus, it is critical to design the controller based on the neuron activation function. Comparing the results, in this paper, with the existing ones shows that we improve and generalize the results derived in the previous literature. Several examples are also given to illustrate the effectiveness and potential applications in image encryption.

  3. New results on anti-synchronization of switched neural networks with time-varying delays and lag signals.

    PubMed

    Cao, Yuting; Wen, Shiping; Chen, Michael Z Q; Huang, Tingwen; Zeng, Zhigang

    2016-09-01

    This paper investigates the problem of global exponential anti-synchronization of a class of switched neural networks with time-varying delays and lag signals. Considering the packed circuits, the controller is dependent on the output of the system as the inner states are very hard to measure. Therefore, it is necessary to investigate the controller based on the output of the neuron cell. Through theoretical analysis, it is obvious that the obtained ones improve and generalize the results derived in the previous literature. To illustrate the effectiveness, a simulation example with applications in image encryptions is also presented in the paper. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. 20 kA PFN capacitor bank with solid-state switching. [pulse forming network for plasma studies

    NASA Technical Reports Server (NTRS)

    Posta, S. J.; Michels, C. J.

    1973-01-01

    A compact high-current pulse-forming network capacitor bank using paralleled silicon controlled rectifiers as switches is described. The maximum charging voltage of the bank is 1kV and maximum load current is 20 kA. The necessary switch equalization criteria and performance with dummy load and an arc plasma generator are described.

  5. An architecture for the MSAT mobile data system

    NASA Technical Reports Server (NTRS)

    Kerr, R. W.; Skerry, B.

    1990-01-01

    The Mobile Satellite (MSAT) Mobile Data System (MDS) will offer a wide range of packet switched data services. The characteristics and requirements of the services are briefly examined. A proposed architecture to implement these services is presented along with its connectivity requirements. A description of the inbound and outbound channels is provided which are based upon the signalling for the circuit switched services. Additionally, the duties of the Network Management System are examined.

  6. Performance verification of network function virtualization in software defined optical transport networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Hu, Liyazhou; Wang, Wei; Li, Yajie; Zhang, Jie

    2017-01-01

    With the continuous opening of resource acquisition and application, there are a large variety of network hardware appliances deployed as the communication infrastructure. To lunch a new network application always implies to replace the obsolete devices and needs the related space and power to accommodate it, which will increase the energy and capital investment. Network function virtualization1 (NFV) aims to address these problems by consolidating many network equipment onto industry standard elements such as servers, switches and storage. Many types of IT resources have been deployed to run Virtual Network Functions (vNFs), such as virtual switches and routers. Then how to deploy NFV in optical transport networks is a of great importance problem. This paper focuses on this problem, and gives an implementation architecture of NFV-enabled optical transport networks based on Software Defined Optical Networking (SDON) with the procedure of vNFs call and return. Especially, an implementation solution of NFV-enabled optical transport node is designed, and a parallel processing method for NFV-enabled OTN nodes is proposed. To verify the performance of NFV-enabled SDON, the protocol interaction procedures of control function virtualization and node function virtualization are demonstrated on SDON testbed. Finally, the benefits and challenges of the parallel processing method for NFV-enabled OTN nodes are simulated and analyzed.

  7. Incorporating spatial constraint in co-activation pattern analysis to explore the dynamics of resting-state networks: An application to Parkinson's disease.

    PubMed

    Zhuang, Xiaowei; Walsh, Ryan R; Sreenivasan, Karthik; Yang, Zhengshi; Mishra, Virendra; Cordes, Dietmar

    2018-05-15

    The dynamics of the brain's intrinsic networks have been recently studied using co-activation pattern (CAP) analysis. The CAP method relies on few model assumptions and CAP-based measurements provide quantitative information of network temporal dynamics. One limitation of existing CAP-related methods is that the computed CAPs share considerable spatial overlap that may or may not be functionally distinct relative to specific network dynamics. To more accurately describe network dynamics with spatially distinct CAPs, and to compare network dynamics between different populations, a novel data-driven CAP group analysis method is proposed in this study. In the proposed method, a dominant-CAP (d-CAP) set is synthesized across CAPs from multiple clustering runs for each group with the constraint of low spatial similarities among d-CAPs. Alternating d-CAPs with less overlapping spatial patterns can better capture overall network dynamics. The number of d-CAPs, the temporal fraction and spatial consistency of each d-CAP, and the subject-specific switching probability among all d-CAPs are then calculated for each group and used to compare network dynamics between groups. The spatial dissimilarities among d-CAPs computed with the proposed method were first demonstrated using simulated data. High consistency between simulated ground-truth and computed d-CAPs was achieved, and detailed comparisons between the proposed method and existing CAP-based methods were conducted using simulated data. In an effort to physiologically validate the proposed technique and investigate network dynamics in a relevant brain network disorder, the proposed method was then applied to data from the Parkinson's Progression Markers Initiative (PPMI) database to compare the network dynamics in Parkinson's disease (PD) and normal control (NC) groups. Fewer d-CAPs, skewed distribution of temporal fractions of d-CAPs, and reduced switching probabilities among final d-CAPs were found in most networks in the PD group, as compared to the NC group. Furthermore, an overall negative association between switching probability among d-CAPs and disease severity was observed in most networks in the PD group as well. These results expand upon previous findings from in vivo electrophysiological recording studies in PD. Importantly, this novel analysis also demonstrates that changes in network dynamics can be measured using resting-state fMRI data from subjects with early stage PD. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Large optical 3D MEMS switches in access networks

    NASA Astrophysics Data System (ADS)

    Madamopoulos, Nicholas; Kaman, Volkan; Yuan, Shifu; Jerphagnon, Olivier; Helkey, Roger; Bowers, John E.

    2007-09-01

    Interest is high among residential customers and businesses for advanced, broadband services such as fast Internet access, electronic commerce, video-on-demand, digital broadcasting, teleconferencing and telemedicine. In order to satisfy such growing demand of end-customers, access technologies such as fiber-to-the-home/building (FTTH/B) are increasingly being deployed. Carriers can reduce maintenance costs, minimize technology obsolescence and introduce new services easily by reducing active elements in the fiber access network. However, having a passive optical network (PON) also introduces operational and maintenance challenges. Increased diagnostic monitoring capability of the network becomes a necessity as more and more fibers are provisioned to deliver services to the end-customers. This paper demonstrates the clear advantages that large 3D optical MEMS switches offer in solving these access network problems. The advantages in preventative maintenance, remote monitoring, test and diagnostic capability are highlighted. The low optical insertion loss for all switch optical connections of the switch enables the monitoring, grooming and serving of a large number of PON lines and customers. Furthermore, the 3D MEMS switch is transparent to optical wavelengths and data formats, thus making it easy to incorporate future upgrades, such higher bit rates or DWDM overlay to a PON.

  9. Dynamic switching enables efficient bacterial colonization in flow.

    PubMed

    Kannan, Anerudh; Yang, Zhenbin; Kim, Minyoung Kevin; Stone, Howard A; Siryaporn, Albert

    2018-05-22

    Bacteria colonize environments that contain networks of moving fluids, including digestive pathways, blood vasculature in animals, and the xylem and phloem networks in plants. In these flow networks, bacteria form distinct biofilm structures that have an important role in pathogenesis. The physical mechanisms that determine the spatial organization of bacteria in flow are not understood. Here, we show that the bacterium P. aeruginosa colonizes flow networks using a cyclical process that consists of surface attachment, upstream movement, detachment, movement with the bulk flow, and surface reattachment. This process, which we have termed dynamic switching, distributes bacterial subpopulations upstream and downstream in flow through two phases: movement on surfaces and cellular movement via the bulk. The model equations that describe dynamic switching are identical to those that describe dynamic instability, a process that enables microtubules in eukaryotic cells to search space efficiently to capture chromosomes. Our results show that dynamic switching enables bacteria to explore flow networks efficiently, which maximizes dispersal and colonization and establishes the organizational structure of biofilms. A number of eukaryotic and mammalian cells also exhibit movement in two phases in flow, which suggests that dynamic switching is a modality that enables efficient dispersal for a broad range of cell types.

  10. Channel and Timeslot Co-Scheduling with Minimal Channel Switching for Data Aggregation in MWSNs

    PubMed Central

    Yeoum, Sanggil; Kang, Byungseok; Lee, Jinkyu; Choo, Hyunseung

    2017-01-01

    Collision-free transmission and efficient data transfer between nodes can be achieved through a set of channels in multichannel wireless sensor networks (MWSNs). While using multiple channels, we have to carefully consider channel interference, channel and time slot (resources) optimization, channel switching delay, and energy consumption. Since sensor nodes operate on low battery power, the energy consumed in channel switching becomes an important challenge. In this paper, we propose channel and time slot scheduling for minimal channel switching in MWSNs, while achieving efficient and collision-free transmission between nodes. The proposed scheme constructs a duty-cycled tree while reducing the amount of channel switching. As a next step, collision-free time slots are assigned to every node based on the minimal data collection delay. The experimental results demonstrate that the validity of our scheme reduces the amount of channel switching by 17.5%, reduces energy consumption for channel switching by 28%, and reduces the schedule length by 46%, as compared to the existing schemes. PMID:28471416

  11. Channel and Timeslot Co-Scheduling with Minimal Channel Switching for Data Aggregation in MWSNs.

    PubMed

    Yeoum, Sanggil; Kang, Byungseok; Lee, Jinkyu; Choo, Hyunseung

    2017-05-04

    Collision-free transmission and efficient data transfer between nodes can be achieved through a set of channels in multichannel wireless sensor networks (MWSNs). While using multiple channels, we have to carefully consider channel interference, channel and time slot (resources) optimization, channel switching delay, and energy consumption. Since sensor nodes operate on low battery power, the energy consumed in channel switching becomes an important challenge. In this paper, we propose channel and time slot scheduling for minimal channel switching in MWSNs, while achieving efficient and collision-free transmission between nodes. The proposed scheme constructs a duty-cycled tree while reducing the amount of channel switching. As a next step, collision-free time slots are assigned to every node based on the minimal data collection delay. The experimental results demonstrate that the validity of our scheme reduces the amount of channel switching by 17.5%, reduces energy consumption for channel switching by 28%, and reduces the schedule length by 46%, as compared to the existing schemes.

  12. Design and implementation considerations of a MSAT packet data network

    NASA Technical Reports Server (NTRS)

    Karam, Fouad G.; Hearn, Terry; Rohr, Doug; Guibord, Arthur F.

    1993-01-01

    The Mobile Data System, which is intended to provide for packet switched data services is currently under development. The system is based on a star network topology consisting of a centralized Data Hub (DH) serving a large number of mobile terminals. Through the Data Hub, end-to-end connections can be established between terrestrial users on public or private data networks and mobile users. The MDS network will be capable of offering a variety of services some of which are based on the standard X.25 network interface protocol, and others optimized for short messages and broadcast messages. A description of these services and the trade-offs in the DH design are presented.

  13. A Cellular Neural Networks Based DiffServ Switch for Satellite Communication Systems

    NASA Astrophysics Data System (ADS)

    Tarchi, Daniele; Fantacci, Romano; Gubellini, Roberto; Pecorella, Tommaso

    2003-07-01

    Recent developments of Internet services and advanced compression methods has revived interest on IP based multimedia satellite communication systems. However a main problem arising here is to guarantee specific Quality of Service (QoS) constraints in order to have good performance for each traffic class.Among various QoS approach used in Internet, recently the DiffServ technique has became the most promising so- lution, mainly for its simplicity with respect to different alternatives. Moreover, in satellite communication systems, DiffServ policy computational capabilities are placed at the edge points (end-to-end philosophy); this is very important for a network constituted by one satellite link because it allows to reduce the implementation complexity of the satellite on-board equipments.The satellite switch under consideration makes use of the Multiple Input Queuing approach. Packets arrived at a switch input are stored in a shared buffer but they are logically ordered in individual queues, one for each possible output link. According to the DiffServ policy, within a same logical queue, packets are reordered in individual sub-queues according to the priority. A suitable implementation of the DiffServ policy based on a Cellular Neural Network (CNN) is proposed in the paper in order to achieve QoS requirements.The CNNs are a set of linear and nonlinear circuits connected among them that allow parallel and asynchronous computation. CNNs are a class of neural networks similar to Hopfield Neural Networks (HNN), but more flexible and suitable for solving the output contention problem, inherent of switching systems, for VLSI implementation.In this paper a CNN has been designed in order to maximize a cost functional, related to the on-board switch through- put and QoS constraints. The initial state for each neural cell is obtained looking at the presence of at least one packet from a certain input logical queue to a specific output line. The input value for each neural cell is a function of priority and length of each input logical queue. The versatility of neural network make feasible to take the best decision for the packet to be delivered to each output satellite beam, in order to meet specific QoS constraints. Numerical results for CNN approach highlights that Neural network convergence within a time slot is guaranteed, and an optimal, or at least near-optimal, solution in terms of cost function is achieved.The proposed system is based on the IETF (Internet Engineering Task Force) recommendations; this means that traffic entering the switching fabric could be marked as Expedited Forward (EF) or Assured Forward (AF), otherwise handled as Best Effort (BE). Two Assured Forward classes with different emission priority have been implemented, taking into account time spent inside the logical queue and its length. Expedited Forward traffic is typical of services to be delivered with the maximum priority, as streaming or interactive services. The packets, belonging to services that need a certain level of priority with low packet loss, are marked as Assured Forward. Best Effort traffic is related to e-mail or file transfer, or other that have not particular QoS requirements. The CNN used to solve conflict situations act as an arbiter for all the output links. Differently from other Multiple Input Queuing approach, where one arbiter for each output line is present, in proposed approach there exist only one arbiter that make the best decision. The selected rule has been defined in order to give priority to packets, according to opportunely defined functionals characteristic of each traffic class, under the constraint that no more than one packet can be delivered to the same output line. The functionals depend on queue length and time spent inside the queue by front packet.The performance of the proposed DiffServ switch has been derived in terms of delay and jitter; buffer occupancy has been analyzed for different configuration, such as a unique common buffer, one buffer for each input line, one buffer for each input line and each priority class.The obtained results highlight an high flexibility of satellite switch with CNN, taking into account that functional used to calculate priority of each queue could be easily changed, without any complexity gain nor change in CNN structure, in order to consider different traffic characteristic. Numerical results show that proposed algorithm outperform the switches based on Multiple Input Queuing, that use strictly priority methods, in terms of delay and jitter. Different buffer size have been also considered in order to analyze packet loss for CNN switch algorithm, comparing different configuration described above.The good behavior of the proposed DiffServ switch has been verified in the case of traffic with pareto distribution for packet length and a geometrical distribution for packet interarrival time, highlighting good performance in terms of delay and jitter. Numerical results also demonstrate the stability of this method for heavy load traffic; in particular maximum permitted load is higher for higher priority classes.

  14. Bipolar resistive switching in Si/Ag nanostructures

    NASA Astrophysics Data System (ADS)

    Dias, C.; Lv, H.; Picos, R.; Aguiar, P.; Cardoso, S.; Freitas, P. P.; Ventura, J.

    2017-12-01

    Resistive switching devices are being intensively studied aiming a large number of promising applications such as nonvolatile memories, artificial neural networks and sensors. Here, we show nanoscale bipolar resistive switching in Pt/Si/Ag/TiW structures, with a dielectric barrier thickness of 20 nm. The observed phenomenon is based on the formation/rupture of metallic Ag filaments in the otherwise insulating Si host material. No electroforming process was required to achieve resistive switching. We obtained average values of 0.23 V and -0.24 V for the Set and Reset voltages, respectively. The stability of the switching was observed for over 100 cycles, together with a clear separation of the ON (103 Ω) and OFF (102 Ω) states. Furthermore, the influence of the Set current compliance on the ON resistance, resistances ratio and Set/Reset voltages percentage variation was also studied.

  15. 3-DIMENSIONAL Optoelectronic

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Ashok Venketaraman

    This thesis covers the design, analysis, optimization, and implementation of optoelectronic (N,M,F) networks. (N,M,F) networks are generic space-division networks that are well suited to implementation using optoelectronic integrated circuits and free-space optical interconnects. An (N,M,F) networks consists of N input channels each having a fanout F_{rm o}, M output channels each having a fanin F_{rm i}, and Log_{rm K}(N/F) stages of K x K switches. The functionality of the fanout, switching, and fanin stages depends on the specific application. Three applications of optoelectronic (N,M,F) networks are considered. The first is an optoelectronic (N,1,1) content -addressable memory system that achieves associative recall on two-dimensional images retrieved from a parallel-access optical memory. The design and simulation of the associative memory are discussed, and an experimental emulation of a prototype system using images from a parallel-readout optical disk is presented. The system design provides superior performance to existing electronic content-addressable memory chips in terms of capacity and search rate, and uses readily available optical disk and VLSI technologies. Next, a scalable optoelectronic (N,M,F) neural network that uses free-space holographic optical interconnects is presented. The neural architecture minimizes the number of optical transmitters needed, and provides accurate electronic fanin with low signal skew, and dendritic-type fan-in processing capability in a compact layout. Optimal data-encoding methods and circuit techniques are discussed. The implementation of an prototype optoelectronic neural system, and its application to a simple recognition task is demonstrated. Finally, the design, analysis, and optimization of a (N,N,F) self-routing, packet-switched multistage interconnection network is described. The network is suitable for parallel computing and broadband switching applications. The tradeoff between optical and electronic interconnects is examined quantitatively by varying the electronic switch size K. The performance of the (N,N,F) network versus the fanning parameter F, is also analyzed. It is shown that the optoelectronic (N,N,F) networks provide a range of performance-cost alternatives, and offer superior performance-per-cost to fully electronic switching networks and to previous networks designs.

  16. Accurate modeling of switched reluctance machine based on hybrid trained WNN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Shoujun, E-mail: sunnyway@nwpu.edu.cn; Ge, Lefei; Ma, Shaojie

    2014-04-15

    According to the strong nonlinear electromagnetic characteristics of switched reluctance machine (SRM), a novel accurate modeling method is proposed based on hybrid trained wavelet neural network (WNN) which combines improved genetic algorithm (GA) with gradient descent (GD) method to train the network. In the novel method, WNN is trained by GD method based on the initial weights obtained per improved GA optimization, and the global parallel searching capability of stochastic algorithm and local convergence speed of deterministic algorithm are combined to enhance the training accuracy, stability and speed. Based on the measured electromagnetic characteristics of a 3-phase 12/8-pole SRM, themore » nonlinear simulation model is built by hybrid trained WNN in Matlab. The phase current and mechanical characteristics from simulation under different working conditions meet well with those from experiments, which indicates the accuracy of the model for dynamic and static performance evaluation of SRM and verifies the effectiveness of the proposed modeling method.« less

  17. MPNACK: an optical switching scheme enabling the buffer-less reliable transmission

    NASA Astrophysics Data System (ADS)

    Yu, Xiaoshan; Gu, Huaxi; Wang, Kun; Xu, Meng; Guo, Yantao

    2016-01-01

    Optical data center networks are becoming an increasingly promising solution to solve the bottlenecks faced by electrical networks, such as low transmission bandwidth, high wiring complexity, and unaffordable power consumption. However, the optical circuit switching (OCS) network is not flexible enough to carry the traffic burst while the optical packet switching (OPS) network cannot solve the packet contention in an efficient way. To this end, an improved switching strategy named OPS with multi-hop Negative Acknowledgement (MPNACK) is proposed. This scheme uses a feedback mechanism, rather than the buffering structure, to handle the optical packet contention. The collided packet is treated as a NACK packet and sent back to the source server. When the sender receives this NACK packet, it knows a collision happens in the transmission path and a retransmission procedure is triggered. Overall, the OPS-NACK scheme enables a reliable transmission in the buffer-less optical network. Furthermore, with this scheme, the expensive and energy-hungry elements, optical or electrical buffers, can be removed from the optical interconnects, thus a more scalable and cost-efficient network can be constructed for cloud computing data centers.

  18. High-density, fail-in-place switches for computer and data networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coteus, Paul W.; Doany, Fuad E.; Hall, Shawn A.

    A structure for a network switch. The network switch may include a plurality of spine chips arranged on a plurality of spine cards, where one or more spine chips are located on each spine card; and a plurality of leaf chips arranged on a plurality of leaf cards, wherein one or more leaf chips are located on each leaf card, where each spine card is connected to every leaf chip and the plurality of spine chips are surrounded on at least two sides by leaf cards.

  19. Voice over Internet protocol for the orthodontic practice: a sensible switch from plain old telephone service.

    PubMed

    Mupparapu, Muralidhar

    2008-03-01

    Voice over Internet protocol (VoIP) is a revolutionary new technology that is causing a stir in the telecommunications industry and threatening the existence of traditional telephone service providers. Based on a simple method of converting analog audio signals into digital data before being transmitted over the Internet, VoIP has gained immense popularity among consumers. The technology is now regarded as an alternative to traditional telephone service for the orthodontic office. When the economics are considered, it is cost-effective, especially for a busy orthodontic practice where the call volumes both in and out are always high. VoIP has the potential to reduce costs, break the barriers between local vs long-distance calling, and make life easier for the office staff. However, deploying VoIP requires a cautious and thought-out process. Users should fully understand the risks and benefits before switching from the public switched telephone network. VoIP customers and service providers are vulnerable to many of the same impersonation-based attacks by those who attempt toll fraud, and identity and information theft. In this article, VoIP is introduced to orthodontic practitioners, who might be unfamiliar with this technology. Internet protocol based private branch exchange systems that are currently marketed as open-source technologies are also reviewed. Additionally, VoIP is compared with the traditional public switched telephone network technology and evaluated for its potential applications in an orthodontic office for both increased efficiency and cost savings.

  20. Framework for waveband switching in multigranular optical networks: part I-multigranular cross-connect architectures [Invited

    NASA Astrophysics Data System (ADS)

    Cao, Xiaojun; Anand, Vishal; Qiao, Chunming

    2006-12-01

    Optical networks using wavelength-division multiplexing (WDM) are the foremost solution to the ever-increasing traffic in the Internet backbone. Rapid advances in WDM technology will enable each fiber to carry hundreds or even a thousand wavelengths (using dense-WDM, or DWDM, and ultra-DWDM) of traffic. This, coupled with worldwide fiber deployment, will bring about a tremendous increase in the size of the optical cross-connects, i.e., the number of ports of the wavelength switching elements. Waveband switching (WBS), wherein wavelengths are grouped into bands and switched as a single entity, can reduce the cost and control complexity of switching nodes by minimizing the port count. This paper presents a detailed study on recent advances and open research issues in WBS networks. In this study, we investigate in detail the architecture for various WBS cross-connects and compare them in terms of the number of ports and complexity and also in terms of how flexible they are in adjusting to dynamic traffic. We outline various techniques for grouping wavelengths into bands for the purpose of WBS and show how traditional wavelength routing is different from waveband routing and why techniques developed for wavelength-routed networks (WRNs) cannot be simply applied to WBS networks. We also outline how traffic grooming of subwavelength traffic can be done in WBS networks. In part II of this study [Cao , submitted to J. Opt. Netw.], we study the effect of wavelength conversion on the performance of WBS networks with reconfigurable MG-OXCs. We present an algorithm for waveband grouping in wavelength-convertible networks and evaluate its performance. We also investigate issues related to survivability in WBS networks and show how waveband and wavelength conversion can be used to recover from failures in WBS networks.

  1. A source-controlled data center network model.

    PubMed

    Yu, Yang; Liang, Mangui; Wang, Zhe

    2017-01-01

    The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS.

  2. A source-controlled data center network model

    PubMed Central

    Yu, Yang; Liang, Mangui; Wang, Zhe

    2017-01-01

    The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS. PMID:28328925

  3. Solid-state switch increases switching speed

    NASA Technical Reports Server (NTRS)

    Mcgowan, G. F.

    1966-01-01

    Solid state switch for commutating capacitors in an RC commutated network increases switching speed and extends the filtering or commutating frequency spectrum well into the kilocycle region. The switch is equivalent to the standard double- pole double-throw /DPDT/ relay and is driven from digital micrologic circuits.

  4. Synchrony in Metapopulations with Sporadic Dispersal

    NASA Astrophysics Data System (ADS)

    Jeter, Russell; Belykh, Igor

    2015-06-01

    We study synchronization in ecological networks under the realistic assumption that the coupling among the patches is sporadic/stochastic and due to rare and short-term meteorological conditions. Each patch is described by a tritrophic food chain model, representing the producer, consumer, and predator. If all three species can migrate, we rigorously prove that the network can synchronize as long as the migration occurs frequently, i.e. fast compared to the period of the ecological cycle, even though the network is disconnected most of the time. In the case where only the top trophic level (i.e. the predator) can migrate, we reveal an unexpected range of intermediate switching frequencies where synchronization becomes stable in a network which switches between two nonsynchronous dynamics. As spatial synchrony increases the danger of extinction, this counterintuitive effect of synchrony emerging from slower switching dispersal can be destructive for overall metapopulation persistence, presumably expected from switching between two dynamics which are unfavorable to extinction.

  5. Moving the boundary between wavelength resources in optical packet and circuit integrated ring network.

    PubMed

    Furukawa, Hideaki; Miyazawa, Takaya; Wada, Naoya; Harai, Hiroaki

    2014-01-13

    Optical packet and circuit integrated (OPCI) networks provide both optical packet switching (OPS) and optical circuit switching (OCS) links on the same physical infrastructure using a wavelength multiplexing technique in order to deal with best-effort services and quality-guaranteed services. To immediately respond to changes in user demand for OPS and OCS links, OPCI networks should dynamically adjust the amount of wavelength resources for each link. We propose a resource-adjustable hybrid optical packet/circuit switch and transponder. We also verify that distributed control of resource adjustments can be applied to the OPCI ring network testbed we developed. In cooperation with the resource adjustment mechanism and the hybrid switch and transponder, we demonstrate that automatically allocating a shared resource and moving the wavelength resource boundary between OPS and OCS links can be successfully executed, depending on the number of optical paths in use.

  6. 47 CFR 52.21 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... NANC. (p) The term Registered Internet-based TRS User has the meaning set forth in 47 CFR 64.601. (q... part of the public switched network that, among other things: (1) Interconnects to an SCP and sends to...

  7. Networking switches for smart functions using copper signaling and dynamic heteroleptic complexation.

    PubMed

    Schmittel, Michael

    2018-04-17

    This personal frontier account describes our recent progress in networking nanoswitches to generate emergent functions, such as catalytic machinery, and identifies the key impediments in mastering the paradigm shift from pure compounds to smart mixtures. A crucial challenge is the setup of reliable signaling protocols that are based on highly selective metal ion translocation and metal-ligand receptor events.

  8. Bandwidth Management in Resource Constrained Networks

    DTIC Science & Technology

    2012-03-01

    Postgraduate School OSI Open Systems Interconnection QoS Quality of Service TCP Transmission Control Protocol/Internet Protocol TCP/IP Transmission...filtering. B. NORMAL TCP/IP COMMUNICATIONS The Internet is a “complex network WAN that connects LANs and clients around the globe” (Dean, 2009...of the Open Systems Interconnection ( OSI ) model allowing them to route traffic based on MAC address (Kurose & Ross, 2009). While switching

  9. Atomic switch networks-nanoarchitectonic design of a complex system for natural computing.

    PubMed

    Demis, E C; Aguilera, R; Sillin, H O; Scharnhorst, K; Sandouk, E J; Aono, M; Stieg, A Z; Gimzewski, J K

    2015-05-22

    Self-organized complex systems are ubiquitous in nature, and the structural complexity of these natural systems can be used as a model to design new classes of functional nanotechnology based on highly interconnected networks of interacting units. Conventional fabrication methods for electronic computing devices are subject to known scaling limits, confining the diversity of possible architectures. This work explores methods of fabricating a self-organized complex device known as an atomic switch network and discusses its potential utility in computing. Through a merger of top-down and bottom-up techniques guided by mathematical and nanoarchitectonic design principles, we have produced functional devices comprising nanoscale elements whose intrinsic nonlinear dynamics and memorization capabilities produce robust patterns of distributed activity and a capacity for nonlinear transformation of input signals when configured in the appropriate network architecture. Their operational characteristics represent a unique potential for hardware implementation of natural computation, specifically in the area of reservoir computing-a burgeoning field that investigates the computational aptitude of complex biologically inspired systems.

  10. MSAT signalling and network management architectures

    NASA Technical Reports Server (NTRS)

    Garland, Peter; Keelty, J. Malcolm

    1989-01-01

    Spar Aerospace has been active in the design and definition of Mobile Satellite Systems since the mid 1970's. In work sponsored by the Canadian Department of Communications, various payload configurations have evolved. In addressing the payload configuration, the requirements of the mobile user, the service provider and the satellite operator have always been the most important consideration. The current Spar 11 beam satellite design is reviewed, and its capabilities to provide flexibility and potential for network growth within the WARC87 allocations are explored. To enable the full capabilities of the payload to be realized, a large amount of ground based Switching and Network Management infrastructure will be required, when space segment becomes available. Early indications were that a single custom designed Demand Assignment Multiple Access (DAMA) switch should be implemented to provide efficient use of the space segment. As MSAT has evolved into a multiple service concept, supporting many service providers, this architecture should be reviewed. Some possible signalling and Network Management solutions are explored.

  11. Packet-aware transport for video distribution [Invited

    NASA Astrophysics Data System (ADS)

    Aguirre-Torres, Luis; Rosenfeld, Gady; Bruckman, Leon; O'Connor, Mannix

    2006-05-01

    We describe a solution based on resilient packet rings (RPR) for the distribution of broadcast video and video-on-demand (VoD) content over a packet-aware transport network. The proposed solution is based on our experience in the design and deployment of nationwide Triple Play networks and relies on technologies such as RPR, multiprotocol label switching (MPLS), and virtual private LAN service (VPLS) to provide the most efficient solution in terms of utilization, scalability, and availability.

  12. Analogue spin-orbit torque device for artificial-neural-network-based associative memory operation

    NASA Astrophysics Data System (ADS)

    Borders, William A.; Akima, Hisanao; Fukami, Shunsuke; Moriya, Satoshi; Kurihara, Shouta; Horio, Yoshihiko; Sato, Shigeo; Ohno, Hideo

    2017-01-01

    We demonstrate associative memory operations reminiscent of the brain using nonvolatile spintronics devices. Antiferromagnet-ferromagnet bilayer-based Hall devices, which show analogue-like spin-orbit torque switching under zero magnetic fields and behave as artificial synapses, are used. An artificial neural network is used to associate memorized patterns from their noisy versions. We develop a network consisting of a field-programmable gate array and 36 spin-orbit torque devices. An effect of learning on associative memory operations is successfully confirmed for several 3 × 3-block patterns. A discussion on the present approach for realizing spintronics-based artificial intelligence is given.

  13. Development of optical packet and circuit integrated ring network testbed.

    PubMed

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate < 1×10(-4)) operation was achieved with optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated. © 2011 Optical Society of America

  14. A real-time and closed-loop control algorithm for cascaded multilevel inverter based on artificial neural network.

    PubMed

    Wang, Libing; Mao, Chengxiong; Wang, Dan; Lu, Jiming; Zhang, Junfeng; Chen, Xun

    2014-01-01

    In order to control the cascaded H-bridges (CHB) converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN) for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC) algorithm is employed to minimize the total harmonic distortion (THD) and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC) sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current's THD (<5%) when subjecting the DC sources disturbance or load disturbance. In real design stage, a switching angle pulse generation scheme is proposed and experiment results verify its correctness.

  15. A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells

    PubMed Central

    Saxena, Pratik; Heng, Boon Chin; Bai, Peng; Folcher, Marc; Zulewski, Henryk; Fussenegger, Martin

    2016-01-01

    Synthetic biology has advanced the design of standardized transcription control devices that programme cellular behaviour. By coupling synthetic signalling cascade- and transcription factor-based gene switches with reverse and differential sensitivity to the licensed food additive vanillic acid, we designed a synthetic lineage-control network combining vanillic acid-triggered mutually exclusive expression switches for the transcription factors Ngn3 (neurogenin 3; OFF-ON-OFF) and Pdx1 (pancreatic and duodenal homeobox 1; ON-OFF-ON) with the concomitant induction of MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A; OFF-ON). This designer network consisting of different network topologies orchestrating the timely control of transgenic and genomic Ngn3, Pdx1 and MafA variants is able to programme human induced pluripotent stem cells (hIPSCs)-derived pancreatic progenitor cells into glucose-sensitive insulin-secreting beta-like cells, whose glucose-stimulated insulin-release dynamics are comparable to human pancreatic islets. Synthetic lineage-control networks may provide the missing link to genetically programme somatic cells into autologous cell phenotypes for regenerative medicine. PMID:27063289

  16. Multicast routing for wavelength-routed WDM networks with dynamic membership

    NASA Astrophysics Data System (ADS)

    Huang, Nen-Fu; Liu, Te-Lung; Wang, Yao-Tzung; Li, Bo

    2000-09-01

    Future broadband networks must support integrated services and offer flexible bandwidth usage. In our previous work, we explore the optical link control layer on the top of optical layer that enables the possibility of bandwidth on-demand service directly over wavelength division multiplexed (WDM) networks. Today, more and more applications and services such as video-conferencing software and Virtual LAN service require multicast support over the underlying networks. Currently, it is difficult to provide wavelength multicast over the optical switches without optical/electronic conversions although the conversion takes extra cost. In this paper, based on the proposed wavelength router architecture (equipped with ATM switches to offer O/E and E/O conversions when necessary), a dynamic multicast routing algorithm is proposed to furnish multicast services over WDM networks. The goal is to joint a new group member into the multicast tree so that the cost, including the link cost and the optical/electronic conversion cost, is kept as less as possible. The effectiveness of the proposed wavelength router architecture as well as the dynamic multicast algorithm is evaluated by simulation.

  17. Radio frequency switching network: a technique for infrared sensing

    NASA Astrophysics Data System (ADS)

    Mechtel, Deborah M.; Jenkins, R. Brian; Joyce, Peter J.; Nelson, Charles L.

    2016-10-01

    This paper describes a unique technique that implements photoconductive sensors in a radio frequency (RF) switching network designed to locate in real-time the position and intensity of IR radiation incident on a composite structure. In the implementation described here, photoconductive sensors act as rapid response switches in a two-layer RF network embedded in an FR-4 laminate. To detect radiation, phosphorous-doped silicon photoconductive sensors are inserted in GHz range RF transmission lines. By permitting signal propagation only when a sensor is illuminated, the RF signals are selectively routed from lower layer transmission lines to upper layer lines, thereby pinpointing the location and strength of incident radiation. Simulations based on a high frequency three-dimensional planar electromagnetics model are presented and compared to the experimental results. The experimental results are described for GHz range RF signal control for 300- and 180-mW incident energy from 975- to 1060-nm wavelength lasers, respectively, where upon illumination, RF transmission line signal output power doubled when compared to nonilluminated results. The experimental results are also reported for 100-W incident energy from a 1060-nm laser. Test results illustrate real-time signal processing would permit a structure to be controlled in response to incident radiation.

  18. Experimental demonstration of time- and mode-division multiplexed passive optical network

    NASA Astrophysics Data System (ADS)

    Ren, Fang; Li, Juhao; Tang, Ruizhi; Hu, Tao; Yu, Jinyi; Mo, Qi; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin

    2017-07-01

    A time- and mode-division multiplexed passive optical network (TMDM-PON) architecture is proposed, in which each optical network unit (ONU) communicates with the optical line terminal (OLT) independently utilizing both different time slots and switched optical linearly polarized (LP) spatial modes. Combination of a mode multiplexer/demultiplexer (MUX/DEUX) and a simple N × 1 optical switch is employed to select the specific LP mode in each ONU. A mode-insensitive power splitter is used for signal broadcast/combination between OLT and ONUs. We theoretically propose a dynamic mode and time slot assignment scheme for TMDM-PON based on inter-ONU priority rating, in which the time delay and packet loss ratio's variation tendency are investigated by simulation. Moreover, we experimentally demonstrate 2-mode TMDM-PON transmission over 10 km FMF with 10-Gb/s on-off keying (OOK) signal and direct detection.

  19. Materials growth and characterization of thermoelectric and resistive switching devices

    NASA Astrophysics Data System (ADS)

    Norris, Kate J.

    In the 74 years since diode rectifier based radar technology helped the allied forces win WWII, semiconductors have transformed the world we live in. From our smart phones to semiconductor-based energy conversion, semiconductors touch every aspect of our lives. With this thesis I hope to expand human knowledge of semiconductor thermoelectric devices and resistive switching devices through experimentation with materials growth and subsequent materials characterization. Metal organic chemical vapor deposition (MOCVD) was the primary method of materials growth utilized in these studies. Additionally, plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD),ion beam sputter deposition, reactive sputter deposition and electron-beam (e-beam) evaporation were also used in this research for device fabrication. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Electron energy loss spectroscopy (EELS) were the primary characterization methods utilized for this research. Additional device and materials characterization techniques employed include: current-voltage measurements, thermoelectric measurements, x-ray diffraction (XRD), reflection absorption infra-red spectroscopy (RAIRS), atomic force microscopy (AFM), photoluminescence (PL), and raman spectroscopy. As society has become more aware of its impact on the planet and its limited resources, there has been a push toward developing technologies to sustainably produce the energy we need. Thermoelectric devices convert heat directly into electricity. Thermoelectric devices have the potential to save huge amounts of energy that we currently waste as heat, if we can make them cost-effective. Semiconducting thin films and nanowires appear to be promising avenues of research to attain this goal. Specifically, in this work we will explore the use of ErSb thin films as well as Si and InP nanowire networks for thermoelectric applications. First we will discuss the growth of erbium monoantimonide (ErSb) thin films with thermal conductivities close to or slightly smaller than the alloy limit of the two ternary alloy hosts. Second we consider an ex-situ monitoring technique based on glancing-angle infrared-absorption used to determine small amounts of erbium antimonide (ErSb) deposited on an indium antimonide (InSb) layer, a concept for thermoelectric devices to scatter phonons. Thirdly we begin our discussion of nanowires with the selective area growth (SAG) of single crystalline indium phosphide (InP) nanopillars on an array of template segments composed of a stack of gold and amorphous silicon. Our approach enables flexible and scalable nanofabrication using industrially proven tools and a wide range of semiconductors on various non-semiconductor substrates. Then we examine the use of graphene to promote the growth of nanowire networks on flexible copper foil leading to the testing of nanowire network devices for thermoelectric applications and the concept of multi-stage devices. We present the ability to tailor current-voltage characteristics to fit a desired application of thermoelectric devices by using nanowire networks as building blocks that can be stacked vertically or laterally. Furthermore, in the study of our flexible nanowire network multi-stage devices, we discovered the presence of nonlinear current-voltage characteristics and discuss how this feature could be utilized to increase efficiency for thermoelectric devices. This work indicates that with sufficient volume and optimized doping, flexible nanowire networks could be a low cost semiconductor solution to our wasted heat challenge. Resistive switching devices are two terminal electrical resistance switches that retain a state of internal resistance based on the history of applied voltage and current. The occurrence of reversible resistance switching has been widely studied in a variety of material systems for applications including nonvolatile memory, logic circuits, and neuromorphic computing. To this end we next we studied devices in each resistance state of a TaOx switch, which has previously shown high endurance and desirable switching behavior, to better understand the system in nanoscale devices. Finally, we will discuss a self-aligned NbO2 nano-cap demonstrated atop a TaO2.2 switching layer. The goal of this device is to create a nanoscale RRAM and selector device in a single stack. These results indicate that ternary resistive switching devices may be a beneficial method of combining behaviors of different material systems and that with proper engineering a self-aligned selector is possible.

  20. Switched-Observer-Based Adaptive Neural Control of MIMO Switched Nonlinear Systems With Unknown Control Gains.

    PubMed

    Long, Lijun; Zhao, Jun

    2017-07-01

    In this paper, the problem of adaptive neural output-feedback control is addressed for a class of multi-input multioutput (MIMO) switched uncertain nonlinear systems with unknown control gains. Neural networks (NNs) are used to approximate unknown nonlinear functions. In order to avoid the conservativeness caused by adoption of a common observer for all subsystems, an MIMO NN switched observer is designed to estimate unmeasurable states. A new switched observer-based adaptive neural control technique for the problem studied is then provided by exploiting the classical average dwell time (ADT) method and the backstepping method and the Nussbaum gain technique. It effectively handles the obstacle about the coexistence of multiple Nussbaum-type function terms, and improves the classical ADT method, since the exponential decline property of Lyapunov functions for individual subsystems is no longer satisfied. It is shown that the technique proposed is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop system under a class of switching signals with ADT, and the tracking errors converge to a small neighborhood of the origin. The effectiveness of the approach proposed is illustrated by its application to a two inverted pendulum system.

  1. Load Forecasting Based Distribution System Network Reconfiguration -- A Distributed Data-Driven Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard

    In this paper, a short-term load forecasting approach based network reconfiguration is proposed in a parallel manner. Specifically, a support vector regression (SVR) based short-term load forecasting approach is designed to provide an accurate load prediction and benefit the network reconfiguration. Because of the nonconvexity of the three-phase balanced optimal power flow, a second-order cone program (SOCP) based approach is used to relax the optimal power flow problem. Then, the alternating direction method of multipliers (ADMM) is used to compute the optimal power flow in distributed manner. Considering the limited number of the switches and the increasing computation capability, themore » proposed network reconfiguration is solved in a parallel way. The numerical results demonstrate the feasible and effectiveness of the proposed approach.« less

  2. Finite-time synchronization for memristor-based neural networks with time-varying delays.

    PubMed

    Abdurahman, Abdujelil; Jiang, Haijun; Teng, Zhidong

    2015-09-01

    Memristive network exhibits state-dependent switching behaviors due to the physical properties of memristor, which is an ideal tool to mimic the functionalities of the human brain. In this paper, finite-time synchronization is considered for a class of memristor-based neural networks with time-varying delays. Based on the theory of differential equations with discontinuous right-hand side, several new sufficient conditions ensuring the finite-time synchronization of memristor-based chaotic neural networks are obtained by using analysis technique, finite time stability theorem and adding a suitable feedback controller. Besides, the upper bounds of the settling time of synchronization are estimated. Finally, a numerical example is given to show the effectiveness and feasibility of the obtained results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Future communications satellite applications

    NASA Technical Reports Server (NTRS)

    Bagwell, James W.

    1992-01-01

    The point of view of the research is made through the use of viewgraphs. It is suggested that future communications satellite applications will be made through switched point to point narrowband communications. Some characteristics of which are as follows: small/low cost terminals; single hop communications; voice compatible; full mesh networking; ISDN compatible; and possible limited use of full motion video. Some target applications are as follows: voice/data networks between plants and offices in a corporation; data base networking for commercial and science users; and cellular radio internodal voice/data networking.

  4. Space Communications Technology Conference: Onboard Processing and Switching

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Papers and presentations from the conference are presented. The topics covered include the following: satellite network architecture, network control and protocols, fault tolerance and autonomy, multichanned demultiplexing and demodulation, information switching and routing, modulation and coding, and planned satellite communications systems.

  5. 75 FR 76426 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ..., access control lists, file system permissions, intrusion detection and prevention systems and log..., address, mailing address, country, organization, phone, fax, mobile, pager, Defense Switched Network (DSN..., address, mailing address, country, organization, phone, fax, mobile, pager, Defense Switched Network (DSN...

  6. Overcoming residual interference in mental set switching: Neural correlates and developmental trajectory

    PubMed Central

    Witt, Suzanne T.; Stevens, Michael C.

    2012-01-01

    Mental set switching is a key facet of executive control measured behaviorally through reaction time or accuracy (i.e., ‘switch costs’) when shifting among task types. One of several experimentally-dissociable influences on switch costs is ‘task set inertia’, conceptualized as the residual interference conferred when a previous stimulus-response tendency interferes with subsequent stimulus processing on a new task. Task set inertia is thought to represent the passive decay of the previous stimulus-response set from working memory, and its effects decrease with increased interstimulus interval. Closely spaced trials confer high task set inertia, while sparsely spaced trials confer low task set inertia. This functional magnetic resonance imaging (fMRI) study characterized, for the first time, two opposing brain systems engaged to resolve task set inertia: 1) a frontoparietal ‘cortical control’ network for overcoming high task set inertia interference and 2) a subcortical-motor network more active during trials with low task set inertia. These networks were distinct from brain regions showing general switching effects (i.e., switch > non-switch) and from other previously-characterized interference effects. Moreover, there were ongoing maturational effects throughout adolescence for the brain regions engaged to overcome high task set inertia not seen for generalized switching effects. These novel findings represent a new avenue of exploration of cognitive set switching neural function. PMID:22584223

  7. Evolutionary prisoner's dilemma games on the network with punishment and opportunistic partner switching

    NASA Astrophysics Data System (ADS)

    Takesue, H.

    2018-02-01

    Punishment and partner switching are two well-studied mechanisms that support the evolution of cooperation. Observation of human behaviour suggests that the extent to which punishment is adopted depends on the usage of alternative mechanisms, including partner switching. In this study, we investigate the combined effect of punishment and partner switching in evolutionary prisoner's dilemma games conducted on a network. In the model, agents are located on the network and participate in the prisoner's dilemma games with punishment. In addition, they can opportunistically switch interaction partners to improve their payoff. Our Monte Carlo simulation showed that a large frequency of punishers is required to suppress defectors when the frequency of partner switching is low. In contrast, cooperation is the most abundant strategy when the frequency of partner switching is high regardless of the strength of punishment. Interestingly, cooperators become abundant not because they avoid the cost of inflicting punishment and earn a larger average payoff per game but rather because they have more numerous opportunities to be referred to as a role agent by defectors. Our results imply that the fluidity of social relationships has a profound effect on the adopted strategy in maintaining cooperation.

  8. Confinement and diffusion modulate bistability and stochastic switching in a reaction network with positive feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mlynarczyk, Paul J.; Pullen, Robert H.; Abel, Steven M., E-mail: abel@utk.edu

    2016-01-07

    Positive feedback is a common feature in signal transduction networks and can lead to phenomena such as bistability and signal propagation by domain growth. Physical features of the cellular environment, such as spatial confinement and the mobility of proteins, play important but inadequately understood roles in shaping the behavior of signaling networks. Here, we use stochastic, spatially resolved kinetic Monte Carlo simulations to explore a positive feedback network as a function of system size, system shape, and mobility of molecules. We show that these physical properties can markedly alter characteristics of bistability and stochastic switching when compared with well-mixed simulations.more » Notably, systems of equal volume but different shapes can exhibit qualitatively different behaviors under otherwise identical conditions. We show that stochastic switching to a state maintained by positive feedback occurs by cluster formation and growth. Additionally, the frequency at which switching occurs depends nontrivially on the diffusion coefficient, which can promote or suppress switching relative to the well-mixed limit. Taken together, the results provide a framework for understanding how confinement and protein mobility influence emergent features of the positive feedback network by modulating molecular concentrations, diffusion-influenced rate parameters, and spatiotemporal correlations between molecules.« less

  9. Lambda network having 2.sup.m-1 nodes in each of m stages with each node coupled to four other nodes for bidirectional routing of data packets between nodes

    DOEpatents

    Napolitano, Jr., Leonard M.

    1995-01-01

    The Lambda network is a single stage, packet-switched interprocessor communication network for a distributed memory, parallel processor computer. Its design arises from the desired network characteristics of minimizing mean and maximum packet transfer time, local routing, expandability, deadlock avoidance, and fault tolerance. The network is based on fixed degree nodes and has mean and maximum packet transfer distances where n is the number of processors. The routing method is detailed, as are methods for expandability, deadlock avoidance, and fault tolerance.

  10. Sampled-data consensus in switching networks of integrators based on edge events

    NASA Astrophysics Data System (ADS)

    Xiao, Feng; Meng, Xiangyu; Chen, Tongwen

    2015-02-01

    This paper investigates the event-driven sampled-data consensus in switching networks of multiple integrators and studies both the bidirectional interaction and leader-following passive reaction topologies in a unified framework. In these topologies, each information link is modelled by an edge of the information graph and assigned a sequence of edge events, which activate the mutual data sampling and controller updates of the two linked agents. Two kinds of edge-event-detecting rules are proposed for the general asynchronous data-sampling case and the synchronous periodic event-detecting case. They are implemented in a distributed fashion, and their effectiveness in reducing communication costs and solving consensus problems under a jointly connected topology condition is shown by both theoretical analysis and simulation examples.

  11. Observability of Automata Networks: Fixed and Switching Cases.

    PubMed

    Li, Rui; Hong, Yiguang; Wang, Xingyuan

    2018-04-01

    Automata networks are a class of fully discrete dynamical systems, which have received considerable interest in various different areas. This brief addresses the observability of automata networks and switched automata networks in a unified framework, and proposes simple necessary and sufficient conditions for observability. The results are achieved by employing methods from symbolic computation, and are suited for implementation using computer algebra systems. Several examples are presented to demonstrate the application of the results.

  12. Experimental Verification of Application of Looped System and Centralized Voltage Control in a Distribution System with Renewable Energy Sources

    NASA Astrophysics Data System (ADS)

    Hanai, Yuji; Hayashi, Yasuhiro; Matsuki, Junya

    The line voltage control in a distribution network is one of the most important issues for a penetration of Renewable Energy Sources (RES). A loop distribution network configuration is an effective solution to resolve voltage and distribution loss issues concerned about a penetration of RES. In this paper, for a loop distribution network, the authors propose a voltage control method based on tap change control of LRT and active/reactive power control of RES. The tap change control of LRT takes a major role of the proposed voltage control. Additionally the active/reactive power control of RES supports the voltage control when voltage deviation from the upper or lower voltage limit is unavoidable. The proposed method adopts SCADA system based on measured data from IT switches, which are sectionalizing switch with sensor installed in distribution feeder. In order to check the validity of the proposed voltage control method, experimental simulations using a distribution system analog simulator “ANSWER” are carried out. In the simulations, the voltage maintenance capability in the normal and the emergency is evaluated.

  13. Study on Cloud Security Based on Trust Spanning Tree Protocol

    NASA Astrophysics Data System (ADS)

    Lai, Yingxu; Liu, Zenghui; Pan, Qiuyue; Liu, Jing

    2015-09-01

    Attacks executed on Spanning Tree Protocol (STP) expose the weakness of link layer protocols and put the higher layers in jeopardy. Although the problems have been studied for many years and various solutions have been proposed, many security issues remain. To enhance the security and credibility of layer-2 network, we propose a trust-based spanning tree protocol aiming at achieving a higher credibility of LAN switch with a simple and lightweight authentication mechanism. If correctly implemented in each trusted switch, the authentication of trust-based STP can guarantee the credibility of topology information that is announced to other switch in the LAN. To verify the enforcement of the trusted protocol, we present a new trust evaluation method of the STP using a specification-based state model. We implement a prototype of trust-based STP to investigate its practicality. Experiment shows that the trusted protocol can achieve security goals and effectively avoid STP attacks with a lower computation overhead and good convergence performance.

  14. De-optical-line-terminal hybrid access-aggregation optical network for time-sensitive services based on software-defined networking orchestration

    NASA Astrophysics Data System (ADS)

    Bai, Wei; Yang, Hui; Xiao, Hongyun; Yu, Ao; He, Linkuan; Zhang, Jie; Li, Zhen; Du, Yi

    2017-11-01

    With the increase in varieties of services in network, time-sensitive services (TSSs) appear and bring forward an impending need for delay performance. Ultralow-latency communication has become one of the important development goals for many scenarios in the coming 5G era (e.g., robotics and driverless cars). However, the conventional methods, which decrease delay by promoting the available resources and the network transmission speed, have limited effect; a new breakthrough for ultralow-latency communication is necessary. We propose a de-optical-line-terminal (De-OLT) hybrid access-aggregation optical network (DAON) for TSS based on software-defined networking (SDN) orchestration. In this network, low-latency all-optical communication based on optical burst switching can be achieved by removing OLT. For supporting this network and guaranteeing the quality of service for TSSs, we design SDN-driven control method and service provision method. Numerical results demonstrate the proposed DAON promotes network service efficiency and avoids traffic congestion.

  15. On-board processing satellite network architecture and control study

    NASA Technical Reports Server (NTRS)

    Campanella, S. Joseph; Pontano, Benjamin A.; Chalmers, Harvey

    1987-01-01

    The market for telecommunications services needs to be segmented into user classes having similar transmission requirements and hence similar network architectures. Use of the following transmission architecture was considered: satellite switched TDMA; TDMA up, TDM down; scanning (hopping) beam TDMA; FDMA up, TDM down; satellite switched MF/TDMA; and switching Hub earth stations with double hop transmission. A candidate network architecture will be selected that: comprises multiple access subnetworks optimized for each user; interconnects the subnetworks by means of a baseband processor; and optimizes the marriage of interconnection and access techniques. An overall network control architecture will be provided that will serve the needs of the baseband and satellite switched RF interconnected subnetworks. The results of the studies shall be used to identify elements of network architecture and control that require the greatest degree of technology development to realize an operational system. This will be specified in terms of: requirements of the enabling technology; difference from the current available technology; and estimate of the development requirements needed to achieve an operational system. The results obtained for each of these tasks are presented.

  16. Cut set-based risk and reliability analysis for arbitrarily interconnected networks

    DOEpatents

    Wyss, Gregory D.

    2000-01-01

    Method for computing all-terminal reliability for arbitrarily interconnected networks such as the United States public switched telephone network. The method includes an efficient search algorithm to generate minimal cut sets for nonhierarchical networks directly from the network connectivity diagram. Efficiency of the search algorithm stems in part from its basis on only link failures. The method also includes a novel quantification scheme that likewise reduces computational effort associated with assessing network reliability based on traditional risk importance measures. Vast reductions in computational effort are realized since combinatorial expansion and subsequent Boolean reduction steps are eliminated through analysis of network segmentations using a technique of assuming node failures to occur on only one side of a break in the network, and repeating the technique for all minimal cut sets generated with the search algorithm. The method functions equally well for planar and non-planar networks.

  17. Time Shared Optical Network (TSON): a novel metro architecture for flexible multi-granular services.

    PubMed

    Zervas, Georgios S; Triay, Joan; Amaya, Norberto; Qin, Yixuan; Cervelló-Pastor, Cristina; Simeonidou, Dimitra

    2011-12-12

    This paper presents the Time Shared Optical Network (TSON) as metro mesh network architecture for guaranteed, statistically-multiplexed services. TSON proposes a flexible and tunable time-wavelength assignment along with one-way tree-based reservation and node architecture. It delivers guaranteed sub-wavelength and multi-granular network services without wavelength conversion, time-slice interchange and optical buffering. Simulation results demonstrate high network utilization, fast service delivery, and low end-to-end delay on a contention-free sub-wavelength optical transport network. In addition, implementation complexity in terms of Layer 2 aggregation, grooming and optical switching has been evaluated. © 2011 Optical Society of America

  18. Adaptable liquid crystal elastomers with transesterification-based bond exchange reactions.

    PubMed

    Hanzon, Drew W; Traugutt, Nicholas A; McBride, Matthew K; Bowman, Christopher N; Yakacki, Christopher M; Yu, Kai

    2018-02-14

    Adaptable liquid crystal elastomers (LCEs) have recently emerged to provide a new and robust method to program monodomain LCE samples. When a constant stress is applied with active bond exchange reactions (BERs), polymer chains and mesogens gradually align in the strain direction. Mesogen alignment is maintained after removing the BER stimulus (e.g. by lowering the temperature) and the programmed LCE samples exhibit free-standing two-way shape switching behavior. Here, a new adaptable main-chain LCE system was developed with thermally induced transesterification BERs. The network combines the conventional properties of LCEs, such as an isotropic phase transition and soft elasticity, with the dynamic features of adaptable network polymers, which are malleable to stress relaxation due to the BERs. Polarized Fourier transform infrared measurements confirmed the alignment of polymer chains and mesogens after strain-induced programming. The influence of the creep stress, temperature, and time on the strain amplitude of two-way shape switching was examined. The LCE network demonstrates an innovative feature of reprogrammability, where the reversible shape-switching memory of programmed LCEs is readily deleted by free-standing heating as random BERs disrupt the mesogen alignment, so LCEs are reprogrammed after returning to the polydomain state. Due to the dynamic nature of the LCE network, it also exhibits a surface welding effect and can be fully dissolved in the organic solvent, which might be utilized for green and sustainable recycling of LCEs.

  19. Formation of Polymer Networks for Fast In-Plane Switching of Liquid Crystals at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Yu, Byeong-Hun; Song, Dong Han; Kim, Ki-Han; Wok Park, Byung; Choi, Sun-Wook; Park, Sung Il; Kang, Sung Gu; Yoon, Jeong Hwan; Kim, Byeong Koo; Yoon, Tae-Hoon

    2013-09-01

    We formed a polymer structure to enable fast in-plane switching of liquid crystals at low temperatures. The problem of the inevitable slow response at low temperatures was reduced by the formation of in-cell polymer networks in in-plane switching (IPS) cells. The electro-optic characteristics of polymer-networked IPS cells were measured at temperatures ranging from -10 to 20 °C. The turn-on and turn-off times of an IPS cell were reduced by 44.5 and 47.2% at -10 °C by the formation of polymer networks. We believe that the proposed technology can be applied to emerging display devices such as mobile phones and automotive displays that may be used at low temperatures.

  20. Research and development of a NYNEX switched multi-megabit data service prototype system

    NASA Astrophysics Data System (ADS)

    Maman, K. H.; Haines, Robert; Chatterjee, Samir

    1991-02-01

    Switched Multi-megabit Data Service (SMDS) is a proposed high-speed packet-switched service which will support broadband applications such as Local Area Network (LAN) interconnections across a metropolitan area and beyond. This service is designed to take advantage of evolving Metropolitan Area Network (MAN) standards and technology which will provide customers with 45-mbps and 1 . 5-mbps access to high-speed public data communications networks. This paper will briefly discuss SMDS and review its architecture including the Subscriber Network Interface (SNI) and the SMDS Interface Protocol (SIP). It will review the fundamental features of SMDS such as address screening addressing scheme and access classes. Then it will describe the SMDS prototype system developed in-house by NYNEX Science Technology.

  1. Serial-to-parallel color-TV converter

    NASA Technical Reports Server (NTRS)

    Doak, T. W.; Merwin, R. B.; Zuckswert, S. E.; Sepper, W.

    1976-01-01

    Solid analog-to-digital converter eliminates flicker and problems with time base stability and gain variation in sequential color TV cameras. Device includes 3-bit delta modulator; two-field memory; timing, switching, and sync network; and three 3-bit delta demodulators

  2. Nonuniform traffic spots (NUTS) in multistage interconnection networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, T.; Kurisaki, L.

    1990-09-01

    The performance of multistage interconnection networks for multiprocessors is degraded when the traffic pattern produces nonuniform congestion in the blocking switches, that is, when there exist nonuniform traffic spots. For some specific patterns the authors evaluate this degradation in performance and propose modifications to the network organization and operation to reduce the degradation. Successful modifications are the use of diverting switches and the extension of the network with additional links. The use of these modifications makes the network more effective for a larger variety of traffic patterns. The authors also consider the case in which the network carries the superpositionmore » of two types of traffic. One type is the high throughput data and instruction traffic, while the other consists of control and I/O packets which are of low throughput but have severe real-time constraints. The authors conclude that diverting switches and networks with additional links are also suitable for assuring low latency for the real-time traffic, especially when using the displacing mode.« less

  3. Programmability of nanowire networks

    NASA Astrophysics Data System (ADS)

    Bellew, A. T.; Bell, A. P.; McCarthy, E. K.; Fairfield, J. A.; Boland, J. J.

    2014-07-01

    Electrical connectivity in networks of nanoscale junctions must be better understood if nanowire devices are to be scaled up from single wires to functional material systems. We show that the natural connectivity behaviour found in random nanowire networks presents a new paradigm for creating multi-functional, programmable materials. In devices made from networks of Ni/NiO core-shell nanowires at different length scales, we discover the emergence of distinct behavioural regimes when networks are electrically stressed. We show that a small network, with few nanowire-nanowire junctions, acts as a unipolar resistive switch, demonstrating very high ON/OFF current ratios (>105). However, large networks of nanowires distribute an applied bias across a large number of junctions, and thus respond not by switching but instead by evolving connectivity. We demonstrate that these emergent properties lead to fault-tolerant materials whose resistance may be tuned, and which are capable of adaptively reconfiguring under stress. By combining these two behavioural regimes, we demonstrate that the same nanowire network may be programmed to act both as a metallic interconnect, and a resistive switch device with high ON/OFF ratio. These results enable the fabrication of programmable, multi-functional materials from random nanowire networks.Electrical connectivity in networks of nanoscale junctions must be better understood if nanowire devices are to be scaled up from single wires to functional material systems. We show that the natural connectivity behaviour found in random nanowire networks presents a new paradigm for creating multi-functional, programmable materials. In devices made from networks of Ni/NiO core-shell nanowires at different length scales, we discover the emergence of distinct behavioural regimes when networks are electrically stressed. We show that a small network, with few nanowire-nanowire junctions, acts as a unipolar resistive switch, demonstrating very high ON/OFF current ratios (>105). However, large networks of nanowires distribute an applied bias across a large number of junctions, and thus respond not by switching but instead by evolving connectivity. We demonstrate that these emergent properties lead to fault-tolerant materials whose resistance may be tuned, and which are capable of adaptively reconfiguring under stress. By combining these two behavioural regimes, we demonstrate that the same nanowire network may be programmed to act both as a metallic interconnect, and a resistive switch device with high ON/OFF ratio. These results enable the fabrication of programmable, multi-functional materials from random nanowire networks. Electronic supplementary information (ESI) available: Nanowire statistics (length, diameter statistics, and oxide thickness) are provided. Forming curves for single junctions and networks. Passive voltage contrast image demonstrating selectivity of conductive pathways in 100 μm network. See DOI: 10.1039/c4nr02338b

  4. Adaptive Backstepping-Based Neural Tracking Control for MIMO Nonlinear Switched Systems Subject to Input Delays.

    PubMed

    Niu, Ben; Li, Lu

    2018-06-01

    This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.

  5. Adaptive Topological Configuration of an Integrated Circuit/Packet-Switched Computer Network.

    DTIC Science & Technology

    1984-01-01

    Gitman et al. [45] state that there are basically two approaches to the integrated network design problem: (1) solve the link/capacity problem for...1972), 1385-1397. 33. Frank, H., and Gitman , I. Economic analysis of integrated voice and data networks: a case study. Proc. of IEEE 66 , 11 (Nov. 1978...1974), 1074-1079. 45. Gitman , I., Hsieh, W., and Occhiogrosso, B. J. Analysis and design of hybrid switching networks. IEEE Trans. on Comm. Com-29

  6. An iteration algorithm for optimal network flows

    NASA Astrophysics Data System (ADS)

    Woong, C. J.

    1983-09-01

    A packet switching network has the desirable feature of rapidly handling short (bursty) messages of the type often found in computer communication systems. In evaluating packet switching networks, the average time delay per packet is one of the most important measures of performance. The problem of message routing to minimize time delay is analyzed here using two approaches, called "successive saturation' and "max-slack', for various traffic requirement matrices and networks with fixed topology and link capacities.

  7. A Change in the Ion Selectivity of Ligand-Gated Ion Channels Provides a Mechanism to Switch Behavior.

    PubMed

    Pirri, Jennifer K; Rayes, Diego; Alkema, Mark J

    2015-01-01

    Behavioral output of neural networks depends on a delicate balance between excitatory and inhibitory synaptic connections. However, it is not known whether network formation and stability is constrained by the sign of synaptic connections between neurons within the network. Here we show that switching the sign of a synapse within a neural circuit can reverse the behavioral output. The inhibitory tyramine-gated chloride channel, LGC-55, induces head relaxation and inhibits forward locomotion during the Caenorhabditis elegans escape response. We switched the ion selectivity of an inhibitory LGC-55 anion channel to an excitatory LGC-55 cation channel. The engineered cation channel is properly trafficked in the native neural circuit and results in behavioral responses that are opposite to those produced by activation of the LGC-55 anion channel. Our findings indicate that switches in ion selectivity of ligand-gated ion channels (LGICs) do not affect network connectivity or stability and may provide an evolutionary and a synthetic mechanism to change behavior.

  8. Reliable WDM multicast in optical burst-switched networks

    NASA Astrophysics Data System (ADS)

    Jeong, Myoungki; Qiao, Chunming; Xiong, Yijun

    2000-09-01

    IN this paper,l we present a reliable WDM (Wavelength-Division Multiplexing) multicast protocol in optical burst-switched (OBS) networks. Since the burst dropping (loss) probability may be potentially high in a heavily loaded OBS backbone network, reliable multicast protocols that have developed for IP networks at the transport (or application) layer may incur heavy overheads such as a large number of duplicate retransmissions. In addition, it may take a longer time for an end host to detect and then recover from burst dropping (loss) occurred at the WDM layer. For efficiency reasons, we propose burst loss recovery within the OBS backbone (i.e., at the WDM link layer). The proposed protocol requires two additional functions to be performed by the WDM switch controller: subcasting and maintaining burst states, when the WDM switch has more than one downstream on the WDM multicast tree. We show that these additional functions are simple to implement and the overhead associated with them is manageable.

  9. NETWORK SYNTHESIS OF CASCADED THRESHOLD ELEMENTS.

    DTIC Science & Technology

    A threshold function is a switching function which can be stimulated by a single, simplified, idealized neuron, or threshold element. In this report... threshold functions are examined in the context of abstract set theory and linear algebra for the purpose of obtaining practical synthesis procedures...for networks of threshold elements. A procedure is described by which, for any given switching function, a cascade network of these elements can be

  10. Combined guaranteed throughput and best effort network-on-chip

    DOEpatents

    Chen, Gregory K.; Anders, Mark A.; Kaul, Himanshu; Krishnamurthy, Ram K.; Stillmaker, Aaron T.

    2018-05-22

    A first packet-switched reservation request is received. Data associated with the first packet-switched reservation request is communicated through a first circuit-switched channel according to a best effort communication scheme. A second packet-switched reservation request is received. Data associated with the second packet-switched reservation request is communicated through a second circuit-switched channel according to a guaranteed throughput communication scheme.

  11. Improved wavelength coded optical time domain reflectometry based on the optical switch.

    PubMed

    Zhu, Ninghua; Tong, Youwan; Chen, Wei; Wang, Sunlong; Sun, Wenhui; Liu, Jianguo

    2014-06-16

    This paper presents an improved wavelength coded time-domain reflectometry based on the 2 × 1 optical switch. In this scheme, in order to improve the signal-noise-ratio (SNR) of the beat signal, the improved system used an optical switch to obtain wavelength-stable, low-noise and narrow optical pulses for probe and reference. Experiments were set up to demonstrate a spatial resolution of 2.5m within a range of 70km and obtain the beat signal with line width narrower than 15 MHz within a range of 50 km in fiber break detection. A system for wavelength-division-multiplexing passive optical network (WDM-PON) monitoring was also constructed to detect the fiber break of different channels by tuning the current applied on the gating section of the distributed Bragg reflector (DBR) laser.

  12. Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system

    NASA Astrophysics Data System (ADS)

    Kim, Hyungjin; Hwang, Sungmin; Park, Jungjin; Park, Byung-Gook

    2017-10-01

    Brain-inspired neuromorphic systems have attracted much attention as new computing paradigms for power-efficient computation. Here, we report a silicon synaptic transistor with two electrically independent gates to realize a hardware-based neural network system without any switching components. The spike-timing dependent plasticity characteristics of the synaptic devices are measured and analyzed. With the help of the device model based on the measured data, the pattern recognition capability of the hardware-based spiking neural network systems is demonstrated using the modified national institute of standards and technology handwritten dataset. By comparing systems with and without inhibitory synapse part, it is confirmed that the inhibitory synapse part is an essential element in obtaining effective and high pattern classification capability.

  13. Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system.

    PubMed

    Kim, Hyungjin; Hwang, Sungmin; Park, Jungjin; Park, Byung-Gook

    2017-10-06

    Brain-inspired neuromorphic systems have attracted much attention as new computing paradigms for power-efficient computation. Here, we report a silicon synaptic transistor with two electrically independent gates to realize a hardware-based neural network system without any switching components. The spike-timing dependent plasticity characteristics of the synaptic devices are measured and analyzed. With the help of the device model based on the measured data, the pattern recognition capability of the hardware-based spiking neural network systems is demonstrated using the modified national institute of standards and technology handwritten dataset. By comparing systems with and without inhibitory synapse part, it is confirmed that the inhibitory synapse part is an essential element in obtaining effective and high pattern classification capability.

  14. A network of molecular switches controls the activation of the two-component response regulator NtrC

    NASA Astrophysics Data System (ADS)

    Vanatta, Dan K.; Shukla, Diwakar; Lawrenz, Morgan; Pande, Vijay S.

    2015-06-01

    Recent successes in simulating protein structure and folding dynamics have demonstrated the power of molecular dynamics to predict the long timescale behaviour of proteins. Here, we extend and improve these methods to predict molecular switches that characterize conformational change pathways between the active and inactive state of nitrogen regulatory protein C (NtrC). By employing unbiased Markov state model-based molecular dynamics simulations, we construct a dynamic picture of the activation pathways of this key bacterial signalling protein that is consistent with experimental observations and predicts new mutants that could be used for validation of the mechanism. Moreover, these results suggest a novel mechanistic paradigm for conformational switching.

  15. Optical implementation of polarization-independent, bidirectional, nonblocking Clos network using polarization control technique in free space

    NASA Astrophysics Data System (ADS)

    Yang, Junbo; Yang, Jiankun; Li, Xiujian; Chang, Shengli; Su, Xianyu; Ping, Xu

    2011-04-01

    The clos network is one of the earliest multistage interconnection networks. Recently, it has been widely studied in parallel optical information processing systems, and there have been many efforts to develop this network. In this paper, a smart and compact Clos network, including Clos(2,3,2) and Clos(2,4,2), is proposed by using polarizing beam-splitters (PBS), phase spatial light modulators (PSLM), and mirrors. PBS features that are s-component (perpendicular to the incident plane) of the incident light beam is reflected, and the p-component (parallel to the incident plane) passes through it. According to switching logic, under control of external electrical signals, PSLM functions to control routing paths of the signal beams, i.e., the polarization of each optical signal is rotated or not rotated 90° by a programmable PSLM. This new type of configuration grants the features of less optical components, compact in structure, efficient in performance, and insensitive to polarization of signal beam. In addition, the straight, the exchange, and the broadcast functions of the basic switch element are implemented bidirectionally in free-space. Furthermore, the new optical experimental module of 2×3 and 2×4 optical switch is also presented by a cascading polarization-independent bidirectional 2×2 optical switch. Simultaneously, the routing state-table of 2×3 and 2×4 optical switch to perform all permutation output and nonblocking switch for the input signal beam, is achieved. Since the proposed optical setup consists of only optical polarization elements, it is compact in structure, and possesses a low energy loss, a high signal-to-ratio, and an available large number of optical channels. Finally, the discussions and the experimental results show that the Clos network proposed here should be helpful in the design of large-scale network matrix, and may be used in optical communication and optical information processing.

  16. Analytical Study of different types Of network failure detection and possible remedies

    NASA Astrophysics Data System (ADS)

    Saxena, Shikha; Chandra, Somnath

    2012-07-01

    Faults in a network have various causes,such as the failure of one or more routers, fiber-cuts, failure of physical elements at the optical layer, or extraneous causes like power outages. These faults are usually detected as failures of a set of dependent logical entities and the links affected by the failed components. A reliable control plane plays a crucial role in creating high-level services in the next-generation transport network based on the Generalized Multiprotocol Label Switching (GMPLS) or Automatically Switched Optical Networks (ASON) model. In this paper, approaches to control-plane survivability, based on protection and restoration mechanisms, are examined. Procedures for the control plane state recovery are also discussed, including link and node failure recovery and the concepts of monitoring paths (MPs) and monitoring cycles (MCs) for unique localization of shared risk linked group (SRLG) failures in all-optical networks. An SRLG failure is a failure of multiple links due to a failure of a common resource. MCs (MPs) start and end at same (distinct) monitoring location(s). They are constructed such that any SRLG failure results in the failure of a unique combination of paths and cycles. We derive necessary and sufficient conditions on the set of MCs and MPs needed for localizing an SRLG failure in an arbitrary graph. Procedure of Protection and Restoration of the SRLG failure by backup re-provisioning algorithm have also been discussed.

  17. Evaluation of traffic responsive control on the Reston Parkway arterial network.

    DOT National Transportation Integrated Search

    2009-01-01

    Traffic responsive plan selection (TRPS) control is considered an effective operational mode in traffic signal systems. Its efficiency stems from the fact that it can capture variations in traffic patterns and switch timing plans based on existing tr...

  18. Default mode network abnormalities during state switching in attention deficit hyperactivity disorder.

    PubMed

    Sidlauskaite, J; Sonuga-Barke, E; Roeyers, H; Wiersema, J R

    2016-02-01

    Individuals with attention deficit hyperactivity disorder (ADHD) display excess levels of default mode network (DMN) activity during goal-directed tasks, which are associated with attentional disturbances and performance decrements. One hypothesis is that this is due to attenuated down-regulation of this network during rest-to-task switching. A second related hypothesis is that it may be associated with right anterior insula (rAI) dysfunction - a region thought to control the actual state-switching process. These hypotheses were tested in the current fMRI study in which 19 adults with ADHD and 21 typically developing controls undertook a novel state-to-state switching paradigm. Advance cues signalled upcoming switches between rest and task periods and switch-related anticipatory modulation of DMN and rAI was measured. To examine whether rest-to-task switching impairments may be a specific example of a more general state regulation deficit, activity upon task-to-rest cues was also analysed. Against our hypotheses, we found that the process of down-regulating the DMN when preparing to switch from rest to task was unimpaired in ADHD and that there was no switch-specific deficit in rAI modulation. However, individuals with ADHD showed difficulties up-regulating the DMN when switching from task to rest. Rest-to-task DMN attenuation seems to be intact in adults with ADHD and thus appears unrelated to excess DMN activity observed during tasks. Instead, individuals with ADHD exhibit attenuated up-regulation of the DMN, hence suggesting disturbed re-initiation of a rest state.

  19. On-board processing satellite network architectures for broadband ISDN

    NASA Technical Reports Server (NTRS)

    Inukai, Thomas; Faris, Faris; Shyy, Dong-Jye

    1992-01-01

    Onboard baseband processing architectures for future satellite broadband integrated services digital networks (B-ISDN's) are addressed. To assess the feasibility of implementing satellite B-ISDN services, critical design issues, such as B-ISDN traffic characteristics, transmission link design, and a trade-off between onboard circuit and fast packet switching, are analyzed. Examples of the two types of switching mechanisms and potential onboard network control functions are presented. A sample network architecture is also included to illustrate a potential onboard processing system.

  20. High-performance, scalable optical network-on-chip architectures

    NASA Astrophysics Data System (ADS)

    Tan, Xianfang

    The rapid advance of technology enables a large number of processing cores to be integrated into a single chip which is called a Chip Multiprocessor (CMP) or a Multiprocessor System-on-Chip (MPSoC) design. The on-chip interconnection network, which is the communication infrastructure for these processing cores, plays a central role in a many-core system. With the continuously increasing complexity of many-core systems, traditional metallic wired electronic networks-on-chip (NoC) became a bottleneck because of the unbearable latency in data transmission and extremely high energy consumption on chip. Optical networks-on-chip (ONoC) has been proposed as a promising alternative paradigm for electronic NoC with the benefits of optical signaling communication such as extremely high bandwidth, negligible latency, and low power consumption. This dissertation focus on the design of high-performance and scalable ONoC architectures and the contributions are highlighted as follow: 1. A micro-ring resonator (MRR)-based Generic Wavelength-routed Optical Router (GWOR) is proposed. A method for developing any sized GWOR is introduced. GWOR is a scalable non-blocking ONoC architecture with simple structure, low cost and high power efficiency compared to existing ONoC designs. 2. To expand the bandwidth and improve the fault tolerance of the GWOR, a redundant GWOR architecture is designed by cascading different type of GWORs into one network. 3. The redundant GWOR built with MRR-based comb switches is proposed. Comb switches can expand the bandwidth while keep the topology of GWOR unchanged by replacing the general MRRs with comb switches. 4. A butterfly fat tree (BFT)-based hybrid optoelectronic NoC (HONoC) architecture is developed in which GWORs are used for global communication and electronic routers are used for local communication. The proposed HONoC uses less numbers of electronic routers and links than its counterpart of electronic BFT-based NoC. It takes the advantages of GWOR in optical communication and BFT in non-uniform traffic communication and three-dimension (3D) implementation. 5. A cycle-accurate NoC simulator is developed to evaluate the performance of proposed HONoC architectures. It is a comprehensive platform that can simulate both electronic and optical NoCs. Different size HONoC architectures are evaluated in terms of throughput, latency and energy dissipation. Simulation results confirm that HONoC achieves good network performance with lower power consumption.

  1. Optical network democratization.

    PubMed

    Nejabati, Reza; Peng, Shuping; Simeonidou, Dimitra

    2016-03-06

    The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation. © 2016 The Author(s).

  2. Experimental performance evaluation of software defined networking (SDN) based data communication networks for large scale flexi-grid optical networks.

    PubMed

    Zhao, Yongli; He, Ruiying; Chen, Haoran; Zhang, Jie; Ji, Yuefeng; Zheng, Haomian; Lin, Yi; Wang, Xinbo

    2014-04-21

    Software defined networking (SDN) has become the focus in the current information and communication technology area because of its flexibility and programmability. It has been introduced into various network scenarios, such as datacenter networks, carrier networks, and wireless networks. Optical transport network is also regarded as an important application scenario for SDN, which is adopted as the enabling technology of data communication networks (DCN) instead of general multi-protocol label switching (GMPLS). However, the practical performance of SDN based DCN for large scale optical networks, which is very important for the technology selection in the future optical network deployment, has not been evaluated up to now. In this paper we have built a large scale flexi-grid optical network testbed with 1000 virtual optical transport nodes to evaluate the performance of SDN based DCN, including network scalability, DCN bandwidth limitation, and restoration time. A series of network performance parameters including blocking probability, bandwidth utilization, average lightpath provisioning time, and failure restoration time have been demonstrated under various network environments, such as with different traffic loads and different DCN bandwidths. The demonstration in this work can be taken as a proof for the future network deployment.

  3. DARPA Quantum Network Testbed

    DTIC Science & Technology

    2007-07-01

    End-to-End Security with Photonic Switching...............................28 8.4 Year 3 – Adding a Link that implements Entanglement -Based QKD... entangled photon pairs at 1550nm. • Built a highspeed (~10 MHz) physical random number generator, and integrated it into Bob. This design provides an...each kind of photonic setup in the Quantum Network, i.e., over time it will grow to include descriptions of the weak-coherent link, the entangled

  4. Method of optimum channel switching in equipment of infocommunication network in conditions of cyber attacks to their telecommunication infrastructure.

    NASA Astrophysics Data System (ADS)

    Kochedykov, S. S.; Noev, A. N.; Dushkin, A. V.; Gubin, I. A.

    2018-05-01

    On the basis of the mathematical graph theory, the method of optimum switching of infocommunication networks in the conditions of cyber attacks is developed. The idea of representation of a set of possible ways on the graph in the form of the multilevel tree ordered by rules of algebra of a logic theory is the cornerstone of a method. As a criterion of optimization, the maximum of network transmission capacity to which assessment Ford- Falkerson's theorem is applied is used. The method is realized in the form of a numerical algorithm, which can be used not only for design, but also for operational management of infocommunication networks in conditions of violation of the functioning of their switching centers.

  5. TTEthernet for Integrated Spacecraft Networks

    NASA Technical Reports Server (NTRS)

    Loveless, Andrew

    2015-01-01

    Aerospace projects have traditionally employed federated avionics architectures, in which each computer system is designed to perform one specific function (e.g. navigation). There are obvious downsides to this approach, including excessive weight (from so much computing hardware), and inefficient processor utilization (since modern processors are capable of performing multiple tasks). There has therefore been a push for integrated modular avionics (IMA), in which common computing platforms can be leveraged for different purposes. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and design complexity. However, the application of IMA principles introduces significant challenges, as the data network must accommodate traffic of mixed criticality and performance levels - potentially all related to the same shared computer hardware. Because individual network technologies are rarely so competent, the development of truly integrated network architectures often proves unreasonable. Several different types of networks are utilized - each suited to support a specific vehicle function. Critical functions are typically driven by precise timing loops, requiring networks with strict guarantees regarding message latency (i.e. determinism) and fault-tolerance. Alternatively, non-critical systems generally employ data networks prioritizing flexibility and high performance over reliable operation. Switched Ethernet has seen widespread success filling this role in terrestrial applications. Its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components make it desirable for inclusion in spacecraft platforms. Basic Ethernet configurations have been incorporated into several preexisting aerospace projects, including both the Space Shuttle and International Space Station (ISS). However, classical switched Ethernet cannot provide the high level of network determinism required by real-time spacecraft applications. Even with modern advancements, the uncoordinated (i.e. event-driven) nature of Ethernet communication unavoidably leads to message contention within network switches. The arbitration process used to resolve such conflicts introduces variation in the time it takes for messages to be forwarded. TTEthernet1 introduces decentralized clock synchronization to switched Ethernet, enabling message transmission according to a time-triggered (TT) paradigm. A network planning tool is used to allocate each device a finite amount of time in which it may transmit a frame. Each time slot is repeated sequentially to form a periodic communication schedule that is then loaded onto each TTEthernet device (e.g. switches and end systems). Each network participant references the synchronized time in order to dispatch messages at predetermined instances. This schedule guarantees that no contention exists between time-triggered Ethernet frames in the network switches, therefore eliminating the need for arbitration (and the timing variation it causes). Besides time-triggered messaging, TTEthernet networks may provide two additional traffic classes to support communication of different criticality levels. In the rate-constrained (RC) traffic class, the frame payload size and rate of transmission along each communication channel are limited to predetermined maximums. The network switches can therefore be configured to accommodate the known worst-case traffic pattern, and buffer overflows can be eliminated. The best-effort (BE) traffic class behaves akin to classical Ethernet. No guarantees are provided regarding transmission latency or successful message delivery. TTEthernet coordinates transmission of all three traffic classes over the same physical connections, therefore accommodating the full spectrum of traffic criticality levels required in IMA architectures. Common computing platforms (e.g. LRUs) can share networking resources in such a way that failures in non-critical systems (using BE or RC communication modes) cannot impact flight-critical functions (using TT communication). Furthermore, TTEthernet hardware (e.g. switches, cabling) can be shared by both TTEthernet and classical Ethernet traffic.

  6. A binary-decision-diagram-based two-bit arithmetic logic unit on a GaAs-based regular nanowire network with hexagonal topology.

    PubMed

    Zhao, Hong-Quan; Kasai, Seiya; Shiratori, Yuta; Hashizume, Tamotsu

    2009-06-17

    A two-bit arithmetic logic unit (ALU) was successfully fabricated on a GaAs-based regular nanowire network with hexagonal topology. This fundamental building block of central processing units can be implemented on a regular nanowire network structure with simple circuit architecture based on graphical representation of logic functions using a binary decision diagram and topology control of the graph. The four-instruction ALU was designed by integrating subgraphs representing each instruction, and the circuitry was implemented by transferring the logical graph structure to a GaAs-based nanowire network formed by electron beam lithography and wet chemical etching. A path switching function was implemented in nodes by Schottky wrap gate control of nanowires. The fabricated circuit integrating 32 node devices exhibits the correct output waveforms at room temperature allowing for threshold voltage variation.

  7. Architecture Design and Experimental Platform Demonstration of Optical Network based on OpenFlow Protocol

    NASA Astrophysics Data System (ADS)

    Xing, Fangyuan; Wang, Honghuan; Yin, Hongxi; Li, Ming; Luo, Shenzi; Wu, Chenguang

    2016-02-01

    With the extensive application of cloud computing and data centres, as well as the constantly emerging services, the big data with the burst characteristic has brought huge challenges to optical networks. Consequently, the software defined optical network (SDON) that combines optical networks with software defined network (SDN), has attracted much attention. In this paper, an OpenFlow-enabled optical node employed in optical cross-connect (OXC) and reconfigurable optical add/drop multiplexer (ROADM), is proposed. An open source OpenFlow controller is extended on routing strategies. In addition, the experiment platform based on OpenFlow protocol for software defined optical network, is designed. The feasibility and availability of the OpenFlow-enabled optical nodes and the extended OpenFlow controller are validated by the connectivity test, protection switching and load balancing experiments in this test platform.

  8. Diplexer switch

    NASA Technical Reports Server (NTRS)

    Grauling, C. H., Jr.; Parker, T. W.

    1977-01-01

    Switch achieves high isolation and continuous input/output matching by using resonant coupling structure of diplexer. Additionally, dc bias network used to control switch is decoupled from RF input and output lines. Voltage transients in external circuits are thus minimized.

  9. Modulation of dynamic modes by interplay between positive and negative feedback loops in gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Wang, Liu-Suo; Li, Ning-Xi; Chen, Jing-Jia; Zhang, Xiao-Peng; Liu, Feng; Wang, Wei

    2018-04-01

    A positive and a negative feedback loop can induce bistability and oscillation, respectively, in biological networks. Nevertheless, they are frequently interlinked to perform more elaborate functions in many gene regulatory networks. Coupled positive and negative feedback loops may exhibit either oscillation or bistability depending on the intensity of the stimulus in some particular networks. It is less understood how the transition between the two dynamic modes is modulated by the positive and negative feedback loops. We developed an abstract model of such systems, largely based on the core p53 pathway, to explore the mechanism for the transformation of dynamic behaviors. Our results show that enhancing the positive feedback may promote or suppress oscillations depending on the strength of both feedback loops. We found that the system oscillates with low amplitudes in response to a moderate stimulus and switches to the on state upon a strong stimulus. When the positive feedback is activated much later than the negative one in response to a strong stimulus, the system exhibits long-term oscillations before switching to the on state. We explain this intriguing phenomenon using quasistatic approximation. Moreover, early switching to the on state may occur when the system starts from a steady state in the absence of stimuli. The interplay between the positive and negative feedback plays a key role in the transitions between oscillation and bistability. Of note, our conclusions should be applicable only to some specific gene regulatory networks, especially the p53 network, in which both oscillation and bistability exist in response to a certain type of stimulus. Our work also underscores the significance of transient dynamics in determining cellular outcome.

  10. Lambda network having 2{sup m{minus}1} nodes in each of m stages with each node coupled to four other nodes for bidirectional routing of data packets between nodes

    DOEpatents

    Napolitano, L.M. Jr.

    1995-11-28

    The Lambda network is a single stage, packet-switched interprocessor communication network for a distributed memory, parallel processor computer. Its design arises from the desired network characteristics of minimizing mean and maximum packet transfer time, local routing, expandability, deadlock avoidance, and fault tolerance. The network is based on fixed degree nodes and has mean and maximum packet transfer distances where n is the number of processors. The routing method is detailed, as are methods for expandability, deadlock avoidance, and fault tolerance. 14 figs.

  11. ISDN Application in the Army Environment

    DTIC Science & Technology

    1992-02-01

    Signalling System Number 7 ( SS7 ). SS7 is a packet switched signalling network operating in parallel with the traffic bearing network. The current, in...for example, require SS7 . Further into the future, broadband ISDN (B-ISDN) is expected to provide high-quality, full-motion video, High Definition...smaller business offices, ISDN could be a viable alternative to private networks, especially when switches are connected through SS7 . ISDN, in combination

  12. Broadcast of four HD videos with LED ceiling lighting: optical-wireless MAC

    NASA Astrophysics Data System (ADS)

    Bouchet, Olivier; Porcon, Pascal; Gueutier, Eric

    2011-09-01

    The European project "hOME Gigabit Access Network" (OMEGA) targeted various wireless and wired solutions for 1 Gbit/s connectivity in Home Area Networks (HANs). One objective was to evaluate the suitability of optical wireless technologies in two spectral regions: visible light (visible-light communications - VLC) and near infrared (infrared communications - IRC). Several demonstrators have been built, all of them largely relying on overthe- shelf components. The demonstrators included a "wide-area" VLC broadcast link based on LED ceiling lighting and a laser-based high-data-rate "wide-area" IRC prototype. In this paper we discuss an adapted optical-wireless media-access-control (OWMAC) sublayer, which was developed and implemented during the project. It is suitable for both IRC and VLC. The VLC prototype is based on DMT signal processing and provides broadcasting at { 100 Mbit/s over an area of approximately 5 m2. The IRC prototype provides {300 Mbit/s half-duplex communication over an area of approximately 30 m2. The IRC mesh network, composed of one base station and two terminals, is based on OOK modulation, multi-sector transceivers, and an ultra-fast sector switch. After a brief discussion about the design of the optical-wireless data link layer and the optical-wireless switch (OWS) card, we address the card development and implementation. We also present applications for the VLC and IRC prototypes and measurement results regarding the MAC layer.

  13. Design methodology and performance analysis of a wideband 90° phase switch for radiometer applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, Enrique, E-mail: villae@unican.es; Aja, Beatriz; Cagigas, Jaime

    2013-12-15

    This paper presents the analysis, design, and characterization of a wideband 90° phase switch in Ka-band. The phase switch is based on two microstrip bandpass filters in which the commutation is performed by a novel single-pole double-throw (SPDT) switch. The analysis of π-network bandpass filters is provided, obtaining the phase difference and amplitude imbalance between filters and their scattering parameters; tested results show an average phase difference of 88.9° ± 5° and an amplitude imbalance of 0.15 dB from 24 to 37 GHz. The new broadband SPDT switch is based on a coplanar waveguide-to-slotline-to-microstrip structure, which enables a full planarmore » integration with shifting branches. PIN diodes are used to perform the switching between outputs. The SPDT shows isolation better than 19 dB, insertion loss of around 1.8 dB, and return loss better than 15 dB. The full integration of the phase switch achieves a return loss better than 11 dB and insertion loss of around 4 dB over the band 26–36 GHz, with an average phase difference of 87.1° ± 4° and an average amplitude imbalance of 0.3 dB. It provides an excellent performance for this frequency range, suitable for radio-astronomy receivers.« less

  14. Power requirements reducing of FBG based all-optical switching

    NASA Astrophysics Data System (ADS)

    Scholtz, Ľubomír.; Solanská, Michaela; Ladányi, Libor; Müllerová, Jarmila

    2017-12-01

    Although Fiber Bragg gratings (FBGs) are well known devices, their using as all-optical switching elements has been still examined. Current research is focused on optimization of their properties for their using in future all-optical networks. The main problem are high switching intensities needed for achieving the changes of the transmission state. Over several years switching intensities have been reduced from hundreds of GW/cm2 to tens of MW/cm2 by selecting appropriate gratings and signal parameters or using suitable materials. Two principal nonlinear effects with similar power requirements can result in the bistable transmission/reflection of an input optical pulse. In the self-phase modulation (SPM) regime switching is achieved by the intense probe pulse itself. Using cross-phase modulation (XPM) a strong pump alters the FBG refractive index experienced by a weak probe pulse. As a result of this the detuning of the probe pulse from the center of the photonic band gap occurs. Using of XPM the effect of modulation instability is reduced. Modulation instability which is the main SPM degradation mechanism. We focused on nonlinear FBGs based on chalcogenide glasses which are very often used in various applications. Thanks to high nonlinear parameters chalcogenide glasses are suitable candidates for reducing switching intensities of nonlinear FBGs.

  15. Scalable, high-capacity optical switches for Internet routers and moving platforms

    NASA Astrophysics Data System (ADS)

    Joe, In-Sung

    Internet traffic nearly doubles every year, and we need faster routers with higher ports count, yet lower electrical power consumption. Current internet routers use electrical switches that consume large amounts of electrical power to operate at high data rates. These internet routers dissipate ˜ 10kW per rack, and their capacity is limited by cooling constraints. The power consumption is also critical for moving platforms. As avionics advance, the demand for larger capacity networks increases. Optical fibers are already chosen for high speed data transmission in advanced aircraft. In optical communication systems, integrated passive optical components, such as Array Waveguide Gratings (AWGs), have provided larger capacity with lower power consumption, because minimal electrical power is required for their operation. In addition, compact, wavelength-tunable semiconductor lasers with wide tuning ranges that can switch their wavelengths in tens of nanoseconds have been demonstrated. Here we present a wavelength-selective optical packet switch based on Waveguide Grating Routers (WGRs), passive splitters, and combiners. Tunable lasers on the transmitter side are the only active switching elements. The WGR is operated on multiple Free Spectral Ranges (FSRs) to achieve increased port count and switching capacity while maintaining strict-sense, non-blocking operation. Switching times of less than 24ns between two wavelengths covering three FSRs is demonstrated experimentally. The electrical power consumption, size, weight, and cost of our optical switch is compared with those of conventional electrical switches, showing substantial improvements at large throughputs (˜2 Tb/s full duplex). A revised switch design that does not suffer optical loss from star couplers is proposed. This switch design uses only WGRs, and it is suitable for networks with stringent power budgets. The burst nature of the optical packet transmission requires clock recovery for every incoming packet, and conventional continuous-mode receivers are not suitable for this application. An Embedded Clock Transport (ECT) technique is adopted here. The ECT combines a clock tone with the data payload before the transmission. Simple band pass filtering can extract the transmitted clock tone, and low pass filtering can recover the data. Error-free transmissions at 2.488 Gb/s with ˜16 ns clock recovery time were demonstrated.

  16. Bilingual Language Control in Perception versus Action: MEG Reveals Comprehension Control Mechanisms in Anterior Cingulate Cortex and Domain-General Control of Production in Dorsolateral Prefrontal Cortex.

    PubMed

    Blanco-Elorrieta, Esti; Pylkkänen, Liina

    2016-01-13

    For multilingual individuals, adaptive goal-directed behavior as enabled by cognitive control includes the management of two or more languages. This work used magnetoencephalography (MEG) to investigate the degree of neural overlap between language control and domain-general cognitive control both in action and perception. Highly proficient Arabic-English bilingual individuals participated in maximally parallel language-switching tasks in production and comprehension as well as in analogous tasks in which, instead of the used language, the semantic category of the comprehended/produced word changed. Our results indicated a clear dissociation of language control mechanisms in production versus comprehension. Language-switching in production recruited dorsolateral prefrontal regions bilaterally and, importantly, these regions were similarly recruited by category-switching. Conversely, effects of language-switching in comprehension were observed in the anterior cingulate cortex and were not shared by category-switching. These results suggest that bilingual individuals rely on adaptive language control strategies and that the neural involvement during language-switching could be extensively influenced by whether the switch is active (e.g., in production) or passive (e.g., in comprehension). In addition, these results support that humans require high-level cognitive control to switch languages in production, but the comprehension of language switches recruits a distinct neural circuitry. The use of MEG enabled us to obtain the first characterization of the spatiotemporal profile of these effects, establishing that switching processes begin ∼ 400 ms after stimulus presentation. This research addresses the neural mechanisms underlying multilingual individuals' ability to successfully manage two or more languages, critically targeting whether language control is uniform across linguistic domains (production and comprehension) and whether it is a subdomain of general cognitive control. The results showed that language production and comprehension rely on different networks: whereas language control in production recruited domain-general networks, the brain bases of switching during comprehension seemed language specific. Therefore, the crucial assumption of the bilingual advantage hypothesis, that there is a close relationship between language control and general cognitive control, seems to only hold during production. Copyright © 2016 the authors 0270-6474/16/360290-12$15.00/0.

  17. A stochastic and dynamical view of pluripotency in mouse embryonic stem cells

    PubMed Central

    Lee, Esther J.

    2018-01-01

    Pluripotent embryonic stem cells are of paramount importance for biomedical sciences because of their innate ability for self-renewal and differentiation into all major cell lines. The fateful decision to exit or remain in the pluripotent state is regulated by complex genetic regulatory networks. The rapid growth of single-cell sequencing data has greatly stimulated applications of statistical and machine learning methods for inferring topologies of pluripotency regulating genetic networks. The inferred network topologies, however, often only encode Boolean information while remaining silent about the roles of dynamics and molecular stochasticity inherent in gene expression. Herein we develop a framework for systematically extending Boolean-level network topologies into higher resolution models of networks which explicitly account for the promoter architectures and gene state switching dynamics. We show the framework to be useful for disentangling the various contributions that gene switching, external signaling, and network topology make to the global heterogeneity and dynamics of transcription factor populations. We find the pluripotent state of the network to be a steady state which is robust to global variations of gene switching rates which we argue are a good proxy for epigenetic states of individual promoters. The temporal dynamics of exiting the pluripotent state, on the other hand, is significantly influenced by the rates of genetic switching which makes cells more responsive to changes in extracellular signals. PMID:29451874

  18. Going End to End to Deliver High-Speed Data

    NASA Technical Reports Server (NTRS)

    2005-01-01

    By the end of the 1990s, the optical fiber "backbone" of the telecommunication and data-communication networks had evolved from megabits-per-second transmission rates to gigabits-per-second transmission rates. Despite this boom in bandwidth, however, users at the end nodes were still not being reached on a consistent basis. (An end node is any device that does not behave like a router or a managed hub or switch. Examples of end node objects are computers, printers, serial interface processor phones, and unmanaged hubs and switches.) The primary reason that prevents bandwidth from reaching the end nodes is the complex local network topology that exists between the optical backbone and the end nodes. This complex network topology consists of several layers of routing and switch equipment which introduce potential congestion points and network latency. By breaking down the complex network topology, a true optical connection can be achieved. Access Optical Networks, Inc., is making this connection a reality with guidance from NASA s nondestructive evaluation experts.

  19. Stochastic sampled-data control for synchronization of complex dynamical networks with control packet loss and additive time-varying delays.

    PubMed

    Rakkiyappan, R; Sakthivel, N; Cao, Jinde

    2015-06-01

    This study examines the exponential synchronization of complex dynamical networks with control packet loss and additive time-varying delays. Additionally, sampled-data controller with time-varying sampling period is considered and is assumed to switch between m different values in a random way with given probability. Then, a novel Lyapunov-Krasovskii functional (LKF) with triple integral terms is constructed and by using Jensen's inequality and reciprocally convex approach, sufficient conditions under which the dynamical network is exponentially mean-square stable are derived. When applying Jensen's inequality to partition double integral terms in the derivation of linear matrix inequality (LMI) conditions, a new kind of linear combination of positive functions weighted by the inverses of squared convex parameters appears. In order to handle such a combination, an effective method is introduced by extending the lower bound lemma. To design the sampled-data controller, the synchronization error system is represented as a switched system. Based on the derived LMI conditions and average dwell-time method, sufficient conditions for the synchronization of switched error system are derived in terms of LMIs. Finally, numerical example is employed to show the effectiveness of the proposed methods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Ultrafast Laser Beam Switching and Pulse Train Generation by Using Coupled Vertical-Cavity, Surface-Emitting Lasers (VCSELS)

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor); Ning, Cun-Zheng (Inventor)

    2005-01-01

    Ultrafast directional beam switching is achieved using coupled VCSELs. This approach is demonstrated to achieve beam switching frequencies of 40 GHz and more and switching directions of about eight degrees. This switching scheme is likely to be useful for ultrafast optical networks at frequencies much higher than achievable with other approaches.

  1. THESEUS: A wavelength division multiplexed/microwave subcarrier multiplexed optical network, its ATM switch applications and device requirements

    NASA Astrophysics Data System (ADS)

    Xin, Wei

    1997-10-01

    A Terabit Hybrid Electro-optical /underline[Se]lf- routing Ultrafast Switch (THESEUS) has been proposed. It is a self-routing wavelength division multiplexed (WDM) / microwave subcarrier multiplexed (SCM) asynchronous transfer mode (ATM) switch for the multirate ATM networks. It has potential to be extended to a large ATM switch as 1000 x 1000 without internal blocking. Among the advantages of the hybrid implementation are flexibility in service upgrade, relaxed tolerances on optical filtering, protocol simplification and less processing overhead. For a small ATM switch, the subcarrier can be used as output buffers to solve output contention. A mathematical analysis was conducted to evaluate different buffer configurations. A testbed has been successfully constructed. Multirate binary data streams have been switched through the testbed and error free reception ([<]10-9 bit error rate) has been achieved. A simple, intuitive theoretical model has been developed to describe the heterodyne optical beat interference. A new concept of interference time and interference length has been introduced. An experimental confirmation has been conducted. The experimental results match the model very well. It shows that a large portion of optical bandwidth is wasted due to the beat interference. Based on the model, several improvement approaches have been proposed. The photo-generated carrier lifetime of silicon germanium has been measured using time-resolved reflectivity measurement. Via oxygen ion implantation, the carrier lifetime has been reduced to as short as 1 ps, corresponding to 1 THz of photodetector bandwidth. It has also been shown that copper dopants act as recombination centers in the silicon germanium.

  2. Intelligent deflection routing in buffer-less networks.

    PubMed

    Haeri, Soroush; Trajković, Ljiljana

    2015-02-01

    Deflection routing is employed to ameliorate packet loss caused by contention in buffer-less architectures such as optical burst-switched networks. The main goal of deflection routing is to successfully deflect a packet based only on a limited knowledge that network nodes possess about their environment. In this paper, we present a framework that introduces intelligence to deflection routing (iDef). iDef decouples the design of the signaling infrastructure from the underlying learning algorithm. It consists of a signaling and a decision-making module. Signaling module implements a feedback management protocol while the decision-making module implements a reinforcement learning algorithm. We also propose several learning-based deflection routing protocols, implement them in iDef using the ns-3 network simulator, and compare their performance.

  3. Research on moving target defense based on SDN

    NASA Astrophysics Data System (ADS)

    Chen, Mingyong; Wu, Weimin

    2017-08-01

    An address mutation strategy was proposed. This strategy provided an unpredictable change in address, replacing the real address of the packet forwarding process and path mutation, thus hiding the real address of the host and path. a mobile object defense technology based on Spatio-temporal Mutation on this basis is proposed, Using the software Defined Network centralized control architecture advantage combines sFlow traffic monitoring technology and Moving Target Defense. A mutated time period which can be changed in real time according to the network traffic is changed, and the destination address is changed while the controller abruptly changes the address while the data packet is transferred between the switches to construct a moving target, confusing the host within the network, thereby protecting the host and network.

  4. System and Method for Network Bandwidth, Buffers and Timing Management Using Hybrid Scheduling of Traffic with Different Priorities and Guarantees

    NASA Technical Reports Server (NTRS)

    Bonk, Ted (Inventor); Hall, Brendan (Inventor); Smithgall, William Todd (Inventor); Varadarajan, Srivatsan (Inventor); DeLay, Benjamin F. (Inventor)

    2017-01-01

    Systems and methods for network bandwidth, buffers and timing management using hybrid scheduling of traffic with different priorities and guarantees are provided. In certain embodiments, a method of managing network scheduling and configuration comprises, for each transmitting end station, reserving one exclusive buffer for each virtual link to be transmitted from the transmitting end station; for each receiving end station, reserving exclusive buffers for each virtual link to be received at the receiving end station; and for each switch, reserving a exclusive buffer for each virtual link to be received at an input port of the switch. The method further comprises determining if each respective transmitting end station, receiving end station, and switch has sufficient capability to support the reserved buffers; and reporting buffer infeasibility if each respective transmitting end station, receiving end station, and switch does not have sufficient capability to support the reserved buffers.

  5. Modeling of thermal coupling in VO2-based oscillatory neural networks

    NASA Astrophysics Data System (ADS)

    Velichko, Andrey; Belyaev, Maksim; Putrolaynen, Vadim; Perminov, Valentin; Pergament, Alexander

    2018-01-01

    In this study, we have demonstrated the possibility of using the thermal coupling to control the dynamics of operation of coupled VO2 oscillators. Based on the example of a 'switch-microheater' pair, we have explored the synchronization and dissynchronization modes of a single oscillator with respect to an external harmonic heat impact. The features of changes in the spectra are shown, in particular, the effect of the natural frequency attraction to the affecting signal frequency and the self-oscillation noise reduction effects at synchronization. The time constant of the temperature effect for the considered system configuration is in the range 7-140 μs, which allows operation in the oscillation frequency range of up to ∼70 kHz. A model estimate of the minimum temperature sensitivity of the switch is δTswitch ∼ 0.2 K, and the effective action radius RTC of the switch-to-switch thermal coupling is not less than 25 μm. Nevertheless, as the simulation shows, the frequency range can be significantly extended up to the values of 1-30 GHz if using nanometer-scale switches (heaters).

  6. Optimization of multicast optical networks with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng

    2007-11-01

    In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.

  7. Performance and policy dimensions in internet routing

    NASA Technical Reports Server (NTRS)

    Mills, David L.; Boncelet, Charles G.; Elias, John G.; Schragger, Paul A.; Jackson, Alden W.; Thyagarajan, Ajit

    1995-01-01

    The Internet Routing Project, referred to in this report as the 'Highball Project', has been investigating architectures suitable for networks spanning large geographic areas and capable of very high data rates. The Highball network architecture is based on a high speed crossbar switch and an adaptive, distributed, TDMA scheduling algorithm. The scheduling algorithm controls the instantaneous configuration and swell time of the switch, one of which is attached to each node. In order to send a single burst or a multi-burst packet, a reservation request is sent to all nodes. The scheduling algorithm then configures the switches immediately prior to the arrival of each burst, so it can be relayed immediately without requiring local storage. Reservations and housekeeping information are sent using a special broadcast-spanning-tree schedule. Progress to date in the Highball Project includes the design and testing of a suite of scheduling algorithms, construction of software reservation/scheduling simulators, and construction of a strawman hardware and software implementation. A prototype switch controller and timestamp generator have been completed and are in test. Detailed documentation on the algorithms, protocols and experiments conducted are given in various reports and papers published. Abstracts of this literature are included in the bibliography at the end of this report, which serves as an extended executive summary.

  8. Quasi-Optical Network Analyzers and High-Reliability RF MEMS Switched Capacitors

    NASA Astrophysics Data System (ADS)

    Grichener, Alexander

    The thesis first presents a 2-port quasi-optical scalar network analyzer consisting of a transmitter and receiver both built in planar technology. The network analyzer is based on a Schottky-diode mixer integrated inside a planar antenna and fed differentially by a CPW transmission line. The antenna is placed on an extended hemispherical high-resistivity silicon substrate lens. The LO signal is swept from 3-5 GHz and high-order harmonic mixing in both up- and down- conversion mode is used to realize the 15-50 GHz RF bandwidth. The network analyzer resulted in a dynamic range of greater than 40 dB and was successfully used to measure a frequency selective surface with a second-order bandpass response. Furthermore, the system was built with circuits and components for easy scaling to millimeter-wave frequencies which is the primary motivation for this work. The application areas for a millimeter and submillimeter-wave network analyzer include material characterization and art diagnostics. The second project presents several RF MEMS switched capacitors designed for high-reliability operation and suitable for tunable filters and reconfigurable networks. The first switched-capacitor resulted in a digital capacitance ratio of 5 and an analog capacitance ratio of 5-9. The analog tuning of the down-state capacitance is enhanced by a positive vertical stress gradient in the the beam, making it ideal for applications that require precision tuning. A thick electroplated beam resulted in Q greater than 100 at C to X-band frequencies, and power handling of 0.6-1.1 W. The design also minimized charging in the dielectric, resulting in excellent reliability performance even under hot-switched and high power (1 W) conditions. The second switched-capacitor was designed without any dielectric to minimize charging. The device was hot-switched at 1 W of RF power for greater than 11 billion cycles with virtually no change in the C-V curve. The final project presents a 7-channel channelizer based on the mammalian cochlea. The cochlea is an amazing channelizing filter, covering three decades of bandwidth with over 3,000 channels in a very small physical space. Using a simplified mechanical cochlear model and its electrical analogue, a design method is demonstrated for RF and microwave channelizers that retains the desirable features of the cochlea including the ability to cascade a large number of channels (for multiple-octave frequency coverage), and a high-order stop-band rejection. A 6-pole response is synthesized in each channel using the top-C coupled topology. A constant absolute 3 dB bandwidth of around 4.3 MHz and an insertion loss of around 3.9 dB is measured in each channel. A high isolation (greater than 35 dB) is achieved between adjacent channels. A reflection loss of greater than 15 dB is measured at the input port over the entire channelizer bandwidth. Application areas for the demonstrated channelizer include wideband, contiguous-channel receivers for signal intelligence or spectral analysis.

  9. Atomic switch networks—nanoarchitectonic design of a complex system for natural computing

    NASA Astrophysics Data System (ADS)

    Demis, E. C.; Aguilera, R.; Sillin, H. O.; Scharnhorst, K.; Sandouk, E. J.; Aono, M.; Stieg, A. Z.; Gimzewski, J. K.

    2015-05-01

    Self-organized complex systems are ubiquitous in nature, and the structural complexity of these natural systems can be used as a model to design new classes of functional nanotechnology based on highly interconnected networks of interacting units. Conventional fabrication methods for electronic computing devices are subject to known scaling limits, confining the diversity of possible architectures. This work explores methods of fabricating a self-organized complex device known as an atomic switch network and discusses its potential utility in computing. Through a merger of top-down and bottom-up techniques guided by mathematical and nanoarchitectonic design principles, we have produced functional devices comprising nanoscale elements whose intrinsic nonlinear dynamics and memorization capabilities produce robust patterns of distributed activity and a capacity for nonlinear transformation of input signals when configured in the appropriate network architecture. Their operational characteristics represent a unique potential for hardware implementation of natural computation, specifically in the area of reservoir computing—a burgeoning field that investigates the computational aptitude of complex biologically inspired systems.

  10. Evolutionary prisoner's dilemma games coevolving on adaptive networks.

    PubMed

    Lee, Hsuan-Wei; Malik, Nishant; Mucha, Peter J

    2018-02-01

    We study a model for switching strategies in the Prisoner's Dilemma game on adaptive networks of player pairings that coevolve as players attempt to maximize their return. We use a node-based strategy model wherein each player follows one strategy at a time (cooperate or defect) across all of its neighbors, changing that strategy and possibly changing partners in response to local changes in the network of player pairing and in the strategies used by connected partners. We compare and contrast numerical simulations with existing pair approximation differential equations for describing this system, as well as more accurate equations developed here using the framework of approximate master equations. We explore the parameter space of the model, demonstrating the relatively high accuracy of the approximate master equations for describing the system observations made from simulations. We study two variations of this partner-switching model to investigate the system evolution, predict stationary states, and compare the total utilities and other qualitative differences between these two model variants.

  11. Celestial data routing network

    NASA Astrophysics Data System (ADS)

    Bordetsky, Alex

    2000-11-01

    Imagine that information processing human-machine network is threatened in a particular part of the world. Suppose that an anticipated threat of physical attacks could lead to disruption of telecommunications network management infrastructure and access capabilities for small geographically distributed groups engaged in collaborative operations. Suppose that small group of astronauts are exploring the solar planet and need to quickly configure orbital information network to support their collaborative work and local communications. The critical need in both scenarios would be a set of low-cost means of small team celestial networking. To the geographically distributed mobile collaborating groups such means would allow to maintain collaborative multipoint work, set up orbital local area network, and provide orbital intranet communications. This would be accomplished by dynamically assembling the network enabling infrastructure of the small satellite based router, satellite based Codec, and set of satellite based intelligent management agents. Cooperating single function pico satellites, acting as agents and personal switching devices together would represent self-organizing intelligent orbital network of cooperating mobile management nodes. Cooperative behavior of the pico satellite based agents would be achieved by comprising a small orbital artificial neural network capable of learning and restructing the networking resources in response to the anticipated threat.

  12. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations

    NASA Astrophysics Data System (ADS)

    Choi, Shinhyun; Tan, Scott H.; Li, Zefan; Kim, Yunjo; Choi, Chanyeol; Chen, Pai-Yu; Yeon, Hanwool; Yu, Shimeng; Kim, Jeehwan

    2018-01-01

    Although several types of architecture combining memory cells and transistors have been used to demonstrate artificial synaptic arrays, they usually present limited scalability and high power consumption. Transistor-free analog switching devices may overcome these limitations, yet the typical switching process they rely on—formation of filaments in an amorphous medium—is not easily controlled and hence hampers the spatial and temporal reproducibility of the performance. Here, we demonstrate analog resistive switching devices that possess desired characteristics for neuromorphic computing networks with minimal performance variations using a single-crystalline SiGe layer epitaxially grown on Si as a switching medium. Such epitaxial random access memories utilize threading dislocations in SiGe to confine metal filaments in a defined, one-dimensional channel. This confinement results in drastically enhanced switching uniformity and long retention/high endurance with a high analog on/off ratio. Simulations using the MNIST handwritten recognition data set prove that epitaxial random access memories can operate with an online learning accuracy of 95.1%.

  13. Cognitive Control Signals in Posterior Cingulate Cortex

    PubMed Central

    Hayden, Benjamin Y.; Smith, David V.; Platt, Michael L.

    2010-01-01

    Efficiently shifting between tasks is a central function of cognitive control. The role of the default network – a constellation of areas with high baseline activity that declines during task performance – in cognitive control remains poorly understood. We hypothesized that task switching demands cognitive control to shift the balance of processing toward the external world, and therefore predicted that switching between the two tasks would require suppression of activity of neurons within the posterior cingulate cortex (CGp). To test this idea, we recorded the activity of single neurons in CGp, a central node in the default network, in monkeys performing two interleaved tasks. As predicted, we found that basal levels of neuronal activity were reduced following a switch from one task to another and gradually returned to pre-switch baseline on subsequent trials. We failed to observe these effects in lateral intraparietal cortex, part of the dorsal fronto-parietal cortical attention network directly connected to CGp. These findings indicate that suppression of neuronal activity in CGp facilitates cognitive control, and suggest that activity in the default network reflects processes that directly compete with control processes elsewhere in the brain. PMID:21160560

  14. Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed.

    PubMed

    Channegowda, M; Nejabati, R; Rashidi Fard, M; Peng, S; Amaya, N; Zervas, G; Simeonidou, D; Vilalta, R; Casellas, R; Martínez, R; Muñoz, R; Liu, L; Tsuritani, T; Morita, I; Autenrieth, A; Elbers, J P; Kostecki, P; Kaczmarek, P

    2013-03-11

    Software defined networking (SDN) and flexible grid optical transport technology are two key technologies that allow network operators to customize their infrastructure based on application requirements and therefore minimizing the extra capital and operational costs required for hosting new applications. In this paper, for the first time we report on design, implementation & demonstration of a novel OpenFlow based SDN unified control plane allowing seamless operation across heterogeneous state-of-the-art optical and packet transport domains. We verify and experimentally evaluate OpenFlow protocol extensions for flexible DWDM grid transport technology along with its integration with fixed DWDM grid and layer-2 packet switching.

  15. Evaluating a Novel Cellular Automata-Based Distributed Power Management Approach for Mobile Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Adabi, Sepideh; Adabi, Sahar; Rezaee, Ali

    According to the traditional definition of Wireless Sensor Networks (WSNs), static sensors have limited the feasibility of WSNs in some kind of approaches, so the mobility was introduced in WSN. Mobile nodes in a WSN come equipped with battery and from the point of deployment, this battery reserve becomes a valuable resource since it cannot be replenished. Hence, maximizing the network lifetime by minimizing the energy is an important challenge in Mobile WSN. Energy conservation can be accomplished by different approaches. In this paper, we presented an energy conservation solution based on Cellular Automata. The main objective of this solution is based on dynamically adjusting the transmission range and switching between operational states of the sensor nodes.

  16. Study of mobile satellite network based on GEO/LEO satellite constellation

    NASA Astrophysics Data System (ADS)

    Hu, Xiulin; Zeng, Yujiang; Wang, Ying; Wang, Xianhui

    2005-11-01

    Mobile satellite network with Inter Satellite Links (ISLs), which consists of non-geostationary satellites, has the characteristic of network topology's variability. This is a great challenge to the design and management of mobile satellite network. This paper analyzes the characteristics of mobile satellite network, takes multimedia Quality of Service (QoS) as the chief object and presents a reference model based on Geostationary Earth Orbit (GEO)/ Low Earth Orbit (LEO) satellite constellation which adapts to the design and management of mobile satellite network. In the reference model, LEO satellites constitute service subnet with responsibility for the access, transmission and switch of the multimedia services for mobile users, while GEO satellites constitute management subnet taking on the centralized management to service subnet. Additionally ground control centre realizes the whole monitoring and control via management subnet. Comparing with terrestrial network, the above reference model physically separates management subnet from service subnet, which not only enhances the advantage of centralized management but also overcomes the shortcoming of low reliability in terrestrial network. Routing of mobile satellite network based on GEO/LEO satellite constellation is also discussed in this paper.

  17. Phase-Change Thermoplastic Elastomer Blends for Tunable Shape Memory by Physical Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mineart, Kenneth P.; Tallury, Syamal S.; Li, Tao

    Shape-memory polymers (SMPs) change shape upon exposure to an environmental stimulus.1-3 They are of considerable importance in the ongoing development of stimuli-responsive biomedical4,5 and deployable6 devices, and their function depends on the presence of two components.7 The first provides mechanical rigidity to ensure retention of one or more temporary strain states and also serves as a switch capable of releasing a temporary strain state. The second, a network-forming component, is required to restore the polymer to a prior strain state upon stimulation. In thermally-activated SMPs, the switching element typically relies on a melting or glass transition temperature,1-3,7 and broad ormore » multiple switches permit several temporary strain states.8-10 Chemical integration of network-forming and switching species endows SMPs with specific properties.8,10,11 Here, we demonstrate that phase-change materials incorporated into network-forming macromolecules yield shape-memory polymer blends (SMPBs) with physically tunable switching temperatures and recovery kinetics for use in multi-responsive laminates and shape-change electronics.« less

  18. Synchronization of discrete-time neural networks with delays and Markov jump topologies based on tracker information.

    PubMed

    Yang, Xinsong; Feng, Zhiguo; Feng, Jianwen; Cao, Jinde

    2017-01-01

    In this paper, synchronization in an array of discrete-time neural networks (DTNNs) with time-varying delays coupled by Markov jump topologies is considered. It is assumed that the switching information can be collected by a tracker with a certain probability and transmitted from the tracker to controller precisely. Then the controller selects suitable control gains based on the received switching information to synchronize the network. This new control scheme makes full use of received information and overcomes the shortcomings of mode-dependent and mode-independent control schemes. Moreover, the proposed control method includes both the mode-dependent and mode-independent control techniques as special cases. By using linear matrix inequality (LMI) method and designing new Lyapunov functionals, delay-dependent conditions are derived to guarantee that the DTNNs with Markov jump topologies to be asymptotically synchronized. Compared with existing results on Markov systems which are obtained by separately using mode-dependent and mode-independent methods, our result has great flexibility in practical applications. Numerical simulations are finally given to demonstrate the effectiveness of the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Distributed Beam Former for Distributed-Aperture Electronically Steered Antennas

    DTIC Science & Technology

    2006-11-01

    of planar or conformal aperture, it will be replaced by a distributed aperture configuration with a base-band digital network that is used to combine...beam forming network that can be designed with pre-set scanning directions. The beam former for this stage can be realized using a printed Butler...matrix (Bona et al, 2002; Neron and Delisle, 2005), a printed Rotman lens (Kilic and Dahlstrom, 2005) or other switched time delay system. The

  20. On-Line Databases in Mexico.

    ERIC Educational Resources Information Center

    Molina, Enzo

    1986-01-01

    Use of online bibliographic databases in Mexico is provided through Servicio de Consulta a Bancos de Informacion, a public service that provides information retrieval, document delivery, translation, technical support, and training services. Technical infrastructure is based on a public packet-switching network and institutional users may receive…

  1. A compact bipolar pulse-forming network-Marx generator based on pulse transformers.

    PubMed

    Zhang, Huibo; Yang, Jianhua; Lin, Jiajin; Yang, Xiao

    2013-11-01

    A compact bipolar pulse-forming network (PFN)-Marx generator based on pulse transformers is presented in this paper. The high-voltage generator consisted of two sets of pulse transformers, 6 stages of PFNs with ceramic capacitors, a switch unit, and a matched load. The design is characterized by the bipolar pulse charging scheme and the compact structure of the PFN-Marx. The scheme of bipolar charging by pulse transformers increased the withstand voltage of the ceramic capacitors in the PFNs and decreased the number of the gas gap switches. The compact structure of the PFN-Marx was aimed at reducing the parasitic inductance in the generator. When the charging voltage on the PFNs was 35 kV, the matched resistive load of 48 Ω could deliver a high-voltage pulse with an amplitude of 100 kV. The full width at half maximum of the load pulse was 173 ns, and its rise time was less than 15 ns.

  2. Satellite ATM Networks: Architectures and Guidelines Developed

    NASA Technical Reports Server (NTRS)

    vonDeak, Thomas C.; Yegendu, Ferit

    1999-01-01

    An important element of satellite-supported asynchronous transfer mode (ATM) networking will involve support for the routing and rerouting of active connections. Work published under the auspices of the Telecommunications Industry Association (http://www.tiaonline.org), describes basic architectures and routing protocol issues for satellite ATM (SATATM) networks. The architectures and issues identified will serve as a basis for further development of technical specifications for these SATATM networks. Three ATM network architectures for bent pipe satellites and three ATM network architectures for satellites with onboard ATM switches were developed. The architectures differ from one another in terms of required level of mobility, supported data rates, supported terrestrial interfaces, and onboard processing and switching requirements. The documentation addresses low-, middle-, and geosynchronous-Earth-orbit satellite configurations. The satellite environment may require real-time routing to support the mobility of end devices and nodes of the ATM network itself. This requires the network to be able to reroute active circuits in real time. In addition to supporting mobility, rerouting can also be used to (1) optimize network routing, (2) respond to changing quality-of-service requirements, and (3) provide a fault tolerance mechanism. Traffic management and control functions are necessary in ATM to ensure that the quality-of-service requirements associated with each connection are not violated and also to provide flow and congestion control functions. Functions related to traffic management were identified and described. Most of these traffic management functions will be supported by on-ground ATM switches, but in a hybrid terrestrial-satellite ATM network, some of the traffic management functions may have to be supported by the onboard satellite ATM switch. Future work is planned to examine the tradeoffs of placing traffic management functions onboard a satellite as opposed to implementing those functions at the Earth station components.

  3. Switches and latches: a biochemical tug-of-war between the kinases and phosphatases that control mitosis.

    PubMed

    Domingo-Sananes, Maria Rosa; Kapuy, Orsolya; Hunt, Tim; Novak, Bela

    2011-12-27

    Activation of the cyclin-dependent kinase (Cdk1) cyclin B (CycB) complex (Cdk1:CycB) in mitosis brings about a remarkable extent of protein phosphorylation. Cdk1:CycB activation is switch-like, controlled by two auto-amplification loops--Cdk1:CycB activates its activating phosphatase, Cdc25, and inhibits its inhibiting kinase, Wee1. Recent experimental evidence suggests that parallel to Cdk1:CycB activation during mitosis, there is inhibition of its counteracting phosphatase activity. We argue that the downregulation of the phosphatase is not just a simple latch that suppresses futile cycles of phosphorylation/dephosphorylation during mitosis. Instead, we propose that phosphatase regulation creates coherent feed-forward loops and adds extra amplification loops to the Cdk1:CycB regulatory network, thus forming an integral part of the mitotic switch. These network motifs further strengthen the bistable characteristic of the mitotic switch, which is based on the antagonistic interaction of two groups of proteins: M-phase promoting factors (Cdk1:CycB, Cdc25, Greatwall and Endosulfine/Arpp19) and interphase promoting factors (Wee1, PP2A-B55 and a Greatwall counteracting phosphatase, probably PP1). The bistable character of the switch implies the existence of a CycB threshold for entry into mitosis. The end of G2 phase is determined by the point where CycB level crosses the CycB threshold for Cdk1 activation.

  4. Decentralized Adaptive Neural Output-Feedback DSC for Switched Large-Scale Nonlinear Systems.

    PubMed

    Lijun Long; Jun Zhao

    2017-04-01

    In this paper, for a class of switched large-scale uncertain nonlinear systems with unknown control coefficients and unmeasurable states, a switched-dynamic-surface-based decentralized adaptive neural output-feedback control approach is developed. The approach proposed extends the classical dynamic surface control (DSC) technique for nonswitched version to switched version by designing switched first-order filters, which overcomes the problem of multiple "explosion of complexity." Also, a dual common coordinates transformation of all subsystems is exploited to avoid individual coordinate transformations for subsystems that are required when applying the backstepping recursive design scheme. Nussbaum-type functions are utilized to handle the unknown control coefficients, and a switched neural network observer is constructed to estimate the unmeasurable states. Combining with the average dwell time method and backstepping and the DSC technique, decentralized adaptive neural controllers of subsystems are explicitly designed. It is proved that the approach provided can guarantee the semiglobal uniformly ultimately boundedness for all the signals in the closed-loop system under a class of switching signals with average dwell time, and the tracking errors to a small neighborhood of the origin. A two inverted pendulums system is provided to demonstrate the effectiveness of the method proposed.

  5. Predictive onboard flow control for packet switching satellites

    NASA Technical Reports Server (NTRS)

    Bobinsky, Eric A.

    1992-01-01

    We outline two alternate approaches to predicting the onset of congestion in a packet switching satellite, and argue that predictive, rather than reactive, flow control is necessary for the efficient operation of such a system. The first method discussed is based on standard, statistical techniques which are used to periodically calculate a probability of near-term congestion based on arrival rate statistics. If this probability exceeds a present threshold, the satellite would transmit a rate-reduction signal to all active ground stations. The second method discussed would utilize a neural network to periodically predict the occurrence of buffer overflow based on input data which would include, in addition to arrival rates, the distributions of packet lengths, source addresses, and destination addresses.

  6. A Dynamic Programming Approach for Base Station Sleeping in Cellular Networks

    NASA Astrophysics Data System (ADS)

    Gong, Jie; Zhou, Sheng; Niu, Zhisheng

    The energy consumption of the information and communication technology (ICT) industry, which has become a serious problem, is mostly due to the network infrastructure rather than the mobile terminals. In this paper, we focus on reducing the energy consumption of base stations (BSs) by adjusting their working modes (active or sleep). Specifically, the objective is to minimize the energy consumption while satisfying quality of service (QoS, e.g., blocking probability) requirement and, at the same time, avoiding frequent mode switching to reduce signaling and delay overhead. The problem is modeled as a dynamic programming (DP) problem, which is NP-hard in general. Based on cooperation among neighboring BSs, a low-complexity algorithm is proposed to reduce the size of state space as well as that of action space. Simulations demonstrate that, with the proposed algorithm, the active BS pattern well meets the time variation and the non-uniform spatial distribution of system traffic. Moreover, the tradeoff between the energy saving from BS sleeping and the cost of switching is well balanced by the proposed scheme.

  7. A Novel Component Carrier Configuration and Switching Scheme for Real-Time Traffic in a Cognitive-Radio-Based Spectrum Aggregation System

    PubMed Central

    Fu, Yunhai; Ma, Lin; Xu, Yubin

    2015-01-01

    In spectrum aggregation (SA), two or more component carriers (CCs) of different bandwidths in different bands can be aggregated to support a wider transmission bandwidth. The scheduling delay is the most important design constraint for the broadband wireless trunking (BWT) system, especially in the cognitive radio (CR) condition. The current resource scheduling schemes for spectrum aggregation become questionable and are not suitable for meeting the challenge of the delay requirement. Consequently, the authors propose a novel component carrier configuration and switching scheme for real-time traffic (RT-CCCS) to satisfy the delay requirement in the CR-based SA system. In this work, the authors consider a sensor-network-assisted CR network. The authors first introduce a resource scheduling structure for SA in the CR condition. Then the proposed scheme is analyzed in detail. Finally, simulations are carried out to verify the analysis on the proposed scheme. Simulation results prove that our proposed scheme can satisfy the delay requirement in the CR-based SA system. PMID:26393594

  8. Analysis of continuous-time switching networks

    NASA Astrophysics Data System (ADS)

    Edwards, R.

    2000-11-01

    Models of a number of biological systems, including gene regulation and neural networks, can be formulated as switching networks, in which the interactions between the variables depend strongly on thresholds. An idealized class of such networks in which the switching takes the form of Heaviside step functions but variables still change continuously in time has been proposed as a useful simplification to gain analytic insight. These networks, called here Glass networks after their originator, are simple enough mathematically to allow significant analysis without restricting the range of dynamics found in analogous smooth systems. A number of results have been obtained before, particularly regarding existence and stability of periodic orbits in such networks, but important cases were not considered. Here we present a coherent method of analysis that summarizes previous work and fills in some of the gaps as well as including some new results. Furthermore, we apply this analysis to a number of examples, including surprising long and complex limit cycles involving sequences of hundreds of threshold transitions. Finally, we show how the above methods can be extended to investigate aperiodic behaviour in specific networks, though a complete analysis will have to await new results in matrix theory and symbolic dynamics.

  9. Passivity analysis of memristor-based impulsive inertial neural networks with time-varying delays.

    PubMed

    Wan, Peng; Jian, Jigui

    2018-03-01

    This paper focuses on delay-dependent passivity analysis for a class of memristive impulsive inertial neural networks with time-varying delays. By choosing proper variable transformation, the memristive inertial neural networks can be rewritten as first-order differential equations. The memristive model presented here is regarded as a switching system rather than employing the theory of differential inclusion and set-value map. Based on matrix inequality and Lyapunov-Krasovskii functional method, several delay-dependent passivity conditions are obtained to ascertain the passivity of the addressed networks. In addition, the results obtained here contain those on the passivity for the addressed networks without impulse effects as special cases and can also be generalized to other neural networks with more complex pulse interference. Finally, one numerical example is presented to show the validity of the obtained results. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Smart home design for electronic devices monitoring based wireless gateway network using cisco packet tracer

    NASA Astrophysics Data System (ADS)

    Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut

    2018-04-01

    In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.

  11. Real-time video streaming using H.264 scalable video coding (SVC) in multihomed mobile networks: a testbed approach

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Wang, Qi; Grecos, Christos

    2011-03-01

    Users of the next generation wireless paradigm known as multihomed mobile networks expect satisfactory quality of service (QoS) when accessing streamed multimedia content. The recent H.264 Scalable Video Coding (SVC) extension to the Advanced Video Coding standard (AVC), offers the facility to adapt real-time video streams in response to the dynamic conditions of multiple network paths encountered in multihomed wireless mobile networks. Nevertheless, preexisting streaming algorithms were mainly proposed for AVC delivery over multipath wired networks and were evaluated by software simulation. This paper introduces a practical, hardware-based testbed upon which we implement and evaluate real-time H.264 SVC streaming algorithms in a realistic multihomed wireless mobile networks environment. We propose an optimised streaming algorithm with multi-fold technical contributions. Firstly, we extended the AVC packet prioritisation schemes to reflect the three-dimensional granularity of SVC. Secondly, we designed a mechanism for evaluating the effects of different streamer 'read ahead window' sizes on real-time performance. Thirdly, we took account of the previously unconsidered path switching and mobile networks tunnelling overheads encountered in real-world deployments. Finally, we implemented a path condition monitoring and reporting scheme to facilitate the intelligent path switching. The proposed system has been experimentally shown to offer a significant improvement in PSNR of the received stream compared with representative existing algorithms.

  12. Optical multicast system for data center networks.

    PubMed

    Samadi, Payman; Gupta, Varun; Xu, Junjie; Wang, Howard; Zussman, Gil; Bergman, Keren

    2015-08-24

    We present the design and experimental evaluation of an Optical Multicast System for Data Center Networks, a hardware-software system architecture that uniquely integrates passive optical splitters in a hybrid network architecture for faster and simpler delivery of multicast traffic flows. An application-driven control plane manages the integrated optical and electronic switched traffic routing in the data plane layer. The control plane includes a resource allocation algorithm to optimally assign optical splitters to the flows. The hardware architecture is built on a hybrid network with both Electronic Packet Switching (EPS) and Optical Circuit Switching (OCS) networks to aggregate Top-of-Rack switches. The OCS is also the connectivity substrate of splitters to the optical network. The optical multicast system implementation requires only commodity optical components. We built a prototype and developed a simulation environment to evaluate the performance of the system for bulk multicasting. Experimental and numerical results show simultaneous delivery of multicast flows to all receivers with steady throughput. Compared to IP multicast that is the electronic counterpart, optical multicast performs with less protocol complexity and reduced energy consumption. Compared to peer-to-peer multicast methods, it achieves at minimum an order of magnitude higher throughput for flows under 250 MB with significantly less connection overheads. Furthermore, for delivering 20 TB of data containing only 15% multicast flows, it reduces the total delivery energy consumption by 50% and improves latency by 55% compared to a data center with a sole non-blocking EPS network.

  13. Distributed fault detection over sensor networks with Markovian switching topologies

    NASA Astrophysics Data System (ADS)

    Ge, Xiaohua; Han, Qing-Long

    2014-05-01

    This paper deals with the distributed fault detection for discrete-time Markov jump linear systems over sensor networks with Markovian switching topologies. The sensors are scatteredly deployed in the sensor field and the fault detectors are physically distributed via a communication network. The system dynamics changes and sensing topology variations are modeled by a discrete-time Markov chain with incomplete mode transition probabilities. Each of these sensor nodes firstly collects measurement outputs from its all underlying neighboring nodes, processes these data in accordance with the Markovian switching topologies, and then transmits the processed data to the remote fault detector node. Network-induced delays and accumulated data packet dropouts are incorporated in the data transmission between the sensor nodes and the distributed fault detector nodes through the communication network. To generate localized residual signals, mode-independent distributed fault detection filters are proposed. By means of the stochastic Lyapunov functional approach, the residual system performance analysis is carried out such that the overall residual system is stochastically stable and the error between each residual signal and the fault signal is made as small as possible. Furthermore, a sufficient condition on the existence of the mode-independent distributed fault detection filters is derived in the simultaneous presence of incomplete mode transition probabilities, Markovian switching topologies, network-induced delays, and accumulated data packed dropouts. Finally, a stirred-tank reactor system is given to show the effectiveness of the developed theoretical results.

  14. Pixel switching of epitaxial Pd/YHx/CaF2 switchable mirrors

    PubMed

    Kerssemakers; van der Molen SJ; Koeman; Gunther; Griessen

    2000-08-03

    Exposure of rare-earth films to hydrogen can induce a metal-insulator transition, accompanied by pronounced optical changes. This 'switchable mirror' effect has received considerable attention from theoretical, experimental and technological points of view. Most systems use polycrystalline films, but the synthesis of yttrium-based epitaxial switchable mirrors has also been reported. The latter form an extended self-organized ridge network during initial hydrogen loading, which results in the creation of micrometre-sized triangular domains. Here we observe homogeneous and essentially independent optical switching of individual domains in epitaxial switchable mirrors during hydrogen absorption. The optical switching is accompanied by topographical changes as the domains sequentially expand and contract; the ridges block lateral hydrogen diffusion and serve as a microscopic lubricant for the domain oscillations. We observe the correlated changes in topology and optical properties using in situ atomic force and optical microscopy. Single-domain phase switching is not observed in polycrystalline films, which are optically homogeneous. The ability to generate a tunable, dense pattern of switchable pixels is of technological relevance for solid-state displays based on switchable mirrors.

  15. Bright color optical switching device by polymer network liquid crystal with a specular reflector.

    PubMed

    Lee, Gae Hwang; Hwang, Kyu Young; Jang, Jae Eun; Jin, Yong Wan; Lee, Sang Yoon; Jung, Jae Eun

    2011-07-04

    The color optical switching device by polymer network liquid crystal (PNLC) with color filter on a specular reflector shows excellent performance; white reflectance of 22%, color gamut of 32%, and contrast ratio up to 50:1 in reflective mode measurement. The view-angle dependence of the reflectance can be adjusted by changing the PNLC thickness. The color chromaticity shown by the device is close to the limit value of color filters, and its value nearly remains with respect to the operating voltage. These optical properties of the device can be explained from the prediction based on multiple interactions between the light and the droplets of liquid crystal. The high reflectance, vivid color image, and moderate responds time allow the PNLC device to drive good color moving image. It can widely extend the applications of the reflective device.

  16. Information Switching Processor (ISP) contention analysis and control

    NASA Technical Reports Server (NTRS)

    Shyy, D.; Inukai, T.

    1993-01-01

    Future satellite communications, as a viable means of communications and an alternative to terrestrial networks, demand flexibility and low end-user cost. On-board switching/processing satellites potentially provide these features, allowing flexible interconnection among multiple spot beams, direct to the user communications services using very small aperture terminals (VSAT's), independent uplink and downlink access/transmission system designs optimized to user's traffic requirements, efficient TDM downlink transmission, and better link performance. A flexible switching system on the satellite in conjunction with low-cost user terminals will likely benefit future satellite network users.

  17. Multi terabits/s optical access transport technologies

    NASA Astrophysics Data System (ADS)

    Binh, Le Nguyen; Wang Tao, Thomas; Livshits, Daniil; Gubenko, Alexey; Karinou, Fotini; Liu Ning, Gordon; Shkolnik, Alexey

    2016-02-01

    Tremendous efforts have been developed for multi-Tbps over ultra-long distance and metro and access optical networks. With the exponential increase demand on data transmission, storage and serving, especially the 5G wireless access scenarios, the optical Internet networking has evolved to data-center based optical networks pressuring on novel and economical access transmission systems. This paper reports (1) Experimental platforms and transmission techniques employing band-limited optical components operating at 10G for 100G based at 28G baud. Advanced modulation formats such as PAM-4, DMT, duo-binary etc are reported and their advantages and disadvantages are analyzed so as to achieve multi-Tbps optical transmission systems for access inter- and intra- data-centered-based networks; (2) Integrated multi-Tbps combining comb laser sources and micro-ring modulators meeting the required performance for access systems are reported. Ten-sub-carrier quantum dot com lasers are employed in association with wideband optical intensity modulators to demonstrate the feasibility of such sources and integrated micro-ring modulators acting as a combined function of demultiplexing/multiplexing and modulation, hence compactness and economy scale. Under the use of multi-level modulation and direct detection at 56 GBd an aggregate of higher than 2Tbps and even 3Tbps can be achieved by interleaved two comb lasers of 16 sub-carrier lines; (3) Finally the fundamental designs of ultra-compacts flexible filters and switching integrated components based on Si photonics for multi Tera-bps active interconnection are presented. Experimental results on multi-channels transmissions and performances of optical switching matrices and effects on that of data channels are proposed.

  18. Atomic switch networks as complex adaptive systems

    NASA Astrophysics Data System (ADS)

    Scharnhorst, Kelsey S.; Carbajal, Juan P.; Aguilera, Renato C.; Sandouk, Eric J.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.

    2018-03-01

    Complexity is an increasingly crucial aspect of societal, environmental and biological phenomena. Using a dense unorganized network of synthetic synapses it is shown that a complex adaptive system can be physically created on a microchip built especially for complex problems. These neuro-inspired atomic switch networks (ASNs) are a dynamic system with inherent and distributed memory, recurrent pathways, and up to a billion interacting elements. We demonstrate key parameters describing self-organized behavior such as non-linearity, power law dynamics, and multistate switching regimes. Device dynamics are then investigated using a feedback loop which provides control over current and voltage power-law behavior. Wide ranging prospective applications include understanding and eventually predicting future events that display complex emergent behavior in the critical regime.

  19. Near-optimality of special periodic protocols for fluid models of single server switched networks with switchover times

    NASA Astrophysics Data System (ADS)

    Matveev, A. S.; Ishchenko, R.

    2017-11-01

    We consider a generic deterministic time-invariant fluid model of a single server switched network, which consists of finitely many infinite size buffers (queues) and receives constant rate inflows of jobs from the outside. Any flow undergoes a multi-phase service, entering a specific buffer after every phase, and ultimately leaves the network; the route of the flow over the buffers is pre-specified, and flows may merge inside the network. They share a common source of service, which can serve at most one buffer at a time and has to switch among buffers from time to time; any switch consumes a nonzero switchover period. With respect to the long-run maximal scaled wip (work in progress) performance metric, near-optimality of periodic scheduling and service protocols is established: the deepest optimum (that is over all feasible processes in the network, irrespective of the initial state) is furnished by such a protocol up to as small error as desired. Moreover, this can be achieved with a special periodic protocol introduced in the paper. It is also shown that the exhaustive policy is optimal for any buffer whose service at the maximal rate does not cause growth of the scaled wip.

  20. Controllability of multi-agent systems with time-delay in state and switching topology

    NASA Astrophysics Data System (ADS)

    Ji, Zhijian; Wang, Zidong; Lin, Hai; Wang, Zhen

    2010-02-01

    In this article, the controllability issue is addressed for an interconnected system of multiple agents. The network associated with the system is of the leader-follower structure with some agents taking leader role and others being followers interconnected via the neighbour-based rule. Sufficient conditions are derived for the controllability of multi-agent systems with time-delay in state, as well as a graph-based uncontrollability topology structure is revealed. Both single and double integrator dynamics are considered. For switching topology, two algebraic necessary and sufficient conditions are derived for the controllability of multi-agent systems. Several examples are also presented to illustrate how to control the system to shape into the desired configurations.

  1. Network flexibility of the IRIDIUM (R) Global Mobile Satellite System

    NASA Technical Reports Server (NTRS)

    Hutcheson, Jonathan; Laurin, Mala

    1995-01-01

    The IRIDIUM system is a global personal communications system supported by a constellation of 66 low earth orbit (LEO) satellites and a collection of earth-based 'gateway' switching installations. Like traditional wireless cellular systems, coverage is achieved by a grid of cells in which bandwidth is reused for spectral efficiency. Unlike any cellular system ever built, the moving cells can be shared by multiple switching facilities. Noteworthy features of the IRIDIUM system include inter-satellite links, a GSM-based telephony architecture, and a geographically controlled system access process. These features, working in concert, permit flexible and reliable administration of the worldwide service area by gateway operators. This paper will explore this unique concept.

  2. Fairness of QoS supporting in optical burst switching

    NASA Astrophysics Data System (ADS)

    Xuan, Xuelei; Liu, Hua; Chen, Chunfeng; Zhang, Zhizhong

    2004-04-01

    In this paper we investigate the fairness problem of offset-time-based quality of service (QoS) scheme proposed by Qiao and Dixit in optical burst switching (OBS) networks. In the proposed schemes, QoS relies on the fact that the requests for reservation further into the future, but for practical, benchmark offset-time of data bursts at the intermediate nodes is not equal to each other. Here, a new offset-time-based QoS scheme is introduced, where data bursts are classified according to their offset-time and isolated in the wavelength domain or time domain to achieve the parallel reservation. Through simulation, it is found that this scheme achieves fairness among data bursts with different priority.

  3. A multi-ring optical packet and circuit integrated network with optical buffering.

    PubMed

    Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya

    2012-12-17

    We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate < 1 × 10(-4)) operation was achieved with optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.

  4. Scheduling with hop-by-hop priority increasing in meshed optical burst-switched network

    NASA Astrophysics Data System (ADS)

    Chang, Hao; Luo, Jiangtao; Zhang, Zhizhong; Xia, Da; Gong, Jue

    2006-09-01

    In OBS, JET (Just-Enough-Time) is the classical wavelength reservation scheme. But there is a phenomenon that the burst priority decreasing hop-by-hop in multi-hop networks that will waste the bandwidth that was used in the upstream. Based on the HPI (Hop-by-hop Priority Increasing) proposed in the former research, this paper will do an unprecedented simulation in 4×4 meshed topology, which is closer to the real network environment with the help of a NS2-based OBSN simulation platform constructed by ourselves. By contrasting, the drop probability and throughput on one of the longest end-to-end path lengths in the whole networks, it shows that the HPI scheme can improve the utilance of bandwidth better.

  5. Optical switching using IP protocol

    NASA Astrophysics Data System (ADS)

    Utreras, Andres J.; Gusqui, Luis; Reyes, Andres; Mena, Ricardo I.; Licenko, Gennady L.; Amirgaliyev, Yedilkhan; Komada, Paweł; Luganskaya, Saule; Kashaganova, Gulzhan

    2017-08-01

    To understand and evaluate the Optical Layer, and how it will affect the IP protocols over WDM (Switching), the present analyse is proposed. Optical communications have attractive proprieties, but also have some disadvantages, so the challenge is to combine the best of both branches. In this paper, general concepts for different options of switching are reviewed as: optical burst switching (OBS) and automatically switching optical network (ASON). Specific details such as their architectures are also discussed. In addition, the relevant characteristics of each variation for switching are reviewed.

  6. Magneto-optic garnet and liquid crystal optical switches

    NASA Technical Reports Server (NTRS)

    Krawczak, J. A.; Torok, E. J.; Harvey, W. A.; Hewitt, F. G.; Nelson, G. L.

    1984-01-01

    Magnetic stripe domain and liquid crystal devices are being developed and evaluated as fiber optic switches that can be utilized for nonblocking type nxm optical matrix switches in networking and optical processing. Liquid crystal switches are characterized by very low insertion loss and crosstalk, while stripe domain switches commutate in less than one microsecond. Both switches operate on multimode, randomly polarized fiber light with potentially large values for (n,m). The applications of these magnetic stripe domain and liquid crystal devices are discussed.

  7. Smart Microgrid Energy Management Controls for Improved Energy Efficiency and Renewables Integration at DoD Installations

    DTIC Science & Technology

    2013-05-01

    flare gas, wind , solar) and can reduce overall energy price volatility; • Renewable DER such as wind and solar PV cells provide emissions-free energy...infrastructure which uses both Ethernet and Wireless media. Ethernet is easily extendable and supports multiple protocols, accommodating a broad range of...by faults or switching events. Remote resources are also integrated into the microgrid network using wireless network currently existing in the Base

  8. Systematic Genetic Screen for Transcriptional Regulators of the Candida albicans White-Opaque Switch

    PubMed Central

    Lohse, Matthew B.; Ene, Iuliana V.; Craik, Veronica B.; Hernday, Aaron D.; Mancera, Eugenio; Morschhäuser, Joachim; Bennett, Richard J.; Johnson, Alexander D.

    2016-01-01

    The human fungal pathogen Candida albicans can reversibly switch between two cell types named “white” and “opaque,” each of which is stable through many cell divisions. These two cell types differ in their ability to mate, their metabolic preferences and their interactions with the mammalian innate immune system. A highly interconnected network of eight transcriptional regulators has been shown to control switching between these two cell types. To identify additional regulators of the switch, we systematically and quantitatively measured white–opaque switching rates of 196 strains, each deleted for a specific transcriptional regulator. We identified 19 new regulators with at least a 10-fold effect on switching rates and an additional 14 new regulators with more subtle effects. To investigate how these regulators affect switching rates, we examined several criteria, including the binding of the eight known regulators of switching to the control region of each new regulatory gene, differential expression of the newly found genes between cell types, and the growth rate of each mutant strain. This study highlights the complexity of the transcriptional network that regulates the white–opaque switch and the extent to which switching is linked to a variety of metabolic processes, including respiration and carbon utilization. In addition to revealing specific insights, the information reported here provides a foundation to understand the highly complex coupling of white–opaque switching to cellular physiology. PMID:27280690

  9. Modeling Markov switching ARMA-GARCH neural networks models and an application to forecasting stock returns.

    PubMed

    Bildirici, Melike; Ersin, Özgür

    2014-01-01

    The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100). Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray's MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray's MS-GARCH model. Therefore, the models are promising for various economic applications.

  10. Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns

    PubMed Central

    Bildirici, Melike; Ersin, Özgür

    2014-01-01

    The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100). Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray's MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray's MS-GARCH model. Therefore, the models are promising for various economic applications. PMID:24977200

  11. Network Solutions.

    ERIC Educational Resources Information Center

    Vietzke, Robert; And Others

    1996-01-01

    This special section explains the latest developments in networking technologies, profiles school districts benefiting from successful implementations, and reviews new products for building networks. Highlights include ATM (asynchronous transfer mode), cable modems, networking switches, Internet screening software, file servers, network management…

  12. On-board processing architectures for satellite B-ISDN services

    NASA Technical Reports Server (NTRS)

    Inukai, Thomas; Shyy, Dong-Jye; Faris, Faris

    1991-01-01

    Onboard baseband processing architectures for future satellite broadband integrated services digital networks (B-ISDN's) are addressed. To assess the feasibility of implementing satellite B-ISDN services, critical design issues, such as B-ISDN traffic characteristics, transmission link design, and a trade-off between onboard circuit and fast packet switching, are analyzed. Examples of the two types of switching mechanisms and potential onboard network control functions are presented. A sample network architecture is also included to illustrate a potential onboard processing system.

  13. Demonstration of reconfigurable joint orbital angular momentum mode and space switching

    PubMed Central

    Liu, Jun; Wang, Jian

    2016-01-01

    We propose and demonstrate space-selective switch functions employing orbital angular momentum (OAM) modes in the space domain for switching network. One is the switching among different OAM modes having different spatial phase structures, called OAM mode switching. The other is the switching among different space locations, called space switching. The switching operation mechanism relies on linear optics. Reconfigurable 4 × 4 OAM mode switching, space switching, and joint OAM mode and space switching fabric using a single spatial light modulator (SLM) are all demonstrated in the experiment. In addition, the presented OAM-incorporated space-selective switch might be further extended to N × N joint OAM mode and space switching with fast response, scalability, cascading ability and compability to facilitate robust switching applications. PMID:27869133

  14. Demonstration of reconfigurable joint orbital angular momentum mode and space switching

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Wang, Jian

    2016-11-01

    We propose and demonstrate space-selective switch functions employing orbital angular momentum (OAM) modes in the space domain for switching network. One is the switching among different OAM modes having different spatial phase structures, called OAM mode switching. The other is the switching among different space locations, called space switching. The switching operation mechanism relies on linear optics. Reconfigurable 4 × 4 OAM mode switching, space switching, and joint OAM mode and space switching fabric using a single spatial light modulator (SLM) are all demonstrated in the experiment. In addition, the presented OAM-incorporated space-selective switch might be further extended to N × N joint OAM mode and space switching with fast response, scalability, cascading ability and compability to facilitate robust switching applications.

  15. Demonstration of reconfigurable joint orbital angular momentum mode and space switching.

    PubMed

    Liu, Jun; Wang, Jian

    2016-11-21

    We propose and demonstrate space-selective switch functions employing orbital angular momentum (OAM) modes in the space domain for switching network. One is the switching among different OAM modes having different spatial phase structures, called OAM mode switching. The other is the switching among different space locations, called space switching. The switching operation mechanism relies on linear optics. Reconfigurable 4 × 4 OAM mode switching, space switching, and joint OAM mode and space switching fabric using a single spatial light modulator (SLM) are all demonstrated in the experiment. In addition, the presented OAM-incorporated space-selective switch might be further extended to N × N joint OAM mode and space switching with fast response, scalability, cascading ability and compability to facilitate robust switching applications.

  16. Overload protection for switching regulators

    NASA Technical Reports Server (NTRS)

    Lachochi, E.

    1980-01-01

    Circuit protects all output lines of switching regulator against overloads without requiring current sensors on every line. If overload is sensed, device short circuits bias on switching transistor so that power is rapidly cut off from loads. Circuit also includes delay network to inhibit erroneous operation during startup.

  17. Testing Single Phase IGBT H-Bridge Switch Plates for the High Voltage Converter Modulator at the Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peplov, Vladimir V; Anderson, David E; Solley, Dennis J

    2014-01-01

    Three IGBT H-bridge switching networks are used in each High Voltage Converter Modulator (HVCM) system at the Spallation Neutron Source (SNS) to generate drive currents to three boost transformer primaries switching between positive and negative bus voltages at 20 kHz. Every switch plate assembly is tested before installing it into an operational HVCM. A Single Phase Test Stand has been built for this purpose, and it is used for adjustment, measurement and testing of different configurations of switch plates. This paper will present a description of the Test Stand configuration and discuss the results of testing switch plates with twomore » different types of IGBT gate drivers currently in use on the HVCM systems. Comparison of timing characteristics of the original and new drivers and the resulting performance reinforces the necessity to replace the original H-bridge network drivers with the upgraded units.« less

  18. Improved Electro-Optical Switches

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N.; Cooper, Ronald F.

    1994-01-01

    Improved single-pole, double-throw electro-optical switches operate in switching times less than microsecond developed for applications as optical communication systems and networks of optical sensors. Contain no moving parts. In comparison with some prior electro-optical switches, these are simpler and operate with smaller optical losses. Beam of light switched from one output path to other by applying, to electro-optical crystal, voltage causing polarization of beam of light to change from vertical to horizontal.

  19. Distributed parallel messaging for multiprocessor systems

    DOEpatents

    Chen, Dong; Heidelberger, Philip; Salapura, Valentina; Senger, Robert M; Steinmacher-Burrow, Burhard; Sugawara, Yutaka

    2013-06-04

    A method and apparatus for distributed parallel messaging in a parallel computing system. The apparatus includes, at each node of a multiprocessor network, multiple injection messaging engine units and reception messaging engine units, each implementing a DMA engine and each supporting both multiple packet injection into and multiple reception from a network, in parallel. The reception side of the messaging unit (MU) includes a switch interface enabling writing of data of a packet received from the network to the memory system. The transmission side of the messaging unit, includes switch interface for reading from the memory system when injecting packets into the network.

  20. Study on spin filtering and switching action in a double-triangular network chain

    NASA Astrophysics Data System (ADS)

    Zhang, Yongmei

    2018-04-01

    Spin transport properties of a double-triangular quantum network with local magnetic moment on backbones and magnetic flux penetrating the network plane are studied. Numerical simulation results show that such a quantum network will be a good candidate for spin filter and spin switch. Local dispersion and density of states are considered in the framework of tight-binding approximation. Transmission coefficients are calculated by the method of transfer matrix. Spin transmission is regulated by substrate magnetic moment and magnetic flux piercing those triangles. Experimental realization of such theoretical research will be conducive to designing of new spintronic devices.

  1. Fast packet switching algorithms for dynamic resource control over ATM networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, R.P.; Keattihananant, P.; Chang, T.

    1996-12-01

    Real-time continuous media traffic, such as digital video and audio, is expected to comprise a large percentage of the network load on future high speed packet switch networks such as ATM. A major feature which distinguishes high speed networks from traditional slower speed networks is the large amount of data the network must process very quickly. For efficient network usage, traffic control mechanisms are essential. Currently, most mechanisms for traffic control (such as flow control) have centered on the support of Available Bit Rate (ABR), i.e., non real-time, traffic. With regard to ATM, for ABR traffic, two major types ofmore » schemes which have been proposed are rate- control and credit-control schemes. Neither of these schemes are directly applicable to Real-time Variable Bit Rate (VBR) traffic such as continuous media traffic. Traffic control for continuous media traffic is an inherently difficult problem due to the time- sensitive nature of the traffic and its unpredictable burstiness. In this study, we present a scheme which controls traffic by dynamically allocating/de- allocating resources among competing VCs based upon their real-time requirements. This scheme incorporates a form of rate- control, real-time burst-level scheduling and link-link flow control. We show analytically potential performance improvements of our rate- control scheme and present a scheme for buffer dimensioning. We also present simulation results of our schemes and discuss the tradeoffs inherent in maintaining high network utilization and statistically guaranteeing many users` Quality of Service.« less

  2. Noise-induced polarization switching in complex networks

    NASA Astrophysics Data System (ADS)

    Haerter, Jan O.; Díaz-Guilera, Albert; Serrano, M. Ángeles

    2017-04-01

    The combination of bistability and noise is ubiquitous in complex systems, from biology to social interactions, and has important implications for their functioning and resilience. Here we use a simple three-state dynamical process, in which nodes go from one pole to another through an intermediate state, to show that noise can induce polarization switching in bistable systems if dynamical correlations are significant. In large, fully connected networks, where dynamical correlations can be neglected, increasing noise yields a collapse of bistability to an unpolarized configuration where the three possible states of the nodes are equally likely. In contrast, increased noise induces abrupt and irreversible polarization switching in sparsely connected networks. In multiplexes, where each layer can have a different polarization tendency, one layer is dominant and progressively imposes its polarization state on the other, offsetting or promoting the ability of noise to switch its polarization. Overall, we show that the interplay of noise and dynamical correlations can yield discontinuous transitions between extremes, which cannot be explained by a simple mean-field description.

  3. Parkinson's Disease and Dopaminergic Therapy--Differential Effects on Movement, Reward and Cognition

    ERIC Educational Resources Information Center

    Rowe, J. B.; Hughes, L.; Ghosh, B. C. P.; Eckstein, D.; Williams-Gray, C. H.; Fallon, S.; Barker, R. A.; Owen, A. M.

    2008-01-01

    Cognitive deficits are very common in Parkinson's disease particularly for "executive functions" associated with frontal cortico-striatal networks. Previous work has identified deficits in tasks that require attentional control like task-switching, and reward-based tasks like gambling or reversal learning. However, there is a complex…

  4. 47 CFR 64.601 - Definitions and provisions of general applicability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... a text telephone (TTY) and the public switched telephone network. (18) IP Relay access technology... used to make and receive an Internet-based TRS call. (20) Neutral Video Communication Service Platform... by the Neutral Video Communication Service Platform include the provision of a video link, user...

  5. 47 CFR 64.601 - Definitions and provisions of general applicability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... a text telephone (TTY) and the public switched telephone network. (18) IP Relay access technology... used to make and receive an Internet-based TRS call. (20) Neutral Video Communication Service Platform... by the Neutral Video Communication Service Platform include the provision of a video link, user...

  6. Smart photonic networks and computer security for image data

    NASA Astrophysics Data System (ADS)

    Campello, Jorge; Gill, John T.; Morf, Martin; Flynn, Michael J.

    1998-02-01

    Work reported here is part of a larger project on 'Smart Photonic Networks and Computer Security for Image Data', studying the interactions of coding and security, switching architecture simulations, and basic technologies. Coding and security: coding methods that are appropriate for data security in data fusion networks were investigated. These networks have several characteristics that distinguish them form other currently employed networks, such as Ethernet LANs or the Internet. The most significant characteristics are very high maximum data rates; predominance of image data; narrowcasting - transmission of data form one source to a designated set of receivers; data fusion - combining related data from several sources; simple sensor nodes with limited buffering. These characteristics affect both the lower level network design and the higher level coding methods.Data security encompasses privacy, integrity, reliability, and availability. Privacy, integrity, and reliability can be provided through encryption and coding for error detection and correction. Availability is primarily a network issue; network nodes must be protected against failure or routed around in the case of failure. One of the more promising techniques is the use of 'secret sharing'. We consider this method as a special case of our new space-time code diversity based algorithms for secure communication. These algorithms enable us to exploit parallelism and scalable multiplexing schemes to build photonic network architectures. A number of very high-speed switching and routing architectures and their relationships with very high performance processor architectures were studied. Indications are that routers for very high speed photonic networks can be designed using the very robust and distributed TCP/IP protocol, if suitable processor architecture support is available.

  7. Reconstruction of a metabolic regulatory network in Escherichia coli for purposeful switching from cell growth mode to production mode in direct GABA fermentation from glucose.

    PubMed

    Soma, Yuki; Fujiwara, Yuri; Nakagawa, Takuya; Tsuruno, Keigo; Hanai, Taizo

    2017-09-01

    γ-aminobutyric acid (GABA) is a drug and functional food additive and is used as a monomer for producing the biodegradable plastic, polyamide 4. Recently, direct GABA fermentation from glucose has been developed as an alternative to glutamate-based whole cell bioconversion. Although total productivity in fermentation is determined by the specific productivity and cell amount responsible for GABA production, the optimal metabolic state for GABA production conflicts with that for bacterial cell growth. Herein, we demonstrated metabolic state switching from the cell growth mode based on the metabolic pathways of the wild type strain to a GABA production mode based on a synthetic metabolic pathway in Escherichia coli through rewriting of the metabolic regulatory network and pathway engineering. The GABA production mode was achieved by multiple strategies such as conditional interruption of the TCA and glyoxylate cycles, engineering of GABA production pathway including a bypass for precursor metabolite supply, and upregulation of GABA transporter. As a result, we achieved 3-fold improvement in total GABA production titer and yield (4.8g/L, 49.2% (mol/mol glucose)) in batch fermentation compared to the case without metabolic state switching (1.6g/L, 16.4% (mol/mol glucose)). This study reports the highest GABA production performance among previous reports on GABA fermentation from glucose using engineered E. coli. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Optical implementation of a parallel out-of-band controller for large broadband ATM switch applications

    NASA Astrophysics Data System (ADS)

    Cloonan, Thomas J.; Richards, Gaylord W.; Lentine, Anthony L.

    1996-03-01

    Asynchronous transfer mode (ATM) is rapidly becoming the transport mechanism of choice for the information superhighway, because it promises the bandwidth and flexibility needed for many voice, video and data service offerings. Some industry experts project that the required sizes for ATM switching equipment in the public-switched environment will reach the Tbps range by the beginning of the next decade. This paper analyzes the problems associated with controlling the flow of packets within a broadband ATM switch of this size. The analysis is based on the requirements of the growable packet switch architecture. The paper proposes a novel solution to the problem of hunting paths within an ATM packet switch network. The resulting control scheme is unconventional in two ways. First, it uses an out-of-band control algorithm instead of the more common self-routing approach. In particular, we explore the benefits of using a parallel processor as an out-of-band controller for a growable packet switch distribution network. The processor permits additional levels of parallelism to be added to the out-of-band control function so that path hunts can be performed for all N of the input ports within a single cell interval. The proposed approach is also unconventional because it uses free-space digital optics to guide signals between successive stages of the controller. The paper describes the underlying motivations for implementing an optical out-of-band controller for an ATM switch, and it also describes the logic within a controller node that has been fabricated using a hybrid Si CMOS/GaAs SEED technology. The node uses optical detectors (in GaAs), amplifiers and digital control logic (in Si), and optical modulators (in GaAs). Free-space optical connections between successive device arrays can be provided using either bulk optical elements or micro-optics, but the optical interconnects must provide massive fanout capability. An architectural analysis studying the feasibility of applying free-space optics in this proposed ATM switch controller also is presented.

  9. MEMS-based beam-steerable free-space optical communication link for reconfigurable wireless data center

    NASA Astrophysics Data System (ADS)

    Deng, Peng; Kavehrad, Mohsen; Lou, Yan

    2017-01-01

    Flexible wireless datacenter networks based on free space optical communication (FSO) links are being considered as promising solutions to meet the future datacenter demands of high throughput, robustness to dynamic traffic patterns, cabling complexity and energy efficiency. Robust and precise steerable FSO links over dynamic traffic play a key role in the reconfigurable optical wireless datacenter inter-rack network. In this work, we propose and demonstrate a reconfigurable 10Gbps FSO system incorporated with smart beam acquisition and tracking mechanism based on gimballess two-axis MEMS micro-mirror and retro-reflective film marked aperture. The fast MEMS-based beam acquisition switches laser beam of FSO terminal from one rack to the next for reconfigurable networks, and the precise beam tracking makes FSO device auto-correct the misalignment in real-time. We evaluate the optical power loss and bit error rate performance of steerable FSO links at various directions. Experimental results suggest that the MEMS based beam steerable FSO links hold considerable promise for the future reconfigurable wireless datacenter networks.

  10. A scalable silicon photonic chip-scale optical switch for high performance computing systems.

    PubMed

    Yu, Runxiang; Cheung, Stanley; Li, Yuliang; Okamoto, Katsunari; Proietti, Roberto; Yin, Yawei; Yoo, S J B

    2013-12-30

    This paper discusses the architecture and provides performance studies of a silicon photonic chip-scale optical switch for scalable interconnect network in high performance computing systems. The proposed switch exploits optical wavelength parallelism and wavelength routing characteristics of an Arrayed Waveguide Grating Router (AWGR) to allow contention resolution in the wavelength domain. Simulation results from a cycle-accurate network simulator indicate that, even with only two transmitter/receiver pairs per node, the switch exhibits lower end-to-end latency and higher throughput at high (>90%) input loads compared with electronic switches. On the device integration level, we propose to integrate all the components (ring modulators, photodetectors and AWGR) on a CMOS-compatible silicon photonic platform to ensure a compact, energy efficient and cost-effective device. We successfully demonstrate proof-of-concept routing functions on an 8 × 8 prototype fabricated using foundry services provided by OpSIS-IME.

  11. Future benefits and applications of intelligent on-board processing to VSAT services

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Kwan, Robert K.; Edward, Ron; Faris, F.; Inukai, Tom

    1992-01-01

    The trends and roles of VSAT services in the year 2010 time frame are examined based on an overall network and service model for that period. An estimate of the VSAT traffic is then made and the service and general network requirements are identified. In order to accommodate these traffic needs, four satellite VSAT architectures based on the use of fixed or scanning multibeam antennas in conjunction with IF switching or onboard regeneration and baseband processing are suggested. The performance of each of these architectures is assessed and the key enabling technologies are identified.

  12. Space division multiplexing chip-to-chip quantum key distribution.

    PubMed

    Bacco, Davide; Ding, Yunhong; Dalgaard, Kjeld; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2017-09-29

    Quantum cryptography is set to become a key technology for future secure communications. However, to get maximum benefit in communication networks, transmission links will need to be shared among several quantum keys for several independent users. Such links will enable switching in quantum network nodes of the quantum keys to their respective destinations. In this paper we present an experimental demonstration of a photonic integrated silicon chip quantum key distribution protocols based on space division multiplexing (SDM), through multicore fiber technology. Parallel and independent quantum keys are obtained, which are useful in crypto-systems and future quantum network.

  13. A network control concept for the 30/20 GHz communication system baseband processor

    NASA Technical Reports Server (NTRS)

    Sabourin, D. J.; Hay, R. E.

    1982-01-01

    The architecture and system design for a satellite-switched TDMA communication system employing on-board processing was developed by Motorola for NASA's Lewis Research Center. The system design is based on distributed processing techniques that provide extreme flexibility in the selection of a network control protocol without impacting the satellite or ground terminal hardware. A network control concept that includes system synchronization and allows burst synchronization to occur within the system operational requirement is described. This concept integrates the tracking and control links with the communication links via the baseband processor, resulting in an autonomous system operational approach.

  14. A packet switched communications system for GRO

    NASA Astrophysics Data System (ADS)

    Husain, Shabu; Yang, Wen-Hsing; Vadlamudi, Rani; Valenti, Joseph

    1993-11-01

    This paper describes the packet switched Instrumenters Communication System (ICS) that was developed for the Command Management Facility at GSFC to support the Gamma Ray Observatory (GRO) spacecraft. The GRO ICS serves as a vital science data acquisition link to the GRO scientists to initiate commands for their spacecraft instruments. The system is ready to send and receive messages at any time, 24 hours a day and seven days a week. The system is based on X.25 and the International Standard Organization's (ISO) 7-layer Open Systems Interconnection (OSI) protocol model and has client and server components. The components of the GRO ICS are discussed along with how the Communications Subsystem for Interconnection (CSFI) and Network Control Program Packet Switching Interface (NPSI) software are used in the system.

  15. The Fragility of Interdependency: Coupled Networks Switching Phenomena

    NASA Astrophysics Data System (ADS)

    Stanley, H. Eugene

    2013-03-01

    Recent disasters ranging from abrupt financial ``flash crashes'' and large-scale power outages to sudden death among the elderly dramatically exemplify the fact that the most dangerous vulnerability is hiding in the many interdependencies among different networks. In the past year, we have quantified failures in model of interconnected networks, and demonstrated the need to consider mutually dependent network properties in designing resilient systems. Specifically, we have uncovered new laws governing the nature of switching phenomena in coupled networks, and found that phenomena that are continuous ``second order'' phase transitions in isolated networks become discontinuous abrupt ``first order'' transitions in interdependent networks [S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, ``Catastrophic Cascade of Failures in Interdependent Networks,'' Nature 464, 1025 (2010); J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin, ``Novel Behavior of Networks Formed from Interdependent Networks,'' Nature Physics 8, 40 (2012). We conclude by discussing the network basis for understanding sudden death in the elderly, and the possibility that financial ``flash crashes'' are not unlike the catastrophic first-order failure incidents occurring in coupled networks. Specifically, we study the coupled networks that are responsible for financial fluctuations. It appears that ``trend switching phenomena'' that we uncover are remarkably independent of the scale over which they are analyzed. For example, we find that the same laws governing the formation and bursting of the largest financial bubbles also govern the tiniest finance bubbles, over a factor of 1,000,000,000 in time scale [T. Preis, J. Schneider, and H. E. Stanley, ``Switching Processes in Financial Markets,'' Proc. Natl. Acad. Sci. USA 108, 7674 (2011); T. Preis and H. E. Stanley, ``Bubble Trouble: Can a Law Describe Bubbles and Crashes in Financial Markets?'' Physics World 24, No. 5, 29 (May 2011)]. This work was carried out in collaboration with a number of colleagues, including T. Preis, J. J. Schneider, S. Havlin, R. Parshani, S. V. Buldyrev, J. Gao, and G. Paul-see ``When Networks Network,'' Science News, 22 Sept. 2012.

  16. All-optical encryption based on interleaved waveband switching modulation for optical network security.

    PubMed

    Fok, Mable P; Prucnal, Paul R

    2009-05-01

    All-optical encryption for optical code-division multiple-access systems with interleaved waveband-switching modulation is experimentally demonstrated. The scheme explores dual-pump four-wave mixing in a 35 cm highly nonlinear bismuth oxide fiber to achieve XOR operation of the plaintext and the encryption key. Bit 0 and bit 1 of the encrypted data are represented by two different wavebands. Unlike on-off keying encryption methods, the encrypted data in this approach has the same intensity for both bit 0 and bit 1. Thus no plaintext or ciphertext signatures are observed.

  17. An Adaptive Cross-Architecture Combination Method for Graph Traversal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Song, Shuaiwen; Kerbyson, Darren J.

    2014-06-18

    Breadth-First Search (BFS) is widely used in many real-world applications including computational biology, social networks, and electronic design automation. The combination method, using both top-down and bottom-up techniques, is the most effective BFS approach. However, current combination methods rely on trial-and-error and exhaustive search to locate the optimal switching point, which may cause significant runtime overhead. To solve this problem, we design an adaptive method based on regression analysis to predict an optimal switching point for the combination method at runtime within less than 0.1% of the BFS execution time.

  18. Effect of boundary (support) conditions on piezoelectric damping in the case of SSDI vibration control technique

    NASA Astrophysics Data System (ADS)

    Guyomar, D.; Mohammadi, S.; Richard, C.

    2009-02-01

    Piezoelectric transducers in conjunction with appropriate electric networks can be used as a mechanical energy dissipation device. If a piezoelectric element is attached to a structure, it is strained as the structure deforms and converts a portion of the vibration energy into electrical energy that can be dissipated through a shunt network in the form of heating. These vibration control devices experienced a great development in recent years, due to their performances and advantages compared with active techniques. One of them is the synchronized switch damping (SSD) and derived techniques, which were developed in the field of piezoelectric damping, and which lead to a very good trade-off between the simplicity, the required power supply and their performances. This technique consists in a non-linear processing of the piezoelectric voltage, which induces an increase in electromechanical energy conversion. The control law consists in triggering the inverting switch on each extremum of voltage (or displacement). In this study, the proposed method for the switching sequence is based on the statistical evaluation of structural deflection. The purpose of this paper is to present an experimental study of the synchronized switch damping on inductance (SSDI) control technique sensitivity to the system boundary conditions. It is observed that the fundamental natural frequency greatly depends on these conditions. The effect of these constraints is distributed all over the system and significantly affects the results.

  19. Space station common module network topology and hardware development

    NASA Technical Reports Server (NTRS)

    Anderson, P.; Braunagel, L.; Chwirka, S.; Fishman, M.; Freeman, K.; Eason, D.; Landis, D.; Lech, L.; Martin, J.; Mccorkle, J.

    1990-01-01

    Conceptual space station common module power management and distribution (SSM/PMAD) network layouts and detailed network evaluations were developed. Individual pieces of hardware to be developed for the SSM/PMAD test bed were identified. A technology assessment was developed to identify pieces of equipment requiring development effort. Equipment lists were developed from the previously selected network schematics. Additionally, functional requirements for the network equipment as well as other requirements which affected the suitability of specific items for use on the Space Station Program were identified. Assembly requirements were derived based on the SSM/PMAD developed requirements and on the selected SSM/PMAD network concepts. Basic requirements and simplified design block diagrams are included. DC remote power controllers were successfully integrated into the DC Marshall Space Flight Center breadboard. Two DC remote power controller (RPC) boards experienced mechanical failure of UES 706 stud-mounted diodes during mechanical installation of the boards into the system. These broken diodes caused input to output shorting of the RPC's. The UES 706 diodes were replaced on these RPC's which eliminated the problem. The DC RPC's as existing in the present breadboard configuration do not provide ground fault protection because the RPC was designed to only switch the hot side current. If ground fault protection were to be implemented, it would be necessary to design the system so the RPC switched both the hot and the return sides of power.

  20. Future large broadband switched satellite communications networks

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Harvey, R. R.

    1979-01-01

    Critical technical, market, and policy issues relevant to future large broadband switched satellite networks are summarized. Our market projections for the period 1980 to 2000 are compared. Clusters of switched satellites, in lieu of large platforms, etc., are shown to have significant advantages. Analysis of an optimum terrestrial network architecture suggests the proper densities of ground stations and that link reliabilities 99.99% may entail less than a 10% cost premium for diversity protection at 20/30 GHz. These analyses suggest that system costs increase as the 0.6 power of traffic. Cost estimates for nominal 20/30 GHz satellite and ground facilities suggest optimum system configurations might employ satellites with 285 beams, multiple TDMA bands each carrying 256 Mbps, and 16 ft ground station antennas. A nominal development program is outlined.

  1. The Influence of Vacuum Circuit Breakers and Different Motor Models on Switching Overvoltages in Motor Circuits

    NASA Astrophysics Data System (ADS)

    Wong, Cat S. M.; Snider, L. A.; Lo, Edward W. C.; Chung, T. S.

    Switching of induction motors with vacuum circuit breakers continues to be a concern. In this paper the influence on statistical overvoltages of the stochastic characteristics of vacuum circuit breakers, high frequency models of motors and transformers, and network characteristics, including cable lengths and network topology are evaluated and a general view of the overvoltages phenomena is presented. Finally, a real case study on the statistical voltage levels and risk-of-failure resulting from switching of a vacuum circuit breaker in an industrial installation in Hong Kong is presented.

  2. A fuzzy adaptive network approach to parameter estimation in cases where independent variables come from an exponential distribution

    NASA Astrophysics Data System (ADS)

    Dalkilic, Turkan Erbay; Apaydin, Aysen

    2009-11-01

    In a regression analysis, it is assumed that the observations come from a single class in a data cluster and the simple functional relationship between the dependent and independent variables can be expressed using the general model; Y=f(X)+[epsilon]. However; a data cluster may consist of a combination of observations that have different distributions that are derived from different clusters. When faced with issues of estimating a regression model for fuzzy inputs that have been derived from different distributions, this regression model has been termed the [`]switching regression model' and it is expressed with . Here li indicates the class number of each independent variable and p is indicative of the number of independent variables [J.R. Jang, ANFIS: Adaptive-network-based fuzzy inference system, IEEE Transaction on Systems, Man and Cybernetics 23 (3) (1993) 665-685; M. Michel, Fuzzy clustering and switching regression models using ambiguity and distance rejects, Fuzzy Sets and Systems 122 (2001) 363-399; E.Q. Richard, A new approach to estimating switching regressions, Journal of the American Statistical Association 67 (338) (1972) 306-310]. In this study, adaptive networks have been used to construct a model that has been formed by gathering obtained models. There are methods that suggest the class numbers of independent variables heuristically. Alternatively, in defining the optimal class number of independent variables, the use of suggested validity criterion for fuzzy clustering has been aimed. In the case that independent variables have an exponential distribution, an algorithm has been suggested for defining the unknown parameter of the switching regression model and for obtaining the estimated values after obtaining an optimal membership function, which is suitable for exponential distribution.

  3. Network Speech Systems Technology Program

    NASA Astrophysics Data System (ADS)

    Weinstein, C. J.

    1980-09-01

    This report documents work performed during FY 1980 on the DCA-sponsored Network Speech Systems Technology Program. The areas of work reported are: (1) communication systems studies in Demand-Assignment Multiple Access (DAMA), voice/data integration, and adaptive routing, in support of the evolving Defense Communications System (DCS) and Defense Switched Network (DSN); (2) a satellite/terrestrial integration design study including the functional design of voice and data interfaces to interconnect terrestrial and satellite network subsystems; and (3) voice-conferencing efforts dealing with support of the Secure Voice and Graphics Conferencing (SVGC) Test and Evaluation Program. Progress in definition and planning of experiments for the Experimental Integrated Switched Network (EISN) is detailed separately in an FY 80 Experiment Plan Supplement.

  4. Cascaded neural networks for sequenced propagation estimation, multiuser detection, and adaptive radio resource control of third-generation wireless networks for multimedia services

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    1999-03-01

    A hybrid neural network approach is presented to estimate radio propagation characteristics and multiuser interference and to evaluate their combined impact on throughput, latency and information loss in third-generation (3G) wireless networks. The latter three performance parameters influence the quality of service (QoS) for multimedia services under consideration for 3G networks. These networks, based on a hierarchical architecture of overlaying macrocells on top of micro- and picocells, are planned to operate in mobile urban and indoor environments with service demands emanating from circuit-switched, packet-switched and satellite-based traffic sources. Candidate radio interfaces for these networks employ a form of wideband CDMA in 5-MHz and wider-bandwidth channels, with possible asynchronous operation of the mobile subscribers. The proposed neural network (NN) architecture allocates network resources to optimize QoS metrics. Parameters of the radio propagation channel are estimated, followed by control of an adaptive antenna array at the base station to minimize interference, and then joint multiuser detection is performed at the base station receiver. These adaptive processing stages are implemented as a sequence of NN techniques that provide their estimates as inputs to a final- stage Kohonen self-organizing feature map (SOFM). The SOFM optimizes the allocation of available network resources to satisfy QoS requirements for variable-rate voice, data and video services. As the first stage of the sequence, a modified feed-forward multilayer perceptron NN is trained on the pilot signals of the mobile subscribers to estimate the parameters of shadowing, multipath fading and delays on the uplinks. A recurrent NN (RNN) forms the second stage to control base stations' adaptive antenna arrays to minimize intra-cell interference. The third stage is based on a Hopfield NN (HNN), modified to detect multiple users on the uplink radio channels to mitigate multiaccess interference, control carrier-sense multiple-access (CSMA) protocols, and refine call handoff procedures. In the final stage, the Kohonen SOFM, operating in a hybrid continuous and discrete space, adaptively allocates the resources of antenna-based cell sectorization, activity monitoring, variable-rate coding, power control, handoff and caller admission to meet user demands for various multimedia services at minimum QoS levels. The performance of the NN cascade is evaluated through simulation of a candidate 3G wireless network using W-CDMA parameters in a small-cell environment. The simulated network consists of a representative number of cells. Mobile users with typical movement patterns are assumed. QoS requirements for different classes of multimedia services are considered. The proposed method is shown to provide relatively low probability of new call blocking and handoff dropping, while maintaining efficient use of the network's radio resources.

  5. Contagion of Cooperation in Static and Fluid Social Networks.

    PubMed

    Jordan, Jillian J; Rand, David G; Arbesman, Samuel; Fowler, James H; Christakis, Nicholas A

    2013-01-01

    Cooperation is essential for successful human societies. Thus, understanding how cooperative and selfish behaviors spread from person to person is a topic of theoretical and practical importance. Previous laboratory experiments provide clear evidence of social contagion in the domain of cooperation, both in fixed networks and in randomly shuffled networks, but leave open the possibility of asymmetries in the spread of cooperative and selfish behaviors. Additionally, many real human interaction structures are dynamic: we often have control over whom we interact with. Dynamic networks may differ importantly in the goals and strategic considerations they promote, and thus the question of how cooperative and selfish behaviors spread in dynamic networks remains open. Here, we address these questions with data from a social dilemma laboratory experiment. We measure the contagion of both cooperative and selfish behavior over time across three different network structures that vary in the extent to which they afford individuals control over their network ties. We find that in relatively fixed networks, both cooperative and selfish behaviors are contagious. In contrast, in more dynamic networks, selfish behavior is contagious, but cooperative behavior is not: subjects are fairly likely to switch to cooperation regardless of the behavior of their neighbors. We hypothesize that this insensitivity to the behavior of neighbors in dynamic networks is the result of subjects' desire to attract new cooperative partners: even if many of one's current neighbors are defectors, it may still make sense to switch to cooperation. We further hypothesize that selfishness remains contagious in dynamic networks because of the well-documented willingness of cooperators to retaliate against selfishness, even when doing so is costly. These results shed light on the contagion of cooperative behavior in fixed and fluid networks, and have implications for influence-based interventions aiming at increasing cooperative behavior.

  6. Design and implementation of flexible TWDM-PON with PtP WDM overlay based on WSS for next-generation optical access networks

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Yin, Hongxi; Qin, Jie; Liu, Chang; Liu, Anliang; Shao, Qi; Xu, Xiaoguang

    2016-09-01

    Aiming at the increasing demand of the diversification services and flexible bandwidth allocation of the future access networks, a flexible passive optical network (PON) scheme combining time and wavelength division multiplexing (TWDM) with point-to-point wavelength division multiplexing (PtP WDM) overlay is proposed for the next-generation optical access networks in this paper. A novel software-defined optical distribution network (ODN) structure is designed based on wavelength selective switches (WSS), which can implement wavelength and bandwidth dynamical allocations and suits for the bursty traffic. The experimental results reveal that the TWDM-PON can provide 40 Gb/s downstream and 10 Gb/s upstream data transmission, while the PtP WDM-PON can support 10 GHz point-to-point dedicated bandwidth as the overlay complement system. The wavelengths of the TWDM-PON and PtP WDM-PON are allocated dynamically based on WSS, which verifies the feasibility of the proposed structure.

  7. Surface dynamics and mechanics in liquid crystal polymer coatings

    NASA Astrophysics Data System (ADS)

    Liu, Danqing; Broer, Dirk J.

    2015-03-01

    Based on liquid crystal networks we developed `smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that form surface structures upon the actuation by light. The coating oscillates between a flat surface and a surface with pre-designed 3D micro-patterns by modulating a light source. With recent developments in solid state lighting, light is an attractive trigger medium as it can be integrated in a device for local control or can be used remotely for flood or localized exposure. The basic principle of formation of surface topographies is based on the change of molecular organization in ordered liquid crystal polymer networks. The change in order leads to anisotropic dimensional changes with contraction along the director and expansion to the two perpendicular directions and an increase in volume by the formation of free volume. These two effects work in concert to provide local expansion and contraction in the coating steered by the local direction of molecular orientation. The surface deformation, expressed as the height difference between the activated regions and the non-activated regions divided by the initial film thickness, is of the order of 20%. Switching occurs immediately when the light is switched `on' and `off' and takes several tens of seconds.

  8. Silicon Micromachining in RF and Photonic Applications

    NASA Technical Reports Server (NTRS)

    Lin, Tsen-Hwang; Congdon, Phil; Magel, Gregory; Pang, Lily; Goldsmith, Chuck; Randall, John; Ho, Nguyen

    1995-01-01

    Texas Instruments (TI) has developed membrane and micromirror devices since the late 1970s. An eggcrate space membrane was used as the spatial light modulator in the early years. Discrete micromirrors supported by cantilever beams created a new era for micromirror devices. Torsional micromirror and flexure-beam micromirror devices were promising for mass production because of their stable supports. TI's digital torsional micromirror device is an amplitude modulator (known as the digital micromirror device (DMD) and is in production development, discussed elsewhere. We also use a torsional device for a 4 x 4 fiber-optic crossbar switch in a 2 cm x 2 cm package. The flexure-beam micromirror device is an analog phase modulator and is considered more efficient than amplitude modulators for use in optical processing systems. TI also developed millimeter-sized membranes for integrated optical switches for telecommunication and network applications. Using a member in radio frequency (RF) switch applications is a rapidly growing area because of the micromechanical device performance in microsecond-switching characteristics. Our preliminary membrane RF switch test structure results indicate promising speed and RF switching performance. TI collaborated with MIT for modeling of metal-based micromachining.

  9. Conceptual design of a 0.1 W magnetic refrigerator for operation between 10 K and 2 K

    NASA Technical Reports Server (NTRS)

    Helvensteijn, Ben P. M.; Kashani, Ali

    1990-01-01

    The design of a magnetic refrigerator for space applications is discussed. The refrigerator is to operate in the temperature range of 10 K-2 K, at a 2 K cooling power of 0.10 W. As in other magnetic refrigerators operating in this temperature range GGG has been selected as the refrigerant. Crucial to the design of the magnetic refrigerator are the heat switches at both the hot and cold ends of the GGG pill. The 2 K heat switch utilizes a narrow He II filled gap. The 10 K heat switch is based on a narrow helium gas gap. For each switch, the helium in the gap is cycled by means of activated carbon pumps. The design concentrates on reducing the switching times of the pumps and the switches as a whole. A single stage system (one magnet; one refrigerant pill) is being developed. Continuous cooling requires the fully stationary system to have at least two stages running parallel/out of phase with each other. In order to conserve energy, it is intended to recycle the magnetic energy between the magnets. To this purpose, converter networks designed for superconducting magnetic energy storage are being studied.

  10. Sex determination in insects: a binary decision based on alternative splicing.

    PubMed

    Salz, Helen K

    2011-08-01

    The gene regulatory networks that control sex determination vary between species. Despite these differences, comparative studies in insects have found that alternative splicing is reiteratively used in evolution to control expression of the key sex-determining genes. Sex determination is best understood in Drosophila where activation of the RNA binding protein-encoding gene Sex-lethal is the central female-determining event. Sex-lethal serves as a genetic switch because once activated it controls its own expression by a positive feedback splicing mechanism. Sex fate choice in is also maintained by self-sustaining positive feedback splicing mechanisms in other dipteran and hymenopteran insects, although different RNA binding protein-encoding genes function as the binary switch. Studies exploring the mechanisms of sex-specific splicing have revealed the extent to which sex determination is integrated with other developmental regulatory networks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Energy saving in data processing and communication systems.

    PubMed

    Iazeolla, Giuseppe; Pieroni, Alessandra

    2014-01-01

    The power management of ICT systems, that is, data processing (Dp) and telecommunication (Tlc) systems, is becoming a relevant problem in economical terms. Dp systems totalize millions of servers and associated subsystems (processors, monitors, storage devices, etc.) all over the world that need to be electrically powered. Dp systems are also used in the government of Tlc systems, which, besides requiring Dp electrical power, also require Tlc-specific power, both for mobile networks (with their cell-phone towers and associated subsystems: base stations, subscriber stations, switching nodes, etc.) and for wired networks (with their routers, gateways, switches, etc.). ICT research is thus expected to investigate into methods to reduce Dp- and Tlc-specific power consumption. However, saving power may turn into waste of performance, in other words, into waste of ICT quality of service (QoS). This paper investigates the Dp and Tlc power management policies that look at compromises between power saving and QoS.

  12. Method of developing all-optical trinary JK, D-type, and T-type flip-flops using semiconductor optical amplifiers.

    PubMed

    Garai, Sisir Kumar

    2012-04-10

    To meet the demand of very fast and agile optical networks, the optical processors in a network system should have a very fast execution rate, large information handling, and large information storage capacities. Multivalued logic operations and multistate optical flip-flops are the basic building blocks for such fast running optical computing and data processing systems. In the past two decades, many methods of implementing all-optical flip-flops have been proposed. Most of these suffer from speed limitations because of the low switching response of active devices. The frequency encoding technique has been used because of its many advantages. It can preserve its identity throughout data communication irrespective of loss of light energy due to reflection, refraction, attenuation, etc. The action of polarization-rotation-based very fast switching of semiconductor optical amplifiers increases processing speed. At the same time, tristate optical flip-flops increase information handling capacity.

  13. A Parallel Multigrid Solver for Viscous Flows on Anisotropic Structured Grids

    NASA Technical Reports Server (NTRS)

    Prieto, Manuel; Montero, Ruben S.; Llorente, Ignacio M.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    This paper presents an efficient parallel multigrid solver for speeding up the computation of a 3-D model that treats the flow of a viscous fluid over a flat plate. The main interest of this simulation lies in exhibiting some basic difficulties that prevent optimal multigrid efficiencies from being achieved. As the computing platform, we have used Coral, a Beowulf-class system based on Intel Pentium processors and equipped with GigaNet cLAN and switched Fast Ethernet networks. Our study not only examines the scalability of the solver but also includes a performance evaluation of Coral where the investigated solver has been used to compare several of its design choices, namely, the interconnection network (GigaNet versus switched Fast-Ethernet) and the node configuration (dual nodes versus single nodes). As a reference, the performance results have been compared with those obtained with the NAS-MG benchmark.

  14. Cost-effective optical switch matrix for microwave phased-array

    NASA Technical Reports Server (NTRS)

    Pan, J. J.; Chia, S. L.; Li, W. Z.; Grove, C. H.

    1991-01-01

    An all-fiber (6x6) optical shutter switch matrix with the control system for microwave phased array has been demonstrated. The device offers the advantages of integrated configuration, low cost, low power consumption, small size, and light weight. The maximum extinction ratio (among 36 individual pixel) of this switch matrix at 840 nm is 24.2 dB, and the switching time is less than 120 microsec. In addition to phased array application, this low cost switch matrix is extremely attractive for fiber optic switching networks.

  15. Protecting the Homeland Report of the Defense Science Board Task Force on Defensive Information Operations. 2000 Summer Study. Volume II

    DTIC Science & Technology

    2001-03-01

    between attacks and other events such as accidents, system failures, or hacking by thrill-seekers. This challenge is exacerbated by the speed of events in...International Telegraph and Telephone (CCITT) international standards body and is referred to as Signaling System # 7 ( SS7 ). Commerc" I Intelligent...point to fixed infrastructure "" Signaling Transfer Point (STP) - Packet switch in CCITT#7 Network STP ... SS7 * System Data Bases i Network

  16. Implementation of virtual LANs over ATM WANs

    NASA Astrophysics Data System (ADS)

    Braun, Torsten; Maehler, Martin

    1998-09-01

    Virtual LANs (VLANs) allow to interconnect users over campus or wide area networks and gives the users the impression as they would be connected to the same local area network (LAN). The implementation of VLANs is based on ATM Forum's LAN Emulation and LAN/ATM switches providing interconnection of emulated LANs over ATM and the LAN ports to which the user's end systems are attached to. The paper discusses possible implementation architectures and describes advanced features such as ATM short-cuts, QoS, and redundancy concepts.

  17. Development Status of the Rad-Tolerant TTEthernet Controller

    NASA Astrophysics Data System (ADS)

    Fidi, Christian; van Masar, Ivan

    2016-08-01

    The use of switched networking technologies for aerospace and more recently automotive brings additional advantages for space applications like the increase in performance of the overall avionics of a spacecraft. These networks are characterized by a central device (switch) and a point-to-point structure between switch and terminal devices that eases electrical and logical insulation.However, for a use in highly-reliable or highly-available applications as in launchers or satellites systems, these network technologies need to provide built-in determinism and redundancy to fulfill the tight latency and jitter requirements of the avionics control loops and the respective hardware redundancy. Therefore a state of the art networking technology already provides these features and allows the modularity and scalability to be used for the different space applications and would allow combining the deterministic avionics with the high speed payload network in a spacecraft [1].Introducing the time-triggered principle to Ethernet allows combining the open industry standard IEE802.3 Ethernet currently use in almost all GSE platforms, with full control of latency and jitter of the time-triggered approach. To allow the time-triggered data flow over Ethernet, a network- wide synchronization time-base has to be established to allow deriving all network events on a globally known time which is typically done in software in almost all spacecrafts. The additional synchronization service of Time-triggered Ethernet has been implemented as additional quality of service (QoS) on layer 2 of the ISO/OSI network model and been standardized in the SAE AS6802 [3].Within a launcher, the communication system ensured the data exchanges between avionic functions during all phases of the launcher lifecycle which is composed of three areas: AIT operations, ground phase and flight phase. To ensure the use of a single network for the different phases, the network needs to support features like the handling of different traffic classes (critical traffic and non-critical traffic, i.e. TT, RC and BE [2]). Also the compatibility to the IEEE1588 synchronization protocol can be used to connect legacy IEEE1588 equipment for GSE equipment.However this commercially available technology currently used in the aviation-, the industrial- and the automotive market needs to be matured for the use in space applications. Therefore a development of the necessary space-grade components, mainly the switch and the end system is needed.This paper presents the current development status of a radiation tolerant integrated circuit for the use in different space applications. It outlines the different steps needed to be performed to ensure the usability of this digital chip in highly reliable as well as in highly available space applications.

  18. Integrated Model for Performance Analysis of All-Optical Multihop Packet Switches

    NASA Astrophysics Data System (ADS)

    Jeong, Han-You; Seo, Seung-Woo

    2000-09-01

    The overall performance of an all-optical packet switching system is usually determined by two criteria, i.e., switching latency and packet loss rate. In some real-time applications, however, in which packets arriving later than a timeout period are discarded as loss, the packet loss rate becomes the most dominant criterion for system performance. Here we focus on evaluating the performance of all-optical packet switches in terms of the packet loss rate, which normally arises from the insufficient hardware or the degradation of an optical signal. Considering both aspects, we propose what we believe is a new analysis model for the packet loss rate that reflects the complicated interactions between physical impairments and system-level parameters. On the basis of the estimation model for signal quality degradation in a multihop path we construct an equivalent analysis model of a switching network for evaluating an average bit error rate. With the model constructed we then propose an integrated model for estimating the packet loss rate in three architectural examples of multihop packet switches, each of which is based on a different switching concept. We also derive the bounds on the packet loss rate induced by bit errors. Finally, it is verified through simulation studies that our analysis model accurately predicts system performance.

  19. SELECTED ANNOTATED BIBLIOGRAPHY ON SYSTEMS OF THEORETICAL DEVICES,

    DTIC Science & Technology

    BIONICS, BIBLIOGRAPHIES), (*BIBLIOGRAPHIES, BIONICS), (*CYBERNETICS, BIBLIOGRAPHIES), MATHEMATICS, COMPUTER LOGIC, NETWORKS, NERVOUS SYSTEM , THEORY , SEQUENCE SWITCHES, SWITCHING CIRCUITS, REDUNDANT COMPONENTS, LEARNING, MATHEMATICAL MODELS, BEHAVIOR, NERVES, SIMULATION, NERVE CELLS

  20. Final report for the Multiprotocol Label Switching (MPLS) control plane security LDRD project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torgerson, Mark Dolan; Michalski, John T.; Tarman, Thomas David

    2003-09-01

    As rapid Internet growth continues, global communications becomes more dependent on Internet availability for information transfer. Recently, the Internet Engineering Task Force (IETF) introduced a new protocol, Multiple Protocol Label Switching (MPLS), to provide high-performance data flows within the Internet. MPLS emulates two major aspects of the Asynchronous Transfer Mode (ATM) technology. First, each initial IP packet is 'routed' to its destination based on previously known delay and congestion avoidance mechanisms. This allows for effective distribution of network resources and reduces the probability of congestion. Second, after route selection each subsequent packet is assigned a label at each hop, whichmore » determines the output port for the packet to reach its final destination. These labels guide the forwarding of each packet at routing nodes more efficiently and with more control than traditional IP forwarding (based on complete address information in each packet) for high-performance data flows. Label assignment is critical in the prompt and accurate delivery of user data. However, the protocols for label distribution were not adequately secured. Thus, if an adversary compromises a node by intercepting and modifying, or more simply injecting false labels into the packet-forwarding engine, the propagation of improperly labeled data flows could create instability in the entire network. In addition, some Virtual Private Network (VPN) solutions take advantage of this 'virtual channel' configuration to eliminate the need for user data encryption to provide privacy. VPN's relying on MPLS require accurate label assignment to maintain user data protection. This research developed a working distributive trust model that demonstrated how to deploy confidentiality, authentication, and non-repudiation in the global network label switching control plane. Simulation models and laboratory testbed implementations that demonstrated this concept were developed, and results from this research were transferred to industry via standards in the Optical Internetworking Forum (OIF).« less

  1. Conducting-insulating transition in adiabatic memristive networks

    NASA Astrophysics Data System (ADS)

    Sheldon, Forrest C.; Di Ventra, Massimiliano

    2017-01-01

    The development of neuromorphic systems based on memristive elements—resistors with memory—requires a fundamental understanding of their collective dynamics when organized in networks. Here, we study an experimentally inspired model of two-dimensional disordered memristive networks subject to a slowly ramped voltage and show that they undergo a discontinuous transition in the conductivity for sufficiently high values of memory, as quantified by the memristive ON-OFF ratio. We investigate the consequences of this transition for the memristive current-voltage characteristics both through simulation and theory, and demonstrate the role of current-voltage duality in relating forward and reverse switching processes. Our work sheds considerable light on the statistical properties of memristive networks that are presently studied both for unconventional computing and as models of neural networks.

  2. Systematic Genetic Screen for Transcriptional Regulators of the Candida albicans White-Opaque Switch.

    PubMed

    Lohse, Matthew B; Ene, Iuliana V; Craik, Veronica B; Hernday, Aaron D; Mancera, Eugenio; Morschhäuser, Joachim; Bennett, Richard J; Johnson, Alexander D

    2016-08-01

    The human fungal pathogen Candida albicans can reversibly switch between two cell types named "white" and "opaque," each of which is stable through many cell divisions. These two cell types differ in their ability to mate, their metabolic preferences and their interactions with the mammalian innate immune system. A highly interconnected network of eight transcriptional regulators has been shown to control switching between these two cell types. To identify additional regulators of the switch, we systematically and quantitatively measured white-opaque switching rates of 196 strains, each deleted for a specific transcriptional regulator. We identified 19 new regulators with at least a 10-fold effect on switching rates and an additional 14 new regulators with more subtle effects. To investigate how these regulators affect switching rates, we examined several criteria, including the binding of the eight known regulators of switching to the control region of each new regulatory gene, differential expression of the newly found genes between cell types, and the growth rate of each mutant strain. This study highlights the complexity of the transcriptional network that regulates the white-opaque switch and the extent to which switching is linked to a variety of metabolic processes, including respiration and carbon utilization. In addition to revealing specific insights, the information reported here provides a foundation to understand the highly complex coupling of white-opaque switching to cellular physiology. Copyright © 2016 by the Genetics Society of America.

  3. Morphing dynamics in light-triggered LC polymers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Broer, Dirk J.

    2017-02-01

    Polymers that can change shape or surface topography in response to a trigger have a wide application potential varying from micro-robotics to avionics. Preferably this morphing proceeds fast and reversibly. We developed new morphing principles based on in-situ photopolymerized liquid crystal networks and on hybrid low molecular weight liquid crystals and liquid crystal networks. Commonly the triggers are temperature, light, pH or the presence of chemicals or other moisture. In the lecture we will focus on UV actuation and demonstrate that by accurate positioning of molecules over all three dimensions of a thin film or coating, the deformation figures can be pre-engineered. They can vary from simple gratings to very complex such as fingerprints that can be switched between off (flat surface) and on (corrugated surface) by light. The underlying principles are based on photo-induced changes in the degree of order of liquid crystal polymer networks and the accompanying changes in density by the formation of free volume. The surfaces can be switched with frequencies of the order of 0.1 Hz. In the lecture we will discuss several methods to fabricate the responsive layers as well as some of the most eye-catching properties. Also the mechanism of free volume generation will be addressed in terms of molecular dynamics and resonance.

  4. Proposed Construction of Boulder Seismic Station Monitoring Sites, Boulder, Wyoming. Environmental Assessment

    DTIC Science & Technology

    2009-02-01

    power battery box and controllers, WiFi radio, network switch, vault seismometers, infrasonic digitizers, and excess cabling. In addition to the...installed around the boreholes. Immediately upon completion, each site will be cleared of all unused equipment, debris, materials, and trash . All...controllers, WiFi radio, network switch, vault seismometers, infrasonic digitizers, and excess cabling. In addition to the permanent infrastructure listed

  5. Destination directed packet switch architecture for a 30/20 GHz FDMA/TDM geostationary communication satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Shalkhauser, Mary JO

    1991-01-01

    Emphasis is on a destination directed packet switching architecture for a 30/20 GHz frequency division multiplex access/time division multiplex (FDMA/TDM) geostationary satellite communication network. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.

  6. Circuit-switch architecture for a 30/20-GHz FDMA/TDM geostationary satellite communications network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    1992-01-01

    A circuit switching architecture is described for a 30/20 GHz frequency division, multiple access uplink/time division multiplexed downlink (FDMA/TDM) geostationary satellite communications network. Critical subsystems and problem areas are identified and addressed. Work was concentrated primarily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.

  7. Destination-directed, packet-switching architecture for 30/20-GHz FDMA/TDM geostationary communications satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Shalkhauser, Mary JO

    1992-01-01

    A destination-directed packet switching architecture for a 30/20-GHz frequency division multiple access/time division multiplexed (FDMA/TDM) geostationary satellite communications network is discussed. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment has been considered concurrently to ensure cost efficiency and realistic operational constraints.

  8. Supporting performance and configuration management of GTE cellular networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Ming; Lafond, C.; Jakobson, G.

    GTE Laboratories, in cooperation with GTE Mobilnet, has developed and deployed PERFFEX (PERFormance Expert), an intelligent system for performance and configuration management of cellular networks. PERFEX assists cellular network performance and radio engineers in the analysis of large volumes of cellular network performance and configuration data. It helps them locate and determine the probable causes of performance problems, and provides intelligent suggestions about how to correct them. The system combines an expert cellular network performance tuning capability with a map-based graphical user interface, data visualization programs, and a set of special cellular engineering tools. PERFEX is in daily use atmore » more than 25 GTE Mobile Switching Centers. Since the first deployment of the system in late 1993, PERFEX has become a major GTE cellular network performance optimization tool.« less

  9. Optical Network Virtualisation Using Multitechnology Monitoring and SDN-Enabled Optical Transceiver

    NASA Astrophysics Data System (ADS)

    Ou, Yanni; Davis, Matthew; Aguado, Alejandro; Meng, Fanchao; Nejabati, Reza; Simeonidou, Dimitra

    2018-05-01

    We introduce the real-time multi-technology transport layer monitoring to facilitate the coordinated virtualisation of optical and Ethernet networks supported by optical virtualise-able transceivers (V-BVT). A monitoring and network resource configuration scheme is proposed to include the hardware monitoring in both Ethernet and Optical layers. The scheme depicts the data and control interactions among multiple network layers under the software defined network (SDN) background, as well as the application that analyses the monitored data obtained from the database. We also present a re-configuration algorithm to adaptively modify the composition of virtual optical networks based on two criteria. The proposed monitoring scheme is experimentally demonstrated with OpenFlow (OF) extensions for a holistic (re-)configuration across both layers in Ethernet switches and V-BVTs.

  10. A fiber optic tactical voice/data network based on FDDI

    NASA Technical Reports Server (NTRS)

    Bergman, L. A.; Hartmayer, R.; Marelid, S.; Wu, W. H.; Edgar, G.; Cassell, P.; Mancini, R.; Kiernicki, J.; Paul, L. J.; Jeng, J.

    1988-01-01

    An asynchronous high-speed fiber optic local area network is described that supports ordinary data packet traffic simultaneously with synchronous Tl voice traffic over a common FDDI token ring channel. A voice interface module was developed that parses, buffers, and resynchronizes the voice data to the packet network. The technique is general, however, and can be applied to any deterministic class of networks, including multi-tier backbones. A conventional single token access protocol was employed at the lowest layer, with fixed packet sizes for voice and variable for data. In addition, the higher layer packet data protocols are allowed to operate independently of those for the voice thereby permitting great flexibility in reconfiguring the network. Voice call setup and switching functions were performed external to the network with PABX equipment.

  11. Switching performance of OBS network model under prefetched real traffic

    NASA Astrophysics Data System (ADS)

    Huang, Zhenhua; Xu, Du; Lei, Wen

    2005-11-01

    Optical Burst Switching (OBS) [1] is now widely considered as an efficient switching technique in building the next generation optical Internet .So it's very important to precisely evaluate the performance of the OBS network model. The performance of the OBS network model is variable in different condition, but the most important thing is that how it works under real traffic load. In the traditional simulation models, uniform traffics are usually generated by simulation software to imitate the data source of the edge node in the OBS network model, and through which the performance of the OBS network is evaluated. Unfortunately, without being simulated by real traffic, the traditional simulation models have several problems and their results are doubtable. To deal with this problem, we present a new simulation model for analysis and performance evaluation of the OBS network, which uses prefetched IP traffic to be data source of the OBS network model. The prefetched IP traffic can be considered as real IP source of the OBS edge node and the OBS network model has the same clock rate with a real OBS system. So it's easy to conclude that this model is closer to the real OBS system than the traditional ones. The simulation results also indicate that this model is more accurate to evaluate the performance of the OBS network system and the results of this model are closer to the actual situation.

  12. Multistability in the lactose utilization network of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Ozbudak, Ertugrul M.; Thattai, Mukund; Lim, Han N.; Shraiman, Boris I.; van Oudenaarden, Alexander

    2004-02-01

    Multistability, the capacity to achieve multiple internal states in response to a single set of external inputs, is the defining characteristic of a switch. Biological switches are essential for the determination of cell fate in multicellular organisms, the regulation of cell-cycle oscillations during mitosis and the maintenance of epigenetic traits in microbes. The multistability of several natural and synthetic systems has been attributed to positive feedback loops in their regulatory networks. However, feedback alone does not guarantee multistability. The phase diagram of a multistable system, a concise description of internal states as key parameters are varied, reveals the conditions required to produce a functional switch. Here we present the phase diagram of the bistable lactose utilization network of Escherichia coli. We use this phase diagram, coupled with a mathematical model of the network, to quantitatively investigate processes such as sugar uptake and transcriptional regulation in vivo. We then show how the hysteretic response of the wild-type system can be converted to an ultrasensitive graded response. The phase diagram thus serves as a sensitive probe of molecular interactions and as a powerful tool for rational network design.

  13. Power converter

    NASA Technical Reports Server (NTRS)

    Black, J. M. (Inventor)

    1981-01-01

    A dc-to-dc converter employs four transistor switches in a bridge to chop dc power from a source, and a voltage multiplying diode rectifying ladder network to rectify and filter the chopped dc power for delivery to a load. The bridge switches are cross coupled in order for diagonally opposite pairs to turn on and off together using RC networks for the cross coupling to achieve the mode of operation of a free running multivibrator, and the diode rectifying ladder is configured to operate in a push-pull mode driven from opposite sides of the multivibrator outputs of the ridge switches. The four transistor switches provide a square-wave output voltage which as a peak-to-peak amplitude that is twice the input dc voltage, and is thus useful as a dc-to-ac inverter.

  14. On-chip switch for reconfigurable mode-multiplexing optical network.

    PubMed

    Sun, Chunlei; Yu, Yu; Chen, Guanyu; Zhang, Xinliang

    2016-09-19

    The switching and routing is essential for an advanced and reconfigurable optical network, and great efforts have been done for traditional single-mode system. We propose and demonstrate an on-chip switch compatible with mode-division multiplexing system. By controlling the induced phase difference, the functionalities of dynamically routing data channels can be achieved. The proposed switch is experimentally demonstrated with low insertion loss of ~1 dB and high extinction ratio of ~20 dB over the C-band for OFF-ON switchover. For further demonstration, the non-return-to-zero on-off keying signals at 10 Gb/s carried on the two spatial modes are successfully processed. Open and clear eye diagrams can be observed and the bit error rate measurements indicate a good data routing performance.

  15. Parallel logic gates in synthetic gene networks induced by non-Gaussian noise.

    PubMed

    Xu, Yong; Jin, Xiaoqin; Zhang, Huiqing

    2013-11-01

    The recent idea of logical stochastic resonance is verified in synthetic gene networks induced by non-Gaussian noise. We realize the switching between two kinds of logic gates under optimal moderate noise intensity by varying two different tunable parameters in a single gene network. Furthermore, in order to obtain more logic operations, thus providing additional information processing capacity, we obtain in a two-dimensional toggle switch model two complementary logic gates and realize the transformation between two logic gates via the methods of changing different parameters. These simulated results contribute to improve the computational power and functionality of the networks.

  16. 47 CFR 51.5 - Terms and definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... The Communications Act of 1934, as amended. Advanced intelligent network. Advanced intelligent network is a telecommunications network architecture in which call processing, call routing, and network... carrier's network. Advanced services. The term “advanced services” is defined as high speed, switched...

  17. Switched-beam radiometer front-end network analysis

    NASA Technical Reports Server (NTRS)

    Trew, R. J.; Bilbro, G. L.

    1994-01-01

    The noise figure performance of various delay-line networks fabricated from microstrip lines with varying number of elements was investigated using a computer simulation. The effects of resistive losses in both the transmission lines and power combiners were considered. In general, it is found that an optimum number of elements exists, depending upon the resistive losses present in the network. Small resistive losses are found to have a significant degrading effect upon the noise figure performance of the array. Extreme stability in switching characteristics is necessary to minimize the nondeterministic noise of the array. For example, it is found that a 6 percent tolerance on the delay-line lengths will produce a 0.2 db uncertainty in the noise figure which translates into a 13.67 K temperature uncertainty generated by the network. If the tolerance can be held to 2 percent, the uncertainty in noise figure and noise temperature will be 0.025 db and 1.67 K, respectively. Three phase shift networks fabricated using a commercially available PIN diode switch were investigated. Loaded-line phase shifters are found to have desirable RF and noise characteristics and are attractive components for use in phased-array networks.

  18. Ordinary differential equations and Boolean networks in application to modelling of 6-mercaptopurine metabolism.

    PubMed

    Lavrova, Anastasia I; Postnikov, Eugene B; Zyubin, Andrey Yu; Babak, Svetlana V

    2017-04-01

    We consider two approaches to modelling the cell metabolism of 6-mercaptopurine, one of the important chemotherapy drugs used for treating acute lymphocytic leukaemia: kinetic ordinary differential equations, and Boolean networks supplied with one controlling node, which takes continual values. We analyse their interplay with respect to taking into account ATP concentration as a key parameter of switching between different pathways. It is shown that the Boolean networks, which allow avoiding the complexity of general kinetic modelling, preserve the possibility of reproducing the principal switching mechanism.

  19. Data encoding based on the shape of the ferroelectric domains produced by a scanning probe microscopy tip

    DOE PAGES

    Ievlev, Anton; Kalinin, Sergei V.

    2015-05-28

    Ferroelectric materials are broadly considered for information storage due to extremely high storage and information processing densities they enable. To date, ferroelectric based data storage has invariably relied on formation of cylindrical domains, allowing for binary information encoding. Here we demonstrate and explore the potential of high-density encoding based on domain morphology. We explore the domain morphogenesis during the tip-induced polarization switching by sequences of positive and negative pulses in a lithium niobate single-crystal and demonstrate the principal of information coding by shape and size of the domains. We applied cross-correlation and neural network approaches for recognition of the switchingmore » sequence by the shape of the resulting domains and establish optimal parameters for domain shape recognition. These studies both provide insight into the highly non-trivial mechanism of domain switching and potentially establish a new paradigm for multilevel information storage and content retrieval memories. Furthermore, this approach opens a pathway to exploration of domain switching mechanisms via shape analysis.« less

  20. A robust low-rate coding scheme for packet video

    NASA Technical Reports Server (NTRS)

    Chen, Y. C.; Sayood, Khalid; Nelson, D. J.; Arikan, E. (Editor)

    1991-01-01

    Due to the rapidly evolving field of image processing and networking, video information promises to be an important part of telecommunication systems. Although up to now video transmission has been transported mainly over circuit-switched networks, it is likely that packet-switched networks will dominate the communication world in the near future. Asynchronous transfer mode (ATM) techniques in broadband-ISDN can provide a flexible, independent and high performance environment for video communication. For this paper, the network simulator was used only as a channel in this simulation. Mixture blocking coding with progressive transmission (MBCPT) has been investigated for use over packet networks and has been found to provide high compression rate with good visual performance, robustness to packet loss, tractable integration with network mechanics and simplicity in parallel implementation.

Top